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Abstract

Background—In pediatric kidney transplant recipients, anemia is common and oftentimes 

multifactorial. Hemoglobin concentrations may be affected by traditional factors, such as kidney 

function and iron status, as well as novel parameters, such as fibroblast growth factor 23 (FGF23).

Methods—Here, we evaluated associations among erythropoietic, iron-related, and FGF23 

parameters in a cohort of pediatric kidney transplant recipients, hypothesizing that multiple factors 

are associated with hemoglobin concentrations.

Results—In a cross-sectional analysis of 59 pediatric kidney transplant recipients (median 

(interquartile range) age 16.3 (13.5, 18.6) years, median estimated glomerular filtration rate 

(eGFR) 67 (54, 87) ml/min/1.73 m2), the median age-related hemoglobin standard deviation 

score (SDS) was −2.1 (−3.3, −1.1). Hemoglobin SDS was positively associated with eGFR 

and calcium, and was inversely associated with erythropoietin (EPO), mycophenolate dose, and 

total, but not intact, FGF23. In multivariable analysis, total FGF23 remained inversely associated 

with hemoglobin SDS, independent of eGFR, iron parameters, EPO, and inflammatory markers, 

suggesting a novel FGF23-hemoglobin association in pediatric kidney transplant patients. In a 

subset of patients with repeat measurements, only delta hepcidin was inversely associated with 

delta hemoglobin SDS. Also, delta EPO positively correlated with delta erythroferrone (ERFE), 

and delta ERFE inversely correlated with delta hepcidin, suggesting a possible physiologic role for 

the EPO-ERFE-hepcidin axis in the setting of chronic kidney disease (CKD).

Conclusion—Our study provides further insight into factors potentially associated with 

erythropoiesis in pediatric kidney transplant recipients.
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Introduction

In pediatric kidney transplant recipients, anemia is common [1–6] and associated with worse 

allograft function [5, 6]. The etiology of post-transplant anemia is oftentimes complex 

and multifactorial. Factors that may affect hemoglobin concentrations include traditional 

parameters, such as kidney function, iron status, and certain medications, as well as novel 

parameters, such as fibroblast growth factor 23 (FGF23). In the current study, we evaluated 

associations among erythropoietic, iron-related, and FGF23 parameters in a cohort of 

pediatric kidney transplant recipients.

Insufficient iron availability for erythropoiesis is one of the most common causes of 

anemia. Decreased iron availability may be secondary to absolute iron deficiency or 

“functional” iron deficiency, where total body iron stores are sufficient, but the iron 

is sequestered intracellularly and thus unavailable for erythropoiesis. “Functional” iron 

deficiency, engendering a restrictive erythropoiesis, is mediated by increased levels of 

hepcidin. Hepcidin is a hormone produced by the liver [7] that acts on multiple cell 

types, binding to the cell membrane iron exporter ferroportin, causing its internalization 

and degradation, resulting in decreased iron export from cells into the circulation [8]. 

Hepcidin affects enterocytes, inhibiting dietary iron absorption; hepatocytes, preventing the 

mobilization of hepatic iron stores; and hepatic and splenic macro-phages, inhibiting the 

efflux of recycled iron [8]. In chronic kidney disease (CKD), as glomerular filtration rate 

(GFR) declines, circulating hepcidin concentrations increase [9, 10], likely contributed to by 

increased inflammation [11] and decreased renal clearance [7].

In the setting of impaired kidney function, in addition to dysregulated iron metabolism, 

relative or absolute EPO deficiency may also contribute to anemia. In non-CKD subjects, 

as hemoglobin concentrations decrease, serum EPO levels progressively increase in a 

compensatory response [12]. In CKD subjects, serum EPO levels also initially increase 

as hemoglobin declines; however, as kidney function worsens, EPO levels do not increase 

sufficiently enough to offset the decrease in hemoglobin, resulting in a relative EPO 

deficiency [12]. As kidney function continues to decline, in severe CKD, the relative EPO 

deficiency becomes absolute.

