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The phenomenological cornucopia of SU(3) exotica

Linda M. Carpenter∗ and Taylor Murphy†
Department of Physics, The Ohio State University

191 W. Woodruff Ave., Columbus, OH 43212, U.S.A.

Tim M. P. Tait‡
Department of Physics and Astronomy,

University of California, Irvine
Irvine, CA 92697, U.S.A.
(Dated: February 15, 2022)

We introduce an effort to catalog the gauge-invariant interactions of Standard Model (SM) particles
and new fields in a variety of representations of the SM color gauge group SU(3)c. In this first
installment, we direct this effort toward fields in the six-dimensional (sextet, 6) representation. We
consider effective operators of mass dimension up to seven (comprehensively up to dimension six),
featuring both scalar and fermionic color sextets. We use an iterative tensor-product method to
identify the color invariants underpinning such operators, emphasizing structures that have received
little attention to date. In order to demonstrate the utility of our approach, we study a simple but
novel model of color-sextet fields at the Large Hadron Collider (LHC). We compute cross sections for
an array of new production channels enabled by our operators, including single-sextet production and
sextet production in association with photons or leptons. We also discuss dijet-resonance constraints
on a sextet fermion. This example shows that there remains a wide array of fairly minimal but well
motivated and unexplored models with extended strong sectors as we await the high-luminosity LHC.

I. INTRODUCTION

The search for physics beyond the Standard Model
(bSM), spearheaded by the CERN Large Hadron Collider
(LHC) [1], continues unabated, spurred on by a constella-
tion of theoretical deficiencies and experimental anomalies
that continue to bedevil the Standard Model. These is-
sues range from the well known naturalness problems
[2–5] to the collection of persistent muon [6] and flavor
anomalies [7, 8] and the ongoing search for particle dark
matter [9, 10]. While there exist a wide variety of specific,
sometimes ultraviolet-complete, frameworks that seek to
rectify some or all of the Standard Model’s shortcom-
ings, some — in the absence of experimental evidence for
any specific bSM model — have turned to an effective
field theory (EFT) approach to study new physics in a
simplified and more model-independent manner.

The EFT approach, which in the simplest terms allows
one to study the experimentally accessible degrees of free-
dom in a theory while remaining agnostic about physics at
higher energy scales, has been used to great effect in many
contexts. Some pertinent examples include the Standard
Model Effective Field Theory (SMEFT) [11], which now
includes (in at least one basis) every independent opera-
tor comprising SM fields of up to mass dimension eight
[12–14] and has lately been used to probe experimental
anomalies; and the variety of effective operators employed
in supersymmetric frameworks in which supersymmetry
breaking is communicated by heavy messengers from a
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hidden sector to the visible world [15, 16].
Lying somewhere between the SMEFT and supersym-

metric models on the scale of bSM theories ranked by
exotic particle content are simplified models in which the
SM is augmented only by new matter whose only non-
trivial gauge transformations are under the SM gauge
group GSM = SU(3)c × SU(2)L × U(1)Y . A particularly
simple but fruitful subset of these models feature a new
color-charged SU(2)L singlet perhaps with non-vanishing
weak hypercharge. While new color-charged fields — par-
ticularly SU(3)c triplets and octets (adjoints) — occur in
a panoply of bSM theories and have long been studied in
those specific contexts, there has been far less attempt at
a coherent and comprehensive accounting of bSM strong
interactions in an EFT framework. We intend to address
this gap in the literature, beginning with the present
work.

We construct a catalog of effective operators governing
fields in the six-dimensional (sextet) representation of
SU(3)c, which remain hypothetical but can be copiously
produced in proton-proton (pp) collisions and are there-
fore highly relevant to the ongoing LHC program. Using
an iterative tensor-product method to construct new color
invariants, we enumerate all possible operators of mass
dimension up to six connecting sextets to Standard Model
fields, and additionally identify a few potentially interest-
ing dimension-seven operators. Several of these operators
have to date received little or no attention. In order to
motivate this operator catalog ex post facto, we construct
two simplified models of color-sextet fields and explore
the phenomenology of these particles at the LHC. These
models are notably different from previous models of color
sextets in that the novel particles couple not to quark
pairs, like the aptly named “sextet diquarks” [17–19], but
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instead to a quark and a gluon. We find fairly light con-
straints on sextet fermions from a CMS search for dijet
resonances [20] and propose future searches for the other
interesting multijet + γ/Z or lepton signatures generated
by these simple models.
This paper is organized as follows. In Section II, we

show how to build a catalog of exotic-color operators
starting from first principles, and we produce such a cat-
alog for color-sextet fields. In Section III, we use a small
subset of these operators to explore a simplified model
of color-sextet scalars and fermions. We compute cross
sections for a variety of production modes and discuss
LHC phenomenology while surveying constraints on these
novel particles. Section IV concludes. The appendix con-
tains a thorough discussion of the representation theory
of the SU(3) sextet, along with some notes about the im-
plementation of our specific color-sextet models in public
computing tools.

II. EFFECTIVE INTERACTIONS OF EXOTIC
COLOR-CHARGED STATES

Our aim is to catalog the interactions of new SU(3)c-
charged matter with the Standard Model. Ultimately, one
could imagine considering bSM fields up to the twenty-
seven-dimensional representation of SU(3)c, which is the
highest representation that can be produced resonantly
in a pp collision via gg fusion. In order to generate results
that are novel and useful but also relatively simple, we
choose to focus on particles in the six-dimensional (sextet,
6) representation of SU(3)c. The method we describe can
be easily generalized to other color representations.

A. Color singlets by iteration

The goal is to find all gauge- and Lorentz-invariant
operators governing exotic color-charged matter and the
Standard Model. As an initial step, we need to identify
all relevant1 gauge-invariant contractions of SM color-
charged fields with color sextets. We therefore begin by
enumerating the gauge-invariant contractions of three
color-charged fields that can be realized at the LHC. To
do this, we recall the tensor decompositions of direct
product (reducible) representations N ⊗M , {N ,M} ≤ 8,

1 At present, our goal is a comprehensive catalog at dimensions five
and six, but we identify interesting dimension-seven operators
throughout. In other words, we ignore SU(3)c invariants that can
only produce dimension-eight or higher (smaller) operators.

of SU(3) [21, 22]:

3⊗ 3 = 3̄a ⊕ 6s,
3⊗ 3̄ = 1⊕ 8,
6⊗ 3 = 8⊕ 10,
6⊗ 3̄ = 3⊕ 15,
6⊗ 6 = 6̄s ⊕ 15a ⊕ 15′

s,
6⊗ 6̄ = 1⊕ 8⊕ 27,
8⊗ 3 = 3⊕ 6̄⊕ 15,
8⊗ 6̄ = 3⊕ 6̄⊕ 15⊕ 24,

and 8⊗ 8 = 1s ⊕ 8s ⊕ 8a ⊕ 10a ⊕10a ⊕ 27s, (1)

where the subscripts s (a) indicate a symmetric (anti-
symmetric) contraction. There are four reducible repre-
sentations of SU(3), given by the direct product of three
irreducible representations (smaller than 8 and including
at least one sextet) that contain a color singlet. As a
shorthand, we refer to these reducible representations as
invariants, and we write them as

3⊗ 3⊗ 6̄,
3⊗ 6⊗ 8,
6⊗ 6⊗ 6,

and 6⊗ 6̄⊗ 8. (2)

This shorthand indicates that there exists (at least) one
way to contract fields in the corresponding representa-
tions of SU(3)c that results in a color singlet. These
“three-field” invariants produce a number of interesting
operators by themselves, but only scratch the surface
of what is possible in SU(3). In order to go deeper,
we make a straightforward observation about reducible
representations of SU(3) based on the simple fact that
the direct product of an irreducible representation p with
its conjugate p̄ contains a gauge singlet. In particular:

Observation. If there exist invariant combinations of
n+ 1 and m+ 1 fields transforming in the direct product
representations r1 ⊗ · · · ⊗ rn ⊗ p and q1 ⊗ · · · ⊗ qm ⊗ p
of SU(3), then there exists an invariant combina-
tion of n + m fields in the reducible representation
r1 ⊗ · · · ⊗ rn ⊗ q̄1 ⊗ · · · ⊗ q̄m.

