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Research papers 

Hydrological analysis in watersheds with a variable-resolution global 
climate model (VR-CESM) 

Zexuan Xu *, Alan Di Vittorio 
Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, United States 
Berkeley Institute for Data Science, University of California, Berkeley, United States   
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A B S T R A C T   

Taditionally, watershed-scale hydrology is simulated by distributed hydrological models with offline meteoro-
logical forcing data, or by regional regional climate models that link atmospheric and land hydrology in-
teractions. Global climate model (GCMs) are rarely used to study watershed-scale hydrology due to the relatively 
coarse grid resolution, computationally expensive downscaling, and simplified physical processes. Recently, 
however, watershed-scale hydrology analysis has become possible in GCMs due to the development of variable- 
resolution GCMs that dynamically couple the hydrological processes between atmospheric and land systems at 
fine resolutions in selected regions and coarse resolution elsewhere. In this study, we used the variable-resolution 
Community Earth System Model (VR-CESM) with refined-resolution (14 km) in the western U.S. and eastern 
China to evaluate smaller watershed-scale hydrology. We compared the historical VR-CESM outputs with gauge 
measurements and other hydrological models (e.g., National Water Model in the U.S.) and calibrated the sub-
surface runoff capacities in four mountainous watersheds. An RCP8.5 projection from 2007 to 2050 is used to 
estimate the impact of changing precipitation and snow climatology on watershed hydrology. We also analyzed 
the long-term runoff variability and the possibility of extreme runoff events as simulated by the VR-CESM. 
Although calibration is not possible in larger-scale watersheds, VR-CESM simulates the long-term annual vari-
ability of watersheds and provides insights on climate change impacts on hydrology. We conclude that refined- 
resolution VR-CESM can be used for watershed-scale hydrology analysis to understand water resources and water 
balance, in addition to traditional watershed-scale hydrological models. It enables hydrological analysis at 
multiple watersheds in one simulation and can help understand the two-way dynamics between land surface 
hydrology and atmospheric processes, and is especially practical for projecting climate change impacts. How-
ever, it is challenging to apply VR-CESM for hydrologic analysis in regulated watersheds as human factors (e.g., 
pumping, irrigation, water diversion) have not been fully addressed in VR-CESM.   

1. Introduction 

Multiple distributed hydrological models have been developed (e.g., 
ParFlow, Maxwell et al., 2009, MODFLOW, Harbaugh, 2005, SWAT 
Arnold et al., 2012) with numerous applications at the watershed level. 
These distributed hydrological models solve physically-based equations 
for subsurface and surface flow as well as other hydrological processes 
over the domain. The distributed hydrological models usually require 
significant efforts to set up with high-resolution input datasets, partic-
ularly for the subsurface geology and soil parameters, which may need 
to come from intensively-instrumented regions. The heterogeneity of 
data uncertainties and coverage coming from different data sources 

across the large-scale domain could affect the performance of hydrologic 
models significantly (Archfield et al., 2015). As a result, it is also 
structurally and computationally challenging to upscale the distributed 
hydrology models to larger continental or global scales. The governing 
equations and assumptions that are valid at fine scales may not be valid 
at coarser scales (Blöschl and Sivapalan, 1995), while running fine- 
resolution hydrological models over large regions is computationally 
expensive. In addition, this method captures only one-way interactions 
from the atmosphere to the land. 

Global climate models (GCMs) have been developed to simulate 
Earth system processes and study various climate science questions, for 
example, projecting the changing climate (e.g., Massoud et al., 2019; 
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Gettelman et al., 2018; Rhoades et al., 2018), investigating the large- 
scale teleconnection patterns (e.g., Gettelman et al., 2018; Yuan et al., 
2018), and quantifying the effects of radiation on evapotranspiration 
(ET) (e.g., Lian et al., 2018; Zhao et al., 2019). The applications of global 
climate models to evaluating watershed-level hydrology are limited and 
usually require additional model development, downscaling and/or 
postprocessing (e.g., Voisin et al., 2013; Zhou et al., 2020). The coupling 
of atmospheric models and lumped land surface models in GCMs 
generally requires simplified mechanistic hydrological processes, and 
most of these coupling do not include lateral flow. Most GCM simula-
tions at present are performed at relatively coarse horizontal resolutions 
(∼ 1◦) due to the tremendous computational cost required to run them at 
finer resolutions. While hydrological processes have been widely 
investigated and have significant impacts on other earth system pro-
cesses, GCMs are seldom applied to study hydrological processes 
because their coarse resolution inhibits reliable watershed scale ana-
lyses. Although some statistical downscaling methods have been 
developed and applied, these methods still have limitations such as 
ignoring physical principles or not being able to project novel future 
conditions (Maraun and Widmann, 2018; Nyunt et al., 2016; Velasquez 
et al., 2020). Regional climate models (RCMs) are an alternative to 
statistical downscaling and have been developed to run at resolutions of 
less than 1 km, with the flexibility of multiple nested domains at 
different resolutions. RCMs are driven by either coarser-resolution 
GCMs or reanalysis climate datasets at the outer domain, with the lim-
itations of not simulating large-scale global circulation and the intro-
duction of large-scale error at the RCM boundary (Xu et al., 2018; 
Ullrich et al., 2018). Nonetheless, simplified hydrologic processes 
including runoff generation, snow accumulation and snowmelt, evapo-
ration and transpiration, and infiltration, are simulated by the land 
surface models in both GCMs and RCMs in order to evaluate feedbacks 
with the atmosphere. Given these limitations, distributed watershed- 
scale models are usually the preferred tools for hydrological analyses 
over various climate model approaches. 

Offline land surface models with meteorological forcing datasets at 
fine resolution have also been used for hydrological analysis, but they 
have their limitations. For example, Li et al. (2011) evaluated the fine- 
resolution CLM hydrology outputs with in situ observations from the 
American River watershed, and concluded that the surface and subsur-
face runoff can appropriately simulate the monthly runoff and water 
budget with calibration at the watershed scale. Du et al. (2016) evalu-
ated the hydrologic components in the CLM4 forced by both reanalysis 
and coupled model outputs, and reported that runoff was generally 
overestimated and the predictability of hydrology could be improved by 
addressing the compensating errors associated with precipitation and 
temperature. The uncertainty of this approach is partially determined by 
the resolution of meteorological forcing datasets and the topography 
and surface datasets applied in the land surface model, with additional 
limitations associated with coarser-resolution parameterizations being 
applied at finer scales. Furthermore, this approach applies to only one- 
way interactions from the meteorological forcing datasets to the land 
surface model. This means that some important feedbacks of water 
budgets, such as the effects of ET on vapor pressure deficit, are not 
simulated and may lead to uncertainties in the watershed-scale water 
budget computation. 

