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ABSTRACT 

 

Novel Circuits and Systems with Analog-Grade Memories  

by 

 

M. Reza Mahmoodi 

The neural computation field had finally delivered on its promises in 2013 when the 

University of Toronto group reported a deep neural network that outperformed other machine 

learning approaches in image classification accuracy. That breakthrough was not due to 

algorithmic advances but rather the availability of high-performance graphical processors that 

enabled large-scale neural network modeling. Since then, the biologically-inspired neural 

network algorithms have become state-of-the-art approaches in many artificial intelligence 

tasks, and the future progress in this field hinges on even more powerful hardware.  Such 

hardware, however, is unlikely to be implemented with the conventional digital circuit 

technology, whose performance seems to be saturating due to the faltering Moore’s law.  

On the other hand, further opportunities are presented by neuromorphic hardware that 

mimics critical features of biological neural networks, most importantly analog in-memory 

computing, in an attempt to match their energy-efficiency. Most importantly, neuromorphic 

hardware takes advantage of the physical-level analog implementation of vector-by-matrix 

multiplication (VMM), which is the most frequent operation in any neural network. The key 

component of such a circuit is a nanodevice with adjustable conductance —essentially an 

analog nonvolatile memory—used at each crosspoint of a crossbar array and mimicking the 

biological synapse. Prior work showed that analog VMM circuits based on redesigned eFlash 
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memories and metal-oxide memristors, the most promising analog memory device 

technologies for neuromorphic computing, are much more energy-efficient as compared to 

the digital counterpart implemented in similar process node and performing a similar function.  

The main goal of this dissertation is to advance neuromorphic circuits based on memristors 

and eFlash memories on several fronts. The first part of the thesis is devoted to improving 

functional and physical performance of analog-domain vector-by-matrix multiplication with 

a specific focus on neuromorphic inference applications, including the development of novel 

programming algorithms, mitigation approaches for various device and circuit non-idealities, 

and design of efficient peripheral circuits. For example, we use novel programming algorithms 

to experimentally demonstrate  <4% relative tuning error in a 64x64 passively integrated 

crossbar circuit despite significant variations, with 25% normalized standard deviation in 

device I-V characteristics. The developed post-fabrication methods for mitigating IR drops, I-

V static nonlinearity, and device variations enable software-equivalent accuracy for the large-

scale neural networks for the studied memristor technology. The efficacy of novel peripheral 

circuits is verified via SPICE modeling, which shows, e.g., POp/J-scale energy-efficiency for 

current-mode 55-nm NOR-flash memory circuits. The section is concluded with the 

discussion of our ongoing work on the design and fabrication of several large-scale 

neuromorphic chips. 

The second part of this thesis extends the work on analog VMM circuits to enable the 

implementation of more advanced probabilistic neuromorphic hardware, which is especially 

effective in solving combinatorial optimization problems. By operating the previously 

developed analog VMM circuit in a lower signal-to-noise-ratio regime, we achieve stochastic 

VMM functionality and utilize such circuits to prototype small-scale restricted Boltzmann 
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machine and Hopfield neural network with runtime-controlled effective temperature. 

Furthermore, we suggest several novel hardware-friendly annealing approaches and 

successfully verify them by solving experimentally typical combinatorial optimization 

problems.  

The last part of this dissertation is devoted to hardware security primitives, such as 

physically unclonable functions and true random number generators. At the core of our idea 

are analog circuits based on metal-oxide memristors and eFlash memories, which are very 

similar to analog VMMs developed for neuromorphic computing. The main difference is that 

memory device non-idealities, e.g., randomness in tuning and memory I-V variations, are 

utilized as a rich source of static entropy, which is essential for implementing hardware 

security primitives. We developed three architectures - RX-PUF and VR-PUF that avoid the 

need for conductance tuning procedure in previously proposed memristor-based PUFs, and 

ChipSecure, which exploits variations in leakage current, subthreshold slope, nonlinearity, 

and stochastic tuning error in eFlash memory arrays to create a unique digital fingerprint. The 

key novelties of the proposed designs include enormous challenge-response pairs to enable 

strong PUF properties and a low-overhead key-booking scheme to dramatically improve the 

PUF reliability across a wide temperature range of operation. The analysis of the measured 

data in all our PUF demonstrations shows strong resilience against machine learning attacks. 
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1. Introduction 

1.1. Motivation 

The field of neural computation has had its highs and lows in the last three decades. Still, 

the huge milestone happened only recently: high-performance graphical processors and the 

availability of massive labeled datasets enabled the development of deep neural networks 

(DNNs) that exhibit superior performance in various pattern recognition tasks [1]. The 

progress is still ongoing: breakthroughs in algorithms are fueled by increasingly powerful 

hardware accelerators, processors, and aggressively scaled custom digital circuits. 

Unsurprisingly, further progress hinges on the use of more efficient hardware as well. 

Biological systems have played an undeniable role in this progress and have served as a 

massive inspiration for building intelligent systems. Yet, even advanced digital neural 

networks fail to compete with them in terms of performance. The human brain outperforms 

artificial systems in many tasks, e.g., it can recognize an intricate object in an image faster 

while consuming orders of magnitude less energy [2]. The main reason stems from the fact 

that using digital operations to mimic noisy redundant biological systems is inherently natural. 

In other words, this efficiency gap originates from the use of elementary physical phenomena 

as computational primitives and the analog representation of information in biosystems [3]—

the observation that initiated the field of neuromorphic engineering [4]. 

A tremendous body of research predicts analog neuromorphic networks could bridge the 

gap between artificial and biological prototypes [5-7] and offer comparable areal density to 

biological prototypes at a better processing time. The background for this improvement is the 

physical level implementation of the vector-by-matrix multiplication (VMM), the frequent 
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operation in neuromorphic networks, and the efficient realization of an analog synapse 

capable of both holding a learnable parameter (or weight) and performing useful 

computations.  

One key challenge in achieving the promised excellent performance is developing a 

technology that offers reliable analog-grade programmability and can be easily integrated with 

CMOS. In general, a promising synaptic device should offer several primary features: 1) long-

term retention, that is, the device should hold the stored information for a reasonable time 

period, 2) high endurance, that is, the device should be reprogrammable for a reasonable 

amount of time, 3) analog-storage, that is, the device should be able to store the parameters 

with reasonable accuracy, 4)  low-power operation, that is, the energy consumption needed to 

access and perform the computation on the device should be reasonably low, 5) compact 

footprint, that is, the device should be scalable and dense to ensure a large number of synapses 

can be integrated within a single chip with minimum parasitics and high-speed access time.   

In every neuromorphic network, there are many infrequent operations that standalone 

synaptic devices cannot implement, and in some cases, they are very inefficient to do so. 

Fortunately, the mature CMOS technology is extremely flexible and can efficiently implement 

various functionalities. The second challenge is designing efficient peripheral circuits in 

CMOS technology that perform and implement less frequent and sparser functionalities of 

these systems. 

Besides accelerating deep neural networks, addressing these challenges would be a 

significant milestone in implementing other neuromorphic tasks, such as Boltzmann machines 

[8], spiking neural networks [9,10], Hopfield neural networks [9,11,12], reinforcement 

learning [13], etc., all of which have been proven to be very efficient when implemented with 
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analog-grade nonvolatile memories (NVMs). Further, integrated circuits based on analog 

memories are promising for designing very efficient security primitives such as physically 

unclonable functions [13] and random number generators [15], as they offer extra sources of 

randomness and functionalities in far better densities than purely-CMOS circuits.  

The recent development of continuous-state nonvolatile memory synapses is perhaps a 

milestone that paves the way for efficiently building these systems [16]. The most notable 

device candidates that excel in primary features are metal-oxide passive memristors [17] and 

redesigned eFlash memories. In this Ph.D. thesis, we focus on developing these technologies 

and harnessing them for designing novel circuits and systems targeting neuromorphic 

applications and hardware security. Our study spans different design levels, from developing 

nonvolatile memory technologies, addressing their reliability issues, studying their scaling 

prospects, to designing energy-efficient and high-speed peripheral circuits and using them for 

building large-scale integrated neuromorphic networks and hardware security primitives.  

The remainder of this chapter focuses on background works. Chapter 2 reviews various 

devices and topologies for building the basic building block of neuromorphic computing 

systems, i.e., VMMs. Then, we report our results on the successful fabrication of large-scale 

passively-integrated memristive crossbars. The study is followed by an in-depth analysis of 

the role of uniformity, IR drop, and nonlinearity in 0T1R (transistorless) memristive circuits. 

Then, we propose two circuit techniques for developing a low-power peripheral circuit, 

leading to a high-speed and energy-efficient current-mode VMM design. Finally, we 

introduce three large-scale integrated inference engines: a 6-layer convolutional neural 

network and a 3-layer multilayer perceptron (MLP) based on eFlash memories in 55 nm 
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CMOS, and a massive general-purpose accelerator engine based on 1T1R (1 transistor + 1 

resistor) memories. 

Chapter 3 is devoted to neuromorphic computing systems and circuits, in which we show 

the efficient design of restricted Boltzmann machines, Hopfield neural networks, and various 

annealing techniques for solving combinatorial optimization problems. Finally, in chapter 4, 

we discuss multiple successful demonstrations of strong physical unclonable function circuits 

and hardware security primitives based on resistive memories and redesigned eFlash arrays.  

1.2. Background and Significance 

1.2.1. Devices  

The principles of analog computing date back to half a century ago [3,18,19]. Up until 

recently, such devices were implemented mostly as “synaptic transistors” [7], fabricated in 

some double-poly CMOS technologies. Several sophisticated analog computing systems were 

proposed using these devices [20]. However, these devices have relatively large areas, leading 

to sparse implementation and large interconnect parasitics. An efficient realization of analog 

computing is enabled only recently, with the emergence of novel analog-grade nonvolatile 

memories that implement VMM operation using the fundamental Ohm and Kirchhoff laws. 

Among different candidates [21], the resistive switching memories, including phase change 

[22], conductive bridge memories [23], and metal-oxide memristors [24,25], are promising 

candidates. These synaptic devices are implemented in 0T1R  [24] and 1T1R [25] topologies. 

In comparison with 1T1R, the fabrication and upscaling of 0T1R arrays are more challenging, 

in part due to the large uniformity requirements in 0T1R arrays, which explains few 

experimental demonstrations of these circuits. In a uniform 0T1R technology, the devices 
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have a tight distribution of switching thresholds, which leads to minimum half-select 

disturbance in the crossbar, facilitating individual tuning of the devices. In 1T1R technology, 

this requirement is waived due to the presence of the selector in each memory cell. However, 

this comes at the cost of dramatic density reduction. In addition, the 0T1R technology offers 

3-dimensional integration [26], which is not feasible in 1T1R memories. 

The high prospective integration density of passive memristive crossbar circuits, enabled 

by both aggressive lateral feature scaling and vertical monolithic integration, would be 

essential for hardware implementations of large neural network models, such as those used 

for the end-to-end automatic speech recognition, natural language translation, and text 

summarization, on a single chip without having to perform very energy-taxing and slow data 

transfer with the off-chip memory. For example, the largest multilingual neural model for 

automatic translation among seven common languages contains 640 million parameters [27]. 

The functional performance of the transformer networks, the state-of-the-art models for text 

summarization, dramatically improves with the scale of the network, e.g., almost linearly 

improving when increasing the number of parameters in GPT-2 model from few hundreds to 

ten billion [28].  Furthermore, mixture-of-expert networks with up to 137 billion parameters 

have been recently suggested to improve the functional performance of language modeling 

[29].  

Storing that many parameters on-chip could hardly be accommodated with planar 

embedded memory technologies. Earlier work showed that memory devices in the general-

purpose neuromorphic computing chips could occupy up to 25% of the total area, with the 

remaining area devoted to memory array peripheral circuits and other functions [16]. The 

memory efficiency would be naturally higher, and hence memory density is more important 
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in more-specialized circuits, e.g., large-scale models that do not rely on weight sharing. In 

fact, our crude estimates show that even with largely suboptimal (higher) cell currents, 

memory efficiency is above 10% for neuromorphic inference accelerators with 100M+ 

weights. At the same time, though the complexity of the mentioned above large-scale neural 

networks might reduce with further improvements in algorithms, it is clear that extremely 

large models will still be useful. This can be indirectly evidenced by the complexity of the 

human brain, which, with its ~1015 synapses, can serve as a proxy for the complexity of the 

future highly cognitive neuromorphic systems [30].  

While the most promising synaptic device option for realizing neuromorphic systems are 

analog-grade (i.e., multi-bit) devices, low-precision (e.g., binary weight) neural network 

models have also received significant attention [31,32,33]. However, it seems that 

understanding and dealing with the impact of reduced weight and computing precisions is still 

a very active area of research. For example, though little or no loss in accuracy can be achieved 

when using binary weights for some of the earlier (very redundant) deep convolutional 

networks, such as AlexNet or VGG, 4 to 8 bits of precision for both weights and activations 

might be necessary for the most advanced image classifiers [34]. A related observation is that 

the accuracy loss can often be recovered by increasing the network depth or width [35,36], 

which, however, naturally results in decreased physical performance. Therefore, the prospects 

for lowering precision in the neural network, which might enable using simpler binary 

resistive random access memory (ReRAM) devices, can only be understood by considering 

both functional and physical performances at the system level [37].  

The main advantages of using passively integrated metal-oxide memristors [24,26,38] are 

their superior density and lower fabrication cost [29]. In fact, due to excellent scaling 
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prospects and analog properties, vertically integrated ReRAMs might challenge much slower 

3D NAND memories in effective density to enable human-brain-scale integrated electronics. 

The progress in developing passive ReRAM technology is still ongoing, and the technology 

is still in need of improvement.  

Another perfect candidate is commercially available eFlash memory technology from 

Silicon Storage Technology (SST) Inc. This technology has been successfully scaled down to 

28 nm and is embedded in many standard CMOS foundries and processes [39]. However, the 

baseline floating-gate technology is designed for digital NOR flash memory applications and 

does not allow setting a precise analog state of each cell, necessary for analog applications. 

Recent work from our group has shown that redesigning the routings in the cells mitigates the 

half-select disturbance in these arrays and allows their high-precision tuning [40,41]. Such 

redesigning has increased the cell area by ~×3 but has enabled analog tuning capability in the 

devices. The main advantage of this technology is their mature, CMOS-compatible fabrication 

technology and their high-precision capability, which is offered in a density of only ~100 

F2/cell.  

 Chapter 2 studies and qualitatively compares various topologies and device candidates 

for implementing dot-product operation in the mixed-signal domain. Then, we demonstrate a 

64×64 passive crossbar circuit with ~ 99% functional nonvolatile metal-oxide memristors 

featuring etch-down patterning and low-temperature budget (hence conducive to vertical 

monolithic integration) based on a foundry-compatible fabrication process. Most importantly, 

the achieved device uniformity, < 26% coefficient of variance in memristor switching 

voltages, is sufficient for programming a 4K-pixel gray-scale pattern with a smaller than 4% 

relative tuning error on average. Chapter 2 also reports the results of an in-depth analysis of 
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uniformity in passive memristive circuits and investigates how it impacts the computing 

accuracy of analog memristive circuits.   

1.2.2. Circuits and Systems 

a) Neurooptimization and Annealing Hardware 

The enormous computational power required to solve large-scale optimization problems 

poses a great challenge for their efficient implementation. Hence, hardware accelerators, e.g., 

based on superconductors [45], CMOS circuits [46], nanomagnetic devices [47], and photonic 

technologies [48]. These circuits employ annealing techniques such as CMOS annealing [46], 

quantum [45], stochastic [49], and chaotic annealing [50] to boost performance.  

The stochastic dot-product computation is the most common operation performed during 

inference and training in the Boltzmann machine and simulated annealing. Hence, its efficient 

hardware realization is of utmost importance. Even with a relatively large synapse to neuron 

ratio (~1,000) and deterministic dot-product functionality, the neuron circuitry might 

constitute a substantial part of the neuromorphic inference systems. Because of such concerns, 

purely CMOS implementations, see, e.g., CMOS probabilistic gates [51] and CMOS-based 

Ising chip for combinatorial optimization problems [46], may not be very practicable. CMOS 

annealing may require a random number generator, reports low area efficiency (1.225 

µm2/4spins in 40 nm), and has many constraints (e.g., weights must be binary). Quantum 

computing systems, on the other hand, are yet to be explored more, e.g., to achieve scalability, 

overcome the challenges of operation at room temperature and at the presence of 

environmental noise.   

Recent progress in developing analog-grade NVMs has created exciting opportunities for 

the experimental realization of Hopfield networks and annealing machines.  
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This, in part, stems from the fact that the implementation overhead of stochastic functionality 

might be less of a problem for some memory devices, in which switching between memory 

states is inherently stochastic. Ferromagnetic [52,53], phase-change [54,55], ionic [56,57] and 

thermally-driven metal-oxide [12], and solid-state electrolyte devices [58,59] are the recent 

proposed candidates to implement stochastic functionality. Ref. [60] uses discrete Pt/TiO2-x/Pt 

memristive devices to implement a small-scale 4-bit data converter with the Hopfield model. 

Ref. [61] implements a 3-bit associative memory using digital HfO2 memristors. In Ref. 12, 

simulation results demonstrate the effectiveness of using the inherent chaos in sub-100 nm 

NbO2 memristors to implement simulated annealing within Hopfield networks. Ref. [8] shows 

an 18-node restricted Boltzmann machine (generalized Hopfield network) and a 4-node graph 

partitioning problem based on a versatile stochastic dot-product engine using TiO2 memristive 

crossbars. Ref. [62] uses Y-flash memories to implement a 3-bit associative memory.  

Unfortunately, many of such devices come with other severe challenges. For instance, an 

efficient implementation of large-scale dot-product computation is a major challenge for 

magnetic devices. The hybrid option of combining magnetic stochastic neurons with the 

already mentioned mixed-signal dot-products is not appealing because the interface typically 

compromises an extreme energy efficiency of spin-based computing with charge-based 

devices. The technology of magnetic devices is also relatively immature, judging by very few 

(and rather low-complexity) experimental demonstrations [60,61]. The biggest challenge for 

the remaining devices would be low switching endurance and cycle-to-cycle and device-to-

device variations in switching characteristics. 

Chapter 3 discusses our approach for addressing these limitations through novel circuits 

and algorithms for implementing restricted Boltzmann machine (RBM) and Hopfield 
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networks.  We experimentally demonstrate hardware implementation of a 10×12 RBM, 

simulated annealing, chaotic annealing, and novel weight annealing, using crossbars of analog 

NVMs.  

b) MLP and Deep Neural Network Accelerators 

The vast majority of the proposed neuromorphic accelerators from industry and academia 

are digital [63-65]—see also extensive review in Ref. [66]. The most natural approaches, 

however, are based on analog and mixed-signal circuits. The majority of accelerators based 

on analog memories have been theoretical (for a list of these architectures and their pros and 

cons, see the supplementary information in our recent work [67]). Several works also utilize 

binary ReRAM for building neural network accelerators. Ref. [68] uses a 1 Mb 1T1R array in 

a 65 nm process to perform the binary dot-product operation in <16 ns. Panasonic [69] also 

developed a 2 Mb 1T1R ReRAM array for implementing a huge MLP, which surprisingly 

achieves only ~94% on MNIST.  

Few works also use the more interesting analog resistive memories.  The first perceptron 

was implemented based on a very uniform  12×12  0T1R crossbar array to classify 3×3 binary 

images [24]. The second generation of UCSB’s crossbars were 20×20, which were used to 

implement an MLP network [17]. Ref. [25] demonstrates in-situ training techniques of 

perceptron networks based on very sparse 128×64 1T1R arrays. The largest ReRAM-based 

demo is presented in [69], which includes board-level integration of 8 128×16 100 µm2 1T1R 

devices, and is used for the implementation of a convolutional neural network.  

A milestone in the field of neural computation also happened recently, when an MLP 

image classifier with <1 µs inference time and <20 nJ inference energy was demonstrated 

using redesigned 180 nm embedded eFlash memories [70]. This chip offers 106 better energy-
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delay in comparison with IBM’s TrueNorth [71]. More importantly, the results have been 

reproducible, reliable, and temperature insensitive.  

Section 2.7 discusses the design and fabrication of two large-scale eFlash-based 

neuromorphic networks based on 55 nm eFlash memories and a general-purpose 

neuromorphic network fabricated in 65 nm CMOS, including >25×106 analog 1T1R devices.   

c) Hardware Security Primitives 

Physical unclonable functions (PUFs) are crypto primitives that leverage the intrinsic 

(nanoscopic physical) variations of a system to generate unclonable secrets. Hence, PUF 

circuits generate a unique response even if they are similar by design and layout. They are 

typically classified as weak and strong based on security performance [72,73].  The former is 

used to generate and store secret keys and feature a relatively small access-restricted CRP 

space. For a weak PUF, a complete mapping function can be deduced by observing a limited 

number of CRPs. Strong PUFs, on the other hand, are used for authentication applications, 

and a complex mapping behavior is constructed by incorporating many nonlinear random 

components. Strong PUFs have a large CRP space and are unpredictable and resilient toward 

modeling attacks.   

When it comes to designing PUFs, NVMs offer various advantages over conventional 

CMOS devices, not just due to their superior scalability prospects but because of 

reconfigurability and low-cost local computing capability. Besides, stochastic switching in 

NVMs is a rich entropy source. Such properties have been recently leveraged in building novel 

promising security primitive circuits. Reconfigurability could be useful when the end-user 

needs a new key. This is when the original one has been revealed, or the ownership is revoked 

or updated. Analog-grade NVMs offer potentially better security prospects considering local 
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computing capabilities such as nonlinear characteristics and multi-bit storage capacities. On 

the other hand, retaining the stored information during power shut down, NVMs may pose 

additional challenges to data protection [74]. In Ref. [73], we have reviewed experimental 

demonstrations of NVM-based security primitives. Let us mention few seminal papers in this 

area.  

The security primitive proposed in [75] is the first demonstration that takes advantage of 

variations in the nonlinear I-V characteristics of passive memristors for building PUF. This 

feature is enabled by the capability of analog tuning of device conductance to maximize the 

security of the PUF. A CMOS-compatible 3D stack of monolithically integrated 10×10 TiO2 

memristors was used as a proof of concept to demonstrate this potential of memristors in 

cryptography. This work has been extended in [76] and introduced as RX-PUF (Resistive-

XOR PUF). In the configuration phase, the 20×20 crossbar array with passively integrated 

250 nm half-pitch devices has been programmed using a Gaussian distribution of 

conductances. It is showed that the devices in the tails of the distribution could weakly bias 

the responses, and a simple circuit technique is proposed to tackle this issue. The preliminary 

results showed high resiliency against machine learning attacks.  

X-point PUF [77] is another design that begins with resetting all devices in a cross and 

then applying a single pulse to all the devices to program them to random states. The resultant 

conductance distribution is widely distributed between 10-10 to 10-5 S. Hence, the highly 

conductive devices, even if not unselected, would bias and determine the responses. X-point 

PUF achieves ~46% average Hamming distance on a 12×12 and has demonstrated good aging 

characteristics. Note that when the response is determined by a few devices, the responses 

remain unchanged as long as they retain their states.  
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Chapter 4 discusses our findings and experimental results of designing security primitives 

with NVMs. We show how the analog tuning and nonlinear conductance variations of 

memristors can be used to build a fundamental building block for implementing physically 

unclonable functions that are resilient, dense, fast, and energy-efficient. Using two vertically 

integrated 10×10 metal-oxide memristive crossbar circuits, we experimentally demonstrate a 

security primitive that offers a near-ideal functional performance. We present a novel 

architecture, called VRPUF, and prototype it using unformed 4K-ReRAM passive crossbar 

circuits. The architecture utilizes intrinsic process variations in crossbar circuits, manifested 

as variations in device I-V nonlinearities and the leakage currents, and allows for a huge 

(~1025) number of challenge-response pairs (CRPs). The VRPUF design does not require 

forming/ programming crosspoint devices, which simplifies peripheral circuits, leading to ~ 

4× better density compared to the architectures which rely on switching the states of ReRAM 

devices. Moreover, uniform IVs of the virgin-state devices, coupled with lower conductance 

and stronger static nonlinearity, allow for ~100× improvement in power consumption and 

more robust security metrics. To boost the PUF’s robustness, we propose a key-booking 

scheme, which dramatically improves reliability across a wide temperature range of operation 

and further increases PUF circuit density by reducing error-correcting overheads. Finally, 

introduce ChipSecure, a PUF architecture based on eFlash memories that exploit randomness 

in static I-V characteristics and reconfigurability of embedded flash memories to design 

efficient physically unclonable function.  
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2. Analog Computing with Memory Devices 

Analog-grade nonvolatile memories, such as those based on floating-gate transistor 

[78,79], phase-change [80-82], ferroelectric [83,84], magnetic [85], solid-state electrolyte [86-

89], organic [90,91], and metal-oxide [24,31,32,92,93] materials, are enabling components 

for mixed-signal circuits implementing vector-by-matrix multiplication, which is the most 

common operation in any artificial neural network. Most importantly, such circuits allow for 

physical-level in-memory computations in the analog domain using the fundamental Ohm and 

Kirchhoff laws, thus enabling dramatically higher energy and area efficiency in comparison 

with digital solutions.  

This chapter first studies and qualitatively compares various topologies and device 

candidates for implementing dot-product operation in the mixed-signal domain. A brief 

review of major analog synaptic device candidates, i.e., 0T1R and 1T1R memristors and 

eFlash memories, is provided, and VMM topologies such as time-based, current-mode, and 

switch capacitor multiplier are analyzed from the perspectives of precision, speed, and energy 

efficiency. 

Then, we report our results on the development of large-scale passively-integrated 

memristive crossbars. We demonstrate a 64×64 passive crossbar circuit with ~ 99% functional 

nonvolatile metal-oxide memristors featuring etch-down patterning and low-temperature 

budget (hence conducive to vertical monolithic integration) based on a foundry-compatible 

fabrication process. Most importantly, the achieved device uniformity, < 26% coefficient of 

variance in memristor switching voltages, is sufficient for programming a 4K-pixel gray-scale 

pattern with a smaller than 4% relative tuning error on average. Analog properties are also 

successfully verified via experimental demonstration of a 64×10 vector-by-matrix 



 

 15

multiplication with an average 1% relative conductance import accuracy to model the MNIST 

image classification by ex-situ trained single-layer perceptron. Finally, an advanced 

conductance tuning algorithm is proposed to reduce tuning error further, and its effectiveness 

is validated by simulating the performance of a multilayer perceptron classifier.  

The third section expands upon the role of uniformity in passive memristive circuits and 

investigates how uniformity impacts the computing accuracy of analog memristive circuits, 

focusing on neuromorphic applications. Specifically, we explore the tradeoffs between 

computing accuracy, crossbar size, switching threshold variations, and target precision. All-

embracing simulations of matrix multipliers and deep neural networks on CIFAR-10 and 

ImageNet datasets are performed to evaluate the role of uniformity on the accuracy of 

computing systems. Further, we study three post-fabrication methods that increase the 

accuracy of nonuniform 0T1R neuromorphic circuits: hardware-aware training, improved 

tuning algorithm, and switching threshold modification. The application of these techniques 

allows us to implement advanced deep neural networks with almost no accuracy drop, using 

current state-of-the-art analog 0T1R technology. Finally, we have analyzed the density 

prospects of memristive circuits and showed >5× superior density of 0T1R against 1T1R 

circuits, subjected to increase by downscaling the device properties.  

We investigate the impact of device nonlinearity and interconnect parasitics in analog 

current-mode memristive VMMs in section 2.4. We show that there is an optimal tuning 

voltage to minimize the computation error. Furthermore, error balancing and bootstrapping 

are introduced as two techniques for improving computing accuracy. It is also shown that 

when the crossbar size is scaled up, the optimum interconnect wire conductance should 

increase quadratically to preserve the computing precision when using naive error balancing 
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approach and that the differential scheme is imperative for temperature insensitive operation 

and also to reduce the IR-drop effect.  

Section 2.5 proposes an energy-efficient compact sensing circuit in a 55 nm CMOS 

process that enables a dramatic reduction of sensing circuit overhead in mixed-signal VMMs. 

Specifically, we argue that the redesigned eFlash memory technology is currently the most 

energy-efficient candidate for implementing analog synapses due to its excellent retention 

characteristics at deep subthreshold <100 nA regimes. Using this local sensing circuit, we 

develop an energy-efficient, fully current-mode analog VMM topology with digital interfaces. 

In this design, we use a current-mode algorithmic analog-to-digital converter (ADC), in which 

the analog eFlash memory is additionally used for unit current generations and offset 

compensation. Such considerations allow us to achieve POp/J energy efficiency at the VMM 

level 

The remainder of this chapter focuses on the design of large-scale integrated neuromorphic 

computing systems and their efficient-enabling analog building blocks. A network-specific 6-

layer DNN accelerator with ~1.5×106 training parameters and ~3×103 neurons is 

implemented. This network is fabricated with embedded Flash memories in 55 nm CMOS and 

could be used for performing high-speed image classification tasks, e.g., with CIFAR-10, 

CIFAR-100, and MNIST datasets. The second neuromorphic system is a 3-layer multi-layer 

perceptron suitable for the classification of 4-bit 56×56 images. Preliminary simulation results 

indicate the chip will be able to perform the MNIST classification task with ~98% accuracy 

with 100 ns/pattern and 0.25 nJ/pattern throughput and speed, far better than our previous 

work with 180 nm embedded Flash. Finally, we present the design and fabrication of a 

general-purpose DNN accelerator in 65 nm CMOS based on 1T1R memories. We discuss the 
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unique features of this design along with the innovative design of peripheral circuits and 

analog blocks which enable a compact footprint of the network, which includes ~26×106 1T1R 

cells. The chip could be used to accelerate a wide range of deep neural network inference 

models, e.g., ResNet-18. We also propose a lightweight, microampere-range constant with 

temperature (CWT) current reference generator suitable for neuromorphic accelerators. The 

circuit exploits a beta-multiplier block to generate a proportional-to-absolute temperature 

(PTAT) current. The PTAT reference is used in a block that consists of only two multi-

threshold PMOS transistors and a resistor for generating a temperature-insensitive current 

reference. We show that when a low-threshold device (LVT) is gate-coupled with a high-

threshold MOSFET (HVT), the HVT can be sized such that current variations in the LVT 

device due to the temperature fluctuations are minimized. A resistor is also added to the circuit 

to optimize the performance with respect to process variations. This simple circuit topology 

allows resiliency toward supply variations as well and leads to a very compact structure 

suitable for a distributed usage in mixed-signal neurocomputing systems. Measurement results 

from 4 samples of fabricated chips in a 65 nm CMOS process show an average temperature 

coefficient of 276 ppm/°C. The proposed circuit also achieves an average line regulation of 

1.9 %/V and consumes ~15.8 µW while occupying only 640 µm2. The last section of the 

chapter discusses the architecture of a general-purpose experimental setup suitable for the 

characterization and testing of mixed-signal neuromorphic networks.  

2.1. Introduction 

The rapidly growing range of applications of machine learning algorithms for image 

classification, speech recognition, and natural language processing has led to an urgent need 

for specialized neuromorphic hardware. There is much more demand for fast, low-precision 
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inference accelerators than for higher-precision systems for network training [94]. Despite the 

fact the vast majority of demonstrated accelerators from industry [71,95] and academia 

[65,96] belong to the category of custom digital integrated circuits, the most natural approach 

is based on analog and mixed-signal circuits [17,40,97,98]. Indeed, analog computing 

principles were developed almost four decades ago [3,7]. But, its efficient implementations 

are enabled only recently by the appearance of novel continuous-state, nonvolatile memory 

devices- the most crucial elements of analog circuits. Recent advances in analog-grade dense 

nonvolatile memories now enable extremely fast, compact, and energy-efficient analog and 

mixed-signal circuits. Such circuits are perfectly suited, in particular, for hardware 

implementations of the inference operation in advanced neuromorphic networks, which 

requires a massive amount of low-to-medium precision dot-product operations.  

Floating-gate technology (or so-called “synaptic transistors”) is one of the earliest forms 

of realizing an analog synapse, and the idea of using floating-gate transistors to implement 

programmable analog VMMs dates back to decades ago [7,99]. Such devices can be fabricated 

in standard CMOS processes, and few learning systems [78,100] have been developed based 

on them. One important downside of synaptic transistors is their relatively large areas 

(>1000F2, where F is the minimum feature size), leading to higher interconnect capacitances, 

larger dynamic energy losses, and delays in massive circuits. A dramatic change in the course 

of this technology has been made recently by redesigning the arrays of the ubiquitous NOR 

flash memories with their highly optimized cells [16,101], which have enabled superior 

density and performance. The modification of the cell writing triples the original cell size by 

×3, meanwhile allowing the cells to be fine-tuned with <1% accuracy. The density of the 

modified arrays (in 180 nm and 55 nm processes) is ~120 F2, and the technology is 
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commercially available to 28 nm. Another subtle important improvement stems from the fact 

that these cells are highly optimized in terms of retention and endurance properties. 

An ideal synaptic device offers both long-term (and repeatable) analog storage and low-

energy local computing capabilities in a dense structure. Analog-grade passively-integrated 

(0T1R) memristor is perhaps the most prospective candidate, offering excellent scalability, 

density, and analog memory functionality [24]. Memristor is a nanodevice with adjustable 

conductance G—essentially an analog nonvolatile memory cell—used at each crosspoint of a 

crossbar array, which (naturally and efficiently) implements the dot-product operation in the 

analog domain. The most appealing aspect of memristor technology is its scalability prospects. 

The conductance modulation in filamentary metal-oxide memristors is attributed to the 

reversible modulation of the concentration of oxygen vacancies. The atomic-scale of the 

vacancy position modulation implies the feasibility of downscaling memristors to sub-deca 

nanometers [24,26]. The density of a device could be as small as 4F2, bounded by the half-

pitch metal size F. Emulating these adjustable devices with purely CMOS circuits requires 

orders of magnitude larger footprint. However, further progress in fabricating large 

memristive crossbars faces few challenges. One critical challenge is the presence of large 

device-to-device variations [102]. The stochastic nature of oxide rupture in such small scales 

complicates the reproducibility of device parameters, e.g., the voltage required for 

electroforming and switching. Indeed, such variabilities are the very reason for the limited 

demonstrations of memristive neuromorphic networks so far. One solution to alleviate this 

issue is the usage of selector transistors (1T1R memories) [81,98], which is inconsistent with 

the main driving force of this technology (i.e., scalability and three-dimensional integration 

compatibility).  
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Fig. 1 shows typical mixed-signal circuits for implementing the vector-by-matrix 

multiplication (VMM), the most important operation in inference accelerators and other 

neuromorphic tasks, while Fig. 2 provides their qualitative comparison. Specifically, due to 

their superior integration density, VMMs based on passive crossbars with resistive switching 

devices (Fig. 1.I), including metal-oxide memristors, conductive-bridge, and phase-change 

memories, might be the most promising in the long term. Though the integration density of 

the floating-gate (FG) circuits (Figs. 1.II and 1.III) is comparable with that of systems using 

1T1R cells, the fabrication technology available for the latter approach is more scalable. The 

main relative advantage of the former approach is the FG cell’s amplification, that relaxes the 

requirement for the gain of sensing circuitry, and enables very compact peripheral circuits. 

Finally, the lack of tunable capacitance devices in the switch capacitor approach (Fig. 1.IV) 

typically allows only ‘near memory computing (instead of ‘in-memory computing possible 

with other candidates) and leads to inferior density and other metrics.     
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Fig. 1: Major types of mixed-signal VMM circuits: In (I), the matrix elements (‘synaptic 
weights’) are represented by continuous states of adjustable nonvolatile resistive devices (e.g., 
memristors), while the input signals are encoded with either (a) amplitudes, or (b) durations 
of voltage pulses. The top right inset shows an active (‘1T1R’) cell, which may also be used 
in circuits (a, b). In (II, III), each weight is stored in subthreshold-mode floating-gate (FG) 
cells, implemented as either (II) a current mirror pair formed by peripheral and array FG 
transistors or (III) a voltage-gated current source. In (III), both inputs and outputs are encoded 
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by the duration of pulses, generated within the corresponding time frame t, as shown at the 
bottom of panel III. In the switch capacitor approach (IV), P-bit weights are typically stored 
in binary-weighted fixed-value crosspoint capacitors, and the computation is performed by 
controlling the capacitor charge/discharge, using the switches φ1 and φ2. 

 
Fig. 2: Qualitative comparison of various VMM approaches outlined in Fig. 1: ‘+++’ - the 
best, ‘-’ – the worst. The score for precision is based on a combination of input, weight, and 
computing accuracies. The scores for density, speed, and energy efficiency (EE) reflect 
contributions from both the arrays and the peripheral circuits. Besides the maturity, all scores 
are for the expected level of each technology after it has been matured, rather than for its 
current state-of-the-art.  

2.2. Developing Large-Scale Passive Crossbars 

The superior density of passive analog-grade memristive crossbar circuits could enable 

storing extremely large neural network models directly on specialized neuromorphic chips, 

thus avoiding costly off-chip communication. However, to ensure efficient use of such circuits 

in neuromorphic systems, variations in current-voltage characteristics of crosspoint devices 

must be substantially lower than those of memory devices coupled with select transistors, 

which partly explains very limited demonstrations of neuromorphic prototypes using passive 

crossbars. Here we report a 64×64 passive crossbar circuit with ~ 99% functional nonvolatile 

metal-oxide memristors. The developed technology is based on a foundry-compatible 

fabrication process that features etch-down patterning and low-temperature budget, and hence 

conducive to vertical monolithic integration. The achieved device uniformity, most 
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importantly below 26% coefficient of variance in memristor switching voltages, is sufficient 

for programming a 4K-pixel gray-scale pattern with a smaller than 4% relative tuning error 

on average. Analog properties are also successfully verified via experimental demonstration 

of a  64×10 vector-by-matrix multiplication with an average 1% relative conductance import 

accuracy to model the MNIST image classification by ex-situ trained single-layer perceptron. 

Finally, an advanced conductance tuning algorithm is proposed to reduce tuning error further, 

and its effectiveness is validated by simulating the performance of a multilayer perceptron 

classifier. We believe that our results are a significant improvement in both complexity and 

analog properties over previously reported passive crossbar memories and an important step 

towards realizing human-brain-scale integrated neuromorphic systems. 

There has been substantial progress in the development of 1T-1R memory arrays, in which 

a memory cell based on a two-terminal resistive switching element (“1R”)  also includes one 

dedicated select transistor (“1T”), and numerous demonstrations from academia and industry 

of using such active memories in neuromorphic computing circuits. Perhaps, the most 

impressive neuromorphic functionality was reported based on nonvolatile TaO2-x devices 

integrated in 128×64 active crossbar arrays - see details of such devices in [103] and review 

of many experimental demonstrations based on such technology in [104]. The main weakness 

of that technology, however, is extremely large, of the order of 2500 µm2, size of 1T1R cell, 

and high (mS-scale) device conductance, which necessitates bulky and energy-hungry 

peripheral circuits. Additionally, the reported excellent conductance tuning results are in part 

due to the use of the select transistor in 1T1R cell, which inhibits half-select disturbance - the 

main challenge for achieving high precision tuning in passively integrated circuits. 
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The progress in the most prospective, passive analog-grade ReRAM, however, has been 

much slower, mainly because of much stricter requirements for the uniformity of memory 

cells’ I-V characteristics. For example, Xpoint memory - the most advanced commercialized 

technology using passively-integrated memory devices - operates in a digital mode. (Such 

memory is also most likely based on phase-change materials, which are less appealing for 

analog computing applications due to larger conductance drift over time.) A promising I-V 

uniformity results with very tight variations were reported for stand-alone devices based on 

organic [91] and epitaxial [87] materials. The main concern for these recently developed 

analog-grade memristors is the compatibility of the utilized fabrication flows with 

conventional semiconductor foundry processes. Ref. 105 describes 500-nm half-pitch 32×32 

circuits based on W/WOx/Pd/Au devices, which were tuned with 25% precision (estimated 

from Fig. S3d data of  [105]) to implement a sparse encoding algorithm. A similar device 

technology was recently used by the same group to demonstrate large-scale fully-integrated 

complementary metal-oxide-semiconductor (CMOS) / memristor circuits [106]. It is not clear, 

however, if the reported results in Ref. 106 were obtained based on reading conductances after 

completing the tuning process for all devices in the crossbar circuit or just a fraction of them, 

as it was performed by the same authors in Ref. 11. An even more serious and related concern 

is a lack of detailed statistics and, most importantly, data on retention because similar devices 

were shown to be volatile due to interfacial switching mechanisms, according to previous 

studies [107]. Another very recent work reported analog-grade 32×32 crossbar arrays based 

on passively integrated Si-alloy: Ag electrochemical devices [89]. Though a very impressive 

100% device yield and highly linear state update characteristics were reported, the main 

weakness of that work is also poor retention of the devices. Additional concerns are whether 
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the yield results reported for 10×10 µm2 footprint crosspoint devices will hold for nanoscale 

devices and the use of silver in the device stack, a contaminant typically avoided in CMOS 

foundry processes. Ref. 33 proposed a very promising concept for a three-dimensional 

memristive memory. Unfortunately, all presented experimental results in that paper were 

obtained for a rather unpractical structure based on microscale binary-switching devices with 

non-overlapping footprints so that the demonstrated three-dimensional integration does not 

improve the effective memristor density.  

Table I summarizes experimental work on analog-grade 1T1R and 0T1R metal-oxide 

memristor crossbars. As evident from this table, the uniformity, density, and analog properties 

of previously reported memristive crossbar circuits are not sufficient for making practical 

neuromorphic hardware, especially for running large-scale neural models.  

To address this need, our group has developed uniform CMOS-compatible fabrication 

technology for building larger, conducive for back-end-of-the-line 3D integration crossbar 

array circuits. The main contribution of this work is to mitigate the remaining challenges at 

the circuit and application levels and to show the prospects of such technology in 

neuromorphic computing applications. The developed circuits have ten times more devices 

and excellent uniformity allowing for significantly better array-scale conductance tuning 

precision as compared to the previous work [17] that reported the largest passive analog-grade 

memristive crossbar circuits with detailed characterization statistics. Moreover, the 

demonstrated artificial neural network is close in complexity to the state-of-the-art 

neuromorphic prototypes based on (> 10,000 sparser and  10× more conductive) 1T1R 

ReRAM devices [103].   

  Table. 2.1: Comparison of memristive circuits. The specific focus of the table is on the state-
of-the-art nonvolatile (filamentary) analog-grade 0T1R metal-oxide devices, while only few 
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representative works are listed for metal-oxide 1T1R and solid-state-electrolyte 0T1R circuits. 
Note that the common concern for the solid-state electrolyte type devices (rows #1 to #3) and 
interfacial switching WOx devices (rows #4 to #6) is poor state retention. 