This observation allows us to systematically identify all
gauge-invariant color structures in and beyond the Stan-
dard Model. Applying this technique to the list (1), with
n = m = 2, yields ten independent invariants of four
fields that can be used to construct effective operators
of dimension seven or lower (larger) including at least
one sextet and at least one SM field. We write these
“four-field” invariants in order of increasing representation
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dimension as

3⊗ 3⊗ 6⊗ 6,
3⊗ 3⊗ 6̄⊗ 8,
3⊗ 3̄⊗ 3̄⊗ 6̄,
3⊗ 3̄⊗ 6⊗ 6̄,
3⊗ 6⊗ 6⊗ 6̄,
3⊗ 6⊗ 8⊗ 8,
3⊗ 6̄⊗ 6̄⊗ 8,
6⊗ 6⊗ 6̄⊗ 6̄,
6⊗ 6⊗ 6⊗ 8,

and 6⊗ 6̄⊗ 8⊗ 8. (3)

This larger set of invariants underpins a significantly larger
set of gauge-invariant operators than what is generated
by the three-field invariants. The final iteration required
to fit the scope of this work takes n = 2, m = 3, and
produces the following list of ten “five-field” invariants:

3⊗ 3⊗ 3⊗ 3⊗ 6,
3⊗ 3⊗ 3⊗ 3̄⊗ 6̄,
3⊗ 3⊗ 6⊗ 6̄⊗ 6̄,
3⊗ 3̄⊗ 6⊗ 6⊗ 6,
3⊗ 3̄⊗ 6⊗ 6̄⊗ 8,
3⊗ 6⊗ 6⊗ 6⊗ 6,
3⊗ 6⊗ 6̄⊗ 6̄⊗ 6̄,
6⊗ 6⊗ 6⊗ 6̄⊗ 6̄,
6⊗ 6⊗ 6̄⊗ 6̄⊗ 8,

and 6⊗ 6⊗ 6⊗ 8⊗ 8. (4)

Many of the invariants in (3) and (4) produce operators
with a minimummass dimension of seven, but several work
at dimension six. At any rate, the three preceding lists
provide all the group-theoretic ingredients of dimension-
seven or lower operators governing color-charged fields.
As we implied in the Introduction, we build operators from
these invariants assuming that only the sextet is novel;
i.e., we take the triplets (3) to be SM quarks and the
octets (8) to be SM gluons. It should therefore be noted
that specific assignments of sextet weak hypercharge may
be necessary in order to preserve invariance under the full
SM gauge group GSM.
Most of the four- and five-field invariants enumerated

above permit more than one contraction, which happens
when there exists more than one intermediate representa-
tion p implying the SU(3) invariant r1 ⊗ · · · ⊗ rn ⊗ q̄1 ⊗
· · · ⊗ q̄m (as defined in the observation on the previous
page). Distinct gauge-invariant contractions of a fixed
set of fields are realized with distinct sets of generalized
Clebsch-Gordan coefficients. As an example, the invariant
composed of three color octets can be built in a totally
symmetric or a totally antisymmetric manner, and an

observable associated with these two possible vertices
(summed over colors) carries a factor proportional to

fabcf
abc = 24 vs. dabc d

abc = 40
3 for SU(3)c. (5)

In this example, the Clebsch-Gordan coefficients corre-
spond to the structure constants fabc and the SU(3) to-
tally symmetric symbol, dabc = 2 tr {ta3, tb3}tc3 with tar the
generators of the irreducible representation r of SU(3).
Other Clebsch-Gordan coefficients have been computed
in prior studies of exotic color-sextet fields; these are
the coefficients linking three color triplets (Lijk, totally
antisymmetric) and two triplets to an antisextet (K ij

s ,
symmetric under i↔ j interchange) [18]. In Tables I–III,
we specify all possible contractions of color indices gener-
ating the invariants listed in (2), (3), and (4). In these
tables, and throughout this document, index heights in
Clebsch-Gordan coefficients (associated with irreducible
representations that are not self-conjugate) are fixed in or-
der to contract correctly with fields in the representations
specified in the first column, so for instance the totally
antisymmetric coefficients for the invariant 3⊗ 3⊗ 3 are
written so that

L ⊃ Lijkϕiϕjϕk (6)

would be a color singlet composed of three scalars ϕi in
the fundamental representation of SU(3)c. Appendix A
contains a more thorough discussion of Clebsch-Gordan
coefficients, including further explanation of notation, a
method for computing them, and some important results
used later in this work.

Tables I–III display a wide variety of index contractions
leading to color singlets. The number of valid contractions
naturally rises with the order of the invariant, since higher-
order contractions are built from smaller ones. Therefore,
while most three-field invariants permit only one contrac-
tion, the five-field invariant 3⊗ 3̄⊗6⊗6⊗6 (for example)
permits six. There are in total a few dozen contractions
available for all possible sets of color-charged fields rel-
evant to our operator catalog, even before considering
sextet spin(s) and electroweak representation(s) — and
the other fields required to form singlets under the full
SM gauge group.

B. Lorentz invariance

The construction of Lorentz-invariant operators natu-
rally depends on the spin(s) of the exotic field(s). We con-
sider scenarios with one or two (distinct) color-sextet fields
assigned as either a complex scalar or a Dirac fermion (or
one of each species). In order to collect all sextet opera-
tors, we identify all possible Lorentz structures built out
of the SU(3)c invariants collected above. Since it turns out
that most operators in our catalog contain Dirac fermions
— either quarks, leptons, or color-sextet fermions — a
natural starting place is the non-vanishing Dirac bilinears,
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Invariant Clebsch-Gordan coefficients Notes

3⊗ 3⊗ 3 Lijk Totally antisymmetric

3⊗ 3⊗ 6̄ K ij
s i↔ j symmetric

3⊗ 3̄⊗ 8 [ta3] j
i Generators of 3

3⊗ 6⊗ 8 J s ia See Appendix A

3⊗ 6⊗10 E is
x

3⊗ 6̄⊗ 15 Q q i
s

3⊗ 8⊗15 V ia
q

6⊗ 6⊗ 6 S stu t↔ u symmetric

6⊗ 6⊗15 W st
q s↔ t antisymmetric

6⊗ 6̄⊗ 8 [ta6] t
s Generators of 6

6⊗ 6̄⊗ 27 F n t
s

6⊗ 8⊗ 15 X q sa

8⊗ 8⊗ 8 fabc dabc (fabc) dabc totally (anti)symmetric

8⊗ 8⊗ 10 G x ab a↔ b antisymmetric

8⊗ 8⊗ 27 H nab a↔ b symmetric

Table I: Color index contractions yielding the three-field color invariants needed for a catalog of dimension-six or lower
operators governing color sextet interactions with SM quarks and gluons. This table establishes our notation for

invariant (Clebsch-Gordan) coefficients, some of which are used for phenomenology later in this work. Tables II and
III extend this catalog to four- and five-field invariants.

displayed in Table IV, with their Hermitian conjugates
implied.
This table establishes a shorthand for non-vanishing

Dirac bilinears in addition to cataloging these objects.
The top block contains bilinears reminiscent of Stan-
dard Model structures, including all contractions of some
generic weak doublet XL = (χ+

L ,χ−L )ᵀ, and a weak singlet
χR. This class of bilinears is useful for invariants contain-
ing direct products of the form r̄ ⊗ q — an irreducible
representation with a (possibly distinct) conjugate irre-
ducible representation. A familiar example is the SM
operator

LSM ⊃ −ydIJ(Q̄iLIHdRJi), (7)

with I, J ∈ {1, 2, 3} generation (flavor) indices, the co-
efficients of which form the down-type Yukawa matrix

ydIJ . The color invariant underpinning this operator is
3̄⊗ 3. We have found many higher-order color invariants
that include a structure like this — either between two
color-charged fields or between a color-charged field and a
lepton — so these Dirac bilinears are quite useful. But we
also need bilinears for direct products of the form r⊗ q
— an irreducible representation with a (possibly distinct)
irreducible representation. These bilinears are displayed
in the middle block of Table IV. They comprise Dirac
fermions and charge-conjugated fermions:

χc ≡ Cχ̄ᵀ with C satisfying CγµC−1 = −γµ. (8)

While these structures do not appear in the Standard
Model, some occur in a variety of bSM theories ranging
from models of color-sextet scalars [19] to supersymmetric
models with Dirac gauginos [23]. The lower block of Table
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Invariant Clebsch-Gordan coefficients Notes

3⊗ 3⊗ 6⊗ 6 K ij
u S ust 3 [Π3366]ij st

3⊗ 3⊗ 6̄⊗ 8 LijkJ̄s ka K ik
s [ta3] j

k K ij
r [ta6] rs Q q i

sV ja
q 3 [Π336̄8]ij a

s

3⊗ 3̄⊗ 3̄⊗ 6̄ L̄ jkl K li
s [ta3] ij J̄s ak 3 [Π33̄3̄6̄]ijks

3⊗ 3̄⊗ 6⊗ 6̄ δ i
j δ s

t [ta3] i
j [ta6] s

t 3 [Π33̄66̄]i sj t

3⊗ 6⊗ 6⊗ 6̄ J s ia[ta6] t
u Q q i

uW st
q 3 [Π3666̄]i stu

3⊗ 6⊗ 8⊗ 8 [ta3] i
j J s jb J t ia[tb6] s

t J s ic{f , d}abc E is
x G x ab V ia

q X q sb 3 [Π3688]i s ab

3⊗ 6̄⊗ 6̄⊗ 8 K ij
s J̄s ai J s iaS̄stu 3 [Π36̄6̄8]i a

st

6⊗ 6⊗ 6̄⊗ 6̄ δ su δ tv [ta6] s
u [ta6] t

v 3 [Π666̄6̄]stuv

6⊗ 6⊗ 6⊗ 8 S str[ta6] u
r W st

q X q ua 3 [Π6668]stu a

6⊗ 6̄⊗ 8⊗ 8 δ st δ ab [tc6] s
t [tc8] a

b F n s
t H nab 3 [Π66̄88]s at b

Table II: Color index contractions yielding the four-field color invariants needed for the operator catalog, ordered by
the dimension of the representation whose index is summed over.

