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A B S T R A C T

Under the influence of global climate change, wildfires are becoming increasingly significant within ecosystems.
Satellite technology offers a critical perspective for studying fire. The synergy of high-spatial resolution narrow-
band imagers and hyperspectral infrared (IR) sounders allow for comprehensive observation and long-term
global monitoring of fire characteristics and associated atmospheric changes on the pixel scale. This study
demonstrates methods to utilize the pixel-scale collocated fire observations from the Visible Infrared Imaging
Radiometer Suite (VIIRS) and the IR radiance spectra from the Cross Track Infrared Sounder (CrIS), onboard
NASA’s Suomi National Polar-orbiting Partnership (SNPP) satellite, to analyze fire and the atmospheric condi-
tions before, during, and after fires. Two months of satellite observations over the Southwest United States and
the Amazonia regions when large fires occurred in the regions of interest (October 2017 and August 2020) are
used. Our findings reveal that CrIS has high sensitivity to fire that affects as little as 1% of its field of view (FOV)
with FOV total fire radiative power (FRP) larger than 200 MW (MW) at night and 1000 MW during the day. By
employing spectral principal component analysis (PCA), the CrIS spectral signature to atmospheric temperature,
humidity, and trace gases corresponding to fire characteristics are quantified. This approach highlights that
collocated imager and IR sounder data, when paired with PCA, provide a powerful method to effectively identify
and monitor wildfires. This technique also allows for the observation of subsequent atmospheric alterations while
managing data volume efficiently, ensuring that crucial spectral information is preserved. This methodology
advances our ability to understand and respond to the multifaceted impacts of wildfires on both local and global
scales, reinforcing the value of integrated satellite observations in environmental science.

1. Introduction

Fire is an important integral process within the Earth system that has
profound influences on the structure of ecosystem and atmospheric
composition. In the absence of human influence (e.g., agricultural ac-
tivities), fire naturally recycles carbon between soil and vegetation on
the time scale of 30–40 years related to tree growth (Watson et al.,
2000). In this process, gaseous carbon compounds, primarily carbon
monoxide and carbon dioxide, are also released to the atmosphere. In
the last few decades, however, global wildfire occurrences have been
undergoing unprecedented changes due to a combination of natural (e.

g., natural variability at different scales) and human-induced (e.g., forest
and water resource management and anthropogenic climate change)
drivers on climate and ecosystems, marked by increasing magnitude and
frequency of fire weather, fire events, and the duration of the fire season,
which brought profound social and economic impacts (Abatzoglou et al.,
2019; Abram et al., 2021; Bowman et al., 2017; Flannigan et al., 2009;
Jain et al., 2022; Kelley et al., 2019; Touma et al., 2021). Therefore,
observations of both the fire characteristics and the associated atmo-
spheric environmental changes are essential to fully understand the fire
physical processes, the feedback mechanisms, and their impacts on the
Earth System, for which the synergy of satellite imagers with high spatial
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resolution and sounders with high spectral resolution provides a multi-
decadal global data record from space.

In recent decades, a critical advance in fire science is the develop-
ment and applications of operational satellite products. Visible and
infrared (IR) narrowband imagers, which offer a high spatial resolution
but coarse spectral resolution, have been widely used in detecting and
monitoring fires at different sizes and strengths from space. Multiple
narrowband imagers are currently operating in Low Earth Orbit (LEO)
and on geostationary (GEO) platforms, such as the Advanced Very High
Resolution Radiometer (AVHRR, since 1979), Moderate Resolution Im-
aging Spectroradiometer (MODIS) aboard NASA’s Earth Observing
System (EOS) Terra and Aqua satellites (since 1999 and 2002, respec-
tively), Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the
Suomi National Polar-orbiting Partnership (SNPP, since 2011), and
NOAA’s new generation of Joint Polar Satellite System (JPSS) satellites
(since 2017). Active fires are detected by these instruments as heat
anomalies by the spectral signature of fire-affected land surfaces by
combining information from their visible and IR channels (Chuvieco and
Martin, 1994; Flasse and Ceccato, 1996; Giglio et al., 2003, 2016;
Morisette et al., 2005; Schroeder et al., 2008; Wooster et al., 2003; Yu
et al., 2024). Specifically, the continuity effort of MODIS and VIIRS en-
sures a well-established long-term active-fire data product providing
information on location, emitted energy, the flaming and smoldering
ratio of fire, and estimate of the burnt area. However, the coarse spectral
resolution of these imagers limits their capability to monitor the detailed
vertical structure of the fire emissions and fire weather conditions such
as thermodynamic properties before, during, and after fire. These are
key parameters to understand the interactions between the Earth System
and fires (Field et al., 2015; Flannigan et al., 2016; Jain et al., 2022), and
to predict the short-term and long-term fire danger globally and
regionally (Farahmand et al., 2020; Wang et al., 2017).

Space-borne hyperspectral IR sounders, often flying in concert with
the narrowband imagers on operational environmental satellites, have
the capability to measure spectra at high spectral resolution (< 1 cm− 1)
usually at a spatial resolution of ~15 km. These operational IR sounders
also cover the shortwave-IR region for fire detection, although its
applicability is limited by the coarse spatial resolution. No quantitative
analyses on the operational sounder fire sensitivity limit have been
carried out. On the other hand, the capability and information content of
hyperspectral IR sounding is strongly dependent on the atmospheric and
surface states of the observed scene (Yue et al., 2011; Yue et al., 2013;
Yue and Lambrigtsen, 2019). As fire weather is often associated with dry
and less cloudy conditions, the IR spectral measurements have good
capability to record the entire atmospheric column profiles. Therefore,
the IR sounders could provide critical information on the vertical and
spatio-temporal features of the environmental changes associated with
fire including both thermodynamic conditions and trace gases, which
often have a much larger spatial scale than the fire itself.

Major US and European LEO operational environment satellites carry
both narrowband imagers and hyperspectral IR sounders (together with
microwave sounders), such as the AVHRR and Infrared Atmospheric
Sounding Interferometer (IASI) on multiple Meteorological Operational
(MetOp) satellites,MODIS and the Atmospheric Infrared Sounder (AIRS)
on Aqua, and VIIRS and the Cross Track Infrared Sounder (CrIS) carried
on the SNPP and JPSS satellites. The synergy of imagers and sounders
with a multi-decadal global coverage provides the capability to observe
and monitor both the short- and long-term aspects of fire events and fire
environmental change from space. However, the sheer volume of these
datasets and their different granulization pose a bottleneck for the
community.