 
0 “Crossbar size” refers to the largest-dimension fabricated integrated crossbar circuit (not necessarily fully-functional), 

while the “largest working demo” refers to the largest number of devices employed at once in the demo, i.e., without relying 
on post-processing / combining the results from separate measurements. 1 Based on the full pitch of the integrated memory 
cells. 2 Largest set voltages are used if statistical data are not reported. 3 The test conditions may be different. 4 Specified at 
0.1V for the devices with nonlinear static I-V characteristics unless noted otherwise. 5 SA = Stand-alone integrated crossbar 
circuit, RIE = reactive ion etching, BEOL = Back end of line integrated crossbar circuit on CMOS wafer containing access 
transistors, FI-BEOL = BEOL with fully integrated CMOS peripheral circuits. 6 Denser single devices are reported, though 
most experimental results are for 25 µm2 devices. 7 Data for the low-resistance state. Significant retention loss at high 
resistance levels. 8 Based on Fig. 4c. 9 From Fig. 1d. 10 40×40 conductance map is based on combining results from separate 
25 measurements of 8×8 subarrays. 11 Based on Fig. 4d. 12 Based on Fig. S3 of [105]. Not clear if the data are obtained after 
tuning all devices or measured immediately after programming each device. 13 Average range of conductance values observed 
in the crossbar. There is a significant variation between different devices.  14 Communications with the authors. 15 126 6×8 
physical subarrays utilized for a logical 108×54 array with the conductances measured after programming each subarray. 16 
From Supplementary Note 10. 17 For the top crossbar, while it is 2 V / 50 µA for the bottom one. 18 Effective crossbar 
dimensions based on 3D-CMOL-like structure (with overlapping electrodes in one direction). 19 Total number of employed 
devices in one filter based on Fig. 4d. 20 Based on Fig. 2g. Though SEM images of 300-nm-scale devices are shown, all 
experimental results are based on microscale devices. 21 Based on Fig.1c of [103]. 22 Based on Fig. 1c of [25, 13].  

2.2.1. Device and Circuit Characterization  

The developed 64×64 crossbar circuit consists of Ti/Al/TiN-based top and bottom 

electrodes and an Al2O3/TiO2-x switching layer (Fig. 3). The actual crossbar array dimensions 

are (64+2)×(64+2), with an additional line added at both sides of the circuit for the top and 

bottom layers to achieve better uniformity for the devices in the main array. The details of the 

fabrication process are provided in [113]; here, we only focus on characterization and 

demonstration results. 

Cell type Ref. Crossbar
size0

Yield 
(%)

Largest  
working 
demo0

Cell
size𝟏

𝛍𝐦𝟐

Forming 2

current 
(𝛍𝐀)/ 

Voltage(V)

Endur-
ance3

(cycles)

Array 
level 

tuning 
precision

Set 
switching 
statistics 
µ / σ (V)

Gmax /Gmin
4

(𝛍𝐒)
Retention

(@°C)

Type of integration / 
patterning  technique / 

Substantial CMOS foundry 
integration challenges5

0T1R

Si/Ag [89] 32×32 ~100 32×32 ~12008 5000/3.7 >10M - 2.25/ 0.1 10 / 19 ~hours SA/RIE/High-T epitaxy&Ag
SiGe-aSi/Ag [108] 40×40 - 8×810 0.01 - - ~ 50%11 3.5/ - 4/0.1 - BEOL / lift-off / Ag

WOx

[59] 11×3 - 11×3 - 1000/~1.8 - - 0.85/0.05 - - SA / lift-off / none
[105] 32×32 - 25×20 ~9 >170 / - - ~ 35%12 1.7/ - 3/113 ~mins @RT14 SA / lift-off / none
[106] 108×5415 - 26×10 > 25616 - - - - 2.4/1 ~mins @RT14 FI-BEOL / lift-off / none

Ta2Ox

[109] 18×2 ~100 18×2 - 250 / ~1.1 - - - 1500/850 - SA / lift-off / none
[110] 16×3 78 4×3 - 1000 / ~2 > 100k - 1.25/0.1 1800/1300 - SA / lift-off / none

TiO2-x

[24] 12×12 >50 10×6 0.16 200 / 1.9 >200k - 0.9/0.17 200/6 >140h@76 SA / lift-off / none
[17] 20×20 >95 17×20+8×11 0.25 220 /1.5 >100k < 8% 1.0/0.18 200/6 >20h@120 SA / lift-off / none
[26] 2×10×10 ~100 2×10×10 0.49/2 100/2.517 - - 1.1/0.15 100/0.1 >25h@100 SA/ion beam milling/ none

this work 64×64 ~99 64×64 0.5625 100 / 3.2 >100k < 5% 1.2/0.13 100/6 >20h@100 SA /RIE/ none 
HfO2-x [33] 3D 8×818 - ~12019 ~1000/820 - - binary - 1200/~300 - SA / lift-off / none

1T1R HfO2-x

[25] 128×64 >9921 128×64 ~250022 - - <3.1%23 2 / - 900/100 10yr @RT BEOL/lift-off / none
[32] 128×8 - 960 - >150 / >3 - < 35% - 40/5 - BEOL/ lift-off / none
[69] 128×16 >99 128×16 > 5 - - 3.3 % - 20/2 ~ days @RT BEOL /lift-off / none

[111] 158K - 158 K 1.69 100 / >1.8 < 1k ~ 2-bit 1 / - 10 / 0.1 - NA / NA / none
[112] 1K - 448 ~25 - - ~ 20% 3.5 / - 100/0.1 ~1m @30 NA / NA / none
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Fig. 3: SEM image of the full 64×64 memristor crossbar array. The bottom left, and bottom 
right insets show, correspondingly, material layers at the device cross-section with 
corresponding thicknesses in nanometers and the packaged chip. 

Current-voltage characteristics for the as-fabricated devices, i.e., before applying the 

electroforming process, are fairly uniform (Fig. 4), which is an essential prerequisite for 

lowering variations in functional memristors [17, 24]. To electroform devices, a positive 

voltage is applied to the top electrode while all unselected lines in the crossbar are floated. 

Because of more extensive annealing compared to previous work [24], the currents via as-

fabricated devices (Fig.4.4b) are just slightly less compared to the device smallest (off-state) 

current after forming (Fig. 5a) – see, e.g., the highlighted curves for a specific device in both 

figures. The forming voltages are only slightly higher on average than set voltages and 

completely overlap for some, making such devices effectively forming-free.  The formed 

devices show similar in magnitude set and reset voltages (Fig. 5a), from 200 µA to 400 µA 
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reset and set switching currents, 2-µA-to-50-µA dynamic current range at 0.25 V, and 

balanced I-V characteristics, i.e., I(V) ≈ I(-V) at small voltages.  The average nonlinearities, 

i.e., 0.5×I(V)/I(V/2), are ~1.1 and ~1.3 for the on and off state, respectively, at V = 0.25 V. 

Accelerated retention tests at 100 °C are performed for 500 devices, with each device 

tested in 9 different random states (Fig. 5b). Post-processed experimental results and their 

extrapolation for room temperature operation show very promising retention characteristics 

(Fig. 5b,c). For example, the extrapolated results predict that the normalized conductance will 

drift on average by ~0.7% over 1 month at room temperature, while the average spread is 

expected to be less than 1.6% after 2 years (Fig. 5c). Fig. 5d confirms excellent switching 

endurance. It shows the results of applying 1 million tuning pulses, or effectively, switching 

gradually device ~105 times between its extreme on and off states. Note that the experiment 

was stopped after reaching 1M pulses because of the limitations of the experimental setup and 

not due to a device failure. Furthermore, decent retention was observed even after the 

switching endurance experiment. Fig. 5e shows measured switching dynamics characteristics 

for all the devices in the 64×64 array. These data are obtained by first setting the conductance 

of each device to 14 μS with 10% precision. Next, 1-ms-long pulses, with amplitude increased 

incrementally in 50 mV steps, are applied to the device. The device’s conductance is read 

between each programming pulse at 0.25 V, and the sequence of pulses is stopped once the 

small-voltage conductance exceeded 50 μS. After that, we apply a similar reset/read pulse 

sequence until the conductance is switched back to 14 μS. The raw experimental data are used 

to extract effective switching thresholds, defined as the smallest amplitude of a voltage pulse 

at which the device conductance changes by more than 20% compared to its initial state (Fig. 

5f-h). According to Fig. 5f, the average set and reset threshold voltages are 1.19 V and –1.39 
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V, respectively, with the standard deviations of 0.31 V and 0.37 V. Furthermore, there are 

only 45 (~1.125%) unswitchable devices in the whole crossbar array. The threshold maps 

show that faulty devices are distributed throughout the array and not contributed by faulty 

lines but rather stand-alone defects. These failed devices are most likely due to applying 

insufficiently high forming/switching voltages, which we had to bound as a precaution for 

avoiding permanent damage to the crossbar circuit. This, in part, is supported by the tails of 

the distribution in the switching threshold voltages.  

 
Fig. 4: As-fabricated crossbar results. (a) The conductance map measured at 0.4 V. Median 
conductance is  ~ 45 nS. (b) I-V characteristics for the 36 virgin-state (i.e., before forming) 
devices of the 6×6 subarray located in the center of the crossbar circuit.  
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Fig. 5: (a) Representative I-V curves, measured with quasi-static DC voltage sweeps, for the 
36 formed devices of the 6×6 subarray located in the center of the crossbar. For clarity, the 
curve for one particular device is highlighted. (b) Retention results for 10 different devices 
with data for each device shown with a specific color. The tests for each device are performed 
9 times with randomly chosen initial conductance. The Evolution of the conductance 
measured at 400 s intervals while continuously baking the crossbar circuit at 100°C. (c) The 
standard deviation of the absolute conductance change normalized to Gmax = 62.5 µS, i.e., 
100%×|Gintital-Gfinal|/Gmax, as a function of the time interval for several ranges of initial 
conductances. Similar to panel b, the top axis corresponds to the measured retention data at 
100°C for 500 devices, with each device tested at 6 different initial states, while the bottom 
axis shows extrapolated results. For panels b and c, the bottom axes show extrapolated time 
at room temperature assuming 1.1 eV activation energy. (d) The switching endurance results 
for a crossbar device. The data are obtained by repeatedly applying alternative polarity 
sequences of 1-ms voltage pulses. The absolute amplitude of pulse in each sequence is initially 
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0.8 V and then ramped up with 0.1 V steps until the device reaches the extreme (i.e., on or 
off) state. Inset is a zoomed-in portion of the main panel, showing typical continuous 
switching during the endurance test. The device is switched about 105 times between its 
extreme states during the experiment. (e) Measured evolution of conductance upon application 
of increasing amplitude voltage pulses. All parameters of the utilized pulse sequences are 
similar to those shown in Fig. 6c inset, except for 50 mV incremental step. (f-h) Extracted 
statistics of switching threshold voltages, defined as the smallest absolute voltage at which 
device conductance, measured at 0.25 V, changes by 20%, shown as (f) histogram and voltage 
maps for (g) set and (h) reset transitions. The conductances are measured at 0.1 V for panels 
b-d.  

2.2.2. Conductance Tuning Experiment 

The analog properties of the memristive crossbar circuits are tested by setting crosspoint 

device conductances using the fine-tuning algorithm [114]. Such an algorithm, which is 

similar to incremental step programming of flash memory devices, is based on applying a 

sequence of smaller-voltage non-disturbing read and larger-voltage write pulses, with a sign 

and amplitude of write pulses are adjusted dynamically based on the measured conductance 

at read pulses. An example of applying such a write-verify algorithm is illustrated in Fig. 6a, 

which shows the evolution of the low-voltage conductance of a specific device upon its 

forming, resetting to 20 µS and then tuning to 10 µS, 100 µS, and 8 µS target conductance 

values. Note the polarity of the tuning pulses in the inset – while applying both set and reset 

pulses were required because of the overshooting for tuning to 8 µS and 20 µS, only gradual 

resetting (setting) was sufficient to tune to 10 µS (100 µS). In fact, the device conductances 

can be precisely set to any value in a range from ~ 2 µS to ~ 100 µS – see, e.g., the results of 

device tuning with 1% relative error to linearly spaced conductance values within the lower 

half of the dynamic range in Fig. 6b. Fig. 6c-e shows the results of tuning conductances of all 

devices in the crossbar circuit, using write pulses with up to 2.5 V maximum amplitude and 4 

mV / 8 mV incremental step for set/reset (Fig. 6c inset). When applying write pulses, the half-

biasing scheme is adopted to reduce the disturbance of already tuned half-selected devices in 
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passively integrated crossbar circuits. Furthermore, to correct for a minor conductance drift in 

some half-selected devices upon programming, tuning of the whole crossbar is performed in 

several rounds, such that, e.g., all of the devices are tuned, one by one, in the first round, and 

then those which got disturbed beyond the specified tuning accuracy are re-tuned in the 

following round(s). In particular, Fig. 6d shows the map of target conductances, representing 

the gray-scale image of Albert Einstein mapped on all devices in the 64×64 crossbar array, 

while Fig. 6e shows their final values after 3 rounds of tuning. The corresponding statistics 

for the relative tuning error are shown in Fig. 6c. Excluding unswitchable devices, for which 

the error is more than 95%, ~98% of the devices are tuned within 5% relative error, while the 

average relative error is ~3.76%.  

 
Fig. 6: Conductance tuning results. (a) Forming and high-precision tuning to 20 µS, 10 µS, 
100 µS, and 8 µS target conductances of a crossbar device, with 1% relative precision. The 
inset shows the applied sequence of pulses during conductance tuning. Pulse sequence 
parameters are similar to those of panel c, except for the utilized 50 mV incremental step. (b) 
Example of device tuning with a 1% relative error to different conductance levels equally 
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spaced from 3 µS to 45 µS. (c-e) Programming Einstein image to the 64×64 crossbar array 
with a 5% relative error. (c) Tuning statistics. Inset shows details of the write-verify pulse 
sequence.  (d) The target device conductances in the range of 10 µS to 100 µS corresponding 
to the gray-scale quantized image and (e) their actual measured values after completing 
automated tuning. The relative tuning error is defined as 100×|Itarget(0.25V)-
Iactual(0.25V)|/Itarget(0.25V). All conductances are specified at 0.25 V. 

In the previous experiment, the tuning algorithm is stopped once the desired 5% relative 

tuning error is reached. Setting conductances with even higher precision is already 

demonstrated for tuning a specific device in the crossbar in Fig. 5b. The possibility of 

achieving higher tuning precision at the circuit level is indirectly indicated by the shape of the 

tuning error histogram in Fig. 6c and further verified by implementing an ex-situ trained image 

classifier and testing it on the common MNIST handwritten digit benchmark [40] (Fig. 7). In 

this experiment, we focus on demonstrating vector-by-matrix multiplication, the core 

operation in any neural network, while the functionality of neurons, including its bias, is 

emulated in the software. For simplicity, the studied network is a single-layer perceptron with 

64 inputs, 10 outputs, and 640 weights. Furthermore, the original binary 28×28 MNIST 

images are down-sampled to 8×8 patterns so that they can be represented with 64-bit binary 

vectors in which black/white pixels are encoded by 0 V / 0.25 voltages and are applied to the 

vertical crossbar lines. Each weight is implemented with one memristor using 10 µS to 110 

µS range of conductances by shifting the range of the weights upon mapping and adding 

pattern-dependent neuron bias at the post-processing stage. By encoding network weights with 

the corresponding memristor conductances G in the 64×10 portion of the crossbar, the currents 

measured at the virtually grounded horizontal lines of the crossbar represent the results of 

vector-by-matrix multiplication operation, while the output with the largest current identifies 

the computed class of the input pattern (Fig. 7a). 
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The measured classifier fidelity is compared to the software-based performance of the 

same network across a 1% to 50% range of weight import errors (Fig. 7d). The results show 

that the experimental data match simulation results closely. For example, the measured 

classifier accuracy for the most accurate weight import is 1.87% lower than that of the ideal 

software model, while the average and standard deviation for the neuron pre-activation errors 

are 0.61% and 0.37% - see additional details.  Note that the goal of this experiment is to 

demonstrate the conductance tuning capabilities rather than on demonstrating high 

classification accuracy, which is quite low compared to the state-of-the-art numbers because 

of the utilized single-layer network and down-sampled B/W images.  It is worth mentioning, 

however, that the high accuracy MNIST benchmark results for the mixed-signal circuit 

ReRAM-based implementations are typically obtained via hybrid demonstration in which 

some (small) part or functionality of a much larger neural network is experimentally 

demonstrated, while the rest is modeled (Table 1). Fig. 7e, f provides more details on the 

measured data for the two representative MNIST patterns. Specifically, the first examples 

show the results of the correct classification of pattern “7”, with the largest current measured 

at the 7th row of the crossbar (Fig. 7e). On the other hand, pattern “9” in the second example 

is misclassified (Fig. 7f). This is in part because of a large tuning error at unswitchable 

memristors - see stuck at high-resistance state devices at (9, 22) and (9, 24) locations in the 

crossbar in Fig. 7c (and also Fig. 5g, h). It is also due to narrow current margins between the 

correct class and the two closest classes representing digits “0” and “8”, which is natural given 

that correct classification, in this case, would be hard even for a human. 
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Fig. 7: Experimental results for pattern classification. (a) A portion of the crossbar circuit that 
is utilized in a 64×10 single-layer perceptron MNIST image classification experiment. (b) 
Examples of target and (c) actual conductances after tuning with a 1% relative error. (d) 
Measured classification fidelity and its comparison with simulation results as a function of 
weight import accuracy. In each simulation trial, the weights are selected randomly from a 
range of target_value × [1 – tuning_error, 1 + tuning_error]. (e, f) Measured output currents 
for all ten outputs over the 10-second interval for patterns ‘7’ and ‘9’ (shown in the 
corresponding insets) for the experiment with a 1% relative tuning error. The currents are 
measured, one row at a time, by simultaneously applying input voltages on all 64 columns 
and grounding 10 specified rows. 

2.2.3. Modeling Advanced Systems 

We next investigate the prospects for tuning algorithm improvements in ex-situ-trained 

neuromorphic inference accelerators. To make this study more informative, we develop the 

model for the conductance tuning process and then investigate the impact of device variations 

on the circuit functionality. A specific focus is on modeling half-select disturbance, which is 

a major challenge for accurate conductance tuning, as confirmed by experimental work. 

Similar to the previous work [115], the phenomenological dynamic model capturing device-
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to-device variations is derived by fitting experimentally observed conductance changes for 

500 crossbar-integrated memristors upon applying write voltage pulses with variable 

amplitude. The main purpose of the model is to estimate the change in device conductance 

G, with respect to the initial conductance G0, all measured at small non-disturbing (read) 

voltage 0.1 V, upon application of write voltage pulse with amplitude V and a fixed duration 

of 20 ms. The fixed duration is assumed for simplicity, i.e., to avoid explicit dependence of 

conductance change on pulse duration in the model. This simplifaction is also justified 

because of a similar fixed-duration pulse approach utilized in the tuning algorithms. Because 

of the long memory state retention for the developed metal-oxide memristors, i.e., their 

strongly nonlinear switching kinetics, obtaining meaningful experimental data for fitting 

conductance changes at half of the nominal write voltages required applying very long, with 

up to 2 ms duration pulses (Fig. 8). This is the main difference compared to the 

phenomenological model presented in Ref. 115, which used experimental data for a narrower 

range of write voltage pulse amplitudes and durations to derive dynamic model, and hence 

somewhat inaccurate in predicting conductance changes at smaller, half-bias voltages. The 

following function is found to fit well experimental data for both set and reset switching 

∆ீ

ீబ
≈ exp ቂ

ఉభ

ଵାఉమ(ఈ௏)మ
ቃ sinh ቂ𝛽ଷ

ఈ௏

ଵାఉమ(ఈ௏)మ
ቃ ൫γଵ + γଶඥ𝐺଴ + γଷ𝐺଴൯, 

where 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, γଵ, γଶ and γଷ are fitting parameters common for all devices (Fig. 8g), while 

α is a unique scaling parameter for each device that represents device-to-device variations in 

the switching threshold (Fig. 8h). Specifically, the model for the average behavior, with fixed 

α = 1, is first found by fitting a surface to the experimental data for the average conductance 

changes, i.e.  {<G/G0>, G0, V} data points (Fig. 8e,f ).  
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As a reminder, the effective set (reset) switching threshold of the crossbar array is defined 

as a voltage at which the small-voltage conductance is changed from its extreme value G0 = 

14 µS (75 µS) by more than 20%, i.e., |G|/G0 = 0.2 when applying increasing amplitude 

positive (negative) voltage ramp. According to the fitted model, Vset
*= 1 V and Vreset

*= -1.4 V 

for α = 1. The experimentally measured threshold voltages (Fig. 5f) are well approximated 

with log-normal distributions with parameters µ = 0.14 and σ = 0.25, and µ = 0.29 and σ = 

0.26 for set and reset switching, respectively. According to the selected fitting function, 

parameter α is a multiplicative factor for the applied voltages. Hence, when modeling the set 

threshold voltages, we first randomly initialize Vset for each crosspoint device by sampling it 

from the fitted set threshold log-normal distribution and then find the corresponding αset = 

Vset*/ Vset. A similar approach is used to initialize αreset. An example of the generated α using 

this approach and corresponding threshold voltages predicted by the model are shown in Fig. 

8h-i, respectively. Finally, since the experimentally observed variations in set and reset 

threshold voltages (i.e., the relative standard deviations or the coefficient of variations) are 

very similar, for simplicity, we use the same α when sweeping variations in the modeling 

studies. 
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Fig. 8: Modeling half-select disturbance. (a-d) Details of the utilized measurement protocol 
for modeling (a) set and (b) reset transitions and (c, d) results for conductance changes for 
three studied cases of initial conductance G0. Each line with connected dots corresponds to 
the evolution of the conductance change, normalized to the specific tuned initial value G0, and 
averaged across 500 devices upon application of the voltage pulses with a specific amplitude 
and exponentially increased duration. (e-i) A phenomenological model for dynamic behavior. 
The results of fitting dynamic equations to the experimental (e) set and (f) reset data averaged 
over 500 devices and (g) the corresponding model parameters. (h) The distribution of 
parameter α fitted to reproduce experimentally observed device-to-device variations in Fig. 
14f, and (i) predicted by the model variations in the switching threshold for 4096 devices in 
the modeled 64×64 crossbar circuit. All conductances are specified at 0.1 V.  

Using the developed model, we simulate the classification accuracy of an ex-situ-trained 

784-64-1 multilayer perceptron network implemented with a hybrid CMOS / memristor 
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circuit under various assumptions of device-to-device switching threshold variations. The 

inputs to the first layer, i.e., pixel intensities, are linearly mapped to [0 V, 0.1 V] voltage range, 

while the inputs to the second layer are also in the same range due to the assumed clipping of 

rectified linear function at the neuron side. The classifier is trained ex-situ on a gray-scale 

60,000 training and 10,000 MNIST test images using the conventional backpropagation 

algorithm with L2 regularization, 0.0005 learning rate, and 100 batch size. The software 

weights (w) are converted to the corresponding pair of positive (G+) and negative (G-) 

conductances using differential mapping with 33.75 µS range and 41.25 µS bias, which is 

roughly in the middle of the dynamic range, i.e., G± = 41.25 µS ± 16.875 µS× w/wmax, where 

wmax is specific to the largest absolute weight value of the layer. The weight import process is 

simulated by first randomly initializing conductances of all memristors according to the 

normal distribution with 36.25 μS average and 9 μS standard deviation. A tuning algorithm 

based on 5-mV-step increasing amplitude pulses, starting from 0.5 V, is then applied with a 

1% desired tuning accuracy, sufficient for achieving the highest classification accuracy with 

no device-to-device variations. To bound the tuning time for each device, the number of times 

for switching the write pulse polarity (when overshooting the target conductance) is limited 

to 5. The 785×64 weight layer, with the additional input due to bias, is mapped to 24 64×64 

and 2 17×64 mixed-signal VMM blocks using the differential pair encoding of the weights. 

In addition to the memristive crossbar array, each block hosts a digital-to-analog converter, 

local sensing based on transimpedance amplifier, and programming circuitry. Such distributed 

implementation is similar to a mixed-signal architecture of the aCortex [67], in that the output 

of the local sensing circuits are currents corresponding to the partial dot-products between the 

corresponding weights and inputs, while the full dot-products are computed by the neuron’s 
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(global sensing) transimpedance amplifiers by summing partial product currents. The hidden 

layer neurons then compute clipped rectified linear function activation and pass the results to 

the second layer of the network. A similar, though simpler due to the analog nature of input 

signals, implementation is assumed for the second layer of the network, which consists of 2 

64×10 analog VMM circuits. (Note that the VMM block dimensions are chosen to match 

experimental work and not necessarily optimal for the studied parameters of memory devices.)  

In the first studied “baseline” approach, the devices are tuned in the sequential (raster) 

order, similar to the experimental work. The results for the baseline algorithm show that both 

the tuning and classifier accuracies are significantly degraded due to half-select disturbance 

when the device-to-device variations (i.e., the coefficient of variation in switching threshold) 

are above 14% (Fig. 9b,c, and Fig. 10a-c). The second round of tuning increases the accuracy 

significantly, though the improvements with additional rounds are negligible (Fig. 10a). The 

simulated absolute tuning error at 26% device variations is ~ 9.6% (Fig. 9b), which is higher 

compared to the experimental results in part because of the excluded (unswitchable) devices. 

Three different techniques are further proposed to improve the conductance tuning process. 

In the first technique, the write voltage amplitudes are bounded within a certain range of 

voltages, with the range gradually reduced with each round of tuning (Fig. 10). Such an 

approach results in better average tuning accuracy compared to the baseline approach when 

device variations are higher, at the cost of abandoning of tuning the devices with a larger 

threshold switching voltages (Fig. 9b). In the second technique, the devices with high set (> 

1.75 V) and reset (< -2 V) switching voltages are first identified. The high-set threshold 

devices are then switched to the highest conductive (>75 µS) state used in weight mapping, 

while the high-reset devices are switching to the highest resistive (<7.5 µS) before the tuning 
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algorithm is applied. Such presetting significantly reduces the use of larger amplitude write 

pulses throughout the tuning process and hence minimizes half-select disturbance, especially 

when applied together with the first technique – see the results for approach #2, which utilizes 

both techniques in Fig. 9b. The third technique takes advantage of the possibility to encode 

the same weight with different target conductances in the differential pair implementation, 

i.e., by shifting the conductances of a pair by the same amount.  In particular, when the 

maximum voltage limitation of the first technique is met, the target conductances of a pair are 

adjusted, and the conductance tuning of another device in a pair is attempted instead. 

Application of all three techniques (approach #3) significantly improves the tuning accuracy, 

e.g., improving it by 9% as compared to the baseline approach for the case of 26% device 

variations. More importantly, at such device variations, the classification accuracy of the 

baseline approach is significantly improved to ~97.3%, which is within 0.7% of the highest 

possible accuracy for the studied network, while the highest amount of device variations, 

which can be tolerated without losing classification accuracy is increased from ~14% to ~20% 

(Fig. 9c and Fig. 10c,f,h,l).  
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Fig. 9: Modeling of ex-situ trained MLP classifier. (a) The block diagram for the distributed 
mixed-signal implementation of 784-64-10 multilayer perceptron (MLP) classifier with a 
64×64 crossbar circuits. Programming circuitry is omitted for clarity. (b) Modeled relative 
tuning error after 10 rounds of tuning for the first layer of MLP network as a function of 
device-to-device variations when using four different conductance tuning approaches. See 
Section “Modeling of Advanced Systems” for more details of the tuning approaches. (c) 
Simulated accuracy of MLP classifier as a function of device-to-device variations when using 
baseline and the most advanced tuning approach after 10 rounds of tuning. Inset shows zoom-
in for the high classification accuracy portion of the graph. The shown numbers roughly 
correspond to the device variations observed in the experiment. The box plot shows the 
statistics over 10 different runs of initial conductances. For simplicity, memristors’ static I-V 
nonlinearities and noise are neglected, and ideal peripheral circuits are assumed in 
simulations.  
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Fig. 10: The impact of device uniformity on the accuracy of MLP. (a-l) Modeling results when 
using (a-c) baseline, (d-f) 1st, (g-h) 2nd, and (j-l) 3rd tuning approaches. (a, d, g, j) The 
improvements in classification accuracy with more rounds of tuning. (b, e, i, k) Cumulative 
distribution of the absolute tuning error at the end of the 10th tuning round. (c, f, h, l) 
Classification accuracy as a function of device variations at the end of the 10th tuning round. 
The box plot shows the statistics over 10 different cases of initial conductances.  The thick 
red lines correspond to the demonstrated technology, i.e., α = ~26%. For simplicity, 
memristors’ static I-V nonlinearities and noise are neglected, and ideal peripheral circuits are 
assumed in simulations. In panel a, the accuracy saturates after a few rounds because of the 
significant half-select disturbance when re-tuning higher switching threshold devices. In panel 
d, the utilized maximum values for set / reset thresholds are NA, 2, 0, 1.65, 1.45, 1.4, 1.35, 
1.3, 1.2, 1.1  / NA, 0, -1.65, -1.45, -1.35, -1.3, -1.2, -1.1 for tuning rounds #1, #2, …, #10, 
respectively.  In panel j, the highest accuracy is 97.29%.  
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2.2.4. Discussion 

In summary, the general goal of this work is on increasing the complexity of passively 

integrated memristive crossbars and developing a fully CMOS-compatible process while 

maintaining high yield and sufficiently low spread in current-voltage characteristics of 

integrated metal-oxide memristors, one of the most critical problems prohibiting practical use 

of this technology in neuromorphic computing applications. Our main contributions include 

the development of uniform 64×64 passive crossbar circuits with almost 99% working 

crosspoint metal-oxide memristors based on foundry-compatible fabrication process suitable 

for back-end-of-line / 3D integration and experimental demonstrations of conductance tuning 

with < 4 % relative average error for programming 4K gray-scale pattern and close to 1% 

error when implementing 640-weight ex-situ-trained single perceptron network. Additionally, 

we propose the advanced tuning algorithm and verify its effectiveness by simulating a 

multilayer perceptron.  

2.3. The Role of Uniformity in Passive Memristive Circuits 

In the previous chapter, we discussed how the stochastic nature of oxide rupture in small 

scales complicates the reproducibility of memristor parameters, e.g., the voltage required for 

electroforming and switching, and illustrated how such variabilities are the very reason for the 

limited demonstrations of memristive neuromorphic networks so far. We qualitatively made 

this case that the prospects of using 0T1R for building large-scale deep learning systems are 

excellent due to the superb density of this technology. We demonstrated the successful 

integration of 64×64 passive metal-oxide memristor crossbar circuit, which reports sufficient 

uniformity for <5% average tuning precision, slightly worse than ~3% reported in analog 

1T1R memories [13]. 
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However, there are some key questions regarding the role of the process uniformity in the 

design of passive memristive crossbars, which needs further clarification: How is the crossbar 

uniformity related to the computing accuracy, and what are the critical factors affecting it? 

How can we build more resilient circuits and improve the performance in higher (than device 

fabrication) design levels? How much crossbar uniformity is needed to achieve software-

equivalent accuracy and build a passively-integrated memristor-based large-scale deep neural 

network? This section aims to expand upon these important questions and the critical role of 

switching threshold variations in the computing precision of neuromorphic networks. First, 

we discuss the preliminaries, motivation, and previously fabricated analog-grade memristor 

crossbars. Then, the simulation framework is illustrated. Further, extensive simulations of 

vector-by-matrix multipliers and representative neuromorphic networks are performed to 

assess the tradeoffs and trends. Finally, three post-fabrication solutions are explored for 

improving the performance of neuromorphic circuits. The section is concluded with a 

thorough discussion of the results and prospects of harnessing 0T1R and 1T1R circuits in 

neuromorphic circuits. 

2.3.1. Preliminaries and Motivation 

Memristive devices are typically operated in three phases: forming, programming, and 

read. Upon fabrication, devices are initially in the pristine state and require a one-time forming 

process before becoming adjustable memristors. The electroforming process includes 

applying a current-limited ramp voltage to a device and continuously monitoring its low-

voltage conductance. When the device reaches a certain threshold, a conductive filament 

forms inside it [116], and its low-voltage conductance jumps significantly, enabling 

subsequent analog-state tuning and storage. In the second phase, the tuning or programming 
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stage, the conductance of the device is adjusted to a desirable value (G) through the 

modulation of the impurity profile. We may increase (set) or decrease (reset) the conductivity 

of the device by applying a moderately large voltage to the device that is about (or slightly 

larger than) its switching threshold—a device-unique voltage that alters its conductance by, 

e.g., 20%. Harnessing the write-verify algorithm, we keep programming and monitoring the 

state of the device (𝐺෠) until reaching a certain tuning accuracy (𝐺෠ − 𝐺)/𝐺 <∈.    Ultimately, 

to implement multiplication, summation, or useful computational tasks, devices are operated 

in the non-disturbing read (inference) phase: A relatively low voltage (V) is applied to the 

device, and the generated current, I=𝐺෠.V is sensed in a CMOS circuity.  Here, we are interested 

in investigating how the parameters of a 0T1R memristor technology, i.e., the variations in 

the switching thresholds, are related to the tuning accuracy ( ∈) and, in turn, the computational 

accuracy of memristive neuromorphic networks. When a high-precision readout circuit is 

available and memristive devices have excellent retention characteristics, ∈ is almost entirely 

bounded by the dynamic switching characteristics of the devices.  

To clarify this, consider the practical V/2 approach of tuning memristive crossbars (Fig. 

11a). The voltage applied on the selected device (by peripheral decoders and switch matrix) 

is 𝑉ୱୣ୲. Unselected electrodes are pinned to 𝑉ୱୣ୲/2 to minimize the disturbance on other 

devices. The applied voltage on the unselected devices is zero; however, 𝑉ୱୣ୲/2 is dropped on 

the devices which share an electrode with the selected device (i.e., half selected devices). If 

the switching threshold of these devices is ~𝑉ୱୣ୲/2 or less, their state shifts undesirably, 

resulting in an imprecise tuning. A similar idea also holds for the reset operation. Fig. 11b 

shows the measured IV characteristics of a device (R଴) in the 64×64 crossbar. Two 

hypothetical switching threshold distributions, as well as presumptive IV characteristics of 
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two corresponding devices, are included to clarify our point. When we set R଴, 𝑉ୱୣ୲,ୖ଴/2  drops 

on both Rଵ and Rଶ. The state of Rଵ is expected to alter negligibly since the set threshold of Rଵ 

is much larger than 𝑉ୱୣ୲,ୖ଴/2, unlike Rଶ that switches considerably. Hence, when tuning the 

entire crossbar, the total disturbance is correlated to the variations in the distribution of 

switching thresholds, and the smaller variations (or higher uniformity) result in a higher tuning 

precision.  

 
Fig. 11: (a) The schematic of the 3×3 portion of the crossbar and the V/2 tuning scheme with 
highlighted selected, unselected, and half-selected devices. Panel (b) shows a typical IV 
characteristic of a device and reveals why the tight distribution of switching voltage is critical. 

TiOଶ memristors have been used in designing 10×2 [2], 12×12 [24], and 20×20 [17], and 

64×64 [113] crossbar circuits, with excellent retention (>20 hrs in 100°C), endurance (> 106 

analog switching cycles), and close to 100% yield. The normalized variations in these works 

are 10%, 11%, 18%, and ~26%, respectively. The same stack is also used in the only analog-

grade 3D integrated demonstration [26] using two layers of 10×10 memristor array and 

reporting ~13.6% normalized variations. The consistent trends in the TiOଶ crossbars indicate 

that the larger the crossbar size, the higher the normalized variations. This trend partially stems 

from the fact that (the worst-case or the largest) forming current required for electroforming 

increases with the crossbar size owing to the increase in extra leakage current. Hence, a larger 
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compliance voltage/current is required as more and more devices are electroformed, which 

increases electrical stress and, ultimately, leads to a higher device variability. When forming 

our 64 × 64 crossbars, the maximum electroforming current is set to ~50 μA at the beginning, 

but it is raised to ~ 1 mA or so at the end. In addition to this observation, the more devices in 

the crossbar, the more disturbance created during tuning. As it will be shown in this paper, 

these factors amplify each other and exponentially entangle the design and operation of larger 

analog crossbar circuits. Fortunately, preliminary architectural studies show that for many 

computing applications, e.g., deep learning accelerators, the optimum crossbar dimension is 

in the range of 64×64 as choosing enormous crossbar modules underutilizes the hardware 

resources and reduces the overall performance [67].  

Regardless, the relationship between the normalized variations and the crossbar size with 

circuit fidelity is unclear and requires further research. To clarify it, we first use tremendous 

experimental data to develop a reliable dynamic model of the memristor that relates the 

conductance change to the switching thresholds and the applied voltage. Then, we use this 

model to emulate the tuning process of ex-situ weight transfer and find the relationship 

between the accuracy, block size, and normalized variations in general VMM blocks and 

representative neuromorphic circuits.  

2.3.2. Simulation Framework  

In order to study the role of uniformity in memristive crossbar circuits, we use the 

dynamic, which is comprehensively discussed in the previous section (more information is 

also available in [117]). Let us emphasize several important points prior to discussing our 

results. We could not use previous models (including our recent work [115]) since the 

switching threshold parameter is not used in those models. Though we could consider a very 
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general model, we prefer to use a model that perfectly fits the behavior of an experimentally 

fabricated stack that meets the essential requirements for analog computing (analog tunability, 

high retention, endurance, etc.). We believe that this strategy improves the reliability of our 

results. Besides, since our candidate device and other metal-oxide memristors share some 

similar switching characteristics, we expect to see resembling trends of the results for other 

devices as well. Last but not least, we consider a fixed pulse shape and duration to avoid 

overcomplicating the study and improve the goodness of our modeling fits. Note that we also 

use square-shaped pulses (typically with fixed amplitude) in practice to reduce the impact of 

cycle-to-cycle variations in the runtime [9]. In the following, we discuss how we emulate the 

tuning and perform the ex-situ training using this dynamic model.  

In ex-situ training of a neuromorphic network, synaptic weights are calculated on a 

precursor software-based network and then imported sequentially into the crossbar circuits. 

Networks are typically composed of many crossbar blocks which are programmed in parallel 

or sequentially.  However, within a crossbar, the devices are tuned into their corresponding 

predetermined desired states, individually (one-by-one). Due to the stochastic nature of the 

switching mechanism in memristors, particularly analog-grade devices, often require multiple 

pulses to reach an absolute accuracy. This is executed using the well-known write-verify 

algorithm [102]. In every simulation case, the conductances of devices are initially 

randomized using a Gaussian distribution with an average of 36.25 μS (midrange 

conductance) and a standard deviation of 9 μS. Then, conductances are adjusted one-by-one 

using the write-verify algorithm and the dynamic model. We reconstruct the exact procedure 

that we employ in the experiments when tuning the devices. The devices within any crossbar 

block are tuned in raster order. More importantly, to increase the tuning speed, we 
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progressively increase the pulse amplitude (set/reset) starting from 0.5 V with 10 mV steps to 

the switching voltage of the device. This idea also prevents overstressing the device. The 

tuning direction (setting or resetting) is alternated whenever we pass the target conductance. 

To avoid overstressing the memristors, creating too much disturbance, and reducing the tuning 

time, we limit the tuning process for every device to 5 rounds. The algorithm is aborted (and 

restarted with the next device) whenever it reaches the desired tuning accuracy or the 

maximum permitted pulse per device. The half-select disturbance is applied for every applied 

pulse and every device by updating the state of devices sharing either top/bottom electrode 

with the V/2 rule. The entire crossbar is tuned for 10 rounds to diminish the disturbances.    

2.3.3. Computing Precision in Nonuniform Crossbars 

VMM is the most critical operation in inference accelerators and most neuromorphic tasks. 

The fidelity of most neural network models closely follows the computing precision in their 

VMMs. Here, we consider 𝑁 × 𝑁 two-quadrant VMM circuits, which are implemented in the 

analog domain by two separate 𝑁 × 𝑁 memristive crossbars. VMM size, variations in 

switching thresholds, and target precision are variables of this research.  For every case study, 

20 crossbars with random log-normally distributed switching thresholds, and 20 different 

normally distributed weight matrices with zero mean are generated. The mapping function 

𝐺௜௝
± = 𝐺୫୧୬ + (1 ± 𝑊௜௝)(𝐺୫ୟ୶ − 𝐺୫୧୬)/2 in which 𝑊௜௝ is the normalized weight and 𝐺୫ୟ୶ 

and 𝐺୫୧୬ are upper and lower conductance bounds are used to convert dimensionless weights 

into device conductances [22]. For each VMM, we randomly generate 1k input voltage 

vectors, with elements uniformly distributed in the range 0 to 0.1 V. VMM computing errors 

are then calculated over the output current (𝐼) and defined by |𝐼ୟୡ୲୳ୟ୪ − 𝐼୧ୢୣୟ୪|/𝐼୫ୟ୶. Ideal 

currents (𝐼୧ୢୣୟ୪) are obtained directly from the mathematical vector-by-matrix multiplication 



 

 51

of the input voltage vector and conductance matrix, actual currents (𝐼ୟୡ୲୳ୟ୪) are obtained from 

the circuit simulation after all devices are tuned, and 𝐼୫ୟ୶ is the maximum absolute pre-

activation current over all input combinations. 

First, the mechanism of error propagation is investigated for 64×64 VMMs and 5% and 

25% variations. Fig. 12a shows the tuning error for 50 devices (in the crossbar that implements 

𝐺ା) during 10 rounds of the programming phase in the case with 5% variations. Specifically, 

each curve shows how the tuning error for each device evolves starting from the first attempt 

to the last one. One curve is highlighted for better clarity. The steep drops in each curve denote 

the moments the device is tuned. For the highlighted curve, the device is initially tuned with 

<1% accuracy, but the disturbance moves its state leading to ~5% error by the end of the 1st 

round. The device is retuned in the 2nd round, and the disturbance alters it to ~3% of the target. 

Less disturbance generated in the 2nd round stems from the fact that some devices are within 

the target accuracy by the end of the 1st round. So, the total number of pulses (and hence 

overall disturbance) decreases in each round. The state of most devices stabilizes by the end 

of the 4th round. The conductance error distributions and related statistics, shown in Fig. 12b, 

confirm these findings as well. Note that the assumption of 5% variations in a 64×64 crossbar 

is too ideal with the current technology. Figs. 12b,c show the result from the simulations of 

crossbars with 25% variations in the switching thresholds. Though the result slightly improves 

in the first 4 rounds, many devices remain in imprecisely tuned states after that. The periodic 

state evolution of many devices (e.g., the highlighted curve) in Fig. 12c is because of the large 

disturbance and tremendous dependencies, making the tuning effectively unstable for many 

devices. Fig. 12e compares the ultimate distribution of conductance error for both cases. The 

99 percentiles of the tuning error are ~14.4 % and ~1.0 % for 25% and 5% variations, 
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respectively. The huge gap between the realistic and ideal case signifies the importance of 

variations in passive crossbars. Imprecise tuning results in a large error in the output signal, 

as expected. Fig. 12f shows the pre-activation error distribution for both cases. The 99 

percentiles of the distributions are ~7.0 % and ~3.7 % for 𝜎୬=25% and 𝜎୬=5% variations, 

respectively. 

 
Fig. 12: Tuning analysis in a 64×64 VMM with random weights for two cases of 5% and 25% 
of normalized variations in switching thresholds. Panels (a,b) and (c,d) correspond to weight 
tuning error for 5% and 25% variations, respectively. Panels (a and c) show the evolution of 
tuning error for 50 devices during 10 rounds of tuning the crossbar. Panels (b and d) denote 
the error distribution for all devices at the end of each round. Panels (e) and (f) show the 
distribution of weight and pre-activation errors (at the end of the 10th round) for the two cases, 
respectively. 

