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Abstract
Clustering and machine learning-based predictions are increasingly used for environmental data analy-

sis and management. In fluvial geomorphology, examples include predicting channel types throughout a
river network and segmenting river networks into a series of channel types, or groups of channel forms.
However, when relevant information is unevenly distributed throughout a river network, the discrepancy be-
tween data-rich and data-poor locations creates an information gap. Combining clustering and predictions
addresses this information gap, but challenges and limitations remain poorly documented. This is espe-
cially true when considering that predictions are often achieved with two approaches that are meaningfully
different in terms of information processing: decision trees (e.g., RF: random forest) and deep learning
(e.g., DNN: deep neural networks). This presents challenges for downstream management decisions and
when comparing clusters and predictions within or across study areas. To address this, we investigate the
performance of RF and DNN with respect to the information gap between clustering data and prediction
data. We use nine regional examples of clustering and predicting river channel types, stemming from a
single clustering methodology applied in California, USA. Our results show that prediction performance
decreases when the information gap between field-measured data and geospatial predictors increases. Fur-
thermore, RF outperforms DNN, and their difference in performance decreases when the information gap
between field-measured and geospatial data decreases. This suggests that mismatched scales between field-
derived channel types and geospatial predictors hinder sequential information processing in DNN. Finally,
our results highlight a sampling trade-off between uniformly capturing geomorphic variability and ensuring
robust generalization.

K E Y W O R D S

Fluvial geomorphology, Channel type classification, Random forest, Deep learning, Information theory

1 INTRODUCTION

Machine learning (ML) is gaining rapid popularity in the nat-
ural sciences due to its ability to identify patterns in large and
complex datasets (Valentine and Kalnins 2016, Bergen et al.
2019, Reichstein et al. 2019). ML corresponds to pattern recog-
nition that self-improves through experience (Michie 1968),
and can be broadly categorized into clustering and prediction.
Clustering, such as hierarchical clustering, identifies groups of
similar patterns, or clusters, and assigns a cluster membership,
or label, to each observation. For example, in watershed sci-
ences, including geomorphology and hydrology, ML has been

used to cluster patterns of channel form and hydrologic re-
sponse at regional, continental, and global scales (e.g., Lane
et al. 2017a, Gaucherel et al. 2017, Wolfe et al. 2019, Hen-
shaw et al. 2019, Sergeant et al. 2020, Merritt et al. 2021, Lane
et al. 2017b, McManamay et al. 2018, Byrne et al. 2020b,
Clubb et al. 2019, Dallaire et al. 2019, Walley et al. 2020,
Rabanaque et al. 2021). Alternatively, ML prediction lever-
ages a model, such as a decision tree, to approximate the
relationship between input data and pre-labeled output. For
example, groups of channel forms were predicted by Flores
et al. (2006) and Beechie and Imaki (2014) using prior labels
from Montgomery and Buffington (1997) and Leopold and
Wolman (1957), respectively.

Combining ML clustering and prediction is valuable when
relevant information is unevenly distributed throughout the
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2 GUILLON ET AL.

studied system. For example, in river networks, locations with
surveyed geometry and measured discharge are data-rich for
predicting sediment transport compared to ungauged, unsur-
veyed locations where only coarser-scale remote sensing data
is available. This disparity between data-rich and data-poor lo-
cations is an information gap that has been addressed by two
main approaches: predict-first and cluster-first.

The predict-first approach predicts missing information at
data-poor locations based on data-rich locations then clusters
the resulting enhanced dataset to identify large-scale patterns.
For example, McManamay et al. (2018) used ML to predict
prior hydrologic classes, sediment size and stream tempera-
ture. The enhanced dataset of stream temperature was then
clustered and combined with other binned datasets to explore
the diversity in stream habitats throughout the entire network.
In another example, Rabanaque et al. (2021) identified fluvial
landforms from orthophotographs, predicted their occurrence
throughout the network from coarser-scale satellite imagery,
then used that information to extract geomorphic variables
for clustering. In contrast, the cluster-first approach clusters
at data-rich locations then predicts the identified patterns
throughout the network, including at data-poor locations.

The cluster-first approach leverages local domain knowl-
edge, which is crucial when facing ground-truthing require-
ments for stakeholder buy-in (Abrahart et al. 2012). For
example, Byrne et al. (2020b) clustered field-measured chan-
nel attributes then the resulting clusters were predicted
throughout the network by Guillon et al. (2020). In another
example, Merritt et al. (2021) used a three-step approach: pre-
dicting daily streamflow at gauges with incomplete records
from those with complete records, clustering the enhanced
dataset, and then predicting the resulting clusters throughout
the network. Regardless of the approach, obtaining evenly-
distributed information throughout a river network has numer-
ous eco-geomorphic applications such as automating the river
segmentation problem described by Nardini et al. (2020).

Despite the growing use of combining ML clustering and
predictions in watershed sciences, challenges and limitations
remain poorly documented. The work of Peñas et al. (2014)
in hydrology and Kasprak et al. (2016) in geomorphology are
notable exceptions. Peñas et al. (2014) found weak agreement
between clusters from cluster-first and predict-first approaches.
This incongruence can significantly impact management deci-
sions. Similarly, Kasprak et al. (2016) reported loosely compa-
rable clusters when using empirical approaches for identifying
channel forms in a single watershed.

Further, the predict-first approach is only tractable if rele-
vant information can be reliably predicted. When information
is evenly distributed (i.e. no information gap), the problem is
straightforward, and a single-step approach can be used (e.g.,
Walley et al. 2020). However, if data is sparse, the information

gap between data-rich and data-poor locations is significant,
or both, predicting first may not be effective. For example,
channel forms defined from surveyed topography cannot be re-
liably predicted from coarse-scale data, but clusters of these
forms can be. Here clustering essentially compresses informa-
tion by grouping similar patterns, reducing the information gap
and making the predictions tractable. Importantly, clustering
at data-rich locations results in clusters that are trivially sepa-
rable using clustering data but unlikely to be equally separable
using predictions data.

Having discussed how cluster-first and predict-first ap-
proaches differ, we hereafter focus on the predict-first ap-
proach and turn to another aspect rarely addressed in the
watershed sciences literature: the impact of differing infor-
mation processing on the performance of ML predictions.
Information processing refers to the specific algorithmic steps
applied to transform data and recognize patterns. In particular,
the information processing is meaningfully different between
the two current main ML predictions approaches: decision
trees and deep learning.

A decision tree (DT) sequentially thresholds an input vari-
able, or predictor, in a tree-like structure that segments the
predictor space. The resulting subspaces correspond as exclu-
sively as possible to a unique label, a characteristic called
purity. At each split of a DT, the predictor maximizing purity is
chosen by an information selection process based either on the
Gini coefficient (Gini 1936) or an information theory measure
(e.g., entropy, see Appendix A). While other variations of DTs
are gaining traction (e.g., Chen and Guestrin 2016, Ke et al.
2017), the most popular remains random forest (RF, Breiman
et al. 1984). In RF, the forest is an ensemble of DTs with each
one repeating the information selection process on a random
subset of predictors. Repeating this process while subsampling
observations leads to (mostly) uncorrelated trees, making the
ensemble decision process robust to noise, resistant to out-
liers, and allowing generalization. The popularity of RF is
further explained by its conceptual simplicity, explainability,
and speed. DTs have been used in geosciences for over half a
century (Newendorp 1976) and some recent applications with
RF include predicting sediment transport (Bhattacharya et al.
2007), global seafloor sediment porosity (Martin et al. 2015),
sediment rating curves (Vaughan et al. 2017), stream habitats
(McManamay et al. 2018), and mapping fluvial landforms (Ra-
banaque et al. 2021), subaerial fluvial sediment facies (Gómez
et al. 2022), and channel forms (Guillon et al. 2020).

Deep learning, the second main approach for ML predic-
tions, repeats and stacks the basic structure of an artificial
neural network, and is widely used in complex engineering ap-
plications with image, video, text, and time series data (LeCun
et al. 2015). While deep learning was first applied in geo-
sciences decades ago (Zhao and Mendel 1988, Dowla et al.
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MIND THE INFORMATION GAP: HOW SAMPLING AND CLUSTERING IMPACT THE PREDICTABILITY OF REACH-SCALE CHANNEL TYPES 3

1990), its applications are recently reemerging in a variety of
areas, including predicting discharge (e.g., Kratzert et al. 2019,
Worland et al. 2019, Tennant et al. 2020), rainfall (Pan et al.
2019, Gauch et al. 2021, Adewoyin et al. 2021), landslide sus-
ceptibility (Ermini et al. 2005), river width (e.g., Ling et al.
2019), forecasting (e.g., Fleming et al. 2015) or reconstruct-
ing floods (e.g., Bomers et al. 2019), detecting sediment grain
size (Chen et al. 2022), and mapping topographic features
(Valentine et al. 2013), drainage networks (Mao et al. 2021),
riverscape (Alfredsen et al. 2022), and riverbed sediment size
(Marchetti et al. 2022). An artificial neural network consists
of a succession of layers of connected neurons. Each neuron
holds a weight describing its connection to neurons in the next
layer and some form of activation functionally combining in-
puts from neurons in the previous layer. The first, last, and
intermediate layers correspond to input, output, and hidden
layers, respectively.