Mountainous headwater watersheds are critical to water resources 
management in the western U.S., and the above approaches are all 
challenged by the complexity of this high-gradient region. The Sierra 
Nevada and Cascade Mountains on the west coast act as natural barriers 
to the dominant moisture transport pathway coming from the Pacific 
Ocean, and as such force condensation and store this moisture as 
mountain snowpack. The mountains of the Sierra Nevada provide 72% 
additional surface storage for irrigation and municipal use during 
seasonally dry summers (Dettinger and Anderson, 2015), and provide 
more than 60% of California’s water consumption (Bales et al., 2011). 
Similarly, the Rocky Mountain snowpack is a primary source of water for 

the Colorado River basin and inland western U.S. (Serreze et al., 1999). 
The hydrological processes in these in forested, mountainous watersheds 
are usually snow-dominated and topography-driven. Understanding the 
interactions among forest structure, snow accumulation, snowmelt, and 
streamflow generation is therefore an integral component of effective 
water resources management (Ahl et al., 2008). Particularly, climate 
change will challenge current water resource management strategies 
due to changing resource availability in the western U.S. mountains 
(Hayhoe et al., 2004). Foster et al. (2016) pointed out that in snow- 
dominated mountain regions, climate is expected to alter two drivers 
of hydrology by decreasing the fraction of precipitation falling as snow 
and also increasing surface energy available to drive ET. In such complex 
regions, improving the characterization and modeling of hydrological 
processes is essential to better understand the hydrologic dynamics 
under a changing climate (He et al., 2019; Garousi-Nejad et al., 2017; 
Daly et al., 2017). 

In this study, we demonstrate that refined-solution GCMs are appli-
cable to perform watershed-scale hydrological analysis and alleviate 
some of the limitations described above. This approach is particularly 
novel and well-suited in projecting climate change impacts on hydro-
logical processes and extreme events. By using a GCM with regionally- 
refined resolution, we leverage the two-way interactions between the 
atmospheric and land surface models while simulating the hydrological 
processes at a refined-resolution. In this paper, we analyze and evaluate 
hydrological simulations in four representative, unmanaged headwater 
watersheds in the western U.S using the variable-resolution community 
earth system model (VR-CESM). The methods applied in this study are 
described in Section 2, including the climate model experiment (Section 
2.1), the runoff generation schemes and calibration approach (Section 
2.2), a brief introduction of the four watersheds studied in this paper 
(Section 2.3), and the reference hydrological models and data (Section 
2.4). The runoff calibration results are evaluated against reference 
models and data in Section 3.1, the application of VR-CESM to assessing 
climate change impacts on mean runoff is presented in Section 3.2, and 
the assessment of changing patterns of extreme hydrological events is 
presented in section (Section 3.3). VR-CESM simulations are also used to 
quantify the water budget in larger-scale watersheds in the western U.S. 
and eastern China, where grid resolution is refined at 14 km in the VR- 
CESM (Section 3.4). 

2. Methods 

2.1. Variable Resolution Global Climate Model 

The technical details of VR-CESM and model evaluation were 
demonstrated in Xu et al. (2021), and only briefly introduced here. The 
VR-CESM utilizes a variable-resolution cubed-sphere grid generated by 
SQuadGen (Ullrich, 2014) and implemented in the Community Earth 
System Model, with the Community Atmospheric Model version 5 using 
the Spectral Element dynamical core (CAM5-SE) and the Community 
Land Model with Satellite Phenology version 4.0 (CLM) (Oleson et al., 
2010; Lawrence et al., 2011). This study uses the FAMIPC5 (F-Atmo-
spheric Model Intercomparison Project Component) component set, 
which bounds atmosphere-land coupled simulations with 
observationally-derived estimates of sea surface temperature and sea ice 
and employs well-established Atmosphere Model Intercomparison 
Project (AMIP) protocols with full atmospheric-land coupling and 
monthly prescribed ocean conditions (Ackerley et al., 2018). The 
monthly prescribed sea ice and sea surface temperatures (SST) are 
derived from a merging of the HadISST1 (Hadley Centre Sea Ice and Sea 
Surface Temperature dataset) and NOAA OI (National Oceanic and At-
mospheric Administration Optimum Interpolation) SST datasets (Hur-
rell et al., 2008). The VR-CESM land topography is derived from a 
resolution-dependent smoothing of a global 30 arc-second elevation US 
Geological Survey GTOPO30 dataset using methods outlined in (Zar-
zycki et al., 2015). The highest-resolution surface cover dataset in 
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CLM4.0-SP, approximately 5 km resolution, was used and regridded at 
the same variable-resolution to produce the surface characteristics 
needed by VR-CESM. This particular surface cover dataset is fixed in 
time, derived from a composite of several satellite products, and 
representative of the year 2000. 

Supported by an U.S. - China joint research project, the focus regions 
for the variable-resolution refinement include 3.12 million km2 in the 
five major watersheds in the western U.S. and 4.04 million km2 in the 
four major river basins in eastern China. The finest grid resolution is 14 
km and covers one region in the western U.S. and one in eastern China 
(Fig. 1). The refined grid includes transitional buffers from 111 km grid- 
spacing to 55 km, 28 km, and finally 14 km over both the western U.S. 
and eastern China. The VR-CESM simulations span January 1969 to 
December 2006 for the historical simulation, and January 2007 to 
December 2050 for the future RCP 8.5 simulation. The first year is dis-
carded as a spin-up period to ensure the land surface model is in equi-
librium with CAM5-SE, particularly for soil moisture. The CLM initial 
conditions for the VR-CESM simulation are from the average of histor-
ical (1850–2006) CESM simulations and are at reasonably balanced 
states. Therefore, one-year spin-up is generally sufficient (Lee et al., 
2015; Montavez et al., 2017), and is followed by many previous VR- 
CESM studies (Wu et al., 2017; Huang et al., 2016). The simulations 
were conducted on the Department of Energy’s National Energy 
Research Scientific Computing Center (NERSC) Cori supercomputing 
system with 75 nodes (2,400 processors). The computational hour cost is 
∼ 43,300 h per simulation year, with 1.33 simulation years per day on 
Cori-Haswell. 

2.2. Hydrology in CLM 

CLM is the land surface model used in our VR-CESM simulation for 
computing runoff generation and other hydrological flux components 
(Oleson et al., 2010). The hydrologic cycle over land includes inter-
ception of water by plant foliage and wood, throughfall, streamflow, 
infiltration, runoff, soil water, and snow. These are directly linked to the 
biogeophysics and also affect temperature, precipitation, and runoff. 
Total runoff (surface and subsurface runoff) are routed downstream to 
oceans using a river transport model (RTM). Generally, the hydrological 
processes in most land surface models are over-simplified, particularly 
missing the lateral flow between two columns of the land surface model, 
and do not necessarily work best at the watershed level. However, this 
approach is still used in most climate models thus the assessment of its 
application in hydrological analyses are critical. In VR-CESM, the RTM 
enables the hydrologic cycle to be closed because it is synchronously 
coupled to CLM and routes total runoff from the land surface model to 
either the active ocean or marginal seas (Branstetter and Famiglietti, 
1999). However, in this study the watersheds evaluated are small 
enough that we can use the CLM hydrology variables directly for com-
parison of observed and simulated streamflows on daily time scales. In 
addition, many other global climate models do not use RTM or have 
different RTM structures to route runoff through the terrain. As such, the 
RTM outputs are not evaluated in this paper. This also allows for more 
detailed analysis of surface and subsurface contributions to total 
streamflow and wider applicability in other models. 

