
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Characterizing neural responses to natural stimuli /

Permalink
https://escholarship.org/uc/item/665085tg

Author
Rowekamp, Ryan John

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/665085tg
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Characterizing neural responses to natural stimuli

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Physics (Biophysics)

by

Ryan John Rowekamp

Committee in charge:

Professor Tatyana O. Sharpee, Chair
Professor Henry Abarbanel, Co-Chair
Professor Michael Anderson
Professor Timothy Gentner
Professor Terrence Sejnowski

2014



Copyright

Ryan John Rowekamp, 2014

All rights reserved.



The dissertation of Ryan John Rowekamp is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2014

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction to neural coding and dimensionality reduction . . 1
1.1 Linear-nonlinear model . . . . . . . . . . . . . . . . . . . 2
1.2 Spike-triggered average . . . . . . . . . . . . . . . . . . . 3
1.3 Spike-triggered covariance . . . . . . . . . . . . . . . . . 4
1.4 Statistical requirements of spike-triggered methods . . . . 6

Chapter 2 Maximally informative dimensions . . . . . . . . . . . . . . . . 8
2.1 Consistency with correlated stimulus . . . . . . . . . . . 13
2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 MID on cells from V1 . . . . . . . . . . . . . . . . . . . . 15
2.4 Curse of dimensionality . . . . . . . . . . . . . . . . . . . 18
2.5 Serial MID . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Consistency . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 SMID on model cells . . . . . . . . . . . . . . . . 21
2.5.3 Convergence of SMID . . . . . . . . . . . . . . . . 25
2.5.4 SMID on cells from V1 . . . . . . . . . . . . . . . 26

2.6 Comparison between MID and extended projection pur-
suit regression . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.1 Projection pursuit regression . . . . . . . . . . . . 28
2.6.2 ePPR and MID on model cell . . . . . . . . . . . 30
2.6.3 ePPR and MID on V1 neurons . . . . . . . . . . . 37

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



Chapter 3 Invariant MID . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Maximum projection . . . . . . . . . . . . . . . . . . . . 42
3.2 IMID on model cell . . . . . . . . . . . . . . . . . . . . . 43
3.3 IMID on complex V1 neurons . . . . . . . . . . . . . . . 45
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 4 Quadratic MID . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1 Quadratic Maximum Noise Entropy . . . . . . . . . . . . 51
4.2 Analysis of simulated cells . . . . . . . . . . . . . . . . . 52

4.2.1 Two-dimensional model cell . . . . . . . . . . . . 52
4.2.2 Six-dimensional model cell . . . . . . . . . . . . . 54

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5 Invariant Logistic Subunits . . . . . . . . . . . . . . . . . . . . 58
5.1 Single-subunit model cell . . . . . . . . . . . . . . . . . . 60
5.2 Model of sparsifying inhibition . . . . . . . . . . . . . . . 62
5.3 Quadratic models . . . . . . . . . . . . . . . . . . . . . . 65
5.4 ILS on V4 neurons . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Performance of ILS on V4 neurons . . . . . . . . 67
5.4.2 Feature selectivity in V4 . . . . . . . . . . . . . . 70

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Appendix A Derivation of information gradient . . . . . . . . . . . . . . . . 78

Appendix B Subspace overlap . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.1 Invariance to linear transformation . . . . . . . . . . . . 83
B.2 Extension to differing dimensions . . . . . . . . . . . . . 84
B.3 Comparison to principal angles . . . . . . . . . . . . . . 84

Appendix C Averaging dimensions using PCA . . . . . . . . . . . . . . . . 86
C.1 Recovering MID basis . . . . . . . . . . . . . . . . . . . . 88

Appendix D Experimental details . . . . . . . . . . . . . . . . . . . . . . . 89
D.1 Recordings of V1 neurons . . . . . . . . . . . . . . . . . . 89
D.2 Recordings of macaque V4 neurons . . . . . . . . . . . . 93

Appendix E Information extrapolation . . . . . . . . . . . . . . . . . . . . 95

Appendix F Eigenvector significance . . . . . . . . . . . . . . . . . . . . . . 97

Appendix G Finding Gabor wavelet representations . . . . . . . . . . . . . 98
G.1 Gabor fitting example . . . . . . . . . . . . . . . . . . . . 100
G.2 Fitting noise . . . . . . . . . . . . . . . . . . . . . . . . . 101
G.3 Performance in the presence of noise . . . . . . . . . . . 102

v



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vi



LIST OF FIGURES

Figure 1.1: STA demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 1.2: STC demonstration . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1: MID demonstration . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2.2: MID demonstration with correlated stimulus . . . . . . . . . . . 12
Figure 2.3: Convergence of MID with additional spikes . . . . . . . . . . . 14
Figure 2.4: MID on example simple V1 neuron . . . . . . . . . . . . . . . . 16
Figure 2.5: MID on example complex V1 neuron . . . . . . . . . . . . . . . 17
Figure 2.6: Curse of dimensionality . . . . . . . . . . . . . . . . . . . . . . 18
Figure 2.7: Two-dimensional model cell . . . . . . . . . . . . . . . . . . . . 22
Figure 2.8: SMID on noise stimulus . . . . . . . . . . . . . . . . . . . . . . 23
Figure 2.9: MID on noise stimulus . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 2.10: SMID on natural stimulus . . . . . . . . . . . . . . . . . . . . . 24
Figure 2.11: MID on natural stimulus . . . . . . . . . . . . . . . . . . . . . . 24
Figure 2.12: Convergence of SMID with additional spikes . . . . . . . . . . . 26
Figure 2.13: Comparison of SMID and MID on V1 neurons . . . . . . . . . . 27
Figure 2.14: Three-dimensional model cell . . . . . . . . . . . . . . . . . . . 31
Figure 2.15: ePPR with short-stimulus model . . . . . . . . . . . . . . . . . 33
Figure 2.16: MID with short-stimulus model . . . . . . . . . . . . . . . . . . 34
Figure 2.17: ePPR with long-stimulus model . . . . . . . . . . . . . . . . . . 35
Figure 2.18: MID with long-stimulus model . . . . . . . . . . . . . . . . . . 36
Figure 2.19: Comparison of ePPR and MID on V1 neurons . . . . . . . . . . 38

Figure 3.1: Invariant model cell . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 3.2: MID on invariant model . . . . . . . . . . . . . . . . . . . . . . 45
Figure 3.3: IMID on invariant model . . . . . . . . . . . . . . . . . . . . . 46
Figure 3.4: IMID on example complex cell . . . . . . . . . . . . . . . . . . 47
Figure 3.5: MID on example complex cell . . . . . . . . . . . . . . . . . . . 48
Figure 3.6: Performance of IMID and MID . . . . . . . . . . . . . . . . . . 48

Figure 4.1: Quadratic methods on two-dimensional model . . . . . . . . . . 53
Figure 4.2: Quadratic methods on six-dimensional model . . . . . . . . . . 55

Figure 5.1: ILS schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 5.2: Comparison between linear and softplus rectifiers . . . . . . . . 60
Figure 5.3: ILS on model with single subunit . . . . . . . . . . . . . . . . . 61
Figure 5.4: Model sparsifying circuit . . . . . . . . . . . . . . . . . . . . . . 63
Figure 5.5: ILS on sparsifying model . . . . . . . . . . . . . . . . . . . . . . 64
Figure 5.6: Quadratic model cell . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 5.7: ILS on quadratic model . . . . . . . . . . . . . . . . . . . . . . 66
Figure 5.8: Comparison with RSTA and non-invariant ILS . . . . . . . . . 67
Figure 5.9: Performance of ILS on V4 neurons . . . . . . . . . . . . . . . . 68

vii



Figure 5.10: Example cell J47A2 parameters . . . . . . . . . . . . . . . . . . 69
Figure 5.11: Gabor fit for J47A2 . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 5.12: Gabor contours for J47A2 . . . . . . . . . . . . . . . . . . . . . 71
Figure 5.13: Example cell J30A1 parameters . . . . . . . . . . . . . . . . . . 73
Figure 5.14: Gabor fit for J30A1 . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 5.15: Gabor contours for J30A1 . . . . . . . . . . . . . . . . . . . . . 74
Figure 5.16: Additional V4 contours . . . . . . . . . . . . . . . . . . . . . . 75
Figure 5.17: Relative orientations in V4 . . . . . . . . . . . . . . . . . . . . 76

Figure B.1: Visual demonstration of subspace overlap . . . . . . . . . . . . 82

Figure C.1: PCA averaging demonstration . . . . . . . . . . . . . . . . . . . 87

Figure D.1: Number of spikes for V1 neurons . . . . . . . . . . . . . . . . . 90
Figure D.2: Number of spikes for complex V1 neurons . . . . . . . . . . . . 90
Figure D.3: Stimulus durations for V1 neurons . . . . . . . . . . . . . . . . 91
Figure D.4: Stimulus durations for complex cells. . . . . . . . . . . . . . . . 92
Figure D.5: Number of spikes for V4 data . . . . . . . . . . . . . . . . . . . 93
Figure D.6: Duration of stimuli for V4 data . . . . . . . . . . . . . . . . . . 94

Figure G.1: Orthogonal representation of Gabor wavelets . . . . . . . . . . 99
Figure G.2: Recovering original Gabors . . . . . . . . . . . . . . . . . . . . 100
Figure G.3: Fitting Gabor pairs to random matrix . . . . . . . . . . . . . . 101
Figure G.4: Quality of fit with noise . . . . . . . . . . . . . . . . . . . . . . 102

viii



LIST OF TABLES

Table 2.1: Convergence of MID . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 5.1: ILS on model with single subunit . . . . . . . . . . . . . . . . . 62

ix



LIST OF SYMBOLS

t time

N number of frames

Nsp number of spikes

B number of histogram bins per dimension

C covariance matrix

Cp prior (stimulus) covariance matrix

Csp spike-triggered covariance matrix

∆C Csp − Cp

yt response at time t
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ŷ predicted firing rate

st full stimulus at time t

D dimensionality of full stimulus s

Dt length of model’s memory

K Number of relevant stimulus dimensions

B Number of bins per dimension used to calculate mutual information

êk kth relevant stimulus dimension

sk the projection of s on to êk
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ABSTRACT OF THE DISSERTATION

Characterizing neural responses to natural stimuli

by

Ryan John Rowekamp

Doctor of Philosophy in Physics (Biophysics)

University of California, San Diego, 2014

Professor Tatyana O. Sharpee, Chair
Professor Henry Abarbanel, Co-Chair

The sensory nervous system converts external stimuli into electrical signals

that are used to process and transmit information about the stimuli. An ongoing

goal of systems neuroscience is to describe the processing of stimuli as compactly

as possible using a small number of features from the stimulus, which is known

as dimensionality reduction. This task is especially difficult when analyzing stim-

uli with complex correlations between dimensions as is found in natural stimuli.

This dissertation begins by presenting Maximally Informative Dimensions (MID),

which selects the features that modulate the neuron’s responses the stimuli. It then

presents three variants of this method that seek to address specific limitations of

the method. Sequential Maximally Informative Dimensions seeks to perform this

xv



analysis without calculating multidimensional probability distributions. Invariant

Maximally Informative Dimensions allows simplified analysis of neurons that re-

spond to similar but offset features. Quadratic Maximally Informative Dimensions

incorporates quadratic features to allow one to find many linear features. Finally,

Invariant Logistical Subunits combines the ideas of Invariant Maximally Infor-

mative Dimensions and Quadratic Maximally Informative Dimensions in a more

flexible manner.
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Chapter 1

Introduction to neural coding and

dimensionality reduction

The fundamental task of the nervous system is to capture information about

the internal and external environment, process these stimuli into a relevant form,

and make behavioral and physiological responses to the state of the environment.

This collective behavior is the result of the computations performed by individual

nervous cells called neurons. Sensory neurons convert stimuli into changes in the

electrical potential across the cell membrane. If the neuron’s potential depolarizes

sufficiently, the nonlinear response of specialized ion channels creates a character-

istic voltage fluctuation called an action potential or a spike. The spike propagates

to the neuron’s synaptic connections with downstream neurons, where it releases

neural transmitters that bind with receptors on the postsynaptic neuron which

open ion channels and change the electrical potential. Through networked repeti-

tions of this process, the nervous system is capable of performing its full range of

observed computations.

One of the goals of systems neuroscience is to characterize the properties of

these computations. One way to accomplish this is to build a model of the system

that can accurately predict the responses of a neuron to novel stimuli. In the

general case of the firing rate model, a neuron’s response can be described using

yt = f (st) , (1.1)

1



2

where yt is the average firing rate at time t, st is a vector of all stimulus variables

that determine the firing rate at t (possibly including the neuron’s recent response

history), and f is a non-linear function that converts s into a firing rate. Unfortu-

nately, characterizing a neuron’s response as a general function of even a moderate

number of stimulus dimensions is impractical with realistic amounts of data, so

one must make some simplifying assumptions.

One frequent assumption is that the neuron’s response is primarily deter-

mined by a subspace of the stimulus x with a dimensionality K that is much

smaller than the dimensionality D of the full stimulus s. Once the stimulus is in

the reduced space, it is easier to characterize the the nonlinearity parametrically

or by using Bayes’ theorem

f(s) = P (y|x(s)) = P (y)
P (x|y)

P (x)
. (1.2)

1.1 Linear-nonlinear model

The linear-nonlinear model (LN) (de Boer and Kuyper, 1968) makes one

further assumption: the reduced subspace is a linear transformation of the stimulus

x = V T s. (1.3)

V is a D by K matrix containing the vectors v1 through vK that represent the

dimensions of the stimulus space corresponding to the coordinates x1 through xK .

With this assumption we can define the distribution of the reduced stimulus as

P (x) =

∫
dxP (s)

K∏
i=1

δ(xi − vTi s). (1.4)

P (x|y) is defined similarly using the conditional stimulus distribution:

P (x|y) =

∫
dxP (s|y)

K∏
i=1

δ(xi − vTi s). (1.5)

Note that it is the reduced subspace that matters rather than a particular

choice of V . Any set of vectors that span the subspace define a functionally

equivalent system of coordinates. Given a set of vectors V , we can define any other

description of the subspace as VL = V L, where L is a K by K non-degenerate linear

transformation. Given L and f(x), it is trivial to calculate fL(xL) = f(L−1xL).
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x1

x2

4

0

-4
-4 0 4

Figure 1.1: STA demonstration. Each point is a stimulus sampled from a
two-dimensional normal distribution. The probability of a spike is determined by
a sigmoid function of a single dimension. Black points indicate no spike, and red
points indicate a spike. The black arrow points along the direction of the difference
between the stimulus average and the spike-triggered average. The STA correctly
selects the dimension used to generate the spike probability.

1.2 Spike-triggered average

Given the LN model, the question arises of how to find V . One simple

and popular technique is the spike-triggered average (STA), also known as reverse

correlation (de Boer and Kuyper, 1968). Given a set of N stimuli
{
s(t)
}

and the

corresponding responses
{
y(t)
}

, the spike-triggered average is

vSTA =
1

N

N∑
t=1

styt − 〈s〉 〈y〉 . (1.6)



4

Fig. 1.1 shows a demonstration of STA. The black and red points indicate a stim-

ulus associated with no spike and a spike, respectively. The black arrow points

from the stimulus mean to the mean of the stimuli associated with a spike. The

STA corresponds with the dimension used to determine the probability of spiking.

The advantage of the STA is its simplicity. However, it is only able to

find a single dimension and it is only consistent with radially symmetric stimulus

distributions and nonlinearities with 〈x1|y〉 6= 0 (Paninski, 2003). If the stimulus

is elliptically symmetric, the correlations can be rotated out using the inverse of

the covariance matrix to whiten the stimulus

vRSTA =

(
1

N

N∑
t=1

sts
T
t − 〈s〉 〈s〉

T + λI

)−1

vSTA, (1.7)

where λ is a regularization parameter dampens the effects of noise on the inverse

covariance matrix.

1.3 Spike-triggered covariance

Spike-triggered covariance (STC) is an extension of STA that looks at the

second-order moments of the spike-triggered distribution. Given the stimulus co-

variance

Cp =
〈
ssT
〉
− 〈s〉 〈s〉T =

1

N − 1

N∑
t=1

sts
T
t − 〈s〉 〈s〉

T (1.8)

and the spike-triggered stimulus covariance

Csp =
〈
ssT |spike

〉
− 〈s|spike〉 〈s|spike〉T =

1

Nsp

N∑
t=1

sts
T
t yt − 〈s|spike〉 〈s|spike〉T ,

(1.9)

the relevant dimensions are the eigenvectors of the difference ∆C of Csp and Cp

whose eigenvalues are significantly different from zero (de Ruyter van Steveninck

and Bialek, 1988; Schwartz et al., 2002). Positive eigenvalues indicate that re-

sponses are associated with large values along that eigenvector. Because large mag-

nitudes along this dimensions are associated with higher responses, these dimen-

sions are excitatory. Negative eigenvalues indicate that responses are correlated

with small magnitudes along that dimension. These dimensions are inhibitory.
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x2

x1

4

0

-4
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Figure 1.2: STC demonstration. Black points indicate no spike. Red points
indicate a spike. Because of the symmetric nonlinearity, the STA is approximately
zero. The dashed yellow line shows the stimulus covariance at 1 standard deviation.
The solid yellow line shows the spike-triggered covariance. Along x2, the irrelevant
dimension, the covariances are equal. Along x1, the dimension used to generate
the probability of a spike, the covariances are maximally separated.