In this work, we combine the instantaneous measurements of im-
agers and sounders to simultaneously utilize the quantitative informa-
tion on fire characteristics from imagers, and the high-resolution
spectral signature of sounder observations associated with large-scale
atmospheric variations in, e.g., atmospheric temperature, humidity,
and trace gases during and immediately before/after fire events.

The huge volume of raw hyperspectral sounding data to be involved
demands tremendous computational power that makes real-time appli-
cations inefficient. One approach may reduce the data volume by pre-
selecting a subset of channels that is representative of the surface heat
anomaly and absorption features of some target quantities such as water
vapor and carbon monoxide. Another approach is to reduce the data
dimensionality by truncating the leading principal components (PC) that
are representative of various atmospheric conditions using spectral
principal component analysis (PCA) while the full spectral information
could still be retained with reduced measurement noise. Both ap-
proaches are explored in our study to 1) provide a quantitative analysis
on sensitivity of hyperspectral IR sounder observations to fire and fire
environmental conditions; 2) build a dataset describing both fire and fire
weather in before, after, and during fire conditions, and 3) test out a fast
method for real-time fire weather monitoring from space using multi-
sensor observations.

The spectral PCAmethod relies on the interchannel covariance of the
absorption features across the spectrum (Antonelli et al., 2004; Huang
and Antonelli, 2001). The applicability of PCA to problems of data
compression and suppression of instrument random noise, inversion,
and extreme event detection has been studied and deployed in mission
data processing for multiple hyperspectral IR sensors on both space-
borne and ground platforms (Goldberg et al., 2003; Lee et al., 2019;
Serio et al., 2020; Tobin et al., 2007; Tremblay et al., 2022; Turner et al.,
2006) including AIRS, CrIS, IASI, and the Atmospheric Emitted Radiance
Interferometer (AERI), and has also been used to identify extreme events
(Hultberg et al., 2017; Vu Van et al., 2023). However, it remains a
challenge to retain spectral signals associated with sporadic extreme
events, such as wildfires, due to lack of sufficient training datasets.
Intuitively, the minimum number of PCs needed to retain a target signal
depends on whether and how much prior data of the target signal has
been used during the training. Atkinson et al. (2010) showed that
including as few as 10% of the IASI spectra in the training dataset for a
prior volcanic eruption event would tremendously improve the recon-
struction of the spectral signatures of methane (CH4), CO, ammonia
(NH3), and sulfur dioxide (SO2) of posterior volcanic eruption events
using IASI observations. Therefore, to preserve full spectral information
from sounders for operational applications, it is important to develop
new methods that could identify rare or extreme events and include
them in the training datasets. On the other hand, a truncated set of PCs
obtained from a training dataset built only on normal conditions, e.g., an
environment with insufficient representation of extreme events such as
fires, would show large errors when they are used to reconstruct the
spectra of extreme events. Such spectral reconstruction “errors” could be
used to develop real-time application tools for detecting extreme events.
Thus, in this study the instantaneous collocated imager observations are
used to quantify the detailed fire characteristics for each radiance
spectrum from hyperspectral sounders and then analyze and compare
the results of PCA applied to the spectra composited by fire conditions.

To demonstrate our method, the pixel-scale collocated CrIS and
VIIRS observations on the SNPP satellite are used. CrIS and VIIRS are the
imager-sounder pair that will operate on the US LEO environmental
satellites until ~2050, providing long-term continuity observations of
Earth’s climate. The vertical profiles of temperature and water vapor
from the 5th generation global atmospheric reanalysis from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF), ERA5.1,
are also collocated with satellite observations to facilitate the analysis of
the spectra. We describe the data andmethodology in Section 2. We then
discuss our results in Section 3 and present concluding remarks in Sec-
tion 4.

2. Data and methodology

Using the pixel-scale collocated SNPP CrIS and VIIRS-750 m index
data (Fetzer et al., 2022), the Version 1 SNPP-VIIRS Thermal Anomalies/
Fire 750 m Level 2 (L2) products (VNP14) are matched with the Version

X. Zhou et al.
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3 SNPP-CrIS Level 1B (L1b) radiances at the native resolution of CrIS (14
km at nadir). The CrIS fields of view (FOVs) are categorized into three
groups: during-fire for which an active fire is identified by VNP14 within
the CrIS FOV, before-fire and after-fire that are fire-free CrIS FOVs
within five days before and after an active fire identified at the same
location, respectively. The active burning areal percentage of the CrIS
FOV and the fire radiative power (FRP, Kaufman et al., 1996, Wooster
et al., 2003) are calculated from the collocated VIIRS fire retrievals.
More details are given in the following sections and the Appendix.

2.1. Study regions and time periods

We will focus on two regions with distinct climate regimes, the
southwestern United States (SWUS, 32◦N–42◦N, 235◦E–246◦E) and
Amazonia (20◦S–10◦N, 280◦E–320◦E) as shown in the boxes in Fig. 1.
These two regions represent drastically different climate and biogeo-
graphical regimes, causing significantly different relationships between
fire activity and fire weather, contributed by both natural and human
factors. Yet both regions are deeply impacted by increasing disturbance
from fires while enduring significant upward trends in fire weather due
to changes in climate and ecosystem (Andela et al., 2019; Jiang et al.,
2021; Jones et al., 2022).

Fires in SWUS often occur in the coastal mountainous regions. This
region tends to have lower levels of atmospheric moisture compared to
other regions due to its arid and semi-arid climate. The AIRS data show
that the mean total column water vapor (TCWV) concentrations in
SWUS range from 10 to 20 mm (mm) and 5–15 mm during the summer
and winter months, respectively (not shown). Fires in Amazonia are
often associated with deforestation and occur dominantly in Amazonia’s
dry season, when the mean TCWV ranges from 20 to 40 mm, which is
much wetter than the SWUS annual mean. Such regime differences are

also valuable to address the scene-dependence of the IR sounder infor-
mation content (Yue and Lambrigtsen, 2019).

