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Abstract of the Dissertation 

Simulations of Information Processing, Control, 
and Plasticity Effects in the Olfactory Bulb 

by 

Philip Sean Anton 

Doctor of Philosophy in Information and Computer Science 
University of California, Irvine, 1991 
Professor Richard Granger, Chair 

The olfactory system processes complex and varied information in its detection, 
recognition, and memory of odors. The exact functions that the olfactory bulb plays 
in this processing is still largely unknown. Studies were performed to help reveal 
bulb functionality in the olfactory system while contributing to the set of computer 
methods available for the study of neural systems. 

One interesting property of bulbar neurons is an increase in primary cell firing 
thresholds with depth. Since increased odor concentrations generally result in higher 
frequency inputs to the bulb and thus higher summation levels of primary cell 
membrane potentials, this threshold gradation transforms the frequency-encoded 
concentration data into a spatial representation in the number of primary cells 
responding in a single olfactory bulb glomerular region. 

Since this transformation relies on temporal summation of post-synaptic poten­
tials (PSPs) to reflect concentration levels, direct physiological modeling of the 
transformation was possible while providing the added efficiency to permit the sim­
ulation of large numbers of cells and synaptic interactions. A novel physiological 
modeling methodology was developed for these tests that extends the extant physio­
logical models to include time-constant and driving-force interactive effects between 
post-synaptic inputs. This novel method is derived using linear superposition of in­
puts to a lumped-circuit cell representation, resulting in a difference-of-exponentials 
PSP function that is more realistic and flexible than the common empirically-chosen 
alpha function. 

Also, the effects that interneuronal dendritic spines have on bulbar inhibitions 
were tested using biophysical computer simulations of primary-to-granule dendro­
dendritic reciprocal interactions. The graded strength properties of these synapses 
showed that reciprocal inhibitions to primary mitral cells are facilitated by the spine 
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structures without the need of a high gain gradation while reducing lateral inhibi­
tion to other mitral cells. Furthermore, increases in the neck axial resistance of the 
synapsed spine further strengthen the reciprocal response and reduce the lateral in­
hibition; such resistance changes could therefore result in dendrodendritic synaptic 
plasticities and olfactory memory operations. 

xx 
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General Introduction 

In striving to understand the basis of intelligence, different academic disciplines 
have developed various methods and techniques in an attempt to understand ex­
isting intelligent agents and to propose novel or hybrid systems that mimic desired 
behaviors. While some of the high-level, top-down investigations in intelligent be­
havior have produced interesting and useful results, a complete understanding of 
even simple agents has not yet been achieved, especially when it comes to under­
standing peripheral input/output operations. As a result, many researchers believe 
that a combined top-down and bottom-up study of existing intelligent structures 
such as human and animal nervous systems can shed light on how such information 
processing may be carried out. 

Various techniques are employed by computational neuroscientists in their stud­
ies of biological neural networks. In the arena of sub-cellular, cellular, and multi­
cellular modeling, these techniques range from low- level equivalent circuit models 
through mid-level physiological models to high-level abstractions such as coarsely 
temporal automata, oscillator, and analytical models. Chapter 1 surveys these 
modeling techniques, stratifying the variations employed by researchers along such 
variables as architectural detail, cell functioning details, cell output forms, and ab­
straction from the biology. 

A simple and computationally-efficient model· of neuronal post-synaptic poten­
tials (PSPs) is then derived in Chapter 2. This model includes membrane time­
constant and driving-force effects of multiple synaptic inputs overlapping in time. 
This model provides realistic temporal voltage information similar to biophysical 
compartmental models and actual biological data. Its advantages include com­
putational efficiency due to the simplicity of its iterative expressions for membrane 
voltage over time. Starting from a lumped-circuit representation of a cell, equations 
for membrane voltage transients are derived that permit curve fitting of actual PSPs 
with varying membrane and synaptic conductance decay constants while maintain­
ing the interactive effects of changing membrane conductances and synaptic driving 
forces. 

By using this model, large neuronal structures can be simulated, yielding more 
detailed data than higher-level approaches such as those in artificial neural net­
works while avoiding the complexities of the lower-level biophysical approaches that 
may not be relevant to the computations under study. Furthermore, even if these 
interactive effects are deemed negligible to the system under study, a difference­
of-exponentials function that includes a current injection parameter is proposed as 
a much more flexible and realistic candidate for linear PSP summation than the 

1 



2 

empirical alpha function commonly in use. Derivations of different conductance 
functions based on probabilistic channel behavior are also presented. 

Chapter 3 describes the use of the physiological model developed in Chapter 2 
- together with the integrate-and-fire paradigm and realistic activation curves and 
synaptic delays - to study processing of concentration data by the olfactory bulb. 
This simulation incorporated 2.5% of the input and inhibitory neurons and 25% of 
the primary mitral/tufted cells in a single mammalian olfactory bulb glomerulus. 
The presence of graded increases by depth in the firing thresholds of the primary 
(mitral/tufted) cells in the olfactory bulb {Schneider and Scott, 1983; Mori, 1987) 
lead to the hypothesis that the bulb may transform the frequency-encoded data 
received from the receptors into a spatial excitation of the primary cells. In the 
simulation, temporal integration of receptor axon firings resulted in a positive re­
lationship between the incoming firing frequency of afferent axons in the olfactory 
nerve and the general level of excitation in the mitral/tufted cells. Combined with 
the threshold gradations, the frequency-related excitation levels caused a gradation 
of primary-cell response based on depth. As a result, low-frequency inputs resulted 
in a response from superficially located cells alone, while higher-frequency inputs 
resulted in both superficial and deep primary cells to fire. Although_ the frequency of 
mitral/tufted cell firing in bulb was approximately independent of input frequency, 
the number of cells active in the simulated glomerulus was a roughly linear function 
of input frequency to the glomerulus, indicating the mechanism's ability to func­
tion as a frequency-to-spatial encoder. The simulation also revealed that refractory 
periods for granule-cell inhibition of mitral/tufted cell activity could lead to rela­
tively fixed-frequency rhythmic activity in the glomerulus, independent of the input 
frequency from the olfactory nerve. 

In the course of physiologically simulating the olfactory bulb, questions arose con­
cerning the function of dendritic spines on the reciprocal dendrodendritic synapses 
in the bulb. While many theories have been proposed for the function of dendritic 
spines in axodendritic processing, little attention has been focused on the specific 
influence of spines on reciprocal dendrodendritic processing. Chapter 4 describes 
simulations of granule cell dendritic spines in the olfactory bulb and the influence 
these spines have on synaptic and lateral inhibitions and plasticities in the bulb. 
Mitral cells in the bulb synapse on granule cell spines {gemmules) which are in turn 
presynaptic to reciprocal inhibitory synapses back onto the same mitral cells. The 
postulate that these synapses respond with synaptic strengths graded by presynap­
tic depolarization resulted in a sensitivity of the reciprocal response to the local 
depolarization in the spine head. Biophysical computer simulations were performed 
to study these effects and the effect of changing the spine neck diameter and cy­
toplasmic resistance on the reciprocal and lateral inhibitory responses. Since spine 
head local potentials are larger than similar inputs on dendritic shafts, the spines 
facilitated the graded reciprocal response even for low levels of activity. The synaps­
ing on spine heads also reduce the synaptic current, lowering the contribution to the 
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rest of the granule dendritic tree and thus reducing lateral inhibition. In addition, 
an increase in the effective spine neck axial resistance further increased the recip­
rocal synaptic response and decreased the lateral inhibitory response. Short-term, 
reversible, and long-term methods of implementing this resistance-based dendro­
dendritic plasticity are discussed as well as the partial dependence of the reciprocal 
increase/lateral decrease effect on a broad synaptic gradation. Candidate memory 
operations by the bulb are also discussed, including a possible recognition memory 
pass/block function. 



- ----- --- ---- -----------

Chapter 1 

Methodologies in Computational Neuroscience 

1.1 Introduction 

Computational neuroscientists employ mathematical and computer models of bi­
ological "hardware" to test their hypotheses about the functionality of neuronal 
structures and to gain additional insight into the structures' behavior and capabili­
ties. These models are useful in that they allow the measurement of cellular param­
eters that can be difficult or impossible to obtain from biological tissue. Also, the 
models can often yield results much faster than laboratory experiments, allowing 
rapid modification of experimental parameters. Furthermore, the modeling results 
can provide anatomical, physiological, or functional predictions of the structures 
under study. 

The modeling techniques employed by computational neuroscientists emphasize 
different functional aspects of cell behavior in the hope that the behaviors relevant 
to the computation under study are included while other behaviors not included 
for efficiency and other reasons are not relevant to the computation. The models 
described below employ quite different boundaries between included and excluded 
cellular properties, resulting in useful models that range from low-level equivalent 
circuit models that emphasize the electrical properties of the cellular membranes, 
through mid-level physiological models that reflect actual observed physiological 
changes in membrane potential due to cellular interactions rather than theoretical 
circuit effects, and finally to high-level abstract models that emphasize pure analyt­
ical descriptions of cells and their interactions, the oscillatory behavior of single or 
multiple cells, or coarsely temporal automata abstractions that emphasize spatial 
anatomical architectural properties over the time course of cellular potentials and 
conductances (see Table 1.1). 

While the models take quite different approaches and emphasize different neuro­
biological properties of the systems under study, they are not in competition with 
each other. Together the models provide a collection of complementary tools to the 
computational neuroscientist. These tools should provide different points of view 
into the problem under study to facilitate a non-biased and multi-level approach. 
For example, if one believes that a certain architecture's principle function can be 
found in the discrete action potentials of individual cells, one should not completely 
disregard the predictions of oscillatory models based on field potential measure­
ments such as electroencephalograms (EEGs); such oscillatory information could 
prove us.eful in the selection of anatomical, biophysical, or physiological properties 
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for inclusion in the more discrete simulations by providing global behaviors that 
should be demonstrated at these discrete lower levels. 

These tools can also directly complement each other. Lower-level models can 
be used to test higher-level assumptions or provide more detailed data while the 
high-level assumptions can provide broad-scope data that the lower-level models 
cannot test due to computational complexity or lack of low-level explanations for 
certain cellular phenomena. 

Thus, an understanding of the various modeling techniques employed in compu­
tational neuroscience, an appreciation of the powers and limits of each technique, 
and an understanding of the usefulness of employing multiple techniques in the 
assault of a problem can greatly aid an investigator by providing a foundation for 
his/her techniques and by providing the widest range of viewpoints in the attack of 
the problem in the hope of gaining long-lasting insights into the functionality of a 
neural architecture. 

Artificial Neural Network Models. One should note that there is a differ­
ence between the abstract models described in this chapter and the more abstract 
models used in the field of artificial neural networks and connectionist systems. 
Connectionists try to discover useful algorithms that provide intelligent solutions 
to problems in engineering, artificial intelligence, and cognitive science without re­
stricting themselves to biologically faithful solutions. They may borrow different 
ideas from the biology, but their approach is often so abstract as to not yield models 
of biological systems in any real sense. Excellent reviews of artificial neural networks 
and connectionist systems can be found in (Hinton, 1987; Carpenter, 1989). 

1.2 Biophysical Models 

To a certain extent, neurons are electrical devices. The classical description of 
cellular output is by way of an action potential ( a.k.a., spike or firing) on the cell's 
axon that is a sudden change in the axon's membrane potential due to a rapid flux 
of ions through the axonal membrane. Also, the straightforward electrical influence 
one cell's action potential can have on another cell is to (temporarily) change the 
membrane potential of a target cell (PSP) through a synaptic action that either 
directly changes the target cell's membrane potential (electrical synapse) or changes 
the target cell's membrane conductance to one or more ionic species, causing a 
change in the target cell's membrane potential (chemical synapse). In addition, the 
membrane potential of a cell at the axon hillock determines whether the cell will 
fire or not. Furthermore, the resting potential of a neuron's membrane depends on 
a number of electrical properties of the membrane and the electrical driving forces 
of the major ionic species in and around the cell (Koester, 1985a,b,c,d; Kandel and 
Siegelbaum, 1985; Kandel, 1985). 
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Models Method Extent Cell Output 

Biophysical: Cables I Cell * 
Rall 1964, 1967 Multi-compartmental Components ----

Biophysical Varied Varied 
Jack, Noble, & Tsien 1975 

Physiological Varied Varied 

Biophysical: Cell * 
Scgcv & Pamas 1983 Multi-compartmental Components -

Biophysical: * 
Rall & Shepherd 1968 Multi-compartmental Few Cells -

Biophysical: Spike 
W chmeier ct al. 1989 U ni-compartmcntal Many Cells (fhrcshold) 

Biophysical: Uni- & Spike 
Wilson & Bower 1989 M ulti-compartmcntal Many Cells (fhreshold) 

Koch & Poggio 1987 Biophysical Varied Spike 

Spike 
Getting 1989 Biophysical Few Cells (fhrcshold) 

Many Cells, Spike 
Ant6n 1991a Physiological Structures (fhrcshold) 

Firing 
Shamma 1989 Physiological Many Cells Frequency 

Cell Spike 
Perkel 1964 Physiological Components (fhreshold) 

Abstract: Spike 
Granger, Ambros-Ingerson, & Lynch 1988 Event-based Many Cells (fhrcshold) 

Granger, Ambros-Ingerson, Abstract: Many Spike 

Staubli, Lynch 1989 Event-based Structures (fhrcshold) 

Abstract: * Schild 1986 Analytical 
Few Cells -

Abstract: Firing 
Kleinfeld & Sompolinsky 1989 Amplifiers - Analytical Few Cells Frequency 

Abstract: Potential 
Li & Hopficld 1989a,b Amplifiers - Analytical Few Cells Oscillation 

Eisenberg, Freeman, & Burke 1989 
Abstract: 

Many Cells 
Firing 

Amplifiers - Hardware Frequency 

* Intracellular measurements only 

Table 1.1: Categorization of selected models in Computational Neuroscience. 
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Since these and other major neuronal functions are dependent on the electrical 
properties of a neuron and its environment, neurobiologists have been successful in 
modeling the electrical behavior of neurons by modeling their properties in equiv­
alent electrical circuits and differential equations for cellular voltages and conduc­
tances. These low-level models incorporate cellular electrical properties to varying 
levels of detail, employing techniques such as equivalent circuits of passive and active 
membrane patches, linear cable theory equations describing the spread of membrane 
currents and potentials through different parts of a cell, and compartmental models 
of cellular components. 

Note that while neurons do have electrical behaviors, their electrical properties 
are based in the physical structures and chemical interactions of a cell. Thus these 
equivalent circuit models are theoretical approximations to the interactions in a 
neuron just a.s conventional electrical circuits based in non-organic materials are 
in general designed and analyzed in an abstract and theoretical manner. As with 
conventional circuits, the hope is that the abstractions will adequately describe the 
behavior of the circuit in its environment and in the modes under study. While these 
assumptions are not valid in all cases, many insights into the performance of neural 
components and architectures have been gained by taking the equivalent circuit ap­
proach and incorporating more detailed chemical effects whenever necessary. Since 
computationalists in neuroscience are presently more concerned with multi-cellular 
functions as a whole, direct chemical models will not be covered in this chapter (if 
interested, see (MacGregor, 1987: Ch. 4) for more on chemical modeling). 

1.2.1 Equivalent Circuit Models of Membrane Patches 

The passive and active properties of membrane patches can be modeled using elec­
trical circuits that incorporate the different properties of cellular membranes (see 
Figure 1.1). The membrane itself is composed of a bi-lipid layer that acts a.s a thin 
layer blocking the flow of fluid in and out of the cell. The cellular fluid contains 
Na+, Cl-, and K+ ions a.s well as larger protein anions that impart an electrical 
property to the fluid. As a result, the movement of ions is an electrical current 
in much the same was as the movement of electrons is an electrical current. Since 
the bi-lipid layer is very thin, electrical charge can build up on opposite sides of 
the membrane, resulting in a capacitance Cm across the membrane. Despite the 
insulation property of the bi-lipid layer, the membrane also contains paths through 
which Na+, CI-, and K+ ions may pass. These narrow channels are selective for 
particular ions and have a resistance to ionic flow represented by RNa, Rct, and RK. 
Furthermore, the concentration and effective charge of these ions inside and outside 
the cell are unbalanced, resulting in a potential force on each ion for movement into 
or out of the cell during the resting condition (Koester, 1985a). This driving force is 
represented by a voltage source E for each ion in series with its associated channel 
resistance. The net membrane potential, then, can be calculated by determining 
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Outside 

(+) 

+ + + 
ENa 

Inside 

Figure 1.1: Equivalent electrical circuit of the membrane properties of a cell patch. 
Vm is the membrane potential, Cm is the membrane capacitance, and the Ri's and Gi 's 
are the ionic channel resistances and conductances, respectively. The plus sign ( +) on 
the capacitance indicates the resting charge polarity that can change during transitory 
periods. Typical values for ENa, Eci, and EK are +55m V, -69m V, and -75m V respectively 
(Rall, 1964, 1989; Koester, 1985b; Shepherd, 1979). . 

the potential difference between the inside and outside of the cell (i.e., the voltage 
drop across any path from the inside to the outside of the cell in the equivalent 
circuit). 

Passive Membranes. Many parts of the cell, particularly the soma and most 
parts of the dendritic tree, have membranes that behave passively since they do 
not amplify signals. In terms of the equivalent circuit, this means that the ionic 
conductances are independent of time and voltage. While a passive membrane can 
be excited by a synaptic transmitter or current injection (see the section below 
on cellular excitation), the membrane merely conveys the synaptic effects rather 
than amplifying them. Thus, one can model a passive membrane by determining 
the values of the electrical circuit components either experimentally or theoretically 
and incorporating these values in one's computations or simulations. 

The membrane potential Vm is controlled by the relative balance of Na+, c1-, 
and K+ ions inside and outside the cell. Changes in these concentrations resulting 
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from ionic current through the membrane transiently change the membrane po­
tential from its resting nominal value. To facilitate synaptic influences and action 
potentials, neurons are built so that these concentrations are out of balance, result­
ing in chemical and electrical driving forces that try to move these ions through 
the membrane. The driving force of an ion can be calculated using the theoretical 
Nernst equation. For example, the driving force for Na+ is given by: 

where [Na+]0 and [Na+]i are the ionic concentrations outside and inside the cell 
respectively, R is the gas constant, T is the temperature in degrees Kelvin, and Z is 
the ionic valence (Koester, 1985a). This equation allows modelers to approximate 
the driving force of an ionic species from concentration measurements in addition 
to direct measurements of this force through measurement of reversal potential. 
One assumption commonly made in the use of the Nernst equation is that the ionic 
concentrations inside and outside the cells remain relatively constant (neglecting 
local effects), so this driving force E is modeled as an ideal voltage source (see 
Figurel.1). The ionic resistances and membrane capacitance of the circuit can be 
measured directly from tissue samples; typical values can be found in (Koester, 
1985b). 