Fig. 1.2 shows STC for a simple example. Because the nonlinearity is sym-

metric, the stimulus and spike-triggered averages are the same, and therefore STA

cannot reveal the relevant dimension. However, the separation between the stimu-

lus covariance (dashed line) and the spike-triggered covariance (solid line) reveals

that large magnitudes of x1 are associated with spikes and x2 is irrelevant to spik-

ing.

If the stimulus has correlations, these correlations will show up as biases

in the eigenvectors of ∆C. To compensate for second–order correlations, we can

multiply the eigenvectors by the inverse of the stimulus covariance matrix C−1
p .
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This can completely correct the biases due to a correlated Gaussian stimuli, which

has statistics completely determined by the first- and second-order correlations.

For other distributions, biases due to higher-order correlations remain.

In the case of finite data, this whitening procedure can amplify the noise for

poorly sampled dimensions. To reduce this effect, one can regularize the procedure

by replacing C−1
p with (C−1

p + λI)−1. Increasing the regularization λ reduces the

effect the dimensions with the smallest eigenvalues and approaches the limit of no

whitening as λ→∞.

1.4 Statistical requirements of spike-triggered

methods

Errors in the estimates of the relevant subspace can come from two sources:

sampling error and the bias of the method. Sampling error occurs because random

samples of a distribution can happen to have statistics that differ from those of

the distribution. These errors decrease as the amount of data increases and the

probable magnitude of these deviations shrink. Bias is more serious because it

results in errors that cannot be reduced with additional data.

In order to produce unbiased estimates of the relevant subspace, both STA

and STC have requirements on the stimulus and the system they are attempting

to characterize (Paninski, 2003).

STA has three requirements:

1. The dimensionality of the relevant subspace (K) must be 1. STA only pro-

vides one dimension, so it is unable to provide any estimate of additional

dimensions.

2. P (s) (or in the case of RSTA, P (C
−1/2
p s)) must be radially symmetric. This

includes the Gaussian distribution, but any radially symmetric is consistent

with STA.

3. 〈siy〉 6= 〈si〉 〈y〉. If the the two sides of the equation are equal, the expected

value of vSTA will be zero and the measured value will be determined by
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sampling error. This situation can occur when the nonlinearity is symmetric,

such as with an energy model where 〈y(si)〉 ∝ s2
i .

STC has two requirements:

1. P (s) is Gaussian. This is a more strict requirement than the required radial

symmetry of STA.

2. 〈s2
i 〉− 〈si〉

2 6= 〈s2
i |spike〉− 〈si|spike〉2 for every dimension in some orthogonal

basis of the relevant subspace.

The limitations on the stimulus distribution are probably the most relevant.

Firstly, it prevents the study of adaptation of statistics other than the mean and

variance. Secondly, efficient coding predicts that neural systems will be tuned via

evolution and development to the statistics of natural stimuli and may not respond

robustly to non-natural Gaussian distributions (Simoncelli and Olshausen, 2001).

This motivates us to find methods to characterize neural responses to arbitrary

stimulus distributions.



Chapter 2

Maximally informative

dimensions

STA (Sec. 1.2) and STC (Sec. 1.3) provide biased estimates of the relevant

subspace when applied to stimuli that do not meet a restrictive set of requirements.

If we wish to probe the responses of neurons to other types of stimuli (including

the stimuli animals experience in nature), we need an algorithm that can pro-

vide accurate reconstructions of the relevant subspace for stimuli with arbitrary

statistics.

We turned to entropy to solve this problem. Entropy, given by the formula

H (X) =

∫
dXP (X) log2 (P (X)) , (2.1)

is a measure of the uncertainty about some measurement. For example, a fair coin

that has a 50% chance of landing heads-up and 50% chance of landing tails-up

would have an entropy of 1 bit per coin toss. If we were to modify the coin so that

it was more likely to land on one side rather than the other, this would reduce the

entropy because we have more knowledge about the outcome. In the extreme case

where the coin always lands on one side (or both sides have the same markings),

the entropy would be 0 bits.

Mutual information, defined as

I (X;Y ) = H (X)−H (X|Y ) , (2.2)

8
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measures the change in entropy of one measurement when we have access to a

second measurement. If Y is caused by X, X causes Y , or both X and Y are caused

by one or more other variables, knowing the value of Y can tell us something about

the distribution of values of X, which would give us a positive mutual information.

Otherwise, the value of Y tells us nothing about the value of X and the mutual

information is zero.

Maximally informative dimensions (MID) finds stimulus dimensions that

affect the neuron’s response (the relevant dimensions) by selecting the stimulus

dimensions that maximize the mutual information between the projections into

the reduced stimulus space and the neuron’s response (Sharpee et al., 2003, 2004).

The mutual information is given by

IV =
∑

y={0,1}

P (y)

∫
dxPV (x|y) log2

(
PV (x|y)

PV (x)

)
(2.3)

where v is the dimension of interest and x is the projection of the stimulus onto

that dimension.

This can be simplified and extended to the case of a non-binary stimulus

by taking the limit of describing the spike train with sufficiently fine temporal

resolution such that all time bins contain either 0 or 1 spike. In this case,

lim
∆T→0

PV (x|y = 0) = PV (x) (2.4)

because the number of bins without spikes is much greater than the number of bins

with spikes and therefore removing the bins with spikes from the distribution has

a negligible effect on the distribution. Because the fraction within the logarithm is

now approximately 1, the non-spiking term does not contribute to the information.

What remains is the information per spike

IV =

∫
dxPV (x|spike) log2

(
PV (x|spike)

PV (x)

)
. (2.5)

Fig 2.1 gives a visual demonstration of how MID is able to distinguish

between relevant and irrelevant dimensions. Fig. 2.1A shows the computation of

a model with a two-dimensional Gaussian stimulus. Whether a stimulus sample is

associated with a spike is determined by the nonlinearity

P (spike|x) = σ(2 ∗ x1 − 1). (2.6)
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Figure 2.1: Demonstration of MID. (A) A simple model cell with a two-
dimensional Gaussian stimulus. The probability of a spike depends only on the
position along x1. 10, 000 example stimulus points are shown with the color indi-
cating whether the cell spiked (red) or was silent (black). (B) The distributions of
stimuli and stimuli associated with a spike along the x1. Because the value of x1

determines the probability of a spike, the distribution of stimuli associated with a
spike(P (x1|spike), red) diverges from the full distribution of stimuli (P (x1), black).
The information explained is at a maximum for x1 because it was used to generate
the spikes and the data processing inequality (Sec. 2.1) prevents transforming from
x1 to another x from resulting in an increase in information. (C) The distributions
along x2. Because the response of the model cell does not depend on x2, P (x2) and
P (x2|spike) are identical and the information per spike explained by x2 is zero.
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Stimuli associated with a spike are red while stimuli associated with no spike are

black.

Fig. 2.1B shows P (x1) (black) and P (x1|spike). Because the probability

distributions are different, the logarithm in Eq. 2.5 will be non-zero and therefore

x1 explains some of the information in the spiking. Because this dimension was used

to generate the spikes, it will explain more information than any other dimension

and is therefore the maximally informative dimension. In contrast, Fig. 2.1C shows

P (x2) and P (x2|spike). Because x2 was not used to generate the spikes and is

not correlated with the dimension x1 that was, these distributions are identical.

Therefore, the information about the spikes explained by x2 is 0.

The model above could have been successfully analyzed with methods such

as STA. The power of MID is its ability to distinguish between the dimensions that

are directly related to whether the neuron has spiked and the dimensions that are

merely correlated with those dimensions. Fig. 2.2A shows what happens when the

correlation between x1 and x2 is 0.8 rather than 0.0 like in Fig. 2.1. In this case,

the probability distributions along the x2 are no longer identical even thought the

dimension is orthogonal to the relevant dimension x1. However, x2 only explains

0.51 bits of information compared to the 0.85 bits of information explained by x1.

In this case, the STA (Fig. 2.2A, arrow) is not the relevant dimension. The dot

product with x1 is 0.78. MID correctly rejects this estimate in favor of x1 because

it only explains 0.77 bits of information about the spikes. Note that because the

stimulus in this example is normally distributed, STA and STC could compensate

for the correlations (as described in Sec. 1.2 and Sec. 1.3). However, MID is able to

overcome the correlations in the stimulus without making any assumptions about

their structure.

To improve the estimate of the relevant dimensions, MID takes the gradient

of (2.5) with respect to the current estimate of the dimensions V

∇viIV =

∫
dxPV (x|spike)(〈s|x〉V − 〈s|x, spike〉V )

d

dxi

(
PV (x|spike)

PV (x)

)
. (2.7)

A full derivation of the gradient can be found in Appendix A.
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Figure 2.2: MID demonstration with correlated stimulus. (A) A model
cell with a correlated Gaussian stimulus. The correlation between x1 and x2 is 0.80.
Red circles indicate stimuli that is associated with a spike, and black circles indicate
stimuli associate with silence. The arrow indicates the direction of the STA, which
explained 90% bits of information. (B) P (x1) (black) and P (x1|spikes) (red). x1

explains 100% of the information per spike. (C) P (x2) (black) and P (x2|spikes)
(red). Because of the strong correlation with x1, x2 explains 60% of the information
between the stimulus and the spikes.
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2.1 Consistency with correlated stimulus

In order for MID to be consistent with a stimulus, the objective function

(mutual information) must have a maximum when evaluated for the relevant sub-

space. This follows directly from the data processing inequality. Given two random

variables X and Y , the mutual information is I(X;Y ). We then introduce another

random variable Z that is a probabilistic function of only Y , which is to say that

P (Z|Y,X) = P (Z|Y ). From Bayes’ theorem, it follows that

P (X|Y, Z)P (Y, Z) = P (Z|X, Y )P (X, Y )

P (X|Y, Z)P (Y, Z) = P (Z|Y )P (X|Y )P (Y )

P (X|Y, Z)P (Y, Z) = P (Y, Z)P (X|Y )

P (X|Y, Z) = P (X|Y ).

(2.8)

We can then derive the data processing inequality:

I(X;Z) = H(X)−H(X|Z) ≤ H(X)−H(X|Y, Z)

I(X;Z) ≤ H(X)−H(X|Y, Z) = H(X)−H(X|Y )

I(X;Z) ≤ H(X)−H(X|Y ) = I(X;Y )

I(X;Z) ≤ I(X;Y ).

(2.9)

Therefore, the dimensions that determined the response are a global maximum of

the mutual information. This has the corollary that adding additional dimensions

will not increase the information, which allows us to determine the number of

relevant dimensions.

2.2 Convergence

Given a sufficiently long recording, MID should be able to in theory recon-

struct any set of dimensions and nonlinearities. The practical question remains

how the algorithm performs under experimentally realistic conditions.

To explore this question, we created sets of one-, two-, and three-dimensional

model cells with different mean firing rates and therefore different number of spikes.

The form of the model is described in Subsection 2.6.2 and shown in Fig. 2.14. The

three-dimensional model is as shown while the one- and two-dimensional models
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Figure 2.3: Convergence of MID with additional spikes. Subspace projec-
tion between the models and the reconstructions from MID (vertical axis) versus
the ratio between the number of parameters defining the model dimensions to
the number of spikes (horizontal axis). Small values on the horizontal axis cor-
respond to a large number of spikes relative to the number of parameters of the
model. Green, red, and blue lines correspond to one-, two-, and three-dimensional
models. Averaging across jackknife estimates (squares) improved the overlap com-
pared to the unaveraged dimensions (circles). With sufficiently large numbers of
spikes, MID is able mostly recover the model dimensions (overlap > 0.8). Mod-
est reconstructions (overlap ≈ 0.5) occur when the number of spikes is equal to
the number of model parameters. Averaging across different jackknife estimates
improved performance, especially in the case of limited data.

only use the first one or two dimensions respectively. We varied the parameter γ

to achieved the desired number of spikes for each variation. For each model and

firing rate, we generated 8 different spike trains.

Fig. 2.3 summarizes the results of the analysis. The subspace overlap of the

reconstruction is approximately inversely proportional to the ratio of the stimulus

dimensionality D times the number of model dimensions K to the number of spikes

Nsp. We do see a drop between the reconstructions of the one- and two-dimensional

models, but the reconstructions of the two- and three-dimensional models similar

once we account for the increased number of parameters needed to describe the
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Table 2.1: Convergence of MID. The intercept of the fit represents the pre-
dicted overlap when KD << Nsp. The slope represents the rate at which the
overlap changes with changes in the ratio of stimulus dimensions per spike. For
both the 1D and 2D models, the primary effect of averaging was to decrease the
rate at which the reconstruction degraded with fewer spikes. For the 3D model,
averaging both improved the reconstruction with many spikes and decreased the
rate at which the reconstruction degraded.

Model Overlap with infinite spikes Slope
1D unaveraged 0.941± 0.011 −0.44± 0.04
1D averaged 0.934± 0.011 −0.26± 0.03
2D unaveraged 0.854± 0.008 −0.367± 0.013
2D averaged 0.878± 0.004 −0.222± 0.006
3D unaveraged 0.813± 0.013 −0.333± 0.013
3D averaged 0.877± 0.014 −0.270± 0.015

model dimensions.

Averaging the dimensions reconstructed from multiple jackknife estimates

(App. C), improved the performance of MID. We quantified this by performing

a linear regression between the overlap and the model dimensionality per spike

(Table 2.1).

The extrapolated overlap does not go to 1 as KD/Nsp goes to 0 (Nsp goes

to∞). This is because there are two additional sources of error. First, the number

of bins used to calculate the probability histograms P (x) and P (x|spike) remained

constant. This puts a limit on how accurately f (x) may be represented. Second,

the number of stimuli remained fixed. This also limits the accuracy of the proba-

bility distributions P (x) and P (x|spike) as well as the stimulus expectations 〈s|x〉
and 〈s|x, spike〉 that are used to calculate the gradient in Eq. 2.7.

2.3 MID on cells from V1

While we have shown in Sec. 2.2 that MID is capable of reconstructing a

three-dimensional model cell, but the question remains of how it performs on real

neurons. We analyzed the recordings from 60 neurons from the cat primary visual

cortex (App. D.1). This set included 40 simple cells and 20 complex cells. Of
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Figure 2.4: MID on example simple V1 neuron. This example neuron is sen-
sitive to stimuli of a particular orientation and spatial phase. The dimensions are
ordered by which contributed the most additional information. The first dimen-
sion is sensitive to bright bars of a particular orientation in the frame immediately
before the spike. The second dimension is sensitive to changes in the intensity
within the receptive field. The third dimension inhibits the response of the neuron
to edges aligned with the center of the receptive field. Together, these dimension
predict a response to gratings of only a particular spatial phase and orientation,
which agrees with the classification as a simple cell based on its measured response
to gratings. Cell 761–1.

the 60 sets of recordings, 47 (32 simple, 15 complex) included the responses to

repeated stimuli, which allows us to estimate the information transmitted by each

spike about the stimulus and therefore calculate an absolute estimate of the model

performance. For this analysis, all of the stimuli were natural movies.

Fig. 2.4 shows the three-dimensional reconstruction of a simple cell, labeled

761–1. The first dimension is a vertical bar sensitive primarily to the frame im-

mediately before the spike. The one-dimensional nonlinearity associated with this

dimension resembles a threshold linear function. This combination produces the

linear response to gratings associated with simple cells.

The second dimension is associated with changes in intensity in the neuron’s

receptive field between the first and second frame before the spike. The positive
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Figure 2.5: MID on example complex V1 neuron. This example complex
cell is sensitive to motion along a particular orientation. The symmetric response
to motion provided by the first dimension reproduces the characteristic constant
response to moving gratings using a single spatiotemporal dimension rather than
the two spatial dimensions with orthogonal phases often used to model complex
cells. Cell 946–2.

blob in the middle frame and the negative blob in the frame before the spike

indicate a sensitivity to decreases in the intensity, causing this neuron to also have

an OFF response.

The third dimension is a Gabor filter in the frame before the spike oriented

along the same direction as the first dimension. The one-dimensional nonlinearity

shows that this is an inhibitory dimension. This dimension suppresses responses

to stimuli out of phase with first dimension which sharpens the the selectivity of

the neuron.