Two months of data, October 2017 and August 2020, are used in this
study, which are the typical fire seasons in Amazonia and SWUS.

2.2. SNPP-VIIRS thermal anomalies/fire 750-m level 2 (version 1):
VNP14

The fire mask layers in SNPP-VIIRS Thermal Anomalies/Fire 750-m
Level 2 (L2) products (VNP14) are used to identify pixels with active
fire events. Each VPN14 L2 file contains a 6-min orbital segment of
thermal anomalies and fire retrievals at 750-m resolution from the
SNPP-VIIRS instrument. The retrieval algorithm is adapted from the
MODIS Collection 6 Fire and Thermal Anomalies product (Giglio et al.,
2016) so the VPN14 product provides a continuation of the 1-km EOS-
MODIS active fire data record (Schroeder and Giglio, 2017). Six 750-m
VIIRS channels are used as the input to the algorithm to provide
cloud, surface classification, sun glint, fire detection, and quality
assurance. The main input is the VIIRSM13 channel at 4 μm. Compared
to MODIS, the higher spatial resolution of VIIRS fire products increases
the sensitivity of VIIRS to smaller fires. The dynamically assigned low/
high gain setting of the M13 channel increases the saturation tempera-
ture of the channel to 659 K compared to 500 K of the MODIS Channel
21. As a result, pixel saturation of the VIIRS 750-m 4-μm channel is very
rare except for extremely large and intense fires (Schroeder and Giglio,
2018). After assessment using ground truth information from field
campaigns (Dickinson et al., 2016) and qualitative same-day Landsat-
class data corroborated by user feedback (Oliva and Schroeder, 2015),
the VIIRS fire product is currently given a status of validated maturity.

The VPN14 FRP is retrieved using the radiance approach developed
by Wooster et al. (2003) and Wooster et al. (2012) which still needs

Fig. 1. VIIRS mean fire radiative power map on 1◦ × 1◦ latitude by longitude grid box from the two months of data with the boxes showing the two selected regions:
Amazon and Southwestern United States (SWUS). Only observations over land are used in this study.

X. Zhou et al.
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more verification and validation analyses (Schroeder and Giglio, 2017).
This study uses the VPN14 FRP retrievals as a qualitative indicator to
characterize the strength of the fire, given uncertainties associated with
its retrieval, especially for intense fires due to channel saturation or for
small fires due to the resolution and detection limit of the VIIRS 750-m
channels. Fig. 1 shows the VIIRS FRP averaged on 1◦ × 1◦ grids from the
two months of observations, with the two selected focus regions
enclosed in the rectangular boxes (only observations over land are used).

2.3. SNPP-CrIS level 1B (L1B) full spectral resolution (FSR) version 3

The SNPP-CrIS L1B spectral radiances at the full spectral resolution
(FSR) are used to characterize the signature of wildfires as well as the
associated environmental changes. Each SNPP-CrIS L1B FSR file con-
tains unapodized radiance measurements over one 6-min orbital
segment (i.e., a granule) and there are 240 granules per day. The SNPP-
CrIS FSR product has high spectral resolution of 0.625 cm− 1 (unapo-
dized) in three IR bands: the long-wave IR band 1 (648.75–1096.25
cm− 1), the mid-wave IR band 2 (1208.75–1751.25 cm− 1), and the short-
wave IR band 3 (2153.75–2551.25 cm− 1) (Han et al., 2013, Revercomb
and Strow, 2020). Radiance measurements from a total of 2223 spectral
channels are provided at a spatial resolution of approximately 14 km at
nadir. The Noise Equivalent Differential Radiance (NEDN) for each
channel is also reported by granule in the L1B product, which is a key
parameter describing the CrIS instrument noise (Zavyalov et al., 2013;
Tobin et al., 2013).

2.4. Pixel-scale collocated CrIS and VIIRS observations for fire science:
SNPP CrIS–VIIRS 750-m matchup indexes version 1

The collocated SNPP CrIS and VIIRS index products (SNPP_CrIS_-
VIIRS750m_IND) developed through NASA’s Making Earth Science Data
Records for Use in Research Environments (MEaSUREs) program are
used (Fetzer et al., 2022) to take advantage of the synergistic observa-
tions of imagers and sounders (Wang et al., 2016). The L2 VPN14 fire
observations and CrIS L1B hyperspectral IR radiances are matched at the
pixel scale following the method in Yue et al. (2022) using the collo-
cation index product (see Appendix for more details). The characteristics
of fires from the finer-resolution VIIRS pixels are collected and sum-
marized within a given CrIS FOV where IR spectra to retrieve atmo-
spheric thermodynamic and emission conditions are measured.

The during-fire observations are first selected from the twomonths of
data over each of the two regions. The location and time of the fire, the
fire size (spatial coverage), and the total FRP in the CrIS FOV (fire
strength) are recorded by summarizing the fire information within each
CrIS FOV reported in the collocated VIIRS active fire product. To
quantify the sensitivity of CrIS spectra to fire characteristics, the fire size
is simply calculated as the ratio (in percent) of VIIRS active fire 750-m
pixels to the total number of VIIRS 750-m pixels that are collocated
within one given CrIS FOV. The before- and after-fire CrIS FOVs are then
selected using the criteria discussed previously: fire-free by VIIRS ob-
servations and within the five-day time window before or after an active
fire was identified at the same location. Each group is then divided into
day- (local solar time from 8 am to 4 pm) and night-time (local solar time
from 9 pm to 4 am) observations to separate the following factors from
the spectral sensitivity to fire and fire weather: 1) the solar radiance
impact on the shortwave-IR channels and 2) the algorithm differences
between day- and night-time VIIRS active fire retrievals. From the two
months of data, there are 592 and 150 day- and night-time CrIS fire FOVs
that have the before and after fire FOVs available in the SWUS region.
The Amazonia region has 14,672 and 3647 CrIS fire FOVs satisfying the
criteria during day- and night-time, respectively.

