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Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide affecting over one-third of the

population in the U.S. It has been associated with obesity, type 2 diabetes, hyperlipidemia, and insulin resistance and is initiated by

the accumulation of triglycerides in hepatocytes. Isolated hepatic steatosis (IHS) remains a benign process, while a subset

develops superimposed inflammatory activity and progression to nonalcoholic steatohepatitis (NASH) with or without fibrosis.

However, the molecular mechanisms underlying NAFLD progression are not completely understood. Liver biopsy is still required

to differentiate IHS from NASH as easily accessible noninvasive biomarkers are lacking. In terms of treatments for NASH,

pioglitazone, vitamin E, and obeticholic acid have shown some benefit. All of these agents have potential complications asso-

ciated with long-term use. Nowadays, a complex hypothesis suggests that multiple parallel hits are involved in NASH develop-

ment. However, the ‘key switch’ between IHS and NASH remains to be discovered. We have recently shown that knocking out

enzymes involved in S-adenosylmethionine (SAMe) metabolism, the main biological methyl donor in humans that is abundant in

the liver, will lead to NASH development in mice. This could be due to the fact that a normal SAMe level is required to establish the

proper ratio of phosphatidylethanolamine to phosphatidylcholine that has been found to be important in NAFLD progression. New

data from humans have also suggested that these enzymes play a role in the pathogenesis of NAFLD and that some of SAMe cycle

metabolites may serve as noninvasive biomarkers of NASH. In this review, we discuss the evidence of the role of SAMe in animal

models and humans with NAFLD and how studying this area may lead to the discovery of new noninvasive biomarkers and

possibly personalized treatment for NASH.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) includes a spec-
trum of diseases ranging from isolated hepatic steatosis
(IHS) to nonalcoholic steatohepatitis (NASH), the progres-
sive form of fatty liver disease associated with inflammation
and cellular injury, which can lead to cirrhosis and liver-
related mortality.1,2 NAFLD has become by far the most
common chronic liver disease (CLD) in the United States,
accounting for a steadily increasing percentage of CLD
cases over the last quarter century.3 NAFLD accounted for
46.8% of CLD cases from 1988 to 1994; 62.8% from 1994 to
2004; and 75.1% from 2005 to 2008.3 These elevations
occurred along with steady increases during the same
time periods in obesity (21.7%, 30.0%, and 33.2%), visceral
obesity (35.2%, 48.2%, and 51.4%), type II diabetes (5.6%,
7.9%, and 9.1%), and insulin resistance (23.3%, 32.5%,
and 35.0%).3

Worldwide, results from NAFLD prevalence studies
have varied substantially due to varying definitions, diag-
nostic methods used, and differences in the studied popu-
lations.4 According to a 2014 report by the World
Gastroenterology Organization, prevalence estimates in
the general population of Europe and the Middle East are
20–30%, in the Far East 15%, and in Pakistan 18%, with
substantially higher prevalence in Western countries in
populations with obesity or diabetes (75%) and with
morbid obesity (90–95%), as well as in obese populations
worldwide (40–90%).4 A prospective observational study
of 4401 apparently healthy Japanese men and women
found a baseline prevalence of 18%, and showed that
people with metabolic syndrome at baseline were more
likely to develop the disease during follow-up.5 Recent
community-based studies from other Asian countries have
reported overall NAFLD prevalence of 16.1% in Korea,6

15% in China (with prevalence approximately doubling in
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the last decade),7 11.5% in a rural population in Taiwan,8

23.1% in an urban population in Taiwan,9 32% in urban
southern India,10 32.6% in urban Sri Lanka,11 and 27.3% in
Hong Kong.12

Although studies based on National Health and
Nutrition Examination Survey (NHANES) III data collected
from 1988 to 1994 estimated that the prevalence of NAFLD in
the United States ranged from 2.8%13 to 5.4%14 of the popu-
lation, studies published in the last 10 years have reported
substantially higher prevalence estimates. In a large
(n¼ 2287), ethnically diverse (32.1% Caucasian, 48.3%
African American, and 17.5% Hispanic),
probability-based population sample from Dallas, Texas,
the reported overall prevalence of hepatic steatosis was
34%.15 Substantial differences in prevalence were present
among the three major ethnic groups (45% in Hispanics;
33% in Caucasians; 24% in African Americans). In
Caucasians only, men had an approximately twofold
higher prevalence of hepatic steatosis than women. A pro-
spective study of adult outpatients without known liver dis-
ease recruited from Brooke Army Medical Center from
January 2007 to March 2010 reported a prevalence of
NAFLD of 46%, with the highest prevalence in Hispanics
(58.3%), followed by Caucasians (44.4%) and African
Americans (35.1%).1 The prevalence of NASH in this study
was 12.2%. Although the frequency of obesity in this out-
patient population was higher (45.4%) than the national
prevalence estimates based on NHANES data collected
during the same time period (33.8% in 2007–200816 and
35.9% in 2009–201017), which raises the concern that their
findings do not represent the United States as a whole,18 it
nevertheless indicates that the prevalence of NAFLD–NASH
may be substantially higher than previously thought.