Fig. 2.5 shows the three-dimensional reconstruction of an example complex

cell, labeled 946–2. Unlike the example simple cell in Fig. 2.4, the example complex

cell is sensitive to stimuli 100 ms in the past.

The first dimension is symmetrically sensitive to motion orthogonal to its

preferred orientation. This spatiotemporal dimension can replicate the constant
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1D 2D 3D

Figure 2.6: Curse of dimensionality. As the number of dimensions increases,
the number of bins required to calculate the probability distribution increases
exponentially. In this example, the number of bins increases from 10 for 1D to 100
for 2D and 1, 000 for 3D.

response to moving gratings characteristic of complex cells that is often modeled

as the quadratic summation of two spatial dimensions with orthogonal spatial

phases. The second and third dimensions modulate the neuron’s response much

more weakly and are tuned to orientations close to the first dimension’s preferred

orientation.

2.4 Curse of dimensionality

The primary limitation of MID is the need to calculate P (x), P (x|spike),

〈s|x〉, and 〈s|x, spike〉. The algorithm approximates these continuous functions

using piecewise constant functions calculated using normalized histograms. Each

of the K dimensions is split into B parts, so the total number of histogram bins

is BK . This exponential dependence of the size of the histograms on the number

of dimensionality is the curse of dimensionality. Fig. 2.6 shows this exponential

increase for 10 bins per dimension.

Even with relatively coarse binning, the number bins can quickly reach

number of unique stimuli when K is only 4 or 5. Because the fractional error of

the estimate of P (x) is 1/
√
n(x), the ratio of stimuli to bins needs to be high

enough that the number samples in each bin is high enough that the differences in
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information explained by sets of dimensions is not overwhelmed by the error due

to finite sampling. This is partially mitigated by P (x) being large near µx and

small for large combinations of xi and xj. With many samples concentrated at

the center and many bins empty, the average error is less than
√
BK/T . However,

these empty bins do not affect the computational requirements. The size of 〈s|x〉
and 〈s|x, spike〉 scales as DBK , which would cause problems even if we were to

have infinite data.

2.5 Serial MID

The challenge of extending multiple dimensions stems from the need to

calculate the probability distributions PV (x) and PV (x|spike). Using B bins per

dimension, calculating the information explained by K dimensions requires BK

bins (Fig. 2.6). This is known as the curse of dimensionality (Bellman, 1961).

This exponentially growing number of bins quickly makes finding additional di-

mensions impractical. As the data is spread across more bins, fewer data points

are used to estimate the value of the probability for each bin and therefore our

estimates of these values become more noisy. Furthermore, even with enough data

to compensate for this, the computational requirements also grow exponentially.

One possible solution to this problem is to only calculate the information

with respect to the dimension that is currently being optimized. In order to pre-

vent the subsequent dimensions from converging to the first dimension found by

the algorithm, we subtract off the component of the gradient along the elements

correlated with the previously found dimensions. More precisely, the gradient is

∇vi,⊥Ivi = ∇viIvi −
i−1∑
k=1

∇viIvi · vk. (2.10)

We call this procedure serial MID (SMID).

2.5.1 Consistency

In order for SMID to find the relevant dimensions, the gradient must be

zero for some ordering of the relevant dimensions. Otherwise, the gradient would
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pull the estimate out of the relevant subspace and settle on a biased estimate.

We assume a neuron that is dependent on two stimulus dimensions ê1 and ê2,

with ê1 defined as the dimension of the relevant subspace that maximizes the one-

dimensional information and ê2 defined as the dimension of the subspace orthogonal

to the first. The projections of the stimulus on to these dimensions are defined as

s1 and s2, respectively.

We begin with the gradient of the information:

∇viIV =

∫
dxPV (x|spike)(〈s|x〉V − 〈s|x, spike〉V )

d

dxi

(
PV (x|spike)

PV (x)

)
. (2.7)

First, we note that

〈s|s1〉P (s1) =

∫
ds2P (s1, s2) 〈s|s1, s2〉 (2.11)

and that

〈s|s1, spike〉P (s1|spike) =

∫
ds2P (s1, s2|spike) 〈s|s1, s2, spike〉 . (2.12)

We will also need to use

〈s|s1, s2, spike〉 = 〈s|s1, s2〉 , (2.13)

which follows from the dependence of the response to the stimulus coming solely

through the intermediary stimulus dimensions s1 and s2. We can then rewrite

Eq. 2.7 as

∇ê1Iê1 =

∫
ds1ds2P (s1|spike) 〈s|s1, s2〉

(P (s1, s2|spike)− P (s1, s2))
d

ds1

log2

(
P (s1|spike)

P (s1)

)
=

∫
ds1ds2P (s1, s2) 〈s|s1, s2〉(
P (spike|s1, s2)− P (spike|s1)

P (spike)

)
d

ds1

log2

(
P (s1|spike)

P (s1)

)
.

(2.14)

The behavior of the gradient is determined by the term 〈s|s1, s2〉.
In the case of an uncorrelated stimulus,

〈s|s1, s2〉 = s1ê1 + s2ê2 + c⊥ (2.15)
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where c⊥ is a constant vector that is orthogonal to ê1 and ê2. In this case, the

gradient perpendicular to ê1 and ê2 is

∇ê1⊥Iê1 =
c⊥

P (spike)

∫
ds1

d

ds1

log2

(
P (s1|spike)

P (s1)

)
∫
ds2P (s1, s2)(P (spike|s1, s2)− P (spike|ss)).

(2.16)

The integral with respect to s2 is 0, and therefore, ∇ê1Iê1 does not have any

components outside of the relevant subspace. Furthermore, the gradient will have

no component along ê1 because information is scale-invariant, and it will have no

component along ê2 because we defined ê1 as the dimension that maximizes the

one-dimensional information. ∇ê2Iê2 may have a component along ê1, but as we

found ê1 first, we can subtract off this component. In this case, c1 = ê1 because

the covariance matrix is the identity matrix. Therefore, SMID is compatible with

uncorrelated stimuli. It is also compatible with correlated Gaussian stimuli if the

stimuli are decorrelated during preprocessing.

For a stimulus with arbitrary correlations, such as natural stimuli, the cor-

relations cannot be simplified any further. If the correlations are close to linear,

the resulting bias may be small, but in the general case, SMID is not compatible

with stimuli with higher order correlations.

2.5.2 SMID on model cells

In the last section, we predicted that SMID would be able to find multi-

ple dimensions if the stimulus is an uncorrelated Gaussian stimulus. For natural

stimuli, SMID will provide biased estimates. We now test these predictions with

a model cell.

Model cell

The model cell consists of two spatiotemporal filters that respond to the

onset of a spatial frequency at a particular orientation and location. The filters

are identical except that they have orthogonal spatial phase. The dimensions of

the filters are 16 × 16 pixels with a duration of 3 frames, so each filter has a size

of 768 values. The filters are shown in Fig. 2.7A.
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Figure 2.7: Two-dimensional model cell. (A) Two spatiotemporal filters
responding to the onset or offset of an oriented grating. (B) The nonlinearities
for the natural and noise stimuli calculated using the mode spike trains. The cell
spiked if the projection plus random noise exceeded the threshold in either the
positive or negative direction for either dimension.

If the magnitude of the projection along either filter plus some noise ex-

ceeded a threshold, the model neuron spiked. We repeated the stimulus ten times

and summed the response. The empirical nonlinearities using the model dimen-

sions and the generated spikes are shown in Fig. 2.7B. We used both the movie

stimulus and the noise stimulus described in Section D.1.

SMID and MID on model cell

We ran SMID on the responses of the model cell to both noise and natural

stimuli. The natural stimuli is described in Section D.1. The noise stimulus was

a 64 × 64 pixel image with values drawn uniformly from the integers between 0

and 255, inclusive. The stimuli were downsampled to the 16× 16 pixel resolution

of the model. At this level of downsampling, the distribution of values becomes

approximately normal.

As predicted, SMID was able accurately recover the model dimensions in the

case of noise stimulus (Fig. 2.8). The overlap between the model and reconstruction
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Figure 2.8: SMID on noise stimulus. (A) Reconstructed filters. SMID is able
to recover the model dimensions with an overlap of 0.83±0.15 across jackknifes that
increases to 0.99 when the filters are averaged. (B) Two-dimensional nonlinearity.
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Figure 2.9: MID on noise stimulus. (A) Reconstructed filters. The overlap is
0.8 ± 0.2 across jackknifes and 0.99 for the averaged filter. (B) Two-dimensional
nonlinearity.

was 0.83± 0.15 across jackknifes and 0.99 for the averaged dimensions from PCA

(see Appendix C).

We also analyzed the model cell using MID. In the case of the noise stimulus

(Fig. 2.9), MID performed similarly to SMID with an overlap of 0.8 ± 0.2 across

jackknifes and 0.99 for the averaged filter. SMID was able to perform as well as

MID because the magnitude of the correlation within the planes defined by the

model or the reconstructed filters did not exceed 0.01.
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Figure 2.10: SMID on natural stimulus. (A) Reconstructed filters. The
overlap is 0.60 ± 0.04 across jackknifes and 0.65 when they are averaged. This is
much poorer than the performance on the noise stimulus. (B) Two-dimensional
nonlinearity. The alignment of the non-spiking region in the center along the
diagonal is a result of the correlation between x1 and x2.
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Figure 2.11: MID on natural stimulus. (A) Reconstructed filters. The over-
lap is 0.875 ± 0.008 across jackknifes and 0.89 for the averaged filter. (B) Two-
dimensional nonlinearity.

In the case of natural stimuli, the reconstruction was less successful. The

recovered dimensions (Fig. 2.8A) had only an overlap of 0.60±0.04 across jackknifes

and 0.65 for the average filters. The difference between the reconstruction and

the model is visually apparent, and the correlations between the reconstructed

subspace cause the nonlinearity’s non-spiking central region to have a more curved

shape compared to model in Fig. 2.7B or the MID reconstruction in Fig. 2.11B.
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With the natural stimulus (Fig. 2.11), MID performed much better. The

overlap between the model dimensions and the dimensions recovered by MID was

0.875± 0.008 across jackknifes and 0.89 for the averaged filters.

Our theoretical analysis predicts that SMID will be biased because the

second dimension will recover dimensions that are orthogonal but correlated with

the first dimension, so we expect that the subspace of the SMID reconstruction

will have stronger correlations than the subspaces of MID or the model.

We checked this prediction by rotating an orthogonal basis for each sub-

space and calculating the correlation of the stimulus along those dimensions. The

correlation of the subspace was the maximum magnitude of the correlation along

the rotated dimensions. Checking the correlation along rotated bases is essential

because the correlation will be zero if the dimensions happen to be the principle

axes of the subspace.

The model subspace itself had a moderate correlation of 0.39. The sub-

space reconstructed by SMID had a much higher correlation of 0.77. MID is able

to remove some but not all of the superfluous correlations. Its reconstructed sub-

space had a correlation of 0.52. MID performed better than SMID because it was

better able to ignore some of the uninformative correlations with previously found

dimensions.

2.5.3 Convergence of SMID

In this section, we analyze the convergence of SMID with an increasing

number of spikes. We followed the same procedure used in Section 2.2. Fig. 2.5.3

shows the results along with the results from MID for comparison.

As expected, SMID performed comparably to MID with the one-dimensional

model cell where the algorithms are equivalent. For the two-dimensional model cell

(red), the reconstructed dimensions from SMID had a much lower overlap with the

model dimensions. Averaging four jackknife estimate from SMID performed only

as well as a single jackknife estimate from MID.

For the three-dimensional model cell, SMID performed poorly. It only

achieved an overlap of ∼ 0.2 even with large numbers of spikes. This drop in
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Figure 2.12: Convergence of SMID with additional spikes. Subspace pro-
jection between the models and reconstructions from SMID (solid line). Both
values for dimensions averaged across jackknifes (5) and unaveraged reconstruc-
tions (4) are shown. Values for MID (dashed line) are included for comparison.
As SMID is equivalent to MID for one dimension, it does comparably for the one-
dimensional model (green). For the two-dimensional model, SMID did worse than
MID with a single jackknife estimate from MID performing as well as four SMID
jackknife estimates averaged together. For the three-dimensional model, SMID
performed poorly and did not improve with increasing data.

performance is likely due to the relatively weak modulation of the inhibitory third

dimension compared to the first two excitatory dimensions. A dimension outside

the relevant subspace could carry more information about the model’s spiking via

correlations with the first two dimensions than is explained by the third dimension.

2.5.4 SMID on cells from V1

In order to test whether the results with respect to model cells held up

under realistic experimental conditions, we also tested SMID on cells from V1. We

used recordings from the cat visual cortex described in Appendix D.1. We used

SMID and MID to create three-dimensional reconstructions of these cells.
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Figure 2.13: Information in V1 responses explained by SMID and MID.
Percent information explained three spatiotemporal dimensions found by SMID
and MID about novel responses of V1 neurons (n = 47) to repeated stimulus.
Percentage is out of the total estimated information per spike. Red circles indicate
the cell was classified as complex while blue circles indicate the cell was classified as
simple. Filled circles indicate there was a significant (p < 0.05) difference between
SMID and MID. MID performed significantly better than SMID (p < 10−4, paired
t-test).

We had 47 neurons with responses to repeated stimuli, which are necessary

to estimate the information per spike. Of these neurons, 32 were classified as

simple and 15 were classified as complex according to their responses to moving

gratings (Skottun et al., 1991).

For each neuron, we calculated the information about the spiking explained

by the three-dimensional model and extrapolated to infinite data (Strong et al.,

1998). Using the responses to repeated stimuli, we were also able to estimate the

information transmitted by each spike based on the variation of the response across

stimuli and the consistency of the response to the same stimulus. This allows us

to describe the information explained as a fraction of the total information carried

by the neuron’s response. Fig. 2.13 compares the information explained by SMID

compared to that explained by MID. Across the population, MID explained more

information than serial MID (p = 3× 10−10, paired t-test).
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2.6 Comparison between MID and extended

projection pursuit regression

Rapela et al. (2010) asserted that ePPR performed better on natural stim-

uli. We sought to investigate their claims.

2.6.1 Projection pursuit regression

Projection pursuit regression (PPR) models the response as the sum of a

series linear kernels passed through a nonlinear function:

ŷ = ȳ +
K∑
k=1

βkfk(vk · s) + ε. (2.17)

The model is subject to the conditions that the kernels are normalized,

||vk||2 = 1; (2.18)

the nonlinear functions have zero mean,

1

N

N∑
t=1

fk(vk · st) = 0; (2.19)

and unit variance,

1

N

N∑
t=1

f 2
k (vk · st) = 1. (2.20)

The parameters of the model are found by minimizing the mean squared error

(MSE) between the model prediction and the observations

MSE =
1

N

N∑
t=1

(yt − ŷt)2. (2.21)

If we define the residual as

rk,t = yt −
k−1∑
k′=1

βk′fk′(vk′ · st), (2.22)

the MSE for the k-dimensional model is

MSEk =
1

N

N∑
t=1

(rk,t − βkfk(vk · st))2. (2.23)
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Extended PPR

Rapela et al. (2010) suggested an extension of PPR to include spatiotem-

poral models. These models add a memory of Dt past stimulus frames. This

extended PPR (ePPR) had two variants. The first incorporated time by stacking

the stimulus from multiple frames so that the dimensionality of the model vectors

vk goes from D to D×Dt. The second variant retains a vector dimensionality of D

but adds additional models that respond to a delayed stimulus. The first model,

called ePPR with time interactions, has the advantage of being able to capture

interactions between different points in time, but the higher dimensionality makes

fitting the model more difficult. Furthermore, the size of Dt has to be determined

in advance. The second variant, called ePPR without time interactions, has the ad-

vantage of being easier to fit and can determine the size of Dt during optimization.

The disadvantage is that it treats each time independently.

The form of the nonlinearity can approximate any arbitrary polynomial

function which in turn can approximate any arbitrary function (Rapela et al.,

2010). However, this statement does not put any constraints on the number of

ePPR dimensions required to approximate the nonlinearity.

Systemic bias in ePPR

In Rowekamp and Sharpee (2011), we demonstrated that mismatch between

the estimated nonlinearity ŷ(s) and the actual nonlinearity y(s) will cause biased

estimations for PPR when the stimulus has non-Gaussian equations.

We begin with an analysis of a one-dimensional case which we can later

generalize to multidimensional case. We start with Eq. 2.21

MSE =
1

N

N∑
t=1

(yt − ŷt)2. (2.21)

We can rewrite this sum as an integral on the probability distribution

MSE =

∫
dsP (s)(y(s)− ŷ(s))2. (2.24)

Taking the gradient with respect to relevant dimension hate1 gives us

∇ê1MSE = −2

∫
dsP (s)(y(s)− ȳ − β1f1(ê1 · s))∇ê1f(ê1 · s). (2.25)
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We can rewrite this as an integral with respect to s1, the projection of the stimulus

along ê1 by inserting Eq. 2.17 and integrating across all other dimensions:

∇ê1MSE = −2

∫
ds1P (s1) 〈s|s1〉 (∆y(s1)− β1f1(s1))

d

ds1

(β1f1(s1)). (2.26)

∆y is the deviation of the observed firing rate y from its mean ȳ, which is the first

term in Eq. 2.17. From this equation, we can note that the gradient will be zero

whenever ŷ(s) is equal to ∆y(s).