Invariant Clebsch-Gordan coefficients Notes

3⊗ 3⊗ 3⊗ 3⊗ 6 [Π3366]ij stK kl
t 3 [Υ33336]ijkl s

3⊗ 3⊗ 3⊗ 3̄⊗ 6̄ [Π33̄66̄]i tl s K jk
t [Π336̄8]ij a

s [ta3] k
l 3 [Υ3333̄6̄]ijkl s

3⊗ 3⊗ 6⊗ 6̄⊗ 6̄ [Π3366]ij srS̄rtu [Π336̄8]ij a
t [ta6] s

u 3 [Υ3366̄6̄]ij stu

3⊗ 3̄⊗ 6⊗ 6⊗ 6 [Π33̄66̄]i sj r S rtu [Π̄36̄6̄8] st
j a J u ia [Π6668]stu a[ta3] i

j 3 [Υ33̄666]i stuj

3⊗ 3̄⊗ 6⊗ 6̄⊗ 8 [Π3688]i s ab J̄t bj [Π66̄88]s at b [tb3] i
j 3 [Υ33̄66̄8]i s a

j t

3⊗ 6⊗ 6⊗ 6⊗ 6 [Π3666̄]i str S ruv 3 [Υ36666]i stuv

3⊗ 6⊗ 6̄⊗ 6̄⊗ 6̄ [Π36̄6̄8]i a
tu [ta6] s

v [Π̄6668]tuv aJ s ia 3 [Υ366̄6̄6̄]i stuv

6⊗ 6⊗ 6̄⊗ 6̄⊗ 8 [Π666̄6̄]stur[ta6] r
v [Π66̄88]s au b[tb6] t

v 3 [Υ666̄6̄8]st a
uv

6⊗ 6⊗ 6⊗ 8⊗ 8 [Π6668]stu c{f , d}abc 3 [Υ66688]stu ab

6⊗ 6̄⊗ 6̄⊗ 6̄⊗ 6̄ [Π666̄6̄]rs
′
st S̄s′uv 3 [Υ66̄6̄6̄6̄]rstuv

Table III: Color index contractions yielding the required five-field color invariants.

IV displays various objects in weak or Dirac space that can be inserted in the bilinears listed above. Omitted
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Examples Bilinears Notes

(χ̄χ′)
(q̄q′) (3̄⊗ 3),
(Ψ̄Ψ) (6̄⊗ 6),
(q̄`) (3̄⊗ 1)

X̄LHΓχ′R

X̄LΩ γµX ′L only if half of
four-fermion operator

with second γµχ̄Rγ
µχ′R

(χχ′)
(qq′) (3⊗ 3),
(ΨΨ) (6⊗ 6),
(q`) (3⊗ 1)

χc
RΓχ′R Γ = σµν non-vanishing

only if χ′ 6= χ
Xc

LΩ ΓX ′L

Xc
LHγ

µχ′R needs second γµ again

Operator Notes

Γ ∈ {1,σµν} σµν must be accompanied by
σµν or a field-strength tensor Fµν ,

Fµν ∈ {Bµν , tA2WA
µν ,Gaµν}Ω ∈ {HH†, iτ2}

Table IV: Fermion bilinears that can be used, possibly by themselves or paired with an appropriate second bilinear, to
build all Lorentz-invariant operators of mass dimension up to seven including at least one color-sextet field. Hermitian
conjugates are allowed where distinct. Stipulations exist on the use of some bilinears listed above; some comments are
offered where appropriate. Extra insertions of |H|2 may be allowed in dimension-five operators where gauge invariant.
The dual Higgs field H̃ = iτ2H† could be used in place of H anywhere to e.g. allow a specific sextet weak hypercharge.

CP-odd bilinears replacing 1 with γ5 are also allowed in principle.

from this particular list is the fifth Dirac matrix γ5, which
when inserted between two Dirac fields of definite chirality,
as considered in this work, modifies the bilinear only
by a global sign. Crucially, some of these objects are
themselves Standard Model fields, including any of the
SM field-strength tensors2 Bµν ,Wµν ,Gµν and the SM
Higgs doublet, which in the unitary gauge takes the form

H = 1√
2

(
0

v + h

)
. (9)

As is well known, operators containing insertions of the
Higgs doublet generate operators of lower “effective di-
mension” when the Higgs is replaced by its vacuum ex-
pectation value v. A complete operator catalog follows
from cycling through all of the bilinears and insertions
that satisfy our criteria for gauge and Lorentz invariance.

The desired catalog of operators governing color-sextet
fields interacting with the Standard Model can be con-
structed from the set of Dirac bilinears and color invari-
ants. The number of dimension-five and -six operators

2 The SU(2)L (weak-isospin) field-strength tensor Wµν must be
accompanied by tA2 = τA/2, A ∈ {1, 2, 3}, the generators of the
fundamental representation 2 of SU(2). These generators must
furthermore be contracted with SU(2)L doublets XL.

containing at least one sextet and at least one SM field
is of O(102), and thus is quite large. Consequently, we
limit the listings in Tables V–VII to the minimal field
content at each order in the EFT expansion for each color
invariant. These “schematic” operators are built using the
shorthand Dirac bilinears introduced in Table IV, with
the generic Dirac fermions χ,χ′ in that table replaced by
quarks, leptons, and weak singlet color-sextet fermions.
Here we use a similar shorthand notation in which the
familiar SM quarks and leptons with quantum numbers
(SU(3)c, SU(2)L, U(1)Y ) are denoted by

q ∈


QLI ∼ (3, 2, 1

6 )

uRI ∼ (3, 1, 2
3 )

dRI ∼ (3, 1,− 1
3 )

and ` ∈

{
LLX ∼ (1, 2,− 1

2 )

`RX ∼ (1, 1,−1),

(10)

where I,X ∈ {1, 2, 3} are generation indices; and in which

Φ ∼ (6, 1,YΦ) and Ψ ∼ (6, 1,YΨ) (11)

respectively denote a color-sextet scalar and fermion. The
gluon and weak-hypercharge field strength tensors appear
explicitly as G and B, as does the SM Higgs doublet
H. Each entry in Tables V–VII, therefore, represents
a set of operators given by appropriately combining all
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Scalar sextet Φ only Dirac sextet Ψ only ≥ 1 of each

SU(3)c invariant dmin Structure dmin Structure dmin Structure

6⊗ 6̄

4† Φ†Φ 5† (Ψ̄Ψ)

4

(Ψ̄`)Φ

(Ψ`)Φ†

(¯̀Ψ)Φ†

3⊗ 3⊗ 6̄

4 (qq′)Φ†

6

(qq′)(Ψ̄`)

6 (qq′)|H|2Φ† (Ψ̄q)(q`)

(Ψ̄q)(¯̀q)

3⊗ 6⊗ 8 6
(q`)ΦG 5 (qΨ)G

(¯̀q)ΦG 7 (qΨ)|H|2G

6⊗ 6⊗ 6

5† ΦΦΦ
6

(ΨΨ)(Ψ`)
5

(Ψ`)ΦΦ

(ΨΨ)(¯̀Ψ) (¯̀Ψ)ΦΦ

6† (ΨΨ)Φ

6⊗ 6̄⊗ 8

6 Φ†ΦGB 5 (Ψ̄Ψ)G

6

(Ψ̄`)ΦG

7 (Ψ̄Ψ)|H|2G (Ψ`)Φ†G

(¯̀Ψ)Φ†G

Table V: Schematic table of three-field invariant operators, plus the unique two-field invariant 6⊗ 6̄, of minimum mass
dimension dmin ≤ 7 that can be constructed using the fermion bilinears in Table IV and that include at least one

color-sextet field. We consider scenarios with a sextet scalar, a sextet (Dirac) fermion, and at least one of each species.
Note that operators requiring a single gluon field-strength tensor G must be made Lorentz invariant by judicious
choice of fermion bilinear(s) or a weak-hypercharge field strength B. Lists marked with † have indicated dmin once

accompanied by minimal set of SM fields.

valid Lorentz structures with all available color index
contractions as displayed in Tables I–III. SU(2)L invari-
ance generally has to be ensured by judicious choices of
quark/lepton bilinears, but it is straightforward to pre-
serve U(1)Y by fixing the sextet hypercharge(s) after all
of the other ingredients are specified. Most operators can
be generalized beyond the minimal field content (to even
higher-dimensional operators) by insertions of Higgs or
gauge boson in their Dirac bilinears. These tables repre-
sent a comprehensive catalog at dimensions five and six,
and also include a variety of interesting dimension-seven
operators as well.