Currently, liver biopsy is required for differentiating
simple steatosis from NASH. Although several biomarkers
have been shown to be somewhat useful for differentiation,
they have not been definitively validated and are not
widely available; thus, new noninvasive biomarkers are
urgently needed.19–21 There is no Food and Drug
Administration (FDA)-approved treatment for NASH.
Although weight loss and exercise are normally recom-
mended, they are often difficult for patients to achieve
and maintain, and new treatments are very much needed.
This review summarizes current knowledge of the patho-
genesis of NAFLD and NASH, available biomarkers, and
treatments, and discusses the role of S-adenosylmethionine
(SAMe) in these processes. Although our understanding of
the role of SAMe stems largely from experimental animal
models, there is accumulating evidence from human
studies that supports the need for further study.

Pathogenesis of NAFLD and NASH
Hepatic fat accumulation leading to IHS

Although a number of theories have been proposed to
explain the progression of NAFLD, we do not currently
have a complete understanding of the mechanism(s) that
underlie its pathogenesis.22–24 The generally accepted
dogma in the pathogenesis of NAFLD is that liver fat accu-
mulation and NAFLD occur when hyperinsulinemia and

insulin resistance, commonly associated with obesity, lead
to hepatic accumulation of triglycerides (TG), a process that
usually results from an imbalance between increased free
fatty acid (FFA) flux from adipose tissue to the liver,
increased caloric intake, and increased de novo lipogenesis
in the liver and the liver’s handling and export of the extra
fat. The FFAs are usually either oxidized in the mitochon-
dria (beta-oxidation) or esterified to TG, which in turn are
either packaged as very low-density lipoproteins (VLDL)
for export or are used for the production of lipids such as
phospholipids (Figure 1).22,23 Factors that promote the pro-
gression of NAFLD are incompletely understood but
include genetic and behavioral factors that may impair
these processes.23

Hyperglycemia also stimulates carbohydrate response
element-binding protein, which in turn stimulates the
liver-type pyruvate kinase (L-PK), a key enzyme in glycoly-
sis. LPK stimulates the entry of pyruvate into the mitochon-
dria and its conversion into citrate which forms acetyl-CoA.
The acetyl-CoA enters the tricarboxylic acid cycle in the
mitochondria and increases fatty acid synthesis22,25 via
multiple reactions that include enzymes such as citrate
lyase, acetyl-CoA carboxylase, fatty acid synthase, stear-
oyl-CoA desaturase-1 (SCD-1), and long-chain elongase-
6.22,23 FFAs form monoglycerides, diglycerides, and
eventually TG. Additionally, hyperinsulinemia activates a
membrane-bound transcription factor, sterol regulatory ele-
ment-binding protein-1 c (SREBP-1 c), which induces the
expression of key lipogenesis genes and thus increases
de novo fatty acid synthesis.26 The net result is an increased
flow from FA to TG which are packaged into VLDL and
then secreted into plasma.22 When the biosynthesis of TG
exceeds the rate of TG secretion via VLDL, TG excess accu-
mulates into lipid droplets in the liver resulting in steatosis.
Conditions associated with a reduction of de novo lipogen-
esis, such as a diet rich in FA, may also result in steatosis if
the rate of FA beta-oxidation cannot compensate for the
increased flux of FA into the liver. Alternatively, steatosis
may also originate when the packaging process of TG into
VLDL particles is impaired due, for instance, to an abnor-
mal supply of a class of phospholipids known as phosphat-
idylcholines (PC), which are rich in fatty acids.

In summary, TG accumulation results from an imbalance
of TG synthesis, VLDL assembly and secretion, de novo lipo-
genesis, and FA beta-oxidation.27 This highlights the fact
that NAFLD could have heterogeneous causes with one
resulting from excessive de novo lipogenesis and mitochon-
drial exhaustion and another resulting from impaired
VLDL secretion.

Progression of IHS to NASH

Steatosis develops once excessive TG are accumulated in
the liver. However, to develop NASH, multiple pathways
(multiple hits) are required to develop inflammation, cellu-
lar injury, and fibrosis. ‘Hits’ that may contribute include
oxidative stress, iron accumulation, endotoxins, cytokines,
changes in the gut–liver axis, and mitochondrial
dysfunction,22,23 but these insults are thought to be second-
ary processes. Precisely why some patients with simple
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steatosis progress to NASH and others do not remains an
unanswered question. Studies that investigate the key
‘switch’ pathways are needed. It is thought that lipotoxicity
and increased reactive oxygen species (ROS) production are
two of the main drivers of NASH development. An increase
in ROS may result from some combination of iron overload,
overburdened and dysfunctional mitochondria, proinflam-
matory cytokines, and the metabolism of FFAs via peroxi-
somes and cytochromes P450 (CYPs). FA catabolism in liver
takes place mainly via mitochondrial beta-oxidation, a pro-
cess that can lead to the generation of ROS, including super-
oxide, hydrogen peroxide, and hydroxyl radicals, if there is
an excessive load of FA.28,29 Once the mitochondria are
exhausted or if their function is impaired, FFAs are meta-
bolized at other sites in hepatocytes, including the CYP
enzymes of the smooth endoplasmic reticulum (omega-
oxidation) and peroxisomes (beta-oxidation).29,30 FA oxida-
tion at these sites also generates ROS as well as lipotoxic
products, a process that occurs in the lysosomes, leading to
production of proinflammatory cytokines and inflamma-
tory status associated with cellular injury and hence
NASH development.31,32 As a rule, saturated fatty acids,
such as stearic and palmitic acid, are more lipotoxic than
unsaturated FA. Storing FA as TG into lipid droplets may
actually be protective. It is therefore the mechanism leading
to TG accumulation (i.e. impaired FA oxidation and
phospholipid metabolism) rather than the accumulation
of TG per se that leads to liver injury.