If there is a mismatch between ŷ(s) and ∆y(s), the bias depends on the

properties of 〈s|s1〉. In the case of a correlated Gaussian stimuli, which has linear

correlations, this becomes

〈s|s1〉 = c1s1 + c⊥. (2.27)

2.6.2 ePPR and MID on model cell

We know that given sufficient number of dimensions and data, ePPR can

approximate a neuron’s nonlinear response, but this is also true of MID. Two ques-

tions remain: first, how well can the algorithms perform under realistic experimen-

tal conditions, and second, can we interpret the reconstructed model parameters

to understand and characterize the neuron’s computation.

We first tested ePPR and MID on a three-dimensional model cell in order

to evaluate the algorithms’ performance when the underlying model is known.

Description of three-dimensional model cell

We attempted to replicate the behavior of the model cell from Rapela et al.

(2010) as closely as possible in order to perform the best comparison between our

analysis and theirs.

The model consists of three filters of size 16×16 pixels in space and 3 frames

in time, shown in Fig 2.14A. The first two are identical except with orthogonal

spatial phases. Each contains a Gabor function in the first and second frame

before the spike. The gratings are aligned along the diagonal, and they are shifted

in space along this axis. The third filter contains a Gabor function in the third

frame before the spike. It is oriented orthogonally to the first two filters.
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Figure 2.14: Three-dimensional model cell. (A) The three spatiotemporal
filters of the model cell (ê1, ê2, ê3). The frames are arranged with the part of the
filter corresponding with the earliest frame on the left and the part of the filter
corresponding with the frame closest to the spike on the right. (B) The one-
dimensional nonlinearities for each dimension calculated using the simulated spike
train for the long-stimulus condition. The response is in units of spikes per bin.
(C) The two-dimensional nonlinearities.
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The expected firing rated is determined using the equation

f (s) = γ
(s · ê1)2 + (s · ê2)2

1 + ω (s · ê3)2 . (2.28)

The parameters γ and ω control the overall firing rate and the level of inhibition.

The firing rate is converted into spikes using a Poisson distribution. To remain

consistent with Rapela et al. (2010), we chose γ such that 〈f (s)〉 was equal to 0.56

and ω such that
〈
1 + ω (s · ê3)2〉 was equal to 4.26.

This model cell captures some of the characteristics observed in complex

cells in V1: orientation selectivity, phase-invariance, and cross-orientation inhibi-

tion.

The stimulus used to generate the spikes is the natural movie described in

Section D.1. We analyzed two stimulus durations: a shorter 20000 frame stimulus

consistent with the size of the dataset used by Rapela et al. (2010) and a longer

49152 frame stimulus that utilized the full natural movie stimulus. Fig. 2.14B and

C show the nonlinearities calculated with the model filters and the simulated spike

train.

Analysis of model cell

We ran both ePPR and MID on both the short- and the long-stimulus

model cells. Filters were averaged using PCA, as described in Appendix C. For

ease of comparison, we rotated the resulting filters so that they were aligned as

much as possible with the corresponding model filters. We did this by defining the

rotated reconstruction V ′ = V R, where V are the reconstructed filters and R is a

rotation matrix. We then chose R as the rotation that maximized
∑
i=j

A2
i,j−

∑
i 6=j

A2
i,j,

where A = ETV R. This maximizes the diagonal elements while minimizing the

off-diagonal elements.

On the 20000-frame short stimulus condition, ePPR was able to partially

reconstruct the model filters. The reconstructed filters are shown in Fig. 2.15A

with the corresponding one- and two-dimensional nonlinearities in Fig. 2.15B and

C. The overlap across jackknifes was 0.55±0.04. Averaging the estimates together

increased this to 0.62. The model does much better at recovering the inhibitory
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Figure 2.15: ePPR reconstruction of short-stimulus model. (A) Recon-
structed filters. The overlap was 0.55 ± 0.04 for the individual jackknifes and
increased to 0.62 when the jackknifes were averaged together. Filters were rotated
to align with model dimensions for ease of comparison. (B) The one-dimensional
nonlinearities calculated from reconstructed dimensions and spikes. (C) The two-
dimensional nonlinearities.
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Figure 2.16: MID reconstruction of short-stimulus model. (A) Recon-
structed filters. The overlap was 0.65 ± 0.08 for the individual jackknifes and
increased to 0.81 when averaged. This is better than ePPR on either the short
or the long stimulus. (B) One-dimensional nonlinearities. (C) Two-dimensional
nonlinearities.

filter than the phase invariant excitatory filters. The overlap with the first two

model dimensions was 0.44 ± 0.10 across jackknifes and 0.51 for the averaged

filters. For the third model filter, the overlap was 0.89± 0.02 across jackknifes and

0.92 for the averaged filter.

MID did better at reconstructing the model dimensions for the short-stimulus

condition. The reconstructed filters and nonlinearities are shown in Fig. 2.16. The
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Figure 2.17: ePPR reconstruction of long-stimulus model. (A) Recon-
structed filters. The overlap was 0.59 ± 0.11 across jackknifes and 0.77 for the
averaged filters. This is better than ePPR on the short stimulus but below the
values for MID on either the short or long stimulus. (B) One-dimensional nonlin-
earities. (C) Two-dimensional nonlinearities.

overlap was 0.65 ± 0.08 for the individual jackknifes and 0.81 for the averaged

filters. MID did better at recovering the excitatory filters (overlap 0.83± 0.04 and

0.83) than ePPR but did worse on the inhibitory filter (overlap 0.49 ± 0.13 and

0.77).

Increasing the amount of data to 49152 frames for the long-stimulus con-

dition improved the performance of both algorithms. Shown in Fig. 2.17, ePPR
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Figure 2.18: MID reconstruction of long-stimulus model. (A) Recon-
structed filters. The overlap was 0.829 ± 0.005 across jackknifes and 0.86 for the
averaged filters. This is the best reconstruction of the three-dimensional model.
(B) One-dimensional nonlinearities. (C) Two-dimensional nonlinearities.

improved to have an overlap of 0.59± 0.11 across jackknifes and 0.77 for the aver-

aged filters. While better than ePPR on the short stimulus, these values are below

those found for MID on the short stimulus.

MID on the long-stimulus condition, shown in Fig. 2.18, did the best of all.

The overlap increased to 0.829±0.005 across individual jackknifes and 0.86 for the

averaged filters.

Analysis of ePPR and MID on a model cell with natural movie stimulus
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demonstrated that MID was better able to reconstruct the dimensions used by the

model, which agrees with our theoretical predictions. This increased performance

persisted even when MID had only 40% as much data to analyze.

2.6.3 ePPR and MID on V1 neurons

While it is promising that the analysis of simulated neurons supports our

theoretical predictions, the key test is whether it produces better reconstructions

of real neurons under experimental conditions. To test ePPR and MID, we again

analyzed the recordings of the responses of neurons in V1 to natural movie stimuli.

These experiments are described in Appendix D.1.

We ran ePPR and MID on 47 neurons for which we had responses to re-

peated stimuli. These responses are necessary to estimate the total information in

the neuronal response and how much of that information is captured by the recon-

structed model. Of the 47 neurons, 32 were simple cells and 15 were complex cells

as defined by their responses to moving gratings (see Appendix D.1 for details).

To compare the quality of the reconstructions given by the two algorithms,

we calculated fraction of the information between a novel repeated stimulus and

the corresponding neuronal responses. The repetition allowed us to estimate the

mean information transmitted by a spike based on the variability of the response

(see Appendix E). Across the population, the MID dimensions explained signifi-

cantly more information than the ePPR dimensions (p < 10−4, paired t-test). The

distribution of performances are shown in Fig. 2.19.

2.7 Discussion

Finding dimensions of the stimulus that have the most mutual information

with the corresponding responses of the cell creates a maximum likelihood LN

model for the dataset. As a maximum likelihood estimator, it produces an estimate

with the minimum variance for unbiased estimators with the same form. MID is

vulnerable to the curse of dimensionality as the number of dimensions increases.

Increasing the number of dimensions causes the observations to be spread across an
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Figure 2.19: Information in V1 responses explained by ePPR and MID.
Percent of the information between a repeated stimulus and recorded responses
explained by the dimensions reconstructed using ePPR and MID. The MID di-
mensions where significantly better at capturing the information than the ePPR
dimensions (p < 10−4, paired t-test). Red circles indicate complex cells while blue
circles indicate simple. Open circles indicate that the difference between ePPR and
MID was not significant (p > 0.05) while filled circles indicate that the difference
was significant (p < 0.05).

increasing number of bins, which increases the uncertainty in our estimates of the

corresponding probabilities. We found that this is not a problem for up to three

dimensions for model cells with datasets whose sizes were comparable to the sizes

of datasets in our recordings from V1. For our model cells, increasing the size of the

dataset required to obtain comparable performance appears to increase linear with

the number of dimensions rather than exponentially as could be expected based

on the exponentially increasing number of bins. This may be due to the non-

uniform distribution of stimuli where stimuli are concentrated around the mean

and observations of extreme values along more than one dimension are rare, which

leaves many bins empty. Furthermore, the calculation of the gradient is weighted

by the distribution of observations which discounts observations from the poorly

sampled regions of the stimulus.

The sequential optimization of the one-dimensional information allows SMID
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to overcome the curse of dimensionality. Adding additional dimensions only re-

quires additional searches with the same complexity as the search for the initial

dimension. The trade-off for this simplicity is a loss of the ability to ignore stimulus

correlations. We have shown both analytically and through the use of model cells

that correlations in the stimulus lead to biased estimates of the relevant subspace.

Furthermore, analysis of the responses of neurons from V1 revealed that MID

was better able to model the responses of neurons than SMID under experimental

conditions.

Given SMID’s trade-off between being able to find many dimensions in

exchange for the ability to accommodate stimulus correlations, it does not provide

a viable alternative to the existing methods of STC and MID. When the stimulus is

Gaussian, STC is capable of finding multiple dimensions in a computationally more

efficient manner than SMID. When the stimulus has higher-order correlations, MID

is capable of finding an unbiased estimate of the relevant subspace of the stimulus.

Contrary to (Rapela et al., 2010), we found that the MID performed better

than ePPR. Part of this discrepancy may be due to the differences in analysis.

(Rapela et al., 2010) used principal angles, which privileges recovering the origi-

nal coordinate system even if the computation contains symmetries that make it

invariant to certain transformations, such as rotation of the first two dimensions

of their model cell. Instead, we used the subspace overlap (App. B) which com-

pares subspaces independent of the choice of coordinate systems. To compare the

performance on the recordings from V1, we used information explained by the

reconstructed dimensions rather than the correlation between predicted and ob-

served response because ePPR has a parameterized nonlinearity and MID has an

arbitrary nonlinearity. To make predictions for MID, (Rapela et al., 2010) fit a

multidimensional polynomial model. We made this choice because we are primarily

concerned about the feature selectivity of the neurons.

While both ePPR and MID are able in theory to model an arbitrary nonlin-

earity, they both require an infinite number of dimensions to be assured to achieve

this. The question remains which algorithm is more effective under experimental

conditions where there is a finite amount of data with which to train the models.
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We found that MID was superior to ePPR when applied to both simulated cells

and recordings from V1. MID’s superior performance may be the result of its abil-

ity to directly measure the effect of correlations between stimulus dimensions via

the multidimensional information which eliminates the need for additional features

to compensate for biases resulting from a constrained lower dimensional model.

Ch. 2 draws upon the work published in Rowekamp and Sharpee (2011).

The dissertation author was the primary author of this paper.



Chapter 3

Invariant MID

An alternative way to extend MID to higher-dimensional computations is to

take advantage of underlying symmetries to simplify high-dimensional system into

one with a more manageable number of dimensions. One promising area where this

assumption may prove fruitful is with translation-invariant cells. These neuron do

not alter their response to a stimulus when the stimulus is shifted in space. This

behavior is found is higher-order visual areas, and it is believed to aid in object

recognition.

Neurons may not have unlimited spatial invariance. Invariance results from

pooling of the responses of earlier neurons, so invariance is limited both by the area

covered by the lower-level neurons and by the density of these neurons. A neuron

cannot be invariant to a stimulus that is outside of the receptive fields of its input

neurons, and it may not be able to interpolate as the stimulus moves between the

locations of the input neuron receptive fields.

Our model of translationally invariant neurons begins with the assumption

that neurons receive input from several lower-level neurons that are identical except

for the location of their receptive fields in space. Each lower-level neuron responds

to a set of K features V = {vi}. The projections of the stimulus on these features

is

xz = sz · V. (3.1)

z is the position of a particular subunit. The set of all vectors z is G. sz is

41
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the translated stimulus Tzs, where Tz is a translation operator that shifts the

stimulus by z. As with the regular LN-model, the response of each subunit is an

arbitrary nonlinear function of the linear subspace f(xz) The set of responses are

then fed into a position invariant function that depends does not depend on which

z produced which response.

Two biologically plausible invariant functions are the OR function

ŷor(s) = 1−
∏
z∈G

(1− ŷ(sz · v)) , (3.2)

which fires whenever one of the subunits fires, and the MAX function

ŷmax(s) = max
z∈G

ŷ(sz · v), (3.3)

which responds with the maximum of the subunit responses. In the case where f

is the probability of a binary response, two functions are similar in their output

except in the case ŷ(xj) is significantly greater than 0 for more than one subunit

without being close to 1.

3.1 Maximum projection

An advantage of the MAX function is that if ŷ(x) is one-dimensional and

monotonic, the maximum response is associated with the maximum projection of

the stimulus on to the filter. Under this condition, we can rewrite Eq. 3.3 as

ŷmax(s) = ŷ(xmax), (3.4)

where

xmax = max
z∈G

sz · v (3.5)

This form of the nonlinearity makes the problem amenable to existing forms of

MID with slight modification. Once again, we can derive ŷ from P (xmax) and

P (xmax|spike). 〈s|x〉 and 〈s|x, spike〉 become 〈szmax|xmax〉 and 〈szmax|xmax, spike〉
where

zmax = argmax
z∈G

sz · v. (3.6)
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The advantage of this method is in its relative simplicity. Once the location

of the maximum projection is found, it is straightforward to run MID using the

projections and stimuli associated with these locations. The disadvantages come

from the assumptions. While monotonic nonlinearities do exist, neuronal responses

are often non-monotonic, especially in deeper sensory areas.

For more than one dimensional, we continued to use the maximum pro-

jection along the first dimension to choose the location associate with a spike.

Specifically,

zmax = argmax
z∈G

sz · v1. (3.7)

Additional dimensions automatically imply that the maximum projection of the

first dimension is not necessarily associated with the maximum response unless the

other dimensions have no effect. If the other dimensions are relevant, the function

is no longer a MAX function but is instead some other function that while still

spatially invariant is no longer the product of independent subunits. We named

this algorithm invariant MID (IMID).

3.2 IMID on model cell

We tested IMID and MID on a model cell to demonstrate the differences in

performance when a cell fits the assumptions of IMID. The model consists a group

of subunits with a single curved Gabor filter, shown in Fig. 3.1A. The subunits

are located in a square grid pattern. The locations of the 3 × 3 grid are shown

by the black x’s on the figure. For the 5 × 5 and 17 × 17 grids, the subunits are

spread over the same spatial area but packed more densely, which provides a finer

spatial resolution to the model’s invariance. For the 5× 5 grid, the additional x’s

are located halfway between the x’s of the 3 × 3 grid while the 17 × 17 grid has

x’s at every pixel inside the area of invariance. For each subunit, the stimulus was

dotted with the filter, and the subunit spiked if the projection plus noise exceeded

a threshold. This results in an error function nonlinearity. The model cell spikes

if any of the subunits spiked. In this binary case, this is equivalent to either an

OR or a MAX function. However, with respect the the subunit nonlinearity, it is
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Figure 3.1: Invariant model cell. (A) The model filter is a curved Gabor
function. The x’s indicate the locations of the centers of the translated subunits
for the 3× 3 grid. The 5× 5 grid and the 17× 17 grid have the spatial extent but
a finer spacing of the subunits. (B) The subunit nonlinearity for a threshold θ of
2.5 and a noise level σ of 1.0 in units of standard deviation and a mean of zero.
The combination of a threshold and Gaussian noise causes the nonlinearity to be
a Gauss error function.

an OR function.