The runoff generation scheme in CLM is based on a simplified 
TOPMODEL-based representation (Niu et al., 2005), and the detailed 
introduction of the hydrological scheme can be found in the CLM 
manual (Oleson et al., 2010) and is only briefly introduced here. Both 

Fig. 1. (a) Refined-resolution domain in the west-
ern U.S. in the VR-CESM; (b) Four unmanaged, 
headwater watersheds, including American River 
(1), Cosumnes River (2), East-Taylor (3) and Smith 
River (4), and four regional-scale watersheds (Cali-
fornia, Pacific Northwest, Upper Colorado and 
Lower Colorado River) at 14 km refined-resolution 
simulated in the VR-CESM; (c) Refined-resolution 
domain in the eastern China in the VR-CESM; (c) 
The four regional-scale watersheds (China Coastal, 
Hai River, Yangzte River and Yellow River) in China 
at 14 km refined-resolution simulated in the VR- 
CESM.   
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surface and subsurface runoff are parameterized as exponential func-
tions of the water table depth. The rate of surface runoff generation is 
given by 

Rsurf = Fsatp+(1 − Fsat)max[0, (p − I)]

where Fsat is the fraction of saturated area within a grid cell, p is the 
effective rainfall intensity (in mm s− 1) (i.e., equivalent to kg m2 s− 1 in 
common CLM applications), which is estimated as the sum of throughfall 
(rainfall and dewfall after canopy interception) and snowmelt, I is the 
soil infiltration capacity (in mm s− 1), which is controlled by soil prop-
erties and soil moisture within the top soil layer. The fractional satura-
tion area is a function of soil moisture calculated by 

Fsat = Fmaxexp( − 0.5foverzδ)

where Fmax is the maximum possible saturated area fraction, fover is a 
decay factor (m− 1), and zδ is the water table depth (m). Fmax is computed 
at 14 km resolution using the methods introduced in Tesfa et al. (2014), 
and the decay factor fover was determined through sensitivity analysis 
and comparison with observed runoff to be 0.5 m− 1 (Oleson et al., 2010). 

The rate of subsurface runoff generation is given by. 

Rsub = Rsb,maxexp( − fdraiz)

where Rsb,max is the maximum subsurface runoff when the whole grid cell 
is saturated (in mm s− 1) and fdrai is a decay factor (m− 1) that represents 
the distribution of saturated hydraulic conductivity with depth. The 
total soil column in CLM is divided into 10 layers, with the thickness of 
each layer increasing from top to bottom. The total soil depth for hy-
drologic simulation is prescribed a uniform constant value of 3.802 m. 

The maximum subsurface runoff values used in CLM are constant at 
5.5 × 10− 3 mm s− 1 , which is derived from a sensitivity analysis of global 
extent. In other words, the constant values set in the model imple-
mentation are applied generally to watersheds with different actual 
subsurface permeability and surface conditions. Li et al. (2011) pointed 
out that this may lead to significant impacts on water table depth and 
soil moisture profile and thus influence the temporal variation of runoff 
generation. Li et al. (2011) performed sensitivity analysis and manual 
trial-and-error calibration to the default parameters in CLM, including 
Fsat and Rsb,max, in the American River watershed, and found that Rsb,max 

is the major factor contributing to the unrealistically high peaks of 
runoff. 

Following Li et al. (2011), we applied the same calibration approach 
to Rsb,max using USGS gauged streamflow data measured at the outlet of 
each watershed. Within each watershed, Rsb,max is assumed to be con-
stant and calibrated against the streamflow gauge measurements at the 
watershed outlets. The calibration period is 1970–2006. Monthly 
average streamflow measurements over the calibration period 
(1970–2006) are used in the trial-and-error manual calibration. The 
calibration range of the maximum subsurface runoff Rsb,max determined 
for our watersheds is set between 0 and 1.1× 10− 2 mm s− 1, or 0–200 % 
of the default maximum subsurface runoff specified in CLM. Since the 
calibrations are carried out independently in each of the four watersheds 
evaluated in this study, the resulting Rsb,max values differ across water-
sheds likely due to differing hydrogeological and surface conditions. We 
also calibrated Fsat and Rsb,max simultaneously and found that their dif-
ference is negligible in total runoff, which is similar to the results in Li 
et al. (2011). However, the allocation to surface and subsurface runoff 
can be different see Supplementary Material (1). As data are not avail-
able to validate this allocation, we take the more parsimonious approach 
here of calibrating only Rsb,max. 

2.3. Watersheds in the western U.S. 

Four unmanaged, mountainous watersheds have been selected to 
analyze the VR-CESM hydrological simulation (Fig. 1) to represent a 

wide range of geographic conditions in the western U.S. Unmanaged 
watersheds ideally do not have human activities such as dams, direct 
withdrawls, or water diversion that affect hydrological processes, and 
are essential for evaluation here because VR-CESM is not able to simu-
late these human factors. It turns out that unmanaged watersheds are 
usually mountainous regions with relatively small area. These four 
watersheds represent diverse climate and topography in the western U. 
S. The American River and East-Taylor River are snow-dominated wa-
tersheds, and the Cosumnes River and Smith River are rain-dominated 
watersheds. Watershed locations include the Pacific coast (Smith), the 
Sierra Nevada Mountains (Cosumnes), the Cascade Mountains (Amer-
ican), and the Rocky Mountains (East-Taylor). Furthermore, the Amer-
ican River (Li et al., 2011) and the East-Taylor River (https://watershed. 
lbl.gov/) are well-studied watersheds with ample data for evaluation. 

The American River watershed is a mountainous watershed located 
along the leeward side of Mt. Rainier in the Pacific Northwest region of 
the U.S. The total drainage area of the American River watershed is 205 
km2, which is mainly covered by evergreen forest and shrub and un-
derlaid by sandy soil. The elevation ranges from 850 to 2100 m. Annual 
precipitation in the watershed is about 1850 mm, mostly occurring in 
the winter season (November to January) as snowfall (Li et al., 2011). 

The Cosumnes River is one of the last rivers in the Sierra Nevada 
region without a major dam. Thus, it offers a rare opportunity to study 
natural flow conditions. We should note that only the part of Cosumnes 
River watershed upstream of the Michigan Bar USGS station is consid-
ered here, which includes only 3500 km2 of the total 7000 km2 of the 
watershed. Above about 900 m the northern Sierra Nevada Mountains 
are predominately covered by a mixed evergreen forest. Spatial patterns 
of precipitation are highly heterogeneous across the watershed. The 
regional climate is considered Mediterranean with average precipitation 
of 1500 mm/yr, wet and cold winters with a watershed average tem-
perature equal to 0 ◦C, and hot and dry summers with a watershed 
average temperature reaching 25 ◦C (Maina et al., 2020a,b). 

The East-Taylor River watershed is representative of headwater 
catchments in the Upper Colorado Basin (Markstrom et al., 2009) with 
nearly 2000 km2. The East River and Taylor River form the Gunnison 
River, which in turn accounts for just under half of the Colorado River’s 
discharge at the Colorado-Utah border. The watershed has an average 
elevation of 3266 m, with 1420 m of topographic relief and pronounced 
gradients in hydrology, geomorphology, vegetation, and weather. The 
area is defined as having a continental, subarctic climate with long, cold 
winters and short, cool summers. The watershed has a mean annual 
temperature of 0 ◦C, with average minimum and maximum tempera-
tures of − 9.2 and 9.8 ◦C, respectively, in winter and summer seasons. 
The East-Taylor watershed receives an average of 1200 mm yr− 1 of 
precipitation, the majority of which falls as snow (Hubbard et al., 2018). 