Noninvasive biomarkers in NAFLD and NASH

Liver enzymes are usually the first clinical indication for
work up of NAFLD and referral to a hepatologist.
However, liver enzymes are normal in up to half of

NAFLD patients.20,33–35 Other etiologies of liver disease
should be excluded and radiological evidence of steatosis
should be established.19,20 To distinguish NASH from IHS
and stage the degree of fibrosis, liver tissue sampling via
biopsy is usually needed.19,36 However, because liver
biopsy is an invasive test that is associated with adverse
events and sampling variability,37 it is associated with
both patient dissatisfaction and, in some cases, substantial
misdiagnosis and staging inaccuracies.37 Ultrasonography
(US) and CT have shown low sensitivity and specificity in
diagnosis and follow-up and are associated with underes-
timating or missing steatosis, especially when it is less than
30%.38–40 Although US is easy to perform, it cannot quantify
fat, assess disease severity or stage, and has no role in long-
term follow-up. CT scan requires radiation and has been
found to be less accurate than US.41 MRI imaging tech-
niques were promising when first utilized to diagnose
NAFLD and with the evolution of MR spectroscopy
(MRS)20,42 and MRI-determined proton density fat fraction
(MRI-PDFF), the diagnosis of NAFLD became much more
precise.43,44 While MRS remains a research method, requir-
ing highly trained individuals and limited to a few centers,
MRI-PDFF has been shown to reduce the biases seen
with MRS and to correlate highly with MRS in quantifying
liver fat in patients enrolled in a clinical trial for NASH,43,45

highlighting its potential role as an outcome measurement
in clinical trials and its diagnostic value in clinical prac-
tice.20,46 MR elastography, and US elastography are tech-
niques that have been shown to potentially have
some promise in detecting fibrosis in NAFLD patients;47

however, more research is needed to explore clinical
implications.

Figure 1 Mechanisms involved in IHS and NASH development. Insulin resistance and obesity, increase caloric intake, increase de novo lipogenesis, increased free

fatty acid (FFA) flux from adipose tissue to the liver, and impaired VLDL secretion lead to fat accumulation in the liver and HIS (A). Multiples hits are involved in the

development of NASH including mitochondrial impairment, role of microbiota, iron accumulation, genetic factors, and release of reactive oxygen species (B).

Abbreviations: IR, insulin resistance, DNL, de novo lipogenesis; TCA, citric acid cycle; B-OX, beta-oxidation; FFA, free fatty acids; TG, triglyceride; VLDL, very low

density lipoprotein; ROS, reactive oxygen species; IHS, isolated hepatic steatosis; NASH, non-alcoholic steatohepatitis. (A color version of this figure is available in the

online journal.)
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While imaging techniques may prove to be effective as
noninvasive biomarkers, serum biomarkers are still under
investigation. Although in the past neither imaging nor
blood biomarkers has been shown to be reliable for distin-
guishing HIS from NASH,19,47 our group’s lipidomics stu-
dies have shown promising results.48,49 Biomarkers can be
divided into those that help with steatosis diagnosis, those
that may differentiate IHS from NASH, and those that may
be useful for detecting fibrosis and staging the disease. As
discussed above, liver enzymes play only a modest role in
NAFLD diagnosis since they are often normal in NAFLD
patients. Other scoring systems have been used to optimize
IHS diagnosis including steatosis test, liver fat score, hep-
atic steatosis index, and fatty liver index.35 Markers that
differentiate IHS from NASH are of greatest importance
as imaging markers are now accurate in detecting the
other two spectrums of the disease. Many scores have
been developed including HAIR (includes hypertension,
alanine aminotransferase [ALT] and insulin resistance),
NASH test, NASH clinical scoring system, and others.35

These biomarkers have been shown to lack accuracy and
include tests that are not commercially available.19,47

Although cytokeratin 18 correlates with the presence of
NASH and has been shown to be promising, it lacks sensi-
tivity to stage NASH.19 Using serum from 465 individuals
with biopsy-proven NAFLD, IHS and NASH patients
demonstrated distinguishing lipid serum biomarkers
which accurately differentiated between IHS and NASH.49

These lipid biomarkers should be further confirmed in
other cohorts and made commercially available.
Noninvasive biomarkers that can distinguish steatosis
from NASH and assess response to treatment will lead to
significant change in our current practice and research
outcomes.