We tested the algorithm on multiple variations of this model. Varying the

spike threshold changed the mean firing rate and varying the noise level changed

the reliability of the spikes. We also tested 3 × 3, 5 × 5, and 17 × 17 translation

grids to test how the number of subunits affected the quality of the reconstruction

and whether the grid can be determined from the data. We also varied the number

of repetitions of the stimulus that we analyzed to explore the effect of increasing

amounts of data on the reconstruction of the model.

First, we analyzed the invariant model using MID to demonstrate the need

for a novel algorithm. Fig. 3.2 shows the result of running MID on a mode cell with

a 3×3 translation grid. The reconstructed filter is a combination of the translated

templates, which obscures the underlying structure. Because of the mismatch in

the reconstructed dimension, MID also fails to recover the model’s nonlinearity

(Fig. 3.2B, solid line). Even if we incorporate the model filter into a non-invariant

model with, the nonlinearity still differs from the model.
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Figure 3.2: MID reconstruction of 3 × 3 invariant model. (A) 32 × 32
pixel reconstruction of the model filter. The recovered dimension is a combination
of the translated model templates. The model had a 3 × 3 translation grid, a
spike threshold θ of 2.5, a noise level σ of 1.0, and 20 stimulus repetitions. (B)
The nonlinearity associated with the estimated template (solid line) and the model
template without invariance (dashed line). MID is also unable to recover the model
nonlinearity. Even if it were to recover the model template, the non-invariant
nonlinearity differs from the model nonlinearity.

While MID is insufficient for characterizing this type of translation-invariant

cells, the question remains of whether IMID can reconstruct the model. Fig. 3.3A

shows the reconstruction of the 3×3 grid model. The overlap was 0.898±0.011 and

the invariant reconstruction explained 96.9± 0.8% of the information. Increasing

the number of subunits to a 5 × 5 model (Fig. 3.3B) decreased the overlap to

0.78± 0.02 and the information explained to 82.6± 0.3%. IMID was also able to

recover the subunit nonlinearity (Fig. 3.3C) and copy the model’s response to the

stimulus (Fig. 3.3D).

3.3 IMID on complex V1 neurons

To compare the performance of IMID with MID, we ran both algorithms on

55 complex cells from the experiment described in App. D.1. We chose to analyze

only complex cells because their characteristic phase invariance could arise from
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Figure 3.3: IMID on invariant model cell. (A) Reconstruction of 3× 3 grid
model had an overlap of 0.898±0.011 and explained 96.9±0.8% of the information.
(B) Reconstruction of 5×5 grid model had an overlap of 0.78±0.02 and explained
82.6 ± 0.3% of the information. Increasing the number of subunits decreased the
performance of the algorithm but did not prevent invariant MID from recovering
the model template. (C) Model (solid) and reconstructed (dashed) nonlinearities
for the 3× 3 grid model. Invariant MID was able to successfully recover the model
nonlinearity in addition to the template. Projection is scaled to have zero mean and
a standard deviation of 1. (D) Comparison between the model spike probability
(black line with gray areas indicating standard error) and the predictions of the
reconstructed cell (blue) for a novel set of frames not used in estimating the model.
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Figure 3.4: IMID on example complex cell. The projection along the first
dimension determines which subunit determines the neuron’s response. The asso-
ciated one-dimensional nonlinearity is approximately monotonic, which is expected
given the structure of IMID. The second and third dimension are sensitive to edges
along the same orientation with larger spatial frequency and more weakly modulate
the neuron’s response. Cell 883–2.

combining the responses of spatially offset neurons.

Figs. 3.4 and 3.5 show the results of running IMID and MID on an example

V1 complex cell which was better fit by IMID (as measured by the mutual infor-

mation between the model subspace and a novel set of corresponding responses).

Fig. 3.6 shows a comparison between the performance of MID v. IMID.

For the one-dimensional models (A), IMID performs better on the population

of complex cells (Wilcoxon signed rank test, p = 4 × 10−4). This continues to

be true for the comparison between the two-dimensional models (B, Wilcoxon,

p = 1 × 10−4). For the three-dimensional models (C), neither IMID nor MID are

significantly more likely to perform better than the other (Wilcoxon, p = 0.2).
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Figure 3.5: MID on example complex cell. The first and third dimension
form a pair of Gabor wavelet filters with similar spatial frequency and orthogonal
spatial phase. They are combined using approximately an energy model. The
second dimension is sensitive to motion along a particular direction. Cell 883–2.
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Figure 3.6: Performance of IMID and MID. (A) For a one-dimensional
model, IMID performs better across the population than MID. (B) For a two-
dimensional model, IMID continues to perform better across the population. (C)
MID and IMID are not different across the population for the three-dimensional
model.
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3.4 Discussion

In this chapter, we extended MID to include a form of translation invari-

ance. This algorithm approximated a maximum operation across a set of identical

spatially offset monotonic subunits. We demonstrated that IMID was able to re-

cover the original feature of a model cell when MID recovered a combination of

offset features that obscured the underlying computation.

We applied this algorithm to complex cells from V1 and found that a one-

dimensional IMID model was better able to separate spiking and non-spiking stim-

uli than a one-dimensional MID model. A two-dimensional IMID model was also

better than a two-dimensional MID model, but the three-dimensional IMID model

was not significantly more likely to better than the MID model. This may be an

effect of our approximation of the maximum function. Selecting the maximum pro-

jection along the first dimension selects the location with the largest response for a

monotonically increasing nonlinearity, but the monotonic condition is not defined

for multiple dimensions. The more a secondary dimension modulates the subunit

firing rate (and therefore the more informative it is), the less likely the subunit

with the maximum projection along the first dimension is also the subunit with

the maximum firing rate. This may limit the usefulness of additional dimensions.

However, IMID is still likely to explain more information with a one-dimensional

model.

Ch. 3 draws upon work published in Eickenberg et al. (2012). The disser-

tation was co-primary author of that publication.



Chapter 4

Quadratic MID

Another potential way around the curse of dimensionality is to extend MID

to work with quadratic projections. This procedure has similarities to STC. Instead

of just a linear filter v, quadratic MID (QMID) also adds a quadratic filter J so

that the projections are given by

x = v · s + sTJs. (4.1)

As with STC, we take the eigenvectors of the matrix J and select the dimensions

with significantly non-zero eigenvalues. The linear filter v is also selected if its

magnitude is the same as the significant eigenvalues.

QMID has the advantage that it only requires the calculation of a one-

dimensional information while still being able to find multiple relevant dimensions.

The disadvantage is that it requires the optimization of D(D + 3)/2 filter param-

eters. (This is less than D2 + D because we can constrain J to be a symmetric

matrix.) Furthermore, while the algorithm can find multiple linear dimensions,

the nonlinear function f is a one-dimensional in the quadratic space, which limits

its ability to represent an arbitrary non-linearity. As with STC, this should not

be a problem. The primary goal is to elicit the stimulus dimensions that mod-

ulate the neural response. Once the high-dimensional stimulus is reduced to a

low-dimensional relevant subspace, more flexible methods can be used to charac-

terize the actual nonlinearity. By first finding the reduced subspace, we reduce the

complexity of the characterization of the nonlinearity

50
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4.1 Quadratic Maximum Noise Entropy

A similar approach fits a maximum entropy distribution to the data while

constraining the measured moments between the stimulus and response. Fitzgerald

et al. (2011b) dubbed this approach Maximum Noise Entropy (MNE). The mutual

information information between the stimulus and responses is the difference be-

tween the entropy of the responses (the response entropy) and the entropy of the

responses conditional on the stimulus (the noise entropy). Unlike previous maxi-

mum entropy studies that analyze the entropy of the responses of many neurons,

MNE takes the response entropy of a single neuron as a given and maximizes the

noise entropy given the measurements, hence the name. Quadratic MNE (QMNE)

matches the measured zeroth-, first-, and second-order moments. In this case, the

nonlinearity takes the form

ŷ(s) = σ(a+ v · s + sTJs), (4.2)

where σ is a logistic function

σ(x) =
1

1 + e−x
. (4.3)

The parameters of the equation are chosen such that

〈y〉 = 〈ŷ〉
〈ys〉 = 〈ŷs〉〈

yssT
〉

=
〈
ŷssT

〉
.

(4.4)

The form of Eq. 4.2 ensures that all other moments are not constrained beyond

what is required to satisfy the constraints of Eq. 4.4. The relevant features are

found in a manner identical to QMID: the eigenvectors of J with significantly large

eigenvalues as well as v if its magnitude is comparably large. This algorithm is

an extension of the one proposed by Fitzgerald et al. (2011b), which characterized

the nonlinearity in the reduced subspace rather than finding the subspace itself.

The advantage of maximum entropy is the ease of fitting the parameters.

The likelihood function is convex, so a simple gradient ascent algorithm is suffi-

cient. The disadvantage compared to QMID is the more constrained nonlinearity.

However, like with QMID, the hope is that mismatch of the nonlinearity will not

affect the relevant dimensions selected by the algorithm.
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4.2 Analysis of simulated cells

We compared QMID and QMNE on two simulated cells. The first was a

two-dimensional cell to test their performance in a regime compatible with existing

methods. The second was a six-dimensional cell to test the ability of QMID and

QMNE to find several relevant dimensions. We also ran MID and STC to provide

a baseline for comparison.

Both simulations consisted of 16× 16 pixel spatial dimensions. The model

cells were stimulated with 20000 randomly selected from the van Hateren image

database (van Hateren, 1997). This image sequence was repeated 100 times during

the simulated experiment.

As with other sections, we will use the subspace overlap (Appendix B) to

evaluate the performance of the various algorithms on the simulated experiments.

4.2.1 Two-dimensional model cell

The first model cell had two relevant dimensions consisting of Gabor wavelets

with identical location, orientation, and spatial frequency but with orthogonal spa-

tial phases. The model’s firing rate was proportional to the sum of the square so

the projections:

f(x) ∝ x2
1 + x2

2. (4.5)

This is an energy model. The nonlinearity erases information about the spatial

phase of the stimulus, so the model is phase-invariant like the quintessential com-

plex cell in the primary visual cortex.

In this case, MID does quite well. It achieving an overlap of 0.98, which

indicates it almost completely reconstructed the model filters. STC does worse

with an overlap of 0.77. QMNE was in between with an overlap of 0.90. These

reconstructions are shown in Fig. 4.1.

Overall, QMID did poorly for the two-dimensional model cell. A version

without a linear component had an overlap of 0.68 (not shown in Fig. 4.1). Adding

the linear component improved the overlap to 0.70. Even when we used the results

of QMNE as a starting estimate, the overlap of the final estimate was only 0.87,
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Figure 4.1: Quadratic methods on two-dimensional model. (A) Model
dimensions. The dimensions are Gabor functions with identical parameters except
that the spatial phases are orthogonal. The projections of the stimulus on to these
dimensions were squared and summed to give the mean firing rate. (B) Overlap of
reconstructed dimensions with model for the four methods. (C) STC performed
moderately well with an overlap of 0.77. The reconstructed dimensions appear on
the left ordered so that they are in the same column as the closest match with the
model dimensions. The eigenvalues are on the right. The two largest eigenvalues
were both excitatory and are marked in green. (D) QMID performed the worst
of the four methods with an overlap of 0.70. (E) QMNE performed the best of
the three quadratic methods with an overlap of 0.90. (F) MID almost perfectly
reconstructed the model subspace with an overlap of 0.98. The dimensions were
rotated to align with the model to aid visual comparison.



54

lower than that of the starting point.

In this context, MID is clearly the best method. Using information allows

it to bypass stimulus correlations, linear filters have a relatively small number of

parameters to fit, and for two dimensions, calculating the probability distributions

and conditional stimulus expectation values is still feasible. QMID is hampered

by the large number of parameters as well as the non-convex nature of the mutual

information. STC covariance both is biased by the stimulus correlations and has a

relatively large number of parameters. Finally, QMNE is able to do relatively well

considering its large number of parameters, a feat that is partially due to having

a convex objective function.

4.2.2 Six-dimensional model cell

The second model cell had three sets of paired dimensions with orthogonal

spatial phases. The first pair, associated with x1 and x2, are excitatory features

similar to the two-dimensional model cell in Section 4.2.1. The second pair, asso-

ciated with x3 and x4, are identical to the first pair except orthogonal in spatial

orientation. This pair is used to create cross-inhibition. The final pair, associated

with x5 and x6, has the same orientation as the first pair, but the spatial location

is outside the center rather than inside. This pair is used to create surround inhi-

bition. The model dimensions are shown in Fig. 4.2A. The probability of a spike

is

f(x) ∝ x2
1 + x2

2

1 + x2
3 + x2

4 + x2
5 + x2

6

. (4.6)

MID is unable to find 6 dimensions. Using 10 bins per dimension, the

probability distributions will have 1,000,000 bins, which much larger than the

number of stimuli that are likely to be used for any realistic experiment. Reducing

the noise due to counting error would require even more data.

For this more complicated model, STC (Fig. 4.2C) does poorly with an

overlap of 0.29. Meanwhile, QMNE (Fig. 4.2E) does well with an overlap of 0.85,

which is only slightly worse than its performance on the two-dimensional model.

Without a linear filter (not shown), QMID had an overlap of 0.64. Including

a linear filter (Fig. 4.2D), improves the reconstruction slightly with an overlap of
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Figure 4.2: Quadratic methods on six-dimensional model. (A) Six model
dimensions. The left two were excitatory and the right four were inhibitory. (B)
Overlap of the reconstructed dimensions with the model subspace for the quadratic
methods. MID is not included because calculating a six-dimensional information
is beyond the limits of realistic amounts of data. (C) STC performed poorly with
an overlap of 0.29. Reconstructed dimensions are on the left and are ordered to
correspond with the closest model dimension. The eigenvalues are on the right
with the six largest eigenvalues colored red for excitatory and green for inhibitory
dimensions. (D) QMID performed better than STC with an overlap of 0.65. (E)
QMNE performed the best with an overlap of 0.85. The match with the model
dimensions is visually apparent.
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0.65. Again, using QMNE as a starting estimate lead to a lower overlap (0.84)

than the starting estimate.

Again, QMNE performs the best of the quadratic methods. Additionally,

the performance of QMID and QMNE decreased only slightly with the addition

of four additional dimensions. This may be because finding that the significant

dimensions also requires determining that the other dimensions are insignificant.

4.3 Discussion

In this chapter, we examined the performance of two novel methods for

finding the subspace of the stimulus that modulates a neuron’s response. Both

methods were extensions of STC in that they looked at pairwise interactions be-

tween stimulus dimensions. The first method, QMNE, builds a maximum entropy

model of the responses given the stimulus constrained by the 0th, 1st, and 2nd-

order correlations of the stimulus with the neuron’s response. The second method,

QMID, searched for a quadratic and linear filter with an output that was most

informative about the neuron’s response.

We tested these methods on two model cells along with STC and MID for

comparison. For the two-dimensional model cell, we found that MID was best able

to recover the stimulus subspace that we used to generate the model responses.

We believe that this was due to only having to fit two linear filters of size D rather

than a matrix of size D2. The additional number of parameters related to the two-

dimensional nonlinearity is much smaller than that difference. Of the quadratic

methods, QMNE performed the best, followed by STC and QMID.

For the six-dimensional model cell, QMNE performed the best. QMID came

in second, while STC performed relatively poorly. Six dimensions is beyond the

ability of MID because realistic amounts of data are spread too thinly across the

six-dimensional nonlinearity for a meaningful representation.

QMID performed more poorly than QMNE despite QMID having an ar-

bitrary nonlinearity. QMNE does have the advantage of having a convex error

function, which simplifies optimization.
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Rajan and Bialek (2012) also considered quadratic extensions of MID. They

expanded the method to include mutliple quadratic filters as well as using low-rank

filters and matrix basis functions to simplify the optimization.

Ch. 4 draws on work published in (Fitzgerald et al., 2011a). The dissertation

author was the secondary author of the paper. This chapter includes the portions

of the work relevant to the author’s contribution.



Chapter 5

Invariant Logistic Subunits

Invariant MID (Chapter 3) allows us to model neurons that respond to the

same features at multiple locations, but it makes a few assumptions that limit its

effectiveness. First, it treats each location equally. While this creates invariant

responses, a more limited but biologically plausible conception of invariance oc-

curs when the ranking of responses to stimuli are preserved even if the absolute

level of the response is modulated (Pasupathy and Connor, 1999). Second, de-

termining the extent of invariance requires running the algorithm multiple times,

which is computationally intensive, and it may be difficult to distinguish between

the multitude of models. Third, in order to simplify the calculation of the sub-

unit nonlinearities, we made the assumption that it was monotonic and that they

were combined with a MAX function. This limits the types of nonlinearities that

can be modeled, and it limits the effectiveness of multidimensional models, where

monotonic is not defined.

In this chapter, we propose an alternative model that predicts the response

as a linear combination of responses of translated linear or quadratic logistic sub-

units. These subunits take the form of those in Section 4.1. The weighted response

is linearly rectified to allow for excitatory and inhibitory locations. Because this

model incorporates logistic subunits that are invariant across shifts in the stimulus,

we call this methods Invariant Logistic Subunits (ILS).

