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ABSTRACT 

We demonstrate here that nonlinear mixing of four surface 

plasmon waves can be. used to probe the Raman resonances of liq-

uids. The results are in good agreement with theoretical pre-

diction. The technique should be useful for surface studies. 

On leave from UNICAMP, Brazil. 
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The propagation of surface electromagnetic waves on solids and their 

applications have recently attracted considerable attention.
1 

They have 

2 3 
been used to study adsorbed molecules and overlayers on surfaces, to 

b h . . 4 pro e p ase trans1t1ons, etc. In most cases, linear optics is employed 

in the excitation and detection of the surface waves. Observations of 

nonlinear optical processes involving surface em waves have been rather 

rare. Simon has used the linearly-excited surface plasmon wave on metal 

films to generate a bulk second harmonic wave. 5 De Martini et al, on the 

other hand, have used the mixing of two bulk waves to generate a surface 

em wave, and have used the mixing of a bulk wave and a surface wave as a 

6 
means to detect the surface wave. Since high-intensity surface em waves 

can be readily excited, one would expect that pure surface nonlinear op-

tical effects (i.e., all input and output optical waves are surface waves) 

should also be easily observable. However, no such experiment has yet 

7 
been reported. In this paper, we present the first results of such an 

experiment on the mixing of four surface plasmon waves. 

The process we have been studying is the surface coherent anti-Stokes 

Raman spectroscopy (CARS). Two surface plasmon waves at w
1 

and w
2 

propa­

gate on the plane boundary surface between a metal and a dielectric me­

dium with wave vectors, (k
1

)
11 

and (k
2

)
11 

re~pectively, parallel to the sur­

face. These waves interact on the surface via the third-order nonlinear-

ity in the medium to produce a third-order nonlinear polarization at w = 
a 

2w
1 

- w2 which in turn generates a surface anti-Stokes plasmon wave at wa. 

+ + + 
This anti-Stokes generation will be phase-matched if (ka)ll = 2(k

1
)ll - (k2)11' 

and will be resonantly enhanced if w
1 

- w
2 

approaches the resonant fre­

quency of some excitation in the medium. Therefore, just like bulk CARS, 

, 



... 
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the surface CARS can also be used as a spectroscopic technique to study 

the resonances in a medium. In fact, in some applications, the surface 

CARS should have clear advantages over the bulk CARS as we shall discuss 

later. 

The theory of surface CARS is a straightforward extension of the 

theory on nonlinear generation and detection of surface polaritons devel­

oped earlier.
8 

Suppose the Kretschmann geometry9 (Fig. la) is used for 

excitation of the surface plasmons. The dispersion relation of the sur-

face plasmons is then given by 

~I ,w) = 0, (la) 

with 

D(~l ,w) (Enkmz- E k )(E k + E k ) + 
k m £-z m gz g mz 

2ik d 
+ e mz (E k + E k

0 
)(t k - E k ) 

£. mz m kZ m gz g mz 
(lb) 

where the sub-indices £, m, and g refer to liquid, metal, and glass re-

spectively (see Fig. la), dis the thickness of the metal film, E's are 

the dielectric constants, k 's are the z-components of the wave vectors, 
z 

= [ 2 I 2 2 ~ 2 I 2 2 ~ _ 
kmz = iam w Em c - ~I] and k£-z =-ia£ = [w E £. c - ~I] , and ~I -

~~ + i~'l is the complex wave vector of the surface plasmon. An incoming 

TM wave E . = 8: . exp ( ik . · ; - iw. t) from the glass side, with k.l - Kl' 
g1 g1 g1 1 I I 

-+ 
can linearly excite a surface plasmon wave described by a field E£-i = 

"i!H exp(ikill · ; + aHz- iwit) in the liquid medium with;; in the x- y 
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plane. Because of its physical confinement to the boundary, the surface 

wave can have an intensity significantly higher than the incoming bulk 

wave. The field amplitudes are related by 

(2a) 

-a .d 
It .I = 14~ IE e: a ;-k . e m~ 

~ "" g m m~ gn /D(kill'wi) I (2b) 

which is roughly equal to (k /~ K.'l')exp(-a d). 
g m -1!, -1 m 

The anti-Stokes generation is governed by the equations 

2 2 -+ 
('il x 'iJ x - e:w I c ) E (w ) 

a a a 
(3a) 

(3b) 