Active (Excitable) Membranes. Axonal and possibly some dendritic mem­
branes have active properties and can generate ionic current through the cell by 
opening gates based on their membrane potentials. These voltage-gated channels 
for K+ and Na+ can be modeled directly by expressing their ionic conductances us­
ing the equations developed by Hodgkin and Huxley (1952) and cited in the forms 
given by (Kuffier et al., 1984): 

and 

9Na(V, T) = 9Nama.x m
3h 

where the functions n, m, and hare given by 

n = 1 - e-t/rn, 

m = 1 - e-t/rm, 

h = e-t/rh, 

and 9Kma.x' 9Nama.x' Tn, Tm, and Th are all voltage dependent (see KufBer et al., 1984 
for typical values and ranges). 

I 
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While modelers can include these Hodgkin-Huxley equations directly into their 
simulations to obtain the time courses of action potentials, the equations can de­
mand much computational time. Many modelers, therefore, have turned to polyno­
mial approximations to the time courses of action potentials which result in reason­
able fits to actual data and reduced computational loads, combining their biophys­
ical simulation of the dendritic interactions and voltage spread with physiological 
modeling of cellular spikes. 

1.2.2 Linear Cable Theory 

Since a small section of membrane can be represented by the equivalent circuit in 
Figure 1.1, it was observed that long sections of membrane could be represented by 
repeating this circuit in parallel, thus forming a typical electrical cable made up of 
resistors, batteries and capacitors (see Figure 1.2). The study of such cables has 
since lead to an understanding of the general behavior of parts of cells, methods 
for combining the effects of dendritic trees into equivalent cylinders, normalized 
lengths and time constants of membrane cylinders providing easy comparison of 
effective lengths for different cell types, and the foundation for the compartmental 
models that followed (Rall, 1964, 1967, 1989). Unfortunately, this field called Linear 
Cable Theory has not been able to obtain closed-form analytical solutions for such 
questions as cable propagation of signals for complex cellular structures, especially 
in the transitory effects caused by the membrane capacitance. It is at this point 
that compartmental methods, covered below, have excelled. 

Cable Equation for Membrane Voltage 

The general cable equation that expresses the membrane voltage V in space and 
time is given by the partial differential equation: 

a2v av 
ax2 = ar + v, 

where the dimensionless space and time variables are given by 
x 

X=-
A 

and 
t 

T --- . 

X is often called the electrotonic length while A is the characteristic length that 
expresses the efficiency of the cable for transmitting information and thus is used 
in the comparison of different cell membranes. The characteristic length and time 
constant are given by 
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Figure 1.2: Cable representation of a length of cell membrane. Em is the combined 
driving force for all ionic species, Ti is the intracellular resistance to current fiow in the 
axial direction, Tm is the equivalent membrane resistance to all the ions that cross the 
membrane, and Cm is the membrane capacitance (after Rall, 1989). This particular model 
assumes that the resistance to axial fiow outside the cell is negligible, although this resis­
tance can readily be included if necessary. 

and 

respectively (Jack, 1979). In these equations, x is the distance along the cylinder 
under study, dis the diameter of the cylinder, t denotes tjme, ri is the intracellular 
resistance to current flow in the axial direction, R1 is the specific resistance of the 
intracellular flow, rm is the equivalent membrane resistance to all the ions that cross 
the membrane, and Ctn is the membrane capacitance. For an excellent derivation of 
the cable equation see (Jack et al., 1975; Jack, 1979). 

Electrical Geometry of a Cell: The Rall Model 

In order to solve the cable equations for the cell under study, boundary conditions 
must be specified. The geometry of the cell under study and the format of the 
inputs are the major sources for boundary conditions. The standard assumptions 
made for the cables are given in the Rall Model which specifies the representation of 
the cell soma, the type of termination at the end of the processes, and the changes 
in cylinder diameters at branch points (Jack, 1979). Inputs to the cells will be 
covered in the next section. 

Cell Soma. Although the soma often contains many branch points to dendritic 
and axonal processes, the soma is represented in the Rall model as a single resistor 

I 
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and capacitor in parallel. This results in a uniform membrane potential over the 
whole soma. in the model. 

Termination. Although Rall has calculated the effects of many boundary con­
ditions on long and short cables (Rall, 1989), the most appropriate condition for 
cell processes has been determined to be an open circuit termination where the re­
sistance is infinite, the axial current becomes zero, and av; ax = 0 at the terminal. 

Branching. While dendritic trees contain much branching, Rall has deter­
mined that some typical types of branching occur in such a way that the descendant 
branches can be considered an equivalent single branch with the same properties as 
the parent segment for the purposes of calculating current spread through the tree. 
This consolidation of the cylinders is possible when the diameters d of the parent 
and children branches obey the relationship 

t3/2 - t3/2 .,J/2 
aparent - ach..ild1 + ach..il~' 

which holds for a large number of dendritic trees (Rall, 1989; Jack et al., 1975; Jack, 
1979). 

Nature Of Cellular Excitation: Post-Synaptic Potentials 

Experimentally. In laboratory experiments, membranes are typically excited 
by current injection into the cell or by the placement of electrodes on either side of 
the membrane and forcing the membrane potential to a clamped value, thus forcing 
current to flow across the membranes in accordance with Ohm's Law. 

Physiologically. An axon carrying an action potential can change the mem­
brane potential of other cells directly through a communication structure called 
a synapse. Electrical and chemical synapses can cause this post-synaptic poten­
tial (PSP) change either directly or indirectly, respectively. The electrical synapses 
inject ionic current from the presynaptic axon directly into the post-synaptic mem­
brane; this current injection will upset the potential balance in the post-synaptic 
membrane, causing a transient fluctuation in cellular potential. Chemical synapses, 
on the other hand, release chemical agents called transmitters that transiently 
changes the conductance of the membrane to different ionic species; this large con­
ductance change behaves like the opening of a gate, allowing a rush of ions across 
the membrane and thus upsetting the membrane potential balance. Note, however, 
that in the case of the chemical synapse, a direct change in membrane potential will 
only occur if the present value of the membrane potential is different from the driv­
ing (reversal) potential for the ion(s) for which their conductance is changed. By 
examining the equivalent circuit (Figure 1.1 ), one will note that no current will flow 
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through an ionic segment if the ionic battery exactly matches the membrane volt­
age Vm since such a current flow across the ionic resistance will cause an additional 
voltage drop, violating Kirchhoff's voltage law. 

The biophysical models can easily incorporate these synaptic influences since the 
equivalent circuits directly represent ionic flow as electrical current and membrane 
conductance by way of current resistors. Thus, the effects of electrical synapses can 
be modeled as a temporary current injection into the circuit by gating in a cur­
rent source during the time of current injection. Also, chemical synapses that form 
transient conductive channels for an ionic species when activated can be modeled 
as a transient change in the resistance in series with that ion's driving force battery 
(see Figure 1.1). This change measured in actual cells is rather abrupt - much 
like a square pulse. As a result, modelers often use step functions for the change in 
resistance. If, however, a continuous function is desired for mathematical reasons, 
an alpha function or a difference-of-exponentials function may be used in approxi­
mating the time course of the resistance change (Rall, 1967; Jack et al., 1975; Anton 
et al., 1991a). 

Solving The Cable Equation 

Now that the equations have been set up and the boundary conditions have been 
determined, we must consider whether closed-form solutions exist for the steady­
state and transient propagation behavior of membrane cables. 

Steady-State During steady excitation we can neglect the membrane capaci­
tance, so the cable equation reduces to a second-order ordinary differential equation 
since av I 8T = 0. Thus, we get the general solution 

where X = x/ A is the length of the cable normalized by the characteristic length 
A to adjust for different diameters. A particularly useful solution can be obtained 
by considering a very long cable in which the change in voltage becomes negligible, 
i.e., 

lim V(X) = 0, 
x-oo 

so B = 0. In this case the cable equation becomes 

V(X) = Voe-x, 

where Vo= V(O) (Jack, 1979). As with electrical resistive cables of infinite length, 
therefore, the signal in very long (relative to A) cellular processes decreases expo­
nentially (Mead, 1989). 

I 
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Transient Solutions Unlike the steady-state solutions, transient solutions to the 
general cable equation that meet the boundary and initial conditions in cells are 
much more difficult to obtain. The three techniques currently employed to solve this 
problem involve the use of the Laplace transform, general solutions to the equation, 
and numerical methods such as compartmental models (Jack, 1979). 

Laplace Transformation. The first analytical method involves the use of 
Laplace transforms. In this approach, the cable equation is taken into the complex 
domain in which the equation becomes an ordinary rather than a.partial differential 
equation. The boundary and initial conditions can then be used to determine a 
complex solution which is then brought into the real domain using an inverse Laplace 
transform (Jack et al., 1975; Jack, 1979). This method is limited by the absence of 
appropriate inverse transforms for many problems (Jack, 1979). 

General Solutions. Two general solutions are currently used to solve the cable 
equation under circumstances when the constants in the solutions can be obtained. 

One general solution involves the use of the fundamental solution or Green's 
function 

where C0 is a constant given by 
Qo 

Co=-
-Xern 

for semi-infinite cables. Here Q0 is the amount of instantaneous point charge at 
X = 0 when T = 0 and -Xein is the membrane capacitance for a segment of length 
.\ (Rall, 1989). 

Another general solution to the cable equation is given by 

V(X, T) = (Asin(aX) + B cos(aX)r<i+
02>T, 

where A and B are constants and a 2 is called the separation constant (Jack et al., 
1975; Jack, 1979; Rall, 1989). One then uses boundary conditions and experimental 
data to solve for these constants. Unfortunately, it turns out that solving for A and 
Bis quite difficult (Jack, 1979). 

Compartmental Method. The most productive method for solving the cable 
equation, especially in the case of complex geometries, involves numerical methods, 
especially the compartmental method (Rall, 1964; Jack, 1979). Since compartmen­
tal methods involve a conceptually different approach and do not lead to closed-form 
equations for signal propagation through a cable, they will be treated as a separate 
methodology altogether (see Section 1.2.3 below). 
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1.2.3 Compartmental Method 

As noted above, the solution of the cable equation in the transient state is very 
difficult, especially as the geometry of the cell under study becomes complex. This 
difficulty in obtaining a closed-form analytical equation describing the signal propa­
gation led Rall ( 1964) to develop the compartmental model which treats the sections 
of the cell under study as compartments of membranes represented by isopotential 
equivalent circuits. The compartments can be connected in the same way as the ac­
tual cellular processes to be modeled while the number of compartments determines 
the resolution of the model. Thus, a very finely detailed model can be constructed 
by breaking the cellular cables into a large number of segments, each being repre­
sented by a single compartment. 

Advantages Over Linear Cable Theory. The advantages of this compart­
mental approach over linear cable theory are twofold. First, the use of the sim­
ple local equivalent circuit reduces the complexity of the cable equation from a 
second-order partial differential equation to a first-order ordinary differential equa­
tion describing the current flows in the circuit that can easily be solved along with 
the boundary and initial conditions. These compartmental calculations involve the 
determination of the membrane and outgoing axial currents given the incoming ax­
ial current from adjacent compartments. The membrane current determines the 
membrane potential for the compartment via Ohm's Law while the outgoing ax­
ial current through the axial resistance specifies the signal propagation to other 
adjacent compartments of the cell. . 

Second, each compartment does not have to contain the same parameters, so 
different types of connected membranes can easily be mo·deled by putting the ap­
propriate equivalent circuits for these membranes and their associated parameters 
together in the model. For example, dendritic trees with small section of excitable 
membrane among the mostly passive tree can be modeled by including compart­
ments that contain the excitable functions in the compartment tree (Rall, 1964; 
Segev et al., 1989). 

Mathematical Description. During the calculations for the lh compart­
ment, Kirchhoff's Current Law specifies that the membrane current im; must be 
the difference between the incoming and outgoing axial currents 

im;(t) = iin;(t) - iout;(t) 

since this membrane flow is the only remaining current path. Also, the membrane 
current will be split between the net flow through the ionic channels iion;, the 
transient flow across the membrane capacitance Cm;, and the stimulus input current 
istim; at this compartment (if any): 

im;(t) =Cm; a;; + i;on;(t) + istim;(t). 

I 
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As a result, the current equation for the lh compartment is given by 

dVj . ( ) . ( ) - VJ-1 - Vj Vj - VJ+i 
Cm; dt + Zion; t + Zstim; t - -

rj-1,j rj,j+l 

where rj-1,j is the axial resistance between the j -1 at and Ph compartments (Segev 
et al., 1989). 

Implementations. Computationally, modelers either custom-build programs 
to solve the compartment equations or use general-purpose equation or circuit solv­
ing programs such as SPICE and SABER (Segev et al., 1989). The advantages of 
custom systems are speed and flexibility while general-purpose systems available 
"off-the-shelf" can provide rapid prototyping and computer access without pro­
gramming. (Segev et al., 1989) also provides an extensive list of compartmental 
models used by many researchers in modeling neuronal systems. 

1.3 Physiological Models 

Models at a physiological level of description have also been used to simulate neural 
systems when the computations under study are believed to arise from temporal 
combinations of membrane potential transients or patterns of input combined with 
rigid or plastic synaptic weights (Perkel, 1964; Wallfl}e et al., 1969; Jack et al., 
1975; Shamma, 1989; Anton et al., 1991a,d). These physiological-level models are 
motivated by the simple linear summation of membrane transients observable in cells 
at low levels of input (Shepherd, 1979). Their efficiency permits large studies of ~.he 
temporal interplay of excitatory and inhibitory post-synaptic potentials (EPSPs and 
IPSPs) as well as investigations into the maps between cellular inputs and responses 
by way of spiking thresholds or firing-rate functions. 

If the biophysics underlying all cellular potentials were well understood and suf­
ficient computational power was available, then biophysical models would be prefer­
able to physiological models on the grounds of precision. However, in many situa­
tions cellular potentials are well characterized in terms of their shape and amplitude, 
whereas the precise mechanisms and sources underlying these responses remain un­
certain. In such cases, physiological models can attempt to model cellular behavior 
by combining copies of PSP measurements juxtaposed in time. Unfortunately, the 
simplest physiological models do not accurately reflect the non-linearities due to 
time-constant and driving-force interactions between multiple PSPs. In addition, 
the functions typically employed for the representation of PSPs often do not contain 
enough parameters to allow accurate curve-fitting of actual PSPs measured from 
neurons. These shortcomings can become extremely relevant if, for instance, the 
size of PSPs begins to be reduced as a result of nonlinear interactions that change 
the effective membrane time constant and synaptic driving force. Also, particular 
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Figure 1.3: Components in a typical physiological model of a cell. Synaptic strength 
variables Wij (or Gsyno) are multiplied by the PSP shape function Vpsp to yield the synaptic 
potential contribution. These contributions are then summed linearly with the resting 
potential Vrest to obtain the membrane potential for the cell. This potential is then 
compared to a firing threshold or firing-rate function to determine cell output. {From 
Anton et al., 199lc, with permission). 

shapes of PSPs cannot be modeled using intuitively-realistic alpha functions, yet 
precise PSP shapes may be crucial for studies involving patterns of input including 
temporal overlap. In addition, silent inhibition cannot be modeled in the simplest 
physiological representations since their inhibitory effects are due .to changes in the 
effective membrane time constant rather than an IPSP summed with membrane 
potential. 

A set of novel PSP functions, however, are available that do accurately model 
these interactive effects and fit precise physiological PSP data (Anton et al., 1991a). 
These functions are presented below and derived from single lumped-circuit cell 
representations in Chapter 2. These new PSP functions provide computationally 
efficient, closed-form iterative solutions to the lumped circuits, permitting iterative 
maintenance of interactive effects in an efficient manner during simulation while re­
taining the simplicity of physiological modeling approach. These new findings par­
tially bridge the gap between biophysical and physiological models without greatly 
increasing the computational complexity of the physiological simulations. 

1.3.1 PSP Functions 

The PSP temporal aspects included in a physiological simulation are modeled by 
way of PSP functions. Let us represent PSP transients by a weight variable Wij 

I 
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between the ith afferent cell and the j!h cell multiplied by the shape function Vpsp: 

{1.1) 

Of course, if weights are not an issue, the we can set Wij = 1 so the PSP will be 
represented by Vpsp alone. 

Commonly used functions and the properties they model include 

• delta functions Vj = Wij8{ t - t 0 ) 

(modeling a simple time-delayed synaptic weight), 

• step functions Vj = WijS{ ti, t2) 
(modeling a non-instantaneous synaptic weight), 

• decaying exponentials Vj = Wije-at 

(modeling a decaying temporal value), 

• alpha functions Vj = eWijate-at 

(modeling non-zero rise and fall times), 

• simple diff erence-of-ex~onentials functions 
Vj = ( e-b;t - e-Gmt/Cm) Dr; (O)Gsyno) (Gm - b;Cm) 
derived in Chapter 2 (modeling realistic rise and fall times), and 

• interactive difference-of-exponentials functions (Equation 2.12) derived in 
Chapter 2 (modeling time-constant and driving-force effects as well as real­
istic rise and fall times) 

(see Figure 1.4). While alpha and the difference-of-exponentials functions are visu­
ally similar to a typical PSP transient, quantitative measurements of the rise and 
fall times of actual PSPs often yield shapes that a single-parameter alpha function 
cannot match. Thus, the difference-of-exponentials functions - derived below and 
similar to the cable theory solution by Rall for a current step pulse (Rall, 1962, 
1969, 1989) - are the most complex yet also the most realistic. 

As pointed out by Shamma, the use of simple delta functions will concentrate the 
simulator's emphasis on the synaptic weights rather than the temporal properties of 
the PSPs, thus allowing clear study of the importance of these weights on the net­
work computation without interference from temporal effects (Shamma, 1989). On 
the other hand, difference-of-exponentials have enough parameters to allow curve 
fitting of actual PSP measurements from the soma; these curves implicitly reflect 
the electrotonic changes imposed by the cell's dendritic structure on a PSP when 
traveling from the dendritic input site to the soma since most intracellular physio­
logical data presently involves somatic measurements. Curve fitting can therefore 
allow the physiological simulation to reflect some of the influences imposed by the 
spatial geometry that is not directly simulated. This benefit is most relevant in 
simulations where the primary output is axonal since cell firing is determined by 
somatic membrane potential relative to the firing threshold. 