A deep neural network (DNN) has more than one hid-
den layer and numerous architectures exist to arrange the
hidden layers and their connections (see Shen (2018) for
examples in hydrologic sciences). Importantly, DNNs learn
distributed representations: different patterns of neural activity
correspond to different labels, but each neuron and its con-
nections store patterns for many non-neighboring observations
(Hinton 1984, Bengio et al. 2013). Such distributed represen-
tations efficiently capture irregular patterns stemming from
multiple, interacting, hierarchical inputs (Bengio et al. 2013).
Specifically, the sequential processing of data through the hid-
den layers hierarchically discovers meaningful abstractions by
optimally decoupling dependent inputs, extracting relevant in-
formation from noise and compressing it for generalization
(Lin et al. 2017, Tishby and Zaslavsky 2015, Shwartz-Ziv and
Tishby 2017, Bény 2013, Mehta and Schwab 2014, Li and
Wang 2018, Koch-Janusz and Ringel 2018, Yang et al. 2023).
For example, DNNs have been shown to sequentially learn
meaningful visual (Bau et al. 2020) or mathematical (Amey
et al. 2021) representations leading to increasing performance
through the successive layers (Schilling et al. 2021, Erdmenger
et al. 2021, Cao et al. 2022, Fischer et al. 2022, Yang et al.
2023, Hartmann et al. 2021). In contrast, sequential infor-
mation compression is absent from DTs, which learn global
patterns for neighboring observations; an efficient approach
when observations are limited and with tabular data (i.e. a
table with columns and rows for variables and observations, re-
spectively). In watershed sciences, where limited, tabular data
is common, it remains unclear whether RF or DNN perform
better.

We now consider the differing information processing of RF
and DNN in the context of using a cluster-first approach to ad-
dress an information gap. We ask the following three research
questions:

Q1 How does clustering at data-rich locations impact subse-
quent predictions at data-poor locations?

Q2 In such case, how does the difference in information pro-
cessing between RF and DNN relate to their respective
statistical learning performance?

Q3 As some clusters may be more adequately described by
prediction data than others, the information gap is cluster-
dependent: for which cluster(s) is the information gap the
largest?

We hypothesize that evaluating the information gap between
clustering data and prediction data is central to answering
these questions and that the difference in information process-
ing between DNN and RF prognosticates their performance.
To answer these questions, we leverage nine regional examples
of clustering and predicting river channel forms, stemming
from a single clustering methodology (Byrne et al. 2020b)
applied in California, USA. We characterize each regional
set of clusters of channel form by the information present in
field-measured channel attributes and by the performance of
subsequent DNN and RF predictive models using geospatial
predictors. Outcomes from this analysis yield general implica-
tions for the sampling strategies at the core of ML predictions
in watershed sciences and associated stratified management
decisions.

2 METHODS

We formalize hereafter this study’s experimental design, de-
scribe the prior clustering of California channel forms, and ex-
plain our approach for evaluating the information gap between
clustering and predictions data, assessing the performance of
ML predictive models, and investigating the linkages between
clustering, information gap, and ML performance.

2.1 Experimental Design

This study’s experimental design focuses on the interaction be-
tween clustering data and prediction data (Fig. 1a), setting it
apart from related works by the authors (Byrne et al. 2020b,
Lane and Byrne 2021, Guillon et al. 2020, Lane et al. 2021).
Byrne et al. (2020a) used a stratified sampling process on strat-
ification data xs to obtain field sampling data xf and clustering
Mcl was used to estimate the joint probability distribution
p(x, y) between clustering data x and labels y:

Mcl : x p(x,y)
––––––→ y (1)

Labels y take discrete values over a set of clusters to indi-
cate membership. For example, with clusters {c1, c2}, the first
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4 GUILLON ET AL.

a)

How does clustering at data-rich locations impact predictions at data-poor locations?

correlation matrix
interpretation

- area-under-curve (AUC)
- accuracy
- tuning entropy
- entropy rate

see Figure 3; section (2.4)

labels, y predicted
labels, ŷ  

performance
metric

regions

see section (2.2)

clustering
characteristics

sampling
process

- surface area
- number of observations
- number of channel types
- number of con�ned channel types

- median Jensen-Shannon distance
- minimum Jensen-Shannon distance

see c); section (2.3)

�eld-measured
data, xf

geospatial
data, xg

information gap:
cluster dissimilarity from 

�eld-measured data

b)

strati�cation
data, xs

clustering
data, x

geospatial
data, xg

sampling
process

clustering

predictive
ML modelpredictors, X predicted

labels, ŷ  

classes

labels, y

clustering
(Byrne et al., 2020)

prediction
(Guillon et al., 2020)

�eld-measured
 data, xf

correlation matrix

supported
hypothesis

unsupported
hypothesis

c)
(Lane and Byrne, 2021)(Byrne et al., 2020)

similar values: low Jensen-Shannon distance

dissimilar values: high Jensen-Shannon distance
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rescaled values of channel depth
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channel type A channel type B

channel type A
channel type Bthis study

H1: prediction performance decreases when the information
gap between �eld-measured and geospatial data increases

H2: the di�erence in performance between RF and DNN
decreases when the information gap decreases

H3: clusters with the smallest spatial footprint have
more impact on the information gap

1

2
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4
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channel types
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l t
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regional matrix
of average pairwise

Jensen-Shannon
distance

median
minimum

Evaluating information gap with cluster dissimilarityGeneral framework for clustering at data-rich locations then predicting at data-poor locations

model
performance

F I G U R E 1 Experimental design

five labels could be: {c1, c2, c2, c1, c1}. This means that the sec-
ond and third observations belong to c2, whereas the others
belong to c1. Guillon et al. (2020) used geospatial data xg and
a predictive model Mpred, was used to estimate the probability
distribution of the labels y given the value taken by predictors
X, p(y | X):

Mpred : X p(y | X)
––––––––→ y (2)

However, when labels used for predicting stem from
prior clustering, predicting is conditioned on the clustering

and Mpred follows the conditional probability distribution
p(y | X, p(x, y)). Consequently, predicted labels depend on
both the clustering Mcl and predictive models Mpred, as does
any performance metrics of Mpred comparing observed and
predicted labels.

Byrne et al. (2020a) combined field sampling and stratifica-
tion data to obtain clustering data (x = {xf, xs}) and Guillon
et al. (2020) combined geospatial and stratification data to ob-
tain predictors (X = {xg, xs}). Thus, the explicit form of the
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predictive model takes into account both clustering (1) and
predictor data (2):

Mpred : X
p(y | xg, xs, p(xs, xf, y))

–––––––––––––––––––––––→ y (3)

Catchment geospatial data (included in X) typically has 10-
30 m resolution, which is notably coarser than field-measured
data (included in x) with 0.1-1.0 m resolution. Therefore, an
information gap exists between clustering data and prediction
data. Further, if spatial resolution drives the difference in rel-
evant information, clusters with the smallest spatial footprint
are more likely be inadequately described by coarser-scale
data and would therefore be disproportionately impacted. The
more dissimilar the clusters are with respect to field-measured
data, the smaller the information gap is. For example, coarse-
scale data likely contains relevant information to discriminate
between a river meandering in a wide valley and a mountain
stream in narrow valley, but may not contain relevant informa-
tion to discriminate between two types of mountain streams
both occuring in narrow valleys.

Taking the above into consideration, we pose three
hypotheses linked to our research questions:

H1 Prediction performance decreases when the information
gap between field-measured and geospatial data in-
creases;

H2 The difference in performance between RF and DNN
decreases when the information gap between field-
measured and geospatial data decreases;

H3 Clusters with the smallest spatial footprint, here valley-
confined channels, have a disproportionate impact on the
information gap between field-measured and geospatial
data.

A correlation analysis was conducted to test these
hypotheses across nine regions by examining three groups of
variables detailed hereafter: clustering characteristics, informa-
tion gap, and prediction performance (Fig. 1b).

2.2 Prior Clustering of California Channel
Forms

As a scientific testbed, we used nine independent sets of clus-
ters of channel forms established for nine government-defined
water management regions in California (USA) (SWRCB
2019). Each cluster groups observations with similar channel
forms therefore defining a channel type. Here, a channel type
refers to a stream channel interval with relatively uniform char-
acteristics over lengths of 10-20 channel widths. This scale is
useful in relating channel morphology to watershed and chan-
nel processes, as well as habitat characteristics (Montgomery
and Buffington 1997, Byrne et al. 2020a). California faces

many natural resource challenges (e.g., Lane et al. 2018) and
has diverse physiographic features (Mount 1995). The nine
study regions vary in terms of size, hydro-climate, physiogra-
phy, and geology (Fig. 2, Table 1). The adjacent Sacramento
(SAC) and San-Joaquin-Tulare (SJT) regions mainly pertain
to their namesake river basins, spanning the alluvial Central
Valley and the granitic Sierra Nevada mountain range. The
northern, wetter SAC region includes the volcanic Modoc
Plateau. The South Coast (SC), South Central Coast (SCC),
North Central Coast (NCC), South Fork Eel (SFE) and North
Coast (NC) regions are all coastal, winter rain-dominated re-
gions, transitioning from drier to wetter climates from south to
north. These regions correspond to the Southern and Northern
Coast Ranges along the San Andreas Fault. The Klamath (K)
region is the wettest region and marks the southern extent of
the Cascade Range. Conversely, the South East (SECA) region
is overall the driest region and marks the inception of the Basin
and Range Province. The regions vary in area from 1,785 km2

for SFE to 107,622 km2 for SECA (Table 1), spanning two
orders of magnitude.

Previous studies had varying sampling densities across dif-
ferent regions due to financial and logistical constraints, as
well as the scarcity of unaltered examples for certain types of
channels (see Table 2). For instance, small, low-order, valley-
unconfined streams in mountain meadows or valley floors are
often altered by land and water management activities. Each re-
gion had between 63 to 290 observations, with 5 to 10 channel
types per region. To capture natural variability, field sampling
locations were selected based on stratified random sampling
using four GIS-derived variables: 10-m digital elevation model
channel slope, valley confinement, drainage area and sediment
supply, as detailed in Byrne et al. (2020b), Lane and Byrne
(2021). Valley confinement was calculated as the perpendicu-
lar distance between the stream interval centerline and valley
walls on both sides of the interval (Byrne et al. 2020b). For
every 200-m stream interval in California, valley confinement
was averaged over four cross-sections. Sediment supply was

Region ID Geographical region Observations Channel types Area (km2)

K Klamath 105 7 (3) 27,747

NC North Coast 201 8 (6) 12,504

NCC North Central Coast 103 6 (4) 13,263

SAC Sacramento Basin 290 10 (4) 70,130

SC South Coast 67 5 (2) 36,982

SCC South Central Coast 119 8 (3) 26,595

SECA South East California 63 5 (2) 107,622

SFE South Fork Eel 96 7 (5) 1,785

SJT San-Joaquin-Tulare 65 6 (4) 83,498

T A B L E 1 Regional clustering characteristics. The number
of confined channel types is reported between parenthesis.
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6 GUILLON ET AL.