The Smith River is the only coastal river that is evaluated in this 
study. It flows from the Klamath Mountains to the Pacific Ocean in Del 
Norte County in extreme northwestern California, on the West Coast of 
the United States. The river is 40.4 km long, its watershed catchment 
area is 1,860 km2, without no major dams or human activities. The 
climate in Smith River is a typical Mediterranean regime with most 
precipitation falling in winter, and approximately 60% of the year’s total 
average precipitation occurring in the four-month period from 
November to March. Smith River is the wettest human-inhabited spot in 
the state of California with the average annual precipitation amount of 
1873 mm, however, very little snow falls as its daily mean temperature 
is moderate and ranges from 9.0 ◦C in February and 16.0 ◦C in July. 

2.4. Reference hydrological models and reference datasets 

The National Water Model (NWM) is a hydrologic modeling frame-
work that simulates and forecast streamflow over the entire continental 
United States (CONUS). The core of the NWM system is the National 
Center for Atmospheric Research (NCAR)-supported community 
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Weather Research and Forecasting Hydrologic model (WRF-Hydro). It 
uses global forcing from a variety of sources, and is configured to use the 
Noah-MP Land Surface Model (LSM) to simulate land surface processes. 
Separate water routing modules perform diffusive wave surface routing 
and saturated subsurface flow routing on a 250 m grid, and routing 
downstream along the nriver network and output streamflow simulation 
at the stream reaches of the National Hydrography Dataset 
(NHDPlusV2). United States Geological Survey (USGS) streamflow ob-
servations are assimilated into each of the four NWM analysis and 
assimilation configurations and all analysis and forecast configurations 
benefit from the inclusion of over 5,000 reservoirs. In this study, we use 
the National Water Model Reanalysis dataset, which archives the model 
historical outputs for 25 years from 1993 to 2017, and is publicly 
available at https://registry.opendata.aws/nwm-archive/. NWM 

reanalysis dataset is selected as the reference hydrological modeling 
dataset in this study for model assessment, because it is one of the most 
widely-used operational streamflow model for at large continental scale, 
for example, the western U.S. It also incorporates regional climate 
simulation in its hydrological analyses and assimilates observations, 
which has the similar atmosphere-land coupling model framework 
compared to VR-CESM. 

USGS streamflow measurements at the outlets of the four focal wa-
tersheds were used to calibrate and validate the runoff simulation in this 
study. The four USGS streamflow stations maintained long-term daily 
river discharge measurements since the beginning of our VR-CESM 
simulations (January 1, 1970). The USGS streamflow measurements 
are publicly available to be downloaded online. 

Table 1 
MAE (mean-absolute-error) for runoff simulations against USGS streamflow measurement, and the calibrated maximum subsurface runoff.  

Watersheds Historical MAE (1970–2006) Validation MAE (2007–2019)   

Uncalibrated Calibrated Uncalibrated Calibrated Rsub,max Value 

American River 2.44 1.90 1.88 1.93 3.74× 10− 3  

Cosumnes River 1.36 0.92 1.92 1.22 1.87× 10− 3  

East-Taylor 0.96 0.54 1.22 0.63 3.74× 10− 3  

Smith River 3.75 2.74 3.63 2.63 1.87× 10− 3   

Fig. 2. Left: Calibrated and uncalibrated runoff simulation in the four watersheds in the western U.S. Left) Monthly simulated runoff and USGS gauge measurements 
at the watershed outlets over the last ten years of the historical period (1996–2006); Right: Monthly averaged runoff simulated runoff and USGS station mea-
surements at the watershed outlets over the historical period (1970–2006). 
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3. Results 

3.1. Calibration and assessments 

The calibrated mean-absolute-errors (MAEs) of runoff simulations 
are significantly smaller than the uncalibrated runoff in comparison 
against USGS gauge measurements, and the maximum subsurface runoff 
parameter varies across watersheds. Table 1 presents the MAE of cali-
bration and the calibrated values of (Rsb,max) for each watershed. Cali-
bration of the maximum subsurface runoff parameter indicates that each 
watershed has unique geographical and climate conditions that dictate 
unique parameters. The MAEs at watersheds in Table 1 also indicate that 
the runoff calibration works better in the East-Taylor and Cosumnes 
River watersheds than the Smith River and American River watersheds. 
Fig. 2 presents the monthly calibration results for most recent 10-year 
period (1996–2006) in our historical simulation, and for the 37-year 

monthly average of calibrated and uncalibrated runoff simulations. 
The uncalibrated results consistently overestimate the peak of discharge 
whether it occurs in the winter or summer at these watersheds, while the 
uncalibrated and calibrated runoff are similar in the low runoff periods. 
The calibration particularly improves projections of peak runoff in all 
four watersheds, regardless of seasonal timing. In the snow-dominated 
American River and East-Taylor watersheds most precipitation falls in 
winter as snowfall that accumulates as snowpack, while the runoff peak 
occurs in late spring because they are high-elevation mountain water-
sheds significantly controlled by snow processes such as timing of 
snowmelt. On the other hand, runoff peaks are observed in winter in the 
Smith River and Cosumnes River as they are both rain-dominated wa-
tersheds located in relatively low-elevation mountains with more im-
mediate responses to precipitation. In both cases, calibration reduces the 
original overestimates of these peaks. The calibrated maximum sub-
surface runoff values (Rsb,max) are smaller than the prescribed uniform 

Fig. 3. Comparison of monthly calibrated runoff in VR-CESM simulation with National Water Model and USGS statation measurements in the four watersheds in the 
western U.S. The box and whisker plot indicates the statistics of monthly climate average in the validation period (2007–2017). The National Water Model reanalysis 
data is only available through 2017. 
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value 5.5 × 10− 3 mm s− 1 that was determined from global data and used 
in the CESM simulation. Although the value of maximum subsurface 
runoff (Rsb,max) depends on various factors, this is consistent with physics 
and intuition that maximum subsurface runoff Rsb,max is generally 
smaller in the mountainous regions with steeper topographical gradient 

than the smooth topographical regions (Li et al., 2014). We used VR- 
CESM to evaluate the partition of surface and subsurface runoff in the 
calibrated total runoff that contributes to streamflow, and found that 
surface runoff is nearly 30% of the total runoff in the peak runoff season, 
indicating that approximately 70% of the peak runoff comes from the 

Table 2 
Statistics of precipitation and calibrated runoff simulation in the historical (1970–2006), validation (2007–2019) and projection periods (2020–2050) in the four small 
watersheds in the western U.S. (American River, Cosumnes River, East-Taylor watershed and Smith River). Values in the parentheses are the ratio against historical 
period. Precipitation and runoff unit is mm/day.   