I 
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1.3.2 Summation 

Once the voltage contributions have been determined by the PSP function, simple 
linear summation of these contributions together with the resting potential of the 
cell determines the simulated cell potential. Even the more sophisticated PSP 
functions can be summed linearly due to the use of the linear superposition theorem 
in their derivation. The cell membrane potential is then given by 

Vm(t) = Vrest +I: v;(t) 
j 

(1.2) 

for the PSP functions v;(t). Note that any long-term inputs that may elevate all the 
resting potentials of the cells under study can be modeled and studied by merely 
changing the resting potential summed together with the transient PSP inputs. 

1.3.3 Output Determination 

After the inputs to the cell have been combined into a resultant potential value, the 
model must somehow make the decision whether to fire or not. Common approaches 
in physiological models include a firing threshold technique, an instantaneous firing­
rate function, or a direct implementation of the Hodgkin-Huxley or polynomial 
equations for voltage-dependent activations. 

The most straightforward yet least efficient approach is to model directly the non­
linear dynamics of the excitable membrane of the axon using Hodgkin-Huxley or 
polynomial equations. Here the simulation would merely input the summed voltage 
into the desired non-linear equations to produce continuous action potential voltages 
(Jack et al., 1975; Bunow et al., 1985; Segev et al., 1989; Rinzel and Ermentrout, 
1989). 

The action potential waveforms could, however, be represented by a simplified 
instantaneous spike or linear approximations together with an output determination 

Figure 1.4: Plots of various PSP functions. 
(a) Unit delta function t5(t - to). 
(b) Unit step function. s( ti, t2)· 
(c) Unit exponential decay cat. a =10, 20, 50, and 100. 
( d) Unit alpha functions eate-at. a = 10, 20, 50, and 100. 
(e) Difference-of-exponentials (e-bit - e-Gmt/Cm) Dr;(O)GsynO;/ (Gm - b;Cm)· 

. Cm= 270pF and b = 100 while Gm= 15nS, 30nS, 54nS, lOOnS, 200nS, and 500nS. 
(f) Same function as in (e) but with Gm= 54nS, b = 45, and Cm= 9pF, 270pF, 800pF, 
1600pF, 3000pF, and 7000pF. (From Anton et al., 1991c, with permission). 
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function. This simplified approach is especially appropriate if the primary function 
of the action potentials in the simulation is merely to activate efferent synapses or 
if the simulation time steps are of the same order as action potential dynamics. 

One such approach simplifies the voltage dependence of axonal activation to a 
comparison of total membrane potential with an abstract firing threshold (Perkel, 
1964; Wallf()e et al., 1969; Jack et al., 1975; Getting, 1989; Anton et al., 1991a). In 
this integrate-and-fire method, an axonal output is generated when the membrane 
potential crosses an activation threshold. This threshold may be fixed or variable 
in order to reflect absolute and relative refractory periods of the cell. Absolute 
refraction is modeled by an infinite threshold while relative refraction is modeled 
by some type of elevated threshold behavior after firing. Hyperexcitability can even 
be included by following the relative refractory period with a period containing a 
lower-than-normal firing threshold. 

A second approach is to use an instantaneous firing-rate function to transform 
the cell activity level into an output firing frequency (Shamma, 1989). This ap­
proach simplifies the threshold and refractory period behavior into a simple trans­
formation that models the peak firing frequency (reflecting the absolute refractory 
period), scaling of firing frequency (reflecting a decaying relative-refractory period), 
and minimum activity level for output (reflecting the minimum firing threshold). 
Sigmoidal functions such as · 

z( t) ___ z_m_ax __ 
- 1 + ea(vb-v) 

(1.3) 

(Shamma, 1989) are useful for this purpose since they suppress ·low-level inputs, 
have a nearly linear mid-range, and a decaying peak to maximum (see sketch in 
Figure 1.3). Here z( vb) = Zmax/2 and the slope of z(t) at Vb is a/4. 

1.4 Abstract Models 

Beyond the simplifications employed in the physiological models over the biophys­
ical models, many more abstract modelling approaches have been used in order to 
emphasize particular anatomical or physiological features of the structures under 
study, to provide quick and rough prototypes to help in the selection of the biolog­
ical feature to model, or to allow simulation of much larger numbers of cells and 
structures through the reduction in computational complexity of the algorithms 
employed. While an exhaustive survey of abstract models is beyond the scope of 
this chapter, a restricted view of some of the abstraction possibilities helps to put 
the biophysical and physiological models into perspective. 

1.4.1 Event-Based/ Asynchronous Models 

In the olfactory models by Granger et al., the modelers have built simulations that 
assume certain performance operations and perform asynchronously to simulate the 
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consequences of the behavioral events that are assumed (Granger et al., 1989, 1990a, 
1990b ). For example, the input to the piriform cortex is assumed to be in one of 
two forms (Granger et al., l 990b): bursts of a few spikes every 200ms (Macri des 
et al., 1982) or single spikes every 25ms based on global EEG observations of the 
lateral olfactory track (Freeman and Schneider, 1982). As a result, the decision 
was made to simulate only the performance of the olfactory system at these events 
in time rather than at a more detailed time steps. Since the time between events 
is long compared to the time courses of most PSPs, the simulations neglect the 
temporal aspects of cellular potentiation and merely perform abstract calculations 
of the maximum membrane potential for the events and use this abstract potential 
for spike determination. These events can even represent the summation of many 
PSPs caused by bursting on the input axons, so even the resolution of individual 
PSPs may be lost. While many of the temporal components of cellular potentials 
are neglected, Granger's model does allow for the incorporation of large amounts 
of spatial anatomical detail in addition to realistic physiological behaviors such as 
premises for synaptic potentiation. 

1.4.2 Amplifier Models: Analytical 

Another abstract approach to neuronal modeling takes advantage of the measured 
oscillatory behavior of individual cells, groups of interconnecting cells, and large field 
readings from cellular structures. Kleinfeld and Sompolinsky, for example, employ 
abstract synaptic weights for PSPs, non-linear gain amplifiers for firing thresholds, 
and instantaneous firing rates for the cell output (Kleinfeld and Sompolinsky, 1989). 
Li and Hopfield take the abstraction one step further and model the oscillatory field 
behavior of the olfactory bulb using a collection of non-linear oscillators (Li and 
Hopfield, 1989a,b ). The Li model proposes that the global oscillatory behavior itself 
provides information on the function that the bulb performs, neglecting realistic 
PSPs and the behavior of single cells. 

1.4.3 Amplifier Models: Hardware 

One of the obvious advantages of amplifier models is that they can be simulated 
directly in hardware to obtain rapid solutions. Eisenberg et al. (1989), for example, 
have a model of the olfactory bulb that employs an analog computer to recreate the 
oscillatory behavior of the extracellular field potentials in the bulb as measured in 
EEGs. The use of an analog computer rather than discrete components allows for 
easy modification of the system parameters as well as direct, rapid, and continuous 
solution of the differential equations involved in their oscillatory model. 

I 
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1.5 Discussion 

Advantage and Disadvantages of Each Approach 

Each modeling approach discussed a.hove ha.s advantages and disadvantages result­
ing from the level of abstraction from the biology, the precision desired, the number 
of cells and/ or structures modeled, and the approach taken. 

Biophysical models are able to model directly the electrical behavior of cells by 
modeling their electrical properties such a.s resistances, capacitances, and voltage 
sources. Since these models include low-level components, they can reveal unex­
pected behaviors caused by electrical component arrangements that ma.y not be 
known already. Such unexpected behaviors might be missed in physiological mod­
els since the phenomena. would not have been conscientiously included in the model. 
Biophysical models, however, do make assumptions about the biochemical behav­
iors of cells and will therefore not reveal processing ba.sed on chemical interactions 
that are not accounted for. 

The more efficient physiological models can easily incorporate observed phenom­
ena for which the underlying biophysical or biochemical causes are not understood 
(e.g., what ionic species causes a PSP) and can then be used to study system ef­
fects that are based on the properties that are included, such a.s timing effects, 
spatial effects, and anatomical influences. This slightly higher-level approach a.s the 
advantage of retaining the temporal and spatial membrane potential changes while 
greatly reducing the computational requirement of the model, permitting simulation 
of larger neural structures. Also, there is a wealth of physiological data on which 
to base the modeled forms. In addition, this approach ha.s the advantage of being 
able to incorporate physiological phenomena directly whether or not the underlying 
biophysical and biochemical causes are understood. Thus, if a new phenomenon is 
discovered by physiologists, the influence of this discovery on the membrane poten­
tial in space and time can be easily approximated. 

Various PSP functions can be selected in the physiological models, depending on 
the emphasis of the simulation on synaptic weights, temporal summation, or interac­
tive effects between synaptic inputs. The parameters of these functions - whether 
abstract or biophysical - adjust the approximation of PSP amplitudes, rise-times, 
fall-times, and channel dynamics, depending on the function chosen. Interactive 
effects can impose shape and amplitude modulation that may be important to the 
computations under study. Shape modulation, for example, may be important when 
testing the differences between simultaneous and slightly offset arrival times of ac­
tivation and inhibitory· inputs to a cell. Amplitude modulation may be important 
when incoming signal strength is critical to the cellular operation or when testing 
the difference between one large input and several smaller simultaneous inputs. 

Abstract models allow simulation of the properties that might lead to a better 
understanding of cellular functions while neglecting the properties that seem to 
be irrelevant. While the abstract approach has the pitfall of possibly omitting of 
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properties critical to the computation under study, it also has the advantage of 
greater computational efficiency, allowing the study of large, global functions of 
neuronal structures. 

Interdependence Between Modeling Approaches 

As mentioned above, the modeling approaches are not in competition with each 
other but provide a host of tools to the computational neuroscientists to study 
systems at varying levels of detail. The insights gained at one level may help a 
researcher in the selection of parameters and functions for a simulation at another 
level. The compartmental studies of the effects of shunting on voltage propagation 
in a dendrite (Rall, 1964, 1989; Segev et al., 1989), for example, aid the physiolog­
ical modeler in deciding whether shunting makes an important contribution to the 
system under study, and if so, in the selection of functions and approaches to take in 
modeling a shunting effect. Also, the models by Wilson and Bower of the piriform 
cortex combined the results of multi-compartmental simulation to get membrane 
potentials at different points in the cell, together with single-compartment cells for 
simulating large numbers of cells, to gain global as well as local information on cellu­
lar behavior (Wilson and Bower, 1989). In addition, many modelers have combined 
their biophysical models of synaptic and dendritic interactions and summations with 
physiological models of action potential time courses by using polynomial approx­
imations to these action potentials rather than incorporating the Hodgkin-Huxley 
equations into their model directly (Segev et al., 1989). 

I 
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Chapter 2 

A Physiological Model of Cellular PSPs with 
Membrane Time-Constant and Driving-Force 

Effects 

2.1 Introduction 

The spatial and temporal patterns of neuronal action potentials are believed to 
underlie information processing in the brain. Cell spiking is the result of all-or-none 
threshold decisions based on the membrane potential at the axon hillock which 
itself is determined by responses to dendritic activation by afferent cells. Thus, 
one method of modeling the behavior and function of neuronal structures is to 
model the physiological interplay between excitatory and inhibitory post-synaptic 
potentials (PSPs) in dendrites while eliminating as much of the device physics of a 
cell as possible. Such a physiological model attempts to simplify cellular operation 
in order to allow the modeling of more extensive neuronal structures than would 
be possible using more detailed biophysical simulations that require much more 
computational power. 

A number of dendritic models using linear summation of functions representing 
PSP transients have been described (Jack et al.,, 1975; Shamma, 1989; see Chap­
ter 1). These models use linear summation of independent functions representing 
PSP transients. Unfortunately, interactive non-linearities begin to take effect as 
the number of inputs to a cell increases. Increased synaptic conductances increase 
the overall effective membrane conductance ( Geff) of the cell, thus speeding the 
membrane decay constant Geff /Crn due to f~ter discharging of the membrane ca­
pacitance (Cm) (Rall, 1962). Such time-constant changes will therefore change the 
amplitude as well as the rise and fall times of PSPs. Changes in membrane potential 
also cause changes in subsequent synaptic currents since the driving forces at the 
synapses are different from the resting driving forces. Furthermore, the PSP func­
tions commonly employed in physiological models - delta functions, exponentials, 
and alpha functions - cannot usually be adjusted to match actual PSP shapes. 
Alpha functions, the most realistic of the three, contain only one parameter and 
often cannot match both the rise and fall times of the PSPs under study. 

The physiological model presented below approximates these membrane property 
and driving-force effects via the interactions of simple PSP functions in order to 
simulate more realistic behaviors. The simplicity of these equations maintains the 
computational efficiency of physiological models that allow for easy modeling of 
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large numbers of cells and structures. 

2.2 Theoretical Development 

Closed-form solutions for the membrane potential as a function of time for multiple 
inputs into a cable are often quite complex or difficult to obtain. As a result, bio­
physical modelers of multiple interacting cells have turned to numerical solutions of 
compartmental approximations of dendritic components (Rall, 1964). Thus, sim­
ple physiological functions to model cellular PSPs have not risen out of the more 
detailed biophysical models. 

The approach developed here uses superposition to derive from the Lapicque 
lumped-circuit model of a cell (Rall, 1962; Jack et al., 1975; Tuckwell, 1988) the 
linear contribution of an active synapse to the membrane potential, compensating 
both for driving-force effects and for changes in effective membrane conductance 
due to channel openings of other active synapses. The general PSP function yields 
iterative contributions in time steps. These contributions are then summed together 
in a step-wise linear fashion to yield the resultant time course of the membrane 
potential. 

2.2.1 The .. Lumped Model of a Cell 

Let us represent the electrical properties of a cell's passive dendritic tree and soma 
by a simple resistor/capacitor (RC) circuit. Such a linear representation has been 
useful in modeling cellular voltage behavior (Rall, 1962; Jack et al., 1975; Tuckwell, 
1988). Figure 2. la shows an RC circuit with two parallel branches representing two 
synapses on the cell. Here each of two synapses is represented by a time-varying 
synaptic conductance Gsyn;(t) representing the combined channel openings of an 
active synapse. This conductance Gsyn ( t) is in series with the reversal potential 

. J 

Esyn. (a constant electromotive force) for the ionic species that passes through the 
J 

synaptic channels. More active synapses can be added by including their conduc-
tance/battery branches in parallel with the other synaptic branches. 

Since the synaptic current injected into the RC circuit causes the membrane­
potential transient response, the shape of the current function affects the shape of 
the resulting PSP equation. The combined effect of many randomly-closing channels 
at an end-plate can be approximated by a simple exponential-decay function for the 
overall current (Colquhoun, 1981). For single synapses that have nearly constant 
driving forces, this implies an exponential conductance transient for the synapse. 

Mathematically, if the probability of a channel remaining open during a unit of 
time was q, then the probability of the channel remaining open as a function of 
time is qt (an exponential). Thus, if all of the channels opened at the same time, 
a reasonable simplification of the combined conductance at a synapse activated at 
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(a) (b) 

(c) (d) 

i 

Figure 2.1: Development of RC circuit used for PSP transient equation.· (a) Typical 
lumped-circuit model of a cell's passive dendritic tree and soma with two parallel paths 
representing two synapses (Rall, 1962; Tuckwell, 1988). (b) Circuit representing the linear 
response of Esyn

1 
using superposition. ( c) Circuit for response of Esyn; that combines 

all other synaptic conductances with the membrane conductance. ( d) Small time-step 
replacement of synaptic path with an exponential source i. 
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time t = 0 would be the function 

(2.1) 

fort~ 0, where Gsyno is the peak synaptic conductance at t = 0 and bis a constant 
such that b > 0. Note that in actuality all the channels do not open at the same 
time, but this approximation of discontinuity is often reasonable (Colquhoun, 1981), 
especially if the time resolution used in a simulation is low compared to the rise 
time of the conductance. 

If, however, the conductance rise time does become important for some reason, 
more general conductance functions can be used. Let n( t) be the number of synaptic 
channels open at time t. Let us make the simple assumption that the number of 
new channel openings is 0 fort < 0 and a decaying exponential Ne-at for t ~ 0 with 
N being the initial rate of channel openings at time t = 0 and constant a. Let us 
also assume that each channel closes independently with probability p (Colquhoun, 
1981). The differential equation for open channel rate is then given by 

dn N -at dt = e - pn. (2.2) 

If n(O) = 0, then the solution for n(t) can easily be shown to be 

n(t) = __!!__ [e-at - e-pt] 
p-a 

(2.3) 

for the general case a =f:. p, or an alpha function 

n(t) = Nte-at (2.4) 

for the special case a = p. Thus, a more general conductance function would be 
a difference-of-exponentials function. Also, a more specific alpha function can be 
employed and has been used by Rall (1967, 1989) for synaptic conductances. As 
will be shown below, however, realistic and useful PSP functions can be derived 
using the simpler exponential conductance function of Equation 2.1. 

2.2.2 Superposition of Individual Synaptic Potentials. 

Since the circuit in Figure 2.la is linear, we can use the superposition theorem 
to determine the voltage contribution that each single synapse gives to the total 
membrane pot.ential. 

Superposition asserts that the response of any linear network due to multiple, 
. independent sources is equal to the sum of the responses when each source is con­

sidered independently and all other sources are set to zero (Desoer and Kuh, 1969). 
Thus, the voltage contribution to the combined membrane potential of one synaptic 
battery is given by the circuit response when all other synaptic batteries are short 
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circuited. For example, in the two-synapse case, the circuit in Figure 2.lb will.give 
the contribution of Esyn

1 
to the membrane potential. Note that if one short circuits 

the reversal-potential battery of a synapse, then this leaves the synaptic conduc­
tance in parallel with the membrane conductance constant Gm. Since conductances 
in parallel add, the effective membrane conductance as seen by a single synapse 
is therefore the sum of all other synaptic conductance transients with the normal 
membrane conductance: 

Getri(t) =Gm+ E Gsynk (t). 
k-:j:.j 

(2.5) 

Once we calculate this effective membrane conductance we can determine the 
voltage contribution of the single synapse by solving the effective circuit represented 
in Figure 2. lc. Unfortunately, this solution involves a differential equation with 
time-varying coefficients. We can, however, consider the conductance coefficients as 
constants by breaking time into short steps relative to the speed of the conductance 
swings, approximating the conductances with one of the values they obtain during 
each time step and solving the differential equation representing each time step. This 
approach is especially appropriate for computer simulations of interacting PSPs that 
operate in such small time steps. 

For each time step and PSP, then, let us replace the synaptic conductance and 
battery with a current source: 

(2.6) 

where Esyni is the synaptic reversal potential, vmA t) = Vj( t) + Vrest is the membrane 
potential due to the single synapse j, and Vrest is the resting membrane potential. If 
Vm; ( t) undergoes only small changes during a single time step ~t, then the synaptic 
driving force (Esyn,-vm,(t)) is relatively constant during the interval t E (T, T+~t]. 
Thus, the only effective change during the interval is from the synaptic conductance 
decay e-bit. We then have a simple exponential current injection 

(2.7) 

fort E (T, T + ~t], where lj = (Esyni - Vm;(T))Gsynoi is the synaptic current at the 
start of the time interval. Also, if we select time steps that are very short relative 
to the length of the conductance transients, we can approximately consider Getri as 
a constant during the time step. 