F I G U R E 2 Field sites location in California (USA) across nine distinct regions (black dots). Ecoregions are displayed as
a proxy combining geology, soils, vegetation, climate, and hydrology Omernik and Griffith (2014). Inset shows the general
location. K: Klamath; NC: North Coast ; NCC: North Central Coast; SAC: Sacramento Basin ; SC: South Coast ; SCC: South
Central Coast; SECA: South East California; SFE: South Fork Eel; SJT: San-Joaquin-Tulare.
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Region
Channel type K NC NCC SAC SCC SC SECA SFE SJT

1 18 8 23 6 9 9 14 12 5
2 4 32 21 27 7 8 8 4 19
3 1 17 9 36 21 6 8 12 6
4 5 14 21 33 27 23 19 28 9
5 14 5 24 43 18 21 14 30 4
6 16 28 24 45 8 – – 4 22
7 47 – 36 33 16 – – 6 –
8 – – 43 24 13 – – – –
9 – – – 27 – – – – –
10 – – – 16 – – – – –

Total 105 104 201 290 119 67 63 96 65
Min 1 5 9 6 7 6 8 4 4

St. Dev. 15.56 10.76 10.27 11.85 7.00 7.96 4.67 10.98 7.73
T A B L E 2 Distribution of the number of observations across all regions.

estimated using the revised universal soil loss equation (Re-
nard et al. 1997) using statewide datasets for rainfall-runoff
erosivity, soil erodibility, slope characteristics, and land cover
(SWRCB 2017).

Prior to the present study, for each region, channel forms
were clustered into channel types using the analytical method-
ology of Lane et al. (2017b), which was updated by Byrne
et al. (2020b) and reported in Byrne et al. (2019), Guillon et al.
(2019), Byrne et al. (2020a) (Fig. 1a). This approach relied
on hierarchical clustering based on field-measured channel at-
tributes, including bankfull channel width and depth, width
and depth variability, grain size metrics, and channel slope.
In addition, two stratification data variables, valley confine-
ment and catchment area, were included. All measurements
of channel attributes were made using the same standardized
procedure by field technicians trained together to yield consis-
tent and reliable results (Lane and Byrne 2021). The resulting
clusters correspond to the channel types and were named a pos-
teriori using expert-knowledge in terms of valley confinement,
bed morphology, and sediment size. In particular, streams were
categorized as located in confined, partly-confined, and uncon-
fined valleys based on valley confinement distances of < 100,
100 – 1, 000, and > 1, 000 m, respectively. When analyzing
channel types obtained using the same methodology but over
all of California, Lane et al. (2021) found that the resulting
channel types covered and even exceeded the entire range
of channel types considered by Montgomery and Buffington
(1997) (see Fig. 4b in Lane et al. (2021)). A total of 1,110 sam-
pling sites were included across all regions, resulting in nine
regional sets of channel types (Fig. 2, Table 2).

2.3 Evaluating the Information Gap be-
tween Field-measured and Geospatial Data

We evaluated the information gap between field-measured and
geospatial data by computing cluster dissimilarity with re-
spect to field-measured data (see Fig. 1b;c). A dissimilarity
measure is a statistical distance that quantifies how different
two objects are. In our case, these objects are clusters re-
sulting from clustering in each region, and the dissimilarity
measure is the average Jensen-Shannon distance, d̄JS, with re-
spect to the distributions of seven field-measured attributes:
bankfull depth, bankfull width, bankfull width-to-depth ra-
tio, coefficients of variation for width and depth, and the
50th and 84th percentiles of grain size (D50, D84). The
Jensen-Shannon distance (A6) is a symmetric measure of dis-
crimination between two probability distribution functions,
and it is a proper distance metric for constructing distance
matrices (Lin 1991, Topsoe 2000, Endres and Schindelin
2003). The Jensen-Shannon distance derives from the Jensen-
Shannon divergence (A5) (Lin 1991, Topsoe 2000), which
is a symmetric version of the Kullback-Leibler divergence
(A4) (Kullback and Leibler 1951). Appendix A provides links
between the Jensen-Shannon distance and other information
theory metrics. Channel types with high d̄JS are defined from
more dissimilar underlying information and require, on aver-
age, less information to discriminate between them (see Fig.
1c). Conversely, channel types with low d̄JS are defined from
more similar underlying information and require, on aver-
age, more information to discriminate between them (see Fig.
1c). For each region, we constructed a Jensen-Shannon dis-
tance matrix between each possible pair of channel types (see
Fig. 1b). To compare regions, regional matrices of average
Jensen-Shannon distance across field attributes d̄JS were sum-
marized by their median, mean and minimum values. We also
calculated the same metrics for valley-confined channel types.
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8 GUILLON ET AL.

2.4 Assessing Performance of Machine
Learning Models

Our approach to training and evaluating the performance of
ML models buils on the work of Guillon et al. (2020) with
two important modifications (Fig. 1a;3). First, we selected
predictors (Table 3) using mutual information prior to statisti-
cal learning. Second, we evaluated performance of statistical
learning using nested resampling. By training models with
an increasing number of predictors, these changes allowed us
to evaluate tuning stability (see below), and select an opti-
mal number of predictors to fairly compare DNN and RF. For
each region, we tuned DNN and RF models with nested re-
sampling and compared them to three baseline models trained
with default hyperparameters: featureless (a mean model al-
ways predicting the most frequent label), naive Bayes (a
model using Bayes rule with strong independence assumptions
(Laplace 1820)), and k-nearest-neighbor (a dissimilarity-based
model (Cover and Hart 1967)).

2.4.1 Selecting Predictors

To prevent over-fitting and promote robust generalization, we
selected predictors before their use in RF and DNN models. In
predicting fine-scale channel types from coarser-scale geospa-
tial predictors, Guillon et al. (2020) utilized data complexity
measures to select groups of predictors. For example, data spar-
sity, which divides the number of observations by the number
of predictors, is used to assess problem complexity (Lorena
et al. 2018). In contrast, we selected individual predictors us-
ing a mutual information-based method (Guyon and Elisseeff
2003, Bommert et al. 2020), maximizing the relevance of pre-
dictors for identifying channel types based on their statistical
relationship with the predictors (Fig. 3, step 2; (A3)). However,
as this selection is based on field-measured data at sampling
site locations, it may be biased according to the observed dis-
tribution of channel types (Table 2). To address this and derive
a more robust selection, we averaged predictor selection over
500 iterations for each region, each using 80% of the training
data in a stratified subsampling scheme. This process selected
predictors with the highest degree of statistical dependence
with respect to channel type distributions for a given region.

When selecting predictors, mutual information is algorithm-
agnostic and maximizes predictor relevance. However, it does
not consider redundancy, which may impact RF and DNN dif-
ferently. Although only perfectly correlated variables are truly
redundant, creating new predictors from highly correlated but
complementary predictors may improve performance (Guyon
and Elisseeff 2003). Despite this, RF and DNN have distinct
information processing and may be impacted differently. RF’s
ensemble decision process implicitly combines predictors and

robustly removes irrelevant ones. In contrast, DNN uses mul-
tiple hidden layers of neurons to combine input, which can
act as latent predictors. Thus, removing highly correlated but
complementary predictors may negatively impact DNN perfor-
mance by hindering the discovery of relevant latent predictors.
To reduce near-perfect redundancy without substantially im-
pacting DNN performance, we removed predictors with an
absolute pairwise correlation greater than 0.95 prior to mutual
information selection. The removed predictor was the one with
the largest average absolute correlation across all predictors. In
total, we ran 49 models with a number of selected predictors
ranging from 2 to 50.

2.4.2 Measuring Performance

We evaluated the performance of machine learning models
across the nine regions of study by benchmarking them us-
ing the area under the receiver operating characteristic curve
(AUC) and hyperparameter tuning entropy. Prior to learning,
we balanced the observations using the synthetic minority
oversampling technique (Chawla et al. 2002). We also checked
the input data for no-variance predictors, centered and scaled
them, and imputed missing values with median imputation.

While the parameters of ML models are adjusted during
training, performance depends on hyperparameters that define
model architecture or algorithmic behavior. Hyperparameter
selection, or tuning, involves training models for different
sets of hyperparameters and comparing their resulting per-
formance. For RF, we tuned optimum number of predictors
available for splitting by performing a discrete search among
16 regularly-spaced, discrete values between 2 and the num-
ber of predictors. For DNN, we tuned seven hyperparameters
by choosing them from the following sets of common values:
number of hidden layers ∈ {2, 3, 4, 5}, number of neurons
in each hidden layers ∈ {5, 10, 20, 30, 50, 100, 200}, learn-
ing rate, controlling the size of the steps in gradient descent
optimization, ∈ {0.5, 0.1, 0.05, 0.01, 0.005}, batch size, con-
trolling the size of the subset of data used to update one
gradient step ∈ {16, 32, 64}, momentum, inertially control-
ling the influence of previous step on the current update, ∈
{0.5, 0.6, 0.7, 0.8, 0.9}, hidden and visible layers dropouts, act-
ing as regularization (i.e. limiting over-fitting) by de-activating
some neurons, ∈ {0, 0.1, 0.2}. We performed a 100-iterations
random discrete search for tuning the DNN’s hyperparame-
ters, as a strictly discrete search is prohibitively expensive. We
trained the DNN for 20 epochs, or cycles through the training
dataset, and with a batch number between 120 and 560, de-
pending on the size of the training dataset for each region of
study.
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F I G U R E 3 Schematic of the machine-learning framework. The complete list of predictors is provided in Table 3. RF: Random Forest.