Erythroferrone (ERFE) is a recently characterized hormone that links erythropoiesis and 

iron metabolism. In response to EPO, ERFE is produced by erythroblasts and acts on the 

liver to decrease hepcidin production [13, 14]. Thus, ERFE couples erythropoietic stimuli 

with decreased hepcidin production, increasing iron availability for erythropoiesis. Whether 

decreased ERFE production in the setting of CKD contributes to increased hepcidin is 

unknown.

In addition to factors related to the EPO-ERFE-hepcidiniron axis, FGF23 has also recently 

been linked to anemia. FGF23 is a predominantly bone-derived phosphaturic hormone 

that regulates serum phosphate concentrations, and increases early in the course of adult 

and pediatric CKD [15–18]. In animal studies, data suggest that FGF23 may impair 
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erythropoiesis [19, 20], and in two large human CKD cohorts, higher FGF23 levels were 

independently associated with prevalent and incident anemia [21, 22].

It is unclear how contributory any or all of these factors may be to post-transplant anemia. 

Therefore, in the current study, we investigated associations among hemoglobin, EPO, 

ERFE, hepcidin, iron, FGF23, and other factors in pediatric kidney transplant recipients, 

hypothesizing that multiple factors are associated with hemoglobin concentrations.

Methods

This retrospective observational study included 59 pediatric kidney transplant patients from 

the University of California Los Angeles (UCLA) Pediatric Kidney Transplant Immune 

Monitoring Study. Patients were enrolled from August 2005 to November 2014. This study 

was approved by the UCLA Institutional Review Board (#11–002375) and conforms with 

the 1964 Helsinki declaration and its later amendments or comparable ethical standards and 

the Principles of the Declaration of Istanbul. Informed consent and patient assent, when 

appropriate, was obtained for all study subjects.

Study data were collected and managed using REDCap electronic data capture tools hosted 

at UCLA [23, 24]. REDCap (Research Electronic Data Capture) is a secure, web-based 

software platform designed to support data capture for research studies, providing: (1) an 

intuitive interface for validated data capture; (2) audit trails for tracking data manipulation 

and export procedures; (3) automated export procedures for seamless data downloads to 

common statistical packages; and (4) procedures for data integration and interoperability 

with external sources.

In this cohort, serum samples were obtained at a median time of 6.7 months post-transplant. 

In 29 patients, an additional serum sample was obtained at a median time of 16.0 months 

after the initial sample collection. Demographic, clinical, and biochemical data, including 

age, sex, race, ethnicity, height, cause of kidney failure, transplant type (deceased/living 

donor), type of immunosuppression, hemoglobin, hematocrit, creatinine, calcium, and 

phosphate were collected from chart review. Estimated glomerular filtration rate (eGFR) 

was calculated using the revised Schwartz equation [25]. Equimolar mycophenolate doses 

were calculated using the conversion equation 180 mg mycophenolate sodium (Myfortic) = 

250 mg mycophenolate mofetil (CellCept) [26].

Serum samples were assayed for iron, ferritin, hepcidin, EPO, ERFE, C-terminal 

(total) FGF23, and intact FGF23. Colorimetric methods were used to measure serum 

iron (Genzyme, Cambridge, MA, USA). In-house enzyme-linked immunosorbent assays 

(ELISA) were used to measure serum ERFE, as previously described [14]. Commercially 

available ELISA kits were used to measure serum ferritin (Abcam, Cambridge, MA, USA), 

serum hepcidin (Intrinsic Life Sciences, San Diego, CA, USA), serum EPO (R&D Systems, 

Minneapolis, MN, USA), serum C-terminal (total) FGF23 (Quidel, San Diego, CA, USA), 

and serum intact FGF23 (Quidel, San Diego, CA, USA). Whereas the total FGF23 assay 

detects both full-length, intact FGF23 and C-terminal FGF23 proteolytic fragments, the 

intact FGF23 assay detects only the full-length form. Serum inflammatory markers (TNF-
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α, IL-1β, IL-6, and IL-8) were measured using a magnetic bead kit (EMD Millipore, 

Darmstadt, Germany), with fluorescence quantified on a Luminex 200TM instrument. Given 

that normal hemoglobin, hematocrit, phosphate, and total FGF23 concentrations vary by 

age within the pediatric population, we used published normative data for hemoglobin and 

hematocrit [27], phosphate [28], and total FGF23 [29] to calculate age-related standard 

deviation scores (SDS) for these parameters. The SDS, also known as a z-score, is defined as 

the number of standard deviations an observation is above the mean.