Historical (1970–2006) Validation (2007–2019) Projection (2020–2050)  

Mean Standard 
Deviation 

95th 
Percentile 

Mean Standard 
Deviation 

95th 
Percentile 

Mean Standard 
Deviation 

95th 
Percentile 

Precipitation American 
River 

4.78 0.77 6.04 4.69 
(0.98) 

0.58 (0.74) 5.39 (0.89) 4.45 
(0.93) 

0.79 (1.02) 5.57 (0.92) 

Cosumnes River 3.05 0.76 4.04 3.52 
(1.16) 

1.26 (1.66) 5.68 (1.40) 3.53 
(1.16) 

1.15 (1.53) 5.19 (1.28) 

East-Taylor 2.60 0.35 3.26 2.83 
(1.09) 

0.40 (1.13) 3.55 (1.09) 2.77 
(1.06) 

0.38 (1.09) 3.50 (1.07) 

Smith River 6.91 1.34 8.72 6.95 
(1.01) 

1.42 (1.06) 8.96 (1.03) 6.98 
(1.01 

1.74 1.30 10.75 1.23 

Runoff American River 2.72 0.50 3.42 2.78 
(1.02) 

0.36 (0.72) 3.19 (0.93) 2.62 
(0.96) 

0.56 (1.14) 3.50 (1.02) 

Cosumnes River 0.95 0.30 1.50 1.19 
(1.25) 

0.56 (1.90) 2.09 (1.40) 1.19 
(1.25) 

0.51 (1.71) 2.06 (1.38) 

East-Taylor 0.80 0.16 1.07 0.91 
(1.15) 

0.16 (1.03) 1.16 (1.09) 0.85 
(1.07) 

0.19 (1.20) 1.14 (1.07) 

Smith River 3.62 0.81 4.79 3.65 
(1.01) 

0.94 (1.16) 4.98 (1.04) 3.69 
(1.02) 

1.14 (1.41) 6.17 (1.29)  

Fig. 4. Monthly calibrated runoff in the historical (1970–2006), validation (2007–2019) and projection periods (2020–2050) in the four watersheds in the western 
U.S. 
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subsurface groundwater discharge. However, this allocation changes if 
Fsat is also calibrated against streamflow measurement (Supplementary 
Material 1), but we are not able to determine which presents the phys-
ical processes due to lack of data of surface and subsurface runoff 
partition. 

We validated the calibration by comparing with USGS station mea-
surements in the validation period (2007–2019), and the National Water 
Model during the period that NWM reanalysis datasets are available 
(2007–2017). The VR-CESM biases of the monthly fraction of annual 
runoff vary geographically and seasonally, as shown in Fig. 3. In the 
snow-dominated watersheds (American River and East-Taylor River), 
VR-CESM consistently overestimates the peak runoff in the snowmelt 
season, with greater annual variability over the historical period. The 
peak monthly runoff in VR-CESM is nearly 5% of the total annual runoff 
or higher, while simulated baseflow runoff is relatively low, compared 
to the National Water Model and USGS station measurements. This in-
dicates that quantifying the uncertainties in snow processes and un-
derstanding its impacts on runoff generation are the key for hydrological 
analysis in these snow-dominated watersheds. On the other hand, VR- 
CESM runoff simulation has less difference in the rain-dominated 
Cosumnes River and Smith River watersheds. The peak runoff in VR- 
CESM is similar to that of the National Water Model and the USGS 
measurement, at about 2–3% of the total annual runoff. Overall, VR- 
CESM biases generally decrease as the amount of monthly runoff de-
creases. In general, the timing and magnitude of runoff are appropriately 
simulated in VR-CESM with the assessment of NWM and USGS station 
measurements. Further analyses presented in this paper are based on our 
calibrated version of the model, unless otherwise noted. Overall, the 

calibrated runoff matches reasonably well with the USGS station mea-
surements in the validation period, particularly in the baseflow esti-
mation. We also observed that the runoff spikes have larger 
uncertainties, and are overestimated in the snow-dominated 
watersheds. 

3.2. Assessments of climate change impacts on total runoff through 2050 

The potential impacts of climate change on hydrology vary across 
watersheds, likely due to their varied geographies and climate patterns. 
Table 2 indicates that the mean annual runoff in the American and Smith 
Rivers remains stable during all periods, but 7–15% and 25% increases 
are observed in the East-Taylor and Cosumnes River watersheds, 
respectively, when comparing the projection (2020–2050) and valida-
tion (2007–2019) periods against the historical period (1970–2006). In 
addition to the increasing trend of mean annual average runoff, the 
timing and magnitude of peak monthly average daily runoff in these 
watersheds can also vary over time. For example, peak runoff increases 
in the rain-dominated Cosumnes and Smith River watersheds, and de-
creases or stays similar in snow-dominated American and East-Taylor 
River watersheds (Fig. 4). In contrast to the historical period, projec-
tion period peak runoff in the rain-dominated watersheds increases 
approximately 20% in Smith River and as high as 60% in the Cosumnes 
River, suggesting that the increasing runoff in the projection period is 
mostly added in the peak and thus increases risk of flooding in the 
future. These peaks are also more pronounced in the future and shift 
forward one month in the Smith River. On the other hand, the peak 
runoff is observed in late spring and decreases nearly 30% in the snow- 

Fig. 5. Monthly accumulated precipitation in the historical (1970–2006), validation (2007–2019) and projection periods (2020–2050) in the four watersheds in the 
western U.S. 
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dominated American River, while winter baseflow increases signifi-
cantly in the projection period, potentially due to smaller snow/rain 
ratios and higher snowmelt. Compared to other watersheds, a smaller 
increase in peak runoff is simulated in the East-Taylor watershed be-
tween the historical and projection periods, as a result of changing 
temperature impacts on precipitation and snow. 

To better understand the differences in runoff generation across 
these watersheds, we further evaluate potential climate change impacts 
on precipitation and snow. Correlation coefficients between calibrated 
runoff simulation and meteorological variables (precipitation, snow 
water equivalent and daily average temperature) with lags from 0 to 11 
months are computed to help quantitative analysis of the causes of 
runoff changes (Supplementary Material 2). The change of precipitation 
between the historical and projection periods varies among watersheds. 
Table 2 shows that daily average precipitation slightly decreases 7% in 
American River and remains the same in Smith River, but increases 
approximately 6% in the East-Taylor watershed and 16% in the 
Cosumnes River watershed. Fig. 5 shows the simulated accumulated 
precipitation in the four watersheds during the historical, validation and 
projection periods, although the detailed discussion of changing pre-
cipitation is beyond the scope of this paper. These annual changes are 
due mainly to seasonally dependent changes in the magnitude of 
monthly precipitation and vary among watersheds. Precipitation in-
creases mostly during summer in the East-Taylor watershed in Colorado, 
likely due to summer thunderstorms (Hubbard et al., 2018; Carroll et al., 
2020). As a result, increasing precipitation does not change the 
magnitude of runoff peaks in the late spring and early summer in the 
East-Taylor watershed. Uniquely, East-Taylor watershed in the Upper 

Colorado River has similar average monthly precipitation year round 
because it is jointly affected by water vapor from the Pacific and the 
summer monsoon coming from the Gulf of Mexico (Hubbard et al., 2018; 
Carroll et al., 2020). On the other hand, significantly increasing pre-
cipitation in the winter and spring rainy season is found in the Cosumnes 
River that partially contributes to the higher simulated runoff from 
January to April in the projection period. In the American watershed, 
the decrease in precipitation also occurs in winter, which may 
contribute to less snowpack, less summer snowmelt, and a lower peak 
spring runoff. 