For each time step and each synaptic battery, then, the solution for the circuit 
in Figure 2.lc is given by the solution of Figure 2.ld. The differential equation for 
the voltage transients vi(t) at time step t in the circuit in Figure 2.ld is 

(2.8) 

j 
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(Desoer and Kuh, 1969). Taking the Laplace transform we get 

I· 
-

3-b = CmsVj(s) - Cmvj(O) + Getri Vj(s). 
s + j 

Solving for Vj(s) yields 

Vj(s) = Ii/Cm + v;(O) . 
(s + b;) (s + Getr,/Cm) (s + Getr,/Cm) 

Taking the inverse Laplace transform we get the general solution 

v;(t) = I; [e-bit _ e-Geff;t/Cm] + v;(O)e-Ge«;t/Cm (2.9) 
( Geffj - bjCm) 

for b; # Getr,. /Cm and the special case alpha function solution 

(t) Jj t -Geff · t/Cm 
Vj = - e ' 

Cm 
(2.10) 

for b; = Getr.f Cm. Interestingly, alpha functions have been used elsewhere to model 
J . 

synaptic conductance transients (Rall, 1967, 1989) and synaptic currents (Jack et 
al., 1975) as well as synaptic voltage responses (Shamma, 1989). 

We are considering the voltage v;(t) at a time t E (T, T + ~t] for time steps of 
length ~t, so the iterative solution then becomes 

v;(T + ~t) = 
(E,yn; - Vm;(T)) G,yno;e-b;T [e-b;.At _ e-G.w

1
(t)At/Cm] 

Geff; ( t) - b;Cm 

+ '!li(T)e-Geffj(t)tl.t/Cm (2.11) 

since the synaptic conductance has decayed down to the value GsynOj e-b,T by time 
T. 

We now define variables for the driving force, active component, and passive 
components of v;(t). Let 

Dc1(T) 

A;(t) 

P;(t) 

The voltage transient for synapse j is then given by 

I 
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This notation confirms our intuition that the active term Ai(t)De,(T)/ De,.(O) should 
remain sensitive to the present driving force De,(T) while the passive term Pj(t) 
just decays along the exponential decay of the dynamic membrane time constant 
Geff,(t)/Cm. At this point we may wish to update the driving force from De,(T) 
to Dc,(t) to obtain a better approximation of vi(t). Thus, the expression for vi(t) 
becomes 

De, (t) 
vi(t) = Ai(t) De,(O) + Pi(t). 

Now note that De,(t) is a function of vi(t) rather than the old known value vi(T). 
Solving for vi(t), then, yields the expression 

(2.12) 

Physiological PSP data from cells with unknown biophysical parameters can be 
matched by adjusting the parameters of vi(t). Figures 2.2a, 2.2b, and 2.2c show the 
families of unitary EPSPs obtained by adjusting Geff; = Gm, b, and Cm, respectively, 
while holding everything else constant in Equation 2.12. Note that changes in Gm 
and b have similar effects on the EPSPs since multiplication of the numerator and 
denominator of Ai(t) by -1 reverses the positions of Geff,/Cm and bi. 

For multiple interacting excitatory and inhibitory PSPs (EPSPs and IPSPs) we 
merely use superposition to sum linearly the individual voltage transients given by 
Equation 2.12 for each type of PSP to get the overall voltage transient. Thus, the 
total membrane potential 

is given by: 

Vm(t) = Vrest + L: v;(t) 
j 

Ai(t) + Pi(t) 
Vm(t) = Vrest + ~ l + A;(t)/ Di;(O) • 

(2.13) 

(2.14) 

Note that silent inhibition can easily be modeled by cancelling the De,(O) term in 
A;(t) with the Dr,(O) in the denominator of Equation 2.14 to prevent the division 
of the null driving force De; ( 0). 

This iterative expression for the combined membrane transient has a number of 
useful properties. First, the (shunting) effects of channel openings on the membrane 
time constant are included in the effective conductance calculation Geff; ( t) for each 
PSP j. Second, the effects of driving-force changes on synaptic current injection are 
also modeled. Third, the computational complexity of the equation is linear in the 
number of synapses. Fourth, many of the factors and terms in A;(t) and Pj(t), such 
as bjCm, e-b;6.t, and Gsyno

1
e-b;T (for T as multiples of 6.t), can be pre-calculated 

to reduce the linear factor in the complexity of the equation since many of the 
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Figure 2.2: Plots of Equation 2.12 for unitary EPSPs. Here the effects of adjusting 
the lumped-circuit membrane conductance Geffi = Gm, current injection decay constant 
b, and the membrane capacitance Cm on the EPSP are shown in parts a, b, and c re­
spectively, holding Dr(O) at 55m V and Gsyno at 0.2nS. (a) Conductance Gm modulation. 
The parameter values were Cm = 270pF, b = 100, and Gm = 15nS, 30nS, 54nS, lOOnS, 
200nS, and 500nS. The curves decreased and shorten with increasing Gm values. (b) 
Current injection time-constant b modulation. The parameter values were Gm = 54nS, 
Cm= 270pF, and b = 20, 45, 100, 201, 500, and 2000. The curves decreased and shorten 
with increasing b values. ( c) Capacitance Cm modulation. The parameter values were 
Gm= 54nS, b = 45, and Cm = 9pF, 270pF, 800pF, 1600pF, 3000pF, and 7000pF. The 
curves flatten and lengthen with increasing Cm values. 
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synapses will share common values for bi and Gsyno,(t). Overall, Equation 2.14 is 
quite simple and yields realistic results as shown below. 

In many cases, we can simplify the computation of vi(t) by using the conductance 

Gtotat(t) = Gm+ L: Gsynlc (t) 
k 

rather than Geff1c ( t) in Equation 2.11. Such a conductance change is negligible since 
unitary PSPs are so small and Gsyn,(t) ~ Geff,(t) in cases of large numbers of 
overlapping PSPs. This use of Gtotai(t) will then make vi(t) = vk(t) for all j, k, 
and t in similar PSP types. In simulations involving simultaneous PSPs, therefore, 
a single Vj(t) can be calculated for each PSP type starting at the same time step to 
increase the simulation speed while retaining shunting, and driving-force effects. 

Furthermore, if we find that the changes in effective conductance (shunting) due 
to channel openings have negligible effects on the computations under study, then 
Geffi can be approximated by Gm. In this case we can pre-calculate each Ai(t) 
for each T as well as each e-Getr/~t/Cm used in Pi(t), thus eliminating the run-time 
calculation of exponentials for each vi(t) and yielding a significant saving in the 
computational complexity of the model. 

Also,; if the changes in driving force are also negligible or approximately so (e.g., if 
only small numbers of synapses are active at the same time or if the peak amplitude 
of a unitary PSP remains much smaller than the driving force for the PSP), then 
we can neglect the driving force and pre-calculate the entire PSP voltage for each 
simulation time step by 

(2.15) 

and use linear summation of these unitary PSPs to obtain the total membrane po­
tential transient. Each active synapse would then only require a simple addition 
during run time. This difference-of-exponentials function provides a more realis­
tic and flexible PSP function that the alpha, single-exponential, and time-delay 
functions used previously ( Shamma, 1989). 

Figure 2.3 illustrates the differences between the non-linear effects of Equa­
tion 2.14 and the linear summation approximation of Equation 2.15 for the case 
of n simultaneous EPSPs. Note that the amplitudes of the resultant transient are 
very similar for the low activity case of n = 100, but the transients diverge as n in­
creases. As the magnitude of the voltage transient approaches the magnitude of the 
reversal potential Erev, Equation 2.14 is able to compensate for the conductive and 
driving-force effects that lower the amplitude contribution from each EPSP. Equa­
tion 2.15, however, has no such compensation and thus unrealistically overshoots 
the reversal potential. 
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Figure 2.3: Comparison of combined membrane potential for multiple EPSPs with (solid 
lines) and without (dashed lines) the effective membrane contuctance (Gm) and driving­
force (Dr) effects (Equations 2.12 and 2.15) for increased cellular activity. Notice that 
one can neglect the time-constant effects for low levels of activity, but the simple linear 
summation of PSPs without time-constant compensation causes the membrane potential 
to jump unrealistically beyond the reversal potential for the PSP if the level of activity 
is high. The parameters for the unitary EPSPs were Gm = 54nS, Cm= 270pF, Dc(O) = 
65m V, Gsyno = 2nS, and b = 5000. The numbers of simultaneous EPSPs n were 100, 300, 
and 1000. 
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2.3 Simulation Results 

A comparison was made between the time-constant and driving-force effects on 
integrated PSPs in a multi-compartmental biophysical model and in the integration 
method of Equation 2.14. Monosynaptic EPSP, IPSP, and combined EPSP /IPSP 
transients were generated by SPICE simulations using the thirteen-compartment 
representation of a cell soma and dendritic tree given by Segev et al. (1989) (see 
Figure 2.4a). The parameters of Equation 2.11 were then adjusted to produce PSPs 
that matched the individual EPSP and IPSP from the SPICE runs (see Figure 2.4b 
- top and bottom curves). Finally, the integration method of Equation 2.14 was 
employed to combine these two curve-fit PSPs, resulting in the middle trace in 
Figure 2.4b. Note that the PSPs combine in the same non-linear fashion in both 
approaches, demonstrating that the simple Equation 2.14 can simulate the time­
constant and driving-force effects observed at the soma when compared to a detailed 
multi-compartment simulation. 

Since the physiological model presented above provides an analytical closed­
form algorithm for simulated membrane potentials, the model performs much more 
efficiently than numerical simulators such as SPICE. The data for the multi­
compar.tmental SPICE simulation shown in Figure 2.4a used 25.4 seconds of CPU 
time on an NlOOO NeXT computer. An implementation of the physiological model 
of Equation 2.14 and Equation 2.11, written in Con the same computer, generated 
the data for Figure 2.4b in only 0. 75 seconds of CPU time (33.9 times faster than 
SPICE). A single-compartmental SPICE simulation (not shown) using the same 
membrane and synaptic parameter values in Figure 2.4b used 5.5 seconds of CPU 
time (7.3 times longer than the physiological model). 

The physiological approach for dendritic integration described above has also 
been used in a simulation of 753 cells and inputs (including 6,104 synaptic connec­
tions and up to 23, 725 simultaneously active PSPs) in a glomerular section of the 
mammalian olfactory bulb (see Chapter 3; also Anton et al., 1991d). This simu­
lation was constructed to determine the physiological consequences of receptor cell 
firing frequencies on mitral/tufted primary cell threshold gradations. The integra­
tion method was combined with a firing threshold and refractory periods to form 
an integrate-and-fire paradigm for cellular activity. The interactive effects of the 
EPSPs and IPSPs were deemed important to the study due to the large numbers of 
receptor axons afferent on the primary mitral/tufted cells in the bulb. Figure 2.5 
shows a sample tufted cell response to a 20Hz olfactory nerve input to the bulb, 
demonstrating the use of Equation 2.14 together with a firing threshold with ab­
solute and relative refractory periods. Periglomerular and granule cell inhibitory 
interneurons were activated both directly from the receptor inputs and indirectly 
via dendrodendritic synapses with the tufted cell. 
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Figure 2.4: (a.) SPICE simulation of a single EPSP (solid line) input on a. distal den­
dritic branch a.nd measured at the soma, a single IPSP (long dashed line) on a. separate 
dendritic branch measured a.t the soma, and the combined membrane transient (dashed 
line) measured a.t the soma. using the multi-compartmental representation of a. dendritic 
tree given by Segev et al. (1989). The EPSP and IPSP were induced by exponential 
synaptic conductance transients with peak values of 5. lnS and 14nS at compartment 
nodes 302 and 216, respectively. (b) Simulation of the same EPSP a.nd IPSP interaction 
using Equation 2.14. These exponential synaptic conductance transients ha.d pea.k values 
of 66nS and 132nS, resp·ectively, while Gm= 54nS and Cm= 270pF. 
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Figure 2.5: Simulated membrane response of a tufted primary cell in a simulation of 
a glomerular slice of a mammalian olfactory bulb employing the physiological dendritic 
integration of Equation 2.14 combined with a firing threshold. Each spike is composed of 
a simple jump-to-peak upon reaching threshold, followed by a jump-to-minimum and a 
linear rise back to the dendritic integration value. Absolute and. relative refractory periods 
were imposed on the cell firing. The mitral/tufted EPSP parameters were Gm = 135nS, 
Cm = 270pF, Dr(O) = 55mV, GsynO = 2nS, and b = 550. The mitral/tufted IPSP 
parameters were Gm= 54nS, Cm= 270pF, Dr(O) = -20mV, GsynO = 5nS, and b = 8. 
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2.4 Discussion 

The physiological model described above gives a dendritic integration approach 
that reflects the membrane time-constant and driving-force interactions between 
post-synaptic potentials (PSPs ). The model gives shape functions for unitary PSPs 
(with or without channel conductive effects between synapses via the effective mem­
brane conductance in the lumped RC circuit) and integrates these shape functions 
together in a non-linear manner, adjusting the amplitudes of the unitary PSPs 
given the dynamic ionic driving force per iteration. Cell firing can be determined 
by thresholds on the resulting membrane potential with the possible inclusion of 
absolute and relative refractory periods via a simple threshold manipulation. 

Using exponential current injections, the general form of a unitary PSP is a dif­
ference of two decaying exponentials (Equation 2.9) which subsumes the special-case 
alpha function (Equation 2.10) used previously by Shamma (1989). It is interesting 
to note that this form for vi(t) is quite similar to the cable theory solution given by 
Rall (1962, 1969, 1989) for the membrane voltage decay following a simple current 
step pulse: 

00 

v(X, T) = I: Cie-tf-r; 
j=O 

if we consider only the first two terms and set Ci < 0. Rall has noted that this 
sum yields realistic PSP transients when the Ci have alternating signs and that 
synaptic potentials do seem to decay with the membrane time constant r 0 after the 
equalizing time constant r1 < To causes the second decaying exponential to have 
negligible effect (Rall, 1969). 

Beyond simple current pulse decays, the model described here provides a pa­
rameter for adjusting PSP length based on the length of the current injection in 
addition to the effective membrane decay. The inclusion of the current-injection 
time constant b provides the flexibility of modeling cells that contain both very 
short and very long PSPs - for example, 15ms EPSPs and 400ms IPSPs in rat 
olfactory bulb external tufted cells (Schneider and Scott, 1983). 

Additional research may provide a way of rationalizing the approximation of 
electrotonics by addition of a third decaying exponential (i.e., the r1 term in the 
Rall sum) to Equations 2.9 and 2.15 to account for the equalizing of voltage charge 
along a dendrite. Some electro tonic effects, however, are indirectly included in 
this model since the difference of exponential expression can be curve fit to known 
PSPs. Thus, if somatic potential is the primary measurement to be modeled (e.g., 
if cell firing is the primary concern), then the PSP shapes that are curve fitted have 
already undergone some electrotonic degradation. 

Further extensions of this model are possible by using different expressions for 
the current injected at a synapse (see Equations 2.3 and 2.4). Tuckwell (1988, eqn. 
3.21) has derived the response of the Lapicque model to the special-case alpha con­
ductance function (Equation 2.4); his expression for a unitary PSP is slightly more 
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complicated than a simple difference-of-exponentials function but can easily be .\,lsed 
in place of Equation 2.9. Additionally generalized PSP functions could be derived 
by using the general difference-of-exponentials conductance function (Equation 2.3) 
which contains a parameter for the rate of channel openings in addition to the rate 
of channel closings of Equation 2.1. 

Note that the model presented can simulate short and long-term synaptic mod­
ifications. Changes in synaptic strength can be incorporated by changing the peak 
synaptic conductance Gsyno, in Equation 2.6. Other changes in the effectiveness of 
receptor activation or transmitter removal rates can be reflected through changes 
in the synaptic time constant b; (Equation 2.6). Still other changes in resting 
membrane potential can be incorporated directly into the summation expression 
(Equation 2.14). These modifications can easily be incorporated into a simulation 
via supervisory modulations of the above parameters while incurring negligible com­
putational costs. Static weights are useful when studying temporal input patterns 
or during the performance operation of the system. Dynamic weights are useful in 
testing the effect of various learning rules on the system under study or to investigate 
the structure as a possible memory site. 

While the equations derived above are simple lumped-circuit approximations of 
cellular membrane potentials that reflect conductance interactions and driving-force 
effects, they do provide a physiological model that is of considerable value for testing 
the significance of effects of such detailed physiological variables on the computa­
tions performed by neuronal aggregates. The efficiency of this new approach allows 
very large numbers of interacting cells to be modeled, thus permitting the testing 
of theories about the function of these structures if they are indeed based merely on 
PSP area summation over time with shape modulation due to channel openings and 
amplitude modulation due to driving-force effects. Shape modulation, for example, 
may be important when testing the differences between simultaneous and slightly 
offset arrival times of activation and inhibitory inputs to a cell. Amplitude mod­
ulation may be important when incoming signal strength is critical to the cellular 
operation or when testing the difference between one large input and several smaller 
simultaneous inputs. 

The model presented above is more efficient than cable and compartmental mod­
els (Rall, 1962, 1964, 1989; Jack et al., 1975; Segev et al., 1989) and the membrane 
voltage expressions of Koch et al. (1982) since simple, closed-form, non-recursive 
analytical solutions are obtained for each individual PSP expression and for the 
subsequent linear summation of these membrane transients. Cable theory provides 
many analytical expressions for voltage transients in abstract situations that unfor­
tunately contain extremely complex expressions and functions that preclude their 
use in the simulation of large numbers of neurons. Also, compartmental methods 
and SPICE simulations are quite useful in representing complex dendritic trees, ca­
ble effects, and active membranes but require more computational overhead. If these 
added capabilities are deemed irrelevant to the interactions or computations under 
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study then the more efficient physiological approach may be used. Furthermore, the 
membrane voltage expressions of Koch et al. (1982) involve either convolution in­
tegrals for voltage transients or multiplicative Volterra expressions for steady-state 
membrane potentials. While the steady-state equations are simple enough, they 
are limited to the steady-state. The more general transient-case expressions involve 
greater run-time computational overhead in calculating local responses than does 
the physiological model while excelling when cable effects are studied. 