The parameters of the model are b, the weights corresponding to each

subunit; c, the rectifier bias term; d, the rectifier scale factor; a, the bias term of

58
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Figure 5.1: Schematic of ILS. ILS begins by taking subsets of the full stimulus.
In this example, the subsets are offset in space relative to one another, but they
could also be offset in time as well as other transformations such as different
rotations or scalings of the stimulus. Then, each of these subsets is passed through
the same linear and possibly quadratic filters. This example shows different linear
filters that are used to create the quadratic filter J . These values are then passed
through a logistic function to create a response for each subset of the stimulus.
These individual responses are weighted and summed to create a single value,
which is rectified using a softplus rectifier to create a predicted firing rate.

the logistic function; v, the linear filter; and possibly J , the quadratic filter. The

predicted response is given by

ŷ(s) = dR+

(
c+

∑
z∈G

bzσ
(
a+ sz · v (+sTz Jsz)

))
. (5.1)

σ is the logistic function (Eq. 4.3), and R+ is the softplus rectifier function

R+(x) = log (1 + ex) . (5.2)

The softplus rectifier prevents the predicted firing rate from being negative. Like

the linear rectifier

max (0, x) , (5.3)



60

-5 0
0

5

5
Input

Re
sp
on

se

Figure 5.2: Comparison between linear and softplus rectifiers. The linear
rectifier (black) has a discontinuity at 0 while the softplus rectifier (blue) is con-
tinuous while having the same asymptotic behavior. In the form d×R+(x/d), the
softplus rectifier converges to the linear rectifier. The figure shows this function
for values of d equal to 0.25 and 0.5 (red).

it goes to zero as x goes to∞ and is approximately x for large x. Unlike the linear

rectifier, the soft plus rectifier has a continuous derivative. Fig. 5.1 is a visual

representation of the algorithm.

Fig. 5.2 shows both the linear rectifier (black) and the softplus rectifier

(blue). The softplus rectifier converges to the linear rectifier but does not have the

discontinuity at 0. The scale factor d controls how close the softplus function is to

a linear rectifier. As d goes to 0, the softplus rectifier converges on to the linear

rectifier. Fig. 5.2 shows the effect of two intermediate values of d (red).

Vintch et al. (2012) independently created a subunit model with a different

structure.

5.1 Single-subunit model cell

Before testing the algorithm’s performance on models that incorporate iden-

tical subunits, we should test whether the model is able to ignore additional, ir-

relevant locations. The model consists of a linear ILS model applied to a single

stimulus location. The linear filter is a Gabor wavelet (shown in Fig. 5.3).
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Figure 5.3: ILS on model with single subunit. (A) Model consisted of a
single linear subunit with this filter. (B) Reconstructed linear filter using the
correct 1 × 1 grid. (C) Reconstructed linear filter (top) and spatial weighting
(bottom) using a 3 × 3 grid. The reconstruction of the linear filter is as good
as the 1times1 grid. The spatial weighting is concentrated at the position of the
model subunit, but the other locations have non-zero weights. The largest error
is along the axis of the Gabor wavelet. (D) Reconstructed linear filter (top) and
spatial weighting (bottom) using a 5×5 grid. The reconstruction of the linear filter
continues to be good while the reconstruction of the spatial weighting continues
to degrade. The errors in the spatial weighting are again largest along the axis of
the Gabor wavelet.
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Table 5.1: ILS on model with single subunit. ILS almost perfectly recon-
structed the linear filter even when analyzing stimulus including irrelevant loca-
tions. There was a decrease in the quality of the reconstruction of the spatial
weights from the 3 × 3 grid to the 5 × 5 grid. Jackknife refers values for individ-
ual jackknife estimates (mean ± sem). Averaged refers to values for filter/spatial
weighting averaged using PCA (App. C).

Filter overlap Mask correlation
Grid Jackknife Averaged Jackknife Averaged
1× 1 0.9863± 0.013 0.9898 — —
3× 3 0.988± 0.002 0.991 0.91± 0.06 0.94
5× 5 0.986± 0.003 0.989 0.816± 0.017 0.822

We reconstructed this model using 1 × 1, 3 × 3, and 5 × 5 grids centered

on the location of the model subunit. All three conditions were able to accu-

rately reconstruct the linear filter (Fig. 5.3 and Table 5.1), and the quality of the

reconstructions were not significantly different.

The reconstruction of the distribution of spatial weights was good but im-

perfect. Both the reconstruction using the 3× 3 grid and the one using the 5× 5

grid had the majority of the weight at the location of the model subunit, but the

other locations had non-zero weights. This error was largest along the axis of the

linear filter’s Gabor wavelet.

5.2 Model of sparsifying inhibition

One potential use of ILS is characterizing neurons that have a delayed

inhibition trained on the same feature as its excitatory input. This circuit can

implement limited adaptation and make the response sparser by preventing the

neuron from responding to its preferred stimulus feature unless is present in an

intensity greater than its recent history. Fig. 5.4 shows a simple example of a

circuit that could implement this function. The blue neuron responds linearly to a

particular feature. It provides excitatory input to both the red and black neuron.

In turn, the red neuron provides persistent inhibitory input to the black neuron.

This arrangement will suppress the response of the black neuron to a steady signal
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Figure 5.4: Model sparsifying circuit. The blue neuron responds linearly to
a particular feature and provides excitatory input to the red and black neurons.
The red neuron repeats the input from the blue neuron and provides inhibitory
input to the black neuron with a delay. In addition, the synapse may provide a
sustained inhibition to the black neuron. If excitation and inhibition are balanced,
the black neuron will not respond to a steady input from the blue neuron but will
respond to increases in the firing rate of the blue neuron.

from the blue neuron. The black neuron will only respond if there is an increase

in the output of the blue neuron relative to the recent past.

Fig. 5.5A shows the model spatial and temporal kernels. The model is

strongly driven by the frame at time 0 and has decaying inhibition associated

with the frames at times −9 through −1. The balance between excitation and

inhibition was such that the output to constant input is 0.58 spikes per frame

times the subunit response. The inhibition reduces the mean firing rate from 3.1

to 1.0 spikes per frame. While using a definition of sparsity adapted from (Rolls

and Tovee, 1995)

S = 1− 〈r〉
2

〈r2〉
, (5.4)

inhibition increased the sparsity of the model’s response from 0.47 to 0.68. The

sparsity ranges from 0 for a constant response to 1 − 1/N for a single non-zero

response.

We analyzed the model using MID with a single spatiotemporal filter and

singular value decomposition (SVD) to separate the filter into spatial and temporal

components (Fig. 5.5B). The reconstruction of the spatial filter was very good

(overlap 0.979±0.002 across jackknifes, 0.981 for the averaged filter). However, the

reconstruction of the temporal kernel was less successful (correlation 0.862± 0.005

across jackknifes, 0.862 for the averaged filter). The excitation from time 0 bleeds



64

0

1

0-8

0

1

0-8

0

1

0-8
Frames before spike

Frames before spike

Frames before spike

Model

MID + SVD

ILS

N
or

m
al

iz
ed

W
ei

gh
t

A

B

C

N
or

m
al

iz
ed

W
ei

gh
t

N
or

m
al

iz
ed

W
ei

gh
t

Figure 5.5: ILS on sparsifying model. (A) The model cell is tuned to an
oriented edge. The feature is excitatory if it appears at the current time but is in-
hibitory if it appears between 1−9 frames before the present. (B) Spatiotemporal
filter from MID decomposed into a spatial and a temporal filter using SVD. The
reconstruction of the spatial filter has an overlap of 0.979±0.002. The reconstruc-
tion of the temporal profile is less successful. Instead of a sharp transition between
excitatory and inhibitory contributions between the first and second frame before
the present, the second frame is excitatory and the inhibition does not peak until
the fourth frame. The correlation with the model temporal kernel is 0.862±0.005.
(C) Linear spatial filter and temporal kernel from ILS. ILS fits the spatial filter
slightly better than MID with an overlap of 0.9906±0.0004. The fit of the temporal
kernel is much better, with a correlation with the model of 0.99980± 0.00006.
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Excitatory Inhibitory

Model eigenvectors

Model Gabors

Figure 5.6: Quadratic model cell. (Top) Six features used to create the J
matrix. Two excitatory pairs of quadrature Gabor pairs positioned on different
positions of a curved contour and one inhibitory pair aligned orthogonal to the
curve. (Bottom) Eigenvectors of the model J matrix. Because the excitatory pairs
overlap with each other, the excitatory eigenvectors are pairs of the sums and
differences of the original features.

into time −1 and the inhibition peaks at time −3. This error occurs from using a

single dimension to model a fundamentally ten-dimensional function.

ILS recovered the model almost perfectly (Fig. 5.5C). The overlap with the

model of the spatial filter was 0.98399± 0.00010 across jackknifes and 0.98741 for

the averaged filter. For the temporal kernel, the correlation with the model was

0.99974± 0.00011 across jackknifes and 0.99992 for the averaged filter.

5.3 Quadratic models

Having demonstrated the effectiveness of the linear algorithm, we tested

the quadratic ILS algorithm.

Our model cell had the form of Eq. 5.1. J was made of three pairs of Gabors.

The two excitatory pairs have identical size and spatial tuning but are offset in

space and have slightly different orientations. Together they overlap to form a bent

line. The inhibitory pair is centered at the intersection of the excitatory pairs and
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Excitatory Inhibitory

Reconstructed eigenvectors

Figure 5.7: ILS on quadratic model. Eigenvectors of J matrix reconstructed
by ILS. The overlap with the model dimensions is 0.96

has an orientation orthogonal to the average orientation of the excitatory pairs. We

chose this model because each pair can be thought of as an energy model complex

cell. The excitatory components create sensitivity to a curved feature, and the

inhibitory pair provides cross-inhibition. Fig. 5.6 shows the Gabor features that

we used to make the J matrix as well as the eigenvectors of the matrix.

We ran ILS on the model cell for four jackknifes. Fig. 5.7 shows the eigen-

vectors of the reconstructed J matrix, which was averaged using PCA. The overlap

between the space spanned by these eigenvectors and the space of the model was

0.96.

5.4 ILS on V4 neurons

We applied ILS to recordings of 161 neurons from macaque visual area V4.

The recordings had been collected for an earlier analysis (Sharpee et al., 2013) and

are described in Sec. D.2. We chose to apply our method to V4 because previous

studies have shown that selectivity begins to shift from retinotopic position to

a relative, object-based coordinates in V4 (Gallant et al., 1996), which may be

represented using invariant subunits, and sensitivity to shapes such as contours

and curved gratings (Gallant et al., 1993, 1996), which can be represented by the

unconstrained number of dimensions of the J matrix.

Because the size of the stimulus was fixed, we ran the analysis for two

sizes: the full stimulus and a patch with the same center but half the width.

Both stimuli were downsampled to 20× 20 pixels. We chose the stimulus size for
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Figure 5.8: Comparison with RSTA and non-invariant ILS. (A) Correla-
tion of predicted response from RSTA and ILS with novel set of responses. ILS
outperformed the RSTA model for 103 out of the 161 V4 neurons. (B) Compar-
ison between ILS model with a 5 × 5 spatial grid and a model with only a single
subunit. The invariant model performed better than the non-invariant model for
109 out of 161 neurons.

later analysis based on which performed the best on average across jackknifes for

likelihood and correlation with respect to the respective training set, the respective

cross-validation set, and the combined training and cross-validation set.

From the 20 × 20-pixel stimulus, we extracted 25 16 × 16-pixel patches

arranged in a 5× 5 grid offset by 1 pixel.

5.4.1 Performance of ILS on V4 neurons

To evaluate how well the ILS algorithm was performing on the V4 dataset,

we used the correlation between a novel set of spikes and the model’s predictions for

the associated stimuli. For comparison, we used RSTA (Eq. 1.7). We calculated the

nonlinearity using Eq. 1.2 with 10 bins. We reserved 25% of the unrepeated data

to use for cross-validation and chose the λ associated with the highest correlation

with the cross-validation responses. Fig. 5.8A shows the relative performance. ILS

performed better than RSTA for 103 of the 161 neurons.
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Figure 5.9: Performance of ILS on V4 neurons. (A) Distributions of corre-
lations between ILS prediction and the spikes from a novel dataset. The median
was 0.05. (B) Correlations between ILS prediction and the average response to
the corresponding frame across repetitions. This reduces the noise associated with
variability in the response to the same stimulus The median correlation was 0.10.

To determine the importance of of invariance, we compared the model with

a 5 × 5 grid of 16 × 16-pixel patches with a model with a single subunit and a

20 × 20-pixel patch. Fig. 5.8B shows the performance on a novel dataset. The

invariant model with a 5 × 5 grid outperformed the non-invariant model with a

1× 1 grid for 109 neurons.

Fig. 5.9A shows the distribution of correlations between the ILS predictions

and spikes. They ranged from −0.12 to 0.47 with a median of 0.05. Fig. 5.9B

shows the correlation between the ILS prediction and a prediction based on the

mean response to a particular frame across repetitions. This partially removes

the effects of spike variability and is a better measure of how well the model is

predicting the mean response of the neuron. The performance ranged from −0.20

to 0.72 with a median of 0.10.
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Figure 5.10: Example cell J47A2 parameters. (A) Spatial weights b. In-
variance along vertical axis with inhibition in lower left corner. The black bar is 1◦

wide. (B) Linear filter v. A vertically aligned Gabor. (C) Quadratic filter J . The
black bar is 1◦ wide. The eigenvectors in E and F have the same scale. (D) Eigen-
values of J . Six excitatory (green) and eight inhibitory significant eigenvalues. (E)
Significant excitatory eigenvectors. (F) Significant inhibitory eigenvectors.
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Figure 5.11: Gabor fit for J47A2. (A) Excitatory and inhibitory Gabor pairs
that combine to fit J and are well represented in the subspace of the significant
eigenvectors. (B) Gabor pairs projected into the space of the significant eigen-
vectors to show that they approximately exist in that space. The black bar is 1◦

wide.

5.4.2 Feature selectivity in V4

To analyze the feature selectivity of the V4 neurons, we used the following

procedure: First, we excluded all neurons for which the correlations between the

jackknife predictions to novel stimuli and the recorded responses were not signifi-

cantly greater than zero. Second, we averaged the jackknife parameters using PCA

(App. C). Third, we determined the significant positive and negative eigenvalues

of the J matrix using the procedure described in App. F. Finally, we fit the J

matrix with Gabor quadrature pairs (App. G) and kept those pairs which had a

length in the space of the significant eigenvectors that was greater than 0.7. We
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Figure 5.12: Gabor contours for J47A2. Contours drawn at e−0.5 relative to
maximum for zero-phase excitatory (green) and inhibitory (red) Gabors. The two
excitatory Gabors form a curved contour while the three inhibitory Gabors are
spaced along the contour with orthogonal orientations. The contours are superim-
posed on the sums of the excitatory (green channel) and inhibitory (red channel)
zero-phase Gabors normalized so that the maximum value of the sum corresponds
to a color value of 1 and zero corresponds to a color value of 0.5. The blue chan-
nel was set to 0.5. The box shows how the color changes as the excitatory and
inhibitory sums pass from the negative maximum through zero to the maximum
value. The black bar is 1◦ wide.

used the remaining Gabor features to interpret the neurons’ selectivity.

Fig. 5.10 shows the averaged parameters of an example neuron (J47A2).

Fig. 5.10A shows the spatial weighting b. The weights drop more quickly along

the horizontal direction than the vertical revealing an invariance along a direction

slightly offset from vertical. The linear filter v is a vertical Gabor in the center

of the stimulus (Fig. 5.10B). The first two excitatory eigenvectors are a pair of

curved Gabors while the remaining eigenvectors are similar to combinations of

vertical Gabors (Fig. 5.10E). The inhibitory eigenvectors have many horizontal

lines (Fig. 5.10F).

Fig. 5.11A shows the excitatory and inhibitory Gabor pairs that fit the J

matrix. The excitatory pairs consist of a central vertical Gabor pair and another

overlapping pair offset in position and orientation. Together, they make the curved

Gabors seen in the eigenvectors. The inhibitory pairs are all horizontal and po-

sitioned along the contour formed by the excitatory pairs. Fig. 5.11B shows the
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projection of the Gabors into the space of the significant eigenvectors to demon-

strate how much of the Gabors are present in this space.

Fig. 5.12 shows the relative positions of the Gabor pairs. For each Gabor

pair, we created a single Gabor with a phase φ of 0. We drew contours at e−0.5

relative to the maximum value of the individual Gabor. Excitatory features are

green, and inhibitory features are red. We also summed the excitatory and in-

hibitory Gabor features together and scaled their values so that the maximum was

1 and 0 was 0.5. We used the inhibitory sum for the red channel, the excitatory

sum for the green channel, and set the blue channel to 0.5. The box on the right

shows how changing values of the excitatory and inhibitory sums affect the color.