C. Examples

It is clear upon inspection of Tables V–VII that this
catalog contains a formidable variety of gauge-invariant
interactions for color-sextet fields. Not only do we recoup
the fairly small set of interactions that have previously
been investigated between sextet scalars and quark pairs
qq′ [17–19] — but we find many sextet interactions with
quarks and a lepton, and many of these permit gauge
bosons pursuant to either a color invariant or a Dirac
bilinear. The operators become increasingly spectacular
for the higher-order invariants: even at dimension six, for
instance, there are triple-sextet interactions with quark
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Scalar sextet Φ only Dirac sextet Ψ only ≥ 1 of each

SU(3)c invariant dmin Structure dmin Structure dmin Structure

3⊗ 3⊗ 6⊗ 6
5 (qq′)ΦΦ

6
(qq′)(ΨΨ)

7
(qq′)(Ψ`)Φ

7 (qq′)Φ|H|2Φ (qΨ)(q′Ψ) (q`)(q′Ψ)Φ

3⊗ 3⊗ 6̄⊗ 8 6 (qq′)Φ†G

3⊗ 3̄⊗ 3̄⊗ 6̄ 7
(q̄q′)(q̄′′`)Φ

6
(q̄q′)(q̄′′Ψ)

(qq′)†(q′′`)Φ (qq′)†(q̄′′Ψ)

3⊗ 3̄⊗ 6⊗ 6̄
5 (q̄q′)Φ†Φ

6
(q̄q′)(Ψ̄Ψ)

7∗
(q̄q′)(Ψ̄`)Φ

7 (q̄q′)Φ†|H|2Φ (q̄Ψ)(Ψ̄q′) (q̄Ψ)(q′`)Φ†

3⊗ 6⊗ 6⊗ 6̄

6
(q`)|Φ|2Φ

6
(qΨ)(Ψ̄Ψ)

5
(qΨ)Φ†Φ

(¯̀q)|Φ|2Φ (Ψ̄q)(ΨΨ) (Ψ̄q)ΦΦ

7∗
(qΨ)(Ψ`)Φ†

(q`)(Ψ̄Ψ)Φ

3⊗ 6⊗ 8⊗ 8 7 (qΨ)GG

3⊗ 6̄⊗ 6̄⊗ 8 7
(q`)Φ†Φ†G 6 (Ψ̄q)Φ†G

(¯̀q)Φ†Φ†G

6⊗ 6⊗ 6̄⊗ 6̄

6† |Φ|4

6

(Ψ̄`)|Φ|2Φ

(Ψ`)|Φ|2Φ†

(¯̀Ψ)|Φ|2Φ†

7 (Ψ̄Ψ)|Φ|2|H|2

6⊗ 6⊗ 6⊗ 8

7 ΦΦΦGB 6 (ΨΨ)ΦG

7
(Ψ`)ΦΦG

(¯̀Ψ)ΦΦG

6⊗ 6̄⊗ 8⊗ 8 6 |Φ|2GG 7 (Ψ̄Ψ)GG

Table VI: Schematic table of four-field invariant operators. Fields are left blank if operators exist only with dmin = 8.
Lists marked with ∗ are not exhaustive. Lists marked with † have indicated dmin once accompanied by minimal set of

SM fields.

pairs in Table VII. In order to demonstrate how it can be used to develop a concrete model, we expand two
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Scalar sextet Φ only ≥ 1 of each

SU(3)c invariant dmin Structure dmin Structure

3⊗ 3⊗ 3⊗ 3⊗ 6 7 (qq′)(q′′q′′′)Φ

3⊗ 3⊗ 3⊗ 3̄⊗ 6̄ 7 (qq′)(q̄′′q′′′)Φ†

3⊗ 3⊗ 6⊗ 6̄⊗ 6̄
6 (qq′)|Φ|2Φ†

7∗
(qq′)(Ψ̄Ψ)Φ†

(Ψ̄q)(q′Ψ)Φ†

3⊗ 3̄⊗ 6⊗ 6⊗ 6
6 (q̄q′)ΦΦΦ

7
(q̄q′)(ΨΨ)Φ

(q̄Ψ)(q′Ψ)Φ

3⊗ 3̄⊗ 6⊗ 6̄⊗ 8 7 (q̄q′)|Φ|2G

3⊗ 6⊗ 6⊗ 6⊗ 6 7
(q`)ΦΦΦΦ

(¯̀q)ΦΦΦΦ

3⊗ 6⊗ 6̄⊗ 6̄⊗ 6̄ 7
(q`)|Φ|2Φ†Φ†

(¯̀q)|Φ|2Φ†Φ†

6⊗ 6⊗ 6̄⊗ 6̄⊗ 8 7 (Ψ̄Ψ)Φ†ΦG

6⊗ 6⊗ 6⊗ 8⊗ 8 7 ΦΦΦGG

6⊗ 6̄⊗ 6̄⊗ 6̄⊗ 6̄ 7 ΦΦ†Φ†Φ†Φ†|H|2

Table VII: Schematic table of five-field invariant operators. Here we consider scenarios with a sextet scalar and at least
one of each species, since for these invariants there are no suitable fermion-only operators. Lists marked with ∗ are not

exhaustive.

subsets of the catalog and provide the associated operators
explicitly. The sections we expand correspond to the
three-field invariants 3⊗ 3⊗ 6̄ and 3⊗ 6⊗ 8, which are
schematically cataloged in the second and third sections
of Table V. The resulting list of explicit operators are
displayed in Tables VIII and IX.

These tables show all the details hidden in the schematic
operator lists by fully specifying the wide range of op-
erators with color indices, Clebsch-Gordan coefficients,
couplings3, and EFT cutoffs Λ{Φ,Ψ} made explicit. In ad-
dition, these tables specify the lepton numbers L and weak

3 In the interest of generality, the scalar couplings λ(X)
I(J) and Dirac

couplings κ(X)
I(J) are matrices in quark (and sometimes lepton)

generation space.

hypercharges Y the sextet field must assume in order to
preserve gauge invariance and the accidental lepton num-
ber conservation of the Standard Model. SU(2)L (weak)
indices are suppressed throughout, and Dirac indices are
contracted between objects within parentheses.

Table VIII, which targets the invariant 3 ⊗ 3 ⊗ 6̄, is
fairly large, even though there exists only one way to
contract color indices to form this invariant. This struc-
ture minimally couples a color sextet to quark pairs qq′,
which historically motivated the term “sextet diquarks”.
The first and third rows of Table VIII reproduce the
gauge-invariant interactions cataloged for weak-singlet
color-sextet scalars in [17, 19]. In addition to these known
couplings, we find numerous operators with various quark
chiralities and extra SM gauge and Higgs bosons. The
operators become even more exotic for sextet fermions in
this color structure, with leptons being necessary in every



10

3⊗ 3⊗ 6̄
Singlet (Lorentz + GSM)

L Y
Generic Specific Coupling

Scalar Φs
(qq′)Φ†

K ij
s Φ†s (qc

RIi qRJj) λIJ

0

{− 2
3 , 1

3 , 4
3}

K ij
s Φ†s (qc

RIi σ
µνqRJj)Bµν

1
Λ2

Φ
λIJ

K ij
s Φ†s (Qc

LIi iτ
2 QLJj) λIJ

1
3

K ij
s Φ†s (Qc

LIi σ
µν iτ2 QLJj)Bµν

1
Λ2

Φ
λIJ

K ij
s Φ†s (Qc

LIiHH
†QLJj)

1
Λ2

Φ
λIJK ij

s Φ†s (Qc
LIi σ

µνtA2 QLJj)Wµν A

(qq′)|H|2Φ† K ij
s Φ†s (qc

RIi qRJj) |H|2 {− 2
3 , 1

3 , 4
3}

Dirac Ψs

(qq′)(Ψ̄`)

K ij
s (qc

RIi qRJj)(Ψ̄s `RX) 1
Λ2

Ψ
κXIJ

1

{− 5
3 ,− 2

3 , 1
3}K ij

s (qc
RIi qRJj)(Ψ̄sH†LLX) 1

Λ3
Ψ
κXIJ

K ij
s (qc

RIi σ
µνqRJj)(Ψ̄sσµνH

†LLX)

K ij
s (Qc

LIi iτ
2 QLJj)(Ψ̄s `RX) 1

Λ2
Ψ
κXIJ

4
3

K ij
s (Qc

LIi iτ
2 QLJj)(Ψ̄sH†LLX) 1

Λ3
Ψ
κXIJ

− 2
3

K ij
s (Qc

LIiHγ
µqRJj)(Ψ̄sγµ `RX) {− 2

3 , 1
3}

(Ψ̄q)(q`)
K ij
s (Ψ̄sσµνqRIi)(qc

RJj σµν `RX) 1
Λ3

Ψ
κXIJ {− 5

3 ,− 2
3 , 1

3}

K ij
s (Ψ̄sγµqRIi)(Qc

LJjHγµ `RX)