In addition to the speed benefits of this approach, actual PSPs can be modeled 
to reasonably reflect biophysical interactions with out knowing the actual electrical 
properties of the cells in question. While multi-compartmental simulations may 
more accurately model the interactions of PSPs since they model the spatial dy­
namics of a cell, the electrical properties of a cell's dendritic tree and soma must 
unfortunately be investigated in great detail. If approximations of the actual cell 
properties are used through curve fitting of physiological data, then much of the 
foundation for the accuracy of the multi-compartmental approach is undermined; 
observed phenomena would then be based on approximations and would thus have 
similar validity to the physiological approach. Investigations of computations not 
requiring spatial input properties can then be investigated physiologically with lower 
overhead while maintaining time-constant and driving-f9rce effects. 

This physiological model, then, provides a tool for modeling structures of neu­
ronal cells at a level of detail between the biophysical cable theory and compart­
mental models on one hand and more abstract physiological models on the other. 
While it therefore shares in some of the limitations of both approaches, it also shares 
in some of the benefits in aiding our understanding of the function of neuronal sys­
tems. 
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Chapter 3 

Frequency-to-Spatial Transformation in the 
Olfactory Bulb 

3.1 Introduction 

The olfactory system is able to detect odor molecules over a very wide range of con­
centrations: from 10-13M to 10-4 M (Vodyanoy, 1988); as little as one odor molecule 
can activate a nasal receptor (de Vries and Stuiver, 1961 ). For concentration levels 
higher than these detection thresholds, the system is also capable of discriminating 
between very similar odors (Castellucci, 1985). Anatomically, the olfactory cortex 
receives information that has passed through only two synaptic connections and is 
thus very close to the environment; this allows easier investigations into cortical 
functions since the information received has not been processed much. 

The olfactory bulb is the gateway for sensory information from the nasal receptors 
to higher parts of the brain (Allison, 1953; Shepherd, 1972; Mori, 1987). Since 
no other olfactory structures receive information directly from the receptors, an 
understanding of the processing performed by the bulb is crucial to understanding 
how odors are perceived. 

Extant computational models of the bulb typically involve high-level modeling of 
mitral and granule cells simplified to non-linear oscillatory interactions (Freeman, 
1987; Eisenberg et al., 1989; Li and Hopfield, 1989a,b ). These extant models predict 
that such architectures have the capability of classifying odors via the pattern of 
oscillatory behavior of the mitral cells, proposing that the bulb manipulates receptor 
inputs but the output is still based on spatial patterns of frequency responses; 
mixed-odor inputs are transformed into the selection of an odor or odor combination 
represented by a spatial pattern of oscillators. 

The new model described below proposes that the input may be transformed into 
a spatial representation of odor concentration in addition to odor type (Granger et 
al., 1990b ). The pattern of glomeruli that respond may indicate the odor type while 
the number of primary cells responding in the glomeruli may indicate the concen­
tration of the odor. As a result, this model does not preclude the spatial pattern for 
representation of odor type detected since different glomeruli may respond depend­
ing on the odor type, but does suggest that the concentration may be transformed 
into a spatial response within the responding glomeruli rather than an amplitude 
or phase component of the responding cells. 
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3.1.1 Bulb Anatomy and Physiology 

The main olfactory bulb receives massively-convergent yet roughly-topographic 
inputs from approximately 50 million peripheral olfactory receptors (in rabbit) 
onto about 175,000 primary excitatory (mitral/tufted) cells in bulb (Allison, 1953; 
Shepherd, 1972). Olfactory receptor inputs (via the olfactory nerve) contact mi­
tral/tufted and periglomerular cells in 1900 synaptic bundles, termed glomeruli. 
Each mitral/tufted cell in higher animals typically sends a dendrite to only a sin­
gle glomerulus, so the primary bulbar cells can be divided into groups of 92 cells 
based on their glomerular membership. About 600 periglomerular interneurons ring 
each glomerular region, each receiving inputs from olfactory nerve axons and mi­
tral/tufted dendrites. Mitral/tufted cells also send out long laterally-directed den­
drites generating cross-glomerular dendrodendritic interactions with the inhibitory 
granule cells which total about 3 to 7 million. (Allison, 1953; Shepherd, 1972; Mori, 
1987; Vodyanoy, 1988). The dendrodendritic contacts are two-way synapses that 
transmit direct excitation of the interneurons by primary cells and subsequent in­
hibition of primary cells by the interneurons in a graded (continuous) fashion (Rall 
et al., 1966; Shepherd, 1979). This operation is in contrast to the discrete action 
(excitatory and inhibitory) afforded by more typical axodendritic synapses in which 
the axon is activated in an all-or-none manner to transmit quanta of information to 
the dendrite it contacts. Figure 3.1 illustrates the glomerular anatomy simulated in 
the set of studies reported here. 

Epithelial receptors fire with generally increased frequencies as the odor con­
centration in the epithelium increases (Getchell and Shepherd, 1978). Thus, there 
appears to be some type of temporal coding of odor concentration in the firing fre­
quencies input to the bulb. Furthermore, the primary mitral/tufted cells of the bulb 
are less excitable with increasing depth (Onoda and Mori, 1980; Mori, 1987). This 
reduced excitability correlates with increased firing thresholds by depth (Schneider 
and Scott, 1983) while their secondary dendrites that synapse with inhibitory gran­
ule cells are also longer by depth (Macrides and Schneider, 1982; Mori et al., 1983; 
Orona et al., 1984; Mori, 1987). 

Simulations were made to determine the effect of this excitability gradation on 
the frequency-related inputs to the bulb. Temporal summation of excitatory post­
synaptic potentials (EPSPs) should lead to a positive relationship between input 
~eceptor firing frequency and the combined membrane potentials in the primary 
cells. The excitability gradations in these cells should then cause the number of 
mitral/tufted cells responding to reflect in some way the input frequency (see Fig­
ure 3.2). 
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Figure 3.1: Schematic diagram of the simulated anatomy of an olfactory bulb glomerulus. 
The height achieved by the different types of granule cells (I, II, and III) reflects the 
approximate connectivity with the mitral/tufted cells at various depths, resulting in some 
restriction of the lateral inhibition between primary cells at various depths (Mori, 1987). 
The periglomerular axons (arrow at right) synapse with cells in adjacent glomeruli (not 
simulated). Mitral/tufted cell axons (bottom lines in figure) generate the lateral olfactory 
tract (LOT), the primary output from bulb and input to layer I olfactory cortex. (Allison, 
1953; Shepherd, 1972; Mori, 1987). 
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3.2 Methods 

The simulations used the integrate-and-fire paradigm with functions representing 
PSPs curve fit to actual physiological traces reported by (Mori and Takagi, 1978a; 
Kuffier et al., 1984; Schneider and Scott, 1983; Mori, 1987). The PSP function and 
integration method used was that described in Chapter 2 (Anton et al., 1991a), 
including the time constant and driving-force interactive effects. 

The resting potentials Vm; ( 0) = Vrest for each cell were -55m V. The reversal 
potentials Esyn; for the excitatory and inhibitory synapses were Om V and -75m V, 
respectively. Gsyno; was normally 2nS. The PSP function parameters were selected 
to yield realistic PSP shapes and time courses while remaining within reasonable 
bounds. The membrane conductances Gm for the mitral cells and the interneurons 
were 135nS and 54nS, respectively. The membrane capacitances Cm were all 270pF. 
The synaptic decay constants bi were 550, 8, and 45 for the mitral EPSPs, mitral 
IPSPs, and interneuron EPSPs, respectively. 

The lms simulation time step ~t was short enough to provide the temporal 
integration of PSPs deemed necessary for transforming incoming frequencies to 
membrane potential levels. Saturation and non-linear summation were considered 
particularly important since each primary cell synapses onto 5-25% of the 26,000 
afferent receptor axons in each glomerulus (Mori, 1987). This physiological model, 
based on the lumped- circuit biophysical model (Rall, 1962; Jack et al., 1975; Tuck­
well, 1988), provided lower computational overhead than the biophysical models 
that also exhibit these effects. It also allowed for representation of the very dif­
fering lengths of the PSPs found in the bulb - 13ms EPSPs and 400ms IPSPs in 
mammalian mitral/tufted cells (Schneider and Scott, 1983; Mori, 1987) - as well 
as incorporation of electrotonic modulation of the PSP shapes as seen by the cell 
soma without direct incorporation of electrotonic parameters. 

Cell firing was determined by a firing threshold that entered absolute and relative 
refractory periods after firing. The absolute refractory period was set to reflect the 
desired minimum PSP spacing (see below). During the lOms relative refractory 
period, the firing thresholds were increased by a constant 5m V. Since the simulation 

Figure 3.2: Schematic of the frequency-to-spatial transformation based on threshold 
gradations. (a) The olfactory nerve (ON) input frequency results in a temporal summa­
tion in the primary cells that causes the two most superficial tufted cells to cross their 
firing thresholds and·respons to the input. (b) A higher ON input frequency than in (a) 
results in a temporal summation in the primary cells that pushes all but the two deep­
est mitral cell membrane potentials across their firing thresholds, resulting in a greater 
number of cell responses in the glomerulus. 

I 



0eT····· ..... 

MembraneL 
Voltage 

Time 

47 

~ .......... . 

..... ...... 
. . . . . . . ~ ....... ~ Firing Ids 

•·•·• ~Thresho 

®--

Tufted I Mitral 

®--

Tufted I Mitral 



~---~---------

48 

time step was on order the same length of an action potential, cell spiking was 
represented as a simple jump to peak ( lOm V), followed by a drop to minimum (-
60m V), followed by a lOms linear decay back to the dendritic membrane potential. 
Efferent axodendritic synaptic activations were all-or-none based on the spiking 
with realistic synaptic delays of 1-2ms (Mori and Takagi, 1978a). Passive spike 
propagation back through the primary mitral cells was also approximated with 
attenuation factors of 0.95 to the soma, 0.8 to the secondary dendrites, and 0. 7 to 
the primary dendrites in the glomerulus. 

Figure 3.1 illustrates the anatomical structures incorporated. The simulation 
included 625 olfactory nerve (ON) axonal inputs, 23 mitral/tufted (M/T) primary 
excitatory cells, 90 inhibitory granule (GR) interneurons, and 15 periglomerular 
(PG) interneurons. Therefore, the simulation was composed of 753 cells and in­
puts. These numbers compose approximately 25% of the primary cells and 2.5% 
of the cells afferent on these primary cells in a glomerular section. Thus, enough 
primary cells were modeled to obtain an excitability gradation while maintaining 
the approximate ratios between excitatory and inhibitory inputs to these primary 
cells. 

The only type of M/T-PG connections simulated were reciprocal excita­
tory /inhibitory dendrodendritic synapses (Nowycky et al., 1981, fig. 8); restriction 
of the simulation to a single glomerulus precluded the activation of PG axons from 
adjacent glomeruli while inconclusive physiological data on the other periglomerular 
synapses (Mori, 1987) precluded their inclusion in this study. 

The synaptic connections in the simulation were made using a pseudo-random 
selection from the appropriate postsynaptic candidate cells; this random selection 
process resulted in a realistic deviation in the number of excitatory and inhibitory 
inputs to each cell while approximately reflecting reported connectivities between 
bulbar cell types (or reasonable connectivities if actual numbers were not available). 
The ON axons each randomly synapsed 5 M/T cells and 3 PG cells, resulting 
in an approximate 20% connectivity from each M/T and PG cell to the axonal 
inputs in the glomerulus; the reported M/T percentage was 5-25% (Mori, 1987). 
Each M/T cell dendrodendritically synapsed 20% (3 cells) of the PG population. 
Each mitral cell dendrodendritically synapsed 15 granule cells (16. 7% of the granule 
cell population) from their secondary dendrites, selecting candidate granule cells 
according to the M/T cell depth and the extent of each granule cell dendritic tree 
(see Figure 3.1). The number of the tufted secondary dendrodendritic synapses 
with granule cells was either set equal to the same number for the mitral cells 
(15) or to a smaller number (12, 4, or 3) that reflected the approximate length 
reduction of the secondary dendrites of the primary cells with decreasing depth; 
length factors were approximately 1.0, 0.8, 0.3, and 0.2 for mitral, internal tufted, 
middle tufted, and external tufted, respectively, based on Mori et al. (1983), Orona 
et al. (1984), and Mori (1987). The number of somatic and primary dendrite 
M/T to granule dendrodendritic synapses was 5 per cell (5.6% of the granule cells). 
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Each M/T cell axodendritically synapsed 2 granule cells (2.2% of the granule cell 
population). Thus, the ratio of axodendritic to dendrodendritic mitral to granule 
connections (2:20) was close to the reported value of 3:32 (Mori, 1987). Note that 
each dendrodendri tic synapse required two connections between the cells: one for 
each activation direction. The number of synaptic connections, then, totaled 6,104. 

The PSP lengths were set to 13ms and 400ms for M/T EPSPs and IPSPs, respec­
tively, (Schneider and Scott, 1983) regardless of depth, lOOms for GR EPSPs (Mori 
and Takagi, 1978a), and lOOms for the PG EPSPs. The minimum PSP spacings per 
synapse for the simulator were 16ms (ON outputs), 5ms (M/T dendrodendritic out­
puts), 4ms (M/T axodendritic outputs), and 25ms (interneuronal dendrodendritic 
outputs). Since most of these spacings are shorter than the PSP lengths, multi­
ple synaptic activations could overlap in time. Thus, multiple time counters were 
needed at each synapse to track the progress of each of the overlapping PSPs. For 
example, 25 time counters were needed for each M/T to GR axodendritic synapse 
(PSP length/spacing = 100ms/4ms = 25). As a result, up to 23,725 PSPs could be 
active at the same time if the shortest PSP spacings were used. 

The currents reported by Schneider and Scott (1983) for the primary firing 
thresholds were approximately 205 microamps for the external tufted cells to 436 
microamps for the deep mitral cells. M/T firing thresholds were set to be propor­
tional to these values with a linear gradation (lowest threshold was approximately 
47% lower than the highest threshold). Thresholds for activation of M/T dendro­
dendritic synapses were lm V above the -55m V resting ·potential with a linear weight 
factor based on the highest membrane potential achieved during the synaptic event 
relative to the peak action-potential value of + lOm V. The reciprocal inhibitory ac­
tivations from PG and GR cells were activated in a shorter linear range of lm V to 
4m V over resting (followed by saturation) in order to reflect that the gemmule spine 
heads of the interneurons cause a much larger local head potential when compared 
to similar activations on dendritic shafts (Jack et al., 1975; Koch and Poggio, 1987; 
Anton et al., 1991b ), thus causing easier activation of the reciprocal inhibitory re­
sponse. This approach allowed us to include this local effect into the simulation 
without having to simulate a larger local EPSP in addition to the somatic EPSP 
since the somatic depolarization should be relatively unaffected by this local phe­
nomenon (Koch and Poggio, 1987). 

The response of the bulb simulation was tested at constant olfactory nerve input 
frequencies between 1 impulse/sec for background noise and 60 impulses/sec for 
peak excitatory activity (Getchell, 1986; Vodyanoy, 1988). Such step increases to 
the testing frequency approximates the rapid jump to a concentrate-graded high­
frequency discharge following a short latency period reported by Getchell and Shep­
herd ( 1978) for a step pulse of odor ant. 
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3.3 Fixed-frequency bulb response 

Fixed-frequency firing has been observed in mammalian olfactory bulbs (Adrian, 
1950; Freeman and Schneider, 1982), and fixed-frequency stimulation of a major 
target of bulb, olfactory cortex, results in both behavioral learning and synapse­
specific synaptic modification in freely-moving animals (Roman et al., 1987), sug­
gesting that fixed-frequency firing might be characteristic of naturally-occurring and 
behaviorally-relevant bulb activity. 

Fixed-frequency rhythmic activity in the simulation was generated in two in­
dependent ways, corresponding to distinct hypotheses of how such rhythmic firing 
might arise intrinsically in bulb. Figure 3.3 shows the result of giving dendro­
dendritic synapses between M/T cells and the GR and PG interneurons in the 
simulation an inherent 200ms refractory period for both synaptic directions (M/T­
to-interneuron and interneuron-to-M/T); the result was that M/T cells responded 
regularly at 200ms intervals ( 5 bursts/ sec). This refractory period suppressed in­
terneuronal activity without direct implementation of the 180ms GR IPSP reported 
by Wellis and Scott (1990). Interestingly, the initial firing of a (relatively small) 
number of M/T cells was sufficient to elicit lateral inhibition (via dendrodendritic 
contacts with GRs) that drove other cells to respond at .the 5 bursts/sec rhythm; 
this effect was observed even in low-frequency input runs of the simulation that 
caused only a few M/T cells to fire (partially since the axodendritic connections 
between M/T and GR cells were set randomly). 

Figure 3.4 illustrates a version of the simulation that eased the GR inhibitory 
refractory period but which nevertheless exhibited the 5 bursts/sec firing pattern. 
Here the GR refractory period was reduced from 200ms· to 25ms. The PG cells 
were turned off for this simulation since their direct inputs from the receptor axons 
would have caused their inhibitions to begin every 25ms, preventing the M/T cells 
from firing. The M/T to GR dendrodendritic activations were maintained at 200ms 
intervals during which the strengths of the GR EPSPs were graded by the highest 
M/T potential achieved; the axodendritic M/T to GR connections, however, could 
still activate the· GR cells once every 4ms which then provided an avenue for GR 
potential buildup for strong M/T activation. Even though the M/T IPSPs caused 
by the GR cells were 400ms long, they decayed sufficiently after about 200ms for 
the M/T membrane potentials to reach their firing thresholds, resulting in the 5 
bursts/ sec pattern. 

Note that the firing pattern shown in Figure 3.3 is very regular since the in­
hibitory cell populations were all activated at the same time due to the strong 
initial M/T spikes; this synchronized the beginning of the interneuronal refractions 

. regardless of their levels of excitation, resulting in the synchronous M/T inhibitions. 
The bursting pattern in Figure 3.4, however, was not synchronous since the rhyth­
mic behavior was due to the M/T potentials reaching firing threshold depending on 
the relative strengths of the EPSP and IPSP inputs. The random nature of the cell 
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Figure 3.3: Cell potentials for 23 external tufted to deep mitral cells (upper to lower) 
demonstrating rhythmic firing behavior in response to a constant 50 impulses/sec olfactory 
nerve input. For this simulation, granule and periglomerular cells were given a refractory 
period of 200ms. The dashed lines show the normal (non-refractory) firing thresholds: 
-52.8m V + 0.2im V for the ith cell, where i increased with depth from the most external 
tufted cell (eT: i = 0) to the deepest mitral cell (M: i = 22). There was no gradation in 
M/T to GR connections for thus run. 



