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ABSTRACT OF THE DISSERTATION

Molecular properties within the generalized Kohn–Sham random phase approximation

By

Sree Ganesh Balasubramani

Doctor of Philosophy in Chemistry

University of California, Irvine, 2019

Professor Filipp Furche, Chair

Theoretical calculations of molecular properties can assist experimental design of molecules

with interesting optical, electronic and structural properties which would help accelerate ma-

terials discovery. Density functional theory (DFT) within the Kohn–Sham (KS) framework

has been the most widely used method for molecular properties calculations in the last three

decades because of its advantageous computational cost-to-accuracy ratio. However, com-

monly used density functional approximations (DFAs) have been shown to be inadequate

for calculations involving transition metal compounds, metal clusters, conjugated molecules

and for describing noncovalent interactions. Random phase approximation is a post-KS

DFA that is accurate for describing noncovalent interactions without the need for empirical

parameters, does not diverge for small-, or even zero-gap systems and incorporates Hartree–

Fock (HF) exchange. The first part of this thesis aims at answering the question: can a

self-consistent generalized KS scheme be developed for the RPA energy functional which

also gives access to single particle energies within a variational Lagrangian formalism? To

this end, an orbital self-consistent scheme called the generalized KS semicanonical projected

RPA (GKS-spRPA) is developed, implemented and benchmarked for ground state as well

as single particle energies. The ionization energies and band-gaps that are calculated us-

ing the GKS-spRPA suggest that it is better than the commonly used G0W0 method. The

second part of the thesis is concerned with the implementation and testing of static polar-

xi



izabilities (α(0)) within the GKS-spRPA method. The GKS-spRPA successfully solves the

overpolarization problem observed with the use of semilocal/hybrid DFAs for calculations

of α(0) of π−conjugated molecules. Calculations involving metallocenes, metal clusters and

a small molecule testset are used to show that the α(0) calculated using the GKS-spRPA

method is more accurate than DFAs such as PBE, PBE0, CAM-B3LYP and wave function

based methods such as HF and the second-order Møller–Plesset perturbation theory (MP2).

Thus, this thesis conclusively shows that the GKS-spRPA within a Lagrangian framework,

is a method that provides not only accurate ground state energies but also a wide range of

molecular properties such as geometries, ionization potentials, electron affinities, dipoles and

polarizabilities with a reasonable computational cost of O(N4 log(N)).
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Chapter 1

Background and Theory

This chapter contains verbatim excerpts, reprinted with permission, from G. P. Chen, V. K.

Voora, M. M. Agee, S. G. Balasubramani, and F. Furche, Annu. Rev. Phys. Chem. 68,

421–445, 2017. © 2017 Annual Reviews. This material is based upon work supported by

the National Science Foundation under CHE−1213382 and CHE−1464828.
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1.1 Introduction

Chemists have developed various experimental techniques based on probing molecules using

electromagnetic radiation to understand their electronic structure and properties in great

detail. [1] Often these experimental measurements produce complicated results that can

be difficult to interpret especially for larger molecules. Quantum chemical calculations can

provide useful insights to understanding these results in such cases. [2] In quantum chemistry

and condensed matter physics the method of choice for electronic structure calculations has

been density functional theory (DFT) for the past three decades [3, 4]. Specifically, exchange-

correlation (XC) functionals developed within the (generalized) Kohn–Sham ((G)KS) scheme

[5] such as the local density approximation (LDA) [6], generalized gradient approximation

(GGA) [7], meta-GGA (mGGA) [8], hybrid functionals [9, 10] have provided reasonable

accuracy at a very cheap computational cost that has led to the widespread use of DFT.

With a plethora of density functional approximations (DFAs) available at a users disposal,

the question of which functional to use for a particular molecular system and property of

interest can often be difficult to answer [11]. Benchmark calculations can provide some

guidelines to answer this question. [12, 13] Using such benchmarks and other extensive

studies certain cases have been identified where semilocal (SL) [7] and hybrid [9] DFAs

perform erroneously. These problematic cases arise mainly because of self-interaction error

which results in non-zero correlation energies for one-electron systems within SL/hybrid

DFT [14], lack of long-range correlations that result in poor descriptions of van der Waals

interactions [15], exponential decay of the SL KS potential that results in unbound anions

[16] and overpolarization of charge density due to lack of field counteracting terms in the

KS potential that results in qualitatively wrong electrical response properties [17]. Recent

density functional development has been focused on addressing some of these problems as

well as satisfaction of other physically motivated exact conditions [18].

2



Approximate functionals based on the adiabatic connection fluctuation dissipation theo-

rem (ACFDT) such as the random phase approximation (RPA) provide an alternative to

SL/hybrid functionals [19]. RPA was originally developed by Bohm and Pines [20, 21] for the

description of the ground state energy of the uniform electron gas in the 1950s. Gell-Mann

and Brueckner showed that the correlation energy of the electron gas in the high density limit

is obtained as the summation of ring type diagrams to all orders and that it was equivalent

to the RPA [22]. McLachlan and Ball showed that the time-dependent Hartree–Fock theory

(TDHF) and the RPA with exchange (RPAX) are equivalent [23] paving the way for devel-

opments of methods to calculate the excitation energies and oscillator strengths of molecules

such as the equation-of-motion method [24, 25] and polarization propagator theory [26, 27].