To estimate tuning robustness and limit over-fitting, we used
nested resampling which separates model evaluation from tun-
ing (calibration) by using two nested loops: an outer loop for

model evaluation and an inner loop for model tuning (Bischl
et al. 2012, Fig. 3, step 3). We chose 10 repeats of 10-fold
stratified cross-validation as the outer resampling, and 10-fold
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Predictors group Predictor name Spatial scale Original data Methodology
TAM-DM (108) Elevation 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)

Slope 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Aspect 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Roughness 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Flow direction 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Planform curvature 512 m; 100-m buffer Gesch et al. (2002) Florinsky (1998)
Profile curvature 512 m; 100-m buffer Gesch et al. (2002) Florinsky (1998)
Topographic position index 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Terrain ruggedness index 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)

GIS-metrics (3) Channel slope 200 m Gesch et al. (2002) ESRI (2016)
Confinement - Gesch et al. (2002) Byrne et al. (2020b)
Sediment supply - Haan et al. (1994) Renard et al. (1997)

Network topology (4) Drainage area - McKay et al. (2012) Hill et al. (2015)
Strahlers stream order - McKay et al. (2012) Strahler (1957)
Local drainage density - McKay et al. (2012) Danesh-Yazdi et al. (2017)

Fractal dimension (32) Hurst coefficients 640 m to 82 km Gesch et al. (2002) Liucci and Melelli (2017)
Contextual predictors (140) Lithology >1 km Cress et al. (2010) Hill et al. (2015)

Soil characteristics 1 km Schwarz and Alexander (1995) Hill et al. (2015)
Land cover 30-m initial resolution Homer et al. (2015) Hill et al. (2015)
1981-2010 climatologies 800-m initial resolution PRISM Climate Group (2004) Hill et al. (2015)
Indices of Catchment Integrity - Thornbrugh et al. (2018) Hill et al. (2015)

TAM-DM : Terrain Analysis Metrics - Distribution Metrics

T A B L E 3 Predictors Used in the Machine Learning Framework. The 10-m National Elevation Data Set (Gesch et al. 2002,
NED) and the Stream-Catchment Data Set (StreamCat; Hill et al. 2015) are publicly available on download platform from the
United States Geological Survey and the United States Environmental Protection Agency, respectively. The stream network
from the National Hydrology Data Set (McKay et al. 2012, NHDPlusV2) is publicly available on both platforms. TAM-DM:
Terrain Analysis Metrics-Distribution Metrics (see Guillon et al. (2020)).

stratified cross-validation as the inner resampling. Specifically,
the training dataset was randomly split into 10 subsets or folds
with equally-distributed classes between each fold. The model
was trained on nine folds and tested on the one remaining
fold. This outer process was repeated 10 times, with each fold
serving as the testing data once. During model training, the
data of the nine outer training folds was randomly split into
10 new folds with equally-distributed classes. Hyperparame-
ter tuning was performed on these nine inner folds and tested
on the one remaining inner fold. This inner process was re-
peated 10 times, with each fold serving as the testing data
once. The hyperparameter values that maximize model per-
formance across the data of the 10 inner folds, i.e., the data
of the nine outer training folds, were selected. These best-
performing hyperparameters were then used to train the model
on the nine outer folds and test it on the one remaining outer
fold. The outer fold selection and thus the entire process was
repeated 10 times. Nested resampling provides a distribution
of best-tuned hyperparameters for each iteration of the outer
resampling in addition to the distribution of model perfor-
mance obtained by traditional resampling (Fig. 3, step 3.2).
Here, 10 repeats of outer 10-fold cross-validation produced
100 values of best-tuned hyperparameters. However, nested re-
sampling has a high computational cost: together with 49 runs

for predictor selection, these benchmark parameters resulted
in training a total of 51,534,000 tuned models and 132,300
baseline models (5,726,000 per region).

Model performance was evaluated using AUC and hyper-
parameter tuning entropy, which was calculated from the
distribution of the best-tuned hyperparameters (Fig. 3, step 5).
AUC measures the ability of a model to distinguish between
positive and negative observations, striking a balance between
maximizing true positives and minimizing false positives (Ros-
set 2004). In contrast, accuracy maximizes both true positives
and true negatives. We chose to optimize for AUC instead of
accuracy due to its higher discrimination performance, its re-
lation to dissimilarity, and its suitability for limited datasets
(Rosset 2004, Huang and Ling 2005, Ferri et al. 2009). Hy-
perparameter tuning entropy was calculated using Shannon’s
entropy (Equation A1) by considering the probability of a
given hyperparameter value being selected as best-tuned and
represents the uncertainty in selecting optimal values for hy-
perparameters with more uncertain hyperparameter selection
leading to higher tuning entropy. To account for the different
range of possible values, each tuning entropy was normalized
by the maximum possible tuning entropy. For example, if only
three out of 16 possible values for the number of predictors
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MIND THE INFORMATION GAP: HOW SAMPLING AND CLUSTERING IMPACT THE PREDICTABILITY OF REACH-SCALE CHANNEL TYPES 11

available for splitting were reported from the nested resam-
pling best-tuned hyperparameters for RF, the resulting tuning
entropy was normalized by log2(16). For DNN, the reported
tuning entropy is an average of the tuning entropies of its seven
hyperparameters.

For each region, we selected the optimal model based on
the statistical differences between AUC distributions for dif-
ferent numbers of predictors (Fig. 3, step 4). The selection
was performed in a sliding window of seven models, with one
model with M(n) with n predictors being compared to the fol-
lowing models: {M(n + 1) . . . M(n + 6)}. We considered the
optimal model to be the last model exhibiting a significant sta-
tistical difference between its performance distributions. We
performed a statistical comparison using Dunn’s test, with a
Bonferroni correction of the p-value to account for multiple
comparisons. We considered a difference to be significant if
the test p-value was less than 0.05/7 ≃ 0.007.

As in Guillon et al. (2020), we assessed the performance
of predictive modeling for each region at the network scale
using entropy rate. This measure leverages the network struc-
ture of the predictions by estimating the stability of the
predictions from the transition probabilities between each
channel type. Entropy rate prognosticates the prediction skill
of a model (Stephenson and Dolas-Reyes 2000, Roulston and
Smith 2002), and helps select models that provide the best
information (Daley and Vere-Jones 2004, Nearing and Gupta
2015). We computed both metrics from predictions after a
cross-validated multinomial calibration that corrects the poten-
tial distortion of posterior probabilities and improves model
performance (DeGroot and Fienberg 1983, Zadrozny 2002,
Niculescu-Mizil and Caruana 2005).

2.5 Correlation Analysis

Finally, a correlation analysis was performed to investigate
potential linkages between the regional clustering character-
istics, information gap estimated by cluster dissimilarity, and
measures of machine learning (ML) model performance, as
described in the previous subsections (Figure 1b). The cluster-
ing characteristics included the number of observations, study
area, observation density, number of channel types, and num-
ber of valley-confined channel types. Since channel types in
confined valleys were expected to be the most difficult clus-
ters to predict due to their narrower spatial footprint being
imperfectly captured by large scale geospatial predictors (H3;
Guillon et al. 2020), they were considered independently. For
each region, the matrix of average pairwise d̄JS was summa-
rized by the median and minimum values over all channel
types and valley-confined channel types only, respectively.
The measures of ML models performance included: AUC, ac-
curacy, hyperparameter tuning entropy, entropy rate and the

Region ID Median d̄JS Mean d̄JS Minimum d̄JS

K 0.54 (0.45) 0.57 (0.44) 0.38 (0.38)

NC 0.47 (0.45) 0.48 (0.43) 0.34 (0.34)

NCC 0.52 (0.52) 0.52 (0.51) 0.33 (0.35)

SAC 0.47 (0.44) 0.49 (0.43) 0.27 (0.34)

SC 0.53 (0.52) 0.53 (0.52) 0.37 (0.52)

SCC 0.51 (0.45) 0.50 (0.45) 0.33 (0.39)

SECA 0.54 (0.62) 0.53 (0.62) 0.37 (0.62)

SFE 0.61 (0.58) 0.59 (0.58) 0.34 (0.42)

SJT 0.62 (0.62) 0.61 (0.60) 0.40 (0.44)

T A B L E 4 Cluster dissimilarity with respect to field-
measured data estimated by the Jensen-Shannon distance (d̄JS).
Values for valley-confined channel types are reported between
parenthesis.

difference in performance between RF and DNN. Both Pear-
son and Spearman correlations were computed on scaled data
and yielded similar results. Due to the limited dataset (n = 9),
we present average results from 500 correlations performed
with 80% subsampling.

3 RESULTS

In the following subsections, we present the results regarding:
(i) the information gap as estimated by cluster dissimilar-
ity with respect to field-measured data; (ii) the performance
of the ML models; (iii) channel type predictions and river
segmentation throughout California and (iv) the correlation
analysis between regional clustering characteristics, cluster
dissimilarity, and prediction performance.