Fig. 13 summarizes our VMM-level simulation results in which the role of VMM size, 

switching threshold variations, and target tuning error are studied. In every data point, we 
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consider 400 VMM instances (20 different sets of weights and 20 crossbars) to characterize 

the worst-case error statistics (99 percentiles of the output error among 103 patterns), the de 

facto parameter to evaluate the computational accuracy. Note that the VMM size and 

normalized variations are increased exponentially and linearly, respectively. Let us emphasize 

that target tuning error is an implicit parameter that is determined by how precisely a single 

device can be tuned (disregarding the rest of the devices). The target tuning error depends on 

the switching characteristics and retention of the devices. In every panel of Fig. 13, the dashed 

red line serves as the intrinsic bound and shows the expected intrinsic error resulting from the 

imprecise tuning of individual devices (without the half-select problem). Such intrinsic error 

is often linearly proportional to the target tuning error. The first observation is that the median 

worst-case error increases exponentially with variations, more evidently for N>30. It also 

increases exponentially with respect to VMM size for low variations and super-exponentially 

in large variations. This stems from the fact that when variations become more extensive in 

large circuits, the crossbar moves toward instability, and an avalanche-like phenomenon (Fig. 

12c) prevents the precise tuning of the majority of the devices. The spread of the worst-case 

VMM error distribution among different instances also extends with increasing size or 

variations in high precision tuning cases since the chance of hitting worse corner cases raises 

when disturbance escalates. This issue becomes particularly important in high-precision 

computing tasks with tight error margins. 
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Fig. 13: The distribution of the worst-case VMM error (99 percentile of the absolute error 
distribution for 103 patterns) among 400 instances of a) 4×4, b) 8×8, c) 16×16, d) 32×32, e) 
64×64 and f) 128×128 VMMs. No HS: no half-select, nHS: the average number of devices 
affected with V/2 disturbance normalized by N2. nHS is a metric that shows the overall 
disturbance level in a certain crossbar. The median for the ‘no half-select’ case is considered 
the intrinsic bound and shows how accurately we can compute given a semi-exponential 
tuning error distribution in the crossbar. Note the log-scale of the y-axis in all panels.  

For small VMMs (e.g., N<16), the error follows the intrinsic trend even in the presence of 

large variations because the total disturbance is low enough to be fully recovered after running 

the algorithm several iterations. In moderate VMM sizes (e.g., N=32), the error tends to 

increase for high precision tuning cases (e.g., <4%), particularly when the variations are high. 

This error escalation originates from an increase in the number of applied pulses for achieving 

a better tuning precision, which in turn leads to a larger disturbance. For large VMMs, 

variations become more prominent such that the computational accuracy is adversely 

impacted. For N=64, the drastic change for σ>0.25 also stems from the exponential growth of 

the overall severe half-select disturbance cases. To clarify this, let us look at 𝑛ୌୗ —the 

normalized number of devices whose switching thresholds are equal to or less than half of 
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another device in the crossbar. The value of 𝑛ୌୗ for each case study is provided in each panel 

of Fig. 13. When the standard deviation of the set threshold distribution increases from 0.25 

to 0.3, nHS soars by a factor of ~10, indicating a surge in the cases of severe disturbances.  

Another subtle point is related to the reduced computational accuracy in cases with even 

no variations. For instance, comparing the case of no half-select (no HS) with 𝜎௡=0, we 

observe a ~4.3% increase of the average error in the case of N=64 and 1% target. Even with 

no variations, the voltage drop on other devices could have a slightly disturbing effect (due to 

the limited IV slope), which could become potentially noticeable when the total number of 

pulses grows very large. Note that this issue might become overwhelmingly problematic for 

crossbars with poor retention as they often have a much smaller slope. The slight 

improvements beyond the intrinsic error (e.g., see the case of N = 4 and target error = 5%) 

originate from the regularization impact of half-select disturbance, which slightly improves 

the accuracy. Finally, the computational accuracy of state-of-the-art 1T1R and 0T1R crossbars 

can be compared in Fig. 13. For practical VMM sizes (e.g., N=64), considering state-of-the-

art reported 1T1R (no half-select) tuning accuracy (~3% in [13] using highly conductive 

devices), the computational accuracy of 0T1R VMMs (σ<30) is the same as 1T1R, when tuned 

with 1% target precision or worse by ~1% when tuned similarly with 3%. Such comparison 

indicates excellent prospects of using 0T1R design in massively large neuromorphic 

computing networks since passive crossbars are much denser and 3D stackable and evidently 

offer comparable computing precision. 

The final takeaway is that the computational accuracy in passive crossbars is a function of 

the total number of applied pulses or total disturbance from the tuning precision perspective. 

Note that the larger the VMM, the larger the number of pulses; the larger the variations, the 
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more pulses needed to tune the devices in multiple rounds; the smaller the target tuning; the 

higher the number of pulses. System-level and architecture considerations often determine an 

optimum kernel size (N) to optimize the functional performance. Hence, there are two ways 

to improve the computational accuracy in passively-integrated-based neuromorphic systems: 

fabricating more uniform crossbars that lead to tighter variations and developing more 

optimum tuning algorithms that directly reduce the total disturbance and the number of 

applied pulses. Further, the most efficient and accurate circuit is not necessarily obtained when 

the device is pushed to its high precision limit. Hence, extensive simulations (similar to our 

work) are required to find the optimum tuning margin for a given technology, kernel size, and 

the computing model.  

2.3.4. Neuromorphic Network Benchmarks 

We consider 2 representative neuromorphic networks: a moderate-size convolutional 

neural network (ConvNet) and ResNet-18. The former is a modified Lenet-5 architecture that 

includes 2 convolutional, 2 pooling, and 2 fully-connected layers (see [118] for more details 

on the structure). The model is trained with 50k images and tested on the remaining 10k 

images of the CIFAR-10 dataset. Standard data augmentation techniques such as zero-padding 

with two pixels, cropping a random 32×32 region, and performing random horizontal flipping 

of images are employed. We use ADAM optimizer, cross-entropy cost function, a batch size 

of 64, a learning rate of 0.001, and 220 epochs to achieve 87.25% inference accuracy.  

The ResNet-18 implementation is based on the pre-trained model available at the official 

model zoo of Pytorch. It includes 21+2 layers: a convolutional layer with 7×7 kernels and 

stride of 2, a max-pooling layer with 3×3 kernels and stride of  2, 4 convolutional blocks with 

residual connections, each including 4 convolutional layers based on 3×3 kernels and strides 
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of 2 and 1, a  7×7 average-pooling layer with the stride of 7, and finally a 512×1000 fully-

connected layer that provides the output prediction corresponding to 1000 classes. The 

network is trained on ~1.3M images of the ImageNet dataset for 150 epochs with a batch size 

of 256, the learning rate of 0.1 that is divided by 0.1 every 30 epochs (step scheduling), cross-

entropy cost function, weight decay of 0.0001, and stochastic gradient descent optimization 

with a momentum of 0.9. The model achieves an average classification accuracy of ~70.2% 

tested on 50k images of the dataset. The networks are trained with 32-bit floating-point 

precision on Nvidia Titan X GPUs, and the learned parameters achieving the highest test 

accuracy are used as the baseline model. 

In every model, the VMM operations are partitioned to nonoverlapping N×N kernels (see 

partitioning in general-purpose mixed-signal deep neural networks [67]). Similar to the VMM 

study, the obtained weights are mapped into target device conductances. The conductance 

tuning process for the constructed VMM kernels is then emulated using the dynamic model 

and previously discussed tuning algorithm. The imprecise tuned weights are then imported 

backed to the simulation setup. Subsequently, the inference tasks are performed on the 

generated models and evaluate the classification drop in each data point.  For every case study, 

12 model instances are generated (by using 12 sets of randomly generated switching threshold 

distributions). Fig. 14 shows the accuracy drop of running the inference test on both 

benchmarks versus the crossbar uniformity for various VMM sizes. Panel (a) and panel (b) 

correspond to ConvNet and ResNet-18, respectively. The box plot is obtained by simulating 

12 random hardware instances (note that tuning simulations are extremely slow even when 

performed on a powerful server). The destructive impact of crossbar half-select disturbance is 

evident in both benchmarks, especially in ResNet-18 that performs the more complex 
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ImageNet classification. The trends are consistent with VMM simulations: The accuracy 

drops exponentially when the VMM size and normalized variations are increased. Notably, 

with 25% normalized variations and 64×64 crossbars, we achieve ~9% accuracy drop in the 

ConvNet and 18.5% on ResNet-18. In the next section, we introduce several methods, which 

restore this accuracy drop and improve the performance.  

 
Fig. 14: The accuracy drop in deep neuromorphic networks versus crossbar uniformity: (a) 
ConvNet, (b) ResNet-18. Each box plot is obtained from the simulation of 12 different 
switching threshold distributions (which correspond to 12 chips). The dashed lines connect 
the median of the boxes.  

2.3.5. Improving the Performance 

The most straightforward solution to cope with the destructive impact of variations in the 

switching thresholds is to improve the fabrication process and device properties. The 

switching threshold variations in metal-oxide memristors depend on multiple factors. Forming 

voltage and current overshoot during the forming significantly contribute to device variability 

and can be tuned by a combination of oxide layer thickness and stoichiometry adjustment and 

optimized annealing conditions [24,119]. Here, we would like to focus on some post-

fabrication techniques for mitigating the disturbance. 
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A. Hardware-Aware Training  

In our recent works [118,120], imperfections of synaptic devices such as noise, 

temperature dependency, stuck-at fault, retention, and tuning error are compensated by the 

method of hardware-aware training: The training is performed fully ex-situ (no extra hardware 

cost), with the only subtle difference of including the device models and imperfections in the 

training phase for the purpose of generating more robust models. The simulation results of the 

previous section indicate that variations in switching thresholds lead to random tuning errors 

in the devices. Note that the tuning errors remain fixed during the inference, assuming devices 

have adequate retention. Nevertheless, tuning errors are chip-dependent, model-dependent, 

and unpredictable because of the intrinsic chip-specific distribution of switching thresholds. 

Despite that it is not feasible to predict and include the exact amount of errors in the training 

phase, the error distribution is predictable due to the uniform shape of weight distribution in 

a neural network model, but more importantly, because of using the same crossbar sizes and 

tuning algorithm (see modular accelerator architectures, e.g., aCortex [67]).  

Modeling the tuning error during the training may increase the robustness of the trained 

model against half-select disturbance during the inference of the neural hardware. Note that 

this technique does not transform the shape of the tuning error distribution. Prior to computing 

the activation values in each update, the weights are converted to memristor conductances. 

Built-in uniform random number generator with the parameter 𝜁 is then used to perturb 

conductances (both 𝐺ା and 𝐺ି in the differential implementation). 𝜁 should be optimized for 

a given network model and overall disturbance (which we now know is a function of VMM 

size, switching threshold variations, and target accuracy). After computing imprecise 

preactivations, the ideal weights are then restored before proceeding with the rest of the 



 

 60

training operations. Note that using a more complicated distribution for perturbation is also 

feasible though we suspect it will have a noticeable impact.  

Fig. 15 shows the performance improvement achieved by this technique on the ConvNet 

benchmark implemented with 64×64 VMM blocks. The figure shows the accuracy drop 

versus the normalized variations for various values of ζ. The robustness of the deployed model 

is obviously increased with this method. For 15%, 25%, and 30% normalized variations, the 

optimum performance is achieved when ζ is set to 5%, 20%, and 30%, respectively. Notably, 

in the case of 25% normalized variations and 64×64 crossbars, the ~9% average accuracy drop 

is now reduced to ~1.87% using ζ=20%. The same trends of improvements are also observed 

in the case of ResNet-18 implemented with 64×64 crossbars. For example, using 𝜁=3% (20%) 

diminishes the accuracy drop from 18.5% to 3.5% (6.1%) for 𝜎=25%.  

 
Fig. 15: Reducing the accuracy drop in ConvNet (64×64 VMMs) using the hardware-aware 
training technique. By emulating the distribution of the tuning error during the training, the 
network becomes more resilient toward the half-select disturbance. The inset shows the 
zoomed-in to the lower portion of the figure.  

 
B. Improved Tuning Algorithm 

In the previous chapter, we present a novel crossbar tuning procedure consisting of two 

methodologies for reducing the tail of tuning error distribution. First, the write voltage 
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amplitudes are limited to a specific voltage, which is decreased gradually within each tuning 

round. The consequences of restricting the maximum applied write voltage within each round 

are gradual reduction of net disturbance in each round and large (final) tuning error in high 

threshold devices. The former stems from the fact that low-to-moderate threshold devices 

become disturbed less and less as the tuning algorithm advances. The latter merely originates 

from the fact that the write voltage is not enough for high threshold devices to switch. In the 

second method, we initially identify devices with large set(reset) switching thresholds and 

switch them to the highest (lowest) conductive state prior to executing the first tuning round. 

Then, we take advantage of the possibility to encode the same weight with different target 

conductances in the differential pair implementation. In every round, when tuning a disturbed 

device with a threshold higher than the maximum voltage limit imposed by the first 

methodology, the state of the paired device is adjusted rather than the high voltage device. 

The application of these two novel techniques significantly reduces the tail of disturbed 

devices.  

Fig. 16 demonstrates the effectiveness of using these novel tuning algorithms with and 

without applying the hardware-aware training technique. When no hardware-aware training 

is applied, the novel tuning algorithm reduces the accuracy drop regardless of the uniformity, 

predominantly when variations are higher than 20%. When the two techniques are both 

applied, the results are even better. A sub-percent accuracy drop is now feasible even with 

30% normalized variations. For the notable case of 25%, the average drop now becomes 

insignificant when 𝜁 = 2% is used in the hardware-aware training.  The simulation results of 

the ResNet-18 benchmark are also promising. For example, in the case of 𝑁 = 64 and 𝜎 =

25%,  the improved tuning algorithm solely reduces the accuracy drop to 1.88%. Combined 
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with the hardware-aware training (𝜁 = 3%), we can decrease the accuracy drop to just 0.4%. 

In the initial simulation, we observe that the model generates almost random outputs (~70% 

accuracy drop) when the variations are 𝜎 = 35% and larger. While the two proposed 

techniques enable 6.9% and 17.2% accuracy drops, utilizing 𝜁 = 20% and  𝜁 = 3%, 

respectively.  

 
Fig. 16: Reducing the accuracy drop in ConvNet (64×64 VMMs) using the novel tuning 
algorithm with and without hardware-aware training. The inset shows the zoomed-in to the 
lower portion of the figure.  

C. Modifying Switching Thresholds 

Modifying the switching thresholds of outlier devices is another method for reducing the 

impact of variations in the switching thresholds. This correction process includes an 

unconventional continuous hard reset operation, which pushes the outlier device close to its 

virgin state, followed by a voltage-controlled reforming procedure, which revives the device 

with slightly shifted switching characteristics. Our experiments show that the correction 

process results in a stochastic shift in the switching threshold of devices, which means the 

refreshed device could have improved switching properties. Applying this technique to outlier 

devices (that feature low voltage thresholds) reduces the spread of variations, which in turn 

improves the accuracy of the implemented model.  
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Fig. 17 shows the  results of the experiments developed to validate this idea. First, a virgin 

device in the crossbar is formed and tuned to 50 kΩ. Then, its switching thresholds are 

measured by tuning it repeatedly to 100 kΩ and 10 kΩ. After 10 rounds, the device is hard 

reset to >1MΩ and then revived and tuned to 50 kΩ. Switching thresholds are measured again 

in a similar fashion. The process is performed one more time just to make the results more 

illustrative. Fig. 17a shows the experimental results, and the inset of Fig. 26a shows how the 

switching thresholds are changed after the initial forming (i.e., the original thresholds) and 

each reviving round.  The stochastic shift of the switching thresholds is quite obvious from 

these data. In addition, a one-time switching threshold modification is applied on 60 devices 

with various initial switching thresholds, and Fig. 17b corroborates the stochastic nature of 

this shift in the symmetric histogram of relative change in the switching threshold after the 

modification process is applied. Specifically, as an example of modifying an outlier device, 

we apply the modification process to a device with an average set and reset switching 

thresholds of +0.8 V and -0.8 V, respectively (among ten switching rounds). Then, it is 

observed that the refreshed device has an average set voltage of 0.95 V and an average reset 

voltage of -1.2 V, which are significantly better and closer to the typical average switching 

thresholds of the crossbar. Due to the limitations of our experimental setup, we can not 

validate the impact of this method with direct system-level experimental results. On the other 

hand, simulations of reducing the variations in the benchmarks are trivial, and its effects are 

obvious. Therefore, the study of the impact of this technique on large-scale neuromorphic 

architectures is considered as a future work when integrated 0T1R memristive systems are 

available.   
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Fig. 17: Modulation of switching thresholds: (a) The experimental results of the modification 
process applied on a virgin device in the crossbar. The process includes initial electroforming, 
tuning the device to 50 kΩ, analog switching for ten times between 10 kΩ and 100 kΩ, which 
are close to typical the lowest and highest resistance states, and hard reset to a state of more 
than 1 MΩ. The inset shows the switching thresholds measured in each round. (b) The 
histogram of the stochastic relative change (100×∆𝑉 𝑉⁄ ) in the average set/reset switching 
thresholds (V) for 60 devices after performing the hard reset and revival processes on them.    

2.3.6. Discussion 

The findings in this section suggest that the prospects of using 0T1R crossbars in 

neuromorphic computing are high. In the general VMM study, we uncover exciting 

opportunities and interesting tradeoffs about these circuits for the first time: 1) The 

relationship between the computational error and the crossbar size, uniformity, and target 

tuning error is thoroughly investigated. 2) We present the periodic and instability of tuning 

error in large nonuniform crossbars in addition to the linear and exponential dependency of 

computing accuracy to uniformity at small, moderate, and large VMM sizes. 3) It is shown 

that in large VMMs, very precise tuning of devices requires a large number of pulses, which 

in turn may lead to more disturbance and reduction of the ultimate computing accuracy. 4) 

Slight increase in the computational error is inevitable in very large 0T1R crossbars even with 

zero variations since even a small half-select voltage drop could become potentially noticeable 

when the total number of pulses grows very large. 5) We compare the computational accuracy 
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of state-of-the-art 1T1R (~3% target error reported in [13] based on extremely conductive 

devices) and 0T1R crossbars (1% target tuning and σ~25% reported in [113]) and report 

similar computing accuracy when the 0T1R crossbars are tuned with 1% target precision or 

worse by only ~1% when using the same (as 1T1R) tuning precision of 3%.  

Evidently, such results suggest excellent prospects of using 0T1R circuits in building large 

neuromorphic networks since passive technology offers much better density than 1T1R 

technology. To clarify this argument, we study the area consumption of 64×64 standalone 

1T1R and 0T1R circuits that include the memristor arrays, programming switches, and read 

switches. Note that the programming switches facilitate the forming and write operation of 

the crossbar and virtually implement the V/2 scheme and the read switches decouple the 

programming circuit from the analog peripheries (e.g., data converters and sensing circuits). 

The 1T1R circuit obviously includes an extra selector switch for every memristor. 

We assume a scaled version of the 1T1R technology since the state-of-the-art demonstration 

(with properly reported statistics) [13] is based on extremely large cell size and conductance. 

In other words, similar device parameters (e.g., 𝐺୭୬ and 𝐺୭୤୤) are used between the two 

topologies for a fair comparison. Analog switches are also designed and laid out in a 65 nm 

CMOS process. Based on these considerations, we design both 0T1R and 1T1R circuits based 

on 2 types of (thin-oxide 1.2 V and thick-oxide 3.3 V) switches and taking the midrange 

conductance of devices and forming current as variables. Such information reveals the trends 

of scaling the device size (which should result in lower midrange conductance due to reduced 

leakage) and scaling the switching/forming voltage (which is an important near-future goal in 

designing the next generation of both 0T1R and 1T1R memristor circuits).    
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The area of the read switches is the same between the two topologies and depends on the 

maximum read current and tolerable drop voltage on them. Here, the on-conductance of read 

switches is designed to ~100𝐺୭୬, which is selected based on numbers from the ResNet-18 

implementation on aCortex architecture. Note that since memristors are linear in the read 

voltage regime, it is reasonably straightforward to compensate for the voltage drop on the read 

switches by adjusting the state of the devices. The sizing of programming switches is decided 

based on the worst-case write current drawn from an electrode during the forming operation. 

In 0T1R circuits, the write current is the sum of the current used to form a device and the 

leakage current in the rest of the crossbar (since other electrodes are floated). The maximum 

𝐼୵୰୲ is drawn from the circuit when electroforming the last device. Note that, to minimize the 

leakage, we always reset all previously formed devices to 𝐺୭୤୤ during the forming operation. 

In 1T1R circuits, 𝐼୵୰୲ is the current needed for forming a single device. In all circuits, the 

number of fingers of MOSFETs is adjusted to minimize the area. 

Fig. 18 shows the circuit area offered by 1T1R and 0T1R topologies in different cases. 

Specifically, it is shown that by scaling the device conductance, the circuit area reduces 

dramatically for 0T1R topology because of reduced leakage (specifically for small scaling 

factors in which the worst-case write current is overwhelmingly dominated by leakage). The 

gradual circuit area reduction in 1T1R is due to the diminished area of read switches. Scaling 

forming current is though more noticeable in 1T1R because the selectors which dominate the 

area are shrunk. Scaling forming/switching voltage is effective and essential in both 

technologies, which would allow the use of scalable thin-oxide transistors for programming 

switches. Fig. 18 also indicates that 0T1R circuits outperform 1T1R designs with a 

tremendous ~5× area gain if we use the current state-of-the-art analog-grade memristors (S=1, 
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~250 µA forming, and ~3.3 forming/switching voltage). By scaling all functional parameters 

of memristors (to (S=10, ~50 µA forming, and ~1.2 forming/switching voltage), the area gain 

becomes ~7×, signifying outstanding prospects for passive memristive circuits. For larger 

crossbars, the gain becomes even larger. In future works, we will study the impact of 3D 

integration of multilayer 0T1R circuits and the possibility of sharing programming switches, 

which should enlarge the gain even further. Note that the scaling results are relevant as long 

as the switching characteristics and device properties remain fine.  

 
Fig. 18: Circuit (crossbar + switches) area of 64×64 0T1R and 1T1R topologies versus the 
scaling factor (S) for various forming currents and voltages based on a 65 nm CMOS process. 
For S=1, we have 𝐺୭୬ = 100 μS and 𝐺୭୤୤ = 8.3 μS. In the cases with S >1, both 𝐺୭୬ and 𝐺୭୤୤ 
are scaled with S. When forming/switching voltage is 3.3 V, thick-oxide 3.3 V transistors are 
used to implement all switches and the maximum of 0.7 voltage drop is allowed on 
programming switches (i.e., the maximum input voltage is 4 V).  When forming/switching 
voltage is 1.2 V, thin-oxide 1.2 V transistors are used to implement all switches and the 
maximum of 0.3 voltage drop is allowed on programming switches (i.e., the maximum input 
voltage is 1.5 V).   

Three techniques are explored for mitigating the impact of nonuniform IV characteristics of 

0T1R memristors in neuromorphic circuits. The simulation results indicate that these 

techniques enable software-equivalent accuracy on both ResNet-18 and ConvNet 
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benchmarks, in the case of N=64 and 25% normalized variations, which corresponds to the 

features of our recent fabricated crossbar. In addition, the presented data in Fig. 16 suggest 

that a sub-percent accuracy drop is achievable in advanced neuromorphic circuits with even 

~30% normalized variations using 64×64 crossbars, which leads to a balanced resource 

utilization at system levels, as promised by theoretical architectural studies [67].  

Let us also mention several limitations of these mitigation techniques. First, hardware-aware 

training is not a viable option in some neuromorphic tasks, e.g., neurooptimization [8], in 

which the weights are fixed and predetermined by some constraints of the applications. In 

such cases, the practical solutions are improved tuning algorithm, fabrication process, outlier 

correction, and, if needed, reducing the crossbar dimensions. Second, the switching threshold 

modification method should only be used for outlier devices once or a few times to prevent 

damaging the devices or reducing their endurance life.  

Finally, here we focused on the uniformity that is the primary challenge of upscaling 0T1R 

crossbars. Another challenge facing further progress is CMOS compatibility. Some 

technologies require high-temperature epitaxial growth [87], which is incompatible with 

monolithic CMOS or three-dimensional integration. Some processes use non-CMOS 

compatible materials, e.g., silver, gold [105], etc., and most previous works use nonstandard 

deposition techniques such as liftoff. Often, the electroforming and switching voltage range 

in (both 1T1R and 0T1R) technologies are higher than the core voltage (and sometimes IO 

level) of standard sub-micron CMOS processes. Fig. 18 suggests downscaling device 

conductance, forming current, and switching voltages must be followed as an important future 

direction, as it leads to a dramatic enhancement of density in both analog 1T1R and 0T1R 

circuits.  
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In summary, the excellent scalability prospects of memristors are promising for designing 

energy-efficient and compact neuromorphic circuits. However, the strict uniformity 

requirements on the IV characteristics of memristors challenge the upscaling of 0T1R 

memristor crossbars. In this section, we have conducted an in-depth analysis of this problem 

and studied the tradeoffs between computing accuracy, crossbar size, switching threshold 

variations, and target precision. First, we have demonstrated our results using the benchmark 

of general matrix multiplication operations and uncovered interesting tradeoffs and exciting 

opportunities in these circuits. Then, study the impact of crossbar uniformity in two 

representative deep neural networks and explore three solutions (hardware-aware training, 

improved tuning algorithm, and switching threshold modification) for improving the 

performance. More importantly, it is shown that the current state-of-the-art analog-grade 

0T1R technology can offer software-equivalent accuracy of advanced deep neural networks. 

Finally, we have analyzed the density prospects of memristive circuits and showed at least ×5 

superior density of 0T1R against 1T1R circuits. Further, we have shown that downscaling the 

device characteristics such as midrange conductance will increase this superiority even 

further.  

2.4. IR-drop and Nonlinearity Analysis in Memristive Circuits 

Device nonlinearity and interconnect parasitics are two important factors that limit the 

computing precision of memristor-based VMMs. This chapter investigates the impact of such 

non-idealities in analog current-mode memristive VMMs through simulations and 

experiments on the most prospective passive crossbars. To make our analytical study more 

general, we target two applications of VMM circuits: an analog multi-layer perceptron 

implementation and 2D convolution for edge detection filtering. Several works in the 
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literature addressed similar topics, but with a focus on devices with selectors [81,98], write 

operation [121], or programming error due to variations. Nonlinear input mapping is proposed 

in [122] to compensate device nonlinearity. However, variations and interconnect parasitics 

are neglected in that study. Only linear devices and the impact of IR drop are considered in 

[123]. Passive crossbar circuits are explored in [124] using a simplified model focusing only 

on nonlinearity and IR drop. Similarly, Ref. [125] proposes a  conversion algorithm to 

minimize the error due to device non-idealities and IR drop. Finally, some works explored the 

impact of non-idealities in the context of specific applications, such as neuromorphic 

computing [126,127], which is typically much more resilient to precision errors or digital 

memory [128]. 

We model N×N crossbar circuits with passively integrated TiO2-x memristors (Fig. 19) 

based on the technology developed by our group. Our general focus is on the circuit and device 

parameters, e.g., values of N, wire conductance gwire, and memristor currents, specific to our 

technology. Note that the considered TiO2-x devices have rather typical I-V characteristics of 

many metal-oxide memristors. We also extend our analysis to larger gwire values, 

representative of more advanced fabrication processes (e.g., with larger aspect ratio crossbar 

electrodes made of higher conductance metals, compared to those used in our circuits). Hence, 

we believe that the results of this paper are quite general.  
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Fig. 19: Experimental I-V curve of a TiO2 memristor. Inset shows a scanning electron 
microscopy image of a 20×20 passive crossbar circuit. (b) Single-quadrant and (c) differential 
N×N crossbar circuit with memristive crosspoint devices. 

Simulation results are obtained from SPICE using an in-house phenomenological compact 

model of TiO2 memristors [115]. As opposed to previous work, this compact model is 

developed based on an extensive statistical study and captures the device imperfections 

needed for a comprehensive analysis of memristive circuits and systems. The studied non-

idealities include nonlinearities in static I-V characteristics, device-to-device variations, noise, 

and temperature dependency (e.g., see Fig. 20). 

 
Fig. 20: Example of I-V curves for 50 devices: (left) experimental data, (right) prediction by 
the model assuming similar conductance at 0.1V. 

We consider conventional memristor-based VMM topology in which data are encoded in 

voltage amplitude of signals. Compared to time-based encoding, the voltage-mode approach 

is fully compatible with the most prospective passive technology and is potentially more 
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promising, in terms of throughput and energy efficiency, particularly in medium precision 

regimes – see, e.g., our previous works on system-level analysis [16,129]. We study both 

single-quadrant (Fig. 19b) and differential (Fig. 19c) topologies and take into account parasitic 

wire resistance of memristive crossbar circuits. For each crossbar size N, we randomly 

generated 512 input voltage vectors, with vector elements uniformly distributed in the range 

[0, Umax] - see Table II for the definition of all parameters used in this study. In addition, 512 

crossbar circuits are randomly generated, each with unique device-to-device (d2d) variations 

and crosspoint conductances (at 0.1 V), uniformly distributed in the range [Gmin, Gmax]. The 

crosspoint conductances were obtained indirectly by first generating dimensionless weights 

and then converting them according to the VMM topology (Table II). The VMM errors were 

then calculated for all combinations of input vectors and crossbar circuits, with a total of 256k 

configurations for each N. Most of the results are reported in terms |ε|99.9%, which is 99.9% 

percentile of output current errors |ε| for each studied crossbar size N, where |ε| is the absolute 

difference between ideal and the actual output current, normalized to its maximum value. 

Table II. Notations (top) and related equations (bottom). 
N Linear dimensions of the crossbar array 
B Number of connections used for bootstrapping per crossbar line 

Umax 
Largest (non-disturbing) voltage applied to the crossbar circuit 

inputs during operation 
kUmax Voltage at which device conductance is tuned 
gwire Crossbar line (full-pitch- long segment) conductance (Fig. 1b) 

𝐺௜௝ Crosspoint device conductance (Fig. 1b) 
𝐺୫୧୬, 𝐺୫ୟ୶ Minimum, maximum value of 𝐺௜௝ 

𝐼(௡) n-th element of the output current vector 

𝐼୧ୢୣୟ୪
(௡)  Ideal value for 𝐼(௡), i.e., for linear devices and gwire→∞ 

|𝐼|୫ୟ୶ Maximum absolute current value 
ε Relative (computing) current error – see below 

|ε|99.9% 99.9% percentile of |ε|, also referred to as worst-case error 

𝑊௜௝ Weight value, assumed in [0, 1] and [-1, 1] ranges for single-
quadrant and differential topologies, respectively 

Single-quadrant 
𝐺௜௝ =  𝐺୫୧୬ + 𝑊௜௝(𝐺୫ୟ୶ − 𝐺୫୧୬) 

ε = (𝐼(௡) −  𝐼୧ୢୣୟ୪
(௡)

) / |𝐼|୫ୟ୶ 

Differential 

𝐺௜௝ =  𝐺௜௝
ା − 𝐺௜௝

ି 

𝐺௜௝
± = 𝐺୫୧୬ + ൫1 ± 𝑊௜௝൯ × (𝐺୫ୟ୶ −  𝐺୫୧୬)/2 

ε = (𝐼(௡) −  𝐼୧ୢୣୟ୪
(௡)

) / (2 |𝐼|୫ୟ୶) 
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2.4.1. Computing Precision Analysis 

In our first study, we consider gwire = 0.4 S, which corresponds to the measured line 

conductance in   20×20 crossbar circuits [15,16] (but smaller compared to other recent works 

[2]). Fig. 21 shows histograms of the simulated output currents for each output of a 16×16 

VMM circuit for different topologies, biasing strategies, and temperatures. The single-

quadrant architecture severely suffers from the voltage drop on interconnect parasitics. 

Biasing the word lines from both sides can help to mitigate the shift and the spread of the 

errors with respect to the output index (Fig. 21a, b) at the temperature (25 °C) used during 

programming. (A more general and powerful biasing approach is further discussed in Section 

IV.) Nevertheless, it does not reduce the sensitivity to the temperature (Fig. 21c, d). The 

differential scheme (Fig. 21e-i), however, centers and narrows down the distribution of output 

errors around zero. This is because the effective conductance of the device is (almost) a 

monotonic function of temperature. Hence, the temperature-related terms cancel out in the 

differential topology. This topology is particularly appealing to keep the error as low as 

possible when combined with two-sided voltage biasing. Despite the conservative choice of 

gwire, |ε|99.9% is still below 1.5% and 0.75%, for 85 ˚C and 25 ˚C, respectively (Fig. 21f, i).  

 

Fig. 21: Simulated results for output current error ε for (a-d) single-quadrant and (e-i) 
differential topologies implementing 16×16 VMM. Output #0 (#0 and #15) is the closest to 

(a)

(b)

(c) (d)

(b)

(c) (d)

(e) (f)

(g) (i)

(e) (f)

(g) (i)
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where the input voltages are applied to single-quadrant (differential) topology. Panels (a, c, e, 
g) are for single-sided voltage biasing, while (b, d, f, i) are for double-sided ones. The top and 
bottom panels are for 25 ˚C and 85 ˚C, respectively. For all cases, Gmin = 10 µS, Gmax = 100 
µS, and Umax = 0.16 V. 

For a more practical case of larger crossbar circuits, the finite gwire can cause significant 

voltage drops, reducing the effective voltage drop on the crosspoint device (Fig. 22a). At 

smaller gwire, the |ε|99.9% is roughly inversely proportional to the square of gwire, which is 

consistent with the worst-case error due to the IR drops on the crossbar lines. At larger gwire, 

|ε|99.9% is leveling, independent of the voltage and the conductance ranges (Fig. 22b). In fact, 

|ε|99.9% slightly increases before plateauing due to excessive currents injected by nonlinear 

devices at higher biases, which compensates for the current deficiency created by IR drops on 

the crossbar lines. In addition, intrinsic device characteristics, e.g., the higher temperature 

sensitivity in lower conductance ranges, also have a significant impact on the error.  

Furthermore, the error plateau is lower for smaller N (Fig. 22b inset). Assuming gwire > 1 

S similar to [2], Fig. 22b results predict |ε|99.9% < 1% at 25 ̊ C, even for large, >1K-cell crossbar 

circuit. Unsurprisingly, gwire should be increased quadratically with N to ensure error below 

1% (Fig. 22c). Also, the differential topology is naturally more immune to IR-drop because 

its impact on the currents through both devices is compensated by a differential pair. 

 
Fig. 22: Heatmap of normalized (by Umax) average voltages across crosspoint devices in a 
64×64 crossbar circuit with gwire = 0.4 S and double-sided voltage biasing, simulated at room 
temperature (25 ˚C), for two different values of Umax and ranges of device conductances. (b) 
Simulated worst-case error as a function of gwire for differential 32×32 circuit. Inset shows the 
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results for 64×64 differential crossbar circuit simulated at room temperature. (c) Extrapolated 
wire conductance gwire, which is required to ensure the 1% worst-case error. 

 
For relatively small crossbar circuits with smaller voltage drops, device nonlinearity 

becomes the main precision-limiting factor, while for larger crossbar circuits, the dominant 

factor is the interconnect parasitics (Fig. 23). On the other hand, device-to-device variations 

do not have much impact on the error, at least for the considered applications. This is because 

a write-verify tuning algorithm allows the program to accurately program the device 

conductance at read voltage despite variations in I-V characteristics. Furthermore, the impact 

of device-to-device variations reduce even further for large crossbars due to averaging 

 
Fig. 23: Impact of I-V static nonlinearity and d2d variations on the worst-case error for 
differential topologies. 

The computing error due to nonlinearity in the static I-V characteristics can be reduced by 

optimizing the procedure of mapping weights to the memory states of crosspoint devices. In 

the case of ideal, linear devices, the slope of I-V curve, i.e., the memory state, is typically 

assessed by measuring device current at the highest operating voltage (Umax), when using a 

write-verify tuning algorithm. For the devices with nonlinear I-V curves, such an approach 

Crossbar Linear Dimensions N
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leads to a negligible error at Umax voltage input, but the error might be significant at voltages 

below Umax due to smaller effective conductance. To reduce such error, we can tune the 

crosspoint devices at smaller voltages kUmax, where 0 < k ≤ 1, i.e., by setting the device’s 

effective conductance at I(kUmax)/(kUmax) to the desired value at the tuning algorithm. In this 

case, the error would be the smallest at kUmax and is more balanced between the larger and 

smaller ranges of the input voltages (Fig. 24a inset).  For the in-house devices, G = 100 µS, 

and the distribution of the inputs assumed in the modeling (Section II), the computing error is 

minimized by using k ≈ sqrt(2)/2 ≈ 0.71  (Fig. 24a). Fig. 24b shows a comparison of VMM 

output currents from crossbar circuits with ideal (linear) devices and those with nonlinear 

devices for two cases of k. As expected from Fig. 25a results, the currents are higher for k = 

0.5 due to larger error integral at higher input voltages. The distribution of currents for the 

case of nonlinear devices is almost perfectly matching the ideal one when using optimal k. 

This is because individual current errors of single devices (i.e., those in computed product 

terms) are canceling each other out when device currents are summed up on the crossbar lines.    

 
Fig. 24: The ratio between positive and negative error integrals, calculated from the measured 
I-V characteristics of TiO2 devices, which were tuned to have I(kUmax)/(kUmax) = 100 µS at 
27˚C, as a function of used k value. Inset shows positive (red) and negative (blues) current 
error integrals for single devices schematically. (b) Simulated output currents in a 32×32 
single-quadrant architecture with nonlinear crosspoint devices, when tuned at k = 0.5 (black 
line) and k = 0.71 (red line), and ideal linear devices (grey-filled area).  

(a)

(b)

optimal 
balancing

𝐠𝐰𝐢𝐫𝐞 = ∞

(b)

k = 0.5

k = 0.71
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The error balancing technique works well when voltage drops on the crossbar lines are not 

significant. However, the error can be even larger otherwise compared to the suboptimal 

balancing approach, e.g., for a 32×32 circuit with gwire = 0.4 S (Fig. 25). This is because IR 

drops across crossbar lines compensate higher currents for the suboptimal balancing (i.e., the 

right shift of the currents in the histogram in Fig. 24b). One solution to deal with large IR 

drops is to compute optimal values of k based on the particular device location in the crossbar, 

e.g., by combining the balancing technique with the one described in Ref. 125.  

An orthogonal solution is to employ a bootstrapping technique, e.g., similar to the one 

used in NOR flash memory circuits. In a bootstrapped design, all crossbar lines are backed up 

with spare lines, which, e.g., can be routed in the lower metal layers for back-end-integrated 

crossbar circuits. Each spare line is connected to the original crossbar line in B > 1 locations 

(denoted as “B×-bootstrapping”), which are equally distributed along the length of the line. 

For example, B = 2 implies that the original and spare lines are connected at the edges of the 

crossbar, i.e., corresponds to the already mentioned double-sided architecture. For 3×- 

bootstrapping, there are three connections - one in the middle and two at ends of the line, etc. 

Bootstrapping technique significantly improves the computing precision (Fig. 25a) while 

comes at the typically acceptable cost of utilizing additional metal layers below or above the 

crossbar array. For passive memristor technology, bootstrapping also requires increasing 

crossbar dimensions from N to N+B-2 to accommodate connections inside the crossbar array, 

though such overhead is minor for the most practical cases N >>B.  
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Fig. 25: Worst-case error for (a) 32×32 crossbar circuit and (b) as a function of crossbar 
dimension when using various techniques for improving precision and two assumptions of 
wire conductance. Wire resistance of the spare lines is neglected in the analysis of the 
bootstrapped circuits.   

2.4.2. Application Demonstrations  

The proposed techniques for improving precision are further verified by modeling two 

representative applications of mixed-signal current-mode VMM circuits. The first studied 

application is edge detection with 5×5 Laplacian of Gaussian filter, in which convolution of 

an image with a specific filter is computed to extract high-frequency information or image 

edges (Fig. 26). The image convolution operation is modeled assuming differential 

architecture with 25 inputs and 1 output for the specific image (Fig. 26a) using a hybrid 

approach. In particular, 50 devices in a 20×20 crossbar circuit are tuned to the desired values 

corresponding to the kernel weights (Fig. 26b) at the voltages specific to the used k, and their 

static I-V characteristics are collected. The data are then fitted using the approach discussed 

in [25] and used for simulating dot-product currents. 8 different implementations with 

different k, B, and gwire are studied (Fig. 26e inset), including ideal case scenario, i.e., with 

gwire = ∞ and linear I-V characteristics. Fig. 26c shows an example of filtered image assuming 

scenario D, i.e., using measured I-V characteristics, k = 0.5, B = 2, and gwire = 0.4 S.  

(a)

(b)

k=0.71
k=0.5

k=0.5

k=0.71 and 3x-bootstrapping

k=0.5 and 3x-bootstrapping
k=0.71

k=0.5

k=0.7
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The results show that due to smaller parasitics, the crosspoint device nonlinearity is a 

major source of computing error, see, e.g., scenario A vs. B (Fig. 26d, e). This is why the 

balancing technique is the most useful for this application. Indeed, among the considered 

nonlinear device scenarios B, D, F, G, H, the error is smaller for scenarios F, G, H. On the 

other hand, bootstrapping does not help and can actually increase error (e.g., E cf. B, and F 

cf. H). This is due to the already mentioned compensation of IR drops across the crossbar. 

Even k = 0.71 is apparently not optimal (and hence H has a smaller error than F) for this 

particular application because of different distributions of conductances and inputs as 

compared to those used in Figs. 2.24 and 2.25.  

 
Fig. 26: Modeling of edge detection algorithm using 5×5 Laplacian of Gaussian filter 
assuming differential implementation based on two 25×1 memristive crossbar circuits and 
taking into account device’s I-V nonlinearity and d2d variations: (a) Original image, (b) 
effective conductance of a differential pair used to implement a 5×5 filter. X and Y are filter 
dimensions. (c) simulation results for the computed image assuming 2×bootstrapping and gwire 
= 0.4 S. (d) The worst-case error and (e) output current histograms for several considered 
scenarios. The details for each studied scenario are provided in the inset of panel e. T  =  25˚C, 
Umax = 0.16 V.   

The second studied application is the neuromorphic inference of MNIST benchmark 

images using a 784-64-10 multilayer perceptron classifier with rectified linear activation (Fig. 

27). The first layer is modeled by assuming that 24 64×64 and 2 17×64 crossbar circuits are 

connected in two 785×64 virtual crossbars to realize differential architecture, while the second 
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layer is modeled with two 65×10 crossbar circuits. (The additional inputs are due to the bias.) 

The other hyperparameters and ex-situ training approach (with 60k/20k training/test images) 

are similar to [70]. The inference is simulated using the memristor compact model, which 

accounts for d2d variations in I-V characteristics [115]. It also assumes that input voltages for 

physical crossbar circuits are applied individually (i.e., that N ≤ 64). The computing error in 

the first MLP layer (error in the output currents) and the corresponding classification errors 

are shown in Fig. 27c and d, respectively, for several scenarios (Fig. 27e). The results show 

that, unlike for previously studied applications, the impact of IR drops on the performance is 

more severe compared to device nonlinearity (test 2 cf. tests 1 and 3). This is due to smaller 

devices’ conductances (i.e., large number of small weights as shown in Fig. 26b) as well as 

larger crossbar circuits. Both VMM error and the classification accuracy improves by 

increasing the crossbar line conductance (tests 4, 6, 7, 8, 9) or the number of bootstrapping 

connections (tests 6, 10, 11). Similar to the previous application, a small non-zero wire 

resistance could be beneficial for compensating current overshoot (test 3 cf. test 9). The results 

also show that the error is the largest for the single-sided architecture (test 4), for which only 

half of the crossbar circuits are employed in modeling, while a combination of more optimal 

balancing and aggressive bootstrapping leads to the classification performance of 2.09%. This 

number is close to the best-case 2%, obtained by simulating the same MLP network in 

software using high precision arithmetic – see, e.g., test 13 cf. test 1.  
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Fig. 27:Modeling of image classification inference with multilayer perceptron network: (a) 
Studied network. (b) Histogram of VMM weights for classification of MNIST benchmark 
images, obtained using ex-situ training method. (c) Simulated error in the output currents of 
the 1st layer VMM circuits and (d) corresponding misclassification errors for several studied 
scenarios (tests). The details for each studied scenario are provided in the inset of panel d. 