(3c) 

with the proper boundary conditions at the interfaces. Here, we shall 

assume that only the nonlinear susceptibility x (3) of the liquid contri-
·~ 

butes to the anti-Stokes generation. The surface anti-Stokes wave is 

then generated at the liquid-metal interface and coupled out through the 

glass side. The solution of Eq. (3), when the (small) TE component of 

P( 3
) is neglected, yields a coherent anti-Stokes TM wave in the glass 

a 
-+ -+ 2 22-+ -+ -+ 
Ea(wa,k) with ka e:gw/c , kaJI = 2klll - k211 and intensity 

-a d 
= l8ne: k a e m H/D(kaJI ,w ) 1

2 
m g m a 

(4a) 
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In Eq. (4) all E's are taken at w . 
a 
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(4b) 

The anti-Stokes power output from the glass side is then given by 

/P(w ) 
a 

(5) 

where surface integration is over the beam cross-sectional area. 

From Eqs. (3) - (5) we notice that the anti-Stokes output should be 

+ + 
strongly enhanced if 1) the incoming waves E

1 
and E

2 
excite the surface 

plasmon resonances, i.e., kill = K~ll, (i = 1,2), 2) the surface anti-Stokes 

generation is phase-matched (Fig. lb), i.e., k~l 

approaches the resonance excitation frequency of the liquid medium so 

~(3) 
that x is resonantly enhanced. 

Our experimental arrangement is shown in Fig. lc. A Q-switched ruby 

laser at 6943 A with a linewidth ~ 0.5 cm-l delivered 30-nsec and 500-mJ 

pulses at a repetition rate of 10 pulses/minute. Part of the beam was 

used as the w
1 

pump beam and the rest was used to pump a dye laser (NK199 

in acetone) oscillator and amplifier system to yield a tunable w
2 

beam at 

-1 
- 7456 A with a linewidth ~ 1 em and an energy of 20 mJ/pulse. The two 

beams were then directed from the prism side onto the sample, which is a 

glass prism-silver film-benzene combination (Fig. la) sitting on a rota-

table table. In order to avoid excessive heating and burning of the me-

2 2 
tal film, only 2.5 mJ/cm from the w

1 
beam and 25 mJ/cm from the w

2 
beam 

were used in the experiment. The anti-Stokes output from the prism was 
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then collected by the detection system consisting of an interference fil-

ter, a monochromator, and an RCA 7265 photomultiplier. For the purpose 

of signal normalization and monitoring of the Raman resonance, a bulk 

CARS experiment on benzene was also set up in parallel. The surface plas-

mon resonances at w
1 

and w
2 

were monitored and their characteristics deter­

mined by independent ATR measurements using the above-mentioned lasers. 

Our experimental results on surface CARS are presented in Figs. 2-4 

in comparison with theoretical curves derived from Eq. (4). Figure 2 

shows th~ variation of the anti-Stokes signal as (w
1 

- w
2

) moves through 

-1 (3) 
the 992-cm vibrational resonance in x of benzene; in this case, the 

input beams were properly directed so that both w
1 

and w
2 

surface plasmons 

were optimally excited and the phase-matching condition for surface CARS 

was satisfied. The theoretical curve describing this resonance peak was 

calculated by using a resonance linewidth determined from the parallel 

bulk CARS measurement. The nonresonant contribution to x(
3) must be in-

eluded in the calculation in order to obtain a good fit to the experimen-

1 d . h . 10 ta ata ln t e wlngs. Aside from an amplitude normalization constant, 

no other adjustable parameter was used in the calculation of all the the-

oretical curves. Each data point in the figures was the result of an 

average over 10 shots. The error bars on the data points arise from la-

ser fluctuations. Normalization of surface CARS against bulk CARS was 

clearly ineffective in eliminating effects due to shot-to-shot variation 

of the laser mode structure. 

When both w
1 

and w
2 

beams were fixed in space and in frequency, but 

the prism-sample assembly was rotated about they-axis, the surface CARS 

-+ -+ 
signal varied as a result of changing klll and k 211 ; first, the resonance 
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excitation conditions of the surface plasmons at w
1 

and w
2 

were changed, 

and then, the phase mismatch in surface CARS was also varied. The results 

are shown in Fig. 3. Again, the theoretical curve derived from Eq. (4) 

gives a good fit to the experimental data. Here, the peak is dominated 

by the effect due to resonance excitation of the surface plasmons at w
1 

and w
2

. The effect of phase mismatch is of secondary importance in re-

clueing slightly the width of the p~ak. In the present case, the phase-

matching peak is expected to be extremely broad because the effective in-

teraction length of surface CARS is limited by the attenuation length 1/~l' 