2.5. ERA5.1 temperature and water vapor profiles matched to satellite
observations

Produced using a 4D-Var data assimilation, ERA5 has a much higher
spatial and temporal resolution than its predecessor, ERA-Interim
(Hersbach et al., 2020). In addition, newly reprocessed datasets along
with recent instruments (such as CrIS) have been assimilated into ERA5
that could not be ingested into ERA-Interim (Hersbach et al., 2019;
Hennermann and Berrisford, 2020). ERA5 atmospheric fields have been
used extensively in studies of fire weather and fire danger (Vitolo et al.,
2020). Although reanalysis data may not accurately represent the point
location, especially the extreme conditions when fire occurs, it provides
a more spatially and temporally homogenous long-term dataset of
meteorological conditions associated with the life cycle of fire events
(Parker et al., 2016).

In this study, we use the hourly output of temperature and specific
humidity profiles with 37 pressure levels on a latitude-longitude grid of
0.25o × 0.25o from an updated version of ERA5, namely ERA5.1. Both
ERA5 and ERA5.1 provide high quality analyses in the troposphere, with
ERA5.1 providing a better representation of the upper stratospheric
temperature and water vapor compared to ERA5 (Simmons et al., 2020).
In this study, ERA5.1 profiles were collocated to SNPP-CrIS FOVs using a
nearest neighbor approach within a spatial-temporal window of 1-h and
50 km radius.

2.6. Principal component analysis (PCA)

PCA is a multivariate analysis technique that is commonly used to
reduce the dimensionality of data (Pearson, 1901; Hotelling, 1933). It
has been widely applied to high spectral resolution IR spectra to deal
with the large number (L) of spectral channels that are often highly
correlated (Huang and Antonelli, 2001; Antonelli et al., 2004). The in-
formation contained in the input radiances from L channels will be
preserved by finding a set of Lt orthogonal vectors with Lt < L, which
accounts for the required data variance determined by the science
objective of the study. These orthogonal vectors are referred to as
principal components (PCs). The eigenvalue λi represents the variance
explained by the corresponding ith PC.

In this study, PCA is applied to the two months of SNPP-CrIS L1B
spectra before, during, and after fires in the SWUS and Amazonia regions
to quantify the fire-related spectral differences and their correspondence
with local temperature, humidity, and trace gas concentration changes.
CrIS channels that have a quality control (QC) value of 2 (“do not use”)
are excluded using the QC flags reported in the L1B products. Following
Goldberg et al. (2003) and Antonelli et al. (2004), the spectra are
normalized by the mean noise equivalent differential radiance to make
the noise approximately white before applying PCA, in order to avoid
fitting the noise instead of real signal variations. This is especially
important for spectral regions where instruments have higher noise or
spectral regions containing weak absorption features of trace gases. For
comparison purposes and future real-time applications, PCA is also
applied directly to the spectra without the noise normalization. The PCs
of the covariance matrix of the spectra are then computed.

It is challenging to determine the optimal value of PC numbers (Lt)
from real observations that removes the uncorrelated noise while
retaining all the meaningful spectral signals. A widely accepted method
to determine Lt is to require the ratio between cumulative variance
explained by the first Lt PCs to the total data variance to be close to 1
(Jolliffe, 2002) although limitations of this method are noticed (e.g.,
Antonelli et al., 2004). Here, we use the threshold of total explained data
variance to be 99.9%. Following Goldberg et al. (2003), we define mean
reconstruction error (REE) for the kth spectrum, REEk(Lt), and channel-
specific reconstruction error for channel i, REEi(Lt), respectively:

X. Zhou et al.
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REEk(Lt) =

[
1
L
∑L

i=1

[
Ii,k − Ri,k(Lt)

]2
]1/2

REEi(Lt) =

[
1
n
∑n

k=1

[
Ii,k − Ri,k(Lt)

]2
]1/2

where L and n are the number of channels and number of spectra in the
observations, respectively. Ii,k and Ri,k are the observed and recon-
structed brightness temperatures (BT) at Channel i for the kth spectrum,
respectively. The latter are reconstructed using the first Lt eigenvectors.

In the calculation of REE, both the reconstructed and the observed
spectra are from the same set of observations, i.e., reference data or
training data, thus REE characterizes the errors in PCA fitting. However,
if the reference dataset is different from the target dataset, the difference
between the reconstructed spectra and the observations indicates dif-
ferences between the reference and target datasets, which, in our study,
are the differences between the two atmospheric states, such as with and
without active fire, before and after fire. For simplicity of the discussion,
such difference is referred to as reconstruction score, RSC, which has
been proven to be an effective measure to detect atmospheric features
that are not included in the reference dataset, such as extreme events
(Hultberg et al., 2017). In our study, to characterize the spectral dif-
ferences due to the impact of fire, we use the observations before fires as
the reference or training data. The during- and after-fire spectra are then
reconstructed using the PCs of before-fire spectra, and the RSCs are then
calculated. Since other factors such as regional differences and day-night
differences have been excluded by the collocation and case selection
method, RSCs characterize the main differences associated with fire
between during- (RSCduring-fire) or after-fire (RSCafter-fire) and before-fire
conditions.

3. Results and discussions

3.1. CrIS channel equivalent widths

The high spectral resolution of CrIS (as well as its predecessors AIRS
and IASI) enables the sensitivity on the vertical distribution of atmo-
spheric temperature and humidity, and other trace gases, which are
important parameters to monitor the local thermodynamic conditions
and emissions related to fires (Barnet et al., 2023; Xiong et al., 2022).
Fig. 2a shows the locations of the clear-sky weighting function peaks in
pressure for each CrIS FSR channel based on the 1976 US Standard At-
mosphere, calculated using the principal component-based radiative
transfer model (PCRTM, Liu et al., 2006) following Hamming
apodization.