A cross-sectional analysis was performed using data collected from the 59 study subjects 

and their initial serum parameters. Descriptive data are expressed as numbers and 

percentages for categorical data, or as medians and interquartile ranges (IQR) for continuous 

data. Correlations among variables were analyzed using Pearson correlation coefficients; 

given non-normal data distributions, EPO, ERFE, and FGF23 values were log-transformed 

prior to analysis. Multivariable linear regression analysis was used to identify associations 

between independent variables and the dependent variable of hemoglobin SDS. In the subset 

of 29 subjects in whom two serum samples were collected over time, a longitudinal analysis 

was performed. Here, correlations among parameter changes over time (delta values) were 

analyzed using Pearson correlation coefficients. P-values <0.05 were considered statistically 

significant. Statistical analysis was performed using GraphPad Prism 9.0.1 (San Diego, CA, 

USA).

Results

The cross-sectional analysis included 59 pediatric kidney transplant recipients, with a 

median (IQR) age of 16.3 (13.5, 18.6) years, assessed at a median time of 6.7 (5.5, 21.0) 

months post-transplant (Table 1). 61% of study subjects were male, and 69% were white. 

Nearly all subjects (92%) were on mycophenolate immunosuppression, whereas only 63% 

were on steroid-based immunosuppression. The median eGFR was 67 (54, 87) ml/min/1.73 

m2, and the median hemoglobin concentration was 12.4 (11.2, 13.3) g/dl. The median 

hemoglobin SDS was −2.1 (−3.3, −1.1). 95% of the cohort had a hemoglobin concentration 

below the mean for age (SDS < 0); 80% of the cohort had a hemoglobin concentration at 

least one standard deviation below the mean for age (SDS < −1); and 51% of the cohort had 

a hemoglobin concentration at least two standard deviations below the mean for age (SDS < 

−2). Additional baseline characteristics are shown in Table 1.

In univariable analysis (Table 2), hemoglobin SDS was positively associated with eGFR and 

calcium, and was inversely associated with log-transformed EPO, log-transformed ERFE, 

log-transformed total FGF23, and mycophenolate dose (Fig. 1a–e). Hemoglobin SDS was 

not significantly associated with iron, ferritin, hepcidin, intact FGF23, phosphate, TNF-α, or 

IL-8. Correlations with IL-1β and IL-6 were not assessed, as most subjects had undetectable 

values for these cytokines. Correlations with prednisone dose were also not assessed, 

given the limited number of study subjects on steroid-based immunosuppression. Notably, 

EPO and ERFE values were highly correlated, suggesting a strong link-age between these 

hormones.
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In multivariable linear regression analysis (Table 3), we assessed independent associations 

between log-transformed total FGF23 and hemoglobin SDS. In different models, we 

adjusted for different co-variables. Each model had 10–20 subjects per independent variable 

(to avoid overfitting), normally distributed residuals, and no evidence of collinearity or 

multicollinearity. Total FGF23 remained significantly associated with hemoglobin SDS 

in models adjusted for eGFR; iron parameters; EPO and ERFE; phosphate and calcium; 

inflammatory markers; or mycophenolate dose.

In the longitudinal analysis, which included 29 subjects (Table 4), the change in hemoglobin 

SDS over time was inversely associated with the change in hepcidin over time (Fig. 2a), 

but not changes in other variables. Notably, delta EPO was positively associated with delta 

ERFE, and delta ERFE was inversely associated with delta hepcidin (Fig. 2b,c). Delta 

hepcidin was inversely associated with delta iron; however, the association did not reach 

statistical significance (Fig. 2d).

Discussion

In our cohort of pediatric kidney transplant recipients, we evaluated associations among 

hemoglobin concentrations, erythropoietic factors, iron-related factors, and FGF23. There 

was a high prevalence of anemia, consistent with what has been observed in other pediatric 

kidney transplant studies [1–6]. Interestingly, the parameter most strongly associated with 

hemoglobin SDS was total FGF23 concentrations, which were inversely associated with 

hemoglobin SDS. In multiple linear regression analysis, this inverse association remained 

significant, independent of kidney function, iron parameters, EPO, and inflammation. This 

result is similar to what has been observed in large adult CKD cohorts, where higher total 

FGF23 levels were independently associated with both prevalent and incident anemia [21, 

22].