The combined contours more clearly shows the interaction between excita-

tory and inhibitory features. The excitatory features overlap to form a bent line

while the inhibitory features are spaced along the line with orientations orthogonal

to it.

Fig. 5.13 shows the parameters for another example neuron (J30A1). The

spatial weights for this neuron are more uniform (Fig. 5.13A). The linear filter

(Fig. 5.13B) inhibits responses to bright stimuli in the center of the stimulus.

Fig. 5.14 and Fig. 5.15 aid the interpretation of the excitatory features. The

Gabor fit found three excitatory pairs of Gabors which are all located in the center

of the stimulus and have similar spatial frequencies but tile the orientation space.

We did not find Gabors that well fit the inhibitory eigenvectors.

Fig. 5.16 shows the Gabor contours and spatial weightings of eight ad-

ditional examples. J33A1 has three excitatory pairs forming a curve. The two

inhibitory Gabor pairs are orthogonal to the curve. The spatial weightings is rel-

atively localized in space. J06A1 has a similar combination of excitatory Gabor

pairs without any inhibitory Gabor pairs. The spatial weighting is most localized

of the examples. J06A3 has two excitatory Gabor pairs on a curve. The inhibitory

Gabor pair is orthogonal to the excitatory curve but is offset in space along the

axis orthogonal to the center of the curve. The spatial weighting is relatively uni-

form. M28A1 has two excitatory pairs forming a curve. Each has an inhibitory

Gabor with orthogonal orientation overlapping it. There is also a third pair of
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Figure 5.13: Example cell J30A1 parameters. (A) Spatial weights b. Broad
selectivity across all locations. The black bar is 1◦ wide. (B) Linear filter v. In-
hibits response to center of the stimulus. The black bar is 1◦ wide. All of the
eigenvectors in E and F have the same scale. (C) Quadratic filter J . (D) Eigen-
values of J . Twelve excitatory (green) and ten inhibitory significant eigenvalues.
(E) Significant excitatory eigenvectors. (F) Significant inhibitory eigenvectors.
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Figure 5.14: Gabor fit for J30A1. (A) Three excitatory pairs of Gabors
positioned in the center of the stimulus with similar spatial frequencies but with
orientations along the vertical, horizontal, and diagonal. (B) Projection of the
Gabor features onto the subspace of significant eigenvectors. The black bar is 1◦

wide.

Figure 5.15: Gabor contours for J30A1. Contours of zero-phase Gabor for
each pair superimposed on the sum of these Gabors. The Gabors are located at the
same spatial location but have different orientations, which allows for a rotation
invariant response. Colors of background the same as Fig. 5.12. The black bar is
1◦ wide.
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Figure 5.16: Additional V4 contours. Additional examples of Gabor features
selectivity (left) and the corresponding spatial weighting (right). With the excep-
tion of J28A2 (H), these examples show two or more excitatory Gabors combining
to form a curve. The inhibitory Gabors are oriented orthogonal to the excitatory
Gabors with the exception of J06A1 (B) which did not have any inhibitory Gabor
features. The spatial weightings range from relatively localized (J33A1 (A) and
J06A1 (B)) to approximately uniform (J06A3 (C) and J28A2 (H)). The black bars
are 1◦ wide.
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Figure 5.17: Relative orientations of excitatory and inhibitory features.
Distribution of the difference in orientation for all pairs of excitatory and inhibitory
Gabor pairs for V4 neurons. The histogram on the right uses 2 bins to show the
bias for being closer to orthogonal than parallel. The histogram on the left uses
10 bins to show the distribution in more detail.

excitatory Gabors with similar orientation but located offset in space along the

axis perpendicular to the curve. The spatial weighting is localized in space and

falls off as the position moves away from the peak. J15B2 also has two excitatory

Gabor pairs forming a curve along with an offset parallel excitatory Gabor pair.

The inhibitory Gabor pair is orthogonal to the third excitatotry Gabor pair, which

it overlaps. The spatial weighting falls off more quickly along the direction perpen-

dicular to the excitatory Gabors than along the parallel direction. M26A1 has two

excitatory Gabors forming a corner. The third Gabor has the same orientation

as one of the other excitatory Gabors and is located parallel to it. Two inhbitory

Gabor pairs are othorgonal to the parallel excitatory Gabors and are located on

the other side of the curve. The spatial weighting is similar to M28A1, but it falls

off more slowly as it moves from the peak. J42A1 has four excitatory Gabor pairs

that form a line that crosses the frame. The inhibitory Gabor is orthogonal to this

line. The spatial weighting has two peaks on opposite sides of the grid. J28A2

has two parallel excitatory Gabor pairs with two inhibitory pairs that are oriented

orthogonal to the excitatory pairs. The spatial weighitng is relatively flat.
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To test whether inhibitory features were preferentially orthogonal to the

excitatory features, we took all Gabor features that met our criteria for being in

the relevant subspace of the neuron and calculated the difference in orientation for

all pairs of excitatory and inhibitory neurons. Fig. 5.17 shows the distribution of

these differences. The left histogram shows the details of the distribution while

the right histogram has only two bins in order elucidate the difference in frequency

of being closer to parallel and being closer to orthogonal. The excitatory and

inhibitory Gabor features were more likely to be orthogonal to each other than

parallel.

5.5 Discussion

In this chapter, we introduced a novel method for analyzing neural re-

sponses. The goal of this method was to exploit the existence of invariances in

the underlying computation to reduce the complexity of our analysis. It also uses

quadratic features to find an arbitrary number of features. We showed that the

algorithm is capable of reducing to a non-invariant model if the computation is

localized It is also capable of able to recover invariant models in the presence of

spatiotemporal correlations.

We applied the algorithm to V4 data and found that the neurons were

selective for Gabor features, with the inhibition tending to be orthogonal to the

excitatory features. We found examples of the Gabor features combining to form

curves as well as an example of rotation invariance.



Appendix A

Derivation of information gradient

This appendix contains the full derivation of the gradient of the information

per spike. The mutual information between the spikes and the projections of the

stimulus onto the dimensions V is given by Eq. (2.5)

IV =

∫
dxPV (x|spike) log2

(
PV (x|spike)

PV (x)

)
(A.1)

where PV (x) is defined as

PV (x) =

∫
dsP (s)

K∏
i=1

δ(xi − vi · s). (A.2)

PV (x|spike) is defined similarly by replacing P (s) with P (s|spike). Taking the

gradient of the information gives

∇viIV =

∫
dx (∇viPV (x|spike)) log2

(
PV (x|spike)

PV (x)

)
+

1

log(2)

∫
dxPV (x|spike)

(
∇viPV (x|spike)

PV (x|spike)
− ∇viPV (x)

PV (x)

)
.

(A.3)

The term PV (x) is given by

∇viPV (x) =

∫
dsP (s)∇vi

K∏
k=1

δ(xk − vi · s). (A.4)

The equation for the derivative of a delta function is

δ′(f(x)) = −f ′(0). (A.5)

78
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From Eq. (A.5), it follows that

∇viδ(xi − vi · s) = s (A.6)

and
d

dxi
δ(xi − vi · s) = −1. (A.7)

Combining these equations, we find

∇viδ(xi − vi · s) = s = −s
d

dxi
δ(xi − vi · s), (A.8)

and therefore

∇viPV (x) = − d

dxi

∫
dsP (s)s

K∏
k=1

δ(xk − vk · s). (A.9)

Given the definition

〈s|x〉V =

∫
dsP (s)s

K∏
k=1

δ(xk − vk · s)

PV (x)
, (A.10)

it follows that

∇viPV (x) = − d

dxi
(PV (x) 〈s|x〉V ) . (A.11)

Plugging this into Eq. (A.3) gives

∇viIV =−
∫
dx

d

dxi
(PV (x|spike) 〈s|x, spike〉) log2

(
PV (x|spike)

PV (x)

)
− 1

log(2)

∫
dx

d

dxi
(PV (x|spike) 〈s|x, spike〉V )

+
1

log(2)

∫
dx
PV (x|spike)

PV (x)

d

dxi
(PV (x) 〈s|x〉V ) .

(A.12)
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Using integration by parts and the fundamental theorem of calculus gives

∇viIV =−
∫
dxk 6=iPV (x|spike) 〈s|x, spike〉V log2

(
PV (x|spike)

PV (x)

) ∣∣∣∣∞
xi=−∞

+

∫
dxP (x|spike) 〈s|x, spike〉V

d

dxi
log2

(
PV (x|spike)

PV (x)

)
− 1

log(2)

∫
dxk 6=iPV (x|spike) 〈s|x, spike〉V

∣∣∣∣∞
xi=−∞

+
1

log(2)

∫
dxk 6=iPV (x|spike) 〈s|x〉V

∣∣∣∣∞
xi=−∞

− 1

log(2)

∫
dxPV (x|spike) 〈s|x〉V

PV (x)

PV (x|spike)

d

dxi

(
PV (x|spike)

PV (x)

)
.

(A.13)

As probability distributions, PV (x) and PV (x|spike) go to 0 at ±∞. Using this

along with x d
dx
x = d

dx
log(x), the gradient becomes

∇viIV =

∫
dxP (x|spike) 〈s|x, spike〉V

d

dxi
log2

(
PV (x|spike)

PV (x)

)
−
∫
dxPV (x|spike) 〈s|x〉V

d

dxi
log2

(
PV (x|spike)

PV (x)

)
,

(A.14)

which simplifies to

∇viIV =

∫
dxPV (x|spike)(〈s|x, spike〉V −〈s|x〉V )

d

dxi
log2

(
PV (x|spike)

PV (x)

)
. (A.15)



Appendix B

Subspace overlap

Given a set of model dimensions used to generate responses and a set of

dimensions reconstructed from the stimulus and responses, the question arises of

how well the algorithm did at reproducing the original model. A Bayesian nonlin-

earity depends only on the relevant subspace itself rather than the features actually

used in the generation of responses. Any set of vectors that spans the same sub-

space provides an equivalent description of the system but with a different system

of coordinates. We can easily convert one description into another using a linear

transformation. Therefore, we will want a metric that compares the subspaces

spanned by sets of vectors rather than the vectors themselves. This requires the

metric to be invariant to non-degenerate linear transformation of the vectors.

In this dissertation, we use linear subspace projection to compare the re-

constructed dimensions with the dimensions used to generate the responses from

the stimulus. Given a set of K vectors E = {ei} used to generate responses and

a set of K reconstructed dimensions V = {vi}, the projection matrix P is defined

such that

Pi,j = ei · vj. (B.1)

P is also the Jacobian matrix of the transformation from E to V , and det(P ) is

the change of volume associated with the transformation. The Gram matrices are

defined as

GE,i,j = ei · ej (B.2)
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Figure B.1: Visual demonstration of subspace overlap. (A) Two orthonor-
mal vectors define a unit square with area 1.0. Any pair of orthonormal vectors
from this subspace will form a similar square and will have an overlap of 1.0. (B)
A set of two orthonormal vectors (red) that are not in the subspace defined by
the blue vectors. When projected down to the x1 − x2 plane, the vectors form a
parallelogram with an area of 0.71. Taking the square root to convert this area to
a linear measure gives an overlap of 0.84.

with GV defined similarly. In this case, det(G) is the square of the volume of the

parallelotope defined by the associated vectors.

The linear subspace projection is defined as

O =
| det(P )|1/K

| det(GV )|1/2K| det(GE)|1/2K
. (B.3)

The numerator is the volume of V projected into E (or the reverse) while the

denominator contains the original volumes of E and V , which normalizes the vol-

ume if one or both of E and V are not orthonormal. Taking Kth root converts

the volume into a linear measure. This prevents the projection from becoming in-

creasingly small as the number of dimensions increases, which aids the comparison

of results with different numbers of dimensions. The resulting metric ranges from

1 when the subspaces are identical and 0 when the rank of P is less than K.

Fig. B.1 provides a visual demonstration of the geometric intuition behind
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the subspace overlap. Two orthonormal vectors define a unit square with an area

of 1.0. Rotating the vectors or reflecting a vector across the other will not change

the area of this square. To check whether a set of orthonormal vectors (red) is from

the same subspace of another set (blue), we first project the first set of vectors

into the second set. If the vectors are not from the same subspace, part of the

projected vectors will be lost (dashed line) and vectors will define a parallelogram

with an area less than 1.0.

B.1 Invariance to linear transformation

We begin with two sets of vectors: E and V . We can create two new sets of

vectors E ′ and V ′ by applying the linear transformations LE and LV , respectively:

E ′ = LEE

V ′ = LV V.
(B.4)

The linear subspace projection of these two subspaces is

O′ =
| det(P ′)|1/K

| det(GV ′)|1/2K| det(GE′)|1/2K
. (B.5)

Noting the definitions of the new projection and Gram matrices

P ′ = LTEPLV

GV ′ = LTVGVLV

GE′ = LTEGELE,

(B.6)

we can take advantage of the properties of the determinant that det(AB) =

det(A) det(B) if A and B are square matrices and det(AT ) = det(A) to rewrite

Eq. B.5 as

O′ =
| det(LE)|1/K| det(P )|1/K| det(LV )|1/K

| det(LV )|2/2K| det(GV )|1/2K| det(LE)|2/2K| det(GE)|1/2K
. (B.7)

As long as LE and LV are not degenerate, their determinants are non-zero

and the factors in the numerator and denominator cancel out, which leaves us with

the original value of the linear subspace projection given in Eq. B.3.
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B.2 Extension to differing dimensions

This metric can also be extended to the situation where the dimension-

ality of E and V differ. We begin by performing the substitution | det(P )| =

| det(P )2|1/2 = | det(P TP )|1/2. Since P no longer needs to be a square matrix, V

and E can have different numbers of dimensions, which we call KV and KE. In

order for the determinant not to be 0, KE must be greater than or equal to KV .

Furthermore, because we can no longer pull LE out of the determinant, E must

be orthonormal. The equation for the generalized linear subspace projection is

O =

(
| det(P TP )|
| det(GV )|

)1/2KV

. (B.8)

The advantage of this form is that we can evaluate models with fewer or

greater dimensions than the model used to generate responses compared to the

maximum possible performance. The cost of this is that we no longer are able

to perform the trick used in the previous section to make the linear subspace

projection invariant to linear transformations of the larger subspace E.

B.3 Comparison to principal angles

The motivation for measure came from the limitations of principle angles

used by Rapela et al. (2010). Principal angles compares sets of vectors using

the angles between the vectors. To calculate the principal angles, one begins by

calculating the angles between all of the vectors of one set and all the vectors of

the other set. If the angle is greater than π/2, it is replaced by π − θ, which is

equivalent to replacing one vector with its negative. This ensures that the sign of

the vectors does not matter. One takes the smallest angle as the first principal

angle, removes this pair from the sets of vectors, and repeats this process until

all of the vectors have been paired. The values of the principal angles range from

0 when the pair of vectors are identical to π/2 when the vectors are orthogonal.

Each succeeding principal angle is greater than those that preceded it.

The disadvantage of principal angles is that it compares the vectors that

define subspaces rather than the subspaces themselves. The same subspace can be
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described by an infinite number of sets of vectors, each of which define a different

but equivalent system of coordinates. This is especially problematic when there is

not even a system of coordinates that gives a relatively simple description of the

response.

Consider a simple model of a complex cell where relevant dimensions are two

Gabor wavelets with identical parameters except that they have orthogonal spatial

phases. The response is determined by the summed square of the projections

f(x) = x2
1 + x2

2. (B.9)

In polar coordinates this becomes

f(x) = (r cos(θ + φ0))2 + (r sin(θ + φ0))2

= r2(cos(θ + φ0)2 + sin(θ + φ0)2)

= r2.

(B.10)

Regardless of our choice of coordinates (represented by the angle φ0 relative to the

dimensions actually used to generate the response), the description is equivalently

simple. However, our choice of φ0 does affect the principal angles. If φ0 is 0, The

principal angles will by 0 and 0. As φ0 increases, the principal angles will increase

with it until reaching a maximum of π/4 and π/4 when φ0 = π/4. The subspace

overlap will be 1 regardless of our choice of φ0 because rotation is a non-degenerate

linear transformation.



Appendix C

Averaging dimensions using PCA

Just as we wanted a metric that compared subspaces directly rather than

the particular sets of dimensions used to describe the subspaces in Appendix B,

we also need a method that averages subspaces directly rather than the sets of

dimensions used to describe them.

The problem with averaging the individual dimensions is illustrated by the

following pathological but plausible example. Consider the reconstructed dimen-

sions using two different jackknifes of the data as the cross-validation set. Let’s

further assume that the dimensions recovered by each analysis are identical except

that the labels of which dimension is the first and which dimension is the second

are switched between jackknifes. Averaging the vectors will result in two copies

of an average the first and second dimension and reduce the size of the subspace

from two dimensions to one. Clever reordering of the dimensions could avoid this,

but this becomes tricky when averaging across more than two jackknifes.