Temperature plays an important role in the amount and type of 
precipitation, the ratios between rain and snow, and can significantly 
affect the magnitude and timing of runoff at different geographical lo-
cations. Different from most hydrological modeling and analysis studies 
where temperature is a forcing dataset, temperature is simulated in VR- 
CESM in the coupled atmosphere and land surface models. Increasing 
temperature in the projection period compared to the historical period is 
consistently observed in all four watersheds throughout the year (Fig. 6). 
The difference from the historical period is similar across seasons with 
an average increase of 1 degree in the recent validation period and an 
average increase of more than 2 degrees in the projection period. 

Future changes in simulated snow water equivalent (SWE) (Fig. 7) 
are related to both the temperature increases and changes in precipita-
tion. This leads to more dramatic SWE changes than for total precipi-
tation, and also contributes to the projected changes in runoff (Fig. 4). 
The average peak historical SWE in the American River watershed is 
700 mm in March and is nearly 50 % of the accumulated precipitation 
since the beginning of water year. During the future period this peak 

Fig. 6. Monthly two-meter surface temperature in the historical (1970–2006), validation (2007–2019) and projection periods (2020–2050) in the four watersheds in 
the western U.S. 

Z. Xu and A. Di Vittorio                                                                                                                                                                                                                       



Journal of Hydrology 601 (2021) 126646

10

diminishes to only 400 mm, or 28% of the accumulated precipitation, 
and this peak is shifted one month sooner to February. This nearly 40% 
SWE decrease in winter and one-month earlier start of snowmelt 
contribute to changes in magnitude and timing of runoff in the American 
watershed (Fig. 4). This indicates that climate change has significant 
impacts on the snow and hydrological process in the Cascade Mountain 
regions, where the majority of precipitation falls in winter and changing 
snowpack accumulation and snowmelt in spring play an important roles 
in runoff generation. Surprisingly, SWE is projected to be similar be-
tween the historical and future periods in the East-Taylor watershed 
under climate change, which has the highest elevation among all four 
watersheds. This has been reported by several climate projection studies 
(e.g., Ullrich et al., 2018; Wu et al., 2017) showing little change or even 
increasing SWE in high elevations because of increasing precipitation 
and water vapor transported from the ocean. These studies report that 
although temperature increases in the mountains in the projection, the 
daily maximum temperature still remains below freezing point so that 
snowpack does not melt in winter. Although SWE is not projected to 
decrease, warming temperatures and increased precipitation could lead 
to early snowmelt and thus higher runoff in the spring (Fig. 4). In the 
two rain-dominated watersheds, the Cosumnes and Smith Rivers, SWE is 
small compared to the other two watersheds and thus has less influence 
on streamflow, but 50–60% SWE decreases in the Cosumnes River and 
80% decreases in the Smith River may still contribute to higher winter 
runoff peaks as precipitation may be falling as rain rather than snow 
(Figs. 4 and 7). The SWE peaks also shift earlier in the year for these two 
watersheds, which may influence runoff timing. 

3.3. Extreme events 

Fig. 8 shows the monthly distribution and changing temporal pattern 
of the 95th percentile of daily runoff (R95), a widely-used indicator of 
flood risk (Khomsi et al., 2016; Allen et al., 2011; Mishra and Shah, 
2018). In the comparison to USGS streamflow measurements, total 
runoff is generally overestimated by VR-CESM during peak flow seasons. 
Across the watersheds, the season of highest R95 almost always co-
incides with the season of peak flow, for both VR-CESM and the gauge 
measurements refgroupFig. reffig:MonthlyTestingProjection. During 
non-peak flow seasons VR-CESM better estimates the R95 value, but the 
model doesn’t always agree with the measurements on the month of 
peak flow as the uncertainties can be higher. For example, 95th 
percentile runoff at the snowmelt season from April to June are nearly 
80% higher than the USGS station measurements in the American River 
watershed, while their differences are small during late summer and fall 
dry seasons. Corresponding with potential changes in runoff associated 
with the changing of snowfall and early snowmelt in these watersheds, 
future monthly R95 can be either higher or lower than the during the 
historical period. In both American River and Cosumnes River water-
sheds, the projected R95 increases approximately 30% from December 
to March, indicating that increasing precipitation and higher rain/snow 
ratio in winter could potentially amplify the risk of flooding events in 
winter. In American River watershed, the projected R95 decreases in 
May and June due to earlier snowmelt. The future R95 in East-Taylor 
watershed is higher than in the historical period from April to June, as 
East-Taylor is located at higher elevation with later snowmelt, thus 
shifting the risk of extreme runoff in spring. The Smith River R95 does 

Fig. 7. Monthly snow water equivalent in the historical (1970–2006), validation (2007–2019) and projection periods (2020–2050) in the four watersheds in the 
western U.S. 
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not change much between historical and future periods likely because 
projected precipitation does not change significantly, and it is a rain- 
dominated watershed with little impact from snow. This implies that 
the extreme analysis of climate model and hydrological outputs are 
complicated and challenging, with many conditions to be considered. 

Higher interannual variability of annual average daily runoff is also 
indicative of increases in both wet and dry extreme events. Table 2 
shows that the standard deviation of annual average daily runoff in-
creases over time in all four watersheds, with future values ranging from 
+ 14% in the American River to as great as 71% in the Cosumnes River 
with respect to the historical period. Similarly, the 95th percentile of 
annual average daily runoff is projected to be higher in the future than 
during the historical period in all four watersheds. Fig. 10 presents the 
annual time series of the watershed budgets. Interannual variability in 
runoff is driven by precipitation, with ET being more stable over time. 
Residual values (computed as precipitation minus total runoff minus ET) 
indicate incomplete budget closure due to simplified model processes 
that do not fully account for things such as changing levels of ground 
water storage. For the rain-dominated watersheds, more years with 

extreme runoff are projected to occur during the future. The counts of 
extreme runoff years, defined as the annual average runoff beyond the 
mean  + standard deviation (extreme wet) or mean - standard deviation 
(extreme dry) of the 37-year historical period (1970–2006), are 
computed in the projection period with the same 37-year interval 
(2014–2050) to evaluate the climate change impacts on extremes 
(Table 5). In the Cosumnes River watershed, the frequency of extreme 
wet (dry) years was estimated to be higher (lower) in the projection 
period compared to historical period. Similarly, in the East-Taylor river 
watershed, there are 7 extreme wet years in the historical period but 11 
years in the projection period. In Smith River, the counts of extreme wet 
and dry years both increased in the projection, indicating grater inter-
annual variability due to climate change. In these two watersheds, 
greater interannual variability and more years with extremely high 
annual average daily runoff are mostly relative to the similar changes in 
the precipitation patterns, as total runoff (subsurface runoff  + surface 
runoff) is as large as 70–80% of the total precipitation in the water 
budget. On the other hand, the number of extremely high annual 
average daily runoff years does not change significantly in the American 
River watershed. The count of extreme wet (dry) years in this watershed 
decreases (increases) in the projection period, partially due to less pre-
cipitation. Overall, daily runoff generally shows greater future vari-
ability at monthly and annual temporal scales with changing 
precipitation and snow, indicating the potential for increased occur-
rence of extreme events and dry and wet years. 