3.1 Cluster Dissimilarity with Respect to
Field-measured Data

Cluster dissimilarity with respect to field-measured data var-
ied between the different regional clusterings of channel forms,
and was estimated with the Jensen-Shannon distance. The
Jensen-Shannon distance matrices for all nine regions are
summarized in Table 4, and an example of the derivation of
Jensen-Shannon distance is provided for SAC, the only region
with ten channel types, in Figure 4. The two regions with the
highest cluster dissimilarity were SFE and SJT, while the two
regions with the lowest cluster dissimilarity were NC and SAC.
In seven regions, the minimum d̄JS was not between two con-
fined channel types. Nonetheless, in eight out of nine regions,
d̄JS decreased when considering confined channel types, indi-
cating that these channel types are less dissimilar with respect
to field-measured data. In the odd region, SECA, there are only
two valley-confined channel types and thus only one value of
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Model Predictors AUC Accuracy Training time
Normalized

Tuning Entropy

DNN 30 0.922 0.663 2450 0.792

RF 18 0.949 0.749 54 0.757

T A B L E 5 Summary table of the average model perfor-
mance across all areas of study. Training time is given here in
seconds for one iteration of the learning process and does not
correspond to the total CPU-hours required for training. DNN:
Deep Neural Network; RF: Random Forest.

pairwise d̄JS leading to an equal median, mean, and minimum
d̄JS (Table 4).

3.2 Performance in Statistical Learning
and Predictive Modelling

RF outperformed DNN in terms of AUC even as the number
of predictors increased (Fig. 5). The performance of all mod-
els improved with additional predictors, but RF consistently
exhibited a greater and more rapid increase in performance.
In certain regions (NC, SC, and SFE), the performance of
the naive Bayes model decreased with additional predictors,
indicating the progressive inclusion of irrelevant or noisy
predictors in the learning process. Furthermore, DNN sig-
nificantly underperformed, only outperforming the nearest

neighbor baseline model in two out of the nine regions (SC
and SFE).

Across all regions, the tuning entropy remained high for all
models and increased with the number of predictors (Fig. 6).
This effect was generally more pronounced for DNN than for
RF. DNNs tuning entropy was high yet stable with respect to
the number of predictors. Tuning entropies of RF optimal mod-
els were high in regions SAC, SC, and SECA (Fig. 6). In all
regions, the RF tuning entropy increased with the initial ad-
dition of predictors. However, after this initial increase, the
evolution of RF tuning entropy with the number of predictors
was nuanced and noisy, but either dominantly decreased or in-
creased. In regions K, NC, SAC, SECA, SFE and SJT, tuning
entropy tended to decrease with additional predictors, whereas
it tended to increase in regions NCC, SC and SCC. The opti-
mal RF models used, in general, a lower number of predictors
than DNN while maintaining a relatively high tuning entropy
and clearly outperformed DNN in terms of AUC and accuracy
(Table 5, Fig. 5). Consequently, RF was selected for perform-
ing network-scale predictions. This finding is similar to RF’s
performance in statistical learning reported by Guillon et al.
(2020), who focused only on region SAC and used a differ-
ent approach for predictor selection, training procedure, and
model selection.
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F I G U R E 5 Evolution of the performance of ML models measured by multiclass 1v1 Area Under Curve (AUC) with an
increasing number of predictors. The featureless model is not pictured: its AUC is constant at 0.5. NB: Naive Bayes; kNN: k-
Nearest Neighbors; DNN: Deep Neural Network; RF: Random Forest.

3.3 Channel Type Predictions and River
Segmentation Throughout California

The spatial distribution of RF predictions was generally con-
sistent with the expected distribution of channel types (Figure
7). The RF algorithm predicted the channel type of 689,029 in-
dividual 200-m stream intervals present in the NHD Plus V2
dataset (McKay et al. 2012). Adjacent intervals with the same
type may be merged to yield a river segmentation into reaches
of non-uniform length.

Valley confinement was most often selected as a predictor in
the optimal RF models across all regions (see Figure 8), which
is not surprising given its dominant control over channel set-
ting (Fryirs et al. 2016, Lane et al. 2021). Relevant predictors
in over half of the regions also included the standard deviation
of elevation, the statistical roughness of topography at small
spatial scales (Hurst coefficients), median slope, and curvature
metrics. Drainage areas at the watershed and stream segment

scale appeared to be relevant, albeit only in less than half of
the regions. Contextual predictors only appeared in the opti-
mal set of predictors in the SC region, where, in addition to
valley confinement and drainage area metrics, they correspond
to nine predictors describing lithology (6) and land use (3).

3.4 Correlation Analysis

The correlation analysis indicated that clustering resulted in
different numbers of channel types and had an impact on ML
performance due to several sampling design factors (Tables
1,4-5; Fig. 5,9). The number of channel types was strongly
linked to the number of observations for clustering characteris-
tics (r = 0.90, p = 0.008). Observation density was negatively
correlated with catchment area (r = –0.63, p = 0.14), but
neither the number of channel types nor the number of observa-
tions were definitively linked to area and observation density.
Area and observation density were negatively and positively
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F I G U R E 6 Evolution of tuning entropies with an increasing number of predictors. Solid circles represent the optimal model.
DNN: Deep Neural Network; RF: Random Forest. The solid circle represents the value of tuning entropy for the optimal models.

correlated with the number of valley-confined channel types,
respectively (r = –0.48, p = 0.30; and r = 0.66, p = 0.13).
Observation density and area were not correlated with the
statistical learning performance for DNN or RF (Fig. 9a-b).
Instead, statistical learning performance metrics were nega-
tively correlated with the number of observations, the number
of channel types, and area: for DNN’s area under the curve
(AUC), r = –0.60, p = 0.19, r = –0.45, p = 0.33, r =
–0.31, p = 0.50, respectively; for RF’s AUC, r = –0.44, p =
0.32, r = –0.21, p = 0.50, r = –0.35, p = 0.48, respec-
tively. Accuracy and AUC were positively correlated with each
other. All variations of d̄JS were positively correlated with one
another and negatively correlated with the number of chan-
nel types and observations. Specifically, the minimum d̄JS was
negatively correlated with the number of observations (r =
–0.82, p = 0.04). Median and minimum d̄JS across all channel
types were positively correlated with statistical learning per-
formance metrics, but more so for DNN than RF: for DNN’s
metrics, r ≳ 0.72, p ≲ 0.08, r ≳ 0.69, p ≲ 0.12, respectively;
for RF’s metrics, r ≳ 0.59, p ≲ 0.19, r ≳ 0.47, p ≲ 0.32, re-
spectively. Correlations were generally lower for median and
minimum d̄JS over valley-confined channel types only (Fig.
9). However, performance metrics were negatively correlated

with the number of observations and the number of classes
(r ≳ –0.70, p ≲ 0.10).

The more dissimilar the clusters were with respect to field-
measured data, the more stable the predictions were. The
entropy rate of RF predictions was generally negatively cor-
related with the d̄JS metrics. This was especially true for the
minimum d̄JS for confined channel types (r = –0.80, p =
0.04). In addition, the entropy rate was weakly correlated
with regional metrics that increase in complexity, such as
the number of observations, number of channel types, and
number of confined channel types. For RF, the entropy rate
and hyperparameter tuning entropy were only weakly linked
(r = –0.32, p = 0.48, Fig. 9b). Both were negatively cor-
related, albeit weakly, with statistical learning performance
metrics. Hyperparameter tuning entropy appeared mostly dis-
connected from statistical learning performance metrics (r =
–0.02, p = 0.76). In general, hyperparameter tuning entropy
showed a weak correlation with the other variables, with the
exception of the minimum d̄JS for confined channel types
(r = 0.47, p = 0.31) and the number of confined channel
types (r = –0.47, p = 0.29). This suggests that hyperparame-
ter tuning entropy increases with decreasing complexity, while
entropy rate increases with increasing complexity.
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F I G U R E 7 Map of all RF predictions of reach-scale channel types. In each region, hue maps to confinement so that cyan
(red) corresponds to the most unconfined (confined) channel type, and lightness maps to slope so that the channel type with low
(high) slope are drawn in lighter (darker) colors.
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F I G U R E 8 Regional variable importance. TAM: Terrain Analysis Metrics predictors (see Guillon et al. (2020)); GIS: GIS-
derived predictors. The Hurst coefficient predictors represent a measure of statistical roughness at different spatial scale. TAM
were calculated at two spatial scales: a 512-m tile centered on the 200-m stream line midpoint (raster) and a riparian buffer of
100-m (near).

The performance metrics of RF and DNN models prog-
nosticated the information gap between clustering data and
prediction data (Fig. 9c), and their correlations were inverted
compared to DNN and RF correlations (Fig. 9a-b). Moreover,
the difference in statistical learning performance between RF
and DNN models was positively correlated with the number
of observations and the number of channel types, as well as
the number of valley-confined channel types. In contrast, it
was negatively correlated with all d̄JS metrics, particularly the
minimum d̄JS (r = –0.58, p = 0.18; r = –0.61, p = 0.15).

4 DISCUSSION

Our correlation analysis related three groups of variables
across nine regions – regional clustering characteristics, infor-
mation gap, and performance metrics (Fig. 1b), In doing so,
it answers our research questions and corroborates our three
hypotheses. The information gap between clustering data and
prediction data, and here specifically between field-measured
and geospatial data, was estimated by the cluster dissimilarity
with respect to field-measured data, and is central to evaluate
the impact of clustering at data-rich locations on predictions at
data-poor locations. We found a positive relationship between
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F I G U R E 9 Correlation matrix for a) DNN; b) RF and c) difference between DNN and RF.

cluster dissimilarity measured by the Jensen-Shannon distance
and ML performance (Fig. 9a-b), indicating that a smaller in-
formation gap leads to better performance, responding to Q1
and corroborating H1. Hence, even when following identical
sampling and analysis methods, clustering impacts subsequent
ML predictions. Moreover, this effect is stronger for DNN than
for RF (Fig. 9a-b), and the difference in performance between
RF and DNN decreases with cluster dissimilarity (Fig. 9c),
responding to Q2 and corroborating H2. We also found that
clusters with the smallest spatial footprint, or valley-confined
channel types, have a lower average cluster dissimilarity in a
given region while often not the lowest (Table 4), responding
to Q3 and supporting H3. In the following section, we explain
and discuss these results, their limitations and implications.