We measured plasma FGF23 concentrations using both a C-terminal (total) FGF23 assay 

and an intact FGF23 assay. The total FGF23 assay detects both intact FGF23 protein and 

C-terminal FGF23 proteolytic fragments, whereas the intact FGF23 assay detects only full­

length FGF23. Intracellular regulation of FGF23 is complex in that FGF23 is regulated at 

both the transcriptional and post-translational stages. Various local and systemic factors can 

increase FGF23 mRNA transcription, leading to increased FGF23 translation. However, the 

degree of intracellular post-translational proteolytic cleavage determines how much intact 

vs. cleaved FGF23 is secreted from the cell into the circulation. As such, circulating total 

FGF23 measurements reflect the amount of FGF23 transcription/translation, but circulating 

intact FGF23 measurements are a reflection of the net effects on FGF23 mRNA transcription 

and FGF23 post-translational cleavage.

In our cohort, total FGF23 was strongly and independently associated with hemoglobin, 

but intact FGF23 was not. Inverse associations between total FGF23 concentrations and 

hemoglobin have been previously observed [21, 22, 30–32]; however, only one of these 

studies also assessed intact FGF23 [31]. In this study, Bielesz et al. evaluated associations 

between FGF23 concentrations and hemoglobin in 225 adult CKD patients [31]. After 

adjusting for eGFR, albumin, gender, and diabetes, total FGF23 but not intact FGF23 was 
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associated with hemoglobin (total FGF23: β = −0.28, p = 0.001; intact FGF23: β = −1.04, p 
= 0.057). However, further adjustment for iron parameters (serum iron, ferritin, transferrin, 

transferrin saturation, and hepcidin) weakened the association between total FGF23 and 

hemoglobin (β = −0.15, p = 0.126), suggesting that the observed inverse association between 

total FGF23 and hemoglobin may have been at least partially mediated by iron status. Pre­

clinical murine studies have demonstrated that iron deficiency concurrently increases Fgf23 
mRNA transcription and FGF23 post-translational proteolytic cleavage, resulting in cellular 

secretion of large quantities of FGF23 fragments, increasing circulating concentrations of 

total FGF23 greatly out of proportion to intact FGF23 [33–36]. Consistent with these 

findings, in human cohorts, serum iron concentrations are inversely associated with total 

FGF23 but not intact FGF23 [37–39]. However, in the present study, the inverse association 

between total FGF23 and hemoglobin remained significant after adjustment for serum 

iron, ferritin, and hepcidin, suggesting the possible influence of factors unrelated to iron 

metabolism.

Besides iron deficiency, increased EPO [40–45] and inflammation [35] can both couple 

increased FGF23 transcription with increased FGF23 post-translational proteolytic cleavage, 

resulting in markedly increased FGF23 fragment production. Therefore, it is possible that 

increased EPO and/or inflammation may at least partially mediate inverse associations 

between total FGF23 levels and hemoglobin. However, in our study and the study 

by Bielesz et al. [31], the association between total FGF23 and hemoglobin remained 

significant after adjustment for EPO and inflammatory markers, suggesting that neither 

EPO nor inflammation had a major influence. Potential mechanisms underlying the inverse 

association between total FGF23 and hemoglobin remain unclear and require further study.

Our study and the study by Bielesz et al. [31] did not observe significant associations 

between intact FGF23 concentrations and hemoglobin. However, previous murine studies 

have demonstrated that intact FGF23 may have a negative effect on erythropoiesis. In wild­

type mice injected with recombinant intact FGF23 protein, acute decreases in kidney Epo 
mRNA expression [44], serum EPO concentrations [19], and the number of bone marrow 

erythroid colonies [19] were observed; such effects could result in lower hemoglobin 

concentrations. Differences in magnitude and/or duration of intact FGF23 exposure may 

have contributed to the negative findings in the human cohorts. Whereas the murine studies 

achieved high circulating concentrations of intact FGF23 (mean values of ~1500 pg/ml) 

[19, 44], the intact FGF23 concentrations observed in the human cohorts were much 

lower. Also, whereas the murine studies evaluated the acute effects of high intact FGF23 

levels (within 24 h of administration) [19, 44], the human studies were cross-sectional in 

nature, potentially reflecting both chronic and/or compensatory effects related to interactions 

between intact FGF23 and erythropoiesis.