3.4. Regional-scale watersheds water budget 

To assess more regional-scale hydrological projects, we looked at the 
annual average daily water budget components (Fig. 9) of the four USGS 
HUC (Hydrological Unit Code) 2 level watersheds in the western U.S.: 
the California, Pacific Northwest, Upper Colorado and Lower Colorado 
River watersheds (Fig. 1). These larger-scale watersheds are highly 
managed with dams, canals and pumping activities that are not simu-
lated by VR-CESM. As a result, station measurements are not applicable 
for calibrating the subsurface runoff as for the smaller mountainous 
watersheds, nor can the previously calibrated maximum subsurface 
runoff values can be appropriately applied in the larger scale due to the 
heterogeneity of topography and soil characteristics. Therefore, the 
uncalibrated simulations are used in this regional-scale water budget 
analysis. Although runoff is overestimated, VR-CESM model outputs are 
still able to provide a relative estimation of each component in the water 
budget and evaluate climate change impacts. 

Table 3 shows increasing annual average daily runoff over time in 
most of the western U.S., except for relatively little change in the Pacific 
Northwest. A majority of precipitation becomes ET in the Upper and 
Lower Colorado River watersheds, while ET is only approximately 30% 
in the Pacific Northwest and California watersheds overall. As more 
precipitation goes to runoff in the California and Pacific Northwest 
watersheds, and the precipitation variability increases in the future, 
these two watersheds show greater variability in runoff in the future, 
with the standard deviation of annual average daily runoff increasing 
82% and 16%, respectively, in between the historical and projection 
periods (Table 3). With respect to the 95th percentile annual average 
daily runoff, there is a 47% increase in California and 32% increase in 
the Lower Colorado between the historical and future periods, but little 
chanege in the other two watersheds between these periods (Table 3). 
Similarly to the extreme analysis in the small four watersheds in the 
western U.S., the counts of wet and dry extreme runoff years were 
computed to evaluate the frequency of extreme events (Table 6). In 
watersheds other than the Pacific Northwest, counts of the extreme wet 
years are double in the projection period, while the numbers of extreme 
dry years are significantly decreased, compared to the historical period. 
Increasing frequency of extremely high annual average runoff is related 
to higher precipitation, for example, in the California watershed, where 
18 years in the projection period are extreme wet years based on the 

Fig. 8. Monthly 95th percentile calibrated daily runoff and USGS station 
measurements in the historical (1970–2006), validation (2007–2019) and 
projection periods (2020–2050) in the four watersheds in the western U.S. 
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threshold defined in the historical period with only 7 extreme wet years. 
In the Pacific Northwest, however, there are only slight decreases in the 
number of extreme wet and dry years, likely because the average annual 
precipitation does not change much between historical and projection 
periods, but the variability does. This is consistent with the extreme 
analysis in the previous subsection and implies that the possibility of 
climate and hydrological extremes increases in the future in most wa-
tersheds. These increases in extremes may lead to increases in floods or 
droughts. 

A similar analysis in four USGS HUC2-scale regions in China (China 
Coastal, Hai River, Yangtze River and Yellow River) shows different 
impacts across watersheds of projected climate change on the annual 
average daily water budget. Similar to the coastal watersheds in the 
western U.S., Table 4 indicates that annual average daily runoff in-
creases by 33% and 18% in the China coastal and Yangtze River wa-
tersheds, respectively, between the historical and projection periods. 
The annual water budget presented in Fig. 11 clearly indicates that the 
China Coastal region and Yangtze River also have higher precipitation 
and ET in the projection period. In comparison with the historical 
period, the China Coastal region shows 91% higher standard deviation 
and 47% higher 95th percentile annual average daily runoff in the 
projection period (Table 4), indicating greater variability and higher 
possibility of extreme runoff events under a changing climate. Similarly 
to the extreme analysis in the western U.S., the China coastal, Yangzte 
River and Yellow River watersheds have 19, 16, and 9 extreme wet years 
in the projection, respectively, compared to the 6, 5 and 5 years in the 
historical period (Table 6). The counts of extreme dry years in these 
watersheds are also smaller in the projection period, indicating less 
potential for drought but higher possibility of flooding hazards under a 
changing climate. The annual variability of each water component, 
particularly the runoff, also increases with time in those three water-
sheds. Both the mean and standard deviation of annual average daily 
runoff and precipitation in the Hai River watershed, which has an arid 

Fig. 10. Water budget of annual average precipitation, runoff and ET in the four regional-scale watersheds in western U.S (California, Pacific Northwest, Upper 
Colorado and Lower Colorado watersheds) from 1970 to 2050. The daily budget scale in California and Pacific Northwest are different from Lower and Upper 
Colorado River. Residual  = Precipitation - Runoff - ET. 

Table 5 
Count of extreme runoff years in the four small watersheds in the western U.S. 
(American River, Cosumnes River, East-Taylor watershed and Smith River). 
Extreme runoff years are defined as the annual average runoff beyond the mean 
+ standard deviation (extreme wet) or mean - standard deviation (extreme dry) 
of the 37-year historical period (1970–2006). Note that the range of projection 
period is redefined here to keep the same interval as the historical period.   

Historical (1970–2006) Projection (2013–2050) 

Watersheds Wet Dry Wet Dry 

American River 7 4 2 5 
Cosumnes River 8 7 15 3 
East-Taylor 7 2 11 2 
Smith River 3 5 6 7  
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Fig. 9. Annual water budget in annual average precipitation, runoff and ET, and residual in the four mountainous watersheds in western U.S (American River, 
Cosumnes River, East-Taylor River and Smith River watersheds), from 1970 to 2050. Residual  = Precipitation - Runoff - ET. 

Table 3 
Statistics of precipitation and uncalibrated runoff simulation in the historical (1970–2006), validation (2007–2019) and projection periods (2020–2050) in the four 
regional-scale watersheds in the western U.S. (California, Pacific Northwest, Lower Colorado and Upper Colorado watersheds). Values in the parentheses are the ratio 
against historical period. Unit is mm/day.   

Historical (1970–2006) Validation (2007–2019) Projection (2020–2050)  

Mean Standard 
Deviation 

95th 
Percentile 

Mean Standard 
Deviation 

95th 
Percentile 

Mean Standard 
Deviation 

95th 
Percentile 

Precipitation          
California 1.95 0.44 2.56 2.29 

(1.17) 
0.70 (1.59) 3.34 (1.31) 2.31 

(1.18) 
0.70 (1.59) 3.22 (1.26) 

Pacific 
Northwest 

2.84 0.32 3.31 2.92 
(1.03) 

0.28 (0.88) 3.26 (0.98) 2.87 
(1.01) 

0.36 (1.10) 3.33 (1.01) 

Upper Colorado 1.53 0.22 1.88 1.73 
(1.13) 

0.29 (1.29) 2.28 (1.21) 1.67 
(1.09) 

0.20 (0.91) 2.00 (1.06) 

Lower Colorado 1.07 0.26 1.46 1.28 
(1.20) 

0.30 (1.13) 1.72 (1.18) 1.22 
(1.14) 

0.26 (0.98) 1.65 (1.13) 

Runoff          
California 0.96 0.27 1.38 1.18 

(1.23) 
0.47 (1.71) 1.90 (1.37) 1.21 

(1.26) 
0.50 (1.82) 2.03 (1.47) 

Pacific 
Northwest 

1.71 0.26 2.11 1.76 
(1.03) 

0.18 (0.68) 2.00 (0.95) 1.70 
(1.00) 

0.30 (1.16) 2.10 (0.99) 

Upper Colorado 0.38 0.09 0.50 0.47 
(1.23) 

0.12 (1.33) 0.65 (1.31) 0.40 
(1.06) 

0.09 (1.05) 0.54 (1.09) 

Lower Colorado 0.09 0.04 0.15 0.12 
(1.31) 

0.05 (1.20) 0.20 (1.38) 0.10 
(1.12) 

0.04 (0.93) 0.19 (1.32)  
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climate, do not vary much with time and ET is water limited and does 
not increase as much as in the Yangtze River and China Coastal regions. 
In general, most of the watersheds in China also exhibit changes in the 
annual water budget due to projected climate change. 