4.1 Information Gap between Clustering
and Prediction Data Explains why RF Outper-
forms DNN

Evaluating the information gap between clustering data and
prediction data from cluster dissimilarity measured by the
Jensen-Shannon distance (Fig. 4, Table 4) helps with interpret-
ing and comparing labels derived from clustering and with
assessing their impact on statistical learning performance. In

particular, differences in average cluster dissimilarity can be
interpreted as differences in the scale at which the clusters
are inherently defined within and between the different re-
gions. Further, in the application to clustering channel forms
in nine regions of California, our results suggest that cluster
dissimilarity is linked to the scale mismatch between labels
and geospatial predictors and explains deep learning under-
performance. As in Guillon et al. (2020), DNN underperforms
relative to RF in most regions of California (Fig. 5, Table 5).

Two combined reasons help explain this under-performance
of DNN. First, in general, DNN performance increases with
the number of available observations, and the current data del-
uge partly explains their increasing popularity (LeCun et al.
2015). For example, Nearing et al. (2021) noted that while
deep learning has had transformative results in branches of
hydrology benefiting from rich observational data from sen-
sor networks and remote sensing (e.g., catchment hydrology,
streamflow predictions, hydrometeorology), its success has
been more limited in branches with sparser data (e.g., ground-
water hydrology). Similarly, Kirstain et al. (2021) showed
that performance was more efficiently increased by collecting
more training data than by training larger models when experi-
menting with a deep learning model whose architecture is used
in some hydrologic tasks (e.g., Sahoo et al. 2017, Adewoyin
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et al. 2021). In addition, while there have been recent break-
throughs in using DNN for tabular datasets ranging in size
from 2.5 103 to 107 observations (Shavitt and Segal 2018, Arık
and Pfister 2020), this remains at least an order of magnitude
larger than the datasets in our research study (63-290 observa-
tions, Table 1). This is a common issue in ML predictions of
patterns of channel forms and hydrologic response.

The under-performance of DNNs can also be attributed to
their sequential compression of information through succes-
sive layers, which filters out irrelevant information to estimate
the relationship between input and output. To better under-
stand this issue, we discuss relevant research on statistical
learning and information processing in DNNs. The combina-
tion of feature engineering and information compression in
DNNs is similar to a central concept in modern statistical
and particle physics: the renormalization group (Stuckelberg
1953, Gell-Mann and Low 1954). The renormalization group
summarizes local random variables by coarse-grained random
variables, such as averages of neighboring points, when con-
sidering a system at increasing length scales (see Turcotte
(1997) and Sornette (2006) for an introduction in geosciences).
This sequential coarse-graining from a microscopic scale to
a macroscopic scale parallels DNNs’ information processing
(Bény 2013, Mehta and Schwab 2014, Lin et al. 2017, Li
and Wang 2018, Koch-Janusz and Ringel 2018, Yang et al.
2023): where a DNN learns and engineers relevant features
in its layers, and the renormalization group’s coarse-graining
retains only relevant degrees of freedom and integrates out
the irrelevant ones. A complete theory for such sequential
information processing and compression (Saxe et al. 2019,
Gabrié et al. 2019, de Mello Koch et al. 2020), and more
generally for DNNs’ ability to learn and generalize complex
patterns, still remains elusive (Zhang et al. 2016, Sejnowski
2020, Poggio et al. 2020). However, recent analysis of DNNs’
internal dynamics and learned representations substantiate its
relevance. For example, Bau et al. (2020) dissected a convo-
lutional DNN trained on image recognition and showed that
individual units matched human-interpretable concepts. Simi-
larly, Amey et al. (2021) descrambled the weight matrices of
fully connected DNNs, which are usually harder to interpret,
and found that each layer had learned recognizable mathe-
matics and communications engineering concepts, such as a
band-pass filter. Observing the dynamics of DNN internal rep-
resentations, Schilling et al. (2021) introduced a dissimilarity
measure computed from neural activations and showed that
performance increases over time and through the successive
layers of the network. A similar process was described from
the perspective of information flow using the Kullback-Leibler
divergence (Erdmenger et al. 2021), Wasserstein distance (Cao
et al. 2022), correlation functions (Fischer et al. 2022) and

with explicit coarse-graining operations (Yang et al. 2023). Al-
though Hartmann et al. (2021) found similar patterns, their
study of neural activation statistics provides a more nuanced
view that focuses on state-of-the-art architectures rather than
learning theory. Finally, Fang et al. (2021) isolated the top-
most layer of a DNN, which predicts observations from the
learned representations, and analyzed it in terms of neural
collapse (Papyan et al. 2020). Neural collapse is a common
empirical pattern in DNN where the last-layer representations
collapse close to the cluster mean, allowing the network to
attribute clusters based on the closest cluster mean. While
neural collapse improves generalization, interpretability, and
robustness, Fang et al. (2021) showed that it does not oc-
cur in widely imbalanced datasets leading to indistinguishable
under-represented clusters.

While we broadly agree with the findings from a recent
empirical comparison of DT-based models and DNNs (Grinsz-
tajn et al. 2022), we further connect the underperformance of
DNNs to the difference in information processing between RF
and DNN. Grinsztajn et al. (2022) showed that DT-based mod-
els outperformed DNNs on 45 datasets with balanced classes
and more than 3,000 observations. In one particular experi-
ment, Grinsztajn et al. (2022) smoothed the target variable
during training but not during validation, essentially prevent-
ing the model from learning potentially irregular patterns. This
creates an information gap between the target seen in training
and in validation. With increasing smoothing, such an infor-
mation gap increases, which degrades the performance of both
RF and DNN. Note that the approach from Grinsztajn et al.
(2022) is applied within one dataset and applied to 45 datasets
from various domains, whereas we discuss here a comparison
between nine datasets from one domain.

In this study, we observe that the information gap between
clustering data and prediction data leads to missing or overly
noisy information, which hinders efficient information pro-
cessing in the DNN and reverse engineering of the hierarchical
generative process between input and output (Tishby and Za-
slavsky 2015, Lin et al. 2017). In addition, our datasets are
limited in size (see Table 1), and the channel types are defined
from field scale data (< 200 m) while the input predictors are
defined at a coarser scale (> 500 m) (see Table 3). The im-
pact of the information gap stemming from these mismatched
spatial scales is illustrated by the correlation between clus-
ter dissimilarity with respect to field-measured data and the
performance of DNN relative to RF. The more dissimilar the
channel types, the lower the difference between RF and DNN
(see Fig. 9c). This indicates that the difference in information
processing between DNN and RF predicts their performance.
With additional observations, DNNs’ information compres-
sion could better filter out noisy information, reducing the
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performance gap between RF and DNN (see Supporting In-
formation for an example using 10-m and 1-m data in NCC
region). However, in the case of limited, noisy, tabular datasets
with a potential information gap stemming from a scale mis-
match between labels and predictors – a common issue in
geosciences – our results suggest that algorithms without se-
quential information compression (e.g., RF) may consistently
outperform DNN-inspired algorithms.

4.2 RF Limitations

Although random forest (RF) performs well in estimating pat-
terns between channel types and predictors (see Figure 5),
generalizing the learned pattern in predictive modeling and
expert assessment of the geomorphic relevance of the result-
ing predictions by the authors led to the implementation of
post-hoc heuristics for predictions in region K. While geomor-
phologists often use field experience and expert knowledge to
form channel-type expectations, this approach has proven to be
too subjective, opaque, and non-repeatable as a general prac-
tice. Nevertheless, we hoped it could be useful for interpreting
prediction performance and adjusting results for region K. For
example, when comparing the predicted spatial distribution
of channel types with the expected one, the mainstem chan-
nel type K03 appeared difficult to predict. Consequently, we
implemented a stream-order-based heuristic. Similarly, expert
assessment played an important role in evaluating the clus-
tering results from Byrne et al. (2019), Guillon et al. (2019),
Byrne et al. (2020a). In another type of performance review,
we thoroughly evaluated an individual site’s curious cluster
assignment while standing on-site with all the data in hand.
In these cases, we found that observational values close to a
threshold but just over the line in the "wrong" direction at a
decision-tree node could send the site to a different, less sen-
sible cluster. This highlights the difference between human
expert opinion, which prefers to classify rivers on a top-down
basis, prioritizing fundamental geological controls, and a pat-
tern recognition algorithm that is teasing out similarities and
differences among all available variables.

Limited sampling is the primary reason for the need of a
post-hoc heuristic to adjust predictions with expectations in
region K. Channel types have significantly different natural
abundances, with some types being rare and challenging to
isolate in the sampling scheme, while others are so altered
that natural examples are scarcely available. As the clustering
is data-driven from fine-scale field measurements, one cannot
accurately discern which sites are which type a priori. In an at-
tempt to mitigate this issue, this study relied on mindful and in-
tensive sampling designs using GIS-derived stratification data
at a coarser scale to seek equal-effort sampling among the most
likely different channel types (Lane et al. 2017b, Byrne et al.