Besides total FGF23, other factors were also associated with hemoglobin. EPO and 

hemoglobin concentrations were inversely correlated. In non-CKD subjects, and in 

those with mild to moderate CKD, as hemoglobin concentrations decrease, serum 

EPO levels progressively increase in response [12]. In our cohort with relatively mild 

kidney dysfunction, this compensatory response likely contributed to the observed inverse 

association. We also observed a strong positive correlation between serum calcium 
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and hemoglobin concentrations, and an inverse correlation between serum phosphate 

and hemoglobin concentrations. Bielesz et al. [31] observed similar results; possible 

mechanisms contributing to these associations are unclear. Lastly, mycophenolate dose was 

inversely correlated with hemoglobin concentrations. In kidney transplant recipients, higher 

mycophenolate exposure is associated with an increased incidence of anemia [46].

In our cohort, we measured factors related to erythropoiesis and iron availability, specifically 

factors related to the EPO-ERFE-hepcidin-iron axis. In the cross-sectional cohort, we 

observed a strong positive association between serum EPO and ERFE, consistent with the 

known stimulatory effect of EPO on ERFE production [13, 14]; however, serum ERFE 

did not significantly correlate with hepcidin. In previous cross-sectional studies of CKD 

cohorts, strong associations between EPO and ERFE were observed [47], but associations 

between ERFE and hepcidin were variable [47–49], possibly contributed to by the multiple 

interrelated factors that affect hepcidin levels in CKD.

Yet, in the longitudinal cohort, increases in EPO were strongly associated with increases 

in ERFE, and increases in ERFE were associated with decreases in hepcidin. Decreases in 

hepcidin were not significantly associated with changes in serum iron, but were significantly 

associated with increases in hemoglobin. Although ERFE may play a more prominent role 

in the setting of stress erythropoiesis [50], our findings suggest a possible physiologic role 

for the EPO-ERFE-hepcidin-iron axis in the setting of CKD.

Our study has limitations and strengths. The primary limitations of our study are that 

it is retrospective, observational, and has a small sample size. Also, there is incomplete 

biochemical characterization, as we lack potentially relevant mineral metabolism factors 

such as vitamin D and parathyroid hormone. The main strength of our study is that, to our 

knowledge, it is the first study to evaluate associations between FGF23 and hemoglobin 

in pediatric kidney transplant recipients. We measured both total and intact FGF23 

levels, demonstrating that total FGF23, but not intact FGF23, was inversely associated 

with hemoglobin. This intriguing association was independent of kidney function, iron 

status, EPO levels, and inflammatory markers, suggesting possible contributions from 

other underlying factors. Our study is also the first to measure serum ERFE levels in 

an exclusively pediatric CKD cohort. We observed associations among changes in EPO, 

EFRE, and hepcidin concentrations, providing more insight into the nature of this recently 

characterized hormone. Overall, our study highlights novel factors potentially associated 

with erythropoiesis in pediatric kidney transplant recipients. Future clinical research in 

this area may focus on evaluating these associations in larger CKD cohorts, and future 

pre-clinical research may focus on investigating whether therapeutically targeting FGF23 or 

hepcidin improves anemia in the setting of CKD.
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Fig. 1. 
Correlations with hemoglobin standard deviation scores (SDS). Presented are the Pearson 

correlation coefficients for hemoglobin SDS vs. (a) estimated glomerular filtration rate 

(eGFR), (b) serum erythropoietin, (c) serum total fibroblast growth factor 23 (FGF23), (d) 

serum calcium, and (e) mycophenolate dose
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Fig. 2. 
Correlations among changes in erythropoietic parameters over time. Presented are the 

Pearson correlation coefficients for (a) delta hemoglobin standard deviation score (SDS) 

vs. delta hepcidin, (b) delta erythroferrone vs. delta erythropoietin, (c) delta hepcidin vs. 

delta erythroferrone, and (d) delta iron vs. delta hepcidin
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Table 1