1
Λ2

Ψ
κXIJ

{− 2
3 , 1

3}

(Ψ̄q)(¯̀q)
K ij
s (Ψ̄sγµqRIi)(L̄LXγµ iτ2 QLJj)

−1
{ 1

3 , 4
3}

K ij
s (Ψ̄sγµqRIi)(¯̀RXγµqRJj) { 1

3 , 4
3 , 7

3}

Table VIII: Gauge-invariant operators coupling color sextets to quark pairs, based on the SU(3) invariant 3⊗ 3⊗ 6̄
with Clebsch-Gordan coefficients K ij

s (viz. Appendix A). Hermitian conjugates also exist where distinct. Quark
generation indices {I, J}, lepton generation indices {X,Y }, and all color indices are kept explicit, while Dirac spinor
indices and SU(2)L indices are suppressed. L and Y are respectively the sextet lepton numbers and weak hypercharges

in each scenario.

case to form gauge and Lorentz singlets.
Table IX concerns the invariant 3⊗6⊗8, which despite

being a simple three-field invariant has received scant at-
tention in the literature. This invariant couples a color
sextet to a quark and a gluon, and while no operators
can be built at mass dimension four, it is potentially very
important in LHC searches for color sextets. Here, as
for the other three-field invariant, we find basic qg cou-
plings, as well as interactions containing extra B or Higgs

bosons. Interestingly, the situation with respect to leptons
is flipped relative to Table VIII, with the scalar sextet
interactions requiring leptons. In short, this table depicts
a fairly minimal but rich portal between the Standard
Model and color-sextet scalars and fermions. We highlight
some of the operators in this table in a phenomenological
investigation in Section III.
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3⊗ 6⊗ 8
Singlet (Lorentz + GSM)

L Y
Generic Specific Coupling

Scalar Φs
(q`)ΦG J s ia Φs (qc

RIi σ
µν`RX)Gµν a

1
Λ2

Φ
λXI −1 { 1

3 , 4
3}

(¯̀q)ΦG J s ia Φs (L̄LXHσ
µνqRIi)Gµν a

1
Λ3

Φ
λXI 1 {− 5

3 ,− 2
3}

Dirac Ψs

(qΨ)G
J s ia (qc

RIi σ
µνΨs)Gµν a

1
ΛΨ

κI

0 {− 2
3 , 1

3}J s ia (qc
RIi Ψs)BµνGµν a 1

Λ3
Ψ
κI

(qΨ)|H|2G J s ia (qc
RIi σ

µνΨs) |H|2 Gµν a

Table IX: Gauge-invariant operators coupling color sextets to quarks and gluons, based on the SU(3) invariant
3⊗ 6⊗ 8 with Clebsch-Gordan coefficients J s ia (viz. Appendix A). Conventions are similar to those of Table VIII.

III. SEXTETS AT THE LHC

In the previous section we introduced a wide variety of
operators governing the production and decay of exotic
color-charged states in the six-dimensional representa-
tion (6) of the Standard Model SU(3)c. In this section
we exploit the operator catalog to investigate models of
color-sextet fields based on a subset of these operators. In
particular, we consider color-sextet fermions and scalars
coupling to gluons, up- or down-type quarks, and some-
times leptons and the U(1)Y gauge boson(s) B; these
couplings are enabled by the color invariant 3 ⊗ 6 ⊗ 8.
The sextet fermion models are defined by

L ⊃ Ψ̄q(i /D −mΨq
)Ψq

+ 1
ΛΨq

[κIq J s ia (qc
RIi σ

µνΨqs)Gµν a + H.c.]

+ 1
Λ3

ΨqB

[κIqB J s ia (qc
RIi Φqs)BµνGµν a + H.c.] (12)

for q ∈ {u, d} (so for instance Ψu couples to up-type
quarks). The models for sextet scalars are analogously
given by

L ⊃ (DµΦq)†DµΦq −m2
Φq

Φ†qΦq

+ 1
Λ2

Φq

[λXIq J s ia Φqs (qc
RIi σ

µν`RX)Gµν a + H.c.]. (13)

In both Lagrange densities (12) and (13), as elsewhere,
spinor indices are contracted within parentheses. The
couplings and cutoff scales are taken with light modifica-
tion from Table IX. The Clebsch-Gordan coefficients J s ia
(with Hermitian conjugates J̄s ai) providing the gauge-
invariant contraction of a color sextet with a quark and a
gluon were introduced in Table I. We discuss these novel
coefficients in detail and explicitly provide them in a use-
ful basis in Appendix A. As we noted in Section II, these

Quantum numbers

GSM L

Sc
al
ar
s Φu (6, 1, 1
3 )

−1
Φd (6, 1, 4

3 )

Fe
rm

io
ns Ψu (6, 1,− 2

3 )
0

Ψd (6, 1, 1
3 )

Table X: Exotic field content of color-sextet models
considered in Section III. Representations in SM gauge
group GSM and charges under accidental symmetries are

noted.

color sextets must have particular weak hypercharges and
lepton numbers in order to preserve the symmetries of the
Standard Model. We summarize the quantum numbers
of the fields in (12) and (13) in Table X.

We implement these simplified models in version 2.3.43
of FeynRules [24, 25], a package for Mathematica©

version 12.0 [26]. Some notes on the implementation of
the Clebsch-Gordan coefficients J s ia are offered in Ap-
pendix A. We have used FeynRules to generate a Uni-
versal FeynRules Output (UFO) [27] for leading-order
(LO) event generation in MadGraph5_aMC@NLO
(MG5_aMC) version 3.2.0 [28, 29]. For both cross sec-
tion computations and event simulation, hard-scattering
amplitudes have been convolved with the NNPDF2.3
LO set of parton distribution functions [30]. The renor-
malization and factorization scales have been set to
µR = µF = mΨ or mΦ.
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p
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g
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g
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Ψ
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Ψ
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+
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Ψ

Ψ̄
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p

p

Φ

Φ†

=
g

g

g
Φ

Φ†
+

g

g
Φ

Φ

Φ†

+
g

g

Φ

Φ†
+

q

q̄

g
Φ

Φ†

Figure 1: Representative diagrams for pair production of color-sextet (a) fermions and (b) scalars. Blobs mark
vertices corresponding to an effective operator with some cutoff scale. Quarks coupling directly to sextets must have

appropriate hypercharge; viz. (12) and (13). These contributions are negligible for realistic ΛΨu
, ΛΨd

.

A. Cross sections and LHC signatures

At a high-energy hadron collider, color sextets can be
produced in pairs (predominantly through their SU(3)c
gauge interactions) as well as singly, often in association
with SM leptons or gauge bosons. Representative dia-
grams for pair production are displayed in Figure 1 and
proceed via gluon fusion and quark-antiquark annihila-
tion. Contributions to ΨΨ̄ production from the higher
dimensional operators in (12) are typically negligible for
reasonable choices of ΛΨq

. The cross sections of sex-
tet fermion and scalar pair production at the LHC with√
s = 13TeV are displayed in Figure 2, with systematic

errors estimated by adding the scale and PDF variations
reported by MG5_aMC in quadrature. Because pair
production is dominated by gauge interactions, the cross
sections are not only essentially independent of κIq and
ΛΨq

, but are also nearly identical for sextets coupling
to up- and down-type quarks. The spin of the sextet
is important, with the scalar cross section(s) hovering a
bit less than an order of magnitude below those of the
fermions. All cross sections are of O(1–10)pb for masses
below the TeV scale but fall quite steeply with increasing
sextet mass. It is worth noting that these results are
consistent with the small existing literature for sextet
fermions [31, 32] and scalars [18, 19, 33].

The novel interactions between sextet fermions, quarks,
and gluons in the second line of (12) allow sextet fermions
to be singly produced in quark-gluon fusion. Here the

600 800 1000 1200

10

100

1000

10
4

Figure 2: Leading order cross sections for pair
production of color-sextet fermions and scalars at the

LHC as a function of sextet mass.

quantum numbers of the sextet are significant, and we dis-
play the cross sections for both sextet fermions and their
antiparticles in Figure 3. We have chosen a simple bench-
mark in which all first- and second-generation quarks cou-
ple to sextets with equal strength: κIu = κId = 0.05 ∀ I ∈
{1, 2} and ΛΨu

= ΛΨd
= 1TeV. These choices correspond

to single-production cross sections for all sextet fermions
which are comparable to those for pair production. The
differences in cross section for the two fermions and their
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Figure 3: Cross sections of color-sextet fermion single
production. These are comparable to fermion
pair-production cross sections for indicated

couplings/cutoffs. Conjugate fermion (Ψ̄) cross sections
dominate because quarks have greater parton luminosity

than antiquarks at LHC.

conjugates are largely the result of the significant differ-
ence between quark and antiquark parton luminosities
at LHC. (One can see in (12) that the initial state for
Ψ̄q production is essentially qg, whereas Ψq is produced
by q̄g.) The situation would be quite different at a pp̄
collider like the Tevatron, but here the differences amount
to factors of around five. As expected, these cross sec-
tions fall more gently with increasing mΨ than that of
pair production.