4. Conclusion 

In this study, we evaluated an application of a variable-resolution 
global climate model (VR-CESM) in varied-size watersheds in the 
western U.S. The simulated runoffs for four unmanaged watersheds are 
calibrated against discharge measurements and compared to another 
hydrological model. The impacts of climate change on precipitation, 
snowpack and runoff, as well as extreme runoff events in those water-
sheds are evaluated based on historical and RCP8.5 simulations. 
Furthermore, we quantified the water budget components in larger-scale 
watersheds in the western U.S. and China and evaluated their annual 
variability and potential climate change impacts. Our major conclusions 
are listed as follows.  

(1) This study demonstrates the viability of applying fine-resolution 
GCMs for unmanaged watershed-scale hydrological analysis 
with careful calibration. This is promising for future hydrological 
analyses that include two-way feedbacks between the 

atmosphere and the surface. The implication is that this approach 
can be used by other climate model and land surface model ap-
plications at similar resolution and scales to evaluate the hydro-
logical response to atmospheric forcing, particularly for 
addressing impacts under climate change.  

(2) This study used UGGS streamflow gauge measurements to 
quantify the uncertainties of parameterizations in the runoff 
generation schemes, while the uncertainties of meteorological 
variables were evaluated in a previous study (Xu et al., 2021). For 
VR-CESM, the uncertainty in total runoff was considerably 
reduced by calibrating the maximum subsurface runoff param-
eter (Rsb,max) against USGS gauge measurements.  

(3) The impacts of climate change on hydrology vary in snow- 
dominated and rain-dominated watersheds. This is largely due 
to the interacting effects of changes in precipitation and tem-
perature. In snow-dominated watersheds, decreasing snowpack 
and early snowmelt shifts runoff peaks earlier and reduces their 
magnitude (Supplementary Material 2). In the rain-dominated 
watersheds with increasing precipitation in the projection 
period, peak runoff increases in the wet season.  

(4) Potential climate change also affects the magnitude of extreme 
runoff events. In snow-dominated watersheds, early snowmelt 
increases the potential for high-runoff events in spring, while in 
rain-dominated watersheds more intense precipitation in winter 
increases the potential for high-runoff events in winter. Increased 
variation of annual average runoff and increasing precipitation in 
the water budget over time also indicates the potential for more 
extremely dry and extremely wet periods.  

(5) In regional-scale watersheds in the western U.S. and China, VR- 
CESM generally projects increasing precipitation and runoff 
through the middle of this century, particularly in the coastal 
watersheds that receive more moisture from the ocean. Larger 
interannual variability and higher frequency of wet and dry years 
are projected for the future for most of the watersheds, indicating 
that climate change could affect the occurrence of extreme hy-
drological events thus potentially increase the risks of arising 
geohazards. 

The increasing number of refined-resolution and/or variable- 
resolution GCM applications provide significant amounts of data for 
evaluating the hydrological processes and investigating water budgets in 
watersheds. With careful calibration against observation and assessment 
of the uncertainties in GCM hydrological models, global models like VR- 

Table 6 
Count of extreme runoff years in the four regional-scale watersheds in the 
western U.S. (California, Pacific Northwest, Lower Colorado and Upper Colo-
rado watersheds), and four regional-scale watersheds in China (China Coastal, 
Hai River, Yangtze River and Yellow River watersheds). Extreme runoff years are 
defined as the annual average runoff beyond the mean  + standard deviation 
(extreme wet) or mean - standard deviation (extreme dry) of the 37-year his-
torical period (1970–2006). Note that the range of projection period is redefined 
here to keep the same interval as the historical period.   

Historical (1970–2006) Projection (2013–2050) 

Watersheds Wet Dry Wet Dry 

California 7 8 18 3 
Pacific Northwest 8 6 7 4 
Upper Colorado 6 4 15 0 
Lower Colorado 6 6 14 0 
China Coastal 6 7 19 3 
Hai River 7 5 7 4 
Yangtze River 5 6 16 4 
Yellow River 5 6 9 1  

Table 4 
Statistics of precipitation and uncalibrated runoff simulation in the historical (1970–2006), validation (2007–2019) and projection periods (2020–2050) in the four 
regional-scale watersheds in China (China Coastal, Hai River, Yangtze River and Yellow River watersheds). Values in the parentheses are the ratio against historical 
period. Runoff unit is mm/day.   

Historical (1970–2006) Validation (2007–2019) Projection (2020–2050)  

Mean Standard 
Deviation 

95th 
Percentile 

Mean Standard 
Deviation 

95th 
Percentile 

Mean Standard 
Deviation 

95th Percentile 
Precipitation 

China 
Coastal 

3.43 0.36 4.06 3.61 
(1.05) 

0.42 (1.17) 4.13 (1.02) 4.02 
(1.17) 

0.61 (1.70) 5.10 (1.25) 

Hai River 1.86 0.30 2.32 1.94 
(1.04) 

0.30 (1.02) 2.33 (1.00) 1.92 
(1.03) 

0.27 (0.93) 2.33 (1.00) 

Yangtze 
River 

3.39 0.25 3.82 3.42 
(1.01) 

0.26 (1.06) 3.80 (1.00) 3.73 
(1.10) 

0.34 (1.40) 4.24 (1.11) 

Yellow River 1.78 0.19 2.08 1.79 
(1.01) 

0.16 (0.85) 2.02 (0.97) 1.87 
(1.05) 

0.15 (0.79) 2.13 (1.02) 

Runoff          
China 

Coastal 
1.52 0.28 2.01 1.65 

(1.09) 
0.42 (1.47) 2.13 (1.06) 2.02 

(1.33) 
0.54 (1.91) 2.96 (1.47) 

Hai River 0.37 0.12 0.57 0.38 
(1.04) 

0.11 (0.91) 0.54 (0.95) 0.34 
(0.94) 

0.08 (0.72) 0.52 (0.91) 

Yangtze 
River 

1.57 0.25 1.96 1.53 
(0.97) 

0.27 (1.06) 1.92 (0.98) 1.81 
(1.15) 

0.34 (1.37) 2.39 (1.22) 

Yellow River 0.50 0.07 0.64 0.49 
(0.98) 

0.07 (0.94) 0.59 (0.92) 0.50 
(1.01) 

0.05 (0.73) 0.58 (0.90)  
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CESM have the potential to be used for hydrological analysis at water-
shed scale, including the assessment of climate change impacts, the 
evaluation of extreme events, and quantification of the components in 
the water budget. 
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