Treatment of NASH

Weight loss and exercise are the measures currently recom-
mended by the FDA for NAFLD–NASH, with at least 10%
weight loss required for histological improvement.19

Unfortunately, because for many patients consistent exer-
cise and weight loss are difficult to achieve and maintain,
additional therapies are needed. Therapies studied to date
that have shown some benefit are included in Table 1.50–59

Although one small trial in which 26 NASH patients
completed 48 weeks of metformin therapy (2000 mg/day)
showed improvements in liver histology and ALT levels in
30% of patients, probably due to its effects in causing
weight loss,50 other studies failed to show such benefits.
In one study, neither vitamin E (800 international units
[IU] daily) nor metformin (1000 mg daily) was superior to
placebo in attaining the primary outcome of sustained
reduction in ALT level in patients with pediatric
NAFLD.51 A 2014 meta-analysis and review concluded
that although metformin improves AST, ALT, insulin resist-
ance, and body mass index to some extent, it does not yield
histological improvement (steatosis, inflammation, hepato-
cellular ballooning, or fibrosis) in NAFLD patients.60

Treatment with pentoxifylline has been assessed in small
trials.54,55,61 In one study with adults with NASH, 1200 mg

daily for one year resulted in statistically significant
improvement compared to placebo in steatosis and lobular
inflammation.55 In another trial that compared the same
1200 mg dose to placebo, steatosis, and cellular ballooning
improved in the pentoxifylline group (P< 0.05); however,
pentoxifylline failed to reduce transaminases compared to
placebo and did not positively affect any of the metabolic
markers postulated to contribute to NASH.54 A study show-
ing that pentoxifylline was associated with a significant
reduction of oxidized fatty acids supports the idea that its
beneficial effects in patients with NASH may be mediated
through decreasing lipid oxidation.61

Vitamin E has shown biochemical and histological bene-
fits in the PIVEN trial for treatment of NASH in which the
primary outcome was an improvement in histologic fea-
tures of NASH defined as improvement by 1 or more
points in the hepatocellular ballooning score; no increase
in the fibrosis score; and either a decrease in the NAFLD
activity score (in which steatosis is scored 0–3, ballooning
0–2, and lobular inflammation 0–3) to a score of 3 or less or a
decrease in the activity score of at least 2 points, with at least
a 1-point decrease in either the lobular inflammation or
steatosis score.56 In this trial in which NASH patients
received pioglitazone at a dose of 30 mg daily (80 subjects),
vitamin E at a dose of 800 IU daily (84 subjects), or placebo
(83 subjects) for 96 weeks, vitamin E therapy was associated
with a significantly higher rate of improvement in NASH
compared to placebo (43% vs. 19%); the difference in the
rate of improvement with pioglitazone as compared with
placebo was also significant (34% and 19%, respectively).
Both vitamin E and pioglitazone were associated with sec-
ondary outcome improvements, including reductions in
serum alanine and aspartate aminotransferase levels, hep-
atic steatosis, and lobular inflammation, but not with
improvement in fibrosis scores. Because the long-term
effects of vitamin E are unknown, it has not been used in
clinical practice. Pioglitazone is associated with increased
adiposity and weight gain, which is a major concern for use
over the long term.2

The bile acid derivative obeticholic acid (OCA) is an acti-
vator of the farnesoid X nuclear receptor that has been
shown to reduce liver fat and fibrosis in animal models.
In a small proof-of-concept study, OCA given in a dose of
50 mg once daily for six weeks was reported to increase
insulin sensitivity and reduce liver inflammation markers.62

In the 72-week multicenter Farnesoid X Receptor Ligand
Obeticholic Acid in NASH Treatment (FLINT) trial in
patients with noncirrhotic NASH, 141 patients were ran-
domly assigned to receive OCA in a dose of 25 mg daily
and 142 to receive placebo. Inclusion criteria for patients
were histological evidence of definite or borderline NASH
based upon a liver biopsy obtained within 90 days of ran-
domization, and a histological NAFLD activity score of 4
(possible NASH) or 5 or more (definite NASH) with a score
of 1 or more in each component of the score (steatosis scored
0–3, ballooning 0–2, and lobular inflammation 0–3). The
primary outcome was improvement in liver histology
defined as a decrease in the NAFLD activity score by at
least 2 points without worsening of fibrosis. As the result
of a planned interim analysis showing improved efficacy of
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OCA, treatment was discontinued early in 64 patients; 50
(45%) of 110 patients in the OCA group who were meant to
have biopsies at both baseline and 72 weeks had improved
liver histology compared with 23 (21%) of 109 such patients
in the placebo group; 33 (23%) of 141 patients in the OCA
group developed pruritus compared with 9 (6%) of 142 in
the placebo group.63 There was also a statistically signifi-
cant increase in TG and low-density lipoprotein (LDL) and
decrease in high-density lipoprotein (HDL) in the OCA
group compared to placebo. Although these changes were
small, long-term effects are unknown. In addition, the
improvement in liver enzymes disappeared once the medi-
cation was stopped, suggesting that the treatment may
require long-term administration. Clearly, further study
will be required to determine long-term benefits, safety,
and patient tolerance; itching has limited its use in other
liver diseases.64 While the FLINT trial has shown a slight
improvement in fibrosis with OCA treatment, results with
OCA are somewhat comparable to those seen in the PIVEN
trial with vitamin E (45% improvement in histology with
OCA vs. 43% with vitamin E); the PIVEN trial’s primary