2020b). Despite this unusual effort compared to past clustering
studies, the resulting clusters and the number of observations
per cluster ended up being quite different from the forecasted
experimental design (Lane et al. 2017b, Byrne et al. 2020b).
In all regions, the resulting unequal sampling of channel types
is addressed with the commonly used synthetic minority over-
sampling technique (Chawla et al. 2002), which generates
synthetic observations to aid the statistical learning of chan-
nel types with a lower number of observations. However, the
random generation of synthetic observations is handled with
a k-Nearest Neighbour algorithm (with k ≤ 5 in our case
depending on the number of available observations). Conse-
quently, fewer field observations of a channel type resulted in
less diversity in the corresponding synthetic data, hindering ro-
bust learning of the patterns between under-sampled channel
types and predictors. In region K, the mispredicted channel
type has the lowest possible value for prevalence, only one out
of 105 observations, and thus no diversity in the associated
synthetic data (Table 2). The next rarest channel type, repre-
sented by four out of 105 observations, appeared frequently
enough to enable robust pattern learning when compared to
expert evaluation. Interestingly, most of the under-sampled
channel types fall into two categories tied to the logistics
of field sampling: high-order mainstem rivers and low-order
steep cascade/step-pool channels. High-order mainstem rivers
are often highly channelized and altered while displaying
larger channel dimensions that hinder field sampling. Low-
order steep cascade/step-pool channels are difficult to access
through private land and remote, dangerous terrain, leading to
sampling a specific subset of the most accessible channels that
may bias resulting clusters.

4.3 Implications for clustering then pre-
dicting

This study’s results have general implications for sampling
strategies to cluster and predict information in watershed sci-
ences. The correlation analysis (Fig. 9) underlines a positive
correlation between the number of field observations and the
number of clusters, and a negative correlation between the
number of clusters and cluster dissimilarity. This translates
into better ML performance. With fewer observations, the like-
lihood of finding statistically significant groupings decreases,
resulting in fewer, more dissimilar clusters that can be sepa-
rated with coarser information, which reduces the complexity
of the problem. Conversely, an increasing number of obser-
vations leads to fine-scale, less dissimilar clusters, at least
for some channel types, and to a more complex problem.
This effect is amplified by the information gap between clus-
tering data and prediction data stemming from mismatched
spatial scales. In other words, with fewer observations, one
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can get away with a simpler, coarse-scale problem to solve.
For example, riffle-pool reaches are common in California,
and random sampling may oversample them despite our ef-
fort to stratify sampling using four meaningful catchment scale
variables. This results in more representation and therefore di-
versity of riffle-pool reach channel types. In contrast, there
could be an equal diversity of cascade reach channel types,
but if there are fewer of these sites in the geographical study
area, are more difficult to access and survey, or are randomly
less sampled, then the clustering is more likely to group them
into a unique cluster. This can result in mismatched scales
of clustering between broader channel types with varying rep-
resentation and diversity. Our study shows that, even when
statistical learning performs well, generalizing the learned
pattern beyond the training datasets may be hindered by in-
sufficient or unequal sampling. Consequently, there exists a
sampling trade-off between uniformly capturing natural vari-
ability and robustly learning a generalizable pattern. A small
number of observations captures some of the natural variabil-
ity in the study area at a uniform level of detail across broad
channel types. Conversely, a larger number of observations en-
sures that a generalizable pattern is robustly learned across
all broad channel types but can lead to an equivalent diver-
sity of fine-scale clusters. This trade-off is likely an ubiquitous
problem in watershed sciences where clustering and prediction
contends with a mix of rare and common types, multi-scalar
typologies, uneven human disturbances across types, limited
sampling capability, and high uncertainty in design of the sam-
pling strategy. Characterizing this trade-off space and optimal
sampling design is beyond the scope of this study, but likely de-
pend on the definition of the clustering, which then conditions
the performance in statistical learning. Additionally, to the au-
thors knowledge, there is no framework in watershed sciences
that factors in the cost for variable acquisition in the total cost
function of a clustering problem (e.g., Andrade and Okajima
2021).

The increasing popularity of clustering in watershed sci-
ences raises the question of how to compare them. With
diversity in purposes, data types, approaches, and instances
for the same environmental systems, science needs to syn-
thesize and interpret that diversity and complexity to enable
broader understanding and societal benefit beyond each origi-
nal application. However, applying one geomorphic clustering
approach to multiple regions highlights that comparison is
not straightforward. This likely remains true when comparing
different clustering approaches in a single region of interest.
In particular, the information content of the clustering, inter-
preted as the overall spatial scale at which channel types are
defined, varies widely, hindering direct comparison across re-
gions. This leads to a fuzzy correspondence between clusters

across regions, akin to the loose agreement between empiri-
cal classifications of channel types reported by Kasprak et al.
(2016). A better strategy to robustly compare areas of study
or combine results may be to assemble a dataset spanning
geographical areas of interest and perform a new clustering
pooling all data into one set, as was done in Lane et al. (2021).
This better ensures that clusters are defined with a similar level
of information. However, such an approach is only tractable
if the underlying sampling methods, raw data, and data pro-
cessing steps of clustering are reasonably similar. In addition,
the human preference for few clusters, statistical metrics that
constrain the number of clusters to a small set in light of
data limitations, and the unequal sampling of common ver-
sus rare channel types pose the risk that important, diverse
phenomena will be lost in data-driven approaches. While we
focused here on the cluster-first approach, this remains true for
the predict-first approach as both approaches are predicted on
sampling. Notwithstanding, Peñas et al. (2014) showed that
under-represented hydrological patterns were more often pre-
dicted throughout the network with a predict-first approach
than with a cluster-first approach. Regardless of the approach,
these concerns increase as study area increases for the same
sampling density and may lead to under-representing natural
diversity which could endanger rare environments and species.
Accordingly, these concerns are magnified at the global scale
(Meyer and Pebesma 2022).

An objective constraint on the specific scale of the set
of statistical classification labels, as presented in this study
through cluster dissimilarity (Fig. 4) and deep learning rela-
tive performance (Fig. 9c), is likely to benefit a wide variety of
applications across watershed sciences. In particular, the same
label is often used by different scientists to represent a range
of spatial or temporal scales. For example, in fluvial geomor-
phology, a common label used to describe a site on a river is
a "riffle-pool reach". However, this label has no inherent spa-
tial scale: some studies use it to refer to lengths as short as
1-5 times channel width, while others use the same label to
refer to lengths as long as 100-1000 times channel width. Fur-
ther complicating the definition of scale, channel form results
from multiscale interactions, both in time and space (Lane
and Richards 1997), between confinement (Fryirs et al. 2016),
transport rate (Singh et al. 2009), sediment supply (Attal and
Lavé 2006), and biota (Corenblit et al. 2011). Having more
explicitly defined scales associated with statistically derived
labels (here, channel types) would yield a more transparent
and universal lexicon and facilitate a better understanding of
eco-physical processes intertwined with spatio-temporal pat-
terns represented by labels. sTo that end, our results shows that
mismatched scales are linked to the information gap between
field-measured clustering data and geospatial prediction data
which is equally evaluated from clustering data (Fig. 4, Table
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4) and from the relative performance of traditional and deep
learning approaches (Fig 9c).

5 CONCLUSION

Natural resources managers increasingly rely on machine
learning to inform regional decision-making. For example,
river restoration or water management strategies may be se-
lectively applied based on channel type predictions. However,
when unevenly-distributed information leads to an information
gap between data-rich and data-poor locations, it was un-
clear how clustering at data-rich locations impacts subsequent
predictions at data-poor locations. This study characterized
the impact of prior clustering on the statistical learning per-
formance of two leading prediction approaches with distinct
information processing – decision trees and deep learning. We
estimated the information gap between clustering data and
prediction data based on cluster dissimilarity with respect to
field-measured data and related it to the performance of DNN
and RF models using geospatial predictors. We leveraged nine
examples of regional river channel form predictions stemming
from a single clustering methodology applied in California,
USA. Our findings suggest that clustering at data-rich loca-
tions impacts subsequent predictions at data-poor predictions
and that this effect is stronger for DNN than for RF. Moreover,
our results show that there is a trade-off between collecting the
minimum number of observations to uniformly capture natu-
ral variability across channel types and collecting enough data
to ensure that a generalizable pattern is learned. An increas-
ing number of observations results in finer-scale clusters (at
least for some channel types), which leads to a more complex
problem, including mismatched scales between clusters and
between labels and predictors. This mismatch in the spatial
scale between clusters derived from field-measured attributes
and geospatial predictors likely hinders efficient information
processing and explains why RF outperforms DNN. Therefore,
our results suggest that algorithms without sequential infor-
mation compression (e.g., RF) will consistently outperform
DNN-inspired algorithms in the case of limited and noisy tab-
ular datasets with potential information gap resulting from a
scale mismatch between labels and predictors.

Future research directions include investigating the optimal
number of field sites to develop a regional clustering, while
balancing the information content of the clustering, statistical
learning performance, and cost of field attribute acquisition.
Additionally, a quantitative framework could be developed for
comparing clusterings in different geographical areas when the
underlying data are dissimilar or unavailable. This framework
could build on the results of this study and use information
theory metrics, the difference in performance between deep
and shallow learning, or both. Another direction is defining a

more transparent, data-driven lexicon for the inherent scale of
clusters derived from expert opinion to better understand the
spatio-temporal patterns of eco-physical processes while accu-
rately representing natural diversity. A formal comparison of
cluster-first and predict-first approaches and of the associated
trade-offs is missing in geomorphology. In general, deriving
geospatial predictors at a finer spatial scale to reduce the poten-
tial scale mismatch between field-derived labels and geospatial
predictors and associated information gap remains an area of
future research. For example, in fluvial geomorphology, tools
to extract meaningful sub-reach scale geomorphic attributes
from remote sensing products are still limited, error-prone, and
constrained by data availability. Similarly, leveraging a differ-
ent data modality, such as remote sensing imagery, to replace
or augment available coarse geospatial predictors would in-
crease the information content in geospatial predictors, likely
favoring sequential information processing and compression
from deep learning. Finally, recent breakthroughs in self-
supervised and semi-supervised learning would likely improve
the performance of deep learning approaches by leveraging
data over the entire prediction domain, rather than relying
solely on labeled data (Shwartz-Ziv and LeCun 2023) even
with tabular data (Yoon et al. 2020).
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APPENDIX

A INFORMATION THEORY METRICS
Below we describe a set of established information theory
metrics considered in this study and their relations: entropy,
conditional entropy, mutual information, Kullback-Leibler di-
vergence, Jensen-Shannon divergence and Jensen-Shannon
distance.