52 

connections resulted in a deviation in the number of inputs to each cell and thus a 
deviation in excitatory and inhibitory strengths, resulting in membrane potentials 
and rhythmic behavior variations. As a result, the causes of such rhythmic behavior 
- refraction or IPSP length - have a strong effect on the regularity of the burst­
ing patterns. Such regularities may be important if the structures receiving bulbar 
outputs have sensitive timing rules. Note also that the more rhythmic pattern also 
has a smoother response gradation by depth. Since the M/T main axons project 
farther with increasing depth (Mori, 1987), stronger odors could invoke more com­
plicated processing since more distant structures would then receive bulbar outputs 
that they might not receive for weak odors. Strong odors, for example, might in­
voke identification in addition to detection. Also, centrifugal inputs to the granule 
cells (Mori, 1987) might be used to increase bulbar sensitivity by reducing bulbar 
inhibition (Anton, 1991b) if only weak, short-reaching odors were detected. Inhi­
bition of inhibitory granule cells, for example, could reduce the inhibitory response 
of granule cells from mitral/tufted excitation. 

3.4 Frequency-to-spatial transform 

To test the frequency-to-spatial transform hypotheses, simulation runs were con­
ducted in which the constant input olfactory nerve (ON) frequencies were varied 
from spontaneous noise levels (.1 impulse/ sec) up to the highest level of activation 
reported (60 impulses/sec) in 10 impulses/sec increments. The initial firing laten­
cies for the impulses on each receptor axon were randomly distributed, spreading 
the input over the lms simulation time steps. The stability of the transforma­
tion was tested by making series of these runs using differing inhibitory strengths 
(peak synaptic conductances) on the primary cells or varying ranges of threshold 
gradations. Further tests were made in which the number of dendrodendritic GR 
connections were made non-uniform based on the reported lengths of the M/T sec­
ondary dendrites by depth (see Methods section). 

Figure 3.5 plots the number of simulated mitral/tufted cells responding to ON 
stimulation, as a function of the frequency of the ON activity, for these series of 
simulation runs. Note that the number of responding cells increases monoton­
ically with ON stimulation frequency in a sigmoidal fashion with an off range, a 
near-linear response range, and a saturation range. Simulation parameters such as 
the M/T inhibitory conductances (Figure 3.5a) and the range of niitral/tufted firing 
thresholds (Figure 3.5b) influence the frequencies at which response begins and sat­
urates by shifting the response curve. Weaker IPSPs allowed the M/T potentials to 
rise higher before the next wave of inhibition was activated, resulting in a narrower 
but more sensitive response range (solid line, Figure 3.5a). Also, smaller threshold 
increments and a lower minimum threshold made each M/T cell more responsive 
since they were then easier to fire; as a result, the glomerulus saturates at a lower 
input ON frequency and has a steeper, more sensitive transformation. 
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The transformation effect was also present when setting the number of M/T 
secondary dendrodendritic connections with GR cells relative to the reported to­
tal lengths of the secondary dendrites by depth (Figure 3.5c). This reduction in 
inhibitory connections for the more superficial M/T cells allowed them to respond 
more robustly to excitation. This reduced inhibition was often enough to allow a 
few of the more superficial cells to cross threshold and fire (compared to the uniform 
connectivity shown in Figure 3.5b ). Note that in a few cases the number of M/T 
respondents was reduced; in these cases the more robust tufted bursting increased 
the excitation of the inhibitory cells which was sufficient to increase the graded 
inhibition to the few deep mitral cells that had barely reached firing threshold be­
fore. As a result, there was no general trend towards an increase or decrease in 
the total number of cells with the reduced inhibitory synapses. This reduction did, 
however, reduce slightly the effect that changes in the threshold gradation had on 
the transformation since the solid and dashed transformation curves moved closer 
to one another slightly (compared to Figure 3.5b ). The reduction in inhibition also 
strengthened the rhythmic output of the glomerulus by allowing the tufted cells to 
respond more strongly under weak input conditions which in turn kept the interneu­
ronal responses stronger. Since only a subset of external tufted cells project outside 
of the bulb (Schoenfeld and Macrides, 1984; Mori, 1987), such highly-responsive ex­
ternal cells could be used to strengthen rhythmicity without impacting extrabulbar 
information processing. 

Figure 3.5: The number of mitral/tufted (M/T) cells responding within a single simu­
lated glomerulus versus the input firing frequency of the receptor axons stepped to a con­
stant test value. The interneuronal refractory period was 200ms. (a) Effects of varying 
inhibition strength on the spatial response curve. M/T inhibitory synaptic conductances 
GsynO; were 0.5nS (solid line), lnS (long dashes), and 2nS (short dashes). M/T firing 
thresholds were -52.Sm V + 0.2im V for the ith cell, where i increased with depth from the 
most external tufted cell ( eT: i = 0) to the deepest mitral cell (M: i = 22). The number 
of dendrodendritic connections with GR cells was equal for each M/T cell. {b) Effects 
of varying the threshold gradations on the spatial response curve. M/T firing thresholds 
were -54.0mV + O.lOimV (solid line), -53.4mV + 0.15imV (long dashes), and -52.SmV + 
0.20im V (short dashes). GsynO; = 2nS while the number of dendrodendritic connections 
with GR cells was equal for each M/T cell. (c) Effect on spatial response curves from (b) 
when changing the number of dendrodendritic connections with GR cells for each M/T 
.cell to be relative to the reported total lengths of the M/T secondary dendrites by cell 
depth (see Methods). The M/T firing thresholds were -54.0mV + O.lOi mV (solid line) 
and -52.SmV + 0.20i mV (short dashes). 
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3.5 Discussion 

The data presented above, then, indicates that one of the functions of the olfac­
tory bulb may be to transform frequency-related concentration inputs into a spatial 
representation in the number of primary bulbar cells responding. This transfor­
mation has been shown to contribute to the interesting computational capabilities 
exhibited by higher-level computer simulations of interacting olfactory structures 
(see Ambros-Ingerson, 1990; Ambros-Ingerson et al., 1990; Granger et al., 1990a). 
These higher-level simulations demonstrated that the transformation of concentra­
tion data into a spatial representation can cause efferent cortical cells to respond in 
a pattern representative of the dominant odor passed by the bulb due to the dom­
ination of the response space by the higher-concentration odors. The combination 
of this property with feedback masking cycles resulted in a hierarchical clustering 
algorithm for input cues to the olfactory system. 

Since the response range of the frequency-to-spatial transformation curve can be 
shifted over the range of input frequencies, it is reasonable to infer that the 'gain' 
of the bulb system should be controllable via centrifugal modulation of granule or 
periglomerular cell excitability; indeed, these cells receive relatively large centrifugal 
projections from sept al regions and the horizontal limb of the diagonal band of 
Broca (Mofi, 1987). For example, centrifugal inputs onto GR cells could modulate 
the background GR activation levels and thus modulate the strengths of reciprocal 
inhibitory responses from subsequent M/T activations since the dendrodendritic 
synapses are believed to be graded by pre-synaptic potential levels; this effect would 
be similar to the changes in M/T IPSP strengths shown in Figure 3.5a. 

Also, volleys in the anterior commissure or centrifugal fibers from the olfactory 
cortex cause large mitral cell IPSPs via the activations of GR cells (Mori and Takagi, 
1978b; Mori, 1987). This should have an effect on M/T cells similar to raising the 
firing thresholds by lowering the background (resting) membrane potential in M/T 
cells, making them harder to fire by increasing the amount of excitation needed 
for firing. The simulations shown in Figure 3.5b demonstrate that· such threshold 
changes can also shift the response curve of the glomerulus slice. 

Such shifts in the response curve of the frequency-to-spatial transformation would 
then allow for higher-function control of the sensitivity of the M/T cell response 
to ON frequencies and thus to the odor concentration at the receptor sheet. If the 
curve is moved to the left via efferent inhibition of (inhibitory) GR cells, then the 
bulb will become more sensitive to lower frequency inputs. On the other hand, 
efferent excitation of GR cells would move the transformation curve to the right, 
thus requiring higher-frequency ON inputs for bulb response. 

Such a control approach would permit the olfactory system to operate in differ­
ent modes. High-concentration odors would be detected at the expense of hidden 
odors by shifting the response to the higher frequencies. Low-concentration odors 
would be detected at the possible expense of noise problems by shifting the re-
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sponse to the lower frequencies. Hidden odors could be detected by using a simple 
masking operation (Granger et al., 1990a, b; Ambros-Ingerson et al., 1990). High­
concentration odors could first be detected with the response curve set for high 
frequencies; the odors hidden due to lower concentrations could subsequently be 
uncovered by masking the glomeruli that respond to the high-concentration odor 
and shifting the response curve to the lower frequencies. 

As a result of the shifting of response curves, low-concentration odors can be 
detected while maintaining a transformation curve that can measure small concen­
tration differences in the response range. Thus, the total odor concentration could 
be determined grossly by the strengths of the centrifugal controls on the bulb and 
precisely within the gross range by the number of M/T cells responding. 

We are currently extending the simulation to include multiple glomeruli and their 
interactions via the long mitral/tufted secondary dendrites and through granule 
and periglomerular lateral contacts. Extensions to multiple glomeruli will allow the 
investigation of competition between odor components by testing the interactions 
between glomeruli for different spatial ON inputs. It is possible that the larger 
system will behave in ways much more complex than those hypothesized here for 
individual glomeruli. 

Smaller scale extensions may include the range of synaptic types involving the 
periglomerular interneurons beyond the reciprocal dendrodendritic connections in­
cluded .in this work. Additional depth differences between the mitral and tufted 
cells could also be included by reflecting the differences in PSP lengths recorded 
by Schneider and Scott (1983). Deeper primary cells have shorter EPSPs and 
IPSPs. Despite these complexities, deeper cells remain harder in general to excite 
orthodromically (Schneider and Scott, 1983), so we expect the frequency-to-spatial 
transformation to remain. 

Further extensions could include a test for rhythmic behavior given a very short 
(5ms, say) period between repeated dendrodendritic activations rather than the 
present 200ms length. On the other hand, a 180ms GR IPSP could be implemented 
to follow ON stimulation (Wellis and Scott, 1990) rather than relying on the more 
abstract refractory periods. Also, the dendrodendritic connectivity restrictions by 
depth between the M/T and GR cells could be extended to the axodendritic connec­
tions. This would provide a greater inhibitory isolation by depth between M/T cells 
than the current GR peripheral dendritic extents provide and might yield an avenue 
for easier activations of the deeper mitral cells given early activation (followed by 
inhibition) of the superficial tufted cells. 

In summary, the temporal EPSP summation in mitral/tufted cells can cause 
higher membrane potentials corresponding to higher input frequencies. Threshold 
gradations by depth for the primary M/T cells thus cause the number of cells re­
sponding to reflect the input frequency and give the bulb the capability of transform­
ing odor-concentration information expressed in the input receptor firing frequency 
into a spatial representation via the number of M/T primary cells firing. 



Chapter 4 

Strength and Plasticity of Graded 
Dendrodendritic Synapses and Lateral 

Inhibition in the Olfactory Bulb 

4.1 Introduction 

Many ideas have been advanced concerning the utility of dendritic spines in neuronal 
processing (Wilson, 1984, 1988; Coss and Perkel, 1985; Rall and Segev, 1987; Koch 
and Poggio, 1987; Segev and Rall, 1988). These include control and modulation of 
information transfer from the input site to the rest of the cell by changes in input 
resistance (Rall, 1970; Rall and Rinzel, 1971; Koch and Poggio, 1983) to devices for 
concentrating calcium (Coss and Perkel, 1985; Gambel and Koch, 1987; Holmes, 
1990) to sites for active membrane amplification (Diamond and Yasargil, 1969; Jack 
et al., 1975; Shepherd et al., 1985; Miller et al., 1985; Perkel and Perkel, 1985; Segev 
and Rall, 1988) and control of inputs (Koch and Poggio, 1987; Shepherd and Bray­
ton, 1987; Shepherd et al., 1989). These effects are generally concerned with axoden­
dritic synaptic connections where the dendritic spine is postsynaptic and the effects 
are studies for the postsynaptic cell only. More complicated synaptic arrangements, 
however, are found in neuronal structures that contain dendritic spines. Dendroden­
dritic connections in the olfactory bulb, for example, involve synaptic spines on the 
interneurons (Shepherd, 1979; Mori, 1987). Since the strengths of these synapses 
are believed to be graded based on the presynaptic voltage (Shepherd, 1979; Mori, 
1987), a number of complications arise in the dendrodendritic spine case. 

First, presynaptic depolarizations may remain below the cellular firing threshold 
but above the activation threshold for the dendrodendritic synapse. As a result, 
spines may concentrate local charge in the spine head in order to increase the 
local potential beyond what would be achieved in a dendritic shaft (Rall, 1974; 
Koch and Poggio, 1983; Kawata et al., 1984; Wilson, 1984); this increase in local 
response would facilitate larger graded reciprocal responses (Jack et al., 1975) at the 
expense of reducing the overall potential contribution at the base of the spine neck. 
Even if the presynaptic depolarizations were above the firing threshold, an action 
potential may not significantly propagate back through the dendritic tree from the 
axon hillock to the dendrodendritic sites. Thus, spines could function to permit 
large reciprocal responses at low levels of local input without having to modify the 
synaptic gradation to amplify the synaptic response at these low levels. As a result, 
the synaptic response curve could be broad in order to allow the grading of lateral 
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inhibition based on global depolarization levels while simultaneously permitting 
strong reciprocal responses to small local inputs; such inhibition in stages could 
help control bulbar excitation over a wider range of input levels. 

Furthermore, changes in the spine neck axial resistance could influence the 
strengths of the reciprocal response by increasing the input resistance at the spine 
head, thereby increasing the local response and thus the reciprocal response. Such 
changes in spine neck resistance - once a candidate for axodendritic potentia­
tion and LTP (Rall, 1970, 1974, 1978; Rall and Rinzel, 1971; Wilson, 1984; Coss 
and Perkel, 1985; Jung et al., 1991) - might function to effect memory traces 
by (presynaptically) modifying the inhibitory response of the granule cell for den­
drodendritic synapses. Brennan et al. have reported that changes in synaptic 
efficacy at these dendrodendritic synapses in the accessory olfactory bulb create a 
behaviorally-relevant olfactory recognition memory in mice {Brennan et al., 1990). 
Also, activation history has been shown to affect spine neck geometries in axoden­
dritic synapses (Fifkova and van Harrenveld, 1977; Lee et al., 1980; Desmond and 
Levy, 1983; Chang and Greenough, 1984; Wilson, 1984; Coss and Perkel, 1985; 
Koch and Poggio, 1987), thus opening the possibility of such changes in dendroden­
dritic synapses on spines. As a result, spine neck resistance changes - either by 
changes in the cytoplasmic resistance or through changes in the spine geometry -
could express relevant memories through modification of bulb performance in the 
recognition process. 

4.2 Methods 

To test the impact of spine geometries on dendrodendritic inhibition, biophysical 
computer simulations were constructed to model the anatomical and biophysical 
properties of olfactory bulb mitral (M) and granule (GR) cells as well as graded 
reciprocal synapses between the cell types. The simulations - based on the multi­
compartmental approach of Rall (1964) and written in SABER (Carnevale et al., 
1990) - directly modeled the electrical properties of the passive membranes of cell 
sections and the interactions between these sections. 

The simulations used the cylindrical geometries and passive membrane proper­
ties of Shepherd and Brayton in their study of lateral inhibition in the olfactory 
bulb (Shepherd and Brayton, 1978, 1979) (see Figure 4.1). Like these studies, the 
simulations described below included cylindrical representations of dendritic com­
ponents from two mi tr al cells synapsing on a single granule interneuron. The 
M, GR shaft, GR spine head, and GR spine neck cylindrical-compartment diame­
ters were 4µm, lµm, lµm, and 0.2µm, respectively. The M, GR shaft, GR spine 

. head, and GR spine neck compartment lengths were lOOµm, 50µm, 3µm, and 3µm, 
respectively. Mitral and granule specific membrane resistances were 2KO-cm2 and 
4KO-cm2

, respectively. All compartments had a capacitance of 800-cm and cyto­
plasmic resistance of lµF /cm2 (Shepherd and Brayton, 1978). Compartment axial 
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Figure 4.1: (a) Compartmental representation of the cylindrical sections of the cells in 
the model. The simulation included two rnitral cells (Ml and M2) and a single granule 
cell (GR) dendrodendritically that connected to both Ml and M2. Enlargements (b) and 
( c) show the bulbar dendrodendritic connections as found in the· bulb. The simulation test 
cases were activated with a voltage clamp spike in M11 with peak amplitude of l lOmv 
(relative to the resting potential), linear rise and fall times of 0.5msec, and O.Olmsec peak 
plateau. 
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resistances, membrane resistances, and membrane capacitances were computed us­
ing the cylindrical transformations of Rall (Rall, 1977; Segev et al., 1985). 

Additional tests were also performed using the dimensions reported from serial 
reconstructions of granule dendritic spines recently reported by Woolf et al. (1991 ). 
Here the mean major axis (1.36µm) was used for the head cylinder length with an 
effective radius of 0.5lµm. Also, the mean spine necks were found to be shorter and 
a bit fatter (1.73µm mean length and 0.23µm mean diameter) than those modeled 
by Shepherd and Brayton. 

Graded synapses were added to all simulations using a simple model of trans­
mitter release and receptor bonding (see Figure 4.2a). Presynaptic voltage was 
measured through an ideal time delay (0.5ms) representing calcium channel activa­
tion and/or other biochemical reactions necessary for transmitter release (Shepherd, 
1979). Delayed voltages above the activation threshold (5mv) were graded by a sig­
moidal function to produce the transmitter current it( v) = 1/(1 + ea(vb- 11

)) with 
peak slope a/4 at v = vb. This current was then injected into a simple RC filter 
( v = iR + c-1 Ji dt) that smoothed the current rise and fall times, represent­
ing the transmitter diffusion across the synaptic cleft, receptor binding dynamics, 
and the probabilistic nature of channel closings (Colquhoun, 1981). The voltage 
in this RC circuit was then used to control the graded postsynaptic conductance 
9sym = 9peakVc· This synapse model exhibits the overall' sigmoidal relationship be­
tween presynaptic potential and peak postsynaptic response seen in both spiking 
(Shepherd, 1979; Graubard et al., 1983; Koch and Poggio, 1987) and non-spiking 
neurons (Katz and Miledi, 1967; Graubard, 1978; Shepherd, 1979; Koch and Poggio, 
1987) (see Figure 4.2b ). For all except the narrow gradation tests (Figure 4.6), the 
grading sigmoid saturated at approximately 1 OOm V above resting potential, had a 
midpoint Vb = 50m V, and time constant a = 100. . 