outcome included improvement in hepatocellular balloon-
ing, whereas the FLINT trials did not.

The magnitude of improvement seen with any of the
therapies tested to date is small, and additional and more
effective therapies are clearly needed.19,20

SAMe metabolism in the liver

The liver plays a major role in metabolism of SAMe, the
principal biological methyl donor made in all mammalian
cells.65,66 In the hepatocyte, SAMe is produced as the result
of an interaction between methionine and adenosine tri-
phosphate via the enzyme methionine adenosyltransferase
(MAT), while its degradation is dependent on the glycine-
N-methyltransferase (GNMT) enzyme.67 The MAT isoen-
zymes consist of catalytic subunits a1 and a2 encoded by
MAT1A and MAT2A, respectively. MAT1A is expressed
mostly in differentiated liver (mainly hepatocytes), while
MAT2A is widely distributed and has been shown to play
a role in hepatocellular carcinoma (HCC).66

SAMe is made in all mammalian cells, is widely distrib-
uted throughout the body and plays an essential role in a

Table 1 Therapeutic agents that have shown benefits in NASH

Therapeutic agent Indication Summary of benefits Adverse effects and concerns

Metformin50,51 No current indication Improved aminotransferases, BMI, and

insulin resistance; possible positive

effect on ballooning in those who

lose weight

AEs: diarrhea, nausea, and vomiting

Concerns: Contraindicated in

patients with renal failure

Orlistat53,53 No current indication Two trials; one showed improvement in

ALT, BMI, and hepatic steatosis

based on ultrasound; the other failed

to show this

AEs: fatty diarrhea, abdominal

pain–discomfort flatulence

and fecal urgency

Pentoxifylline57–59 No current indication One trial showed improvements in

steatosis and lobular inflammation,

but not in ballooning; another

showed improvements in steatosis

and ballooning

AEs: nausea, vomiting

Ursodeoxycholic acid54,55 No current indication Borderline benefits in aminotrans-

ferases; only one trial showed

histological benefit

AEs: GI upset, headache,

and dizziness

Pioglitazone56 Biopsy proven NASH

with or without DM

Improved histology of NASH; one trial

showed significant reductions in

steatosis, lobular inflammation, and

aminotransferases

AEs: weight gain, GI upset, edema, and

fatigue Concerns: contraindicated in

patients with bladder cancer and

postmenopausal women with increase

risk of fracture, long-term efficacy,

and safety

Vitamin E56 Biopsy proven NASH without

DM and without cirrhosis

Improved histology of NASH; one trial

showed significant reductions in

steatosis, lobular inflammation, and

aminotransferases, and significant

improvement in ballooning

Concerns: Long-term efficacy and safety,

lack of studies in patients with DM,

cirrhosis, and posttransplant

Obeticholic acid63 (Not currently available)

Biopsy proven NASH

without cirrhosis

Improved histology of NASH AEs: itching (23%), increased total

cholesterol and LDL cholesterol, and

a modest decrease in HDL cholesterol

Concerns: Dyslipidemia, long-term

efficacy and safety, lack of studies in

patients with cirrhosis, and

posttransplant

Note: BMI, body mass index; ALT, alanine aminotransferase; AEs, adverse effects; DM, diabetes mellitus; GI, gastrointestinal; NASH, nonalcoholic steatohepatitis;

LDL, low-density lipoprotein; HDL, high-density lipoprotein.
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number of biochemical reactions involving enzymatic
transmethylation, transsulfuration, and polyamine synthe-
sis.65,66 Up to 85% of all transmethylation reactions occur in
the liver.68 In these reactions, the methyl group is trans-
ferred from SAMe to hormones, neurotransmitters, nucleic
acids, proteins, phospholipids, and certain drugs.65 Of
importance, the methylation of phospholipids plays a role
in lipid metabolism and may be responsible for membrane
fluidity and establishing the proper ratio of phosphatidy-
lethanolamine (PE) to PC.69 This ratio of PE to PC has been
found to be important in NAFLD development. In mice, the
PC/PE ratio may be a key regulator of cell membrane integ-
rity and play a role in the progression of steatosis to
NASH.70 In hepatocytes, the key methyltransferase that is
largely responsible for ‘degrading’ SAMe is GNMT, which
accounts for 1% of cytosolic protein. All methyltransferase
reactions generate S-adenosylhomocysteine (SAH), a potent
competitive inhibitor of methyltransferases that needs to be
promptly hydrolyzed to homocysteine (Hcy) and adenosine
by SAH hydrolase. Hcy can be remethylated to form
methionine through two enzymes: methionine synthase,
which requires normal levels of folate and vitamin B12,
and betaine homocysteine methyltransferase, which
requires betaine, a choline metabolite.