In summary, we have developed a framework for circuit-level simulations of memristive 

crossbar circuits and utilized comprehensive device models as well as experimentally 

measured data for metal-oxide memristors to investigate the impact of various imperfections 

on computing precision of analog memristor-based VMM circuits. Using statistical numerical 

simulations, we quantified the impact of interconnect parasitics and analyzed different 

topologies on the precision under the range of temperatures. Finally, error balancing and 

bootstrapping techniques are proposed to mitigate device and circuit imperfections, which are 

further verified by modeling two representative applications. 
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2.5. Low-Power Sensing Circuit for Current-mode VMMs 

Peripheral (sensing) circuits are perhaps the most energy and area-consuming components 

in current-mode VMMs. For example, the power consumption of the peripheral circuitry 

exceeds 90% in [70] and 83% in [125]. The reported area overhead is crudely 95% and more 

than 55%, respectively, for these two studies. As a result, the design of an energy-efficient 

neuromorphic circuit hinges on the structure of peripherals. Here, we design a very efficient 

topology for the current sensing in current-mode VMMs. Specifically, we focus on redesigned 

55-nm ESF3 NOR flash memory (Fig. 28), which offers very high output impedance due to 

its split-gate structure. The experimentally measured output resistance is about >10 GΩ in the 

subthreshold regime for the targeted current range. Also, the compact cell structure results in 

a very low capacitance, of the order of ~75 aF/cell on average, in the subthreshold regime. 

(More details on the various aspects of this technology, including IV characteristics, erasure, 

and programming operation, cycling endurance, retention, noise, are discussed in [40].) Figure 

28c shows the common gate-couple topology, which effectively performs the dot-product of 

a current-encoded input vector by dimension-less predetermined weights (programmed to 

flash memories) to generate a current-encoded output vector. The input current vector is 

applied to an array of diode-connected floating gate memory cells in this design. The two-

quadrant multiplication is implemented by dedicating two rows per output and using the 

conventional differential weight scheme to sense and subtract the currents from these two 

rows.  
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Fig. 28: Current-mode VMM implementation with split-gate NOR flash memory: (a) 
Schematics and (b) TEM image of SST’s ESF3 supercell; (c) Drain-source current as a 
function of control-gate voltage under typical read conditions (VBL = 1 V, VWL = 1.2 V, VSL = 
0 V) for various programmed states. The unshaded area shows the typical low-voltage 
operating region; (d) Example of a 2×2 VMM circuit, including two rows of peripheral cells, 
and the key equations governing its operation. 

The peripheral sensing circuit is typically designed to provide low input impedance on a 

shared bitlines (Fig. 28d), and sink/source the current flowing in it. The simplest approach for 

sensing the current is to use a low-voltage cascode current mirror. Its main challenges are 

nonlinearities in the transfer function and voltage variation on the virtual bias, which can 

significantly deteriorate the precision. Besides, current mirrors are susceptible to process 

variations, which mandates large devices. The upshot is low-speed and high-power 

consumption. Conventional transimpedance amplifiers (TIAs) have been used in both 

nanodevice computing engines and flash-based dot-product circuits to pin the virtual bias 

needed for linear operation and for I-V conversion. The area overhead of operational 
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amplifiers has been disregarded in favor of excellent linearity. In addition, the amplifiers are 

often designed to work in a certain “operating point” rather than dealing with a large-signal 

input. This requires a huge overdesign cost in terms of power and area for proper functionality. 

There are other drawbacks, including the requirement of a high gain amplifier in a TIA, the 

dependence of bandwidth on feedback resistor, the need for compensation, and the circuit 

slews for a significant period.  

All-analog current-mode designs could potentially allow for a much better 

performance/cost. Indeed, another implementation approach is to use a second-generation 

current conveyor (CCII). The idea was originally introduced in [131], where CCII has been 

used to build current summers featuring low input impedance. Since then, various CMOS 

implementations were proposed [132], utilizing either open-loop and close-loop structures, 

with the former preferred for a better speed and dynamic behavior. It is also worth mentioning 

that CCII designs based on the topology introduced in [133] do not suffer from the slew-

limited transient response and the gain-bandwidth product tradeoff observed in TIAs and 

hence, in principle, achieve higher speed compared to TIAs. However, their overall energy 

consumption and circuit area are still very high (see, e.g., [134]). Also, the are few designs 

based on operational amplifiers that are not appealing in our applications for obvious reasons.  

In light of the shortcomings above, we have designed a compact current-mode peripheral 

circuitry based on Gilbert translinear loop, which provides a relatively low-input impedance 

and a wide range of gain control and temperature insensitivity. The unique design features 

ultimately enable excellent linearity, high-speed, and low-energy operation. 
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2.5.1. Proposed Circuit 

The proposed circuit is shown in Fig. 29. The corresponding bitline that we intend to sense 

its current is connected to node “Q”, and the current is supplied by M3a. Due to the local 

feedback loop, the increase in the input current leads to a decrease in I2a. This results in a 

differential voltage between nodes X and Y, converted to current by the subsequent low-gain 

amplifier. M1, M2, and M4 pairs are designed in weak inversion, and M3 pair is velocity 

saturated. The rest of the devices are operated in the saturation regime. When biased in weak 

inversion, M1,4 pairs form a translinear loop, which has an excellent wideband current-

following behavior. When the input current is zero, i.e., Iin = 0, I3a=I3b, the symmetrical 

structure of the circuit imposes I3a = Ib/2, where Ib is the bias current provided by M8.  Since 

Iin is supplied by M3a, the circuit analysis yields 𝐼ଵୟ = (𝐼ୠ − 𝐼୧୬) 2⁄  and   𝐼ଵୠ = (𝐼ୠ + 𝐼୧୬) 2⁄ . 

Since M1,4 pairs are biased in subthreshold, VXY is expressed as 𝑉ଡ଼ଢ଼ =

𝑛𝑉୘ ln((𝐼ୠ + 𝐼୧୬) (𝐼ୠ − 𝐼୧୬)⁄ ), where VT and n are thermal voltage and subthreshold slope 

factor, respectively. Furthermore, a simple analysis shows that  (𝐼ସୟ 𝐼ସୠ⁄ ) =

 (𝐼ୠ + 𝐼୧୬) (𝐼ୠ − 𝐼୧୬)⁄ . IF = I4a+I4b is the bias current provided by M9. Hence, the output current, 

i.e., the sensing circuit transfer characteristic, is given by 𝐼୭୳୲ = (𝐼୊ 𝐼ୠ⁄ )𝐼୧୬. To improve the 

performance, we can use low-Vth devices for M1,3,4 pairs (though this is not mandatory for 

proper functionality). In a 55 nm process, this allows reaching the same nonlinearity 

performance with crudely 15% less power consumption. 
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Fig. 29: The proposed sensing circuit. 

2.5.2. Circuit Analysis 

Closed-loop high-gain amplifiers provide excellent linearity as long as the gain 

requirements are met. For current processing circuits, nonlinearity becomes challenging in 

part due to the short channel effects in sub-deca-nm technologies. Both deterministic and 

random factors result in deviation from the ideal behavior of the transfer function. 

Specifically, the main intrinsic nonlinearity originates from unequal source-drain voltages 

across M3a and M3b. The maximum relative error, defined as (δr)max  = ( |Iout-Iout
ideal|/ Iout

ideal 

)max due to only this factor, is shown in Figure 30a. Reducing (δr)max is related to minimizing 

δ = I3a/I3b, which in turn, is a function of Iin and Ib, and is achieved by designing M3 in the deep 

velocity saturated region. For example, (δr)max could be made as low as 0.1% by properly 

adjusting the bias current. The second issue arises from process-induced variations. A 

mismatch between I3a and I3b creates an offset in the transfer characteristics. One 
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straightforward solution is to adjust the conductance of memory cells accordingly. Indeed, I3a 

- I3b offset can be compensated by properly tuning conductances in two additional auxiliary 

columns of memory cells, i.e., with two extra devices per bitline. After measuring the input-

referred offset, one of the devices of a pair, based on the sign of the offset current, is set to 

either sink or source the desired current while the other one is fully turned off. This approach 

allows avoiding scaling transistors in the sensing circuit, with minimal power/area overhead. 

Process-induced variations also impact (δr)max, since δ depends on the matching of the M3 pair. 

Additionally, a mismatch in the voltage threshold of M1,4 pairs could result in deviations from 

the ideal output current. The solution here again is to compensate total resultant offset by fine-

tuning the memory devices. To evaluate the impact of process variations, we perform 

statistical Monte Carlo simulations of the designed circuit in a 55 nm process. As shown in 

Fig. 30b, both mean and variance of the total nonlinearity error could be lowered as low as 

0.26%. This can be improved even further by increasing the area of the circuit (discussed 

below). It is worth mentioning that the discussed techniques raise energy consumption, 

naturally yielding a precision-energy tradeoff. Also, in practice, the nonlinearity error is 

expected to be less, by a factor of ~5 according to our estimates, when accounting for 

symmetric layout mismatch reduction techniques, which are not considered in the simulations. 

 
Fig. 30: The impact of nonideal transistor behavior, process variations, and finite conductance 
on the circuit linearity as a function of bias current: (a) Error due to the source voltage 
variations across M3a and M3b  assuming Iin = (Iin)max in TT corner, (b) total relative error at 
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the output due to device mismatches, and (c) virtual bias variations. For all panels, (Iin)max = 
1 µA and VDD = 1.2 V. 

Finite input conductance of the sensing circuit contributes to the nonlinearity of VMM 

operation rather than sensing. Intuitively, when the input current increases, I2a decreases, and 

so does the source voltage of M2a. The maximum change in the source-gate voltage of M2a is 

given by –nVT ln[1-(Iin/Ib)max]. However, the negative local feedback, formed by M10 and M11, 

decreases the gate voltage of M2a and compensates for the drift of the source-gate voltage. 

Additionally, proper sizing of M11 and controlling the bias current allow controlling virtual 

bias swing (or the input impedance of the circuit) for a given maximum input current (Fig. 

30c). The impact of this swing on the computing precision of VMM depends on the type of is 

discussed later. Finally, it is noteworthy that all nonlinearity terms reduce simultaneously with 

respect to the bias current (Fig. 30). Therefore, in a typical design, the minimum bias current 

could be determined by the precision requirements.   

The proposed circuit has a relatively low input-referred current noise, which scales 

linearly with the bias current (Fig. 31a). Hence, the linearity requirements determine the 

transistor sizing and, in particular, the smallest Ib and CX, and CY. With these values fixed, the 

settling time and, as a result, energy consumption can be further optimized by finding the 

optimal output pole location. The output pole can be relocated by adjusting the output current, 

e.g., by changing IF. For a specific translinear loop size determined by the linearity 

requirements, increasing IF initially improves the settling time (Fig. 31b). However, at some 

point, the overshoot in time response becomes excessive and deteriorates the settling time. 

Increasing the output current is no longer helpful since the dominant pole is no longer 

attributed to the output pole. The optimum settling time is obtained by adjusting IF based on 

given Ib, CX, and CY, i.e., the location of the first pole, and CL, i.e., corresponding dimensions 
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of the loaded array or the next stage. Fig. 31c shows the temperature dependence of the 

considered nonlinearities. In general, virtual bias is sensitive to temperature variations because 

Vt is a function of temperature. To reduce the worst-case ΔV below the desired value across 

the entire temperature range, we may supply Ib from a PTAT (proportional to absolute 

temperature) current source. This compensation scheme limits the variations in the virtual bias 

within a wide range of temperatures, as shown in Fig. 31c. Note that IF is also supplied by the 

same PTAT source to keep the slope of the transfer function temperature invariant (within < 

0.2%). The temperature sensitivity of both ΔV and the slope of the transfer function can be 

further improved by designing a more complex compensation circuitry. Finally, simulation 

results indicate that reasonable ±4% fluctuations in supply voltage result in <0.5% change of 

the transfer function slope (Fig. 31d), which stems from the fact that the slope depends only 

on bias currents. Hence, as long as the current reference that supplies these bias currents is 

voltage insensitive and critical devices remain in their targeted operating region, the linearity 

remains acceptable.  
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Fig. 31: Analysis of noise, settling time, and PVT variations: (a) Total integrated input-
referred current noise for several IF as a function of bias currents at Iin = 0 and 100 MHz 
bandwidth; (b) Settling time as a function of translinear loop size and IF current at Ib = 1.75 
µA; (c) Temperature dependence of virtual bias variation (ΔV), slope, and total worst-case 
nonlinearity error; (d) Impact of supply voltage variations on ΔV, transfer function slope, and 
total worst-case nonlinearity error. For all panels, (Iin)max = 1 µA, CL = 7.5 fF. 

2.5.3. VMM Design Case Studies 

We designed four different styles of the proposed sensing circuit, in each case optimizing 

bias current and size of the devices according to the specific metric. In particular, we consider 

the power-optimal (referred to as S1), the area-optimal (S2), the precision-optimal (S3), and 

the energy-optimal (S4) designs. Besides, each style is implemented based on a targeted 6-bit 

for S1,2,4 and 8-bit for S3 precision requirement. All designs are based on 1.2 V devices in 

Global Foundries 55 nm process technology. Fig. 32a summarizes various characteristics of 

the implemented designs, while Fig. 32b shows the impact of input current for S4. (The 

maximum input current is naturally linearly proportional to the size of the VMM circuit.) 

Figure 6b shows that for small input currents, the critical devices must be kept large to 

(b)

(c)
(d)

0 10 20 30 40 50 60 70 80 90 100
0.758

0.759

0.760

0.761

0.762

0.763

0.764

0.765
NL(%)V(mV)Slope

 Slope

 V
 NL(%)

Temperature (oC)

10

11

12

13

14

15

16

17

18

19

20

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25
0.754

0.756

0.758

0.760

0.762

0.764

0.766
Slope NL(%)V (mV)

 

 Slope
 V
 NL(%)

Supply Voltage (V)

10

11

12

13

14

15

16

17

18

19

20

 

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 

1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

i n
,i
n

 (
n
A

)

Ib(mA)

 IF=1.0mA

 IF=1.5mA

 IF=2.0mA

1.0 1.2 1.4 1.6 1.8 2.0
2

3

4

5

6

7

8

9

S
et

tl
in

g
 T

im
e 

(n
s)

IF(mA)

 W=1.5 mm
 W=3 mm
 W=4.5 mm

(a) (b)

(c) (d)



 

 91

counteract the process variation effects, resulting in slower operation. On the other hand, Ib 

and width of M1,2,3 can be scaled up accordingly for larger maximum input currents to keep 

the precision/speed constant. The power, area, and energy naturally increase with respect to 

the maximum input current. The impact of process variations on the circuit’s linearity is also 

studied for all designs (Fig. 32a). Statistical simulations across all corners show that the 

sensing circuitry can effectively operate with up to 8-bit precision. In particular, the process-

induced precision errors are controlled by the proper sizing of the translinear devices and the 

bias current. Dispersion in transfer function slope, which follows a normal distribution, is 

addressed by adjusting the weights.  

Energy-optimal design S4 is further utilized to investigate the performance of a current-

input current-output fully analog VMM based on split-gate embedded NOR flash memory 

technology. One of the most important characteristics of the analog-mode VMM is its 

effective operating precision. Even though the S4 design is suitable for 6-bit operation, for 

simplicity, we here consider a rather conservative assumption that VMM’s input, weight, and 

computing precisions are all effectively 4 bits. Note that the weight precision might be limited 

by each of the following factors: tuning accuracy, drift, bitline bias variations, and 

subthreshold slope nonlinearities, depending on the properties of the technology. The 

redesigned layout of the memory array allowed to demonstrate experimentally >6-bit tuning 

accuracy for a single cell when a sufficient number of pulses are applied during the tuning 

procedure, which is far better than the targeted 4-bit precision. Accelerated retention tests 

show negligible drift after many years of operation, and the virtual bias variation ΔV can be 

limited to less than 15 mV, which corresponds to < 1% overall bitline distortion for the 

targeted current range. In general, the effective weight error due to the subthreshold slope 
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nonlinearities depends on the choice of peripheral device state and the selected range of states 

used for the array devices. In addition, there is a tradeoff between power consumption and 

weight precision. Indeed, using the memory states corresponding to the lower operating 

voltages (Fig. 28c) reduces the power consumption. The downside is that the subthreshold 

slopes are more nonlinear in those regimes. In light of this tradeoff, the state of the peripheral 

cell and the maximum current via array device are assumed to be 30 nA and 10 nA, 

respectively, under VCG = 0.9 V, VWL = 1.2 V, and VBL = 1 V biasing conditions, shown in the 

unshaded region of Fig. 28c. Since the input-referred noise of the sensing circuit is negligible, 

the main limiting factors for the computing (output) precision are the nonlinearity of the 

sensing circuit and the noise of the memory devices.  

The simulation results in Fig. 32 show that the S4 design style offers a total relative 

nonlinearity error of ~1.1%. The subthreshold current fluctuations are mainly due to random 

telegraph noise (RTN) in memory cells and, more generally, 1/f noise after repeated switching. 

Our measurements show that only a few ESF3 cells (out of 140 total) had considerable 

subthreshold current fluctuations, even after cycling each device 1000 times. The root mean 

square of the current noise via a single device operating in the maximum target current is ~575 

pA at 300 MHz operating bandwidth (500 kHz corner frequency). The total resultant output 

signal-to-noise ratio is ~44.8 dB for a 100×100 dot-product operation. (Due to similar physics 

of operation, 1/f noise can also be crudely quantified by considering much more numerous 

reported noise data for standard 55 nm MOSFETs with the same width and length.) The above 

analysis takes into account all important nonideality factors and shows that achieving 4-bit 

computing and weight precision should be relatively straightforward for the considered VMM 
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design. The estimates are rather conservative and, e.g., even higher weight precision is 

possible when using larger operating voltages. 

To evaluate and optimize operation speed, we assumed that several VMMs are chained in 

a cascade structure, with the output of one VMM sensing circuit feeding the input of the next 

VMM stage directly. This assumption represents an all-analog multilayer neural network 

implementation (though it neglects additional circuitry, which might be required for neuron 

implementation). The propagation delay through such cascade can be minimized by adjusting 

the output poles of VMMs. Note that the input pole of a particular stage VMM is effectively 

the output pole for the preceding stage multiplier. Also, out of the two poles in each sensing 

circuit, the first one is always fixed and determined by the targeted maximum input current 

and linearity requirements; however, the second one can be optimized for minimizing the total 

settling time of the circuit. More specifically, for a desired, fixed sensing circuit linearity and 

given capacitive load, the smallest delay is achieved at the specific sensing circuit output 

current. However, the optimal current value is typically higher than the nominal subthreshold 

current of the minimum size floating gate transistor. Forcing such optimal current via a single 

peripheral floating gate cell would significantly reduce errors in the multiplier operation. To 

overcome this issue, we assume that Mp peripheral cells are connected in parallel for each 

input, which effectively increases the width of the peripheral floating-gate transistors. In 

particular, let us first note that the optimal output current is proportional to the load 

capacitance, which is (M+Mp)Ccell, where Ccell is the unit capacitance of the devices. 

Therefore, for the most interesting cases of large M, increasing Mp and, simultaneously, output 

current for optimal pole location will lower individual currents via peripheral cells and 

decrease settling time. More generally, the settling time, in this case, is proportional to 
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(1+M/Mp)Ccell/(Ip)max, where (Ip)max is the desired maximum current to which the peripheral 

cells are tuned. Fig. 32c summarizes various performance characteristics of the considered 

VMM as a function of its size. As expected, the simulation results show that the average 

energy consumption for the dot-product operation (one channel) is growing superlinearly with 

N, mostly due to the increased maximum input current. The number of operations per channel 

grows linearly, and with constant settling time, the energy-efficiency saturates. The relative 

peripheral area overhead is always below 11%.  

 
Fig. 32:Analysis of noise, settling time, and PVT variations and VMM-level performance: (a) 
Total integrated input-referred current noise for several IF as a function of bias currents at Iin 
= 0 and 100 MHz bandwidth; (b) Settling time as a function of translinear loop size and IF 
current at Ib = 1.75 µA; (c) Temperature dependence of virtual bias variation (ΔV), slope, and 
total worst-case nonlinearity error; (d) Impact of supply voltage variations on ΔV, transfer 
function slope, and total worst-case nonlinearity error. For all panels, (Iin)max = 1 µA, CL = 7.5 
fF. (c) Performace, total area, and energy per channel for N×N  VMM based on 55 nm ESF3 
NOR flash memory. POp/J operation is achieved for N > 50, which are practical kernel sizes 
for many applications. 

In summary, a very efficient sensing circuitry that utilizes the translinear principle of 

Gilbert cell is proposed to boost the performance of NVM-based analog-mode VMMs. In 

prior work, the area, energy, and density potentials of current-domain circuits are typically 

counterbalanced by the overhead of PVT compensation. Here, offset calibration is performed 

by considering two extra columns of programmable NVMs in the crossbar array so that 

robustness against PVT variations is achieved with minimal overhead. Our simulation results 
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show that 100×100 4-bit VMM designed in 55 nm CMOS technology with embedded NOR 

flash and employing energy-optimal sensing circuit achieves 3.63 POps/J.  

2.6. Low-Power Mixed-Signal VMM Design 

An internally analog, externally digital VMM circuit offers the best of both worlds: The 

density and energy efficiency of the analog domain and the noise-robustness and versatility 

of digital communication. Accordingly, mixed-signal VMMs have been realized in a variety 

of applications, including neural networks, support vector machines, and IoT systems.  In this 

part, an energy-efficient analog mode VMM circuit with a digital input/output interface and 

configurable precision is proposed. Similar to some previous work, the computation is 

performed by a gate-coupled circuit utilizing embedded floating gate memories. We use the 

ultra-low-power sensing circuitry that we designed in the previous section to implement the 

local sensing circuit. Additionally, the digital-to-analog input conversion is merged with 

VMM, while the current-mode algorithmic analog-to-digital circuit is employed at the circuit 

backend. Such implementations of conversion and sensing allow for circuit operation entirely 

in the current domain, resulting in high performance and energy efficiency. Post-layout 

simulation results for 400×400 5-bit VMM circuit designed in 55 nm process with embedded 

NOR flash memory show up to 400 MHz operation, 1.68 POps/J energy efficiency, and 39.45 

TOps/mm2 computing throughput.  

Time-based VMMs [135] and switch-capacitor multipliers [136] use charge to encode 

data. The former approach, designed to operate in very low voltages, is based on charge 

integration from digitally programmable current sources. One of the challenges is process-

voltage-temperature variations that may limit the smallest integration delay and hence the 

circuit performance. For the latter case, metal fringing capacitors have been exploited to build 
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VMM circuits with moderate computing precision. These topologies have been explored for 

implementing (> 4 bit) multipliers using bulky and power-hungry active amplifiers. In the 

passive version of such circuits, amplifiers are eliminated [137], which can lead to potentially 

more power-efficient and faster design. The main challenges, however, are leakage, capacitive 

coupling, and charge injection issues, which confine passive switch-capacitor approaches to 

2-3 bit resolutions. In another approach, current/voltage is employed as a state variable. For 

example, a VMM circuit with digitally controllable single MOS-based current sources, in 

which the width of the transistors are scaled according to the predetermined weights, has 

demonstrated very high energy efficiency [138]. The main caveat of such design is an area 

(and hence energy) overhead for weight implementation, which exponentially increases with 

weight precision.  

2.6.1. Circuit Architecture  

A digital-input digital-output (DIDO) M×N VMM circuit computes M Po-bit dot-products 

between N-element Pin-bit input vector and corresponding N-element vector of Pw-bit weights 

in parallel. Note that, in general, the precision of dot-product computation might be higher 

compared to that of ADC converter. Specifically, the top-level architecture of the proposed 

circuit is shown in Fig. 33. In this architecture, data are buffered into a shift register to hold it 

during the processing, which is triggered by φ1 control signal. Upon completing the data 

transfer, digital voltages are applied to the array to generate currents in each channel 

proportional to the dot-product of input and weight vectors. A merged-DAC (MDAC) 

architecture is employed at the input interface to reduce conversion overhead. In this case, 

each matrix weight Wji is implemented with a set of Pin FG devices, i.e. 𝑊௝௜
௞ =

2௞ (2௉౟౤ − 1)⁄ 𝑊௝௜ , 𝑃in ≥  𝑘 ≥  1, where k is the input bit significance. Assume that ith input 
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is a binary vector {𝑏௉౟౤
, … , 𝑏ଵ}, in that case, a current injected by the memory cells 

implementing weight Wji
  to the jth output is given by: 𝐼௝௜

. = ∑ 𝑏௞ 2௞ (2௉౟౤ − 1)⁄ 𝑊௝௜
.௉౟౤

௞ୀଵ . 

Negative weights with FG memory devices are implemented using differential pair of weights 

𝑊௝௜ = 𝑊௝௜
ା − 𝑊௝௜

ି. Hence, for the two-quadrant VMM implementation, the total current in the 

jth differential output is given by 𝐼௝ = ∑ ൫𝐼௝௜
ା − 𝐼௝௜

ି൯.ே
௜ୀଵ  The proposed MDAC implementation 

is based on the analog synapses, which are implementing the weights as well. Therefore, 

MDAC’s area and energy are contributed by the additional 2×M×(Pin-1) array of FG cells.  

 
Fig. 33: One channel of the proposed two-quadrant VMM circuit with digital inputs and 
outputs. Here, we assume that inputs and outputs are non-negative, while weights can be 
negative or positive.    

2.6.2. Floating-Gate Memory Array and Sensing Circuit 

FG memory array is implemented using split-gate ESF3 SuperFlash®, which is a 

commercialized embedded NOR flash technology developed by SST Inc. The ESF3 flash 

memory is very desirable for the realization of couple-gate arrays, as illustrated in chapter 2.2. 

The robust subthreshold operation of ESF3 devices is typically in the range of 100 pA - 300 

nA range. In our design, the least significant bit of the weights is 500 pA. Maximum 

achievable Pw depends on the state drift, tuning accuracy, and virtual bias variations. In order 

to have 5-bit effective precision, we bound the weight error by 0.9%, i.e., the normalized 

difference between the desired and actual subthreshold currents of the cell should be less than 

0.9%. We may achieve this condition by ensuring the tuning accuracy (which could be 
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improved with increasing write time) and drift are bounded by 0.4% [40], and hence the error 

due to maximum sustainable bitline voltage distortion can be < 0.5%. The virtual bias 

variations impact the absolute value of the weight via channel length modulation and drain-

induced barrier lowering. For the utilized range, 0.5% crudely translates into ∆Vb = 10 mV. 

The sensing circuit provides the virtual voltage Vb on shared bit (i.e., the horizontal lines on 

Fig. 33) lines. The design of the sensing circuit has been described in section 2.2. The proper 

sizing of M11 (Fig. 29) and adjustment of bias current 𝐼ୠ allows reducing ∆Vb to 3 mV, which 

ensures 5-bit weight precision. 

2.6.3. Current-Mode ADC Design 

Algorithmic ADCs feature high resolution, throughput, and small area. Among such 

architectures, conventional current-mode ADCs typically offer the best speed-area 

performance [139]. In our work, we use current-mode cyclic ADC to minimize the conversion 

cost and, more importantly, to leverage the tunability of FG cells for the precise current 

generation. Specifically, a 1-bit per stage cyclic current-mode ADC is implemented, as shown 

in Fig. 34. Note that we have not used the common 1.5-bit per stage design since it has a 

significant overhead. Instead, the offset of the comparator is compensated by adjusting input 

bias currents 𝐼୆୅ for each channel using FG cells. Although these bias currents contribute to 

static power consumption, they are critical to support a bipolar output and keep the mirror 

devices at the input stage of the comparator turned on, which facilitates faster conversion. The 

constant current sources are generated by auxiliary MDAC arrays of FG devices, which share 

bit lines with the main array. The operation is performed in a sequence of Po steps: In the first 

step, the current comparator determines whether the input current (Iin), fed by sensing 

circuitry, is positive or not and generates a sign bit. In the next cycle, based on the sign bit, 
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Imax/2 is either subtracted from or added to input current, where Imax is the maximum possible 

amplitude of ADC input current. At the end of k-th step, the residual current is given by:            

I୰ୣୱ = 𝐼୧୬ + ∑ (−1)஽ು౥ష೗శభ(𝐼୫ୟ୶/2௟)୩ିଵ
௟ୀଵ , k>1, where Dl represents l–th output bit. The process 

is repeated until LSB (D1) is generated. Then, D<Po:1> is buffered to a parallel register. The 

operation needs minimum control, and the control circuitry is shared between all channels, 

leading to a very compact implementation. The controller is essentially simple logic circuits 

to enable the process and a shift register, which is cleared at the end of each conversion and 

shifts logic “1” at each conversion step.  

 

Fig. 34: Block diagram of the proposed algorithmic ADC. 

The comparator design is shown in Fig. 35a. The circuit utilizes a cascode current mirror 

as a preamplifier and a latch stage similar to that of StrongARM [140]. At the beginning of 

each step, when φ2 or φ3 is high, nodes X, Y, P, and Q are grounded (shielding mode). The 

purpose of shielding is to reset the state of the comparator and avoid storing excess charge on 

node X right after each conversion, which may happen due to the delay of the peripheral 

circuit. Shielding continues until I6b restores to Ib
+. In the following, both φ2  and φ3 go down, 

while the current I6b
 + Icom, where Icom = (IM4a + IM4b) /2, charges node X. The circuit operation 

is similar for VY, with Ib
- + Icom charging node Y. Icom is used to inject a dynamic common-

mode current to turn on 𝑀ଵୟ,ୠ quickly.  When VX reaches the threshold of transistor M1a, φ3 

goes high, and regeneration begins. Finally, cross-coupled transistors turn on, and the 
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differential current, amplified by the positive feedback loop, brings one of the outputs to VDD. 

An example of this operation is shown in Fig. 35b, in which the input current is 700 nA and 

(Iin)max = 1 µA. Since input current is positive, Q becomes “1” after comparison is finalized, 

and 500 nA is subtracted in the following step. The process repeats itself until an LSB is 

generated. Due to the unique features of analog-grade FG cells, which are exploited in 

performing multiplication, offset compensation, and generation of constant scaled current 

sources, the sizing of the proposed circuit is relaxed. Indeed, the high performance achieved 

in the proposed ADC topology stems from three factors: low-overhead offset compensation, 

which relaxes the tradeoff between speed and resolution, embedded design of current 

references with zero power overhead, and low-power design of dynamic current comparator.  

We design the comparator in a 55 nm CMOS process that settles at 0.65 ns for 30 nA 

differential input current while dissipating only 2.07 µW dynamic power on average. At high 

precisions, the clocking scheme of cyclic ADC can be redesigned to improve its energy 

efficiency  . In addition, the input-referred current noise of the comparator (and the sensing 

circuit) is much smaller than the noise associated with FG cells.  

 
Fig. 35: (a) The dynamic current comparator circuit. (b-e) The timing diagram of the ADC 
(shown for four cycles): (b) transient voltage of nodes X, Y, P, and Q, (c) transient residual 
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currents and drain currents of M6c,6b, (d) clocking scheme, and (e) corresponding digital 
outputs. 

2.6.4. DIDO VMM Simulation Results 

The proposed DIDO VMM circuit is simulated in GlobalFoundries 55-nm LPe 2P8M 

process technology. The design is optimized to maximize energy efficiency. The dynamic 

power (in comparator and array) and the static power (in peripheral circuitry and array) are 

both included in power consumption estimates. The same precision for inputs and weights, 

which is limited to ~ 5-bit as discussed above, is assumed. When the offset of the sensing 

circuit and comparator are properly compensated, the output precision becomes bounded by 

the device noise, which can be controlled by adjusting the bandwidth or current ranges of the 

devices. Our estimates show that >8-bit precision on the full-scale current range is feasible for 

N> 25. The simulation results provided in Fig. 36a indicate the circuit area grows rapidly as a 

function the precision, mainly due to the merged-DAC overhead. The same trend is observed 

in the settling time and energy due to the cyclic structure of the ADC. The trends for delay 

and energy consumption at low precisions (e.g., at < 3-bit) are explained through the argument 

that the sensing circuit cannot be scaled down to preserve the tolerance to process variations. 

Throughput (TH) decreases as expected because the same number of operations are performed 

slower. For the same reasons, energy efficiency (EE) and area efficiency (AE) gradually 

decrease as precision increases. On the other hand, with input/weight precision fixed at 5-bits, 

the total active area does not change much with output precision since ADCs have a small 

area overhead. The number of operations grows quadratically as a function of VMM size, and 

so does the total active area (Fig. 36c). At low currents (smaller size VMMs), the sensing 

circuit is slower. Because of that, TH is increasing roughly quadratically with VMM size. 

Though the total energy consumption is increasing with VMM size, the EE is also increasing 
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because of TH and is saturating at ~1.8 POps/J for N > 500. Fig. 36d shows energy breakdown 

for several VMM circuit implementations. Peripheral circuitry and ADCs are typically the 

major sources of energy consumption. The power consumption of the proposed floating-gate-

based ADC is ~6 µW per channel and almost the same for all designs. For the first, a relatively 

small VMM circuit is designed at 4 bits, and hence the array and sensing power are less than 

the power consumed in the comparator. For larger precisions and VMM circuits, i.e., the 

second and third considered cases, respectively, the contribution of sensing circuitry becomes 

more prominent. The area breakdown is also provided in Fig. 36e and shows that with the 

optimal design of the peripheries, the FG array dominates the area for larger VMM circuits.  

The performance metrics of our design compare favorably with the best-reported results. 

For example, Ref. [125] reports a memristor-based dot-product engine with an estimated 30 

TOps/J maximum energy efficiency for a 128×128 crossbar circuit. State-of-the-art low-

precision switch-capacitor VMM circuits report a serial 6b/3b/6b VMM circuit in 40 nm 

CMOS [136] that achieves 7.72 TOps/J in 0.012 mm2, and a 9.61 TOps/J in ~0.011 mm2 for 

an 8b/14b/8b 16-parallel channels in 28 nm CMOS [141]. For comparison, the proposed 

approach achieves 1.68 POps/J for a 400×400 VMM circuit (in simulations) when 

computation, I/O, and weights are all at 5-bit precision, which is ~100× better than that of 

state-of-the-art switch-capacitor design. In principle, for both switch-capacitor designs, 

weights can be programmed quickly, making it suitable for a larger range of applications, as 

compared with the proposed design. However, this advantage often comes with the cost of 

bandwidth limitations and significant overhead for moving weights in large-scale systems. FG 

memory-based circuits [100] are also used to realize a neural network featuring 7.2-bit weight 
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precision in a 130 nm CMOS process. Though the system is fully analog, it achieves ~1 

TOps/J while occupying 0.36 mm2 [130].  

 
Fig. 36: Various performance metrics of DIDO VMM circuit as a function of (a) precision 
assuming Pi=Pw=Po and M=N=100, (b) output precision Po, assuming Pi=Pw=5 and 
M=N=100, and (c) VMM dimensions, assuming Pi=Pw=Po=5. (a) Energy and (b) area 
breakdown of 4 different DIDO VMM implementations. 

 

2.7. Designing DNN Inference Accelerators 

This section describes the architecture and properties of a mixed-signal convolutional 

neural network (ConvNet) chip based on embedded floating-gate cell arrays redesigned from 

a commercial 55 nm NOR flash memory, which can be used to perform image classification 

on CIFAR-10, CIFAR-100, or MNIST datasets. Each array performs high-speed and energy-

efficient vector-by-matrix multiplication in the analog domain. The network-specific 

neuromorphic chip is designed and fabricated in the Global Foundries 55 nm LPe CMOS 

process and includes ~13.4×106 total synapses, ~1.5×106 training parameters, ~3×103 neurons 

while occupying ~43 mm2. Theoretical simulations indicate the chip achieves ~87.5% 
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accuracy on CIFAR-10 while consuming, ~2.1 µs/pattern latency, and ~3.37 µJ/pattern and 

offers ~98% classification accuracy on MNIST while achieving a performance of ~0.036 

µs/pattern latency and ~324 nJ/pattern energy.  

Other unique features of this design include: time-division multiplexing (TDM) to reduce 

network complexity, NOR-flash-based DAC to reduce the overhead of data converters, 

merged implementation of convolutional and average pooling operations, local and global 

folded wiring to minimize the redundancy and maximize data reuse, the novel design of tuning 

circuits, sharing tuning circuits among eFlash arrays, programmable gain/activation function 

slope to improve SNR with unique test access for precise mapping, individual access to each 

neuron output for advanced training schemes, temperature resiliency, and more importantly, 

massive read/write/erase parallelism, which enable sub-minute high precision tuning of the 

entire chip. The fabricated neuromorphic circuit is trained ex-situ; that is, the model weights 

are initially computed on a precursor server in the training phase. The weights are converted 

to state currents of flash synapses in the programming mode. Finally, the hardware is operated 

in the inference phase to perform the inference task and image classification.   

Fig. 37a shows the architecture of the implemented ConvNet, which classifies 32×32 4-

bit RGB (or 64×64 3-bit) images and includes 2 convolutional, 2 average pooling, and 2 fully-

connected (FC) layers. The convolutional operations in the first two layers are performed fully 

in the analog domain in 25 time-multiplexed steps (Fig. 37b). In every step, one pixel per map 

in L2 is generated. The outputs of the second layer are digitized using a bank of 120 4-bit 

ADCs and then stored in register banks, which drive the first fully-connected layer. The two 

FC layers operate in a single cycle to produce the 120 outputs of the network. The mixed-

signal accelerator also supports an MLP-mode, which can be used to perform extremely high-
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speed classification of 64×64 3-bit grayscale or 32×32 RGB 4-bit images. In MLP-mode, the 

input images are directly fed to the last two fully-connected layers to perform a one-shot 

classification.  

 
Fig. 37:  Network-specific mixed-signal image classifier accelerator:  (a) The architecture of 
the implemented deep convolutional neural network, (b) TDM operation of the chip. 

The fabricated 6.5 mm × 6.7 mm chip in 55 nm process is shown in Fig. 38a, and the 

adapter to interface the chip with our measurement setup is provided in Fig. 38b. Future work 

focuses on performing measurements and characterization of the chip.  

 
Fig. 38:  (a) Packaged chip. (b) Micrograph of the chip. (c) Fabricated adapter board to 
interface the chip with the general-purpose setup.  
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memories in GF’ 55 m LPe CMOS process. The neuromorphic network is a 3136-390-120 

multilayer perceptron, which includes 1.2×106 trainable parameters and 510 neurons. All 

active circuitry has a total area of  <8 mm2. Simulation results indicate that the network can 

classify MNIST images with ~98% accuracy, and the classification of one pattern takes ~100 

ns and 0.25 nJ—4.3%, 10×, 100× better than our previous implementation [40] based on 180 

nm eFlash technology. The improved performance originates not only from exploiting a more 

advanced process node but also from employing more optimum peripheral circuits. 

Similar to the ConvNet chip, this chip is also trained ex-situ with weights computed in a 

precursor software and then transferred to the chip in a tuning process. We also use similar 

tuning circuits for each block, which allow us to tune 30 devices (5 devices in a block) in 

parallel for the entire network. Hence, we only focus on several key differences of this design 

with the previous one.  

Fig. 39a shows the overall architecture of the implemented MLP, which can classify 

images with up to 56×56 4-bit pixels, and Fig. 39b shows the logical implementation of this 

design. Unlike the previous circuit that used TDM operation, this network is fully analog and 

operates in a single cycle. A massive eFlash array is needed to implement the 3136×390 

current-input current-output dot-product in the first layer. 390 differential neurons are 

connected to sense the currents from the outputs of the first layer, rectify the response, and 

apply to the synapses in the second layer. The 390×120 current-input current-output VMM 

and 120 connected neurons generate the predicted response.  
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Fig. 39:  (a) The network architecture. (b) The logical implementation of the image classifier 
(SSR: shift registers, L1: eFlash arrays implementing the first layer, N1: neurons in the first 
layer, L2: eFlash arrays implementing the second layer, and N2: neurons in the second layer). 
(c) The floorplan of the folded design with BLs shared on the side of the first layer. Panel (c) 
also shows the layout of a superblock from the first layer.  

The chip is expected to operate reliably across the 0-100 temperature range due to the use 

of temperature-insensitive DACs, sensing circuits, and an optimal weight to state current 

mapping [120], which improves the resiliency toward temperature variations. With 4-bit input 

and at least 5-bit weight precision, our simulations indicate we can achieve ~98% prediction 

accuracy of the MNIST dataset using this network.  

Fig. 40a shows the layout of the entire chip, and Fig. 40b shows the micrograph of the 

fabricated chip. Besides this classifier, we have also prototyped standalone VMM circuits 

(which were discussed in chapter 2) and characterization blocks in this tape-out:  30×30, 

100×100, and 300×300  energy-efficient time-based (see section 2) differential VMMs [164] 

are implemented with complete peripheral circuits, including digital neurons, digital-to-time, 

and time-to-digital converters, and a 1 GHz phase-locked loop to generate a high-speed clock 

for timing circuits. 20 current-mode 256×256 blocks with merged-DAC architecture (see 

section 2) are also prototyped. We also have designed 20 10×10 VMM blocks in which we 
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have changed the various aspect of the eFlash cells, e.g., the length of the gates. In one case, 

we have fabricated a PMOS eFlash array to study whether the same device performance can 

be achieved with these complementary devices. Such feature reduces the complexity of 

peripheral circuits as the sinking and sourcing of the current could be done in a single node, 

which ultimately leads to improved energy efficiency in VMMs. Future work focuses on 

performing measurements and characterization of the chip. 

 
Fig. 40:  High-speed image classifier and VMM prototypes in 55 nm CMOS: (a) layout and 
(b) micrograph of the fabricated chip. 

Finally, a general-purpose neuromorphic architecture with industrial 1T1R analog 

memories is also designed. The architecture of this chip is based on our recent work, aCortex 

[67], which is designed primarily for eFlash technology. Several unique features of aCortex 

are exploited in this chip as well, including a configurable chain of buffers and data buses, 

simple and efficient instruction set architecture, and programmable quantization range. 

However, the most central feature of this design, which is the focus of this section, is 

configurable mixed-signal computing VMM blocks based on analog memories. Peripheral 

analog circuits are shared among a large array of VMMs that enable compact implementation 

and energy-efficient operation.  
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The overall architecture of this chip is shown in Fig. 41. The major on-chip components 

are a 32kb SRAM-based main memory, router, configurable chain of digital input buffers, 

two flexible 2D arrays of 36×44 VMM blocks, and output neuron blocks. In our design, input 

DACs, ADCs, and therefore activations all have a 4-bit resolution. The controller and memory 

for storing instructions are implemented offchip in this design. The chip could be used to 

accelerate a wide range of neural network inference models. The training of the models is 

performed ex-situ, i.e., weights are precomputed on a server. In the tuning phase, we transfer 

the weights into the conductance of memristive devices and store them in 1T1R arrays. Then, 

the chip is ready to perform the inference task: input data are loaded to the main memory, the 

controller executes necessary operations to perform the inference task, and the inference 

results will be computed and stored on the chip. The inference is performed layer by layer by 

sequentially reading the input from the main memory, loading them into digital buffers using 

the router, activating proper VMM and neuron blocks to perform the target dot-product 

operation, and then the results are transferred back to the main memory via the router. More 

detailed information on how the instructions, data management, and digital buffers are 

discussed in Refs. [67].  