Fig. 2b shows the CrIS channel-based equivalent width, Wν, for the
major absorbers in the IR spectral region to qualitatively demonstrate
the gaseous absorption contributions at each CrIS channel. The equiv-
alent width is commonly used to characterize molecular abundance in
stellar atmospheres based on the area contained within a spectral line at
a given wavenumber ν (Rutten, 2003):

Wν =

(

1 −
Bν(TL)

Bν(TR)

)∫

line
(1 − e− τν )dν

Here, Bν is the Planck function, TL and TR are the temperatures of the
absorbing gas and reference background, repectively, and τv is the op-
tical thickness of the line.Wv is positive for absorption lines and negative
for emission lines and has units of frequency (cm− 1). Under the weak
absorption line assumption, where e− τ ≈ 1 − τ for absorbing gas species j
and line index i, the equivalent width normalized by the thermal
contrast at the line center vo,ij can be written as:

Wʹ
ij =

Wν0 ,ij

1 −
Bν0 ,ij(TL)
Bν0 ,ij(TR)

= αj,iAj

Fig. 2. (a) shows the peak of the clear-sky weighting function in pressure for each CrIS FSR channel based on the 1976 US Standard Atmosphere, calculated using the
principal component-based radiative transfer model (PCRTM, Liu et al., 2006) following Hamming apodization. (b) shows the CrIS channel-based equivalent width
for the major absorbers, such as H2O, CO2, O3, N2O, CO, and CH4, in the IR spectral region to qualitatively demonstrate the gaseous absorption contributions at each
CrIS FSR channel.
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where αj,i is line strength and Aj is the species abundance. In hyper-
spectral atmospheric remote sensing, the contribution of the gas species j
on channel k with spectral response function Sk(ν) can be approximated
by summarizing the normalized equivalent width over all isotopologues
of this gas species and their fractional abundances:

W*
k,j =

∑

i
Sk
(
ν0,ij

)
Wʹ

ij.

Although the assumption of weak absorption and linearization of
optical depth introduces errors, W*

k,j provides a simple, instrument
channel-based approximation characterizing the relative importance of
different species to the sensitivity of the IR sounding instrument, as
shown in Fig. 2b for SNPP-CrIS FSR channels.

The two panels together in Fig. 2 demonstrate the capability of CrIS
to sound the vertical profiles of the atmosphere. Taking carbon mon-
oxide (CO) as an example, the contribution of CO is seen in the CrIS

Fig. 3. (a) Mean CrIS FSR radiance spectra before, during, and after fires in the two regions for daytime and nighttime conditions; (b) The differences of the CrIS
mean spectra between different fire conditions for the two regions in daytime and nighttime observations.
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channels covering the R-branch of the thermal-IR CO fundamental band
above 2155 cm− 1 (Fig. 2b). CO is formed during biomass burning, by
incomplete combustion of biomass and fossil fuel and by oxidation of
methane (CH4) and volatile organic compounds (Worden et al., 2022).
For fire events, CO’s relatively long lifetime of a few weeks to months in

the atmosphere makes it an effective tracer of pollution plumes and their
subsequent transport (George et al., 2009). CrIS short-wave IR channels
in the 4.3 μm CO2 channels also show high sensitivity to the lower at-
mospheric temperature. Sensitivity to water vapor profiles is clearly
seen in the mid-wave IR channels.

Fig. 4. Similar with Fig. 3 but for clear sky cases only.

X. Zhou et al.
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3.2. CrIS mean spectra before, during, and after fires

Fig. 3 shows the average CrIS BT spectra in the SWUS and Amazonia
regions for before-, during-, and after-fire conditions, obtained using the
two months of satellite data. The procedure of defining the before-,
during-, and after-fire spectra are described in Section 2 and Appendix A.
Daytime (dark green, dark red, and dark blue) and nighttime (light
green, light red, and light blue) spectra are plotted separately to account
for day-night differences due to solar radiation contributions to the
SWIR channels and the algorithm differences in VIIRS active fire
products.

Channels that are sensitive to the surface may be affected by clouds.
To further separate the impacts due to clouds, the mean spectra in clear
sky conditions are shown in Fig. 4. The IR effective cloud fraction (ECF)
as retrieved by the Community Long-Term Infrared Microwave Com-
bined Atmospheric Product System (CLIMCAPS; Smith and Barnet,
2020) for SNPP are used to flag a cloudy spectrum. The ECF is the
product of cloud areal fraction and the IR cloud emissivity, the latter of
which is assumed to be spectrally flat in the retrieval of ECF (Susskind
et al., 2003). Previous studies show that the CrIS ECF is generally
consistent with the cloud properties such as the cloud frequency and
cloud optical depth measured by VIIRS in determining the presence of
clouds in the scene (e.g. Yue et al., 2022). CrIS FOVs with ECF<10% are
considered as “clear” and this filter is applied to the spectra that satisfy
the selection procedure as described in Sec. 2.4. Table 1 shows the
numbers of “clear-sky” spectra for day- and nighttime.

Fig. 5 shows the errors associated with the mean spectra for clear sky:
the standard errors (SE) of the mean spectra (Fig. 5a) and the CrIS Noise
Equivalent Differential Temperature (NEDT, Fig. 5b). The SE is calcu-
lated as the standard deviation divided by the square root of the number
of spectra, which describes the uncertainty of the mean spectra, i.e., the
precision of the mean spectra calculated from our datasets. The SE for
clear sky is larger than all sky (not shown) due to the smaller sample
sizes. The larger sample size over Amazonia is also the main driver of the
smaller SE in this region than SWUS. The NEDT is calculated from the
SNPP-CrIS L1B NEDN averaged over cases under different conditions
and using the corresponding average scene BT by channel. NEDT de-
scribes the noise of the spectra. The scene BT is used to account for the
scene dependence of NEDT. The NEDT for 270 K scene temperature is
also shown as a reference for the during-fire cases because CrIS NEDN is
highly scene independent (Tobin et al., 2013).

The mean spectra in Figs. 3 and 4 show that the BTs in the surface
channels (with clear-sky weighting functions peaking near the surface in
Fig. 2a) during the fire are noticeably higher than fire-free conditions in
both regions, due to the enhanced surface and lower tropospheric
temperature during fire. Fig. 6 shows the mean differences of tempera-
ture and water vapor profiles from the collocated ERA5.1 data aggre-
gated in the same way as the CrIS spectra. Although more smoothed
spatially and temporally, the collocated ERA5.1 vertical profiles show
larger near-surface temperature during fire than fire-free conditions in
the Amazon regions, while the SWUS region shows colder near-surface
temperature during fires than fire-free means. This may be related to
larger heterogeneity of meteorological conditions in the mountainous
region that is not correctly represented by reanalysis.