Methionine metabolism has been found to be altered in
CLD, likely as the result of decreased MAT and PEMT
(phosphatidylethanolamine N-methyltransferase) activ-
ity.71 The formation of PC, the most abundant phospholipid
in liver membrane, is reduced as well.68 PEMT catalyzes the
methylation of PE to PC (the main membrane phospho-
lipid) via a metabolic pathway that utilizes SAMe as a
methyl donor.69 The transsulfuration pathway converts
Hcy to cysteine and ultimately to sulfates and reduced
glutathione (GSH), an important intracellular antioxi-
dant.65,66 GSH binds and detoxifies various undesirable
compounds. In the aminopropylation pathway, SAMe is
metabolized to decarboxylated SAMe and the aminopropy-
lation group is transferred to putrescine. The polyamines
spermidine and spermine, major elements in cell growth,
are then formed.69

Patients with alcoholic hepatitis and fibrosis have dimin-
ished MAT1A expression and hepatic SAMe levels,72 which
contributes to decreased hepatic GSH levels in these
patients. SAMe administration has been shown to normal-
ize GSH levels in patients with either alcoholic or nonalco-
holic liver disease.73 Many studies done mostly in alcoholic
liver disease, cholestasis of pregnancy, and primary biliary
cirrhosis have shown significant improvement in liver test
abnormalities during therapy with SAMe.74

SAMe treatment in CLDs

SAMe has been shown to have differing effects in several
CLDs including intrahepatic cholestasis (IHC), cholestasis
of pregnancy, and alcoholic liver disease.74 There have been
few randomized controlled trials to assess the efficacy of
SAMe in IHC.75,76 In these studies, IHC was attributed to
different etiologies including cirrhosis, viral hepatitis, and
primary biliary cirrhosis. SAMe treatment, administered
either orally or parentally for a duration of two to four

weeks, resulted in improvements in pruritus. In a subse-
quent meta-analysis that included several randomized clin-
ical trials SAMe was shown to be superior to placebo in
improving pruritus and serum bilirubin.77

Cholestasis of pregnancy leads to adverse perinatal out-
comes such as preterm birth, meconium passage, fetal dis-
tress, and death.78 Both SAMe and ursodeoxycholic acid
(UCDA) have been used in this condition.75,78–83 The largest
randomized clinical trial enrolled 46 patients with choles-
tasis of pregnancy and randomized patients to either oral
SAMe (1 g/day) or UDCA (600 mg/day) starting before 36
weeks of pregnancy and continuing until delivery. In this
study, UDCA was found to be more effective than SAMe in
lowering bile acid levels, but both improved pruritus.83

A more recent meta-analysis concluded that UCDA is
effective in reducing pruritus and may reduce fetal mortal-
ity, while SAMe was less effective.84

Promising results with SAMe in animal models of alco-
holic liver disease73,85–89 led to multiple clinical trails using
SAMe in alcoholic liver disease. The largest trial was a
Spanish multicenter study led by Dr. Mato that randomized
62 patients with cirrhosis due to alcoholic liver disease to
1.2 g/day of SAMe and 61 to placebo, with treatment con-
tinued for up to two years. The combined all-cause mortal-
ity–transplantation end point was 30% in the placebo arm
compared to 16% in those treated with SAMe; however, this
did not reach statistical significance (P¼ 0.077).89 However,
when the authors excluded those with advanced cirrhosis
(Child-Pugh score C) the results were significant, 29%
versus 12% (P¼ 0.025). Other studies, including a meta-
analysis, did not support this study’s findings; however,
these studies were smaller and SAMe treatment was for a
shorter duration of time (up to 24 weeks).90 SAMe has been
also used in other liver diseases, including hepatitis C,
where SAMe addition to peginterferon and ribavirin
improved early viral kinetics and increased interferon-
stimulated gene induction in nonresponders to previous
therapy.91

Evidence of SAMe’s role in the pathogenesis
of NAFLD and NASH

Our group has shown that mice deficient in MAT1A or
GNMT (key enzymes in SAMe biosynthesis and degrad-
ation, respectively) develop NASH and HCC.66 These find-
ings have led us to hypothesize that a chronically altered
hepatic SAMe level may be a trigger that converts simple
steatosis to NASH. Thus, SAMe metabolites may be useful
biomarkers and may help to personalize NASH treatment.
In the setting of chronic hepatic SAMe deficiency as in the
MAT1A knockout model, we have shown that PC biosyn-
thesis is a key determinant in NASH development.92,93 PC
is produced in the liver via two main pathways. The
CTP:phosphocholine cytidylyltransferase pathway is
responsible for approximately 70% of PC synthesis. The
PEMT pathway is responsible for the remaining 30%. The
PEMT pathway is dependent on SAMe methylation to cata-
lyze PE to form PC, which is essential for assembly and
export of VLDL.94 The MAT1A knockout mice
have shown decreased PC biosynthesis via PEMT.92,93
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With the alteration of the PC/PE ratio, the liver adjusts to
restore it to normal by inhibiting PC secretion which in turn
impairs VLDL export resulting in increased hepatic TG.92,93