Shannon’s entropy describes the predictability of a random
variable X with discrete probability mass function P over n
outcomes (Shannon 1948):

H(X) = –
n∑

i=1

P(xi)logbP(xi) (A1)

with b, the base of the logarithm function; when b = 2, in-
formation theory metrics have units of bit. If the distribution is
biased towards a specific outcome, entropy is low. Conversely,
entropy is maximum when all outcomes are equally probable.
Following the rules of statistics, entropy can be conditioned
on the distribution of another random variable Y . Then, con-
ditional entropy, H(X|Y), represents the uncertainty left in X
after learning the outcome of Y(Shannon 1948):

H(X|Y) = –
n∑

i=1

P(yi)
n∑

i=1

P(xi|yi)logbP(xi|yi) (A2)

From the definitions of entropy and conditional entropy
stem mutual information, a measure of the degree of informa-
tion shared between X and Y (Shannon 1948):

MI[X; Y] = H(X) – H(X|Y) (A3)

where the right-hand side is the difference between the
uncertainty in X before and after the outcome of Y be-
comes known. Mutual information is symmetric, MI[X; Y] =
MI[Y; X], and zero if X and Yare statistically independent.
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The Kullback-Leibler divergence describes the mean infor-
mation for discriminating between discrete probability distri-
butions P and Q by observing P only (Kullback and Leibler
1951):

DKL(P, Q) =
n∑

i=1

P(xi)logb
P(xi)
Q(xi)

(A4)

Formally, the Kullback-Leibler divergence is the expecta-
tion of the logarithmic difference between discrete probability
distributions P and Q with respect to probability distribu-
tion P. Because of this, the Kullback-Leibler divergence is
asymmetric and, in non-trivial cases, DKL(P, Q) ̸= DKL(Q, P).

The Jensen-Shannon divergence is a measure of discrimi-
nation between two probability distribution functions and is
directly related to the Kullback-Leibler divergence (Lin 1991,
Topsoe 2000):

DJS(P, Q) =
1
2

[DKL(P, R) + DKL(Q, R)] (A5)

dJS = D1/2
JS (A6)

with R = 1
2 (P + Q) the midpoint probability. The Jensen-

Shannon distance, dJS = D1/2
JS retains the advantageous sym-

metric property of the Jensen-Shannon divergence, while sat-
isfying the triangular inequality and being a proper distance
metric (Endres and Schindelin 2003) which allows for con-
structing distance matrices, a common tool in data analysis
(e.g., correlation matrix).
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1 TEXT S1

Impact of spatial resolution on RF and DNN performance

In the following, we present a comparison of the performance of Random Forest (RF) and Deep Neural Network (DNN) when
using terrain analysis predictors derived from topographic data at 10-m and 1-m resolutions, respectively. We focus hereafter on
the North Central Coast (NCC, Figure 1) of California (USA) wherein both types of data are available along with channel types
derived from Byrne et al. (2020). Using the available 1-m lidar data, we then re-calculate the 108 Terrain Analysis Metrics-
Distribution Metrics (TAM-DM, Table 4). These predictors correspond to terrain analysis predictors (e.g., slope, curvature),
summarized by various metrics (e.g., mean, standard deviation) over two spatial scales: a 512-m by 512-m tile centered on the
labeled reach location and a 100-m riparian buffer along the streamline. All other predictors are kept the same between the
two runs of this benchmark: NCC with 10-m TAM-DM predictors, and NCC1m with 1-m TAM-DM predictors. As we focus
on comparing RF and DNN, the support vector machine model present in the main text was not trained for the NCC1m. Our
machine learning (ML) framework is then carried out with predictor selection and nested resampling as described in the main
text (Figure 2).

We now review the results of that comparison.
The evolution of the performance of ML models underscores the greater impact of finer-scale predictors on DNN than on RF

(Figure S1). In particular, with an increasing number of predictors, RF performance appears roughly similar between using 10-
m or 1-m TAM-DM predictors. Conversely, DNN’s performance significantly increases when using 1-m TAM-DM predictors,
outperforming baseline models (Figure S1). Both models achieve similar or better performance using 1-m data yet with fewer
predictors (Table S1). For DNN, the Area Under Curve (AUC) of the optimal model increases from 0.92 using 27 predictors to
0.93 using 18 predictors. Similarly, for RF optimal model, AUC remains at 0.96 using 14 instead of 27 predictors.

For RF, the main impact of using finer-scale predictors is increasing the stability of the learning process (Figure S2). Here,
the stability of the learning process is measured by deriving the entropy of the distribution of the best-tuned hyper-parameters
resulting from the nested resampling (e.g., Figure S3). This measures the uncertainty related to the selection of the best-tuned

Earth Surface Processes and Landforms 2024;00:1–7 wileyonlinelibrary.com/journal/ © 2024 Copyright Holder Name 1
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hyper-parameter(s). While there is little impact of the finer resolution TAM-DM predictors on DNN’s tuning entropy, when
using 1-m TAM-DM, RF tuning entropy is significantly improved. In particular, once reaching the maximum size of the hyper-
parameter grid of 16, RF’s tuning entropy appears to be plateauing with the 1-m data instead of increasing in the case of the
10-m data. This is further shown by the more constrained distribution of the best-tuned hyper-parameter(s) for the optimal RF
and DNN models (Figure S3). Between 10 and 1-m data, DNN’s tuning entropy changes from 0.80 to 0.82 while RF’s tuning
entropy decreases from 0.80 to 0.71 (Table S1).

Changing the resolution of the terrain analysis predictors, changes the importance of the predictors for predicting channel
types (Figure S4). As expected, the selected predictors that were unchanged (i.e. non-TAM-DM) remain selected in the opti-
mal RF model: valley confinement, Hurst coefficients and drainage area. Using 1-m data appears to filter out predictors based
on curvature or Topographic Position Index (TPI). Importantly, of the 41 predictors removed for high correlation, only two
were present in the optimal RF’s set of predictors: standard deviation of TPI and maximum roughness. This means that mutual
information alone filters out a significant number of TAM-DM predictors when using 1-m data. As a result, GIS-slope and con-
textual predictors appear higher on the variable importance list and the following terrain analysis metrics are promoted (Figure
S4): median slope, median planform curvature, standard deviation of roughness, skewness of the topographic ruggedness index
(TRI), standard deviation of elevation, standard deviation of planform curvature, minimum slope and maximum TRI.
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FIGURE S1
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F I G U R E S1 Evolution of the performance of ML models measured by multiclass 1v1 Area Under Curve (AUC) with
an increasing number of predictors. The dashed line represents the maximum value for DNN’s AUC in the NCC benchmark.
The featureless model is not pictured: its AUC is constant at 0.5. NCC: North Central Coast; NCC1m: NCC with 1-m terrain
analysis predictors. NB: Naive Bayes; kNN: k-Nearest Neighbors; DNN: Deep Neural Network; RF: Random Forest.A
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FIGURE S2
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F I G U R E S2 Evolution of tuning entropies with an increasing number of predictors. NCC: North Central Coast; NCC1m:
NCC with 1-m terrain analysis predictors.
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FIGURE S3
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FIGURE S4
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F I G U R E S4 Variable importance derived from mutual information. TAM: Terrain Analysis Metrics predictors; GIS: GIS-
derived predictors. TRI: Topographic Ruggedness Index; TPI: Topographic Position Index. The Hurst coefficient predictors
represent a measure of statistical roughness at different spatial scale. The solid lines mark the predictors included in the optimal
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thesis after the variable name indicates its change in position between the two runs.
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TABLE S1

Run Model Predictors AUC Accuracy Training time Normalized tuning entropy
NCC DNN 27 0.92 0.66 1941 0.80
NCC RF 27 0.96 0.76 65 0.80
NCC1m DNN 18 0.93 0.69 1851 0.82
NCC1m RF 14 0.96 0.74 37 0.71

T A B L E S1 Summary table of the average performance of learners across all areas of study. Training time is given here in
seconds for one iteration of the learning process and does not correspond to the total CPU-hours required for training.

REFERENCES
Byrne, C.F., Guillon, H., Lane, B.A., Pasternack, G.B. & Solis, S.S. (2020) Coastal California Regional Geomorphic Classification: Final Report –

Submitted to the California State Water Resources Control Board. University of California, Davis.
URL https://watermanagement.ucdavis.edu/download_file/view_inline/509

A
ut

ho
r V

er
si

on

https://watermanagement.ucdavis.edu/download_file/view_inline/509

	 Mind the information gap: How sampling and clustering impact the predictability of reach-scale channel types in California (USA) 
	Abstract
	Introduction
	Methods
	Experimental Design
	Prior Clustering of California Channel Forms
	Evaluating the Information Gap between Field-measured and Geospatial Data
	Assessing Performance of Machine Learning Models
	Selecting Predictors
	Measuring Performance

	Correlation Analysis

	Results
	Cluster Dissimilarity with Respect to Field-measured Data
	Performance in Statistical Learning and Predictive Modelling
	Channel Type Predictions and River Segmentation Throughout California
	Correlation Analysis

	Discussion
	Information Gap between Clustering and Prediction Data Explains why RF Outperforms DNN
	RF Limitations
	Implications for clustering then predicting

	Conclusion
	Acknowledgments
	Conflict of interest
	Supporting information
	REFERENCES
	APPENDIX
	Information Theory Metrics

	sm.pdf
	Supporting Information for "Mind the information gap: How sampling and clustering impact the predictability of reach-scale channel types in California (USA)"
	Abstract
	Text S1
	Figure S1
	Figure S2
	Figure S3
	Figure S4
	Table S1
	REFERENCES