In Figs. 3 and 4, in the IR window channels the after-fire mean BTs
are higher than the before-fire mean in the SWUS region, however the

Amazon region shows colder after-fire BTs than before fire, which is
opposite to what is shown by the mean ERA5.1 differences in near-
surface temperature. In the Amazon region, the after-fire atmospheric
column water vapor is ~20% wetter than the before-fire conditions
(Fig. 6). The enhanced water vapor continuum absorption may
contribute to the IR window BT differences observed. However, the
window channel BT differences could be due to other factors such as the
surface emissivity, and aerosol or clouds that are not successfully
removed by our cloud filtering method, which makes direct interpre-
tation of mean spectral differences difficult.

The window channels also show larger BTs during fire than before
fire; however, the difference between the two is larger in daytime (red)
than in nighttime (pink), with the mid-wave IR water vapor channel BT
differences larger in nighttime than daytime. This is consistent with the
larger magnitude of atmospheric column drying during fire associated
with the nighttime fire events as shown by ERA5.1 in the SWUS region
(Fig. 6 red and pink curves). Such day-night difference in water vapor
concentration is much smaller in the Amazon region, consistent with a
smaller day and night difference between during- and before-fire spectra
than that in SWUS.

3.3. Pixel-scale CrIS spectral sensitivity to collocated VIIRS fire
characteristics on selected channels

To further investigate the CrIS spectra sensitivity to the fire charac-
teristics at the pixel level, we select two spectral channels: 1231.25
cm− 1, a mid-IR window channel, and 2520.00 cm− 1, a shortwave IR
channel as the water vapor contribution is minimal in this channel using
the calculated CrIS channel equivalent width. Fig. 7 correlates the CrIS
BTs from these two channels as a function of the spatial extent and the
strength of fire within the FOV. The symbol color represents the CrIS
FOV total FRP, calculated by summing up the FRP of all collocated VIIRS
pixels within the CrIS FOV. The black and gray circles are the before- and
after- fire conditions (both fire-free) within five days at the active fire
locations. The symbol size corresponds to the percent of CrIS FOV
covered by fire as identified by the VIIRS 750-m active fire product. The
distinctively higher BTs in the 2520 cm− 1 channel compared to the fire-
free conditions demonstrate the sensitivity of CrIS to fire events in both
day and night-time conditions, with limited signals to smaller fires
(symbols with smaller sizes and colder colors). The sensitivity is higher
during the night than during the day. In both regions, nighttime fires
with above about 200MWatts (MW) FOV-total FRP are visibly separated
from the non-fire scenes; yet during daytime, fires with FOV FRP above
about 1000 MW can be separated from the fire-free conditions. In terms
of FOV-average FRP that is calculated as the mean VIIRS FRP over the
collocated CrIS FOV, these numbers become 1 MW and 5 MW for day-
and nighttime, respectively. The distinction between the fire and fire-
free conditions from the two channels is only apparent for fires that
occupy >1% of CrIS FOVs.

The higher spectral resolution of CrIS FSR measurements enables the
monitoring of the trace gas emissions associated with fire. The BT dif-
ference between the two CrIS channels at 2183.12 cm− 1 and 2185.00
cm− 1 is shown in Fig. 8 as a function of fire spatial extent (symbol sizes)
and FOV-total FRP (colors). The two channels correspond to a strong and
a weak CO absorption channel with similar contributions from tem-
perature and humidity. Therefore, their difference is a proxy of the
abundance of CO in the atmosphere. A strong correlation between the
CO abundance with the FRP of the fires are found in both regions.

3.4. Understanding CrIS spectral sensitivity to fire environment change
using the PCA method

Scatterplots like Fig. 7 and Fig. 8 highlight the potential sensitivity of
hyperspectral IR measurements to fire characteristics and fire-related
local atmospheric states on selected channels. PCA is an effective
method to reduce the dimension of the spectral observations while

Table 1
The number of “clear-sky” CrIS spectra before, during, and after fire conditions
in the SWUS and Amazon regions using the two months of data in this study.

Day-time Night-time

Before
Fire

During
Fire

After
fire

Before
Fire

During
Fire

After
fire

SWUS 461 446 489 76 62 94
Amazonia 7864 8869 7714 1790 1580 2279
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retaining the full hyperspectral information from the IR sounders.
Table 2 shows the number of PCs (Lt) needed to explain 99.9% of

spectra variance of the noise-normalized spectra and the original CrIS
spectra before, during, and after fire in the SWUS and Amazonia regions,
for which Lt is generally <10. The noise-normalized spectra generally
require a slightly smaller Lt. The during-fire spectra Lt values are always

larger than their counterpart in fire-free conditions, indicating higher
spectral variability during fire. Fig. 9 shows the cumulative variance
explained by the first 10 PCs for day- (solid) and night-time (dash)
spectra. Darker and lighter colors correspond with SWUS and Amazonia
regions, respectively. The variance associated with the leading PCs is
smaller using noise-normalized spectra in all conditions, and is

Fig. 5. The standard errors (SE) of the mean clear sky spectra (a) and the CrIS Noise Equivalent Differential Temperature (NEDT, b) before, during, and after fires in
the two regions for daytime and nighttime conditions as shown by different colors. The SE is calculated as the standard deviation divided by the square root of the
number of spectra. The NEDT is calculated from the SNPP-CrIS L1B NEDN averaged over cases under different conditions using the corresponding average scene
brightness temperature (BT) by channel. The NEDT for 270 K scene temperature is also shown as a reference (black).