A third interesting production mode involving a sextet
fermion is enabled by the final line of (12). We find that
processes with up to two photons or Z bosons in the
final state may have cross sections of O(1–10) fb, which
is on the margins of what is observable at the LHC. We
display these cross sections for the optimal case of a
sextet antifermion coupling to up-type quarks in Figure
4. These results correspond to a benchmark with (light)
flavor-universal couplings (κIuB = 0.10 ∀ I ∈ {1, 2}) and
a cutoff scale of ΛuB = 1TeV. As expected, the cross
section for pp→ Ψ̄u + γ is a few times larger than that of
pp→ Ψ̄u+Z. On the other hand, Ψ̄u+γZ is the largest of
the two-boson associated production modes, followed by
γγ and ZZ. For the same reasons as for unaccompanied
single fermion production, other sextet fermions produced
in association with photons and Z bosons exhibit smaller
cross sections.
While no operator in (13) allows for the production

of a lone color-sextet scalar at LHC, the production of
such particles in association with SM leptons is allowed
by the second line. These again are due to quark-gluon
fusion and exhibit the same behavior with respect to q/q̄
initial states. We display in Figure 5 some suggestive cross
sections for sextet scalar production with an electron or
its antiparticle. Here we adopt a benchmark in which the
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Figure 4: Cross sections of Ψ̄u single production in
association with up to two photons and/or Z bosons.

Cross sections for Ψu and Ψd, Ψ̄d are smaller in analogy
with single production (viz. Figure 2 and discussion).
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Figure 5: Cross sections of sextet scalar single
production in association with an electron or positron.
Conjugate scalar production dominates in a fashion
similar to sextet fermion single production. Cross

sections for associated production with µ, τ are orders of
magnitude smaller if all else is equal.

coupling matrices λXIu,d are diagonal in generation space,
so for instance Ψu + e is produced only by ūg fusion. We
specifically let λXIu,d = 0.1× δXI and again choose cutoffs
of ΛΦu = ΛΦd

= 1TeV. In this scenario, these cross
sections are up to a few times larger than those of sextet
fermion with γ/Z production.

B. Constraining color sextets at LHC

As we have seen, color-sextet particles can be produced
at the LHC singly and in pairs, sometimes in association
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with leptons and bosons. They will subsequently decay
to a variety of two or more SM particles. Many of these
decay products will hadronize in a detector, ultimately
producing final states with possibly large jet multiplicities,
possibly accompanied by leptons and electrically neutral
bosons. This rich phenomenology makes color-sextet
models ripe for exploration at the LHC, and indeed a
small subset of these models, mostly corresponding to
the top row of Table VIII, have received attention in the
literature [18, 19, 34, 35].
However, most of the important signatures generated

by the example models (12) and (13) are fringe cases that
have not been directly targeted by either experimental
collaboration. This ability to evade LHC searches by
producing exotic signatures is typical of our expanded
color-sextet catalog; viz. Tables VIII and IX. In this
discussion, we enumerate the most interesting signatures
worthy of future study, which in principle arise both from
leading-order color-sextet decays to SM particles [20, 36]
and from sextet loop contributions to meson-antimeson
mixing [35].
We first examine the single conventional signal with

existing constraints and map some experimental results
onto our EFT parameter space. In particular, we note
that the second line of (12) — which enables single sex-
tet fermion production via quark-gluon fusion — also
allows sextet fermions to decay to a quark and a gluon.
The full process pp → Ψq → q̄g (etc.) allows us to con-
strain the sextet fermions Ψq as dijet resonances. Both
experimental collaborations have conducted a number
of dijet-resonance searches during Run 2 of the LHC.
The search easiest to interpret within our model frame-
work was conducted by the CMS collaboration using
up to L = 36 fb−1 of pp collisions at

√
s = 13TeV [20].

This analysis targets dijet resonances over a wide mass
range (mjj ∈ [0.6, 8.0]TeV) and is specifically used to con-
strain (among others) a benchmark model of excited first-
generation quarks decaying to a gluon and a same-flavor
quark (q∗ → qg, q ∈ {u, ū, d, d̄}). We can use the model-
independent limits at 95% confidence level (CL) [37] on
the fiducial cross section σ(pp→ X)× BF(X → qg)×A
computed by CMS to estimate constraints on our sextet
fermions decaying to a gluon and a first-generation quark.
Our estimates for the fermion that couples to up-type
quarks, Ψu, are displayed in Figure 6.
Figure 6 is in the (mΨu , ΛΨu) plane. We provide no

results in the region where mΨu > 2ΛΨu , since we take
mΨu = 2ΛΨu as a threshold past which the effective field
theory’s applicability is dubious. Next, there are two
(four) exclusion regions in the plot; solid curves denote
observed limits and dashed curves indicate expected lim-
its. We have provided two sets of results in order to
show the importance of the branching fraction of the
sextet fermion to ūg. The green region(s) correspond
closely to the results displayed in Figures 3 and 4: all
couplings and cutoffs except for ΛΨu

take the same values
as in the previous plots. Recall that in these benchmarks,
the couplings κIu,κIuB take the same values of O(10−1)
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Figure 6: Parameter space excluded for sextet
antifermion coupling to up-type quarks (Ψ̄u) based on a
CMS dijet resonance search at

√
s = 13TeV. All limits

are computed assuming σ(pp→ Ψ̄u) as displayed in
Figure 3; but red regions assume unit branching fraction
to ūg, while green regions take more realistic branching

fractions of around 26%. In the gray region, where
mΨu

> 2ΛΨu
, the EFT is unlikely to be consistent.

for each generation I. This choice ultimately produces4

BF(Ψu → ūg) ≈ 0.26. We emphasize that these limits
apply to the up-type sextet antifermion decay, Ψ̄u → ug,
since — viz. Figure 3 — the single-production process
pp → Ψ̄u enjoys the largest cross section at LHC. Simi-
lar reinterpretations for the other sextet fermions would
yield looser constraints, all else being equal. Finally,
the red region(s) use the same cross sections but take
BF(Ψu → ūg) = 1. These choices could be made consis-
tent by appropriately adjusting κ1

u,κ1
uB relative to the

couplings to heavier up-type quarks. These results serve
as a worst-case (high cross section accompanied by high
branching fraction) scenario for our sextet fermions from
an integrated luminosity of L ≤ 36 fb−1. In general, we
find that light sextet fermions can still be accommodated
by these data if ΛΨu

is in the low multi-TeV range. The
limits on this cutoff weaken to nearly 1TeV in the “real-
istic” scenario plotted in green.

Dijet-resonance searches are the only searches of which
we are aware that currently target a signature produced

4 For reference, the other non-negligible branching fractions in
this benchmark are roughly as follows: BF(Ψu → c̄g) ≈ 0.27,
BF(Ψu → t̄g) ≈ 0.21, BF(Ψu → ūgA) ≈ 0.18, BF(Ψu → c̄gA) ≈
0.06, and BF(Ψu → t̄gA) ≈ 0.001.
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by these sextet models. Even for these searches, a notable
gap exists for sextets decaying to a heavy quark (especially
a top quark) and a gluon (again, the CMS search [20]
targets resonances decaying to first-generation quarks).
A search tailored to fill this gap may be a good avenue
of future study. In the interest of completeness, we note
that there exists a CMS search [36], using L ≈ 37 fb−1

of Run 2 data, for pair-produced spin- 3
2 color triplets t∗

(“excited top quarks”) each decaying promptly to a top
quark and a gluon. This search, finding no signal of
physics beyond the Standard Model, was used to exclude
excited top quarks of around mt∗ = 1TeV with fiducial
cross sections σ(pp → t∗t̄∗)× BF2(t∗ → tg) ≈ 100 fb. A
similar lower limit would be imposed by this search on a
pair-produced up-type sextet fermion mΨu

given identical
acceptances, but a detailed reinterpretation or a dedicated
experimental analysis would be required to obtain credible
constraints on spin-0 or spin-1

2 sextets producing this final
state. A search for final states involving top quarks from
singly produced color sextets would also be welcome.
The other important signals that can be produced by

our model catalog are exotic and likely also require ded-
icated reinterpretations or novel search strategies. The
sextet fermions, per the last line of (12), undergo a sup-
pressed decay to a quark, a gluon, and a photon or Z
boson. This decay minimally (in the case of single fermion
production) produces an interesting dijet resonance + γ/Z
signature. The sextet scalars, which we have neglected so
far, generate another “dijet resonance-adjacent” signature
by decaying to a quark, a gluon, and a lepton. Finally,
we note that the pair production of any sextet — which
occurs copiously at LHC — potentially generates an array
of interesting signatures, particularly for the fermion. For
instance, since one fermion could undergo the two-body
decay while the other decays to three or even four SM
particles, one could expect signatures comprising at least
four jets and up to four electrically neutral bosons (and
the decays of up to four Z bosons would render these
signatures even more complex). Searches for any of these
signals would be excellent ways to leverage the higher
luminosity of the next planned run of the LHC.
On the other hand, an alternative set of constraints

could potentially be imposed on some color-sextet models
by searches for flavor-changing neutral currents (FCNCs),
which do not exist at tree level in the Standard Model and
are very tightly constrained [38]. It has been observed
[35, 39], for instance, that color-sextet scalars coupling to
quark pairs (which, recall, is a renormalizable interaction;
viz. Table VIII) can generate flavor-changing processes
at tree and one-loop level. The strongest limits can be
expressed in our notation as

|λ11λ
∗
22| ≤ O(10−6)