Future works will focus on the experimental characterization of the fabricated chip in a 65 

nm CMOS process. Fig. 42a shows the micrograph of the entire chip, and Fig. 42b shows the 

adapter designed to interface the chip with the general-purpose characterization board.    
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Fig. 41:  The top-level architecture of Cerbero and its main computational core. In this design, 
M=36, and N=45. Digital L-BUS is the data path between the router and digital buffers (where 
data is loaded before the computation is performed). Digital I-BUS is the vertical data path 
that broadcast loaded data to DACs and VMMs. Analog O-bus are horizontally shared lines 
that connect the outputs of VMM blocks in each row. Digital S-BUS is the data path from the 
neuron blocks to the router and main memory. (b) VMM computing block including a 130×64 
crossbar, tuning circuits, DAC arrays, sensing circuits, and logics that enable and disable the 
operation of the circuit in different modes. Paritucaly, CE is the column enable signal that 
enables a column of VMMs, and RE is the row enable signal that enables a certain row of 
VMMs. RBE is also an enable signal that allows us to cut the I-BUS at a certain row and avoid 
moving the data into unneeded VMMs.     

 

 
Fig. 42:  (a) Micrograph of the fabricated chip. (b) Adapter to interface the chip with the 
measurement setup.   
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2.8. A Novel Temperature Compensated Current reference in 65 nm CMOS 

The essential components of mixed-signal neuromorphic circuits are analog CMOS circuits, 

such as transimpedance amplifiers and current conveyors, which require on-chip distributed 

precision references. Precision current references directly impact the computation accuracy of 

neuron circuitry and, ultimately, the performance of the neurocomputing hardware. Besides 

the standard low power and small form factor features, neuromorphic circuits impose some 

exclusive requirements on the design of the current reference. Specifically, while a slight 

amount of mismatch due to process variations could be compensated or tolerated within the 

neuromorphic network, the variations in temperature and supply voltage are difficult, if not 

impossible, to counterbalance at the high-level. For example, the gain of a current conveyor-

based neuron [130] is directly determined by its bias currents. A slight mismatch in the current 

can be mitigated by fine-tuning the synapses, but random dynamic shifts through temperature 

and supply voltage (during the runtime) could potentially generate large errors. Further, the 

complexity of these massive systems prevents the usage of trimming/calibration circuits or 

off-chip elements in the analog reference blocks. 

The most common solution to generate a CWT reference is by summing up carefully 

designed complementary to absolute temperature (CTAT) and PTAT current references [191]. 

This could be realized, e.g., by using the voltage drop produced by the base-emitter voltage 

of parasitic bipolar transistors and the threshold voltage of MOSFETs [192] on a resistor. This 

technique achieves a temperature coefficient (TC) of 130 ppm/°C for a 10 µA reference in 

0.005 mm2. A similar idea is improved in [193] by reusing cascode transistors and combining 

it with a digital trimming circuit to compensate for the variations, which obtains 80 ppm/°C 

while consuming an enormous ~80 µw of power and 0.065 mm2. Another solution to generate 
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a CWT current is to divide a carefully designed PTAT voltage (from the threshold of 

MOSFETs) over a PTAT resistor [194], which requires a resource-hungry voltage reference 

and a transconductance amplifier to eliminate the 100% line sensitivity. More complicated 

trimming techniques, e.g., based on nonvolatile memories [195], have also been proposed to 

enhance the temperature coefficient and variations at the expense of extra fabrication cost and 

power/area consumption. Several nano-ampere range references are also recently proposed 

[196-198] for energy-harvesting systems, which operate at very low voltages and deep weak 

inversion regimes. These designs often underperform at high temperatures and require 

inevitable calibration to reduce variations and the temperature coefficient.  

Hence, the majority of previous works either are bulky, consume a large power consumption 

or require tremendous calibration to achieve a desirable TC. Unlike previous works, which 

are based on bipolar transistors or summation of PTAT and CTAT currents, a new 

methodology is developed in this section that relies on finding the optimum overdrive of a 

MOSFET through a modeling strategy. A compact, low-power microampere-range current 

reference is built based on this idea, which tackles the temperature and supply variations 

through a multi-threshold circuit design technique and is befitting for the requirements 

imposed by mixed-signal neuromorphic systems.  

2.8.1. Proposed CWT Current Reference Circuit 

High output impedance requirement is a primary feature of any current reference. Hence, 

the output current of a properly conditioned transistor (or cascoded transistors) could 

efficiently serve this purpose. In this elementary circuit, the quality of the generated reference 

current almost entirely depends on how the overdrive voltage of the transistor suppresses the 

variations in process, supply voltage, and temperature. 
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In sub-micron technologies, the square law approximation, i.e., 𝐼 = (𝛽 2)⁄ 𝑉୭୴
ଶ 

(parameters have their usual meaning), fails to thoroughly predict the temperature dependency 

of the drain current, particularly at the onset of strong inversion in which 𝑉୭୴ is relatively 

small. This observation is confirmed in Fig. 43a that shows the simulated optimal overdrive 

voltage needed to generate a perfect CWT current reference in a 65 nm CMOS process. Using 

the conventional square-law approximation, we anticipate that, in order to produce a CWT 

current, the overdrive voltage should be monotonically increased with temperature as mobility 

reduces with temperature in silicon [199]. However, we observe that as the overdrive become 

smaller, the slope of the optimum curve 𝑉୭୴,୭୮(T) becomes smaller and ultimately negative, 

roughly 80 mV before the device enters the subthreshold regime. As a result of this large 

discrepancy, we develop a rather unconventional modeling methodology to analyze our 

proposed circuit and find the optimum design parameters.  

A single curve of 𝑉୭୴,୭୮(T) that corresponds to a specific current density in Fig. 43a can be 

modeled via a multi-order polynomial function. For example, Fig. 43b shows the modeling 

results for a specific case of 𝐼୰ୣ୤ = 2.5 µA. As expected, the higher order of the polynomial 

used, the better the goodness-of-fit (and more resources need to generate it) and consequently, 

the lower the temperature coefficient. Remarkably, it is observed that we can achieve TC~80 

ppm/ºC by using a second-order compensation in which 𝑉୭୴,୭୮(T) is modeled by 𝑎଴ + 𝑎ଵ𝑇 . 

In other words, for a given reference current, by optimizing 𝑎଴ and 𝑎ଵ with respect to TC, we 

can use this simple function to capture the essence of all complex temperature-dependent 

parameters of a device and still achieve <100 ppm/ºC, which is adequate in many other 

applications. 
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Fig. 43: (a) Simulated normalized optimal overdrive voltage (𝑉୭୴,୭୮(T)- 𝑉୭୴,୭୮(T=0)) for 
achieving a CWT current using a PMOS. Here, a fixed 2.5 µA current is sunk from a long-
channel PMOS (L=2 µm) in a diode-connected structure, and the width of the device is  altered 
to change the 𝑉୭୴,୭୮ (0). Note that the channel-length modulation, drain-induced barrier 
lowering, etc., i.e.,  the contributions from the drain have an infinitesimal impact (~10 
ppm/°C) on the results and can be easily ignored. (b) The modeling of optimal overdrive 
voltage obtained from (a) for the case of 𝐼୰ୣ୤=2.5 µA, W(µm)/L(µm)=7.6/2 using a polynomial 
function. Without any compensation (i.e., driving a device with a constant gate voltage that 
corresponds to 2.5 µA at 0 °C), we get >4300 ppm/°C temperature variations. The first order 
compensation that crosses the optimal 𝑉୭୴,୭୮ curve in a single point reduces the TC to ~355 
ppm/ °C (effectively, only the temperature dependency of the threshold voltage is 
compensated).  The second-order compensation (using 𝑎଴+𝑎ଵT) crosses the optimal curve in 
two points and diminishes the TC to ~80 ppm/°C. A third-order compensation scheme using 
𝑎଴+𝑎ଵT+𝑎ଶ𝑇ଶ reduces the temperature coefficient further to ~20 ppm/°C. (c) The simplified 
schematic of CWT reference generator. (d) The change in the overdrive of an HVT device 
that sources a PTAT current versus temperature for various reference overdrives (𝑉୭୴ (T=0)). 
(e) The slope of the fitted overdrive voltage of M1 versus the overdrive reference 𝑉୭୴,ଶ (T=0) 
in various design cases. The blue line (optimal curve) corresponds to the fits to 𝑉୭୴,୭୮(𝑇). The 
red corresponds to the case when both transistors are LVT and R=0. Note that by increasing 
R, the gap between the red curve and the optimal curve widens even more. The curves 
obviously never cross each other, even in the subthreshold regime. HVT transistor is used in 
other curves (with various values of R). (f) The temperature coefficient of the output current 
reference as a function of the reference overdrive corresponding to the cases studied in panel 
(e). 

Fig. 43c shows the lightest approach of generating 𝑉୭୴,୭୮(T) (for M2) and consequently a 

CWT current. M1 and M2 are both operated in the strong inversion regime, and the overdrive 
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of M2 is given by 𝑉୭୴,ଶ = 𝑉୭୴,ଵ − 𝑅𝐼୔୘୅୘ + ∆𝑉୲୦, where ∆𝑉୲୦ is the difference between the 

threshold voltage of the devices. Simulation results also show that the overdrive of M1, which 

sources a PTAT current, is (almost perfectly) linearly proportional to temperature (Fig. 43d), 

i.e., 𝑉୭୴,ଵ(𝑇) ≈ 𝑏଴ + 𝑏ଵ𝑇 with 𝑏଴ and 𝑏ଵ are controlled with the sizing of the device (M1).  

Prior to explaining why this circuit generates a CWT current, let us clarify few assumptions. 

We use 𝑇଴ = 0 as a reference point and 𝑅(𝑇) ≈ 𝑅଴(1 + 𝛼ୖ𝑇), ∆𝑉୲୦(𝑇) = ∆𝑉୲୦,଴(1 + 𝛼୴୲𝑇), 

and 𝐼୔୘୅୘(𝑇) = 𝐼୔,଴(1 + 𝛼୍୔𝑇), where ∆𝑉୲୦,଴, 𝛼௩௧ , and 𝛼ோ are process parameters, 𝑅଴, 

𝑊ଵ, 𝐼୔,଴, 𝛼୍୔ are design parameters. ∆𝑉୲୦,଴ = 77 mV, 𝛼୴୲ = −59 ppm/ºC, 𝛼ୖ = −131 ppm/ºC 

(P-type non-salicided poly resistor) and simulations are based on a 65 nm process, 𝐿ଵ,ଶ=2 µm 

is used to minimize the variations, flicker noise, and the output conductance. For simplicity 

and reducing the number of design parameters, a PTAT current reference is initially designed 

(details are provided in the next section) with 𝐼୔,଴=0.8 µA and 𝛼୍୔=2.8×10ିଷ ºCିଵ. 

The main purpose of the proposed circuit is to employ the PTAT current source, resistor, 

and M1 for generating a pseudo-optimal overdrive curve (with respect to temperature) in M2. 

In this circuit, if R=0 and both 𝑀ଵ and 𝑀ଶ were both LVT devices (i.e., ∆𝑉୲୦ = 0), 𝑉୭୴,ଵ(𝑇) =

𝑉୭୴,ଶ(𝑇) assuming no mismatch. In such a case, it is evident that when M1 sources a PTAT 

current, 𝑀ଶ can not generate a CWT current under any circumstances. But it will clarify our 

idea if we study how 𝑉୭୴,ଵ(𝑇) changes when we change 𝑉୭୴,ଵ(0) (by sizing of M1) with respect 

to the optimal curve 𝑉୭୴,୭୮୲(𝑇) which was previously modeled. The red line in Fig. 43e shows 

the fitted slope 𝑉୭୴,ଵ(𝑇) (i.e., 𝑏ଵ) versus 𝑏଴. Comparing it with the modeled optimal curve and 

considering that 𝑉୭୴,ଵ(𝑇) = 𝑉୭୴,ଶ(𝑇), we find that the curves do not cross at any point when 

the initial reference curves are the same, essentially meaning that if Mଵ is LVT MOSFET, 

there is no optimal sizing of M1 for generating an optimal overdrive in M2. Note that the gap 
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between the two curves can only be reduced by diminishing the temperature coefficient of the 

PTAT current (and they will collapse if Mଵ sources a CWT current). Now, if we use an HVT 

device to implement M1, the red curve shifts by ∆𝑉୲୦ to the right and creates a crossover point. 

Note that 𝑉୭୴,ଶ = 𝑉୭୴,ଵ + ∆𝑉୲୦ and since 𝛼௩௧ is very small, the slope changes negligibly. 

Moreover, by increasing R, we shift the curve to the left and change its slope as well. 

Effectively, we obtain 𝑉୭୴,ଶ ≈ 𝑏଴ + 𝑏ଵ𝑇 − 𝑅଴(1 + 𝛼ୖ𝑇)𝐼୔,଴(1 + 𝛼୍୔𝑇) + ∆𝑉୲୦,଴(1 + 𝛼୴୲𝑇), 

which is the desired second-order linear compensation, since 𝛼ோ𝛼ூ௉𝑇ଶ is negligible in the 

practical temperature range. Note that, temperature-wise, this circuit has many optimum pairs 

of (R, W1). The simulation results in Fig. 43f show the TC of the output current for various 

resistance values and confirms that the optimal point (the minimum TC) occurs almost 

perfectly at the crossover of points of Fig. 43e, verifying the idea and the fact that linear 

modeling of the optimal curves works as expected. R1 sets the reference overdrive of both M1 

and M2, and its value is selected to optimize the performance with respect to process 

variations.  

One important note is that this simple circuit also supports rudimentary features that ensure 

suppression of supply voltage variations as well. Assuming that the PTAT reference has a 

negligible supply voltage dependence, the overdrive of the output device is independent of the 

supply voltage. In addition, using only (same-length) PMOS devices eliminates global 

variations, cancels out any systematic mismatch, and leads to overall better resiliency toward 

local variations.  

2.8.2. Fabrication and Measurement Results 

Fig. 44 shows the complete schematic of the fabricated circuit in a 65 nm CMOS process. 

The design primary includes a beta-multiplier circuit (R1, M4a,b, M6a,b, M7a,b, M8a,b) that 
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generates a supply-insensitive PTAT current, essentially controlled by the ratio of M5 and M4 

and the resistance of R1 [191]. M19 is used to prevent any start-up issues, and M9a,b, M7c, M8c, 

M5b, M6c, M7d, M10 are used to generate the bias voltage for the cascode transistors in the PTAT 

generation branches. M11 and M7e copy the PTAT current into the CWT generation branch. 

M1, M2, and R2 generate the CWT current. The devices are implemented in an array fashion 

to exploit standard layout techniques that minimize the impact of variations. The length of all 

cascode devices is 1 µm, and the rest of the devices have a channel length of 2 µm. Note that 

the sizing of the devices provided in the Table is performed targeting both minimum occupied 

area and process variations. The process includes super low threshold, LVT, and HVT 

devices. All devices in this circuit are implemented with LVT MOSFETs (𝑉୲୦଴,୬~0.43 𝑉 and 

𝑉୲୦଴,୮~0.35 𝑉) except for M1 that is an HVT MOSFET (𝑉୲୦଴,୮~0.43 𝑉).   

 
Fig. 44: (a) The schematic of the fabricated current reference. From the left side, the first two 
branches generate a PTAT current, the next two branches produce the cascode biases for the 
circuit. The last two branches implement the CWT generation. The table shows the size of the 
devices used in the circuit. Blocks highlighted in blue are used to measure the output current 
and implemented offchip. 

The supply voltage (1.2 V, nominal) is provided to the chip by a 16-bit digital-to-analog 

converter (AD5541A) buffered by an LT1637 operational amplifier. The measurements are 

performed using a 16-bit 5 Msps analog-to-digital converter (LTC2325-16) that measures the 
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reference current in the form of a voltage drop across a thin film ~43 kΩ resistor, which is 

biased at 0.5 V via another buffered DAC.  

A total of 4 dies from one wafer are packaged for measurements. TC measurements are 

conducted by baking the samples from 0 to 100 °C using a Eurotherm temperature controller. 

The measured TCs are 253, 184, 386, and 283 (with an average of 276) ppm/°C for each chip. 

More statistically meaningful results are obtained from 500 runs of MonteCarlo simulations 

in various corners. The average (standard deviation) of TC in TT, SS, FF, SF, and FS corners 

are 78 (12.5), 85 (21), 113 (24), 90 (15), 77 (18), respectively. We speculate the discrepancy 

between experiment and simulation results stems from the inaccurate Spectre models of 

resistors with minimum width (which we were not aware of them during the Tapeout), which 

slightly shifted the optimum point. 

Fig. 45a shows the measured change in the reference current with respect to variations in 

the supply voltage at room temperature and indicates the proper functioning of the circuit for 

0.95 V< VDD <1.3 V and the average line regulation of 1.9 %/V. This is in agreement with 

simulations that show that a 1% change in reference current occurs at 0.93 V and 1.41 V, in 

average. Simulated variations in the average current in TT, SS, FF, FS, and SF corners are 

2.1%,  2.4%, 1.9%, 2.1%, and 2.4%, respectively. Fig. 45b shows the packaged chip, and Fig. 

44c depicts the micrograph of the zoomed-in view of the portion fabricated chip. The power 

supply rejection ratio is 149 dB at 1kHz. Table 4 compares the results of the measurements 

with state-of-the-art current references.  
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Fig. 45: (a) Measured change in the output current, i.e., (∆𝐼 𝐼୰ୣ୤⁄ )×100 with reference 
computed at the room temperature and 1.2 V, versus the supply voltage. The inset shows the 
zoomed-in view to the portion of the figure. (b) The packaged mixed-signal neuromorphic 
chip including the current reference. (c) Zoomed-in view to the portion of the chip that 
includes the current reference block. Inset shows the magnified layout of the reference block.  

Table 4: Comparison with previous works. 

 CICC 
[192] 

TCASII 
[193] 

JSSC 
[194] 

JSSC 
[195] 

ESSCIRC 
[196] 

SSCL 
[197] 

This work 

Technology (µm) 0.18 0.35 0.18 0.5 0.18 0.065 0.065 

Sup. Voltage (V) 2.4-3 1.9-3.6 1-1.2 >2.3 1.2 >0.4 1.2 

Power (µW) >48 ~88 >32.7 NA 23×10-6 3.4×10-6 15.8 

Ref. Current (µA) 10 16 7.81 16÷50 20×10-6 1.2×10-6 2.5 

Temp. Range -40 : 80 0 : 110 0 : 100 0 : 80 0-80 -20 : 60 0 : 100 

TC (ppm/ºC) 130 80 24.9 <130 780 470 88* 276 

Trimming NA Digital NA NVM Digital Digital NA 

Line Reg. (%/V) 0.5 4 100 <1 0.58 2.5 1.9 

Area (µmଶ) 5k 65k 230k >60k 48.4k 8k 640 

Most previous works are relatively complex and have a large number of design variables 

[193]. In our work, we model the complex mathematical temperature dependency of nanoscale 

FETs at the onset of strong inversion and show that second-order semi-linear modeling yields 

<100 ppm/°C. A very compact topology to implement our idea is then proposed. A small 

number of transistors is also helpful in terms of noise performance [197]. More sophisticated 

circuit techniques, e.g., replacing the resistor with a switch capacitor equivalence, could 

improve the performance at the cost of an extra area, which we try to avoid here. The idea of 

biasing a MOSFET in the vicinity of its zero TC point [200] is also interesting, except that it 

requires a carefully designed extensive bandgap reference and calibration, and the zero TC 

point occurs at very large overdrives (~300 mV at a 65 nm process).  
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In this chapter, we demonstrate a compact and low-power compensation technique for the 

design of precision current references. Instead of delving into complicated analytical models 

of temperature dependency of the drain current of MOSFETs, we use a novel modeling 

framework to generate a pseudo-optimum overdrive curve for a MOSFET. A multi-threshold 

circuit, including only two transistors and a resistor, is then used to produce that voltage, 

essentially acting as a PTAT to CWT converter. A graphical analysis methodology is provided 

for finding the optimum design parameters. The circuit is fabricated in a 65 nm CMOS 

process, and experimental results from 4 samples show the average TC of 276 ppm/°C and 

~1.9 %/V line regulation.  

2.9. A General-Purpose Experimental Setup for Characterization of Mixed-

Signal Circuits and Systems 

We have designed, fabricated, and successfully tested a general-purpose standalone 

measurement setup that can be used to characterize the mixed-signal neuromorphic chips, 

which were discussed in previous sections. Fig. 46 shows the top-level architecture of this 

setup. The FPGA is already programmed with the necessary functions to access and control 

the components onboard and, more importantly, to interface with the host board. The 

operation of the board begins with the user running his/her codes in the MATLAB 

environment installed on the personal computer. The computer sends the commands over the 

Ethernet port to the FPGA. Subsequently, the FPGA receives the command and takes the 

necessary steps to perform that command. After the command is executed, either data or an 

acknowledge flag of a successful execution is transmitted to the user.   
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Fig. 46: The overall structure of the general-purpose measurement setup. 

Among the exciting features of this system, the following are noteworthy: 1) a high-speed 

1Gbps interface with a Host PC controlled by a MATLAB user-interface program; 2) 50 high-

voltage pulse generator with variable pulse amplitudes as high as 11V, and variable pulse 

widths as fast as 10 ns, 3) 50 low-voltage pulse generators with variable pulse amplitudes as 

high as 3.5 V, and varying pulse widths as fast as 10 ns, 4) 3 banks of 80× 16-bit 1 MSPS 

DACs (which are serially programmable within each bank), 5) Buffering amplifiers are used 

which provide output currents as high as 10 mA, 6) 12× directly accessible 16-bit 1 MSPS 

ADC channels, 7) 80× current sensing circuits with adjustable range, 8) 100 digital IO pins 

from FPGA for extra digital control and data transfer, 9) Provides multi-power rails (1.2V, 

1.5V, 2.5V, 3.3v, 5V, 12V) for powering device-under-test. The current flowing in two of the 

power rails is measurable.  Fig. 47 shows the assembled system while interfacing with an 

adapter designed to test the ConvNet accelerator.   
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Fig. 47: The overall structure of the general-purpose measurement setup that includes 3 layers 
of multi-layer PCBs. All circuits in this board, including the FPGA board, are custom 
designed.  

 

2.7. Summary and Future Works 

Analog-grade nonvolatile memories such as eFlash memories and metal-oxide memristors 

are enabling components for mixed-signal neuromorphic circuits. Such circuits implement the 

dot-product operation, the most common operation in any artificial neural network, in the 

analog domain or physical-level, enabling the design of energy and area efficient 

neuromorphic hardware. In this chapter, we discussed various device candidates and 

topologies for implementing dot-product operation in the mixed-signal domain. The main 

focus was on resistive memories and 2D eFlash memories, and current-mode VMMs. We 

have also conducted a preliminary study of using the extremely compact and scalable 3D 

NAND technology [142,143] without a need for modifying the arrays due to its inherent 

compatibility with time-domain VMMs [164]. A rigorous analysis of these circuits, which 
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takes various nonidealities (drain-induced barrier lowering, capacitive coupling, charge 

injection, etc.), promises a high area and energy efficiency. Such mixed-signal VMM circuits 

are particularly appealing for accelerating massive deep neural networks whose weights 

cannot be stored easily on a single chip with 2D memories. Future work should focus on the 

experimental demonstration of such circuits and analog characterization of 3D NAND 

memories. Further, we have also preliminary studied the possibility of improving the dynamic 

range and increasing the mismatch resiliency in active memristive crossbars [144]. 

Accordingly, a 2T1R memristive array is designed that mitigates these issues and promises 

high energy efficiency when used in the time-based VMM topology and aggressively-scaled 

resistive memory technology. A very useful future work is to study the prospects of each stack 

and topology for various computing applications, e.g., building fully-analog neural hardware, 

general-purpose accelerators, scientific computing machines, etc., in a single all-in framework 

that considers energy efficiency, accuracy, area, and throughput.  

The second and third sections of this chapter were focused on analog-grade memristive 

technology. Specifically, we demonstrated the largest passively-integrated memristive 

crossbar to date (supported with proper statistics) and showed a 64×64 passive crossbar circuit 

with ~ 99% functional nonvolatile metal-oxide memristors featuring etch-down patterning 

and a low-temperature budget based on a foundry-compatible fabrication process. Perhaps, 

the most important achievement in this project is the reported <26% normalized variation in 

memristor switching voltages, which was sufficient for analog programming of the array with 

<4% relative tuning error. We believe that the near-term work should focus on improving 

technology to increase yield and reducing device variations, decreasing write and operating 

currents of memristors, and ultimately demonstrating practical fully-integrated hybrid circuits, 
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e.g., with back-end-of-line fabricated memristors on top of the CMOS subsystem that would 

outperform purely-CMOS counterparts. Theoretical efforts should focus on the development 

of holistic circuit and algorithm techniques for coping with device variations and faulty 

devices.  It is expected that the goal of decreasing the cell currents could be achieved by 

reducing leakages within the device and between neighboring lines, e.g., by patterning the 

active switching layer and scaling down device feature sizes. 

In the third section of this paper, we investigate the role of uniformity in passive crossbar 

circuits using all-embracing simulations of general VMM blocks and representative neural 

networks. In this study, we reported three post-fabrication methods that increase the resiliency 

of memristive neuromorphic circuits toward the half-select disturbance. These techniques 

were able to recover the accuracy drop in two major neuromorphic networks when built with 

our 64×64 memristor technology. We believe that experimental validation of these techniques 

is a critical future study to strengthen the claims made on the prospects of 0T1R technology 

in neuromorphic circuits. Finally, at the network level, more creative solutions may exist, 

which are worth investigating and further research. In this section, a comparative study on the 

scaling prospects of 0T1R and 1T1R technology was conducted assuming a fixed CMOS 

technology node (65 nm). A more generalized study that also takes into account the scaling 

of CMOS circuits is an exciting and valuable future work.  

The investigation of two important nonidealities in memristive current-mode VMMs 

[162], i.e., IR-drop and device nonlinearity, in section 2.4 indicates a significant challenge of 

this technology. Our findings showed that when the crossbar size is scaled up, the optimum 

interconnect wire conductance should increase quadratically to preserve the computing 

precision, and the differential scheme is imperative for temperature insensitive operation and 
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reducing the IR-drop effect. Further, these issues were partially mitigated by a balancing 

technique that minimizes the error distribution by optimizing the tuning voltage and 

bootstrapping approach that tackles the IR drop issue by increasing the effective wire 

conductance at the cost of monopolizing other CMOS metal layers. Both of these techniques 

are applied in the circuit design and operating levels. 

In the following, we designed two critical circuits to enable energy-efficient computing 

with low-power eFlash memories. Currently, these devices are arguably the most energy-

efficient option for implementing analog synapses due to their excellent retention 

characteristics and realizability at deep subthreshold <100 nA regimes. First, a compact 

sensing circuit is designed in a 55 nm CMOS process, leading to a dramatic reduction 

power/area overhead of sensing circuits in analog eFlash-based VMMs [163]. Second, an 

internally-analog externally-digital VMM is developed using the proposed sensing circuit and 

a current-mode algorithmic ADC, which exploits analog-grade eFlash memories for unit 

current generations and offset compensations, breaking POp/J energy efficiency regimes 

[164]. The sensing circuit is utilized as a local sensing circuit in the fully-analog multilayer 

image classifier chip. The proposed internally-analog externally-analog VMM is also used in 

the design of our recently proposed aCortex architecture [38], which is a general-purpose 

neuromorphic accelerator.  

Finally, we presented the design and fabrication of three mixed-signal energy-efficient 

neuromorphic networks. First, the architecture of a network-specific DNN accelerator was 

discussed. The fabricated network is a 6-layer convolutional neural network, which includes 

~1.5×106 training parameters and ~3×103 neurons. We presented unique features of this 

design, including TDM architecture, NOR-flash-based DAC, local and global folded wiring, 
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novel design of tuning circuits, programmable activation function slope, individual access to 

each neuron output for advanced training schemes, and more importantly, massive 

read/write/erase parallelism, which enable sub-minute high precision tuning of the entire chip. 

Then, the design of an extremely high-speed 3-layer multi-layer perceptron based on 55 nm 

eFlash memories was presented. Simulation results indicate that the chip can classify MNIST 

images with ~98% accuracy, and the classification of one pattern takes ~100 ns and consumes 

0.25 nJ—4.3%, 10×, 100× better than our previous implementation [70] based on 180 nm 

eFlash technology. The improved performance originates not only from exploiting a more 

advanced process node but also from employing more optimum peripheral circuits. This 

tapeout also included prototypes of energy-efficient current-mode and time-based VMMs. 

Finally, a general-purpose DNN accelerator in 65 nm CMOS based on 1T1R memories was 

presented. The major on-chip components are a 32kb SRAM-based main memory, router, 

configurable chain of digital input buffers, two flexible 2D arrays of 36×44 64×64 2-quadrant 

VMM blocks (a hence a total of ~26×106 1T1R cells), and output neuron blocks. The chip 

could be used to accelerate a wide range of neural network inference models. We discussed 

various aspects of this system, including VMM topology, tuning circuits, and analog 

peripheries. 

Future work should focus on electrical measurement and characterization of the fabricated 

chips. We have already designed a generic experimental setup for this purpose. The backbone 

and main features of this system were illustrated in section 9. For each board, a PCB adapter 

is designed to interface with the setup and to some chip-specific functionalities. Proper 

functionality of the experimental setup and the interface boards have also been validated.  
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3. Neuromorphic Computing  

The development of efficient specialized hardware for stochastic neural networks, 

especially for Boltzmann machines, which have become the state-of-the-art approach for 

solving many problems in machine learning, information theory, and statistics, is of great 

importance. By now, there have been many demonstrations of efficient hardware for dot-

product computation, the most common operation in stochastic (and virtually any other) 

neural networks. Separately, there were numerous hardware implementations of stochastic 

neurons, which are a unique feature of Boltzmann machines. However, an efficient and 

scalable hardware solution combining both functionalities is still missing. Here we report 

compact, fast, energy-efficient, and scalable stochastic dot-product circuits that may use either 

of two types of memory devices – passive integrated metal-oxide memristors and embedded 

floating-gate memories. The circuit’s high performance is due to mixed-signal 

implementation, while the efficient stochastic operation is achieved by utilizing the circuit’s 

noise, which could be intrinsic or extrinsic to the array of memory cells. The functionality of 

the proposed approach is experimentally verified by implementing a Boltzmann machine with 

10 input and 8 hidden neurons.  

The second focus is the acceleration of the neurooptimization tasks with mixed-signal 

circuits. The increasing utility of specialized circuits and growing applications of optimization 

call for the development of an efficient hardware accelerator for solving optimization 

problems. Hopfield neural network is a promising approach for solving combinatorial 

optimization problems due to the recent demonstrations of efficient mixed-signal 

implementation based on emerging nonvolatile memory devices. Such mixed-signal 

accelerators also enable very efficient implementation of various annealing techniques, which 
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are essential for finding optimal solutions. In this chapter, we study various annealing 

techniques and their efficient implementation to improve the performance of Hopfield neural 

networks. We proposed an efficient implementation of simulated annealing, chaotic 

annealing, and novel weight annealing with analog-grade memristive crossbars and eFlash 

memories. The hardware operation is successfully tested by experimentally solving weighted 

graph partitioning, maximum clique, vertex cover, and independent set problems and 

observing good agreement with simulation results. 

2.10. Introduction 

Computations performed by the brain are inherently stochastic [145-151]. At the 

molecular level, this is due to stochastic gating of ion channels of the neurons [147] and the 

probabilistic nature of transmitter release at the synaptic clefts [148]. Noisy, unreliable 

molecular mechanisms are the reason for getting substantially different neural responses to 

the repeatable presentations of identical stimuli, which, in turn, allows for complex stochastic 

behavior, such as Poisson spiking dynamics [146,149,150]. Though noise is always 

detrimental for conventional digital circuits, a very low signal-to-noise ratio (SNR) of 

neuronal signals [151] has been suggested to play an important role in the brain functionality, 

e.g., in its ability to adapt to changing environment [145,146], as well as for achieving low 

energy operation [152]. It is therefore not surprising that many developed artificial neural 

network algorithms rely on stochastic operations. For instance, probabilistic synapses could 

be used as the main source of randomness for reinforcement learning or as regularizers during 

training, significantly improving classification performance in spiking neural networks. In 

spiking neural networks, probabilistic synapses also allow relaxing the requirements for 

synaptic weight precision due to temporal averaging over a spike train.   
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Perhaps, the most prominent example is a Boltzmann machine, a recurrent stochastic 

neural network with bidirectional connections [153, 154], which belongs to the so-called 

energy-based models and can be viewed as a generalization of the Hopfield network 

[155,156]. In its simplest form, the Boltzmann machine is a network of N stochastic binary 

neurons. At each discrete time instance, the network is in a certain state, which is characterized 

by binary Vi outputs of its neurons. The network dynamics is arranged to model thermal 

equilibrium, at certain temperature T, of a physical system with energy E  

𝐸 = − ෍ 𝑉௜𝐼௜

ே

௜ୀଵ

, 𝐼௜ = ෍ 𝐺௜௝𝑉௝

ே

௝ୀଵ

+ 𝐼௜
ୠ, (2.1) 

where Ii and Ii
b are analog input and bias, which are typically represented by currents in the 

circuit implementation, while Gij is a synaptic weight (conductance) between ith and jth 

neurons. The network state is updated by changing the state of the randomly chosen neurons. 

The probability of a neuron being switched to the digital state ‘1’ with amplitude V’1’ - in other 

words, turned ‘on’ or being activated - is a sigmoid function of its input, i.e., 

Pr(𝑉 = 𝑉ᇱଵᇲ) =
1

1 + exp ቀ−
𝐼ᇱ

𝑇
ቁ

(2.2) 

Here T is a dimensionless temperature, and I’ is a normalized input current I' = I/Imax, where 

Imax is the largest possible neuron input current, common for the whole network. (Note that 

though the neurons in the Boltzmann machine are partitioned into visible and hidden ones, for 

simplicity, we use the same notations for both types.) In the zero-temperature limit, the 

sigmoid in Eq. 2.2 becomes a step function, and the Boltzmann machine is similar to the 

Hopfield network in that given the proper set of weights (e.g., using symmetric, zero-diagonal 

matrix G), the total network energy is always decreasing when neuron states are sequentially 

updated at discrete time steps [155]. At non-zero temperatures, the same process would 
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typically lead to thermal equilibrium. For such a state, the snapshot of neuron outputs 

represents a sample from the thermal equilibrium probability distribution. In both zero and 

non-vanishing temperature regimes of Boltzmann machines, the process of simulated 

annealing, in which initially high temperature is gradually decreased over time, helps to 

escape local energy minima [156].  

As a stochastic version of Hopfield networks, the Boltzmann machine, combined with 

simulated annealing, is a powerful approach for solving combinatorial optimization problems 

[156]. Moreover, such networks can be utilized to compute conditional and marginal 

probabilities by fixing the states of some neurons and sampling outputs of the unclamped 

ones. Such functionality is central for many Boltzmann machine derivatives, such as deep-

belief networks and Bayesian model computing. The invention of the restricted Boltzmann 

machine (RBM) [153, 157] and efficient training algorithms [158] have led to its widespread 

use in many machine learning tasks, including dimensionality reduction, classification, and 

notably, collaborative filtering, for example enabling the best performance in the Netflix 

movie prediction challenge [159]. Furthermore, owing to similarities to Markov random 

fields, Boltzmann machines have found many applications in statistics and information theory 

[157]. 

The stochastic dot-product computation described by Eqs. 1-2 is the most common 

operation performed during inference and training in Boltzmann machines and their variants, 

and hence its efficient hardware realization is of utmost importance. In chapter 2, we discussed 

many demonstrations of high performance dot-product circuits, most importantly including 

analog and mixed-signal implementations based on metal-oxide memristors, and phase-

change, and floating-gate memories, developed in the context of neuromorphic inference 
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applications. Analog dot-product circuits based on metal-oxide memristors have also been 

demonstrated in the context of neural optimization [60,161].  

For Boltzmann machines, the stochastic functionality can be realized in neural cells, 

peripheral to the array of memory cells, rather than at much more numerous synapse locations, 

which somewhat relaxes the design requirements. Still, prior studies showed that even with a 

relatively large synapse to neuron ratio (~1,000) and deterministic dot-product functionality, 

the neuron circuitry may constitute a substantial part of the neuromorphic inference systems 

[70]. Because of such concerns, purely CMOS implementations, see, e.g., CMOS probabilistic 

gates [51] and CMOS-based Ising chip for combinatorial optimization problems [46], may 

not be very practicable.  

The implementation overhead of stochastic functionality might be less of a problem for 

some memory devices, in which switching between memory states is inherently stochastic, 

e.g., ferromagnetic, phase-change, ionic  and thermally-driven metal-oxide, and solid-state 

electrolyte devices. Unfortunately, many of such devices come with other severe challenges. 

For instance, an efficient implementation of large-scale dot-product computation is a major 

challenge for magnetic devices. The hybrid option of combining magnetic stochastic neurons 

with the already mentioned mixed-signal dot-products is not appealing because the interface 

typically compromises an extreme energy efficiency of spin-based computing with charge-

based devices. The technology of magnetic devices is also relatively immature, judging by 

very few (and rather low-complexity) experimental demonstrations [165,166]. The biggest 

challenge for the remaining devices would be low switching endurance and cycle-to-cycle and 

device-to-device variations in switching characteristics. 
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2.11. Neurocomputing and Neurooptimization with Analog Memories 

This section demonstrates a method of utilizing intrinsic and extrinsic current fluctuations 

in mixed-signal circuits based on analog-grade nonvolatile memories to implement scalable, 

versatile, and efficient stochastic dot computation. The deterministic version of such dot-

product circuits has been extensively investigated due to their potentials for high speed, high 

density, and extreme energy efficiency – see, section I of chapter 2. Unlike many prior 

proposals [52, 53, 165,166], our approach is suitable for large-scale dot-product circuits and 

has no endurance restrictions for inference operation, which is typical for virtually all other 

proposals involving memory state switching [12,56,57,58,167,168]. We experimentally verify 

stochastic dot-product circuits based on metal-oxide memristors and embedded floating-gate 

memories by implementing and testing representative Boltzmann machine networks with non-

binary weights and hardware-injected noise. We further demonstrate how scaling of synaptic 

weights during operation can be used for a very efficient implementation of simulated and 

chaotic annealing to improve functional performance. 

3.2.1. Stochastic Dot-Product Circuit 

Figure 48a shows the investigated current-mode analog circuit based on nonvolatile 

memories, in which vector-by-matrix operation is efficiently implemented on the physical 

level due to Ohm’s and Kirchhoff’s laws. For memristor-based circuits (Fig. 37b), the weights 

are encoded with device conductances so that the current flowing into the virtually grounded 

neuron is given by ΣiGiVi, and equations describe the network operation in Figure 2.48a. For 

the considered discrete-state networks, a crosspoint floating-gate transistor can be 

conveniently viewed as a switch connecting a current source to a neuron’s input (Fig. 48c). 

The cell currents Icell at voltage bias V’1’ used at network operation are pre-set according to the 
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desired synaptic weight. The neuron input current is given by ΣiIcell,i(Vi), where Icell (V’0’) ≈ 0 

when digital ‘0’ is applied to the cell’s switch. 

 

Fig. 48: Stochastic mixed-signal dot-product circuit and its application for neurocomputing 
and neurooptimization. (a) Circuit schematics for the design with current-mode sensing with 
crosspoint device implementation based on (b) memristors and (c) floating-gate memories. 
The equations in the figure correspond to memristor implementation, while their modified 
version for floating gate design is described in the text. (d) An example of the considered 
differential-pair Boltzmann machine implementation. (e) The implementation of generalized 
Hopfield neural network. The blue background highlights the baseline implementation. The 
yellow, green, and red backgrounds highlight additional circuitry for the proposed 
“stochastic”, “adjustable”, and “chaotic” approaches, respectively. The grey shaded circles 
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show synaptic weights, which are typically set to zero. Labels ‘’/ ‘x’ inside amplifier 
symbols denote summation/scaling. For clarity, panel a does not show bias currents, panels a 
and e show a single-ended network, while panel d shows a small two-input, two-hidden 
neurons fragment of the considered network. 

The circuit noise is detrimental to the deterministic dot-product operation and, e.g., defines 

the lower bound on the memory cell currents for a desired computing precision [164]. The 

main difference with prior work is that the noise is exploited for stochastic functionality in the 

proposed operation. Specifically, two types of noise sources are considered: intrinsic noise to 

each memory cell and externally added noise to each output, e.g., from additional fixed-biased 

memory cells or using the input-referred current noise of peripheral circuits. 

To analyze the stochastic operation, let us consider normally distributed independent noise 

sources. This assumption is justified due to the dominant white (thermal and/or shot) intrinsic 

noise for the most practical >100 MHz bandwidth operation, which would be realistic for both 

floating -gate transistor and memristor-based analog circuits in which memory arrays are 

tightly integrated with peripheral circuits [16,130]. The current I is sampled and latched at the 

peripheral neuron, which consists of a current-mode sensing circuitry feeding, in the case of 

discrete-time networks, a digital flip flop (Fig. 48a). The flip-flop effectively implements a 

step function of the sampled value so that the probability of latching a digital “1” state is    

Pr(𝑉 = 𝑉ᇱଵᇲ) =
1

2
+

1

2
erf

〈𝐼〉

√2𝜎
, (2.3) 

where σ is the standard deviation of the output current. There are two distinct regimes for the 

stochastic operation defined by Equation 2.3. If thermal noise dominates, the fluctuations of 

an output current would be independent of its average value. In this case, Eq. 2.3 matches 

almost exactly the sigmoid function of Eq. 2.2, given that temperature is inversely 

proportional to a peak signal-to-noise ratio Imax/σ as 
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𝑇 =
√2𝜋σ 

4𝐼୫ୟ୶
, (2.4) 

With predominant shot noise behavior,  σ ∝ ඥ〈𝐼〉 . Even in this case, Eq. 2.3 could closely 

approximate Eq. 2.2 assuming some effective temperature—see Supplementary Information 

S1 (and its discussion) in Ref. [8] for more details.  

The first regime is representative of intrinsic thermal noise in metal-oxide memristors. 

Indeed, shot noise in such devices would be negligible due to typically diffusive electron 

transport [169] and relatively small V’1’, which should be not much larger than a thermal 

voltage at room temperature to avoid disturbance of memory state. Note that intrinsic thermal 

noise is independent of the applied voltage and will be contributed by all memristors in the 

column, even zero-biased crosspoint devices, thus excluding any input dependence (Fig. 48b). 

On the other hand, the intrinsic shot noise is characteristic of ballistic transport in nanoscale 

floating-gate transistors with sub-10-nm channels [170,71]. This noise can be completely cut 

off by opening the cell’s switch (Fig. 48c). For both implementations, the effective computing 

temperature can be dynamically varied by changing Imax.  Moreover, the scaling constant can 

be uniquely selected for each array’s input by adjusting its voltage amplitudes – see, e.g., 

amplifiers marked with ‘x’ in Fig. 48e. Stochastic dot-product operation and runtime 

temperature scaling are demonstrated next in the context of two applications. 

3.2.2. A Memristor-based Restricted Boltzmann Machine  

Our first experiment focused on the demonstration of a restricted Boltzmann machine 

using 20×20 crossbar circuits with passively integrated Pt/Al2O3/TiO2-x/Pt memristors (Fig. 