X. Zhou et al.
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Fig. 6. The differences of SNPP-CrIS collocated ERA5 temperature and water vapor vertical profiles between different fire conditions over Amazonia (left) and the
SWUS (right). From top to bottom are the temperature (T in K), specific humidity (SH in g kg− 1), specific humidity difference relative to the minuend (%), and the
relative humidity (RH in %).
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decreasing from before fire, after fire, to during fire conditions with
larger values from the day- than night-time observations. These values of
Lt are much smaller compared to other studies applying PCA to CrIS-like
hyperspectral IR spectra. Using the simulated AIRS all-sky radiances,
Goldberg et al. (2003) showed that <10 PCs could explain nearly 100%
of the variance and ~ 60 PCs are needed to reconstruct the AIRS spectra
within the instrument noise level. They further recommended to keep
the 200 PCs to assure sufficient information is saved to reconstruct the
AIRS radiances. Atkinson et al. (2008) derived 150 PCs using approxi-
mately 16,000 spectra from 6 months of thinned IASI data. In a subse-
quent study, Atkinson et al. (2010) selected around 300 PCs from a
global sample of about 75,000 IASI spectra plus approximately 6600
cases associated with fire and volcano eruption. Barnet et al. (2023) use
approximately 100 PCs to perform full-on IR retrievals from CrIS FSR
radiances with the number of PCs locally determined for each individual
spectrum.

The smaller values of Lt in this study are attributed to the fact that
our datasets are specifically associated with active fire events and their
immediately before- and after-fire conditions within two months in a

particular region. Consequently, the range of variance represented by
our dataset is much narrower than the global all-condition analyses
reported in other studies. Additionally, the small sample sizes (592 day-
and 150 night-time CrIS FOVs in the SWUS region; 14,672 day- and 3647
night-time FOVs in Amazonia) also contribute to the limited number of
leading PCs (Jolliffe, 2002; Antonelli et al., 2004). Nonetheless, these
results highlight the distinctive spectral signature of CrIS radiances
related to fire and associated environmental changes, demonstrating the
benefit of PCA.

Figs. 10 and 11 show both the REE (dashed lines) and RSC (dots)
calculated using the first 50 PCs for the two regions, respectively.
Overlain are the weighting function peaks and CrIS channel specific
equivalent width for the major IR absorbers shown in Fig. 2. The small
REE values demonstrate the application of PCA to reduce the data vol-
ume while retaining the information of spectra under different condi-
tions. As discussed in Section 2.5, RSCs with magnitudes larger than
reconstruction error and measurement error show the distinctive spec-
tral features in the target dataset (spectra during and after-fire) that are
not included in reference or training set (before-fire spectra). The

Fig. 7. The CrIS spectral sensitivity to the fire characteristics at the pixel level. The scatterplot shows the correlation between the brightness temperatures at two
spectral channels: 1231.25 cm− 1, a mid-IR window channel, and 2520.00 cm− 1, a shortwave IR channel as the water vapor contribution is minimal in this channel.
The symbol color represents the total CrISFRP over each CrIS FOV, calculated as the sum of the FRP of all collocated VIIRS pixels within the CrIS FOV. The black and
gray circles are the before and after fire conditions (fire-free) within five days at the active fire locations. The symbol size corresponds to the percent of CrIS FOV
covered by fire as identified by the VIIRS 750-m active fire product. Daytime and nighttime observations in Amazon and SWUS regions are shown in different panels.

X. Zhou et al.



Remote Sensing of Environment 312 (2024) 114318

12

differences in the shortwave IR channels, CO absorption bands, and the
CO2 4.3 μm bands are apparent. The strong signals as shown by large
RSCs are also seen in the mid-wave IR water vapor sounding channels
~1250 cm− 1, whose weighting functions peak in the lower troposphere
(Barnet et al., 2023; Pan and Huang, 2018). This indicates changes in
lower troposphere humidity between before and after fire that could be
retrieved from the CrIS observations. These results highlight the po-
tential of efficiently detecting fire-induced local atmospheric condition
changes from the CrIS FSR observations using the PCA method. The

collocated sounder and imager data thus can provide the training data
that are necessary for such application and train algorithms to detect
and retrieve emissions and thermodynamic environmental changes due
to fire.

4. Concluding remarks

This study analyzed the infrared (IR) spectral signature of wildfires
and the IR sounder instrumental sensitivity to size and strength of fire

Fig. 8. The sensitivity of CrIS CO plume to the size and strength of the fire, shown by the BT differences between the two CrIS FSR channels located at 2183.12 and
2185.00 cm− 1 as functions of fire spatial extent (symbol size) and FOV total FRP (symbol color). The two channels correspond to a strong and a weak CO absorption
channel with similar contributions from temperature and humidity.
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events using a pixel-scale collocated product between the space-borne
sounders and imagers. Leveraging the strengths of both instruments
allows for detailed quantitative analysis of the spectral characteristics of
sounders associated with high-spatial fire properties measured by im-
agers, encompassing the stages of before, during, and after fires.

Using two months of collocated SNPP-CrIS and VIIRS observations in
two selected regions (SWUS, and Amazonia), we found that CrIS displays

high sensitivity to fires that affects as little as 1% of its FOV with total
FRP larger than 200 MW at night and 1000 MW during the day in the
CrIS FOV. Similar dependence of CrIS CO signals to the size and strength
of the fire is shown using the BT difference between two CrIS channels
(2183.12 and 2185.00 cm− 1, which are 4.581 and 4.577 μm in wave-
length, respectively) as a proxy.

To better understand the spectral signature of fire and the fire at-
mospheric states, the PCA method is applied to spectra obtained before,
during, and after fire in these two regions. Generally, fewer than 10
leading PCs are needed to account for 99.9% of the spectral variance for
all conditions, demonstrating the value of PCA in reducing the data
volume while retaining all spectral information, which is key in the
application of hyperspectral sounding observations. Using before-fire
spectra as the training dataset, a method to efficiently identify fire and
the atmospheric state differences related to fire is shown using the
reconstruction score (RSC) of PCA. The magnitude of RSC is much larger
than that of PCA fitting errors as shown by the reconstruction errors
(REE). The large differences in RSCs between the after- and during-fire
spectra relative to the before-fire spectra illustrate the spectral signal
of fire, and the atmospheric temperature, CO, and lower tropospheric
humidity changes caused by fire. Therefore, the collocated imager fire
and IR sounder radiance observations could be used to build training
datasets for applications which use machine learning methods to detect
and monitor extreme events like fire. Our study could be extended to the
multi-decadal observations records of synergistic sounder and imager
measurements from multiple satellites, which will build long-term data
records to study the interactions between fire and the climate system.
This could benefit from the efforts to develop the PCA based L1B
products for space-borne hyperspectral IR sounders, such as the IASI
PCA-based products (EUMETSAT, 2022) and the newly released CrIS
L1B PCA / Rapid Event Detection products (https://disc.gsfc.nasa.
gov/datacollection/SNDRJ1CrISL1BPCARED_3.0.html).