(mΦ
TeV

)2
(14)

from tree-level sextet scalar contributions to mixing of
neutral kaons (K0-K̄0, with down-type scalars Φd) and

D-mesons (D0-D̄0, with up-type scalars Φu)5, and

|λ23λ
∗
12| ≤ O(10−2) and similar (15)

from flavor-changing nonleptonic B-meson decays medi-
ated at tree level by down-type scalars [35].
Similar limits could apply to other models with color

sextets. For example, the non-renormalizable sextet
fermion model (12) we sought to constrain in Figure 6
can generate meson-mixing diagrams at effective one-loop
order. It could therefore be instructive to estimate the
size of these FCNC contributions. The superficial degree
of ultraviolet (UV) divergence of these box diagrams in
d = 4 dimensions turns out to be

D = 4d−Nf − 2Nb +
∑
i

hiNvi
= 2, (16)

where Nf ,b denote the number of fermion and boson prop-
agators in the loop and the diagram contains Nvi

vertices
of type i with hi derivatives each. But the reality is more
complicated: these are really multi-loop diagrams, and
our ignorance of the UV physics is reflected by a factor of
a UV cutoff Λ−1

Ψ for each of the four vertices forming the
boxes. We could therefore estimate the UV divergence
of these loops as D ∼ [loop momentum]2Λ−4

Ψ → −2, sup-
posing that the EFT cutoff itself is used to regularize the
superficially divergent loop integrals. This degree of diver-
gence matches that of the sextet scalar box contributions
to meson mixing discussed above [35], so it may indeed
be necessary to suppress the quark-sextet couplings κIq
in this model to evade FCNC constraints6. On the other
hand, models of sextet scalars or fermions that lack a
“pure” sextet-quark-quark or sextet-quark-gluon vertex
(unaccompanied by leptons or bosons) appear to evade
these constraints. But it must be emphasized that this
line of thinking is inconclusive without knowledge of the
microscopic physics: there may exist diagrams associated
with the degrees of freedom that have been integrated
out that enhance or interfere with the loops we can com-
pute within the EFT framework. We therefore leave a
more detailed investigation of FCNC constraints on our
effective operators to future work.

IV. CONCLUSIONS

In this work we have taken a new look at the possible
interactions of beyond-the-Standard Model particles that
are charged under the SM color gauge group SU(3)c. Such
states can be copiously produced at the LHC, and it is

5 Loop contributions yield lighter constraints of O(10−2)mΦ TeV−1

or larger.
6 Such constraints would apply to all couplings κIq , since unlike for
tree-level diagrams there is no “flavor texture” that will suppress
the box diagrams.
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important to understand the space of their possible inter-
actions in order to understand how LHC data constrains
their existence. In this work, we have explored the gauge-
invariant interactions of fields in the six-dimensional (sex-
tet) representation of SU(3)c, producing a (large) catalog
of operators, many of which have received little or no
attention in the literature to date but may produce dis-
tinct phenomenology worthy of investigation. We have
focused on color sextets in this work because they trans-
form in the lowest-dimensional representation of SU(3)c
not yet observed in Nature. We have specifically focused
on higher-dimensional interactions linking color-sextet
fermions and scalars to a SM quark and a gluon (and
possibly additional particles), computing cross sections
for a variety of production modes and surveying existing
LHC constraints on these particles.

Much of what we have done here is intended to set up
future work. On one hand, one could undertake a much
more thorough investigation of the specific color-sextet
models we introduced above; such a study could compute
next-to-leading order (NLO) corrections within the EFT
framework or could propose an ultraviolet completion for
one or more of the operators we consider7. It could also be
worthwhile to rigorously compute sensitivity projections
for any of the non-standard signatures we described in
Section III.B at the high-luminosity LHC. Such projec-
tions would be derived from a tailored selection strategy,
which would be interesting to develop. It would also be
natural to complete the color-sextet operator catalog at
mass dimension seven, or to allow for extended sectors
comprising sextets with distinct weak hypercharges or
non-trivial transformations under SU(2)L.

On the other hand, as we hopefully have demonstrated
with the example of color sextets, the method we have
employed to build our operator catalog can be used to
build a variety of phenomenological models containing
higher representations of SU(3)c. Similar catalogs could
be built for other representations, including the more
frequently studied triplets and octets but also higher-
dimensional fields; we plan to investigate several such
catalogs going forward. The interactions we unearth in
these catalogs could also be embedded in richer or more
complete theories, for instance via the incorporation of a
SM gauge singlet as a dark matter candidate.

Appendix A: An excursion in SU(3) representation
theory

The concrete realization of a model incorporating any of
the operators cataloged in Section II of this work requires
explicit knowledge of the gauge-invariant combinations of
the relevant fields. While some of our operators contain

fields charged under SU(2)L, all of the exotic gauge sin-
glets we have constructed belong to SU(3)c. Enumerating
the gauge-invariant contractions of a given set of SU(3)c
multiplets amounts to computing the Clebsch-Gordan
coefficients connecting the irreducible (color) representa-
tions in which each multiplet transforms. While there
exist some works that confront this problem in various
contexts [40–43], explicit results suitable for fundamental
particle physics are difficult to find. In this appendix,
we construct the two minimal gauge-invariant combina-
tions of a color sextet with two other color-charged fields.
We review and extend some known basis-independent
results, and we provide for the first time a new set of
Clebsch-Gordan coefficients in a familiar basis well suited
for integration into public computing tools.
Let a field — for definiteness, a Dirac fermion — in

the sextet representation of SU(3)c be indexed by ψs,
s ∈ {1, . . . , 6}. In analogy with a quark qi transforming
in the fundamental representation of SU(3)c, a lowered
index corresponds to the representation in question (6),
while a raised index (e.g. ψ̄s) denotes the conjugate
representation (6̄). Two of the product decompositions
of two irreducible representations of SU(3) we studied in
the body of this work are

3⊗ 3 = 6⊕ 3̄ and 3⊗ 8 = 3⊕ 6̄⊕ 15. (A1)

We noted in Section II that these decompositions imply
the existence of the three-field invariants 3 ⊗ 3 ⊗ 6̄
and 3 ⊗ 6 ⊗ 8. We displayed a number of operators in
Tables VIII and IX based on these invariants that couple
sextets to (respectively) quark pairs and a quark and a
gluon. While the first family of couplings has received
some attention [18, 19], the latter (to our knowledge)
has not. This appendix introduces the explicit group-
theoretical objects required for our novel analysis while
making contact with known mathematical results.
We work in the basis where the generators of the fun-

damental (3) representation of SU(3) are proportional to
the Gell-Mann matrices: 2ta3 = λa, a ∈ {1, . . . , 8}. We
take the generators of the adjoint (8) representation to be
[ta8] c

b = −ifa cb , where fabc are the structure constants
appearing in the SU(3) algebra

[ta3, tb3] = ifabc tc3. (A2)

The commutation relations (A2) are satisfied by the gen-
erators of every representation of SU(3), which are also
traceless and Hermitian. A set of eight 6× 6 matrices ta6
satisfying these criteria, which are therefore valid genera-
tors of the sextet representation in the Gell-Mann basis,
is:

7 For example, the operator on the second line of (12) could straight-
forwardly be generated by a loop involving SM quarks and a

color-triplet scalar, à la squarks.
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t1
6 = 1

2


0
√

2 0 0 0 0√
2 0

√
2 0 0 0

0
√

2 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0

 , t2
6 = 1

2


0 0 0 0 0

√
2

0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0

√
2√

2 0 0 0
√

2 0

 ,

t3
6 = 1

2


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0

√
2 0 0

0 0
√

2 0
√

2 0
0 0 0

√
2 0 0

0 1 0 0 0 0

 , t4
6 = 1

2


0 −i

√
2 0 0 0 0

i
√

2 0 −i
√

2 0 0 0
0 i

√
2 0 0 0 0

0 0 0 0 0 i
0 0 0 0 0 0
0 0 0 −i 0 0

 ,

t5
6 = 1

2


0 0 0 0 0 −i

√
2

0 0 0 −i 0 0
0 0 0 0 0 0
0 i 0 0 0 0
0 0 0 0 0 i

√
2

i
√

2 0 0 0 −i
√

2 0

 , t6
6 = 1

2


0 0 0 0 0 0
0 0 0 0 0 −i
0 0 0 −i

√
2 0 0

0 0 i
√

2 0 −i
√

2 0
0 0 0 i

√
2 0 0

0 i 0 0 0 0

 ,

t7
6 = 1

2


2 0 0 0 0 0
0 0 0 0 0 0
0 0 −2 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 , t8
6 = 1