49), fabricated using the device technology reported in Ref. [17]. The integrated memristors 

are sufficiently uniform for programming with less than 5% tuning error and have negligible 
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conductance drift over time. Limiting the applied voltage bias across memristors to | V’1’ | ≤ 

100 mV prevents disturbance of memory states during the network operation. At such small 

voltages, the memristor I-V characteristics are fairly linear, with 2I(V’1’)/I(V’1’/2) < 1.02 for 

all conductive states [17]. (More details on the memristor technology and crossbar circuit 

operation are provided in the Methods section.)  

The studied bidirectional network consists of 10 visible and 8 hidden neurons (Fig. 49a) 

with synaptic weights implemented as differential memristor pairs. Each visible neuron is 

connected to a single vertical electrode of the crossbar, while each differential hidden neuron 

is attached to two horizontal crossbar electrodes (Fig. 48d). The forward propagation of the 

information, i.e., from visible neurons to hidden ones, and differential sensing is performed 

similarly to previous work [17].  In the backward pass, digital ‘1’ input from the hidden neuron 

is implemented by applying ±V’1’ to the corresponding differential pair of lines while 

grounding both lines for zero input. The current is then sensed at the single-line input of the 

visible neuron. For simplicity, we study the network with zero bias weights. The remaining 

weights were chosen by first generating random real numbers within the [-1, +1] range. These 

values were mapped to -32 µS to +32 µS at 50 mV maximum conductance range of a 

differential pair using the 20 µS conductance bias and the 4–to-36 µS dynamic range of 

individual devices. After such individual device conductances had been determined, 

memristors were programmed using automated tuning algorithms [172] with a 5% tuning 

accuracy to the desired states (inset of Fig. 49).  

Figure 49c shows stochastic dot-product results when utilizing external white noise with 

a fixed standard deviation (inset of Fig. 49c), injected directly in the hardware from the readout 

circuitry. Specifically, these results were obtained by applying all possible digital inputs to 
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the hidden neuron #2, and collecting 100,000 samples of the crossbar array output currents 

for each specific input, while emulating the peripheral circuitry in software. The effective 

computing temperature, i.e., the slope of the sigmoid function, is controlled by V’1’.  

In our main RMB experiment, we first apply randomly generated digital voltages to the 

vertical crossbar lines connected to visible neurons, then sample output currents on the 

horizontal crossbar lines feeding hidden neurons, and convert sampled values to the new 

digital voltages of hidden neurons according to the signs of the corresponding differential 

currents. Note that only functionality of a sensing circuit and latch (i.e., applying step function 

to the sensed currents and holding the resulting digital value) is realized in software, while the 

probability function of the Eq. 2.3 is implemented directly in the hardware. In the next step, 

the calculated voltages at the hidden neurons are applied to horizontal lines, and the new 

voltages at the input neurons are computed similarly to the forward pass. The voltages at the 

input and hidden neurons represent the new state of the network after one forward/backward 

state update (“epoch”) and are used to calculate its energy according to Eq. 2.1. These updates 

are repeated multiple times in a single run of the experiment. 

Figure 49d shows the results of this experiment, namely the energy distributions at 

different effective computing temperatures calculated from Eq. 2.4. Each distribution 

corresponds to the measured energies in the final 500 epochs of a single run (see an example 

for such run in Fig. 49e), averaged across 100 different trials that start with randomly chosen 

initial neuron states. For a wide range of effective computing temperatures, the experimentally 

measured data are in good agreement with simulations, which were based on the stochastic 

binary neuron with the ideal sigmoid probability function. Note that because of bipartite 



 

 138

network topology, the system quickly converges to thermal equilibrium, which is indirectly 

confirmed by comparing energy distributions over different periods (inset of Fig. 49d). 

 
Fig. 49: Memristor-based restricted Boltzmann machine. (a) A bipartite graph of the 
considered RBM network and (b) its implementation with passively-integrated metal-oxide 
memristors. The red rectangle highlights the utilized area of the 20×20 crossbar array, while 
the inset shows the conductance map, measured at 50 mV, after programming devices to the 
desired states. (c) Measured probability distribution functions at several V’1’, i.e., different 
effective computing temperatures, for the hidden neuron #2 of the implemented network, 
which is attached to rows #3 and #4 of the crossbar circuit. The inset shows peak signal-to-
noise ratios across a full range of neuron’s input currents. Imax corresponds to the largest input 
current to neuron #2. Some minor, unwanted SNR dependence on the input current is due to 
the artifacts of the experimental setup. (d) Measured (solid) and modeled (dash-dot) energy 
distributions. The inset shows measured energy distributions for the specific temperature, 
collected over 20 different 1000-epoch spans. (e) An example of the simulated evolution of 
energy for the specific temperature. All neurons are initialized to a zero state at the beginning 
of this simulation. In all experiments, the neuron’s input currents were sampled at 1 MHz 
bandwidth while integrating noise above this frequency.  On panels d and e, the temperature 
is computed relative to the largest possible current, which corresponds to all ten differential 
synaptic weights set to the maximum value of 32 µS.     

3.2.3. Neurooptimization Based on Floating-gate Memories  

In our second experiment, we investigated the implementation of a generalized Hopfield 

network with embedded NOR flash memory for solving a combinatorial optimization problem 
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(Fig. 50).  The experimental work was performed on a 6×10 integrated array of supercells 

(Fig. 50a), using 55-nm technology modified from the commercial process for analog tuning 

[40]. One supercell hosts two floating-gate transistors sharing a common source terminal so 

that there are 120 memory cells in such array. The subthreshold currents of crosspoint 

transistors can be tuned uniquely and precisely for each cell within a very wide dynamic range 

by adjusting the charges at the floating gates, enabling very efficient implementation of dot-

product operation in which inputs are applied to word gate (WG) lines and output currents are 

sensed from the drain (D) lines [130].  Furthermore, the currents can be simultaneously scaled 

(and even completely suppressed), without re-tuning, for all cells sharing the same coupling 

gate (CG) / WG line, by controlling CG and/or WG voltage amplitudes while keeping other 

cell’s terminals biased at typical reading conditions.  More details on the utilized embedded 

NOR flash memory devices and circuits are provided in the Methods section. 

Figure 50b shows the results of stochastic dot-product operation for the flash memory 

implementation. For these measurements, currents of 10 cells, sharing a drain line of the 

memory array, were set with 20% tuning precision to 175 nA, which is a representative value 

for the considered experiment. After that, 20,000 samples of single-ended bit-line currents 

were collected at 10 KHz bandwidth for 30 randomly selected inputs. Similar to the RBM 

study, fixed white noise was added externally directly from the readout circuit (inset of Fig. 

50b), while other peripheral functions were emulated in the software. To consider different 

neuron’s input currents, randomly chose m cells (out of 10 total) on the bit line, i.e., a specific 

voltage was applied to the selected m WG lines, while the remaining cells were disabled by 

grounding their WG lines. This experiment was repeated 3 times for each m from 1 to 10. The 

effective computing temperature was controlled by adjusting CG voltage. 
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 Our specific focus is on solving a graph partitioning problem with parameters specified 

in Fig. 50c. Let us consider a graph (U, E) with N nodes, node weights wi, and edge weights 

eij. Since each node will be uniquely mapped to the corresponding neuron, Ui is also used to 

define the state of ith neuron. The problem is to partition the graph into two partitions of nearly 

equal weight such that the cutsize, the number of edges with an endpoint in each partition, is 

minimized. To solve this problem, let us consider a discrete-time discrete-state recurrent 

neural network. The intuitive energy function is given by  

𝐸 = 𝛼 ∑ ∑ 𝑒௜௝(𝑈௜ + 𝑈௝ − 2𝑈௜𝑈௝)௡
௝ୀଵ

௡
௜ୀଵ + ∑ ∑ 𝑤௜𝑤௝(1 − 𝑈௜ − 𝑈௝ + 2𝑈௜𝑈௝)௡

௝ୀଵ
௡
௜ୀଵ , 

where the first term minimizes the weighted sum of edges that belong to the cut, and the 

second term will have a minimum value when the sum of node weights assigned to the two 

partitions are equal, while α = 0.5 is a constant representing the relative importance of these 

two terms [173]. By dropping constant terms and rearranging this expression, a more 

convenient energy function for neural network, for which diagonal weights should be zero to 

ensure that energy is decreasing during state updates, is  

𝐸 = −
1

2
෍ ෍ ൫2𝑒௜௝ − 4𝑤௜𝑤௝൯𝑈௜𝑈௝

௡

௝ୀଵ,௝ஷ௜

௡

௜ୀଵ

− ෍ 𝑈௜

௡

௜ୀଵ

ቌ2𝑤௜ ෍ 𝑤௝

௡

௝ୀଵ

− 2𝑤௜
ଶ − ෍ 𝑒௜௝

௡

௝ୀଵ

ቍ. 

(Note that there is a mistake in Ref. [173] in that -2wi
2 term in bias weights is missing.) This 

equation directly defines neural network array and bias weights: 

𝑇௜௝ = 2𝑒௜௝ − 4𝑤௜𝑤௝ ,       𝑇௜
ୠ = 2𝑤௜ ∑ 𝑤௝

௡
௝ୀଵ − 2𝑤௜

ଶ − ∑ 𝑒௜௝
௡
௝ୀଵ , 

The corresponding utilized synaptic weights in the floating-gate implementation are 

𝐼ୡୣ୪୪ = ൮

0 −140 −478 −500
−140 0 −508 −552
−478 −508 0 −622
−500 −552 −622 0

൲ ×
(ூౙ౛ౢౢ)ౣ౗౮

଺ଶଶ
  ,   𝐼ୡୣ୪୪

ୠ = ൮

559
600
804
837

൲ ×
(ூౙ౛ౢౢ)ౣ౗౮

଼ଷ଻
 



 

 141

where (Icell)max is the largest cell current, which is controlled by adjusting WG and/or CG line 

voltages. Note that bias and array weights are always of different signs for the graph 

partitioning problem and, these two groups of weights are normalized differently to increase 

dynamic range and improve nonlinearity. This can be readily implemented in hardware by 

having different gains for the positive and negative pre-amplifiers in the differential sensing 

circuitry. 

The neural network weights were mapped to the cell currents using (Icell)max = 1.0 µA, 

which resulted in comparable to memristor study range of SNRs.  To demonstrate the 

versatility of the proposed circuits, four different variations of Hopfield networks were 

considered for solving this combinatorial optimization problem: an original approach (labeled 

as “baseline”) [155]; a scheme with dynamically adjusted problem/energy function 

(“adjustable”); a network with chaotic annealing (“chaotic”) [50]; and, finally, a generalized 

Hopfield network with simulated annealing implementation, which is enabled by stochastic 

dot-product circuits (“stochastic”).  The implemented network is discrete-time/state with state 

updates performed sequentially for randomly selected neurons during operation for all 

approaches.  

More specifically, the proposed “adjustable” approach draws inspiration from the work 

on quantum annealing [174], in which an initial problem is modified to ease convergence to a 

global optimum. Similarly, we modified the problem by adding an additional node with 

relatively large weight and zero-weight edges (Fig. 50c). The additional node weight was 

exponentially decreased from 50 to 0.2 at each update, thus gradually turning the mapped 

problem and its energy function to those of the original one. In the hardware implementation, 

the extra node was realized by extending the original memory cell array by one column and 
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one row (highlighted with green background in Fig. 48e) and decreasing WG voltage from 

1.2 V to 0.2 V. Note that the additional bias line was required to separate contribution of bias 

currents from the original node weights and that of the added one. 

For the chaotic annealing approach, we followed the idea of Ref. [50] to utilize transient 

chaos for better convergence. The chaotic behavior was facilitated by initially employing large 

negative diagonal synaptic weights (Icell = -1.2 µA at VCG = 1.5 V and VWG = 1.2 V), which 

were encoded in a separate array of cells (Fig. 48e). These weights were decreased linearly to 

~ 0 with each update by changing WG voltage on these additional cells during runtime from 

1.2 V to 0 V.  

In the baseline, adjustable, and chaotic annealing experiments, all updates were 

deterministic (i.e., with larger SNR for neuron input currents) due to using larger CG voltages 

(Table S1), and also very low (~20 Hz) operational bandwidth, which further reduced noise 

impact. For the stochastic Hopfield network, the nodes were updated probabilistically at 20 

KHz bandwidth according to Eq. 2.2. To implement simulated annealing, we exponentially 

increased CG voltage from 1 V to 2 V in 80 steps, which corresponds to an 80× decrease in 

effective computing temperature.  

Figure 50e shows the main results of the neurooptimization study. The convergence for 

the baseline approach is fast, though the network often gets stuck in the local minima. As a 

result, the final energy, averaged over many runs, is substantially higher than the global 

optimum (“ground state” line on Fig. 50e), which corresponds to the solution shown with a 

dashed red line in Fig. 50c. On the other hand, an optimal solution was almost always found 

using the three remaining approaches. For the adjustable approach, the initial increase in 

energy of the original 4-node problem is expected, given the quick convergence to the global 
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energy optimum of the 5-node problem. As the additional node is gradually eliminated from 

the network, 4-node problem energy quickly drops to below baseline level, resulting in a better 

solution. This is likely due to the network state being very close to its global minima during 

convergence or a more optimal initial state corresponding to the optimal solution of the 5-

node problem. For all considered approaches, experimental data follow simulation results very 

closely (Fig. 50e).  Furthermore, the SPICE simulations at 100 MHz operation bandwidth also 

show similar performance when using only intrinsic cell noise (see Fig. S3a in the 

supplementary of Ref. [8]).  

 
Fig. 50: Neurooptimization based on floating-gate memory arrays. (a) Schematics of the 
experiment, shown for clarity for the 2×2 supercell array implementing a baseline/stochastic 
network with two neurons. The parts shown with dashed lines were emulated in software. (b) 
Measured probability distribution functions for single-ended stochastic neurons at various CG 
voltages (or effective computing temperatures). The inset shows measured peak SNR across 
the full range of neuron input currents. Imax is the largest measured input current to the neuron.  
(c) Implemented graph partitioning problem with considered edge and node weights. The 
wavy lines show the cuts corresponding to the best solution. Shaded nodes/edges are used for 
the method with dynamically adjusted energy functions. (d) Conductance map for the main 
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section (highlighted with a blue background in Fig. 47e) of the weights in the experiment, 
after tuning with 3% precision. For the fixed synaptic weights, the tuning was performed at 
the operating biases. For the variable weights, the tuning was performed at the lowest (largest) 
CG and WG voltages during operation for the stochastic (adjustable and chaotic) approaches. 
(e) Simulation and experimental results for neurooptimization. For the first three (chaotic) 
cases, the data are averaged over 100 (20) runs for each of the initial states, with a total of 
1600 (320) runs. The energy function for the “adjustable” case is calculated by taking into 
account only four original nodes. The biasing conditions during operation are summarized in 
Table S1.   

3.2.4. Device and Circuit Nonidealities  

As discussed in the main text, there are two specific issues for the floating-gate memory 

implementation, which might impact functional performance. Specifically, an approach of 

using differential summation and intrinsic cell noise and the problem of variations in the 

subthreshold slope can both lead to deviation of the neuron’s probability density function from 

the ideal one. Such variations can be treated as “smearing” of the effective computing 

temperature. More specifically, the first problem can be illustrated by considering two extreme 

cases, namely when subtracting two smaller similar currents and two larger similar currents 

on the differential lines. The total differential current could be comparable, though due to the 

dependence of the intrinsic shot noise on the cell currents, the signal-to-noise ratio would be 

larger (and hence temperature smaller) for the latter case. We considered a 100-node graph 

partitioning problem with randomly distributed weights and edges within [0,1] interval to 

investigate this issue. Figure 51 shows the corresponding neural network weight map, in 

which the array and bias weights are separately normalized with respect to their largest values. 

The probability density function was then simulated by adding shot-like noise σ2 = αI to 

differential lines and considering different combinations of input currents for all neurons. The 

overall smearing is rather negligible, more so at lower temperatures (Fig. 51b).  
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Fig. 51: Non-idealities in the stochastic dot-product circuit based on floating-gate memory: 
(a) The considered distribution of neural network weights, normalized separately for positive 
(array) and negative (bias) weights. The bias weights are shown at the very top of the array. 
(b) Temperature smearing of the stochastic neuron function due to input-dependent output-
referred current noise in differential circuits for three effective computing temperatures. (c) 
Measured subthreshold slope I-Vs for 100 memory cells. The inset shows the histogram of 
corresponding normalized synaptic weights, defined as Icell(VCG=2.0 V)/(Icell)max, when using 
(Icell)max = 973 nA. (d) Simulated combined temperature smearing due to the subthreshold 
slope variations and differential summation in floating-gate implementation.  

The second problem arises from the nonlinearities in the subthreshold I-V characteristics 

of flash memories. Ideally, the relative cell currents (and hence synaptic weights) should scale 

with the same rate when changing CG voltage for the considered annealing schemes. In 

practice, however, these currents scale differently due to process-induced variations and 

voltage-dependency of the subthreshold slope. To quantify this issue, we have measured 

subthreshold characteristics of the 100 devices, which were tuned randomly at VCG = 2 V, VWG 

= 1.2 V) to currents ranging from 40 nA to 1 μA (Fig. 51c), and then used these data to 
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simulate the resulting effective temperature smearing due to both differential summation and 

slope variations for the aforementioned graph partitioning problem. As Figure 51d shows, the 

additional smearing is rather negligible at all considered effective computing temperatures.  

Due to non-negligible tuning error in conductance and its drift over time, the effective 

precision of weights in mixed-signal circuits with analog-grade nonvolatile memories is 

typically limited to below 8 bits. Such precision is adequate for the inference operation of 

many deep-learning feed-forward and recurrent models. According to our preliminary 

simulation results (Fig. 52), it is also sufficient for the studied applications, though this issue 

has to be certainly further studied for larger, more practical networks. 

 

Fig. 52: The impact of weight precision on functional performance. The simulation results for 
(a) RBM energy distribution and (b) energies after the 80th epoch of graph partitioning 
problem for the same networks considered in the main text, obtained with different 
assumptions for the conductance tuning.  For RBM simulations, the data were collected over 
500 epochs and were averaged over 500 different trials. In the neurooptimization experiment, 
200 sets of weights were generated for each case of tuning error. A single data point on a 
graph represents energy achieved after 80th averaged over 16×10 trials (10 runs for each of 
the 16 initial states) for a specific set of weights. For clarity, data points inside 25%-75% are 
not shown. The tuning error was simulated by randomly choosing weights from the range of 
target value × [1 - tuning error, 1 + tuning error]. The energy is calculated assuming target 
(error-free) weights in both panels to make the comparison meaningful.  
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3.2.5. Methods 

The restricted Boltzmann machine is implemented with a 20×20 passively integrated 

(“0T-1R”) memristive crossbar circuits fabricated in UCSB’s nanofabrication facility. The 

active bilayer was deposited by low temperature reactive sputtering method, while crossbar 

electrodes were evaporated using oblique angle physical vapor deposition and patterned by 

lift-off technique using lithographical masks with 200-nm lines separated by 400-nm gaps. 

Crossbar electrodes are contacted to a thicker (Ni/Cr/Au 400 nm) metal line/bonding pad, 

which was implemented at the last step of the fabrication process. Similar to Ref. 17, the 

majority of the devices were electroformed, one at a time, by applying one-time increasing 

amplitude voltage sweeps using an automated setup. Automated “write-verify” tuning 

algorithm [114], involving the alternative application of write and read pulses, was used for 

setting the memristor conductances to the desired values. Specifically, the memristors were 

formed/written one at a time using the “V/2-biasing scheme,” i.e., by applying half of the 

write voltages of the opposite polarity to the corresponding two lines connected to the device 

in question while floating/grounding the remaining crossbar lines. 

The formed memristors have fairly uniform switching characteristics, with set and reset 

voltages varying within 0.6 to 1.5 V and -0.6 to -1.7 V, respectively. The memristors’ I-Vs are 

nonlinear at larger biases due to the aluminum oxide tunnel barrier in the device stack, which 

helps with limiting leakage currents via half-selected devices during programming. The sneak 

path currents during network operation and read phase of tuning algorithm are negligible 

because all lines are always tied to some voltages and also very large conductance of lines (~1 

mS) compared to those of the crosspoint memristors (<36 µS), allowing for < ~5% computing 
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error.  More details on fabrication, electrical characterization, and memristor array operation 

can be found in Refs. 25 and 34. 

The 12×10 arrays of floating gate cells were fabricated in a commercial 55-nm embedded 

NOR memory process, redesigned for analog applications. The array matrix is based on 

“supercells”, which consist of two floating-gate transistors sharing the source (S) and the erase 

gate (EG) and controlled by different word (WG) and coupling (CG) gates. The cells are tuned 

using the write-verify tuning procedure. (Note that WG, D, and S supercell terminals are 

typically denoted by, respectively, WL, BL, and SL in the context of digital memory circuits. 

The new labels are more relevant to the considered application and were used to avoid possible 

confusion.) After the weight tuning process had been completed, the network operation was 

performed using VD =1 V, VWG= 0.8 V, VS= 0 V, VEG = 0V, and VCG  [1 V, 2V]. Such biasing 

conditions were mainly imposed by the requirement of keeping the transistors in subthreshold 

region, ensuring large (>30 dB) dynamic range of signal-to-noise ratios, and minimizing the 

impact of subthreshold slope variations on weight scaling – see Section S7 of the 

Supplementary Information of Ref. [8]. The details of the characterization setup used for both 

memristors and flash memories are also provided in Section S6 and S7 of the Supplementary 

Information of Ref. [8]. 

3.2.6. Discussion  

The considered case studies allow contrasting stochastic dot-product implementations 

with two representative memory technologies. The main advantage of floating-gate memory 

devices is their mature fabrication technology, which can be readily used for implementing 

practically useful, larger-scale circuits. Their substantial drawbacks for the considered 

applications include unipolar electron transport, which, e.g., necessitates using two sets of 
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cells with similarly tuned conductances for the forward and backward computations in RBM 

networks. Furthermore, for differential current sensing, the total injected noise depends on the 

absolute currents on the differential lines rather than their subtracted value.  Due to variations 

in subthreshold slopes, there are also noticeable changes in relative weights when scaling 

currents (Fig. 51c). Fortunately, the resulting smearing of the probability distribution function 

due to these issues is rather weak, which is confirmed by extensive modeling results in Fig. 

51. (Note that due to the input-independent noise and linear device I-V characteristics of at 

small biases, there are no such problems for memristors.) Finally, floating-gate cells are also 

sparser and less scalable. However, these deficiencies are somewhat compensated by lower 

peripheral overhead due to the cells’ high input and output impedances [130], and also by 

having more design options in scaling cell currents due to multi-terminal cell structure, which 

is important for the considered annealing approaches. 

On the other hand, metal-oxide memristors are arguably the most prospective candidate 

for the proposed circuits. Their major challenge is immature technology requiring substantial 

improvements in device yield and I-V uniformity. The improved device technology should 

also feature lower cell currents, by approximately two orders of magnitude, to improve 

system-level performance and to allow for highly effective temperatures during operation 

when relying on intrinsic noise in the stochastic dot-product circuits. Due to the linear 

dependence of the off-state current on the device footprint, cell currents in the utilized 

memristor technology can be reduced by scaling-down device features [17]. Moreover, 

memristors with a suitable range of resistances based on other materials have also recently 

been reported [67, 68], and further progress in this direction can be helped by the development 

of foundry-compatible active metal-oxide memristor (1T-1R RRAM) macros [172].      
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It is worth noting that similar to other applications [16], a limited tuning precision and 

switching endurance for memristors and flash memories should be adequate for “inference”-

like computations in both studied applications.   For example, simulation results in Fig. 52 

show almost no degradation in performance for up to ~5% and ~10% tuning errors (which is 

crudely equivalent to 3 and 2 bits of weight precision) for the considered RBM network and 

graph partitioning problem, respectively. We also envision that the proposed neuro-

optimization hardware will be the most useful for computationally–intensive problems and 

thus require relatively infrequent weight re-tuning because of longer runtimes. In principle, 

implementations based on high-endurance digital memories, such as ferroelectric devices 

[175], would broaden the application space for the proposed circuits, e.g., enabling RBM 

training. Such implementations, however, would require multiple digital devices per synaptic 

weight, resulting in sparser designs with worse performance and energy-efficiency.  

2.12. Weight Annealing in Memristive Hopfield Networks 

Following the previous section, we introduce a compact and scalable weight annealing 

technique of the Hopfield model with its VLSI design, which is more effective and more 

scalable than conventional annealing methods. Our approach dates back to methods like 

weight annealing [176-179], noising [180], space smoothing [181], and fine-tuned learning 

[182], where the core idea is to change in the energy landscape by modifying weights in the 

formula for the energy. Here, the exact meaning of "weight" varies from method to method, 

as well as from problem to problem addressed – a weight may be associated with an input data 

point, a subproblem, etc.; similarly, a variety of ways to modify the weights (random 

perturbation, adversarial change, etc.) has been explored. The common crux of the methods is 

that they modify the weights differently in every timestep and in different areas of the solution 
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space; this way, the search is guided by weight changes adapted to the current state and reuses 

insights gained from previous iterations. While the clever schemes for such adaptive weight 

modifications underpin the strengths of the methods, mimicking this adaptivity within any 

hardware would likely be inefficient since performing individual changes to the weights 

consumes significant time and energy. Further, hardware implementation of the algorithms 

which act differently in different parts of the solution space would require a complicated 

circuitry, leading, again, to efficiency losses.  

Our proposed weight annealing circumvents both of the above: First, at any iteration, all 

weights are scaled together. Second, the weight modification is oblivious to the status of the 

solution space exploration – the annealing schedule is pre-set in advance and does not depend 

on the state of the system (in particular, the schedule does not depend on the value of the 

energy function  –  it is the hardware that takes care of the derivatives, convergence, escaping 

local optima with stochastic decisions, etc.). We numerically demonstrate the effectiveness of 

our approach on several benchmarks by solving graph partitioning, vertex cover, maximum-

weight independent set, and maximum-weight clique problems. 

3.3.1. Hardware-friendly Weight Annealing  

The Lyapunov energy associated with a certain state of the Hopfield network at 𝑡 is given 

by 

𝐸(𝑡) = −
1

2
෍ ෍ 𝑤௜௝(𝑡)𝑈௜(𝑡)𝑈௝(𝑡)

ே

௝ୀଵ

ே

௜ୀଵ

− ෍ 𝑇௝
ୠ𝑈௝(𝑡)

ே

௜ୀଵ

. (3.3.1) 

where the parameters have their usual meaning. The idea is to slowly modulate the energy 

landscape, starting from a funnel shape with a deep global optimum where the ground state is 

easily accessible. The network traps in it in the early stages and tends to remain in the ground 
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states during the weight modification. In our proposed method, the synaptic weights are 

slowly changed using 𝑤௜௝ = 𝑇௜௝(1 − 𝑒
ష೟

ഓ ) where 𝜏>0 is the annealing schedule, and 𝑇 is the 

ultimate synaptic weight matrix. At the beginning (𝑡 = 0) and while the first term (in Eq. 

3.3.1) is zero, the total energy of the network is − ∑ 𝑇௝
௕𝑈௝(𝑡)ே

௜ୀଵ . It is very straightforward to 

locate the optimum solution, and the network captures it very fast since there are no local 

minima. The ground state, for example, is located at 𝑈௝ = 1 for the jth neuron that has 𝑇௝
ୠ > 0. 

As the network evolves, 𝑤௜௝(𝑡) gradually moves toward 𝑇௜௝(𝑡) and the first term in Eq. 3.3.1 

becomes more significant until the network stabilizes in the equilibrium state. This approach 

is not only very efficient in terms of solution quality in comparison with other annealing 

techniques, but also it has a very straightforward implementation with crossbars of the 

mainstream analog nonvolatile memories. Note that quantum annealing of artificial Ising spins 

[10] employs a similar concept in which the system Hamiltonian is first fully characterized by 

a transverse wave and then gradually turned off while increasing the weight of the Ising 

Hamiltonian.  

We consider graph partitioning problems that find applications, e.g., in graph-based 

electronic structure theory applied to quantum molecular dynamic simulations [183]. A 7-

node graph partitioning problem with randomly selected weights and edges is shown in Fig. 

53a (see Supplementary Section 3 of Ref. [184] for the actual vertex and edge weights). Fig. 

53b shows the semi-exponential energy evolution (of all possible states) during annealing 

(𝜏 = 40). The energy associated with each state is exponentially increasing as expected. The 

black sphere points (projected to the bottom plane for clarity) represent the ground state of the 

system during the annealing. The global optimum is −389.5459 and locates at state 97 

(decimal equivalent of "1100001"). The transitory state is specified by listing the 𝑁 values of 
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𝑈௝ and represented by a binary word of 𝑁 bits and its decimal version for simplicity. At 𝑡 =

1, the global minimum is recognizable (state  118, E=−917.76). While the network is steadily 

evolving, the ground state increases, and its location changes several times. The average 

transitory energy of the system (defined over the transitory synaptic weights) is also shown 

for 128 initialization schemes and 200 epochs (𝑁୉୔ = 200) in magenta. The network finds 

the initial ground state very quickly (regardless of the initial state) owing to the annealing 

mechanism and tracks it during the evolution.  

Fig. 53c shows the performance of the weight annealing technique versus stochastic 

annealing with a probabilistic sigmoid neuron (the temperature is reduced exponentially from 

100 to 0.01) and chaotic annealing (the self-feedback weights are decreased exponentially 

from 250 to 0.001). In this experiment and after 200 epochs, the success rate (the relative 

number of cases led to the global optima) is 57.8%, 59.37%, 94.53% for chaotic, stochastic, 

and weight annealing techniques, respectively, and it is 28.12% for the standard Hopfield 

model (baseline). It is noteworthy that the stochastic annealed network converges to 

E=−387.98 and scores a 98.6% success rate when we use 30k epochs and scale the 

temperature from 100k to 0.01.  

To further investigate the proposed approach, 200 randomly populated configurations of 

5, 10, 15, 20, and 25-node graphs are considered. The annealing schedule parameter is 

manually optimized for the first problem and used in all configurations (see Table III for the 

list of the simulation parameters). The scalability of our approach is compared with simulated 

annealing on three scenarios: first, we assume a fixed epoch size of  300 for all sizes, then 𝑁୉୔ 

is exponentially increased for 25-node graphs, and then, 𝑁୉୔ is exponentially increased with 

respect to the linear increase of the problem size. 
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Fig. 53: Neuro-optimization with the weight annealing: (a) The 7-node weighted graph 
partitioning problem that is used to illustrate the mechanism of weight annealing. The 
blue/green coloring shows the optimum solution (Supplementary Materials S3 includes the 
actual weights). (b) The energy evolution of each state during weight annealing for 200 epochs 
and τ=40. The black spheres mark the transitory ground state of the system, which is also 
projected to the energy-epoch plane. The magenta curve shows the average transitory energy 
over 128 runs, which shows that the proposed weight annealing tracks the transitory globally 
optimum state of the system. (c) The average energy of the network with different annealing 
techniques over 128 runs. (d) Top-1 and Top-5 success rates of varying annealing techniques 
versus problem size (B: Baseline, i.e., the standard Hopfield network without annealing, S: 
Stochastic (temperature reduced from 100 to 0.01), C: Chaotic (temperature reduced from 250 
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to 0.001), and E: Exponential Weight annealing). For each graph size, we consider 200 
randomly weighted problems and provide the parameters in supplementary S4. Note that the 
best response is the global optimum, and Top-5 counts if the final response is among the best 
top-5 solutions. Panel (e) shows the distribution of the final average energy, offset by a 
constant for clarity, for the same graphs used in panel (d). The circles represent graph size. (f) 
The boxplot of the average final energy vs. epoch size for 200 random configurations of 25-
node graph partitioning problems.   

We show the success rate achieved by different methods on various problem sizes for 

𝑁୉୔ = 300  in Fig. 53d. The performance of weight annealing is on par with simulated 

annealing for N=5; however, the energy gap becomes significantly wider for larger problem 

sizes. More interestingly, for N=15, among the 200 configurations, the 20 percentiles success 

rate of weight annealing is better than the 80 percentiles of all other methods. Note that due 

to the analog capability of our synaptic weights, we consider weighted graph problems, and it 

would be unfair to compare our results (in terms of success rate) with previous 

implementations, focusing on sparse graphs with binary weights. Fig. 53e shows the average 

final energy for the same graphs. We observe that the gap between the solution quality (final 

energy) of exponential weight annealing and other methods becomes wider in more massive 

graphs. In Fig. 53f, the computational runtime (epoch number) is increased for 200 

configurations of 25-node graphs. We notice that, as expected, the performance of all 

annealing techniques, including weight annealing, improves by increasing the number of 

epochs (in part due to slower cooling, which allows the networks to search for better 

solutions). The performance of weight annealing no longer improves for NEP>3200, while 

simulated annealing techniques, with noticeable inferior performance, benefit from the longer 

computational time and slower annealing. This is partly due to the inherent differences 

between the underlying mechanism of simulated and exponential weight annealing. Stochastic 

annealing requires more time to explore larger searching spaces. While for the weight 

annealing, it is simply not the case. The accuracy saturation stems from the fact that slower 
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learning no longer creates a more optimum path. Note that weight annealing achieves the same 

solution quality 10× faster than simulated annealing techniques. The simulation results for the 

case of increasing NEP exponentially with respect to the problem size are shown in Fig. 54. It 

is observed that weight annealing outperforms simulated annealing for N>10.  Similar sets of 

simulations are also performed for three other combinatorial optimization problems. The 

trends in the results (Figs. 55-57) indicate that weight annealing outperforms other annealing 

techniques. For the vertex cover, we notice that the weight annealing fails to find the exact 

solution (i.e., the global optimum) for few large graph configurations. (Note that weight 

annealing is still better or on par with simulated annealing on average, outperforms simulated 

annealing in terms of response quality (Top-5 and average energy.) Spurious states generated 

during the evolution are responsible for those rare cases.  

 
Fig. 54: Extended graph partitioning simulations: The result of increasing the computational 
time (NEP) with respect to the graph size (N). Note that, in this figure, the average energy is 
added by a constant for better clarity.  
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Fig. 55: Simulation results on 200 random configurations of the maximum weighted 
independent set problem with various sizes: (a) the success rate and (the average final energy 
in the inset) for different sizes and fixed computational time (NEP=300), (b) the success rate 
and (the average final energy in the inset) for different sizes with a varying number of epochs. 
Note that, in each figure, the actual average energy is added by a constant for better clarity.  

 

Fig. 56: Simulation results on 200 random configurations of the maximum weighted clique 
problem with various sizes: (a) the success rate and (the average final energy in the inset) for 
different sizes and fixed computational time (NEP=300), (b) the success rate and (the average 
final energy in the inset) for different sizes with a varying number of epochs. Note that, in 
each figure, the actual average energy is added by a constant for better clarity. 
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Fig. 57:  Simulation results on 200 random configurations of the minimum weighted vertex 
cover with various sizes: (a) the success rate and (the average final energy in the inset) for 
different sizes and fixed computational time (NEP=300), (b) the success rate and (the average 
final energy in the inset) for different sizes with a varying number of epochs. Note that, in 
each figure, the actual average energy is added by a constant for better clarity.  

Table III: The parameters used in the graph-partitioning simulations 

Fig.52e 

N 
Epoch 

Number 
Case 

numbers 
Annealing Schedule 

Stochastic Chaotic Exponential 

5 300 32 50 50 60 

10 300 1000 60 500 60 
15 300 10000 70 1e3 60 
20 300 10000 70 5e3 60 
25 300 10000 100 9e3 60 
30 300 10000 300 2e4 60 
40 300 10000 500 1e5 60 
50 300 10000 1000 2e5 60 

Fig.52f 

25 100 10000 150 1e3 20 
25 200 10000 200 4e3 40 
25 400 10000 1e3 1e4 80 
25 800 10000 5e3 1e5 160 
25 1600 10000 1e4 1e6 320 
25 3200 10000 5e4 1e7 640 
25 6400 10000 1e5 1e8 1280 
25 12800 10000 1e6 1e9 2560 
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20 800 10000 200 7e3 160 
25 1600 10000 700 1e5 320 
30 3200 10000 2e3 1e6 640 
40 6400 10000 1e4 1e7 1280 
50 12800 10000 1e5 1e8 2560 

3.3.2. Experimental Results 

The proposed technique is demonstrated by addressing two optimization problems based 

on the most prospective analog-grade memory technologies. The central merit of weight 

annealing lies in its very straightforward and compact implementation. We present this by 

realizing a 16-node graph partitioning problem using a 20×20 passively integrated analog-

grade memristive crossbar and a 7-node maximum-weighted independent set on a 12×10 

embedded array of eFlash memories. 

Fig. 58 shows the implementation of the weight annealing technique. The corresponding 

hardware realization of Eq. 3.3.1 is discussed in the Methods section for both cases. The main 

challenge in realizing the weight annealing is scaling the synaptic weights. We would like to 

emphasize that direct modification of (analog) states is impractical in part because of the 

limited endurance, device-to-device, and cycle-to-cycle variations. This challenge can be 

resolved in resistive memories by using a simple control circuit (the pre-synaptic drivers), 

which scales all synaptic weights simultaneously (see Fig. 58). Here, 𝑉ୡ୲୰୪ is exponentially 

increased toward 𝑉ୟ୮ at which all devices are tuned. The current neuron state determines which 

devices should be driven by 𝑉ୡ୲୰୪. The post-synaptic circuits include trivial circuits such as 

transimpedance amplifiers (e.g., a buffered version of Ref. [140]) that senses currents and a 

dynamic voltage comparator (see, e.g., [185]) that updates the selected neuron state. These 

circuit functionalities are emulated with Agilent characterization tools.   
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In split-gate embedded Flash memories, the situation is more straightforward since we can 

bias the memories in the weak inversion regime, making their states (i.e., currents) semi-

exponentially dependent on the select-gate voltage. Then, 𝑉ୡ୲୰୪ is applied to the shared select-

gates and linearly increased toward the 𝑉ୟ୮.  

 
Fig. 58: The current-mode recurrent circuit that implements the weight annealing of discrete-
time Hopfield networks with programmable analog memories. The green circles show the bias 
weights (𝑇௜

ୠ) while the black circles implement self-feedback weights (𝑇௜௜), and the rest of 
them denote the main synaptic weights (𝑇௜௝,௜ஷ௝). A constant 'on' voltage, which is the same as 
the tuning voltage, drives the bias column. We control the applied voltage to the rest of the 
devices during the runtime to adjust the synaptic weights (exponentially). Note that 𝑉ୡ୫ is 
only added to emphasize that the circuit operate on a single-𝑉 ୢ. Values 𝑅, 𝐶, and 𝐼 depend on 
the problem size and technology and determine the annealing schedule. Switch S resets the 
network to the initial condition. The selected neuron is determined by the input address to the 
decoder, and the operation is synchronized with the sampling clock (𝜑) in the dynamic 
comparator. Note that we have omitted the tuning circuits in the figure for clarity. 

In the first experiment, a 13-node graph partitioning problem is implemented using 

passively-integrated memristive crossbars. We would like to note that, to the best of our 

knowledge, this work is the largest Hopfield network circuit implemented with passive 

memristors. Fig. 59a shows the wire-bonded chip, crossbar TEM image as well as SEM image 

of the device stack. This crossbar has been previously used for the demonstration of a 

multilayer perceptron, an integrated spiking neural network for coincident detection, and a 
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hardware security primitive design. The method section includes a brief description of 

fabrication steps. Further details are available in our previous works [17,14].  

In order to increase the demo size and without the loss of generality, we have ensured the 

weights and edges (of the graph) are selected such that 𝑇௜௝ < 0 and 𝑏௝ > 0. This facilitates a 

single-ended time-multiplexed dot-product of a 13×(13+1) network on our memristive 

crossbars. A random graph G=(V, E) with the following analog weights are used:  
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Then, we use the common procedure of finding the weights of the Hopfield network by 

comparing the general Lyapunov energy with the energy function of the problem (see 

Supplementary Section 2 of Ref. [184] for more information): 
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To realize weight annealing within our memristive crossbars, we encode the normalized 

weights (𝑇௜௝ < 0 and 𝑇௝
௕ > 0) to device conductances by using 𝑔௜௝ = 𝐺୫ୟ୶(𝑇௜௝/|𝑊୫ୟ୶|) and 

𝑔௝
௕ = 𝐺୫ୟ୶(𝑇௝

௕/|𝑊୫ୟ୶|) where |𝑊୫ୟ୶| = max {|𝑇|,|𝑇௕|}, where 𝐺୫ୟ୶ is a predetermined 



 

 162

value. Memristive crossbars inherently implement the dot-product using Ohm and Kirchhoff's 

laws, i.e.,  

𝑉(𝑡 + 1) = f ൭෍ 𝑔௜௝𝑉௜(𝑡)

ே

௜ୀଵ

+ 𝑔௝
௕𝑉ୟ୮൱ . (3.3.2) 

Note that f(.) is the binary activation function realized by a comparator in peripheral circuits. 

In our experimental setup, the straightforward peripheral functions are emulated by the 

Agilent characterization tools.  In exponential weight annealing, 𝑉௜(𝑡) = 𝑉௜
ୟ୮(𝑡)(1 − e

ష೟

ഓ ) is 

the applied voltage to the 𝑖୲୦ input and 𝑉௜
ୟ୮(𝑡) is either 0 or 𝑉ୟ୮, based on the neuron state. 

Given that, we rewrite Eq. 3.3.2 as 

𝑉(𝑡 + 1) = f ൭
𝑉ୟ୮𝐺୫ୟ୶

|𝑊୫ୟ୶|
෍ 𝑇௜௝(𝑉௜(𝑡)

ே

௜ୀଵ

/𝑉ୟ୮) + 𝑇௝
ୠ൱ 

                                        = f ൭
𝑉ୟ୮𝐺୫ୟ୶

|𝑊୫ୟ୶|
෍ 𝑇௜௝(𝑉௜

ୟ୮(𝑡)(1 − 𝑒
ି௧
ఛ )

ே

௜ୀଵ

/𝑉ୟ୮) + 𝑇௝
௕൱ 

                        = f ൭
𝑉ୟ୮𝐺୫ୟ୶

|𝑊୫ୟ୶|
෍ 𝑤௜௝(𝑡)(𝑉௜

௔௣(𝑡)/𝑉ୟ୮

ே

௜ୀଵ

) + 𝑇௝
௕൱ , (3.3.3) 

which is essentially the hardware implementation of updating the neuron states of the Hopfield 

model. 

After determining the desired conductance map, we program the devices individually 

using the write-verify algorithm [66]. Note that the details of forming, tuning, and operation 

of the circuit, as well as the procedure of mapping the actual synaptic weights (from software) 

to conductance values, are illustrated in the Methods section. Fig. 59b and Fig. 59c show the 

network's desired weight map and the corresponding conductance map obtained after tuning 

the crossbar, respectively. Most devices are tuned very close (within 5%) to the desired states, 
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which is possible due to the tight distribution of switching thresholds in our analog-grade 

crossbar circuits. Fig. 59d shows the distribution of pre-activation readout currents for the 

baseline case (the inset indicates no bias in neuron selection). The input "on" voltage 

corresponding to binary input '1' is Vap=0.1 V. Note that we exponentially increase the "on" 

applied voltage from 0 to 0.1 V for the weight annealing. The measured synaptic strength of 

each device during the weight annealing is shown in Fig. 59e. The experimental and 

simulation results are compared in Fig. 59f. Specifically, the average energy over 103 cases 

for 200 epochs is shown for various methods. Here, the annealing schedule parameters are 

104, 105, and 35 for chaotic, stochastic, and weight annealing, respectively. The ground state 

locates at -3796, and weight annealing (on both experiment and simulation) performs better 

than other techniques and far better than the baseline.  
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Fig. 59: The experimental demonstration with the integrated memristor crossbars. (a) The 
fabricated 20×20 integrated memristor crossbar [46]. (b) The desired ideal analog map for the 
13-node graph partitioning problem, and (c) the resultant conductance map of the devices after 
tuning the crossbar. (d) Distribution of the readout current when solving the problem with the 
conventional (baseline) approach. The inset shows the histogram of selected neurons (for 
updates) and indicates there is no bias in the neuron update. (e) The evolution of the synaptic 
weights during the weight annealing. (f) The experimental versus simulation results of the 
neuro-optimization with different techniques. The inset shows the zoomed-in average energy 
in the last 100 epochs.  