As an alternative, we use Principle Components Analysis (PCA) to find

the average subspace. With vk,j as the kth vector from the j jackknife, we first

calculate the covariance of the dimensions:

CPCA =
∑
j,k

vk,jv
T
k,j. (C.1)

The averaged subspace is described by the K eigenvectors of CPCA with the largest

eigenvalues. Note that we do not subtract the mean of the vectors. This gives us

the principal components of variation relative to the origin.
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1

0

0 1

Figure C.1: Averaging four two-dimensional vectors using PCA. The set
contains three similar vectors and one outlier (black). The red line shows the result
of averaging the four vectors. The overlap with (1, 0) is 0.95. The blue line shows
the PCA vector of the four vectors. The overlap with (1, 0) is 0.999. The PCA
average is much less susceptible to outliers.

This has the advantage of reducing the effect of outliers. Fig. C.1 shows an

example with four vectors (black). Three vectors are centered around (1, 0 while

the fourth is an outlier almost perpendicular to (1, 0). The red line is the dimension

that results from averaging the four vectors together. The overlap with (1, 0) is

0.95. The blue vector is the PCA average of the four vectors. Its overlap with

(1, 0) is 0.999. In this way, PCA averaging can act as a principled way to handle

outliers.

To evaluate how similar the subspaces are to each other, we can look at

how much of CPCA’s energy is captured by the selected eigenvectors. If {λk} are

eigenvalues of the selected eigenvectors, the fraction of the energy captured is

K∑
k=1

λk

Tr CPCA
, (C.2)

where Tr is the trace. It ranges from 1 when the subspaces of the different jackknifes
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are contained in the averaged subspace to 1/Njack when there is no correspondence

across jackknifes.

C.1 Recovering MID basis

While PCA is useful for finding an average subspace, it can erase some

relevant information. In MID, the numbering of the dimensions comes from the

order in which the algorithms finds them, which is related to how much information

the dimensions explain. The PCA average dimensions are ordered based on how

well represented each vector is in the subspaces to be averaged.

To find the maximally informative basis of the subspace, we can resort to a

brute force approach. Unlike with MID which must search a D-dimensional space,

the reduced subspace is only K-dimensional. By generating a large number of ran-

dom directions uniformly distributed on the unit K-sphere, we can find the MID

basis by first calculating the information along the random dimensions, selecting

the most informative dimension, and repeating this procedure by calculating the

information between the selected dimensions and each additional random dimen-

sion.



Appendix D

Experimental details

This section contains detailed descriptions of physiological experiments an-

alyzed in this dissertation. I have put these details in a separate chapter in the

appendix to allow the analysis of the experiments to only need to discuss the de-

tails relevant to the conclusions and to avoid repetition of details of experiments

analyzed with multiple methods.

D.1 Recordings of V1 neurons

The recordings of the responses of neurons in the primary visual cortex (V1)

were collected as part of a previous study (Sharpee et al., 2006). The recordings are

from four anesthetized cats stimulated with grating, white noise, natural movie,

and repeated neural movie stimuli. These recordings were analyzed using MID,

SMID, and ePPR in Chapter 2 and IMID in Chapter 5.

All recordings were conducted under protocols approved by the University

of California, San Francisco Committee on Animal Research.

The response of the cells to grating stimuli determined whether we classified

the cells as simple or complex (Skottun et al., 1991). The criterion for whether a

cell is simple or complex is whether the ratio of the amplitude of the response at

the grating frequency (F1) to the average response (F0) was greater than or less

than 1, respectively. The intuition behind this metric is that simple, which Hubel

and Wiesel defined as cells performing linear computations (Hubel and Wiesel,
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Figure D.1: Number of spikes for V1 neurons with repeated stimuli.
Set of 47 neurons from V1 that includes 32 simple and 15 complex cells. For the
training and cross-validation data (left), the number of spikes ranged from 337 to
17514 with a median of 3210. For the repeated test data (right), the number of
spikes ranged from 210 to 11766 with a median of 2203.
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Figure D.2: Number of spikes for complex V1 neurons. Set of 53 complex
cells, including the 15 neurons from Fig. D.1 analyzed by IMID. For the training
and cross-validation data (left), the number of spikes ranged from 204 to 28574
with a median of 1953. For the repeated test data (right), the number of spikes
ranged from 77 to 11885 with a median of 1015.



91

8 17
Training duration (min.)

40

20

0

N
um

be
r o

f n
eu

ro
ns

40

20

0

N
um

be
r o

f n
eu

ro
ns

9.2 18.3 27.5
Test duration (min.)

25 504133

Figure D.3: Distribution of stimulus durations for V1 neurons. The range
of stimulus durations of the training and cross-validation set (left) was 16.5 to 49.6
minutes with a median of 24.8. This is 2 to 6 presentations movies from the set
of three natural movies. The durations for the test set (right) ranged from 9.2 to
27.5 minutes with a median of 18.3 minutes.

1962), will respond with the phase of the grating and will therefore have a large

F1 component. All other cells are complex.

Spike trains were recorded using tetrode electrodes and sorted offline. Some

recordings included multiple neurons, but we did not use this for any of the analysis

presented here.

We used two sets of neurons for our analyses. The first was a set of 47

neurons which included 32 simple and 15 complex cells. These neurons were chosen

for some reason along as well as having recorded responses to repeated stimuli

which we could use to estimate the average information transmitted per spike

for each neuron. The distribution of spikes and stimulus durations are shown in

Fig. D.1 and Fig. D.3. The second set included all 53 complex cells from the

experiment that had recordings using a repeated stimulus. The distribution of

spikes and stimulus durations are shown in Fig. D.2 and Fig. D.4.

The natural movie stimuli were three recordings of a walk in a wooded area

using a hand-held video camera. Each movie was 16, 384 frames with a frame rate
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Figure D.4: Distribution of stimulus durations of complex cell dataset.
The stimulus durations of the training and cross-validation data of the set of
complex cells (left) ranged from 8.3 to 41.4 minutes with a median of 24.8 minutes.
For the test data (right), the durations ranged from 9.2 minutes to 27.5 minutes.

of 33 Hz. The duration of each move was slightly over 8 minutes and 16 seconds.

Some cells do not have recordings for all three movies because their fixation was

lost. Other cells had recordings for more than one presentation of one or more of

the movies because they were held for long enough.

The repeated movie stimulus consisted of 55 repetitions of 330 frames (10

seconds) from one of the natural movies. The purpose of this stimulus is to allow us

to estimate the empirical information per spikes, as described in Appendix E. As

with the natural movies, some cells have recordings for more than one presentation

of this stimulus.

We did not use the white noise stimulus for any of the analysis presented

here.

All stimuli were presented at a 128× 128 pixel resolutions with an angular

resolution of 0.12◦ per pixel.
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Figure D.5: Number of spikes for V4 data. Total number of spikes recorded
from 161 V4 neurons in response to an unrepeated training stimulus (left) and
repeated test stimulus (right). The median number of spikes was 7491 for the
training data and 2318 for the test data.

D.2 Recordings of macaque V4 neurons

The recordings of neurons from macaque visual area V4 stimulated by nat-

ural movies were collected as part of a previous study (Sharpee et al., 2013). The

data was collected from two awake, fixating monkeys that were rewarded with

juice. During the experiment, the monkey fixated on a target while a 14◦ × 14◦

movie clip played over the previously estimated center of the neuron’s receptive

field. Neural responses were recorded extracellularly using a tungsten microelec-

trode. On trials where the monkey broke fixation, responses recorded after that

point were not used for our analysis.

The movie stimuli consisted of 574 111-frame clips extracted from the

movies from Sec. D.1. The frames were presented at 30 Hz, so duration of each

clip was 3.7 s.

The movie clips were divided into two groups: One group was played a small

number of times in order to maximize the diversity of stimuli and was used to train

and cross-validate our models. The second group consisted of three movie clips
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Figure D.6: Duration of stimuli for V4 data. Total duration of unrepeated
data used for training and cross-validation (left) and repeated data used for testing
(right) for 161 V4 neurons used for our analysis in Chap. 5. The median duration
was 17.5 min. for training and 4.6 min. for testing.

that were repeated many times to allow us to measure the response variability and

was used to test the performance of our models. Fig. D.2 shows the distribution

of the amount of data available. The unrepeated data used for training and cross-

validation ranged from 1.1 to 60.9 min. with a median of 17.5 min. The repeated

data used for testing ranged from 0.2 to 16.2 min. with a median of 4.6 min.



Appendix E

Information extrapolation

In the presence of finite data, the mutual information (Eq. 2.3) will have a

positive bias. Because a neuron’s response is stochastic and we can only measure

a finite number of samples, there will noise in the number of observations in each

bin of the histogram probability distribution. If n(~x) is the expected number of

observations in the bin at ~x, the noise due to counting only a finite number of

samples is
√
n(~x), or 1/

√
n(~x) as a fraction of the observed count. Increasing the

number of observations will reduce but not eliminate the relative size of this error.

These errors will introduce errors in the calculation of the information. If

the errors shift the observed firing across the stimuli toward the mean firing rate,

this will reduce the estimate of the information explained. On the other hand if the

errors shift the stimulus-dependent firing rate away from the mean, the estimate

of the information explained will increase. This latter case is especially worrisome

for the case where the reduced dimensions do not carry any true information about

the response. In this case, the expected firing rate will be the mean firing rate for

all stimuli, and any errors in the estimates of stimulus or response probabilities

will necessarily shift the estimated response away from the mean. This results in

non-informative models describing a non-zero amount of information.

To account for this error we can take advantage of the dependence of the size

of the counting errors on the number of observations. Strong et al. (1998) found

that the error in the information measurement is proportional to 1/N , where N is

the number of stimuli. By calculating the information for subsets of the stimulus
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of different sizes, we can fit the information and the inverse of the subset size using

linear regression to extrapolate to infinite data.



Appendix F

Eigenvector significance

Quadratic methods such as STC (Sec. 1.3), QMID (Chap. 4), QMNE

(Sec. 4.1), and ILS (Chap. 5) determine the relevant stimulus subspace by se-

lecting the eigenvectors whose eigenvalues are significantly larger than one would

expect from noise. An unsettled question is how to determine what is significant.

In our analysis, we followed the lead of Schwartz et al. (2006) by performing

a nested analysis. First, we create a set of random J matrices by shuffling the

diagonal and off-diagonal elements. We chose to shuffle rather than select values

from a Gaussian distribution with the observed mean and variance in order to

preserve any non-Gaussian structure in the distribution of elements. For each

shuffled matrix, we recorded the largest positive and negative eigenvalue. We

estimated the probability that the largest eigenvalue would appear by chance on

how many shuffled matrices had larger eigenvalues of the corresponding sign. If the

probability was less than 0.05, we counted the eigenvector as significant. We then

removed the eigenvector from J and repeated the process with the reduced matrix.

When considering whether the next eigenvalue was significant, we combined its

probability with the previous probability using an OR function:

pi+1 = 1− (1− p) (1− pi) , (F.1)

where pi is the probability that the largest i eigenvectors are significant and p is

the probability that an eigenvalue as large as the current one would come from a

shuffled matrix.
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Appendix G

Finding Gabor wavelet

representations

Quadratic methods — including as STC (Sec. 1.3), QMID (Chap. 4), QMNE

(Sec. 4.1), and ILS (Chap. 5) — have the ability to identify stimulus subspaces

of arbitrary and unspecified dimensionality limited only by the statistical require-

ments of the method and the amount of data available. One major limitation

of these methods is that the relevant subspace is described by a set of significant

eigenvectors that are orthogonal as a result of the symmetric nature covariance ma-

trix or quadratic filter J . While any basis that spans the same space is equivalent,

some bases may be easier to interpret.

Fig. G shows an example of this problem. The model involves two excitatory

quadrature pairs of Gabor wavelets offset in space and orientation that combine to

form a curve along with an inhibitory pair orthogonal to the center of the curve.

When these features are combined into a quadratic filter J , the eigenvectors of J

span the same space of the stimulus, but the excitatory pairs have been replaced by

pairs of their sums and differences. The underlying Gabor structure is obscured.

To recover the original structure, we can search for a set of Gabors that

when combined into a J matrix match the observed J matrix. This is justified

in this case because the model was created using a set of Gabors, but this is

also plausible for neurons in the visual system because Gabor wavelets are a rough

description of simple cells in V1 while quadrature pairs of Gabors describe complex
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Model Gabor features

Model eigenvectors
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Figure G.1: Orthogonal representation of Gabor wavelets. (A) Three
quadrature pairs of Gabor wavelets of the model cell used in Chap. 5. (B) Eigen-
vectors of the matrix formed by the outer products of the Gabors. While the
eigenvectors span the same space as the features in A, the underlying structure of
pairs of Gabors is obscured.

cells.

To find a Gabor basis, we want to minimize

D∑
i=1

D∑
j=1

(Ji,j − JGi,j)
2 (G.1)

where JG is the outer products of Gabor wavelets defined by

G(~x|A, ~x0, θ, σ, γ, λ, φ) = Ae−
(x′21 +γ2x′22 )

2σ2 cos

(
2π

λ
x′1 + φ

)
(G.2)

where (
x′1

x′2

)
= (~x− ~x0)

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
. (G.3)

We considered both sets of individual Gabors and sets of quadrature pairs of

Gabors. In the case of Gabor pairs, all parameters are the same except for the

phase, which is defined by φ2 = φ1 + π
2
. We broke J into J+ and J−, which are

composed of the significant positive and negative eigenvectors and eigenvalues, and

fit the Gabors to each matrix separately.

Because Eq. G.1 is non-convex, we ran the optimization multiple times
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Figure G.2: Recovering original Gabors. (A) Pairs of Gabors that best
match J projected onto the eigenvectors shown in Fig. GB. (B) Same as A except
that the phases have been chosen to match those of the model. (C) The original
Gabor features for comparison. The mean dot product between the corresponding
vectors in B and C is 0.999988± 0.000003.

starting with the parameters roughly fit to a random linear combination of the

orthogonal dimensions.

G.1 Gabor fitting example

To demonstrate the effectiveness of this technique, we applied it to the

example shown in Fig. G. We fit J+ with two pairs of Gabors and J− with one

pair. Fig. G.1A shows the best fit projected onto the orthogonal dimensions of

Fig. GB. The fit captures the position, orientation, spatial frequency, and spatial

extent of the model Gabor features, but the phases are different. This is because

the creation of J squares and sums the features, which eliminates information

about the phase from J . Because the phase is arbitrary, we can choose the phase
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Figure G.3: Fitting Gabor pairs to random matrix. (A) The largest four
excitatory and two inhibitory eigenvectors of a random symmetric matrix. (B)
The set of Gabor pairs that best fits the J matrix. (C) The projection of the
Gabors onto the six eigenvectors from A.

that best fits the model in order to better compare the two. Fig. G.1B and C show

the phase-matched Gabor fit and the original model. They are almost identical

with a dot product of 0.999988± 0.000003 (mean ± sem).

G.2 Fitting noise

One might wonder whether the ability of this method to find Gabor-like

linear transformations regardless of whether they exist in the creation of the J

matrix. This will not happen because only have a limited number of dimensions

to fit a much higher dimensional space.

Fig. G.2 shows the results of trying to fit a randomly generated J matrix.

We generated J by creating a matrix with normally distributed values (mean 0

and variance 1) and setting the mean of that matrix and its transpose as J . We
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Figure G.4: Quality of fit with noise. Mean dot product between phase-
matched Gabor fit and model (red) and overlap between Gabor fit and model
(blue). The algorithm perfectly recovers the underlying Gabor pairs as long as
the magnitude of the signal is at least as large as the magnitude of the noise.
Performance deteriorates as the signal–to–noise ratio decreases below that level.

tried to find two excitatory pairs and one inhibitory pair like in Sec. G.1. Our

algorithm finds a set of Gabor wavelets, but when they are projected onto the

four largest excitatory and two largest inhibitory eigenvectors of J , there is no

underlying Gabor structure.

G.3 Performance in the presence of noise

We next investigated how the algorithm performs in the presence of noise.

We used the J matrix from Sec. G.1 and generated a random matrix JR like in

Sec. G.2. We then fit Gabors to to the weighted sum with the signal–to–noise ratio

||J ||/||JR|| ranging from 0.01 to 10.
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Fig. G.3 shows two measures of performance. The first is the overlap

(App. B)between the Gabor fit and the model features. For the second, we followed

the matching procedure from Sec. G.1 and took the mean of the normalized dot

products between the model and fit features. The algorithm does very well (≥ 0.98

for both measures) as long as the signal–to–noise ratio is at least 1 and continues

to capture part of the model even when the strength of the noise is greater than

the signal.
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