2
√

3


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 −1 0 0
0 0 0 0 −4 0
0 0 0 0 0 −1

 . (A3)

It is useful to consider generators of reducible (“prod-
uct”) representations of SU(3). The objects relevant to
our discussion can be constructed systematically using
the generators we have provided above. In particular,
the generators tar1⊗r2

of the direct product of irreducible
representations r1 and r2 are given by

tar1⊗r2
= tar1

⊕ tar2

≡ tar1
⊗ 1r2 + 1r1 ⊗ tar2

, (A4)

where the Kronecker sum ⊕ is defined in terms of the
Kronecker products (suggestively denoted by the same
symbol ⊗ as the direct product of representations) be-
tween the generators of {r1, r2} and the identity matrices
with the dimensions of {r2, r1}. In order to elucidate this
point, and to make contact with more familiar notation,
we rewrite the last line of (A4) as

[tar1⊗r2
] J1J2
I1I2

= [tar1
] J1
I1

δ J2
I2

+ δ J1
I1

[tar2
] J2
I2

(A5)

with {Ii, Ji} indexing the representation ri, i ∈ {1, 2}.
The resulting generators tar1⊗r2

are again traceless and
Hermitian, but now of dimension dim r1 × dim r2. The
operation (A4) can be iterated upon, so for instance the
generators of a direct product of three representations are

given by

tar1⊗r2⊗r3
=

3⊕
i=1

tari
= tar1

⊕ tar2
⊕ tar3

= (tar1⊗r2
)⊕ tar3

. (A6)

We provide all of this exposition because any gauge-
invariant linear combination Ir1⊗···⊗rN

of M fields ψjIi

in N ≤ M (not necessarily distinct) irreducible repre-
sentations {r1, . . . , rN} of SU(3) (or any semisimple Lie
group), which can be written modulo index height as [44]

Ir1⊗···⊗rN
= κI1,...,INψ1

I1
. . . ψMIN

(A7)

with summation understood over repeated indices, must
satisfy

κI1,...,IN [tar1⊗···⊗rN
] J1,...,JN

I1,...,IN
= 0 ∀ {Ji, a}. (A8)

The coefficients κI1,...,IN appearing in the linear combina-
tions (A7), (A8) are closely related to the Clebsch-Gordan
coefficients connecting the N irreducible representations.
The coefficients we want simply have to be extracted and
interpreted in a specific way. (A8) implies that these
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coefficients can be systematically computed in any basis
by finding the kernel of the (potentially large) matrix

Mr1⊗···⊗rN
=

[t1
r1⊗···⊗rN

]ᵀ
...

[tar1⊗···⊗rN
]ᵀ

 . (A9)

The number of independent gauge-invariant combinations
of the N fields is given by dim ker Mr1⊗···⊗rN

. The el-
ements of the (dim r1 × · · · × dim rN ) × 1 vectors in
ker Mr1⊗···⊗rN

are (up to a global factor) the desired
Clebsch-Gordan coefficients. Per our notation in (A8),
these are read off in an order determined by the con-
struction of the product-representation generators. As an
intuitive example, the first two non-vanishing elements
(in the Gell-Mann basis) of the only vector in ker M6⊗3⊗8
in SU(3) — which is clearly relevant to our phenomeno-
logical study of color sextets — are elements (10, 1) and
(13, 1). These we label as J 1,2,2 and J 1,2,5, elements of the
first of six 3×8 matrices J s ia (s ∈ {1, . . . , 6}, i ∈ {1, 2, 3},
a ∈ {1, . . . , 8}). This is essentially the method employed
by the recently published Mathematica© [26] package
GroupMath, which however works in what is sometimes
called the Chevalley-Serre basis [45]. We have performed
these calculations in the Gell-Mann basis in order to
obtain basis-dependent results compatible with the liter-
ature and the popular computer tools FeynRules and
MadGraph5_aMC@NLO [24, 25, 28, 29].
It should be noted that the method described above

in fact yields some multiple of the Clebsch-Gordan coeffi-
cients C I1,...,IN for any invariant combination of fields in
compatible irreducible representations of a given group.

If the coefficients are subsequently normalized to satisfy

tr C I1 C̄J1 = δI1
J1

with C̄ I1,...,IN
≡ [C I1,IN ,IN−1,...,I2 ]∗,

(A10)

where the trace is performed over all subleading indices
{I2, . . . , IN ; J2, . . . , JN}, then the coefficients further sat-
isfy a relation of the form

[tar̄1
]I1
J1

= C I1,...,IN C̄J1,...,JN

× [tar2⊗···⊗rN
] J2,...,JN

I2,...,IN
, (A11)

which allows one to extract generators of a given repre-
sentation in an invariant combination from the generators
of the direct product of all the other representations
present in that invariant. Note that the generators on
the left-hand side of (A11) are those of the conjugate
representation r̄1; recall that the generators of r1 can
then be recovered according to [tar1

] J1
I1

= −{[tar̄1
]I1
J1
}∗.

We finally provide explicit results relevant to the body
of this work; i.e., to the gauge-invariant combinations
(three-field invariants) 3 ⊗ 3 ⊗ 6̄ and 3 ⊗ 6 ⊗ 8 of SU(3)c
implied by the decompositions (A1). In particular, we
recoup the generators t6 of the sextet representation of
SU(3), given in the Gell-Mann basis by (A3), according
to

[ta6] t
s = K ij

s K̄ t
lk [ta3⊗3] kl

ij (A12)

= −{J s ib J̄ t cj [ta3⊗8] jc
ib }

∗, (A13)

with

K1 =

1 0 0
0 0 0
0 0 0

 , K2 = 1√
2

0 1 0
1 0 0
0 0 0

 , K3 =

0 0 0
0 1 0
0 0 0

 ,

K4 = 1√
2

0 0 0
0 0 1
0 1 0

 , K5 =

0 0 0
0 0 0
0 0 1

 , K6 = 1√
2

0 0 1
0 0 0
1 0 0

 (A14)

and
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J 1 = 1
2

0 0 0 0 0 0 0 0
0 −i 0 0 1 0 0 0
i 0 0 −1 0 0 0 0

 , J 2 = 1
4

0 i
√

2 0 0 −
√

2 0 0 0
0 0 −i

√
2 0 0

√
2 0 0

0 0 0 0 0 0 −2i
√

2 0

 ,

J 3 = 1
2

 0 0 i 0 0 −1 0 0
0 0 0 0 0 0 0 0
−i 0 0 −1 0 0 0 0

 , J 4 = 1
4

 0 0 0 0 0 0 i
√

2 −i
√

6
i
√

2 0 0
√

2 0 0 0 0
0 −i

√
2 0 0 −

√
2 0 0 0

 ,

J 5 = 1
2

0 0 −i 0 0 −1 0 0
0 i 0 0 1 0 0 0
0 0 0 0 0 0 0 0

 , J 6 = 1
4

−i√2 0 0
√

2 0 0 0 0
0 0 0 0 0 0 i

√
2 i
√

6
0 0 i

√
2 0 0

√
2 0 0

 . (A15)

The first set (A14) of Clebsch-Gordan coefficients, which
connect the 6 to the 3 ⊗ 3 of SU(3), are exactly what
were computed in the only group-theoretical discussion
similar to this appendix of which we are aware [18]. The
second set, (A15), which connect the 6̄ to the 3 ⊗ 8, have
not been published before as far as we know. Both sets
of coefficients are similarly normalized —

tr K sK̄ t = δ t
s and tr JsJ̄ t = δ t

s (A16)

— and satisfy

K̄ s
ji = [K ji

s ]† = K ij
s and J̄s ai = [J s ia]†. (A17)

Our final remark concerns the relationship between the
two sets of Clebsch-Gordan coefficients K ij

s and J s ia.
We find that the latter set can be constructed using a
particular combination of the former set with other group-
theoretical objects. In particular, we have that

J s ia = −i
√

2 Lijk[ta3] l
j K̄ s

lk

and J̄s ai = i
√

2 K kl
s [ta3] j

l L̄ ijk, (A18)

where Lijk are the Clebsch-Gordan coefficients governing
the gauge-invariant contraction of three SU(3) triplets,
which is well known to be totally antisymmetric8. We
mention the relations (A18) because the popular model-
building and Monte Carlo simulation tools FeynRules
and MadGraph5_aMC@NLO have for some time now
handled color-sextet fields interacting with quark pairs
by defining the Clebsch-Gordan coefficients K ij

s and Lijk
in terms of (anti-)symmetric combinations of two QCD
triplets. Therefore, whereas the ability to directly handle
the new coefficients J s ia — given by (A15) — would re-
quire some significant additions to both public codes, we
are able to construct our novel interactions with suitable
combinations of existing semi-hard-coded objects. This
strategy does not necessarily work for color-sextet interac-
tions with higher-dimensional QCD multiplets, and may
in fact be a unique exploit.
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