In our second experimental demo, a 7-node maximum-weighted independent set is solved 

using an array of 12×10 redesigned embedded Flash memories fabricated in GlobalFoundries 

55 nm LPe CMOS process (Fig. 60a). The redesigned array structure enables <1% analog 

programmability [40]. Biasing conditions (imposed during programming) ensure the 

subthreshold operation of the devices at all operating conditions. Fig. 60b shows the 

implemented weighted graph. Similar to our first demo, we choose the weights and edges (of 
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the graph) randomly while ensuring 𝑇௜௝ < 0 and 𝑇௝
ୠ > 0. Then, we use the standard method 

of finding the weights of the Hopfield network by comparing the general Lyapunov energy 

with the energy function of the problem (see Supplementary Section 2 of Ref. [184] for more 

information). A graph with the following adjacency matrix and nodal weights are considered:  

𝐴 =

⎝

⎜
⎜
⎜
⎛

0
1
1
0
1
1
1

1
0
1
1
1
1
1

1
1
0
1
1
0
0

0
1
1
0
0
1
1

1
1
1
1
0
1
1

1 1
1 1
0 0
1 1
1 1
0 1
1 0⎠

⎟
⎟
⎟
⎞

, 𝐸 =

⎝

⎜
⎜
⎜
⎛

6.40
7.38
5.05
1.21
3.43
2.02
6.09⎠

⎟
⎟
⎟
⎞

 

Accordingly, the synaptic weights are found:  

𝑇 = −

⎝

⎜
⎜
⎜
⎛

0
2
2
0
2
2
2

2
0
2
2
2
2
2

2
2
0
2
2
0
0

0
2
2
0
0
2
2

2
2
2
2
0
2
2

2 2
2 2
0 0
2 2
2 2
0 2
2 0⎠

⎟
⎟
⎟
⎞

, 𝑇௕ =

⎝

⎜
⎜
⎜
⎛

3.20
3.69
2.52
0.60
1.71
1.01
3.04⎠

⎟
⎟
⎟
⎞

  

We can tune each floating-gate cell to a desired current value at nominal biasing conditions. 

Neglecting the drain-source voltage, 𝐼ୈୗ ≈ 𝐼଴𝑒
ೇ౓ైషೇ౪౞

೙ೇ౪౞ ≈ 𝜃଴𝐼଴𝑒
ೇ౓ై
೙ೇ౪౞ where 𝜃଴ is the effective 

weight of the devices, and other parameters have their usual meaning. We define 𝐼௜௝(𝑉୛୐) =

𝜃௜௝𝐼଴𝑒
ೇೈಽ 

೙ೇ౪౞  and 𝐼௝
௕ = 𝜃௝

௕𝐼଴𝑒
ೇ౗౦ 

೙ೇ౪౞ . During tunning, we make sure that 𝐼௜௝(𝑉ୟ୮) =
ூౣ౗౮்೔ೕ

|ௐౣ౗౮|
 and 𝐼௝

௕ =

ூౣ౗౮ ೕ்
್

|ௐౣ౗౮|
 where |𝑊୫ୟ୶| = max {|𝑇|,|𝑇௕|}. 𝐼୫ୟ୶ is a predetermined value. Hence,  

𝜃௜௝ =
𝐼୫ୟ୶𝑇௜௝

|𝑊୫ୟ୶|𝐼଴
𝑒

ି௏౗౦ 
௡௏౪౞ , 𝜃௝

௕ =
𝐼୫ୟ୶𝑇௝

௕

|𝑊୫ୟ୶|𝐼଴
𝑒

ି௏౗౦ 
௡௏౪౞  (3.3.3)  

The update rule for the 𝑗୲୦ neuron is given by 

𝑉(𝑡 + 1) = f ൭෍ 𝐼௜௝(𝑉௜(𝑡))

ே

௜ୀଵ

+ 𝐼௝
௕൱ (3.3.4) 

and 𝑉௜(𝑡) is the gate-applied voltage to the 𝑖୲୦ input terminal at iteration 𝑡. It is effortless to 

show that 3.3.4 performs the dot-product of (two-state) input voltage vector and (analog) 

weights. Note that we apply the digital inputs (𝑉୛୐ = 0 V corresponds to ~0 synaptic current 
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and  𝑉୛୐ = 𝑉ୟ୮ = 1.5 𝑉 corresponds to the 'on' current for the baseline operation) in the gate-

line direction and read the summed currents from the bitlines (e.g., using a transimpedance 

amplifier or a current conveyor) to 𝑉஻௅ = 1 𝑉.  

For the exponential weight annealing, we substitute 𝐼௜௝ and 𝐼௝
ୠ in S6 using S5 and obtain  

𝑉(𝑡 + 1) = f ൭෍
𝐼୫ୟ୶𝑇௜௝

|𝑊୫ୟ୶|𝐼଴
𝑒

ି௏౗౦ 
௡௏౪౞ 𝐼଴𝑒

௏೔(௧) 
௡௏౪౞

ே

௜ୀଵ

+
𝐼୫ୟ୶𝑇௝

ୠ

|𝑊୫ୟ୶|𝐼଴
𝑒

ି௏౗౦ 
௡௏౪౞ 𝐼଴𝑒

௏౗౦ 

௡௏౪౞൱ = 

                 = f ൭
𝐼୫ୟ୶

|𝑊୫ୟ୶|
෍ 𝑇௜௝𝑒

௏೔(௧)ି௏౗౦ 
௡௏౪౞

ே

௜ୀଵ

+ 𝑇௝
ୠ൱ 

and 𝑉௜(𝑡) =
௏೔

౗౦(௧)௧

ఛ
 (𝜏 is the annealing schedule) for the semi-exponential learning (it is "semi" 

since the devices have nonlinearities in their I-V) and 𝑉௜(𝑡) = 𝑉௜
ୟ୮(𝑡)(1 − 𝑒

ష೟

ഓ ) for super-

exponential learning. Also, since the currents are extremely small for 𝑉ௐ௅ < 0.7, the ground 

state of the system remains constant for a significant period. This can be prevented by starting 

from 𝑉୛୐,଴ = 0.7 and, e.g., governing the annealing by 𝑉௜(𝑡) =
(௏೔

ೌ೛(௧)ି௏ೈಽ,బ)௧

ఛ
+ 𝑉ௐ௅,଴. 

For the considered problem, the ground state of the energy function locates at -5.5755 that 

corresponds to the neural state "0010001". The devices are programmed with <1% accuracy 

(see the method section). Fig. 60c shows the resultant map of state currents under nominal 

biasing conditions, i.e., (𝑉୛୐ = 1.5 V, 𝑉େୋ = 2.5 V, 𝑉୆୐ = 1 V, 𝑉ୗ୐ = 0 V, and 𝑉୉ୋ = 0 V). 

The experiments and simulations are performed over 128 initialization cases for 500 epochs 

and show the results in Fig. 60d. The results are averaged over 100 runs in the simulations. 

The annealing schedule is 10, 10, and 100, and the average probability of hitting the global 

optimum is 0.76, 0.92, 0.82, and 0.99 for stochastic, chaotic, and weight annealing, 

respectively (Fig. 60e). We drive the devices corresponding to bias weights (𝑇௝
ୠ) by constant 

gate-voltages (𝑉୛୐ = 1.5 V and 𝑉େୋ = 2.5 V), while other rows (if their corresponding neuron 

is in the 'on' state) are driven by 𝑉௜(𝑡). We studied the impact of annealing schedule and 

exponential versus linear voltage scaling too and found that a slower annealing schedule 
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(𝜏ୣ୶୮ = 60) tackles the nonlinearities in the super-exponential dependency of synaptic current 

to voltage and closely matches the trends in the simulations. For the latter case, the slowest 

annealing process (𝜏ୣ୶୮ = 𝑁୉୔ = 500) leads to the best response.  

 

Fig. 60: Neuro-optimization with embedded analog-grade eFlash memories. Panel (a) shows 
the fabricated 10×12 eFlash array chip in Global Foundries' standard LPe CMOS process [67]. 
(b) A 7-node maximum-weighted independent set problem. (c) The heat map of the synaptic 
weights for the devices that implement the neuron-optimization. (d) The average energy 
versus epoch comparing experimental results with simulations over 100 runs. (e) The success 
rate of different annealing techniques on this problem over 100 runs.   

3.3.3. Methods 

In order to increase our demo size (given our 20×20 crossbar size), we deliberately chose 

edges to be larger than weights (the values are selected randomly in all experiments and 

simulations) to force all non-diagonal synaptic weights (𝑇௜௝) to be negative and all biases to 

be positive. This technique allows us to implement a relatively larger demo by assigning one 

device per weight (compared with the two-device per synapse needed for fully differential 

design) and perform each vector-by-vector multiplication in two cycles. Indeed, we 
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implement the dot-product operation in a two-step time-multiplexed fashion: In one cycle, we 

measure the total current (∑ 𝐼ି) associated with the input vector multiplied by the synaptic 

weight vector (from the selected neuron), while the input bias voltage is zero. Then, we 

subtract it from the sensed current (∑ 𝐼ା) from the same bitline, while the main inputs are zero 

and apply 𝑉ୟ୮=0.1 V to the bias column. Besides, to increase the dynamic range, all bias 

conductances are divided by 5 and compensated by applying an extra gain of 5 at the neuron 

side. In other words, we evaluate the final output by hard thresholding (5 ∑ 𝐼ା − ∑ 𝐼ି). (Note 

that we have previously demonstrated fully-differential dot-product engines using the same 

devices in our previous works – see, e.g., [9]).  

Owing to the single-ended design, we use 𝑔௜௝ = 𝐺୫ୟ୶(𝑇௜௝ max(|𝑇୫ୟ୶|)⁄ ), where 

max(|𝑇୫ୟ୶|) is the maximum absolute weight and 𝐺୫ୟ୶ is the maximum absolute 

conductance (40 μS in our experiment). We ground all bitlines (bottom electrode) except the 

one associated with the selected neuron. That is virtually grounded, and we sense and sample 

its current at 1 MHz using a B1530A fast measurement unit and a B1500A parameter analyzer. 

We apply neuron voltages to the switch matrix, connected to both 20 rows and 20 columns of 

the crossbar. We link top electrodes to the input neurons and bottom electrodes to the output 

neurons through an E5250A switch matrix.  

The eFlash chip, fabricated in GlobalFoundries 55 nm LPe process, includes a 12×10 

redesigned industry-grade split-gate memory array. The packaged chip is previously used for 

developing a high-performance dot-product engine. Agilent B1500A and B1530A tools are 

used for measurements and pulse generation. We have developed a custom-made switch 

matrix on a printed circuit board controlled via a lightweight microprocessor to interface 

Agilent tools with the chip. More details on the experimental setup, programming, eraser, 
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redesigned layout structure, half-select disturbance immunity, retention, and endurance 

characteristics are available in Ref. [40]. All eFlash memories are programmed to their 

targeted states at 𝑉୛୐ = 1.5 𝑉, 𝑉େୋ = 2.5 𝑉, 𝑉୆୐ = 1 𝑉, 𝑉ୗ୐ = 0 𝑉, and 𝑉୉ୋ = 0 𝑉 and 

operated at the same biasing condition. Further, the devices are tuned one at a time by 

progressively increasing voltage pulses and using the write-verify algorithm. We have 

discussed the details of pulse amplitudes and durations in the programming phase in Ref. [40].  

The weight annealing is implemented by increasing 𝑉ௐ௅ from 0 to 1.5 V linearly and 

exponentially. This would exponentially and superexponentially increase the synaptic weights 

since we operate the devices in weak inversion, as discussed before. Similar to the other demo, 

we use the single device per synapse topology and compute each update in two cycles. The 

weights are mapped (from software to hardware) by using 𝐼௜௝
் = 𝐼୫ୟ୶

்೔ೕ

|்ౣ ౗౮|
 and 𝐼௝

ୠ =

𝐼୫ୟ୶
ೕ்
್

ห ೘்ೌೣ
್ ห

 in which 𝐼୫ୟ୶ = 1 µ𝐴, 𝑇୫ୟ୶ = 2 is the maximum absolute synaptic weight, and 

𝑇௠௔௫
௕ = 3.694 is the maximum absolute bias. 

3.3.4. Discussion and summary 

We have demonstrated weight annealing, a technique that substantially improves the speed 

and accuracy of asynchronous Hopfield neuro-optimizer. The weight annealing converges 

faster and to a better solution within the studied runtime as compared to other considered 

annealing approaches. We highlighted the scalability of our approach with the problem size 

and computational time by exploring several combinatorial problems and demonstrated the 

experimental results using two state-of-the-art analog-grade nonvolatile memories.  

The passive integrated memristor technology offers the best scaling prospects and low 

fabrication cost. We have recently developed a 4K fully CMOS-compatible 0T1R array with 
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excellent switching characteristics [113]. The measured analog characteristics are promising 

for the development of large-scale neuro-optimization systems. On the other hand, eFlash 

technology is much sparser, but it is currently commercially available and embedded in (down 

to 28 nm) standard CMOS processes. Our preliminary estimations indicate a promising 

prospect for using metal-oxide memristors for the hardware implementation of Hopfield 

networks and weight annealing. Our approach could be 102× faster and 105× more energy 

efficient than the most efficient conventional methods based on graphics processor units on 

the same task. Future works focus on the CMOS-integrated design of a weight annealing 

optimizer, allowing us to perform a rigorous comparison with entirely fabricated annealing 

machines.   

As opposed to most previous works that focus on large-scale switching of memristors, our 

proposed solution offers very infrequent writes, which is justified assuming long runtimes of 

computationally-extensive problems. More importantly, our proposed neuro-optimizer offers 

analog (>5 bits with memristive nanodevices and >6 bits via eFlash technology) weights. This 

feature is not demonstrated in previous Ising machines [46,47,48,186-189]. Unlike quantum 

computing machines [45] that are susceptible to environmental noise, hard to scale, and must 

operate at cryogenic temperatures, the proposed circuit is more scalable and operates at room 

temperatures.  

2.13. Mixed-Signal Neuro-Optimization with Adaptable Annealing  

In section 2, we demonstrated the idea of using intrinsic and extrinsic analog noise for 

building a stochastic mixed-signal dot-product engine. We also illustrated how chaotic 

annealing could be realized using the main-stream analog-grade nonvolatile memories. In 

chapter 3, we proposed the idea of weight annealing, which shows excellent performance and 
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could be easily implemented via crossbars of memristive devices. In addition, in both previous 

sections, only single combinatorial problems were implemented in hardware, and a small-

scale memristive crossbar was used for the demonstration. Here, we demonstrate analog 

neuro-optimization hardware, suitable for solving a large number of combinatorial 

optimization problems, based on a crossbar circuit with 4096 passively-integrated analog-

grade memristors, which was thoroughly elaborated in section 2. The proposed hardware 

supports a variety of metaheuristic techniques for improving optimization performance, such 

as stochastic, chaotic, weight annealing. The hardware operation is successfully tested by 

experimentally solving weighted graph partitioning, maximum clique, vertex cover, and 

independent set problems and observing good agreement with simulation results.   

3.4.1. Neuro-Optimization Hardware 

Fig. 61a shows the main idea of the proposed mixed-signal discrete-time/state stochastic 

Hopfield neural network circuits, essentially mixing the described techniques in sections 3.2 

,3.3. to support simulated, chaotic, and weight annealing. This circuit is verified with the 

64×64 crossbar circuit, which is packaged, integrated with the experimental setup, and used 

for all the measurements (Fig. 61b). 
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Fig. 61: (a) Circuit diagram of the versatile neuro-optimizer. Two sense amplifiers and a 
comparator represent a neuron. (b) The measurement setup of the RRAM-based neuro-
optimizer.  

 
The stochastic dot-product computation with adjustable annealing schedule is 

implemented by controlling the signal-to-noise ratio of the read-out current. Specifically, the 

output-referred current noise on each differential line (𝚤௡,௢௨௧
ଶതതതതതതത) is the sum of current noises 

generated by the memory cells and that of peripheral circuits. For the practical operational 

frequencies (>100 MHz), such noise is predominantly thermal. The comparator implements 

the step function on a sampled current so that the probability of latching a digital ‘1’ value is 

0.5(1 + erf 〈𝐼〉 √2𝜎)⁄ , where 𝜎 is the standard deviation of the output current. The error 

function matches closely, with relative error always within 2% across the whole range of 

normalized currents, probabilistic neuron transfer function 1/(1+exp[-y/T]) commonly used in 

stochastic Hopfield neural networks, in which y is the pre-activation value and T is the 

temperature.  Because 𝚤௡,௢௨௧
ଶതതതതതതത is independent of the applied voltages and is contributed by all 

differential line memristors and the sensing circuit, the effective temperature is inversely 

proportional to the peak signal-to-noise ratio, i.e., SNRmax = Imax/σ. In turn, such design 

enables very compact SSA implementation (Fig. 61a), in which the temperature can be 

controlled by altering VON (and hence modulating Imax and SNRmax), which is the amplitude 

of the applied ‘on’ voltage to the inputs of the crossbar circuit during the operation (Fig. 61a).  

To implement chaotic annealing, we initially set the neuron self-feedback weights to some 

large values (as compared to other weights in the network), which results in chaotic dynamics 

of the network. These weights are then exponentially decreased to zero during the operation 

so that the network slowly transitions from chaotic to the periodic regime, eventually settling 

in a stable equilibrium. The weight adjustment is performed again by scaling the applied 
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voltages. Because the voltages cannot be scaled for only diagonal devices without affecting 

other devices on the same columns, the chaotic approach requires doubling the number of 

columns and setting all but diagonal weights to zero in the additional crossbar array.  The 

neuron switching activity (firing rate) for simulated, chaotic, and baseline (i.e., with no 

annealing) approaches was studied using a 10-node weighted graph partitioning problem with 

randomly initialized weights.  The experimental results show that the neuron firing rates were 

initially above 5% for both simulated and chaotic, corroborating the random switching of 

neurons but eventually reduced to zero when the network stabilized.  

Furthermore, for the weight annealing, the weights are defined as Wij(t)= Tij(1-exp[-t/τ]), 

where t is epoch (i.e., one neuron update) number, τ is the annealing factor, and Tij is the 

predetermined weight matrix corresponding to the problem in question. The network weights 

are then slowly modified to the baseline ones, with the goal of always keeping the network in 

the ground state during the transition. Such behavior of weight annealing approach is 

experimentally confirmed on 10-node partitioning problem (Fig. 62b) using the same (as in 

Fig. 62a experiment) weights. Fig. 62c shows the final average energy of the network for all 

studies techniques on the same problem, in particular showing >2× higher convergence rate 

to top 5 solutions for weight annealing over naive baseline approach. The experimental results 

also confirm that the weight scaling error due to I-V nonlinearity (which could lead to varying 

relative weights when changing VON) is negligible.  
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Fig. 62: Mechanism of baseline, simulated stochastic annealing (SSA), and simulated chaotic 
annealing and weight annealing techniques described by solving a graph partitioning problem. 
(a) The firing rate of a 10-node graph partitioning problem (with uniformly distributed weights 
in the range of 1-20) for different techniques. (b) Weight annealing dynamics (𝜏 = 100) in 
solving the 10-node weighted graph partitioning problem. The network finds the ground state 
at earlier epochs and tracks it while transitioning to the baseline. Black: the transitory ground 
state of the system, magenta: average energy over 50k cases.  

3.4.2. Solving Combinatorial Optimization Problems 

To further demonstrate the effectiveness of the proposed hardware, we solve common 

combinatorial optimization problems and study a certain parameter in each case.  

For the first, we solve 10 random configurations of 5-node weighted maximum-clique 

problems. The problem parameters are converted to network weights, which are then mapped 

to devices with <5% tuning error in the range of 10 kΩ to 150 kΩ. The annealing parameter 

is exponentially scaled from 1 to 0.01 for stochastic and from 20 to 0.1 for chaotic, while τ = 

20 for weight annealing. All three annealing techniques performed much better than the 

baseline, with good agreement between simulations and experiment (Fig. 63). The simulation 

results for a larger number (200) of random configurations indicate better weight annealing 

performance. 

 
Fig. 63: Solving 5-node weighted maximum-clique problems with memristive crossbars. (a) 
The measured evolution of the average energy for a 5-node maximum-weighted clique 
problem. The inset shows the zoomed-in view of the figure. (b) The success rate of different 
annealing techniques on 10 5-node weighted maximum clique problems. (c) The energy gap 
(the average energy of solution minus the ground state) for all 5-node weighted maximum 
clique problems. 

40

50

60

70

80

90

100

10

9

8

7

6

5

4

3

2

1

 Baseline
 CSA
 SSA
 EA

 Baseline
 CSA
 SSA
 EA

Experiment

Simulation

0 20 40 60 80 100
-8

-6

-4

-2

0

A
ve

ra
g

e 
E

n
er

g
y 

(a
.u

.)

Epoch Number

 Base
 CSA
 SCA
 EA

Ground State

  Base
  CSA
  SCA
   EA

ExperimentSimulation
30 runs

0 50 100
-8

-7

-6300 runs

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n

er
g

y 
G

ap
 (

a.
u

.)

Problem Number

 Baseline
 CSA
 SSA
 EA

 Baseline
 CSA
 SSA
 EA

Experiment (30 runs) Simulation (300 runs)



 

 175

Figs. 64 shows the results for the weighted vertex cover problem. The performance of 

annealing approaches, measured on various size graph problems, is always better compared 

to the baseline. The impact of the annealing schedule is studied by solving a 10-node 

independent set problem. The results are presented in Fig. 64, which shows a significant 

improvement for the average energy when using slower annealing. Finally, we considered 

solving the graph partitioning optimization problem for a fully-connected weighted 6-node 

graph. Fig. 65 shows the final experimental results and their comparison to simulations, 

further validating the proposed hardware functionality and >20% improvements in the success 

rate over the baseline approach.    

 
Fig. 64: (a) Experimental (30 runs) versus simulation (300 runs) results of solving a 12-node 
minimum-weighted vertex cover. Inset is the zoomed-in view. Experimental results on various 
sizes of minimum-weighted vertex cover problems: (b) the success rate and (c) the energy 
gap.  

 
Fig. 65: (a) The measured average energy (over 30 runs) when solving a 10-node maximum-
weight independent set problem with three different annealing schedules. (b) The average 
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energy (300 and 30 cases for simulation and experiment, respectively) of the neuro-optimizer 
when solving a 10-node graph partitioning problem. 

Therefore, this section showed that our memristor-based neuro-optimizer could be used to 

implement 3 different annealing techniques: simulated annealing, chaotic annealing, and 

weight annealing. Besides, it was demonstrated that this circuit could be used to efficiently 

solve various combinatorial optimization problems, including weighted graph partitioning, 

minimum-weighted vertex cover, maximum-weighed clique, and maximum-weighted 

independent-set problems. The experimental results showed improved performance for all 

annealing techniques over the baseline approach and superior performance of exponential 

annealing compared to stochastic and chaotic annealing.  

In previous sections, we focused on designing efficient mixed-signal hardware for high-

speed and energy-efficient implementation of Hopfield neural networks and Restricted 

Boltzmann machines, which find applications in solving combinatorial optimization, 

dimensionality reduction, etc. 

2.14. Summary and Future Works 

In the first three sections of this chapter, we discussed novel techniques to design mixed-

signal computing circuits targeting neurooptimization and neurocomputing applications. First, 

we proposed to utilize extrinsic and intrinsic noise sources in mixed-signal memory-based 

circuits to implement efficient stochastic dot-product operation with runtime adjustable 

temperature. We then experimentally verified this idea by demonstrating memristive restricted 

Boltzmann machine and solving a combinatorial optimization problem with floating-gate 

memory neuromorphic circuits. In the following, we proposed the novel weight annealing 

technique that boosts the performance of the Hopfield model in solving combinatorial 

optimization problems. Using extensive simulations on four representative problems, we 
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numerically demonstrate that the proposed method outperforms the conventional Hopfield 

network (baseline) and challenges the prominent stochastic and chaotic annealing techniques 

in both computational time and accuracy. Then, we showed an efficient, scalable, and fast 

circuit implementation and experimentally verified it in two memory technologies: integrated 

20×20 0T1R memristive nanodevices and 12×10 redesigned commercial embedded flash 

memories. Finally, we demonstrated analog neuro-optimization hardware, suitable for solving 

a large number of combinatorial optimization problems, based on a crossbar circuit with 4096 

passively-integrated analog-grade memristors. The proposed hardware supports a variety of 

metaheuristic techniques for improving optimization performance, such as stochastic and 

chaotic simulated annealing and weight annealing. The hardware operation is successfully 

tested by experimentally solving weighted graph partitioning, maximum clique, vertex cover, 

and independent set problems and observing good agreement with simulation results.   

We believe that future experimental work should focus on more promising continuous-

time/state networks with parallel state updates [201] based on fully integrated hardware. The 

most urgent theoretical work includes modeling the impact of the circuit and device non-

idealities on the network functional performance, carrying out a more rigorous comparison of 

annealing techniques for neurooptimization, and developing larger-scale hardware suitable for 

more practical applications. In this context, it is worth mentioning that for the hardest 

combinatorial optimization problems, such as maximum clique problems, finding even a 

largely suboptimal solution is challenging, which could significantly relax the device and 

circuit requirements.  

Spiking neural networks, the most realistic artificial representation of biological nervous 

systems, are also promising due to their inherent local training rules that enable low-overhead 
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online learning and energy-efficient information encoding. Their downside is the more 

demanding functionality of the artificial synapses, notably spike-timing-dependent plasticity, 

making their compact, efficient hardware implementation challenging with conventional 

device technologies. Nonvolatile memories, and in particular, ultra-scalable memristors, are 

excellent candidates for artificial synapses because practically valuable neural networks 

require a massive number of synapses. We have performed a preliminary experimental study 

of demonstrating coincidence detection using a spiking neural network, implemented with 

passively integrated metal-oxide memristive synapses connected to an analog leaky-integrate-

and-fire silicon neuron [9]. By employing spike-timing-dependent plasticity learning, the 

network can robustly detect the coincidence by selectively increasing the synaptic efficacies 

corresponding to the synchronized inputs. Not surprisingly, our results indicate that device-

to-device variation is the main challenge in realizing more complex spiking networks. 
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4. Hardware Security Primitives with Analog Memories 

The proliferation of networked mobile devices and smart gadgets in the IoT landscape has 

accelerated the demand for lightweight, low-power, and operationally compatible 

cryptographic solutions. As a result, emergent hardware-intrinsic security architecture must 

demonstrate manufacturability, power efficiency, and platform compatibility, in addition to 

robust security performance. In this chapter, we show that the analog tuning and nonlinear 

conductance variations of memristors can be used to build a fundamental building block for 

implementing physically unclonable functions that are resilient, dense, fast, and energy-

efficient. Using two vertically integrated 10×10 metal-oxide memristive crossbar circuits, we 

experimentally demonstrate security primitive that offers a near-ideal functional performance. 

Then, we propose RX-PUF that takes advantage of a two-step readout scheme to avoid the 

need for the conductance tuning procedure used in the original design. Specifically, a 600 kb 

challenge-response pair (CRP) PUF using 250 nm half-pitch 20×20 crossbar arrays with 

passively integrated devices. The measured bit error rate is 0.7% at RT and ≤ 5.3% at 100°C, 

even without using any error correction methods. The measured responses show near-ideal 

uniformity (50.04%) and inter-HD (50.12%) and pass all relevant National Institute of 

Standards and Technology (NIST) randomness tests.  

Further, we present a novel architecture, called VRPUF, and prototype it using unformed 

4K-ReRAM passive crossbar circuits fabricated with a CMOS-compatible process, suitable 

for the back-end-of-line (BEOL) integration. The architecture utilizes intrinsic process 

variations in crossbar circuits, manifested as variations in device I-V nonlinearities and the 

leakage currents, and allows for a huge (~1025) number of challenge-response pairs (CRPs). 

The VRPUF design does not require forming/ programming crosspoint devices, which 
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simplifies peripheral circuits, leading to ~ 4× better density compared to the architectures 

which rely on switching the states of ReRAM devices. Moreover, uniform IVs of the virgin-

state devices, coupled with lower conductance and stronger static nonlinearity, allow for 

~100× improvement in power consumption and more robust security metrics. The intrinsic 

reliability of VRPUF primitives is also ~4× better compared to CMOS architectures. 

Moreover, a novel leakage injection approach using an electrically isolated portion of the 

crossbar array is proposed to boost the PUF’s robustness, and a key-booking scheme is 

introduced, which dramatically improves reliability across a wide temperature range of 

operation and further increases PUF circuit density by reducing error-correcting overheads.  

We then introduce ChipSecure, a PUF architecture based on eFlash memories that exploit 

randomness in static I-V characteristics and reconfigurability of embedded flash memories to 

design efficient physically unclonable function. Leakage current and subthreshold slope 

variations, nonlinearity, nondeterministic tuning error, and sneak path current in the 

redesigned commercial flash memory arrays are exploited to create a unique digital 

fingerprint. A time-multiplexed architecture is designed to enhance the security and expand 

the challenge-response pair space to 10211. Experimental results demonstrate 50.3% average 

uniformity, 49.99% average diffuseness, and native <5% bit error rate. The analysis of the 

measured data also shows strong resilience against machine learning attacks and energy-

efficient operation. Accelerated aging measurements indicate stable physical unclonable 

function response after 900 minutes of baking at 85°C. 

4.1. Introduction 

The Internet of Things (IoT) enables ubiquitous sensing, which finds enormous 

applications in modern life. Indeed, the ability to understand environmental indicators in a 
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network of communicating-actuating devices has revolutionized technology and life. In such 

an unprecedented proliferation of connected devices, platforms, sensors, and things, 

information is endlessly carried over shared and remotely accessible networks. Hence, 

provisioning security services are among the most major concerns. Additionally, IoT 

technology is driven by extremely low-power and low-cost devices, which we rely on for 

handling sensitive information [202]. Securing an energy-harvested integrated system in a 

limited area and budget is an ongoing problem and challenging optimization task. 

Identification and authentication are the common security tasks in IoT devices 

implemented with cryptographic primitives. The former is realized in the form of stored keys 

in a nonvolatile memory (NVM) or electronic IDs, while the latter is implemented with a 

rather more sophisticated one-way or mutual protocol in which a verifier entity asks a 

predetermined question and the prover responds accordingly [203]. Block ciphers, true 

random number generators (TRNGs), and secret key storage are perhaps the most widely used 

security primitives in IoT devices, and their power-efficient, compact, and secure 

implementation is a quest, which is actively pursued. For example, privacy-preserving mutual 

authentication is a specific protocol based on advanced encryption standard algorithm in 

which PUF can be used for the secret key generator and storage, while TRNG is utilized to 

generate nonce [204]. 

 While block ciphers have been unsurprisingly designed almost exclusively in digital 

CMOS technologies, recently, several promising secret key generators, TRNGs, and 

lightweight authentication solutions have been demonstrated based on NVMs, including 

emerging nano-scale memories. These devices offer various advantages over conventional 

CMOS not just due to their superior scalability prospects but because of reconfigurability and 
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low-cost local computing capability. Besides, stochastic switching in NVMs is a rich entropy 

source. While such properties have been extensively studied and applied in the context of 

computing applications, recently, they have been leveraged in building novel promising 

security primitive circuits as well. In a typical scenario, reconfigurability could be useful when 

the end-user needs a new key. This is when the original one has been revealed, or the 

ownership is revoked or updated. Analog-grade NVMs offer potentially better security 

prospects considering local computing capabilities such as nonlinear characteristics and multi-

bit storage capacities. On the other hand, retaining the stored information during power shut 

down, NVMs may pose additional challenges to data protection [74]. With all pros and cons, 

flexibilities, and vulnerabilities, mature or emerging NVM technologies bring new options, 

features, and alternatives to the table, which are undoubtedly worth investigating.  

Though the idea of using random physical features for identification is not new, the 

concept of PUF has been formalized only recently as a (reproducible, unique, evaluable, 

unclonable, one-way, and tamper-evident [205]) crypto primitive which leverage the intrinsic 

(nanoscopic physical) variations of a system to generate unclonable secrets. Thus, PUF 

circuits generate a unique response even if they are similar by design and layout. On the other 

hand, unlike TRNG, a specific PUF instance is required to generate a similar response to the 

repeated application of the same challenge. A PUF instance stimulated with a challenge Cs 

generates a corresponding response 𝑅௦. The tuples (Rs¸Cs) are often both binary numbers and 

called a challenge-response pair (CRP). In NVM-based PUFs, for instance, a challenge is 

either applied to decoders for selection of a certain device(s) or to switching circuits for 

biasing some rows/columns. The response is obtained, for example, by digitizing the analog 

sensed current or by comparing it with a certain reference current. The capacity of a PUF is 
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determined by the total number of CRPs, which is often (either linearly or exponentially) a 

function of memory array size.  PUF security is a measure of resilience against modeling 

attacks (e.g., using machine learning tools), which could lead to practical ways of reproducing 

PUF functionality. The indirect (necessary but not sufficient) measures of security are 

uniqueness, which is a measure of the dissimilarities among keys generated by different PUFs, 

and diffuseness, which is a measure of the dissimilarities among keys generated by a certain 

PUF, uniformity which is an indication of balanced 1s and 0s in keys, and reliability which is 

a manifestation of stable key generation under extreme operating conditions.  

To achieve this goal, for 𝑀 instances of PUF and based on a set of randomly selected 

challenges, 64-bit or 128-bit keys  𝐾௜
௝ where 1 ≤ 𝑖 ≤ 𝑁 (the number of keys) and 1 ≤ 𝑗 ≤ 𝑀 

are typically evaluated T times under varying supply voltage, temperature, and extreme baking 

conditions. Then, uniqueness is determined by finding the distribution of fractional Hamming 

distance (FHD), the normalized number of dissimilar bits between two keys, among different 

keys generated by different PUF instances, i.e., the distribution of 𝐹𝐻𝐷௜ = 𝐹𝐻𝐷(𝐾௜
௝
, 𝐾௜

௣
). 

Diffuseness is calculated by finding the distribution of FHD among N keys generated by a 

specific PUF device, i.e., the distribution of 𝐹𝐻𝐷௝ = 𝐹𝐻𝐷(𝐾௜
௝
, 𝐾௟

௝
). Uniformity is obtained 

by finding the distribution of fractional Hamming weight (FHW), the normalized number of 

1s in a key among N keys generated by a specific instance. Finally, reliability is assessed in 

terms of BER, which is essentially the relative number of bit flips (or the normalized 

Hamming distance) among N keys, generated by applying the same challenge to a specific 

PUF instance (T times) under different operating conditions. In an ideal PUF, uniqueness, 

diffuseness, and uniformity are 50%, and a reliable PUF has zero bit-error rate. The average 

and standard deviation of such pseudo-Gaussian distributions are typically used to compare 
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the quality of PUFs. The other important criteria, particularly for PUFs applied in the 

authentication of edge devices, are energy and area efficiencies. The former is defined as the 

energy dissipated for generating a single bit response. The latter is defined as the active area, 

in terms of F2 (where F is the minimum feature size of the process technology), consumed for 

generating a single response bit. Throughput, which is defined as the bit generation rate, is 

also an important parameter, particularly in key generation applications. 

PUFs are typically classified as weak and strong based on security performance.  The 

former is used to generate and store secret keys and feature a relatively small access-restricted 

CRP space. For a weak PUF, a complete mapping function can be deduced by observing a 

limited number of CRPs. Strong PUFs, on the other hand, are used for authentication 

applications, and a complex mapping behavior is constructed by incorporating many nonlinear 

random components. Strong PUFs have a large CRP space and are unpredictable and resilient 

toward modeling attacks.  In the simplest low-cost protocol, PUFs are utilized in two phases: 

namely, the enrollment in which a certain number of CRPs are evaluated and stored in a secure 

database and verification in which PUFs are deployed and used in the field. The NVM-based 

PUFs, however, often need a preprocessing step to prepare or configure the instance before 

enrollment (Fig. 66). For example, most emerging memory devices need to be formed before 

programming. Regardless, NVM-based PUFs are often operated in a pre-configuration phase 

to optimize certain evaluation metrics (e.g., reliability). For key generator PUFs, the 

optimization is typically guided towards minimizing the BER. For PUFs employed in 

authentication, the focus is typically on the security and unpredictability of generated keys. 

For PUFs, unclonability is perhaps the most challenging assessment and requirement to 

meet. Indeed, designing a primitive block that is both physically and mathematically 
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unclonable is challenging yet crucial for authentication applications.  In such cases, the BER 

requirement is relaxed since the PUF output is directly used to authenticate the prover (and 

within a certain margin, the identification (ID) can be verified). The CRP space should be 

large enough to allow the parties to change the challenge after each run and prevent the 

possibility of man-in-the-middle attacks. On the other hand, there should be enough entropy 

in the IDs to allow the unique identification of each party. 

 
Fig. 66: The simple three-step application scenario for using NVM-based PUF: In the 
production line, the memristor is formed and configured before enrollment and deployment. 

The term strong PUF is consequently associated with the designs which typically possess 

a considerable capacity, often an exponential function of the block size. However, more 

importantly, the condition, which is often not straightforward to prove, is mathematical 

unclonability. Naively speaking, it means resiliency toward modeling attacks given the 

adversary has access to the device and can eavesdrop/probe a certain number of CRPs. Also, 

PUF’s security cannot be ensured by obfuscation of the design because an adversary may 

reverse-engineer all the circuit details. We also emphasize that in most applications, the 

demonstration of a significant number of unpredictable CRPs through computational models 
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suffices since true randomness may not be easy to prove. For example, machine learning 

models, trained and applied properly, are powerful tools that have been proven to be effective 

in recent years and are becoming mainstream tools for attacking security primitives. 

Interestingly, most proposed CMOS strong PUFs have been easily compromised by machine 

learning attacks. For example, Arbiter PUF and its variant were successfully attacked with a 

Support Vector Machine (SVM) and a multilayer perceptron [203,206-208]. Power Grid PUFs 

are also examples of CMOS strong PUFs, which can be compromised too, due to its simple 

linear model similar to many other designs [209]. It is noteworthy that Shannon’s security 

paradigms - diffusion and confusion, state that highly nonlinear computational elements 

should be used, and each output must have precisely the same correlation with all the inputs 

to have a complex system. Interestingly, confusion and diffusion are rarely applied in the 

creation of CMOS PUFs [210]. NVMs provide us with the opportunity to tackle the modeling 

problems guided by Shannon’s security paradigms.  

The most accessible manifestation of process-induced compositional and structural 

variations in memristor arrays is the spatial (that is, device-to-device) variations of the 

effective switching thresholds. One example is the voltage at which device conductance is 

abruptly changed upon application of a ramping bias. A related example is spatial variations 

in the ON and OFF state conductances in the array upon application of a large voltage or 

current bias. The physical source of these variations is arguably the stochastic nature of ionic 

switching arising from compositional inhomogeneity of the switching medium, as well as 

variations in individual device profiles such as electrode imperfections and random variations 

in surface roughness. These “entropy” sources are typically the foundation for previously 

proposed memristor-based security primitives (see [73] for a comprehensive review). Many 



 

 187

of these proposed PUFs require a relatively large number of devices in the crossbar array and 

extensive peripheral programming and control circuitry to achieve viable operational metrics. 

Furthermore, a digital mode of operation with devices switched to the extreme ON and OFF 

states is typically utilized, hence ignoring one of the main advantages of memristive devices: 

their nonlinear adjustable I-Vs. Indeed, because the device nonlinearity is strongly dependent 

on the memory state and is correlated with process variations, it can serve as a prominent 

source of entropy in memristive arrays.  

The basic building block for our security hardware is implemented with a two-level stack 

of monolithically-integrated fully passive Al2O3/TiO2-x 10×10 memristive arrays. The 

fabrication flow ensures a high device yield (>95%) and low <175 °C temperature budget, 

compatible with CMOS back-end-of-line integration. Fig. 67 shows how such an effective M 

× N = 20 × 10 crossbar circuit with crosspoint device conductances 𝐺௜௝ is utilized to implement 

basic cryptographic functionality. A single-bit binary output b is calculated by biasing m 

selected rows with voltage VB and then comparing the currents running into two groups of n/2 

selected virtually grounded columns. For simplicity, let us assume that one group always 

comprises the leftmost columns and the other the rightmost so that 𝑏 = ൜
1,   𝐼ା > 𝐼ି

0,   𝐼ା ≤ 𝐼ି and 𝐼± =

𝑉୆ ∑ ∑ 𝐺௜௝(𝑉୆)௜ ∈ ௌ౎௝ ∈ ௌి
±  where SR is a set of indexes of the selected rows, SC

+ and SC
- are the 

sets of indexes of the selected columns in the left and right groups, respectively, and 𝐼ା and 

𝐼ି are their respective currents. The remaining (unselected) rows and columns in the array are 

kept floating. With such a scheme, the maximum number of distinct selections is  𝐶୑୅ଡ଼ =

 ቀ
𝑀
𝑚

ቁ × ቀ
𝑁
𝑛

ቁ. 
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Fig. 67: Memristor-based basic building block for cryptographic hardware [14]: The one-bit 
output is generated by applying a voltage bias to m rows (of M total) and then comparing the 
total currents running into the two selected groups comprised of n columns (of N total). In the 
simplest implementation, the unselected rows and columns in the array are kept floating. (b) 
Conductance map (G0), (c) corresponding histogram, and (d) nonlinearity factor for two 
values of VB for all 200 devices after tuning. In panel c, the dashed line is a guide showing a 
Gaussian distribution.  

The exemplary PUF circuit is implemented by tuning the conductances of the devices to 

pre-calculated values using the write-verify algorithm, with the goal of enhancing the 

contribution of I-V variations to the response while improving the reliability and randomness. 

This is achieved by selecting a specific distribution of device conductances and having a 

proper balance between two types of currents measured at the output - currents via selected 

devices and sneak path currents passing through the floating portion of the array. The exact 

optimization algorithm for finding the conductance distribution and configuring the crossbar 

circuit is discussed in Ref. [14]. The resultant narrow distribution of device conductances 

improves the uniformity and diffusiveness by eliminating biases in the output currents. At the 

same time, the reliability (BER) of the PUF, in particular its tolerance to the memristors’ 

current fluctuations due to intrinsic noise and potential drift of conductive states, is 

strengthened by enforcing the current readout margins.  
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Fig. 67b-c shows the results of tuning the memristors’ conductance to the values 

determined by the algorithm. As expected, the target and the tuned conductance distributions 

were Gaussian-shaped (Figs. 67c). The distribution of relative nonlinearity at 0.4 V and 0.6 V 

biased is also shown in Fig. 67b-c, indicating larger mean and larger variations at higher 

resistance states. The security metrics for the PUF are experimentally characterized using a 

selection scheme with m = 5 rows and n = 2 columns and three different voltages VB: 200 mV, 

400 mV, and 600 mV. (According to Eq. (2), for this case, CMAX = 697k for each voltage 

bias.) The measurements show that increasing the voltage bias from 200 mV to 600 mV 

improves UF from already decent 49.5 ± 6.25% to nearly ideal 50.1 ± 6.26%; another PUF 

randomness metric, DF, is also close to ideal, being ~50 ± 6.25% for all cases. The better PUF 

metrics at higher voltages are attributed to the stronger nonlinearity in the device I-Vs.  