As a result of this impaired TG export via VLDL, the abnormal
SAMe and PC synthesis decreases FA esterification by redu-
cing SCD-1 expression and de novo lipogenesis, decreasing
SREBP-1 expression, and activating adenosine monopho-
sphate-activated protein kinase (AMPK). As a consequence
of AMPK activation, FA beta-oxidation and uptake are
increased.95,96 The decreased PC–PE ratio increases mem-
brane permeability leading to leakage of cellular components,
activation of Kupffer cells, and cytokine release leading to liver
cell injury.97,98 In addition, the reduced SAMe level sensitizes
the liver to lipopolysaccharide-induced injury and promotes
expression and release of pro-inflammatory cytokines.98,99

In contrast, GNMT knockout mice exhibit increased
SAMe levels which in turn activate natural killer cells in
the liver and the PEMT pathway resulting in more PC syn-
thesis.100 As a response, the liver stimulates VLDL and HDL
export to restore a normal PC–PE ratio, and increases PC
catabolism via phospholipase D or C, leading to increased
DG production, which leads to increased TG and PC mobil-
ization via VLDL export.101 Interestingly, GNMT knockout
mice have an increased PC–PE ratio and this has been
shown to induce ER stress.99 The above findings clearly
show that high and low SAMe levels lead to NASH devel-
opment, with PC–PE ratio being a key player.

In a comparison, human data has shown that diacylgly-
cerol, TG, and phospholipid contents were increased sig-
nificantly in humans with NAFLD with a stepwise
increase between simple steatosis and NASH.102

Interestingly, PC levels were decreased in both simple stea-
tosis and NASH patients without a statistically significant
difference in PC level between simple steatosis and NASH;
however, the study was small and included only 18 patients
with simple steatosis and NASH so this should be explored
further. In another human study, VLDL hepatic secretion
was lower in NASH patients compared to simple steatosis,
which was attributed to a greater decrease in PC.103

Another group has shown that the hepatic PC–PE ratio
was significantly lower in NASH patients compared to
healthy controls.70 An important study has found that a
decrease in the PC–PE ratio in hepatocytes is dependent
on SAMe and leads to lipogenesis and fatty liver.93

Finally, Diehl and colleagues recently investigated whether
hepatic gene expression can distinguish between patients
with mild versus advanced NAFLD.104,105 The researchers
have found that MAT1A was underexpressed in patients
with advanced NAFLD but not mild NAFLD, clearly
emphasizing a key role for the SAMe cycle in NAFLD
pathogenesis in humans.

Collectively, these human data show a decrease in
MAT1A and PC–PE ratio pointing toward similarities
with the MAT1A knockout model; however, SAMe levels
and its metabolites still need to be investigated. Also, the
role of GNMT in humans is unknown and requires further
study. Indeed, the different phenotypes and underlying
mechanisms seen in MAT1A and GNMT knockout mice
may offer an explanation for the heterogeneous phenotypes
seen in humans with NAFLD and why it may be difficult to

find one treatment that will benefit all. Our current work
concentrates on the hypothesis that low SAMe levels will
lead to a reduced PC–PE ratio and impaired VLDL secretion
as well as proinflammatory cytokine release and NASH
development, while patients with simple steatosis have
normal MAT1A and SAMe levels. On the other hand,
high SAMe levels will lead to activation of the PEMT path-
way resulting in more PC synthesis and consequently the
liver’s stimulating VLDL and HDL export to restore a
normal PC–PE ratio. Increasing PC synthesis in turn results
in increased DG and TG and accumulation in the liver. This
eventually leads to increased ER stress and inflammatory
milieu causing NASH development. This hypothesis focus-
ing on alteration of the SAMe level remains to be studied in
humans with IHS and NASH (Figure 2).