Recently, the NASA FireSense program selected the Pyro-atmosphere
InfraRed Sounder (PIRS) instrument. PIRS measures the shortwave IR
spectral region with a much higher spatial resolution, aiming to provide

Table 2
The number of PCs (Lt) needed to explain 99.9% of spectra variance of the noise-
normalized and original CrIS spectra before, during, and after fire conditions in
the W. US and Amazonia regions using the two months of data in this study.

Day-time Lt from noise
normalized (and original) CrIS
spectra

Night-time Lt from noise
normalized (and original) CrIS
spectra

Before
Fire

During
Fire

After
fire

Before
Fire

During
Fire

After
fire

SWUS 5 (6) 8 (10) 6 (7) 5 (5) 9 (10) 6 (7)
Amazonia 4 (5) 7 (9) 3 (5) 5 (5) 11 (12) 4 (4)

Fig. 9. The cumulated variance explained for the first 10 PCs of the noise-
normalized CrIS spectra (a), and original CrIS spectra (b) for different com-
posites during the day and night time for SWUS and Amazon regions.

Fig. 10. Channel-specific REE and RSCs for spectra in the SWUS regions for day- (upper) and night-time (middle) CrIS observations in the SWUS region. Dashed lines
show the channel-specific REEs for CrIS spectra in the before-, during-, and after-fire conditions using the first 50 PCs. Colored dots show the RSC for during-fire
spectra (red), and after-fire (green) spectra that are calculated using the first 50 PCs of the before-fire spectra, respectively. Overlain are the weighting function
peaks and CrIS channel specific equivalent width for the major IR absorbers (bottom) shown in Fig. 2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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3-dimensional information about the state of the atmosphere during the
pre- and active-fire stages of wildland fires. The method developed here
could benefit the onboard data processing and potential retrieval algo-
rithm development for PIRS and other IR sounding instruments.
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Appendix A. Collocating VPN14 L2 and SNPP-CrIS L1b FSR products using the SNPP CrIS–VIIRS 750-m Matchup Indexes for before,
during, and after fire conditions

The data products used in this study and their codenames are summarized in Table A1. One SNPP_CrIS_VIIRS750m_IND file contains data for one
CrIS granule, which gives the matchup indices of SNPP-VIIRS pixels within each SNPP-CrIS FOV. Due to small spatio-temporal mismatch between the
granulizations of the two sensors, each SNPP-CrIS L1B FSR file could overlap with up to three SNPP-VIIRS granules. The granule IDs are provided in the
matchup index files for VNP03MOD products, which are used to find the corresponding VNP14 files. These VNP14 files are then concatenated in the
temporal order (along-track direction).

Fig. 11. Same as Fig. 10 except for the Amazonia.
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Table A1
The data files used in this study. {T} stands for the acquisition time. {G} stands for the granule
number. {P} stands for the processing time. {V} is either “VPN14” or “VNP03MOD”.

Data Products Filenames

VNP14 or VNP03MOD {V}.A{T}0.001.{P}.nc
CrIS FSR L1B SNDR.SNPP.CRIS.{T}.m06.{G}.L1B.std.v03_08.G.{P}.nc
SNPP_CrIS_VIIRS750m_IND IND_CrIS_VIIRSMOD_SNDR.SNPP.{T}.g{G}.nc

Each SNPP_CrIS_VIIRS750m_IND file has a 45 along-track×30 cross-track×9 FOV array, named FOVCount_ImagerPixel, which specifies the
number of VIIRS pixels in each CrIS FOV.Where FOVCount_ImagerPixel is non-zero, the along-track (named number_of_pixels) and cross-track (named
number_of_lines) indices of the SNPP-VIIRS pixels (after concatenation) in different CrIS FOVs are stored serially in temporal order. If a pair of the
SNPP-VIIRS along-track and cross-track indices in the SNPP_CrIS_VIIRS750m_IND file also appears in the concatenated VNP14 indices, then the
corresponding CrIS FOV is deemed to contain fire, and its spectrum is collected. This way the during-fire CrIS spectra and their associated fire
characteristics can be obtained.

Fig. A1 shows an example of the collocated VNP14 “during-fire” pixels with the SNPP-CrIS FOVs. Once a during-fire spectrum is obtained, the
corresponding before-fire spectrum is obtained by repeating the same fire-searching algorithm to the first day prior to the during-fire spectrum except
the target now is a non-fire SNPP-CrIS FOV (i.e. none of the overlapped VIIRS pixels has fire) at the same location. If the during-fire spectrum is a
daytime (local standard solar time from 8 AM to 4 PM) spectrum, then the before-fire spectrum must also be a daytime spectrum; similarly, if the
during-fire spectrum is a nighttime (local standard solar time from 8 PM to 4 AM) spectrum, then the before-fire spectrum must also be a nighttime
spectrum. If the SNPP-CrIS FOV one day prior also contains fires, then we search again on the second day prior to the during-fire spectrum, and so on
until we have searched through all five days prior to the during-fire spectrum for the first fire-free SNPP-CrIS FOV at the same location. The after-fire
spectrum corresponding to the during-fire spectrum is obtained in the same way except for the earliest fire-free spectra within five days after the fire
events.

Fig. A1. (Bottom) The field of views (FOVs) of SNPP-CrIS in the 11th granule at 01:00 UTC on October 1, 2017. Each field of regard of CrIS consists of a 3×3 array of
FOVs. Different FORs are colored by consecutive orange and green. (Top) A zoom-in of the SNPP-CrIS granule where two collocated SNPP-VIIRS during-fire FOVs
(filled circles) over the SNPP-CrIS FOVs (filled octagons) are identified. Uncollocated FOVs are shown in open symbols. The octagon boundaries of the CrIS FOVs
extracted from the FSR product are drawn to the real scale (~14 km in diameter). The circles of the VIIRS FOVs in the top panel are not drawn to the real scale. Note
the bowtie effects of the SNPP-CrIS FOVs at the east/west wings.
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