The reliability is measured using the worst-case 16k challenges (out of 384k) that resulted 

in the smallest current differential readout margins. The results show that BER improves 

substantially at higher biases, from 3.9 ± 1.8% at VB = 200 mV to 1.22 ± 1.0% at VB = 600 

mV; this is partially attributed to the improved readout margins and signal-to-noise ratio of 

the differential current. The improvement in BER is even more significant, from 16.36 ± 3.1% 

at 200 mV to 5.93 ± 2.59% at 600 mV, for PUF operation under an elevated ambient 

temperature of 90 ᴼC. The uniqueness is initially evaluated by measuring the Hamming 

distance between the keys generated by pairs of PUF instances that are implemented by 

varying applied voltages VB without re-tuning the device conductances. Not surprisingly, the 

maximum UQ of 44.8 ± 6.9% is achieved between the PUFs with the smallest applied voltage 

(200 mV) and the largest one (600 mV). This is quite natural because variations in nonlinear 

I-Vs, are more prominent at higher biases, resulting in a non-monotonic redistribution of sneak 
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path currents. Then, characterization of the uniqueness between differently programmed 

crossbar devices also indicates close to the ideal 50% mean for all studied cases, with the 

smallest variance, 1.9%, at the largest bias voltage of 600 mV.  

The major limitations of this demonstration are the shallow size of the used crossbar and 

the utilization of a complicated optimization algorithm to pre-compute the conductance of 

memristive devices. In the following, we propose several architectures, which address these 

limitations.  

4.1. RX-PUF Design 

RX-PUF [76] addresses these issues by harnessing an auxiliary computed bit in a two-

cycle readout scheme. As a proof of concept, we have prototyped a 600 kb challenge-response 

pair PUF using 250 nm half-pitch 20×20 crossbar arrays of passively integrated 

Pt/Al2O3/TiO2-x/Pt RRAM devices (Fig. 68a). The distribution of switching voltages, shown 

in Fig. 68b, is uniform enough to allow high-precision individual tuning of the devices in the 

crossbar. Similar to the original design, the sensed currents on each column are sums of the 

currents via selected n devices and the sneak path currents that are determined by the states of 

all floated devices. A different selection of rows and columns results in the redistribution of 

sneak-path currents, which is hard to predict or model due to I-V nonlinearities and their 

process-induced device-to-device variations. Here, we show that simple, normally distributed 

conductance of devices could generate high entropy keys without the need for using a tuning 

optimization procedure. Specifically, a two-step scheme is implemented using the circuit 

shown in Fig. 68c,d. First, the auxiliary sense amplifier (SA) sh, hardwired to the first and last 

columns, generates an “AUX” bit by comparing input currents in these lines. In the next step, 

a second output bit is generated by the main SA, which serves all but the mentioned two 
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columns. This bit is then XORed with AUX bit to produce the final response bit. In the 

implemented prototype, n = 5 (out of N = 20 total), while m = 2 (out of M = 20-2=18 total).   

 
Fig. 68:(a) SEM micrograph of the 20×20 passive bilayer sputtered TiOx and ALD-grown 
Al2O3 crossbar (scalebar: 5 µm). The inset shows a single crosspoint (scalebar: 100 nm). (b) 
histogram of SET and RESET switching voltage threshold distributions for crosspoint 
devices. (c) RX-PUF architecture and (b) a compact design of column/row selectors. The input 
is encoded by N+M bits, with 1s for the selected rows/columns. 

Fig. 69a shows the distribution of the programmed conductances for the studied PUF 

instance. The implemented tuning is very crude (with conductances of ~ 20% devices 

significantly lower than the desired values) to show that the circuit works fine with an 

imbalance conductance distribution. We then collected output currents (Fig. 69b-c) and the 

corresponding responses (Fig. 69d) on all 600 kb CRPs. The measurement shows that the 

average uniformity of the demonstrated PUF due to the imperfect tuning and abandoning the 

balancing algorithm is 51.12%, which is reduced to the near-ideal 50.04% after harnessing the 

auxiliary bit. The measured BER is 0.7% at room temperature and ≤ 5.3% at 100°C, even 

without using any error correction methods.  
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Fig. 69:(a) Histogram and (b) map of cells’ conductances (at 0.3 V) for the demonstrated PUF. 
(b) Common-mode and (c) differential distributions of output currents sensed by main SA 
over the 600 kb responses. The inset shows ecdf. (d) The distribution of PUF response (at 0.3 
V @ 25°C)  with and without the AUX approach. 

The measured inter-HD for 64-bit and 128-bit keys (Fig. 70a) shows near-ideal values (the 

average is ~50.0% in both cases), while the detailed analysis of such keys showed almost no 

correlations between the input bitstream and the output response for the AUX approach (Fig. 

70b). The data clearly shows the benefit of the AUX approach, which allows reducing output 

bias due to imperfect tuning, and successfully passes the NIST randomness test (Fig. 70c). 

The resilience against machine learning attacks is assessed with a 40×500×500×1 MLP 

classifier. The classifier was trained on a subset of a specific size of the observed CRPs and 

then tested on another mutually exclusive observed set. Even with a large fraction of the 

training data, the classifier predicted output with close to ideal 50% accuracy for the PUF with 

the AUX approach (Fig. 70d). We expect that a moderate increase in crossbar array size may 

exponentially improve resilience even against modeling with very deep classifiers, while 

scaling-down device feature sizes would lead to sub-fJ operation.  
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Fig. 70:(a) Inter-hamming distance (at 0.3 V @ 25°C) for 64 and 128-bit keys formed by 
grouping sequentially generated 1-bit responses. (b) Results of NIST randomness tests using 
measured 600kb responses for the PUF implementation with and w/o AUX. (c) Input-output 
correlations: Each column shows PUF output (at 0.3 V @ 25°C), averaged over all CRPs with 
the same fixed value of specific input bit. The bottom / top panel shows implementation with 
/ w.o. AUX approach. (d) Modeling attack by MLP network, tested on 5k validation set, as a 
function of training set size (in bits). The training was performed using a gradient descent 
method with momentum. Symbols show average prediction accuracy, while the line 
thicknesses are drawn according to the max and min values obtained over 5 runs.     

4.2. Ultra-Low Power VRPUF   

Here, we present a novel design of physical unclonable function, called VRPUF, and 

prototype it using 4K-ReRAM passive crossbar circuits fabricated with a CMOS-compatible 

process, suitable for the back-end-of-line (BEOL) integration [211].  The VRPUF architecture 

utilizes intrinsic process-induced variations in as-fabricated (unformed) crossbars circuits to 

extract cryptographic keys, eliminating the need for forming and programming operations and 

their corresponding peripheral circuitry. The virgin-state operation reduces the power 

consumption due to the lower conductance state of individual devices, further improving the 
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power efficiency. The intrinsic variations in inter-device I-V nonlinearities, the main source 

of entropy in VRPUF response, is also significantly (~10×) more pronounced in as-fabricated 

devices as compared to formed devices further improving the VRPUF response 

unpredictability and attack resilience.  

4.2.1. VRPUF Design 

The major novelty of VRPUF design is the utilization of post-fabrication virgin-state 

crossbar circuits, whose conductance distribution (Fig. 71a) provides a rich entropy source for 

cryptographic secret key generation. This randomness is entirely intrinsic, unlike the previous 

ReRAM-based PUFs in which the devices must be formed and tuned to a narrow conductance 

distribution. The elimination of programming/forming steps has two advantages: (1) it 

simplifies peripheral circuits resulting in up to a ~4× improvement in area efficiency, and (2) 

dramatically limits the options for information leakage because adversaries are not physically 

capable of measuring the state of each device, individually. Furthermore, the statistical 

correlation between the pristine conductance states of crossbar circuits fabricated in the same 

process is negligible. Similar to the previous work, the proposed PUF design takes advantage 

of the nonlinear I-V characteristics and device-to-device variations in resistive memories to 

implement Shannon’s confusion paradigm. The I-V nonlinearity and its variations are higher 

at larger biases (Fig. 71c), with the average nonlinearity at 0.4 V is ~80%, which is ~20× 

larger than that of a formed 50 kΩ device.  
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Fig. 71: (a) Map of cells’ conductances measured at  0.4 V and room temperature (RT) for the 
demonstrated PUF and (b) its corresponding distribution. (c) Measured nonlinearity factor 
(i.e., (|1 − 𝐺 𝐺଴⁄ |) × 100)) of the demonstrated PUF for two biasing conditions at room 
temperature corroborating the presence of strongly nonlinear computing elements in the 
present design. (𝐺଴ is defied at  0.1 V.) 

One of the most serious concerns in ReRAM-based strong PUFs is outlier devices with 

large conductance, which create a bias in the response and strong input-output correlations. 

For example, the conductance distribution range in [211] spans through 5 orders of magnitude. 

Fig. 72 shows how this problem (e.g., due to unwanted forming of the devices by electrostatic 

discharge during wire-bonding or integration) is addressed in VRPUF’s architecture. 

Specifically, a 192-bit length challenge is applied to the crossbar, from which 64 bits are used 

for row selection, and the rest is utilized for column selection in two cycles. Here, a single-bit 

response is generated after 4 cycles. In the first two cycles, bottom (top) lines are operated as 

columns (rows), two bits are generated and XORed. This provides us with the opportunity to 

read the current from both sides and possibly generates more entropy in the output.  In the last 

two cycles, top (bottom) lines are operated as rows (columns) and the resultant two bits are 

XORed likewise. The final response bit is the result of XORing the two generated bits. 
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Fig. 72: The timing diagram and proposed PUF architecture, including a 64×64 crossbar, 
selectors (top, bottom, right, left), and a comparator. After 4 cycles, the final response is 
generated by XORing the previously readout bits from the bottom (2 bits) and top (2 bits).  

4.2.2. VRPUF Experimental Results 

The distributions of the common-mode and differential-mode currents sensed by the 

amplifier are shown in Fig. 73a Sub-μA common-mode currents enable extremely low-power 

consumption at 0.4 V, which is quite unusual for such a large-scale crossbar circuit. In fact, 

power consumption is ~ 100× less compared to previous designs adjusted to similar crossbar 

circuit complexity. The tight differential-mode current distribution stems from a uniform 

fabrication process, which has resulted in a very narrow conductance distribution. In general, 

a robust PUF should have negligible correlations between the input and output bits. Fig. 73b 

confirms that such correlations are insignificant in our design, which is in part due to the 

utilization of the multistep selection scheme in which the readout is performed on both top 

and bottom electrodes.  
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Fig. 73:The measured common-mode and differential current distributions of readout currents 
from the top and bottom electrodes in the first (B1, T1) and second (B2, T2) cycles for 2k 
challenges @ 0.4V and RT. (b) Measured input-output correlation between 110k CRPs at 
0.4V and RT. Red shifted by +0.2 for clarity. 

To further verify PUF robustness, we have performed extensive sets of simulations of 

resiliency towards machine learning attacks. Particularly, we have used a 

192×100×100×100×1 MLP and online packages utilized in previous works [212], such as 

LIBSVM and LIBLINEAR. Training is performed on 95% of the data, among which 20% is 

used for cross-validation and the remaining mutually exclusive 5% CRPs are used for testing. 

The test accuracy for all networks is close to the ideal 50% prediction accuracy (which means 

the network can not predict the output response). We also tested a long short-term memory 

(LSTM) network consisting of two 128-unit LSTM layers (with rectified linear activation 

function) and two fully connected layers (with sigmoid activation function) based on the 

encoding scheme in [14] and observed that the predictability of the implemented network is 

~50% for 32, 64, and 128-bit input sequences. The bitstreams generated by VRPUF pass all 

relevant NIST tests. We have also measured the reliability of the proposed PUF across a wide 

range of temperature and voltage deviations from the nominal condition. Due to the extremely 

low-power operation of the circuit, the differential-mode currents are sometimes comparable 

to the noise floor. This results in 3.73% unstable bits at the nominal conditions, which is still 

much better than the 16% in SRAM, ~34% in latch-based PUFs, and 30% in the hybrid circuit 

weak PUFs reported in [212,213]. Moreover, the proposed design can be classified as strong 
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PUF, and given its large CRP capacity (~1025), discarding the unstable bits should not impact 

the security metrics. Masking unstable bits will reduce the worst-case bit-error rate at +10% 

voltage deviation by ~1.5×. The worst-case BER at 85°C is 9.5%. The uniformity distributions 

of measured 64 and 128-bit keys indicate near ideal response bias of VRPUF (Fig. 74a). As 

illustrated in Fig. 74b-c, the average diffuseness, and uniqueness of 64-bit keys generated by 

VRPUF instances are 49.96% and 50.03%, respectively.  

 
Fig. 74:(a) Uniformity: fractional Hamming weight distribution computed based on 1k 
randomly 64-bit and 128-bit generated keys at 0.4 V and RT. (b) Diffuseness: fractional 
Hamming distance distribution computed based on 1k randomly generated keys measured at 
0.4 V and RT. (c) Uniqueness: fractional Hamming distance distribution computed based on 
1k randomly generated keys of two PUF instances measured at 0.4 V and RT.  

In summary, VRPUF operation is experimentally verified using unformed 64×64 crossbar 

circuits with passively-integrated ReRAM devices, fabricated with a novel CMOS-compatible 

etch-down patterning process. The results showed that the proposed circuits are ~4× denser, 

consume ~100× less power, and feature more robust security metrics compared to the previous 

work. Notably, VRPUF design does not require forming/ switching of crossbar devices, and 

hence using resistive memory is not essential (though practical for fabrication flows with the 

BEOL ReRAM process). The simpler device functionality broadens implementation options, 

which could ultimately lead to more cost-efficient CMOS integration. The only drawback of 

this design is the large BER at elevated temperatures, which is solved using a key-booking 

scheme as discussed in the next section.  
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4.3. Low BER VRPUF   

We experimentally demonstrate a strong PUF circuit featuring >280 challenge-response 

pair capacity, < 1.4% worst-case BER [214]. The key contributions of this work are a novel 

leakage injection approach using an electrically isolated portion of the crossbar array, which 

boosts PUF’s robustness, and a key-booking scheme, which dramatically improves reliability 

across a wide temperature range of operation and further increases PUF circuit density by 

reducing error-correcting overheads. A similar idea is previously suggested in the context of 

SRAM-based weak PUFs [215]. The main difference is that Ref. 6 work uses resource-hungry 

reverse fuzzy extractor and preprocessing techniques, such as majority voting and bit masking 

for error correction. On the other hand, our approach dramatically reduces raw BER without 

discarding [216], masking CRPs [217], and digital fine-tuning [218]. 

The studied baseline PUF architecture is also based on the virgin-state fixed-resistance 

passive crossbar circuits, which do not require programming circuitry and ensure very low-

power secure operation by utilizing highly resistive crosspoint junctions. The median 

resistance of devices in the demonstrated PUF is ~22 MΩ. Fig. 75 shows the implemented 

strong PUF topology. A single bit response per 128-bit challenge is generated in two cycles. 

Specifically, the first 64 bits of a challenge uniquely determines sets of m selected rows that 

are grounded with CMOS peripheral circuits. The remaining two 32-bit sets of a challenge 

determine the two selected electrodes. The unselected electrodes are kept floating to circulate 

sneak-path current in the array, hence complicating the mapping. In each of the two cycles, 

currents flowing into the selected columns are compared using the dynamic current 

comparator to produce a single bit. The two bits are then XORed to generate one bit of a 

response. The total number of CRPs is  ∑ ቀ
64
𝑚

ቁ ቀ
32
2

ቁ, which is  >2଼଴ for m = 16 ÷ 48. Here, 
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we isolate 32 columns from the main circuit to ensure the consistent contribution of leakage 

current in the outputs, which further complicates the functional response. Due to the 

introduced leakage, when a single row is selected, the readout current is >10× larger than the 

expected range of values on average.  

 
Fig. 75: The proposed PUF design. (a) Top-level diagram showing row/column selection, 
current comparator, and a 64×64 crossbar array circuit. (b, c) The design of (b) row select 
(RS) and (c) column selection (CS) circuits. Note the absence of large-area thick-oxide 
programming switches, which are not needed in the proposed PUF design due to using virgin-
state (i.e., as-fabricated) RRAM devices. (d) Current comparator and (e) its simulated timing 
diagram. 

4.3.1. Experimental Results 

Due to the tunneling charge transport mechanism at the high-resistance virgin state, the 

devices’ I-V characteristics are extremely nonlinear. More importantly, Fig. 76a shows that 

the average nonlinearity and its variations increase at larger biases (more than twofold increase 

in average and sevenfold in standard deviation when the bias voltage is increased from 0.15 

V to 0.4 V), which is an important feature for improving robustness against machine learning 

attacks, as discussed earlier. Finally, the devices show excellent retention characteristics with 

no significant change in the conductance observed after baking the chip at 85 ̊C for >20 hours 
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and continuously measuring the conductance of the devices at 0.4 V (Fig. 76c). Such features 

enable the design of a reliable, strong PUF. 

 
Fig. 76: ReRAM crossbar circuit characterization results. (a) The measured distributions of 
nonlinearity, defined as (|𝐺0−𝐺(Vbias)|/𝐺0)×100, and its variations for several values of Vbias. 
𝐺0 is the measured conductance at 0.1 V. (b) Accelerated retention test results at 85 °C for 
1000 randomly selected devices. 

We prototyped more than half a million CRPs using the demonstrated crossbar with 

randomly applied challenges from the CRP space. The symmetric distribution of differential-

mode currents and relatively low common-mode response indicate high uniformity and low-

power operation. The typical speckle pattern of 64-bit keys generated by the proposed PUF 

supports the high quality of generated bits (Fig. 77b). More quantitative, statistical analysis of 

>500,000 generated bits shows almost no direct correlation between inputs and output. Indeed, 

Fig. 77c shows that by selecting different row/column electrodes, the average response is 

always close to 50%, indicating no direct bias due to the selection of specific rows or columns. 

As shown in Fig. 77d, near-ideal uniformity, diffuseness, and uniqueness for 64-bit and 128-

bit keys are achieved with the proposed PUF. 
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Fig. 77: General PUF characteristics. (a) Common-mode and differential distributions of 
output currents (top panel) and corresponding CDF (bottom panel) over 15 kb responses 
measured at 0.1 V and room temperature. (b) The speckle pattern for 1,000 64-bit keys. Blue 
/ red shows ‘1’/ ‘0’ responses. (c) Input-output correlations. Each column shows PUF output 
(at 0.4 V, @ 25 °C), averaged over outputs of all (500k) measured CRPs with the same fixed 
value of specific input bit. (d) Uniformity (UF), diffuseness (DF), and uniqueness (UQ), 
measured at 0.4 V and 85 °C. Fractional Hamming (FH) weight/distance distributions are 
computed based on 4k keys. All keys are formed by grouping generated 1-bit responses from 
randomly ordered challenges.  

Unlike CMOS PUFs in which the response instability is a complex function of 

temperature, the output currents in the proposed PUF are semi-linearly dependent on the 

temperature with different slopes due to device-to-device and state-dependent variations. This 

is illustrated in Fig. 78a, which shows the output current as a function of temperature for 100 

randomly picked CRPs. Such dependency results in a large BER at elevated temperatures, as 

shown in Fig. 78b (which is still better or comparable to native, i.e., uncorrected, BER of 

CMOS strong PUFs). To mitigate this issue, we propose a keybooking technique that takes 

advantage of the monotonic current-temperature relationship. Specifically, an error (a bit-flip) 

(if it happens) only occurs once in the entire temperature range. By storing the golden key at 
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multiple temperatures during the enrollment and retrieving the response at the closest to the 

operating temperature during authentication, we overcome this issue. For example, if golden 

keys are stored in three temperatures, namely 25 ̊C, 45 ̊C, 65 ̊C during enrollment (case KB3), 

we achieve intrinsic ~1.4% and ~0.7% errors for 0.1 V and 0.4 V biases across the whole 

temperature range (Fig. 78b). (Note that such BERs are largely dominated by noise, justifying 

the use of only a few reference temperatures during enrolment.) Hence, no on-chip post-

processing and its significant overhead or CRP loss are imposed in our approach. In case the 

server has accurate information on the ambient temperature of the chip containing the PUF 

circuit, the overhead of the proposed technique is negligible – just an increase of the stored 

CRP table size on the server. Otherwise, the additional minor overhead is the addition of an 

on-chip temperature sensor, e.g., low-cost sensors available in IoT devices. Such a sensor 

would be used for informing the server about the chip temperature in both enrollment and 

authentication stages. 

 
Fig. 78: General PUF characteristics. (a) Common-mode and differential distributions of 
output currents (top panel) and corresponding CDF (bottom panel) over 15 kb responses 
measured at 0.1 V and room temperature. (b) The speckle pattern for 1,000 64-bit keys. Blue 
/ red shows ‘1’/ ‘0’ responses. (c) Input-output correlations. Each column shows PUF output 
(at 0.4 V, @ 25 °C), averaged over outputs of all (500k) measured CRPs with the same fixed 
value of specific input bit. (d) Uniformity (UF), diffuseness (DF), and uniqueness (UQ), 
measured at 0.4 V and 85 °C. Fractional Hamming (FH) weight/distance distributions are 
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computed based on 4k keys. All keys are formed by grouping generated 1-bit responses from 
randomly ordered challenges.  

The statistical properties of > 500k generated response bits are tested using the NIST test 

suite. The average p-value on all tests is well above the minimum pass value.  The resilience 

against the machine learning attacks is first studied by modeling PUF with a 

128×500×100×20×1 MLP. Specifically, the input challenge is applied as a binary 128-bit 

vector to the input layer of the perceptron, while a predicted single bit response is produced 

by the output layer of the network.  The model is trained on a specific subset of measured 

CRPs using gradient descent with momentum and with a manually found quasi-optimal 

learning rate of 0.4. The testing is conducted on another CRP subset, which is mutually 

exclusive with the training subset. The test accuracy for all the cases is close to the ideal 50% 

prediction accuracy, even when increasing the training set size to ~5×105 CRPs. This means 

that the network, i.e., the attacker’s model of the PUF circuit, always fails to make a 

meaningful prediction. The other machine learning approaches - LIBSVM and LIBLINEAR 

used in [212] also resulted in unsuccessful attacks with ~50% prediction accuracy, which 

corroborates the resiliency of the demonstrated PUF towards machine learning attacks. Fig. 

79 shows the fabricated crossbar circuit and the experimental setup. Table 5 summarizes the 

measurement results and compares our design with previously reported PUFs based on CMOS 

and emerging technologies.    
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Fig. 79: Experimental setup. (a) Oblique-view and (b) top-view SEM images. The photos of 
(c) wire-bonded fabricated 64×64 crossbar circuit with bottom electrodes (BE) and top 
electrodes (TE) directions highlighted, and (d) the setup with the mounted circuits during BER 
measurements.   

Table 5: Comparison with previous works (LL = LIBLINEAR package, LS = LIBSVM package, * at 0.1 V/ 0.4 V bias) 

 

4.4. ChipSecure Design  

We exploit randomness in static I-V characteristics and reconfigurability of embedded 

flash memories to design efficient physically unclonable functions [219]. Leakage current and 

subthreshold slope variations, nonlinearity, nondeterministic tuning error, and sneak path 

current in the redesigned commercial flash memory arrays are exploited to create a unique 

digital fingerprint. A time-multiplexed architecture is designed to enhance the security and 

expand the challenge-response pair space to 10211. Experimental results demonstrate 50.3% 

average uniformity, 49.99% average diffuseness, and native <5% bit error rate. The analysis 

of the measured data also shows strong resilience against machine learning attacks and the 

possibility for extremely energy-efficient operation. 

ISSCC’15 [7] ISSCC’15 [13] VLSI’17 [3] VLSI’17 [8] VLSI’18 [4] IEDM’19 [5] DAC’19 [11] This work
Technology   22 nm CMOS 65 nm CMOS 28 nm CMOS 130 nm CMOS 250nm RRAM 250nm RRAM 55 nm eFlash 250 nm RRAM

Demo Complexity   Crosscouple, 9581𝐅𝟐 SA PUF, 12000 𝐅𝟐 64×64 SRAM, ~ 194 𝐅𝟐 SCA PUF 20×20, ~𝟒 × 𝟒 𝐅𝟐 0T1R 64×64, 𝟒 𝐅𝟐 0T1R 5x 10x10, ~120 𝐅𝟐 64×64, 𝟒 𝐅𝟐 0T1R

Pre-configuration   Intrinsic Intrinsic Intrinsic Intrinsic Preprogramming Intrinsic Preprogramming Intrinsic

Capacity   - ~3× 𝟏𝟎𝟑 ~𝟏𝟎𝟏𝟏 ~𝟑. 𝟕 × 𝟏𝟎𝟏𝟗 ~𝟒𝟎 × 𝟏𝟎𝟔 ~𝟕 × 𝟏𝟎𝟐𝟓 ~ 𝟏𝟎𝟐𝟏𝟏 ~𝟐𝟖𝟐

BER @ 85 °C   ~4.5 % 5 % ~ 12.5 % ~ 9 % 4.2 % ~ 11.5 % ~ 5 % 1.4% / 0.7%

NIST Test   Fail Pass Not Tested Not Tested Pass Pass Pass Pass

ML Attack   Weak PUF Weak PUF LIBLIENAR, LIBSVM, 
10k bits

LIBLIENAR, LIBSVM, 
NN,10k bits MLP, 128k bits MLP, LIBLINEAR, 

LIBSVM,LSTM, 80k bits
MLP, LIBLINEAR, 

LIBSVM, LSTM, 100k bits
MLP, LIBLINEAR, 

LIBSVM, 500k bits
Prediction Accuracy - - ~ 40% ~ 40% ~50% ~50% ~50% ~50% 
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Uncontrollable etching process leads to variations in the thicknesses of gate oxides and 

line-edge roughness, which in turn result in two major types of device-to-device variations in 

I-V characteristics: variations in subthreshold drain current with respect to gate voltage and 

drain voltage (due to drain-induced barrier lowering). The former can be decomposed into 

three separate factors, namely leakage, weak inversion, and higher-order effects. For example, 

Fig. 80a shows these three components by fitting log(I) expression of the measured 

subthreshold currents for 150 devices to a quadratic function of VCG. Fig. 80b,c shows more 

details on the distribution of leakage currents (at VCG = 0 V) for different values of VDS, in 

particular highlighting a significant spread in leakage current distribution. (For all these 

experiments, memory cells have been tuned with better than 1% accuracy to eliminate the 

impact of tuning error in the measurements.) Programming the state of analog-grade 

nonvolatile memories is typically based on the write-verify algorithm, which has limited 

tuning accuracy (e.g., due to noise floor of the readout circuitry). Such tuning error can be 

used as an additional source of randomness. Fig. 80d, for example, shows the distribution of 

tuning error for 100 devices programmed randomly between 30 nA and 5 µA with a specified 

targeted accuracy. Fig. 80 provides extensive evidence of the variations and randomness in an 

array of programmed analog-grade flash memories. We exploit these entropy sources to 

design “ChipSecure” -  a low-power and dense PUF instance with excellent uniformity and 

security. We first discuss the primitive block structure and detailed measurements and then 

follow with the top-level architecture and its results. 
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Fig. 80: Major entropy contributors in ChipSecure: (a) the results of fitting log(I) of the 
subthreshold drain currents to C1VCG

2 + C2VCG + C3, highlighting significant variations of 
leakage component (C3), weak-inversion slope (C2), and higher-order nonlinearities (C1). Box 
plots show 25%, 50%, and 75% quantiles. (b, c) Leakage current variations for the same 150 
devices as a function of VDS for two representative states (1 μA and 5 μA @ VCG = VWL = VDS 
=1 V), showing the nonlinear semi-exponential dependence of the leakage current on VDS, 
with more prominent variations at larger biases. (d, e) Distribution of tuning accuracy for 100 
devices programmed with (d) 5% and (e) 1% targeted accuracy to random states within the 
representative dynamic range. (Note that the shape of the distribution could be adjusted, if 
needed, with a more rigorous tuning procedure. 

4.4.1. Primitive Block Design 

The primitive building block is designed to exploit randomness in a network of nonlinear 

elements (Fig. 81). Guided by Shannon’s security paradigm, the devices are operated at the 

deep subthreshold regime with exponential drain-source dependency so that the network is 

comprised of nonlinear computational elements, with all of them contributing to the output 

L
e

a
k

a
g

e
 C

u
rr

e
n

t 
(A

) (b)

(c)

L
e

a
k

a
g

e
 C

u
rr

e
n

t 
(A

)
1

 µ
A

5
 µ

A

-21 -18 -15 0 3 6 9

C2

C3

C2

C3

C1

C1

HS

LS

-21 -18 -15 -12

C2

C3

C2

C3

C1

C1

HS

LS

-3 0 3 6 9

(a)

Range
-3-12

30 25

0.05 0.1 0.15 0.2 0.5 0.8 1.1 1.4
0.0

2.0µ

4.0µ

6.0µ
Measured @ RT, Istate=5 mA, VWL=1 V, VCG=0V

0.05 0.1 0.15 0.2 0.5 0.8 1.1 1.4
0

50n

100n

150n

200n

250n
Measured @ RT, Istate=1 mA, VWL=1 V, VCG=0V

VDS (V)

0 1 2 3 4 5
0

5

10

15

20

25

30

C
o

u
n

t

Error (%)

 5%

C
o

u
n

t

VDS 

(d)

5 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

C
o

u
n

t

Error (%)

 1%

DS (V)

(e)



 

 208

response. The idea is similar to the memristive PUFs, in which sneak path currents are 

circulated in a crossbar of memristor arrays to build a compact security primitive. A primitive 

block consists of N×(M-N) array of floating-gate cells and peripheral (switching) circuitry for 

selecting cells and reading differential current (Fig. 81). The block is fed with an L-bit input 

challenge to generate a 1-bit output response. The input bits are partitioned into three groups: 

the first N bits of the challenge encode the selected word- (WLs) and control-gate (CG) lines; 

the next M-N bits are used to specify the selected bit-lines (BLs); while the remaining bits 

encode the selected source lines (SLs). (Note that each SL is shared between two rows of 

cells.) The selected CGs, WLs, and SLs are biased with VCG,SEL, VWL,SEL, and VSL, respectively, 

while the selected BLs are grounded. Unselected CGs, BLs, and SLs are floated, while the 

unselected WLs are biased with VWL,US. The response bit is generated by comparing the output 

selected currents. In our approach, cells in the array are categorized into four groups (inset of 

Fig. 81). For selected devices and half-selected type-A devices, SL is effectively a drain, while 

BL is a source. For the half-selected type-B devices, the current flows from BL to SL. The 

unselected devices can conduct current in either direction enabling circulation of sneak-path 

current in the array. Note that, in all cases, 1s/0s of an input bit-vector directly specify the 

position of the selected/unselected lines. This simplifies the implementation of peripheral 

circuitry by requiring only one MOS transistor switch per line. Current sensing and 

comparison are implemented similar to our previous design.  

Our focus is on a 10×10 primitive block (i.e. with  N = 10, M = 20, and L = 25), in which 

each challenge selects 5 WLs/CGs, 5 BLs, and 2 SLs. Furthermore, we consider Gaussian-

distributed states (currents) of memory cells in the array. Finding the optimum distribution for 

cell currents during tuning and under nominal biasing conditions is future work. To 
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characterize block performance, we use the redesigned 10×10 memory arrays fabricated in 55 

nm embedded CMOS. Keysight B1500A and B1530A tools and a custom-made switch matrix 

are utilized for characterization, programming, and measurements.  

 

Fig. 81: ChipSecure primitive PUF block. 

 

Fig. 82a shows an example of a current map after tuning the array with 10% accuracy to 

the randomly generated distribution with µ=500 nA and σ=150 nA. Due to the 

reconfigurability of our approach, a completely different map, i.e., a new fingerprint, is 

obtained after re-tuning the same physical array to a new distribution with µ=7.5 μA and σ=1.5 

µA (Fig. 93b).  Fig. 82c-d shows, respectively, the measured read-out current distribution (IR 

and IL) and their difference for the PUF instance (with VWL,SEL =1.25 V, VWL,US=1.35 V, 

VCG,SEL = 0.3 V, and VSL = 0.1 V) corresponding to Fig. 82a. The similar shapes of distributions 

indicate that there is no explicit bias in the output. The corresponding uniformity is 52.6%, 

which is close to the ideal, 50% value.  
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Fig. 82: Primitive block measurements at room temperature: (a,b) Two examples of the 
resultant map of conductance states in 10×10 array of cells, (c) the distribution of readout 
currents for 3k cases, and (d) the corresponding distribution of differential current. 

The lack of a significant bias is also confirmed by the data in Fig. 83a, which shows that 

the output response is balanced with respect to the selected line in the array, i.e., the value of 

‘1’ at a certain position in the challenge bit-vector. Furthermore, we have measured the 

response uniformity of 12 different primitive blocks using 4 different silicon chips (Fig. 83b). 

For each primitive, we employed the same tuning procedure (Gaussian distribution with 10% 

targeted accuracy) but with different common-mode currents. Also, we have studied the 

sensitivity of uniformity metric to biasing conditions. This is performed by selecting 

appropriate VWL from 0.65 V to 1.35 V, VSL from 0.1 V to 0.5 V, and VCG from 0.1 V to 0.5 

V to match the selected common-mode currents for each instance. For each block, 4K 

randomly selected challenges have been applied, and the response is measured at room 

temperature. The experimental results show again close to 50% uniformity for the majority of 

the considered instances. 

Perhaps, the most interesting result is the dependence of BER on the utilized common-

mode current (Fig. 83c-e). This experiment is performed using 5 different block instances with 
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specified current-mode currents. Each primitive block is characterized by measuring 

responses to 1K challenges at different ambient temperatures and nominal voltage deviations. 

The results show that increasing temperature above the nominal 25 °C, at which devices are 

tuned, results in a semi-quadratic increase of BER, while the reliability is always improved 

by operating at higher bias currents. This is most likely due to the weaker temperature 

dependency at larger subthreshold currents. Indeed, the currents become almost independent 

of the temperature at some point in the strong inversion. Therefore, there is a clear trade-off 

between power consumption and BER, and, e.g., the desired operating point could be 

determined based on the power budget and BER requirements of the application. The same 

trend in BER is also observed with respect to the variations on the biased SL voltage (Fig. 

83e), though the dependence is weaker.   

 

Fig. 83: Primitive block measurements: (a) Measured correlation (fraction of 1s in the 
response when particular bit at the input is selected) based on 4K random challenge-response 
pairs. (b) Response uniformity of 12 different primitive blocks obtained from reprogramming 
4 different chips. (c) Measured BER as a function of (d) temperature at nominal SL readout 
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voltage for several common-mode readout currents and (e) bias voltage deviation for different 
common-mode currents at room temperature. 

4.4.2. ChipSecure Architecture  

The ChipSecure architecture consists of two layers of primitive blocks connected via a 

hidden shift register (HSR) (Fig. 84). An input challenge C is a 1010-bit vector. It is 

partitioned into subvectors C1 C2… C42, such that Ci s with 1 ≤ i  ≤ 40 are 25-bit long, while 

Cis with 41 ≤ i ≤ 42 are comprised of 5 bits. The Cis from the first group are used as an input 

to five primitive blocks (P1-5) in the first layer. The remaining two subvectors are used to select 

SLs of the two primitive blocks (P6,7) in the second layer. ChipSecure operation is time-

multiplexed with the help of control signals φL1, φL2, and φC. Specifically, φL1 controls the 

first layer to generate and fill in HSR with 40 response bits over 8 cycles of operation, with a 

total of 5 bits produced in each cycle by five corresponding primitive blocks (e.g., D1-5 in the 

first cycle). Using φL1, HSR bits are applied to WL/CG and BL of P6-7 to generate outputs R1 

and R2. These outputs are then XORed to generate the final response (RF) and reduce any 

undesirable bias. Assuming the delay of each block is td, a simple pipelining of the design 

would result in 1/8td (bit per second) throughput. We can achieve ~192.3 Mbps throughput by 

using a comparator that consumes 1.625 fJ per conversion with 1 nA sensitivity in 55 nm 

CMOS. The proposed time-multiplexing approach also enables a low area implementation 

with an enormous number of CRPs, which is a necessary condition for a secure strong PUF, 

at the expense of lower throughput and decreased energy-efficiency. Indeed, for the proposed 

scheme, the maximum number of distinct selections for P1-6 is 𝑆௉ = (
10
5

)(
10
5

)(
5
2

).  Note that 

all primitive blocks in the first layer contribute equally (4 bits) to the 20 bits needed in P6,7. 

The total number of distinct selections is given by (𝑆௉

8
)ହ(

5
2

)ଶ ≈ 10ଶଵଵ. 
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It is worth mentioning the benefits of using smaller arrays, which are essential for time-

multiplexed implementation. First, smaller arrays are more efficient for utilizing the sneak 

path currents because leakage currents in larger arrays would be mostly controlled by a 

relatively small fraction of semi-selected cells. Second, an undesired stuck-on device in an 

array can bias the PUF response and potentially make the circuit vulnerable to probing attacks. 

Clearly, such stuck-on devices can be mitigated more efficiently when using smaller arrays 

with the time-multiplexed scheme.  

 
 

Fig. 84: The ChipSecure architecture and its timing diagram. 

4.4.3. Measurement Results 

The ChipSecure is characterized using the aforementioned primitive block design. The 

measured currents are used in the post-layout simulation setup of CMOS circuits. The fully 

integrated design occupies ~1.3×1.0 mm2. It is dominated by low-voltage (0.3 mm2) and high-

voltage (0.1 mm2) IOs and unused silicon (~0.9 mm2). Active circuits, including programming 
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circuitry (4475 μm2), flash memory array (235 μm2), registers (19,250 μm2), comparators (150 

μm2), and logic (110 μm2) are very compact (total of 24,216 μm2). Fig. 85a shows that the 

measured uniformity of HSR bits is near-ideal for P1,2,4 blocks, though there is visible bias in 

P3,5 responses. Despite that, the differential current distribution of P6,7 looks symmetrical as 

shown in Fig. 85b for P6. (Here, P6 is tuned using 500 nA average state current and operated 

at VWL,SEL=0.85 V, VWL,US=0.9 V, VCG,SEL=0.3 V, and VSL=0.3 V.) Interestingly, the measured 

correlations, based on 100K challenge-response pairs, are much weaker than, as compared to 

those for a single primitive block (Fig. 96c). The randomness in the output response is also 

highlighted by the speckle pattern of 1K randomly selected 128-bit keys shown in Fig. 85d. 
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Fig. 85: ChipSecure measurement results: (a) Normalized Hamming weight of HSR bits over 
100K applied challenges. (b) The differential current distribution of P6, with the inset showing 
the corresponding CDF. (c) Measured correlation based on 100K random challenge-response 
pairs. (d) The speckle pattern for 1K 128-bit keys (black=’1’). 
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generated based on R1, R2, and RF. Based on these results, ChipSecure offers an average 

uniformity of 50.3%. (The measured uniformities for a larger set with 100K responses are 
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results for diffuseness - the other important metric that evaluates the difference (Hamming 

distance) between unique keys generated by the same PUF under different challenges.  

 
Fig. 86: (a) Fractional Hamming weight and (b) fractional Hamming distance distribution of 
R1, R2, and RF. The results are computed based on (a) 5K and (b) 1K randomly-generated 64-
bit and 128-bit keys. 
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learning rate of 0.001. 64% and 16% of CRPs are used for training and validating the network, 

respectively. The classifier was trained with a specific size subset of the observed challenge-

response pairs and then tested on another mutually exclusive data. The test accuracy is close 

to the ideal 50% prediction accuracy even after using 120 Kbits for training the model. We 

also used both networks (LIBSVM and LIBLINEAR) introduced in [212], and for both, the 

validation accuracy is also close to 50%. The generated 100K bits also pass all relevant NIST 

tests.  

Finally, in Ref. [220], we modify the ChipSecure architecture to design a lightweight, 

suitable for Internet of Things devices, integrated design of PUFand TRNG blocks. Shared 

silicon in designing the PUF and TRNG blocks results in a very compact and energy-efficient 

topology. High Shannon entropy is achieved in the experimentally generated TRNG bits. In 

addition, accelerated aging measurements indicate stable physical unclonable function 

response after 900 min of baking at 85 ◦C. Fig. 87 shows the fabricated array and experimental 

setup for BER and aging measurements.  

 
Fig. 87: Die photo of a primitive block fabricated in GF’s 55nm CMOS and (b) measurement 
setup. 
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4.5. Summary and Future Works 

In summary, we showed that the analog tuning and nonlinear conductance variations of 

memristors could be used to build memristor-based resilient, dense, fast, and energy-efficient 

physically unclonable functions. The initial design that was based on a 3D integrated 10×10 

metal-oxide memristive crossbar circuit shows a near-ideal functional performance. To 

mitigate the shortcomings of this design, we proposed RX-PUF that takes advantage of a two-

step readout scheme to avoid the need for a complex conductance tuning algorithm. Further, 

we present a novel architecture, called VRPUF, and prototype it using unformed 4K-ReRAM 

passive crossbar circuits. The architecture utilizes intrinsic process variations in as-fabricated 

crossbar circuits and allows for a massive number of challenge-response pairs (~1025). In an 

improved design, the main limitation of VRPUF is mitigated by a key-booking scheme, which 

dramatically improves reliability across a wide temperature range of operation and further 

increases PUF circuit density by reducing error-correcting overheads. We also demonstrated 

ChipSecure, a PUF architecture that exploits randomness in the static I-V characteristics of 

eFlash memories. A two-layer time-multiplexed architecture enhances the security and 

expands the challenge-response pair space. Comprehensive characterization of the proposed 

PUF instances indicates clear advantages of these technologies over pure CMOS strong PUFs. 

To summarize, the experimental results from eFlash and memristive PUFs demonstrate 

exciting opportunities for using analog memories in designing energy-efficient and scalable 

hardware security primitives based on hardware roots of trust. 

A near-term future is the fabrication of a CMOS-integrated memristive PUF. Our primary 

estimations show that the design of a PUF array that includes 16 32×32 double-sided blocks 

integrated with high-speed comparators, control logic, and shared scan register bank 
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consumes ~6.2 mm2 in a 5M1P 180 nm CMOS technology. Note that 80% of this design is 

IOs and unused silicon. This massive chip has an enormous capacity of 1.5 × 10ଵସ CRPs per 

block, which can time-multiplexed in a general-purpose fashion to produce gazillions of 

CRPs. Our simulation results indicate an impressive 1.6 Gbps state entropy generated, which 

is limited by IO speed and serialization input challenge bits. The design also has zero static 

power consumption in the core circuit, and we expect to achieve ~50 fJ/b energy efficiency.  

Another future work is the fabrication of an integrated eFlash-based PUF chip in 55 nm 

CMOS. A preliminary design of this system is already completed. This PUF circuit features a 

time-multiplexed two-layer cryptographic engine with pipeline architecture that relies on 

process-induced variations, harnessed in the design of ChipSecure. The design has immunity 

toward various side-channel and fault-injection attacks, and it includes a large number of 

CRPs that are impossible to learn, extrapolate, and even compute in a lifetime. This novel 

architecture includes ~1.2M eFlash cells, 2346 registers, and 24 analog peripheries. The 

estimated processing speed is 2.1 𝜇𝑠 for generating a 16-bit response stream, and the area of 

the chip excluding the bonding pads is estimated 3.4 mm2. 
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