Demographic data, clinical characteristics, and baseline serum parameters of the cross-sectional cohort (n = 

59). GFR: glomerular filtration rate; SDS: standard deviation score; FGF23: fibroblast growth factor 23

Variable N (%)/Median (IQR)

Age, years 16.3 (13.5, 18.6)

Sex, male 36 (61%)

Race:

 White 41 (69%)

 Asian 4 (7%)

 Black 4 (7%)

 Other 10 (17%)

Etiology of kidney failure:

 Obstructive uropathy 16 (27%)

 Dysplasia 9 (15%)

 Focal segmental glomerulosclerosis 8 (14%)

 Glomerulonephritis 7 (12%)

 Polycystic kidney disease 2 (3%)

 Other or unknown 17 (29%)

Deceased donor 36 (61%)

Immunosuppression:

 Prednisone 37 (63%)

 Mycophenolate 54 (92%)

 Calcineurin inhibitor 57 (97%)

Prednisone dose (mg/kg/day, n = 37) 0.09 (0.07, 0.15)

Mycophenolate Dose (mg/m2/day, n = 54) 892 (732, 1117)

Other medications:

 Epoetin alfa 11 (19%)

 Ferrous sulfate 9 (15%)

 Calcium carbonate 3 (5%)

 Neutra-Phos 3 (5%)

Epoetin alfa dose (IU/kg/week, n = 11) 299 (131, 466)

Months post transplant 6.7 (5.5,21.0)

Estimated GFR (ml/min/1.73 m2) 67 (54, 87)

Hemoglobin (g/dl) 12.4 (11.2, 13.3)

Hemoglobin SDS −2.1 (−3.3, −1.1)

Hematocrit (%) 37.2 (33.6, 40.1)

Hematocrit SDS −1.9 (−3.3, −1.0)

Iron (μg/dl) 82 (63, 108)

Ferritin (ng/ml) 117 (51, 338)

Hepcidin (ng/ml) 34 (26, 78)

Erythropoietin (mIU/ml) 9.2 (6.5, 14.2)

Erythroferrone (pg/ml) 25 (10, 40)
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Variable N (%)/Median (IQR)

Total FGF23 (RU/ml) 68 (58, 98)

Total FGF23 SDS 0.2 (−0.4, 1.7)

Intact FGF23 (pg/ml) 130 (55, 226)

Phosphate (mg/dl) 4.1 (3.3, 4.6)

Phosphate SDS −0.9 (−2.0, 0.1)

Calcium (mg/dl) 9.6 (9.3, 9.8)

TNF-α (pg/ml) 9.2 (6.8, 13.4)

IL-10β (pg/ml) 0.0 (0.0, 2.3)

IL-6 (pg/ml) 0.0 (0.0, 4.7)

IL-8 (pg/ml) 12.6 (4.3, 31.8)
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Table 3

Multivariable linear regression analysis to evaluate independent associations between log-transformed total 

FGF2 3 (independent variable) and hemoglobin SDS (dependent variable). VIF: variance inflation factor; 

FGF23: fibroblast growth factor 23; eGFR: estimated glomerular filtration rate; EPO: erythropoietin; ERFE: 

erythroferrone

Model Independent variables Coefficient p-value VIF R 2 

1 Log Total FGF23 −3.496 <0.001 1.37 0.40

eGFR 0.016 0.07 1.37

2 Log Total FGF23 −4.354 <0.001 1.02 0.40

Iron −0.004 0.52 1.06

Ferritin −0.001 0.50 1.34

Hepcidin −0.002 0.77 1.26

3 Log Total FGF23 −2.930 0.001 1.06 0.42

Log EPO −1.924 0.006 1.61

Log ERFE −0.199 0.61 1.55

4 Log Total FGF23 −3.152 <0.001 1.45 0.45

Phosphate SDS −0.104 0.48 1.06

Calcium 0.945 0.021 1.52

5 Log Total FGF23 −4.303 <0.001 1.11 0.38

TNF-α −0.020 0.40 1.48

IL-8 0.008 0.24 1.39

6 Log Total FGF23 −3.301 <0.001 1.07 0.30

Mycophenolate Dose −0.002 0.06 1.07
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