4.3 Results 

Location of granule dendrodendritic synapses on spine heads rather than dendritic 
shafts increased the reciprocal granule response while reducing the granule response 
through lateral synapses. This effect was shown in simulations using cylinder sizes 
used by Shepherd and Brayton (1978, 1979) (Figure 4.3) and also those adding the 
spine sizes reported by Woolf et al. (1991) (Figure 4.4). 
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Figure 4.2: (a) Model of a graded synapse. Presynaptic voltage samplings were delayed, 
graded, and smooth to produce the controlling voltage for the post-synaptic conductance 
9syn( vc)· (b) Peak postsynaptic potentials given presynaptic spikes ranging from lOmv to 
150mv in lOmv increments (relative to resting potential) with a = 100 and Vb = 50mv. 
Sample presynaptic ( c) and postsynaptic ( d) potentials from the graded synapse model. 
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Figure 4.3: Comparison of synaptic effects when locating dendrodendritic synapses on 
granule spine heads GR1 and GR3 (dashed lines) or on dendritic shaft compartments 
GR1 and GRs at base of spine necks (solid lines). Cylindrical size parameters were from 
Shepherd and Brayton (1978, 1979). (a) IPSPs in Mh (reciprocal inhibition: heavy 
lines) and M23 (lateral inhibition: thin lines) following the excitatory spike in Mlt. The 
excitatory mitral spikes went off the plotting scale due to the close-up of the IPSPs. (b) 
Inhibitory synaptic conductances on Ml3 (heavy lines) and M23 (thin lines). ( c) Granule 
synaptic site potentials. ( d) Dendrodendritic synaptic currents into GR1 (dashed line) 
and G R7 (solid line). 
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In both cases the reciprocal and lateral responses were measured following an 
excitatory spike in Ml 1 when the granule dendrodendritic synapses were all located 
on the dendritic shaft (GR1 and GR8 ). The responses were also measured when the 
granule dendrodendritic synapses were moved to the spine heads (GR1 and GR3 ) 

adjacent to the previous shaft locations. As expected, locating the excited synapse 
on the spine head GR1 caused larger local potentials despite making smaller synaptic 
currents (Chang, 1952; Rall and Rinzel, 1971; Rall, 1974; Jack et al., 1975; Koch and 
Poggio, 1983; Wilson, 1984; Rall and Segev, 1987; Segev and Rall, 1988). These 
larger local potentials in turn facilitated the dendrodendritic reciprocal response 
back on to M13 since the synapse was graded by the presynaptic potential. Thus, 
moving the synapse from the granule dendritic shaft ( GR7) to the spine head ( GR1) 

facilitated the reciprocal response. In addition, synapsing on the head reduced the 
lateral inhibitory response due to the smaller synaptic current in GRi, resulting in 
a smaller EPSP propagating throughout the granule interneuron. The movement 
of the lateral synapse from the dendritic shaft GR8 to the spine head GR3 had 
a negligible effect on the reciprocal and lateral responses due to the small size 
of the spine when compared to the granule dendritic shaft. This lateral synapse 
received no excitatory input from M23 in either case. The resulting mitral cell 
IPSPs for the exclusive Shepherd and Brayton case are also shown in Figure 4.3a. 
The IPSPs obtained using the spine dimensions reported by Woolf et al. (1991) were 
smaller since the necks were shorter and since the IPSPs overlapped more with the 
excitatory spine in Ml; the reciprocal and lateral effects were evident, however, in 
the synaptic conductance plots using the Woolf et al. data (Figure 4.4a). 

In addition, the effects due to changes in input spine neck axial resistance on 
reciprocal and lateral inhibitions were also tested. These changes were simulated 
in two ways: by changing the cytoplasmic resistance ~ of GR2 directly and ·by 
changing the neck cylinder diameter of the input spine neck GR2 • The effects 
due to changes in ~ directly are shown in Figure 4.5 while narrowing the neck 
diameter produced nearly identical results. In both cases an increase in the axial 
resistance increased the reciprocal response (due to higher local potentials in the 
spine heads) while decreasing the lateral response (due to smaller global potentials 
in the granule dendritic tree). Other tests adding changes in the resistance of the 
lateral spine neck GRt showed a negligible effect on the inhibitions since spines 
being depolarized by the dendritic tree closely mirror the tree potential due to the 
very small spine capacitance compared to the rest of the dendritic tree. 

All of these tests were performed with dendrodendritic synapses graded over a 
broad range of presynaptic values. The grading sigmoid saturated at about lOOm V 
above resting potential, had a midpoint (Vb) of 50m V, and time constant a = 100. 
This broad range enabled the synapse to remain sensitive to the peak voltages 
attained in the spine head and thus to the changes in spine neck resistance. If, how­
ever, the gradation range was much shorter (i.e., having a high dynamic gain), then 
the synapses mostly emphasized the behavior of the presynaptic potential in the 
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sensitive range. For example, Figure 4.6 shows the result of repeating the cytoplas­
mic resistance experiment of Figure 4.5 using a sigmoidal gradation more sensitive 
to the presynaptic potentials in the range 5-35m V. Here the increase in neck resis­
tance did not result in an increase in the reciprocal response since the potentials fell 
faster with the higher neck resistance (Figure 4.6b ). The small synaptic gain still 
recognized, however, that the response in G R1 peaked higher than the response in 
GR3 ; as a result, the reciprocal response was still stronger than the lateral response 
but the difference was not as pronounced (Figure 4.6a). The overall granule cell 
potential was much lower in the high neck resistance case since much less synaptic 
current was generated (Figure 4.6c) due to the higher input impedance (Rall and 
Rinzel, 1971; Koch and Poggio, 1983; Wilson, 1984). In general, then, increases 
in the spine neck resistance favor the reciprocal response over the lateral response, 
even if the synaptic gradation is limited. 

4.4 Discussion 

As a result of reciprocally synapsing on dendritic spines rather than dendritic shafts, 
high levels of granule excitation are not required to initiate a strong reciprocal re­
sponse back onto a mi tr al cell. Such spine synapsing, however, does reduce the 
synaptic current injected into the granule cell and thus reduces the overall granule 
dendritic tree excitation. As a result, larger levels of granule excitation (and thus 
mitral excitation) are needed to obtain strong lateral inhibition. Thus, granule­
mediated inhibition in the olfactory bulb may take on a two-level approach: recip­
rocal inhibition dominating at low levels of activity with lateral inhibition requir­
ing higher levels. This two-level approach is compatible with the observation that 
lateral inhibition tends to be stronger than reciprocal inhibition in experimental 
conditions (where the levels of activation are high) (Wilson and Leon, 1987a; Woolf 
et al., 1991 ). This two-level approach is also compatible with the conjecture that 
low levels of activity promote detection while high levels promote competition and 
identification (Wilson and Leon, 1987a). Spine structures add the capability for 
control of excitation and memory implementation even at low levels by facilitating 

Figure 4.4: Repeat of spine location test of Figure 4.3 but using the spine sizes reported 
by Woolf et al. (1991 ). Dendrodendritic synapses located on granule spine heads GR1 
and GR3 (dashed lines) or on dendritic shaft compartments GR1 and GRs at base of spine 
necks (solid lines). (a) Inhibitory synaptic conductances on Mla (heavy lines) and M2a 
(thin lines). (b) Granule synaptic site potentials. ( c) Dendrodendritic synaptic currents 
into GR1 (dashed line) and GR1 (solid line). 
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the reciprocal response. At high levels, sufficient granule excitation would ~llow 
strong lateral inhibitions in addition to the reciprocal inhibitions and would help 
mediate competition between odors for identification of the strongest odor (Granger 
et al., 1990b ). 

Dendrodendritic synaptic plasticity in the olfactory bulb could be implemented 
by changes in spine neck resistance. Increases in spine neck resistances strengthen 
the reciprocal response from the spine while reducing the activated spine's contribu­
tion to the overall granule depolarization and thus to the lateral response. Decreases 
in neck resistance have the opposite effect: reduced reciprocal inhibition and greater 
lateral inhibition. 

Various methods could be used to change spine neck resistances. Many types of 
organelles are commonly found in and near granule spine necks and heads (Woolf 
et al., 1991 ). Movement of these organelles in or out of the spines could produce 
quick and reversible changes in the effective axial resistance of the spine neck. Neck 
varicosity volumes in cat retinal amacrine cells, for example, contain volumes beyond 
those of the organelles that cause the varicosities (Sasaki-Sherrington, 1984); such 
excess volumes could translate into higher effective neck diameters and thus lower 
axial resistances. Since these varicosities can move at 0.17-0.47µm/sec (Sasaki­
Sherrington, 1984), organelle movement could provide a fairly quick, reversible, and 
synapse-specific modulation of the reciprocal and. lateral inhibition in the bulb. 

In addition, longer-term changes in neck resistance are possible by cytoskeletal 
changes enlarging the neck diameter adjacent to the head (Wilson, 1984; Coss and 
Perkel, 1985). This type of change - originally proposed as a means for expressing 
potentiation in axodendritic synapses (Rall, 1970, 1974, 1978; Rall and Rinzel, 
1971) - could influence dendrodendritic synaptic_ efficacy by lowering the effective 
spine resistance and thus reducing the reciprocal response and increasing the lateral 
response. Even after such shape changes, further fine-tuning of neck resistance could 
still be possible by way of organelle movement as mentioned above. 

The flexibility of concentrating inhibition either reciprocally or laterally as 
needed through spine neck resistance changes provides an elegant and flexible solu­
tion to the connectivity issue raised by Woolf et al. (1991 ). In the boundary views 
they presented, multiple connections from a granule cell to the same mitral cell 
would provide strong reciprocal inhibition while limiting the available connections 

Figure 4.5: Effect of quadrupling the spine neck GR2 cytoplasmic resistance Ri from 
80!1-cm (solid lines) to 320!1-cm (dashed lines). Spine sizes were those reported by Woolf 
et al. (1991). (a) Inhibitory synaptic conductances on Ml3 (heavy lines) and M23 (thin 
lines). (b) Dendrodendritic synaptic current into spine head GR1. ( c) Spine head poten­
tials. 
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for lateral inhibition; conversely, limitation to single connections between granule 
and mitral cells would minimize reciprocal inhibition and spread lateral inhibition 
to more mitral cells. Thus, the granule-to-mitral connectivity can be seen as a recip­
rocal versus lateral inhibition issue. By changing spine neck resistances, however, a 
granule cell can dynamically (and possibly reversibly) increase or decrease the com­
peting reciprocal and lateral inhibitions as needed without resorting to duplicate 
contacts. Thus, the apparent absence of duplicate connections (Woolf et al., 1991) 
does not necessarily preclude strong reciprocal responses. 

As for the impact of plasticity on memorial functions, the olfactory bulb has been 
implicated as a site for memory storage. Brennan et al. have associated pregnancy­
block memories in mice with changes in mitral-granule dendrodendritic efficacy in 
the accessory olfactory bulb (AOB) (Brennan et al., 1990). These behaviorally­
relevant memories are reportedly formed when norepinephrine centrifugal inputs 
to granule cells (Shepherd, 1979; Mori, 1987) partially block granule inhibition 
to permit sustained mitral excitation during learning. Such sustained excitation 
would then indicate which synapses need modification to remember the present 
odor. While the type of memory trace (increased or decreased reciprocal inhibition) 
was not determined, the study does implicate dendrodendritic synaptic weights in 
the AOB in a behaviorally-relevant memory. 

Computationally, the use of dendrodendritic plasticity in structures like the ol­
factory bulb may provide the capability of a recognition memory together with 
either a block or pass function. The learning of odors could entail either increases or 
decreases in the reciprocal inhibition on the associated mitral/tufted cells via spine 
neck resistances or other types of plasticities. Increases in inhibition of the learned 
odor would block (or withhold) the learned odors from continued transmission to 
efferent structures; decreases in inhibition would strengthen and pass the learned 
odors preferentially over unlearned or novel odors. Such a recognition memory could 
be used to implement behavioral functions depending on the actions taken for the 
cues passed or blocked. For example, pregnancy-block memories (Brennan et al., 
1990) could be implemented by such a recognition memory if pregnancy blocking 
was initiated based on the presence or absence of odors received from the AOB. 

Figure 4.6: Effect of narrow synapse gradation on changes in spine neck GR2 cytoplasmic 
resistance. Sigmoid parameters are now Vb = 20m V, a = 400 while Ri ranges from 80fl-cm 
(solid lines) to 320!!-cm (dashed lines). Spine sizes were those reported by Woolf et al. 
(1991). (a) Inhibitory conductances on Mh (reciprocal response: heavy lines) and M23 
(lateral response: thin lines). (b) Dendrodendritic synaptic current into spine head GR1. 
( c) Spine head potentials. Dashed line indicates approximate potential where synaptic 
gradation saturates. 
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In the case of a recognition memory blocking familiar stud odors, pregnancy block 
could be initiated if any odor is passed by the AOB. In the case of a recognition 
memory passing familiar stud odors, receipt of the odors from the AOB would 
indicate permission for pregnancy to continue. 

Centrifugal inputs to granule cells could control learning in a manner similar to 
AOB learning (Brennan et al., 1990) outlined above by controlling granule inhibi­
tion. These centrifugal inputs could also allow the association of learning with any 
desired behavioral or sensory contributions via higher brain centers (Wilson and 
Leon, 1988; Brennan et al., 1990). 

Furthermore, reductions in overall inhibition levels in the main olfactory bulb 
(MOB) have been associated with early olfactory exposure in the rat (Wilson and 
Leon, 1987b ). Rats that have been deprived of early olfactory inputs develop more 
responsive cells (both excited and suppressed) as well as increased paired-pulse 
inhibition compared to control rats (Guthrie et al., 1990; Wilson et al., 1990). This 
reduction may be caused by early concentration of inhibition onto common odors in 
the rat's environment while lowering the overall levels of inhibition. While this early 
learning is associated with cell growth and specific increases in glomerular regions 
associated with the control odors (Woo et al., 1987), this paradigm of increasing 
inhibition onto specific odors while lowering the background inhibition levels is 
compatible with spine neck resistance plasticity. An increased resistance would 
lower lateral inhibition, allowing more excitatory responses in lateral mitral/tufted 
cells and a stronger conditioning inhibition. Also, an increased resistance would 
simultaneously increase reciprocal inhibition, causing the reciprocal mitral/tufted 
cell to respond in a suppressive manner. Thus, growth in neck resistance during 
deprived development (via neck lengthening and/ or narrowing) could contribute to 
the reactivity and inhibitions effects observed while olfactory experience in control 
rats could reduce these resistance effects by head enlargement or rounding. 

Many examples of spines with higher neck resistance in young or deprived ani­
mals are presented by Coss and Perkel (1985). In one example, jewel fish deprived of 
environmental or social experience had more narrow heads and longer stems (result­
ing in higher neck resistance) than the fish with extensive social experience (Coss 
and Globus, 1978; Coss, 1979; Coss and Globus, 1979; Coss and Perkel, 1985). In 
another example, ten-week-old mynah birds had shorter necks with larger diameters 
than the older one-year-old mynah birds aged in a normal environmental (Rausch 
and Scheich, 1982; Coss and Perkel, 1985). In normal, non-deprived animals, a 
reduction in effective spine neck resistance (either directly or through spine neck 
bulging that enlarges the head) could negate these growths effects. Reductions due 
to head enlargement (Fifkova and van Harrenveld, 1977 ; Desmond and Levy, 1983) 
or rounding (Lee et al., 1980; Chang and Greenough, 1984) could accompany devel­
opmental growth in non-deprived (control) rats. Such spine head changes have been 
observed after receipt of brief trains of high-frequency electrical stimulation (Coss 
and Perkel, 1985) that would be available during receipt of natural odors present 
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in the control rats and counteract the growth effects of deprived animals. 
In addition to memorial operations, small changes in granule-mediated inhibition 

could be used to prevent strong or prevalent odors received from the environment 
from dominating the identification and detection process by selectively dampening 
(i.e., slightly inhibiting) the mitral/tufted cells that respond to that odor. Such 
a partial habituation would not prevent passage or blocking of the dominant odor 
but would aid in the detection of other odors hidden in the olfactory inputs. As a 
result, weak inhibitions could help control odor inputs from an environment with 
prevalent or dominant odors while strong inhibitions (or facilitations) of memorable 
odors could provide a detection/ gating function. 

The changes in reciprocal and lateral responses associated with altered spine neck 
resistances rely in general on synaptic gradation over the operating range of granule 
potentials. If the synapses were not graded then they would not be able to reflect 
in their weights the modulations in peak potential due to spine neck changes. Note 
that even in the event of narrow gradations (high dynamic gains), the dendritic 
spines would still influence the dendrodendritic synapses. Once the peak gain was 
reached, changes in spine neck resistance would reduce the lateral inhibition much 
more strongly that the reciprocal inhibition (see Figure 4.6). Thus, changes in 
spines would still favor reciprocal responses over lateral responses but to a lesser 
degree. 

There are other reasons why a broad synaptic gradation would be useful in the 
bulb beyond expression of neck resistance alterations through changed reciprocal 
and lateral inhibitions. For example, if the granule-to-mitral synaptic gradations 
were broad then overall bulbar activity could be modulated over a large range 
of input levels; centrifugal input onto granule cells could then smoothly control 
global or regional bulbar activity by medium-term changes in granule-cell resting 
potentials. Strong inputs, for example, might be dampened if the granule cell resting 
potentials were centrifugally raised to increase the inhibition strength of the bulb. 
Such higher starting potentials would result in proportionately higher inhibitions 
if the synapses were still graded at the higher potential levels. Likewise, weak 
inputs - either by themselves or uncovered by refraction or masking of stronger 
inputs (Granger et al., 1990b) - might become detectable if the granule cell resting 
potentials were centrifugally lowered to reduce the inhibition strength of the bulb. 
These lower starting potentials would result in proportionately lower inhibitions if 
the gradations were broad. 

This type of control over bulbar inhibition could also help to maximize concentra­
tion determination by higher brain centers. A physiological model of the olfactory 
bulb has revealed that the olfactory bulb may transform concentration data from 
frequency input to spatial output coding (see Chapters 2 and 3; also Anton et al., 
199la, c, d). This transformation depends on the gradation of mitral/tufted firing 
thresholds by depth (Schneider and Scott, 1983; Mori, 1987). A wide threshold gra­
dation would allow transformation of the full range of input odor concentrations at 
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the expense of resolution. Conversely, a narrow threshold gradation would increase 
resolution at the graded concentration while obstructing the gradation at higher 
and lower concentration levels. A supervisory system could then use centrifugal 
control of granule inhibition levels to elevate or lower different odor responses into a 
high resolution (narrow gradation) range. The resulting spatially-coded concentra­
tion data from bulbar outputs could then be combined with the centrifugal control 
levels (scale levels) obtain a better view of the input. 