Evidence of potential role of SAMe for
treatment and its metabolites as biomarkers

In an ongoing search for noninvasive biomarkers to distin-
guish IHS from NASH, we have reexplored previous find-
ings showing that the rates of transmethylation of
methionine and methylation of Hcy were lower in a
group of NASH patients.106 Interestingly, we have found
that human NASH, but not simple steatosis, is associated
with increased blood levels of methionine (1.37-fold
increase in NASH compared to normal).48 This suggests
that methionine can be used as a noninvasive biomarker
in NASH patients. However, increased methionine level
will not differentiate low hepatic MAT1A from low
GNMT activity, as they both raise blood methionine level.
Instead, blood SAMe level will be low in MAT1A deficiency
but high in GNMT deficiency. Thus, exploring the other
metabolites of the SAMe cycle may offer other potentially
highly insightful noninvasive biomarkers. Another import-
ant component of the SAMe cycle is betaine, which is
required for the generation of methionine from Hcy.
Betaine has been investigated as a treatment agent for
NASH in two studies, a pilot study in 10 NASH patients
followed by a randomized controlled clinical trial that
assessed histological outcome in 50 patients.107,108

Although the pilot study was able to show improvement
in liver enzymes with betaine treatment, the randomized
trial did not show improvement in histology but rather sta-
bilization in steatosis compared to controls. A major con-
cern of the randomized trial is the rate of dropout as
approximately 32% of the patients did not undergo the
exit liver biopsy. In addition, betaine might not have
worked because it requires the MAT1A-encoded enzyme
to generate SAMe and those with severe NASH have
reduced MAT1A expression.87 The first evidence of the
beneficial effect of SAMe in animal models of NASH
came from the methionine–choline deficient animal dietary
model of NASH. In these mice, SAMe treatment has been
shown to protect against NASH, improving liver enzymes,
inflammatory and fibrosis markers, and liver histology.109

This ‘key role’ of SAMe is likely due to the fact that a
reduced hepatic SAMe level sensitizes the liver to release
proinflammatory cytokines and this may be prevented by
SAMe treatment.110 However, SAMe treatment will likely
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benefit only NASH that develops when the liver SAMe
level is low (like the methionine–choline deficient diet
and also in MAT1A knockout mice, unpublished observa-
tion). However, unlike many treatments listed in Table 1,
SAMe is well tolerated (used as a supplement in the United
States) with little to no toxicity, making it particularly
attractive as a long-term treatment strategy.66

Taken together, SAMe treatment is a potentially effective
therapy in some patients with NASH, particularly those
who have reduced hepatic SAMe levels (due to decreased
MAT1A expression). Its mechanism likely involves improv-
ing the PC–PE ratio, correcting the impaired VLDL export
from the liver, and decreasing the release of proinflamma-
tory cytokines. Serum SAMe metabolites may serve as
useful biomarkers to identify individuals who may benefit
from its use.

SAMe, NASH, and HCC

Recently, a role for abnormal levels of SAMe in the devel-
opment of NASH and HCC has been suggested.66 Animal
studies show that both chronic hepatic SAMe deficiency
(MAT1A knockout) and excess (GNMT knockout) can
result in NASH and HCC. However, the underlying

mechanisms are distinct. While activation of multiple onco-
genic pathways and expansion of liver progenitor cells
including cancer stem cells play key roles in MAT1A knock-
out mice, aberrant hypermethylation resulting in silencing
of inhibitors of the JAK/STAT pathway is implicated in
GNMT knockout mice. Since SAMe has been shown by
our group and others to exhibit chemopreventive action
against HCC, it becomes even more important to identify
those who would benefit from its use.111

Conclusion

There is increasing evidence that SAMe plays a role in the
pathogenesis of NAFLD including the development of IHS
and NASH. Most of the published data to date comes from
animal models, although human data is now emerging. In
addition, there is evidence that SAMe metabolites may be
able to differentiate IHS from NASH in humans. Due to the
lack of effective treatments for NASH and SAMe’s effect-
iveness in animal models of NASH, we believe that SAMe
metabolites may serve as useful biomarkers to identify
those NASH patients who will benefit from SAMe treat-
ment. In NASH patients who have a reduced SAMe level
(presumably due to reduced MAT1A expression), SAMe

Figure 2 Effect of SAMe level on hepatic lipid metabolism and NASH development. In IHS, SAMe levels and PC–PE ratio are normal. NASH can occur when hepatic

SAMe level is chronically elevated (i.e. GNMT knockdout mice) or low (i.e. MAT1A knockout mice). High SAMe level increases PC–PE ratio, activating VLDL and HDL

export and increase DG production. High PC–PE ratio causes ER stress and high SAMe level activates natural killer cells in the liver. This may be a mechanism of how

high SAMe level converts steatosis to NASH. Conversely, low SAMe level results in low PC–PE ratio, leading to impaired VLDL export and TG accumulation. Low PC–PE

ratio increases membrane permeability and low SAMe level sensitizes the liver to LPS-induced expression and release of pro-inflammatory cytokines. These may

cooperate to convert steatosis to NASH. Abbreviations: SAMe, S-adenosylmethionine; SAH, S-adenosylhomocysteine; PE, phosphatidylethanolamine; PC, phos-

phatidylcholine; TCA, citric acid cycle; B-OX, beta-oxidation; FFA, free fatty acids; TG, triglyceride; VLDL, very low-density lipoprotein; IHS, isolated hepatic steatosis;

ROS, reactive oxygen species; ER, endoplasmic reticulum; NASH, nonalcoholic steatohepatitis. (A color version of this figure is available in the online journal.)
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may also be effective in preventing the development of
HCC. Further studies are very much needed to explore
these novel areas.
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