of the surface plasmons. In Fig. 4 we show the results on the surface 

CARS signal versus ~~~ jzk111 - k211 - Kalil . In the experiment, ~~~ was 

varied by changing the direction of k:
211 

through variation of k
2 

while 

keeping the surface plasmons at w
1 

and w
2 

still optimally excited. Here, 

relatively large uncertainty in the experimental results came from the 

fact that for each change of ~~~ , the beams had to be readjusted to opti­

mize the beam overlap on the silver film. The theoretical curve is es­

sentially a Lorentzian in t:.~l, arising from the I D(kall ,w) 1-Z term in Eq. 

(4), and agrees fairly well with the experimental results. 

As further confirmation that we were actually measuring surface CARS, 

the polarization of the anti-Stokes signal was found to be 111 as expected, 

and the signal disappeared when the w
1 

beam was made TE. With phase­

matching and with surface plasmons at both w
1 

and w
2 

optimally excited, 

our theory predicts a maximum surface CARS output power of 9'(w ) = 1.1 
a 

. -34 2 4 
x 10 tP (w

1
)9"(w

2
)/W ergs/sec at the resonance peak of x( 3) where 1-J is 

the incoming beam waist. With9"(w
1

) = 0.5 mJ and9"(w
2

) 5 mJ in a 30-

5 
nsec pulsewidth, we should obtain an anti-Stokes output of 2.5 x 10 pho-
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tons/pulse. From the actually observed signal from the photomultiplier, 

we estimated an output of - 2 x 105 photons/pulse in good agreement with 

the prediction. The power dependence of the anti-Stokes output on~(w1 ) 

and~(w2 ) was also experimentally verified over an order of magnitude in 

signal strength. When either the w
1 

or w
2 

beam was blocked, no signal 

at w was detected after more than 10 shots, indicating that the signal 
a 

to background ratio in our experiment was greater than 103 . Bulk CARS 

generation in the glass prism could contribute to the background, but in 

our case, it was 6 orders of magnitude smaller than the surface CARS be-

cause of phase mismatch. 

In comparison with the bulk CARS, the surface CARS has some advant-

ages and rather unique applications. Because the effective interaction 

length in surface CARS is only 1/Kij - 10 j.lm, the technique can be used to 

probe x(
3) for materials with strong absorption. Flourescence from the 

absorbing material is shielded from the detector by the metal film. Al-

so, since only a thin layer (- A/6n) of dielectric medium at the interface 

effectively contributes to the surface CARS signal, the technique can be 

used to study thin films, overlayers, and perhaps even adsorbed molecules. 

The sensitivity of the technique with nanosecond laser pulses is limited 

by the maximum laser fluence incident on the film during the laser 

pulse. However, because the signal is proportional to~2 (w1)~(w2 ), the 

sensitivity can be greatly improved by using picosecond pulses. Consider, 

for example, a 10-psec pulse with 10 J,lJ/pulse focused to a diameter of 

400 J.lm. Then, for the benzene-silver-glass system, we expect to find an 

11 anti-Stokes signal of 1 x 10 photons/pulse. This suggests that we 

should be able to detect a submonolayer of benzene molecules on silver 
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witho~t much difficulty. The success of this technique could then facil­

itate numerous interesting surface studies. 

In summary, we have demonstrated here that nonlinear optical inter­

action, in particular four-wave mixing, of surface plasmon waves at a me­

tal-dielectric interface can be readily observed. The technique has a 

surface~specific nature and may find potential important applications in 

surface science. 
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Figure Captions 

1. (a) Prism-metal-liquid sample assembly. Laser beam 1 propagates in 

the x-z plane, but beam 2 and the output do not. 

(b) Relationship between the wave vectors in the glass prism. Wave 

vector components along the x-y surface plane are phase matched. 

(c) Block diagram of the experimental setup. IF is an interference 

filter, and L is a lens. 

2. Surface CARS signal as a function of (w
1 

- w
2

) near the vibrational 

resonance in x(
3) of benzene. 

3. Surface CARS signal versus the angular position of the prism assembly 

about the y-axis. e is the angle between the direction of beam 1 in-

cident on the prism and the prism normal in the x-z plane. 

4. Surface CARS signal versus the phase mismatch ~~~ in the x-y plane. 
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