If, on the other hand, the dendrodendritic synaptic gradations were narrow then 
resting-potential changes and thus spine neck changes would become ineffective once 
the saturation limits were reached. Factors other than peak potential would then 
be expressed by the graded synapses. In Figure 4.6, for example, the fall time 
of the potentials greatly influenced the postsynaptic potential on the mitral side. 
Furthermore, narrow gradations might cause the inhibitions to switch abruptly on 
and off and be much more sensitive to minor noise and other fluctuations. Thus, 
broad synaptic gradations over the operating range of granule membrane potentials 
might be expected due to afforded computational features. 

While the simulations above do not include active spine membranes, such mem­
branes would also influence dendrodendritic inhibitions. We would expect that 
increased spine neck potentials from membrane activation (Jack et al., 1975; Miller 
et al., 1985; Shepherd et al., 1985; Perkel and Perkel, 1985; Rall and Segev, 1987; 
Shephe~d and Brayton, 1987; Segev and Rall, 1988) would strongly reinforce the 
reciprocal response while also contributing to the lateral response. Such active 
properties would introduce another layer of inhibitory activity in the bulb. If the 
spine activation threshold was above the dendrodendritic threshold, then reciprocal 
inhibition could operate as before until the spiking threshold was reached. Above 
the spiking threshold, both reciprocal and lateral responses would be strengthened 
by the active membrane. In addition, increased spine neck resistance would make 
it easier for the spine potential to reach the active spine spiking threshold. Spike 
propagation would then spread the resistance-based memory effects through the 
granule dendritic tree. 

These results, therefore, demonstrate that dendritic spines can influence dendro­
dendritic potentials in both a presynaptic and postsynaptic manner. Not only can 
dendrodendritic inputs into a spine head facilitate the reciprocal response at the 
expense of reduced lateral inhibition, but the spine neck is a possible site for presy­
naptic and postsynaptic plasticity in these dendrodendritic connections. Changes in 
the spine neck diameter or cytoplasmic resistance further emphasize or increase the 
reciprocal response over the reduced lateral response. Such changes in spine neck 
resistance provide a possible candidate for memory traces in the olfactory bulb by 
modulating granule-to-mitral inhibition. 
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Chapter 5 

Summary and Conclusions 

The olfactory system has a number of interesting and useful sensory processing ca­
pabilities: rapid odor detection (often within 200ms) over a very broad range of 
input strengths as well as excellent classification, recognition, and memory capa­
bilities. As a result, the study of the neuronal structures involved should provide 
functional, distributed, and flexible approaches to solving data processing problems 
that have similar requirements. 

The olfactory bulb is the first neuronal structure receiving olfactory data di­
rectly from the receptor epithelium. Since much is known about this input data, 
the olfactory bulb provides a good starting place for studying olfactory sensory 
processmg. 

The combination of frequency-coded concentration inputs and primary-cell firing 
threshold gradations have been shown to result in the possibility of a frequency­
to-spatial encoder function by the bulb (Chapter 3). This encoder function was 
demonstrated using a novel physiological modeling paradigm (Chapter 2) in which 
the interactive effects between synaptic inputs are modeled using a lumped-circuit 
representation. 

Additional simulations tested the function of dendritic spines in reciprocal den­
drodendritic processing (Chapter 4). These biophysical simulations demonstrated 
that synapsing on the spine heads rather than dendritic shafts of granule inhibitory 
interneurons facilitate the reciprocal inhibition at all levels of granule excitation 
while reducing the lateral inhibitory effect. Also, changes in spine neck resistance 
were shown to affect these inhibitions; increased resistance increased the recipro­
cal inhibition and decreased the lateral inhibition while the reverse effect held for 
resistance decreases. 

5.1 Implications of Bulb Results for Olfactory 
Processing 

Global field potential data (EEGs) suggest that the number of primary bulb cells 
responding to an odor is normalized to about 20% (Freeman, 1978a, 1978b; Freeman 
and Schneider, 1982). Since the simulation presented in Chapter 3 only included 
one glomerular section, it was not possible to investigate whether, under what 
conditions, and to what precision such a normalization may take place. While 
inhibitory competition between glomerular regions for the right to respond seems 
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a reasonable method for such normalization, it might appear at first that such a 
normalization would run contrary to a spatial output. One possible explanation 
might be a normalized approach in which the glomeruli receiving the strongest 
inputs (highest concentration) would respond, causing sufficient lateral inhibition to 
block the response of cells from glomeruli receiving weaker inputs (Ambros-Ingerson, 
1990; Granger et al., 1990b ). The frequency-to-spatial transformation could actually 
cooperate with the normalization process since more cellular responses to an odor 
implies stronger lateral inhibition of other glomeruli. Also, if no dominant odors 
were present then large numbers of glomeruli would respond but each glomeruli 
would only have a few cells firing, yeilding a small but roughly normalized response. 

Another important question is what bulbar interneurons may participate in such 
a normalization. Periglomerular axons extend across 4-6 glomerular widths (Land, 
1973); thus, if the axonal outputs of these interneurons were inhibitory then a 
limited but strong inhibition of neighboring cells could lead to an on-center/off­
surround effect and a low percentage of responding glomeruli. 

On the other hand, granule cells are believed to be inhibitory and receive inputs 
from mitral/tufted cells from as far as half-way across the bulb (Mori, 1987). Thus, 
a simple lateral inhibition may allow the most strongly excited glomeruli to suppress 
the other bulbar glomeruli. Interestingly, the facilitation ~f reciprocal inhibition by 
dendritic spines at low levels of granule excitation would also strengthen the re­
pression of low excitation mitral/tufted cells without significant influence on lateral 
inhibition to other glomeruli. Thus, only the strongly excited glomeruli would im­
pose lateral inhibition on its neighbors via granule cells while weak glomeruli would 
receive lateral inhibition from the strong glomeruli as well as reciprocal inhibition 
due to its own low excitations. 

In any event, frequency-to-spatial transformation together with normalization 
and granule masking has been shown to yield useful computational properties when 
combined in large abstract models of bulbar-cortical processing (Ambros-Ingerson, 
1990; Ambros-Ingerson et al., 1990; Granger et al., 1990a, b ). In these models, the 
normalization process with the spatial response allowed only the strongest odors 
to respond first; subsequent masking of the strong odors allowed for detection of 
hidden odors and/ or odor categorization. 

5.2 Utility and Applicability of Physiological 
Modeling 

The simulation of the olfactory bulb testing the frequency-to-spatial transformation 
.hypothesis (Chapter 3) illustrated the usefulness of physiological modeling given 
the neural properties deemed relevant to the function under study (Anton et al., 
1991d). First, representation of the temporal aspects of the PSPs provided testing of 
the transformation hypothesis. Second, the efficiency of the method allowed large 
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numbers of cells to be simulated. Extensions of the simulation to include large 
numbers of cells, centrifugal inputs, or more interacting structures (e.g., multiple 
glomeruli) could be included without a large impact on the simulation time since the 
computational complexity scales linearly with the number of synapses simulated. 
Third, the interactive PSP functions reduced concerns that possible saturation and 
other non-linear effects would be relevant to the transformation and yet excluded 
from the simulation. Fourth, the efficiency allowed for rapid testing of simulation 
parameters when compared to simulation methods that consume large amounts of 
time. Fifth·, the model produced realistic data (somatic potential combined with 
linear approximations of action potential spikes) that permitted the use of one's 
experience with physiological data in understanding the results. More abstract 
methods that do not provide temporal PSP data would not permit the use of these 
visual intuitions. 

While the physiological approach had many benefits, there were properties that 
could not be considered due to the nature of the physiological model. The lumped­
circuit approach eliminated effects on the PSPs due to local rather than global effects 
unless abstract approximations are made to compensate for them. For example, 
inputs to the granule cells from the mitral cells are made on spine heads rather 
than dendritic shafts (Shepherd, 1979; Mori, 198,7). These spines tend to facilitate 
the reciprocal response back on to the same mitral cell (Chapter 4). This effect was 
modeled by lowering the granule-to-mitral dendrodendritic activation threshold to 
ensure a proper reciprocal response. Of course, this approximation would also 
facilitate lateral inhibitions to other mitral cells due to the lumped nature of the 
granule membrane potential. This problem might be corrected at the programming 
level by activating the lower granule-to-mitral threshold only if the same synapse 
received mitral-to-granule activation. Consideration of such abstract programming 
fixes must be weighed together with the increased effort and complexity the fixes 
impose, and the need to consider such problems at all must be weighed given the 
task presented to the simulation work. 

Compartmental simulations excel at simulating spatial influences in varied den­
dritic trees (Rall, 1964, 1967, 1989; Jack et al., 1975; Segev et al., 1989). While their 
computational overhead is much higher than that for physiological models, they can 
provide accurate simulation of complex structures. In addition, the availability of 
existing simulation environments such as SPICE (Segev et al., 1985; Bunow et al., 
1985), SABER (Carnevale et al., 1990), and GENESIS (Wilson and Bower, 1989) 
permit a tradeoff of reduced programming time for increased computer time. 

One approach to studying a neuronal structure is to use more detailed mod­
els (e.g., compartmental simulations, mathematical models) to answer questions 
of relevance to the computation under study and to follow with more abstract 
modeling (e.g., fewer-compartment simulations, physiological models) to study the 
relevant complexities while reducing the computational overhead in order to allow 
simulations of larger structures with greater extent (Wilson and Bower, 1989). This 
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approach will also help in the often formidable task of teasing apart the relevant pa­
rameters from the irrelevant, the relevant parameter ranges from the irrelevant, and 
the relevant anatomical details from the irrelevant. The multi-level approach was 
utilized, for example, to test the spine effects on the mitral/ granule cell interaction 
in greater detail using SABER while keeping the larger olfactory bulb simulation at 
the more abstract physiological level (Anton et al., 1991 b,d; Chapter 4). Further­
more, the frequency-to-spatial transformation itself, tested at the physiological level, 
was subsequently employed in a more abstract simulation involving cortico-bulbar 
interactions in the olfactory system (Ambros-Ingerson, 1990; Ambros-Ingerson et 
al., 1990; Granger et al., 1990b ). In this study, a sigmoid function matching the 
physiological simulation data was used to relate each abstract glomeruli input level 
to the fraction of primary M/T cells activated in each respective glomerular slice. 
This sigmoid reflects, therefore, the frequency-to-spatial transformation effect on a 
population of cells without direct simulation of the individual M/T cell potentials 
and the firing threshold gradation. 

Like the more traditional neurobiological disciplines, then, computational studies 
at various levels of resolution and accuracy often prove useful in understanding the 
larger behavior of a neuronal system. Interestingly, the rich variety of biological 
complexities such as spine structures should be viewed positively given the possible 
impact they may have on the computations performed .. If one is trying to reverse 
engineer a brain structure or trying to hypothesize an architectural solution to a 
processing problem, then these complexities provide a large array of tools from 
which to conjecture solutions to the immense computational problems handled by 
the brain. Blinding ourselves to these interesting complexities may limit our ability 
to use neural networks to solve practical problems or li_mit our understanding of 
how the brain functions. 

I 
I 

I 
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Appendix A: Graded Synapse Code 

Here are the simple SABER templates used to build the graded synapse model. 

93 



94 

\# *************************************************************** 
\# Template Function: Graded Synapse 

\# *************************************************************** 

template grsyn pre_p pre_m post_p post_m = 
latency, vb, siga, thr, Gsyn, Esyn, trtau 

electrical pre_p, pre_m, post_p, post_m \# post-synaptic nodes: 
\# plus t minus 

\# ... Declarations w/ defaults 
number Esyn, \# post-synaptic driving force 

\{ 

\} 

trtau, \# transmitter time constant 
latency = 2m, \# synaptic time delay 
vb = 50m, \# sigmoid bias voltage 
siga = 50, \# sigmoid time constant 
thr = 5m, \# threshold = 5mv 
Gsyn = 40n \# synaptic conductance 

\# ... Synaptic Cleft Delay 
delay.syn pre_p pre_m postDelay 0 = td=latency, a=1 

\# ... Transform sigmoid of presynaptic voltage into a current 
vccs_sigmoid.syn postDelay 0 0 transm = 

ipeak=1, vb=vb, a=siga, threshold=thr 

\# ... transmitter time-constant parameters: rc=trtau 
r.transmitter transm 0 = 1 
c.transmitter transm 0 = trtau 

\# ... Synaptic branch of membrane 
lvcg.syn transm 0 post_p synBranch = 

cond=Gsyn, vc_low=-1000m, vc_hi=2000m, 
vg_low=-1000m, vg_hi=1000m, i_err=1p 

v.syn synBranch post_m = Esyn 
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\################################################################# 

\# Language: SABER MAST 
\# Template Function: Sigmoidal voltage controlled current source 
\# 
\# i=ipeak/2 at Vin = vb (if vb>threshold) 
\# 
\# width of the "linear" range 
\# increases when increasing time const a 
\# narrows when decreasing time const a 
\# Note: we assume that the response curve should be above OmV! 
\################################################################# 

element template vccs_sigmoid ip im op om = 
ipeak, vb, a, threshold 

\# ... Connections: 
electrical ip, im, 

op, om 
\# in nodes: plus & minus 
\# out nodes: plus & minus 

\# ... Arguments: 
number ipeak, 

vb, 
\# Peak output current 
\# bias voltage 

\{ 

a, 
threshold 

val v vin, vout 
val i i_out 
number low_lin, hi_lin 
number nonlin_width 
struc \{number bp, inc;\} 

parameters \{ 

\# exp time const 
\# activation threshold 

\# Quantities useful for output: 

\# ends of the approx. linear ranges 
\# approx. width of nonlinear range 
svin[*], nvin[•] 
\# Sample points t Newton steps 

\# .. assume linear above&below 
\# vb+-3*(deltaV max slope line reaches peak) 
low_lin = vb - 3*2/a 
hi_lin = vb + 3*2/a 
nonlin_width = hi_lin - low_lin 
message("Y.:low_lin=Y., Vb=Y., hi_lin=Y. 11

, 

instance(),low_lin,vb,hi_lin) 
if (hi_lin<O) \{ 

message("Note: hi_lin=Y. less than OmV in Y. 11
, 

hi_lin, instance()) 
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\} 

\} 

\} 

\# ... relative y-axis error of 0.1Y. in non-linear range 
svin • [(-200m,1m), (low_lin,0.001*4/a), 

(hi_lin, 1m),, (0, 1m), (200m,O)] 

else if (low_lin<O) \{ 

\} 

message("Note: low_lin=Y. less than OmV in%", 
low_lin, instance()) 

\# ... relative y-axis error of 0.1Y. in nonlinear range 
svin = [(-200m,1m), (low_lin,0.001*4/a), (0,0.001*4/a), 

(hi_lin,1m), (200m,O)] 

else \{ 
svin = [(-200m,1m), (0,1m), (low_lin,0.001*4/a), 

(hi_lin,1m), (200m,O)] 
\} 
nvin = [(-200m,1.9*nonlin_width), (200m,O)] 

values \{ 

\} 

vin = v(ip) - v(im) 
vout = v(op) - v(om) 
if (vin < threshold) \{ 

i_out = 0 
\} 
else \{ 

i_out = ipeak * exp(a*vin) I (exp(a*vin) + exp(a*vb)) 
\} 

control_section \{ 
sample_points (vin, svin) 
newton_step (vin, nvin) 

\} 
equations \{ 

i(op->om) += i_out 
\} 

I 
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\# *************************************************************** 
\# Language: SABER MAST 
\# Template Function: Linear voltage controlled conductance 
\# *************************************************************** 

element template lvcg cp cm gp gm = 
cond, vc_low, vc_hi, vg_low, vg_hi, i_err 

\# .. Connections: 
electrical cp, cm, gp, gm \# conductance nodes: plus and minus 

number cond, 
\# .. Arguments: 
\# conductance 

\{ 

vc_low, vc_hi, 
vg_low, vg_hi, 
i_err 

val i ig 
val v vc 
val v vg 
val ,g g_now 

number vc_absmax, 
vg_absmax 

\# control voltage operating range 
\# conductance voltage operating range 
\# max current error through conductor 

\# Current through G 
\# Input controlling voltage 
\# conductance voltage 
\# calculate g(t) for extraction 

\#max( abs(vc_low), abs(vc_hi) ) 
\#max( abs(vg_low), abs(vg_hi) ) 

struc \{number bp, inc;\} sp_vc[*] 
struc \{number bp, inc;\} sp_vg[*] 

\# control sample points 
\# conductance sample point 

parameters \{ 
if (vc_hi<vc_low) error("Y.: vc_hi=Y.<vc_low=Y. 11

, 

instance(),vc_hi,vc_low) 
if (vg_hi<vg_low) error("Y.: vg_hi=Y.<vg_low=Y.", 

instance(),vg_hi,vg_low) 
if (abs(vc_low)>abs(vc_hi)) vc_absmax = abs(vc_low) 
else vc_absmax = abs(vc_hi) 
if (abs(vg_low)>abs(vg_hi)) vg_absmax = abs(vg_low) 
else vg_absmax = abs(vg_hi) 

\#\#\# Set sample point intervals: 
\#\#\# ... y =slope* x, so x_interval = y_i_err I slope 
\# .. if vc_low<vc_hi<O 
if (vc_hi<O) \{ 
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\} 

\} 

sp_vc = [(vc_low,i_err/(cond*vg_absmax)), 
(vc_hi,O), (0,0)] 

\# .. else if vc_low<O<vc_hi 
else if (vc_low<O) \{ 

sp_vc = [(vc_low,i_err/(cond*vg_absmax)), 
(0, i_err/(cond*vg_absmax)), (vc_hi,O)] 

\} 
\# .. else O<vc_low<vc_hi 
else \{ 

sp_vc = [(0,0), (vc_low,i_err/(cond*vg_absmax)), 
(vc_hi,O)] 

\} 

\#\#\# Set sample points for vg 
\# .. if vg_low<vg_hi<O 
if (vg_hi<O) \{ 

sp_vg = [(vg_low,i_err/(cond*vc_absmax)), 
(vg_hi,O), (0,0)] 

\} 
\# .. else if vg_low<O<vg_hi 
else if (vg_low<O) \{ 

sp_vg = [(vg_low,i_err/(cond*vc_absmax)), 
(0, i_err/(cond*vc_absmax)), (vg_hi,O)] 

\} 
\# .. else O<vg_low<vg_hi 
else \{ 

sp_vg = [(0,0), (vg_low,i_err/(cond*vc_absmax)), 
(vg_hi,O)] 

\} 

values \{ 

\} 

vc = v(cp) - v(cm) 
vg = v(gp) - v(gm) 
g_now • vc•cond 
ig = vc•cond * vg 

\# for extraction 

control_section \{ 
sample_points (vc, sp_vc) 
sample_points (vg, sp_vg) 
pl_set(ig,(vc,vg)) 

\} 



\} 

equations \{ 
i(gp->gm) += ig 

\} 
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