As a post-KS method, ACFDT-DFT was developed by Langreth and Perdew [28] and by

Gunnarson and Lundqvist [29]. The simplest approximate functional within the ACFDT

is the RPA. Within the post-KS framework RPA is a parameter-free XC energy functional

that contains HF exchange while seamlessly including van der Waals interactions [30].

Post-KS RPA was first implemented and tested for molecules using finite basis sets in 2001

by Furche [31]. Since then, RPA has gained prominence in quantum chemistry and solid

state physics [32–34]. Efficient implementation of the post-KS RPA within the resolution of

identity (RI) approximation (RIRPA) and imaginary frequency integration using quadratures

result in a computational scaling of O(N4 log(N)) [35], with system size N , compared to the

O(N5) scaling for second-order Møller-Plesset (MP2) perturbation theory [36, 37]. The

RPA correlation energy is not divergent for small- and zero-gap systems unlike perturbative

methods such as the MP2 and hence, it can be used for a wide range of systems starting from

small molecules to extended systems. Even though long- and medium-range interactions are

captured by RPA, short-range correlation effects seem to be poorly described by it [38].

Several remedies have been proposed to address the lack of short-range correlation such as

the short-range GGA correction to the RPA correlation energy by Yan et al. [39] RPA suffers

from self-correlation errors due to the absence of higher-order exchange terms in the RPA

3



correlation energy, but methods such as the second-order screened exchange [40, 41] and the

approximate exchange kernel [42] can alleviate this issue to various degrees.

First-order properties such as geometrical gradients and dipole moments within RIRPA were

implemented and tested by Burow et al. [43], who found that the RIRPA molecular structures

were significantly improved compared to MP2, particularly for small-gap systems. Burow

et al. calculated numerical second-order properties such as harmonic frequencies using their

implementation and found that the RIRPA was more accurate compared to PBE0 and MP2

for a testset of small molecules. Numerical finite differences are often simple to implement

but can be prone to numerical instabilities and are not very resource efficient. Analytical

energy derivative techniques on the other hand require considerable programming effort but

have better precision, accuracy and convenience since they are a direct method for calculating

properties [44, 45].

The goal of this thesis is to develop and implement a self-consistent orbital optimization

scheme for the RIRPA energy functional using a variational Lagrangian formalism and to

benchmark its accuracy for ground state energies as well as first-order properties such as

geometrical gradients and quasiparticle energies. Furthermore second-order properties such

as the static polarizabilities are to be derived, implemented and tested for the self-consistent

RPA energy functional.

The organization of the thesis is as follows. Chapter 1 introduces the variational Lagrangian

formalism for the calculation of first-order properties within the RIRPA. The implementation

of the RIRPA gradients is extended for unrestricted KS references and its accuracy is bench

marked using a set of open-shell molecules. Chapter 2 is regarding the development of the

orbital self-consistent generalized KS formalism for the RIRPA energy functional, called the

generalized KS semicanonical projected RPA (GKS-spRPA). Thorough analysis of the errors

made by GKS-spRPA compared to the post-KS RPA are carried out. The implementation

of quasiparticle energies is discussed in detail along with results of band gaps and ioniza-
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tion potentials of molecules and molecular ions. Chapter 3 focuses on the derivation and

implementation of static polarizabilities within the GKS-spRPA method. Detailed analysis

of the implementation is carried out using a variety of molecular systems such as conjugated

polymers, metal clusters and organometallic compounds.

1.2 Analytical gradients within RIRPA

Analytical energy gradients are a prerequisite for molecular structure optimization and prop-

erty calculations [44]. For energies that are variationally determined, their gradients can be

efficiently evaluated by virtue of the Hellmann–Feynman theorem. Although the RPA en-

ergy functional E RPA is not variational, a Lagrangian can be constructed for computing

energy gradients without solving for perturbed KS orbitals [46, 47].

LRPA(C, ε,D∆,W|h,v,VXC,S) = ERPA(C, ε|h,v)

+
(〈

D∆(CTFC− ε)
〉
−
〈
W(CTSC− 1)

〉)
.

(1.1)

This RPA Lagrangian depends on orbital coefficients C and a matrix ε, that reduces to the

diagonal matrix of orbital energies for the input KS solution, as well as on the Lagrange

multipliers D∆ and W; additionally, LRPA depends parametrically on the one- and two-

electron integrals h and v, the ground-state XC potential matrix VXC, and the overlap

matrix S, all in an atomic orbital (AO) basis. [43]. The Fock matrix F is the effective

one-electron KS Hamiltonian and can be expressed in terms of h, v, and VXC.

By construction, the correct RPA energy for given KS orbitals and orbital energies is attained

by unconstrained optimization of the RPA Lagrangian with respect to C, ε, D∆ and W.
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The variation with respect to D∆ enforces that C and ε satisfy the KS equations

CTFC = ε, (1.2)

and the variation with respect to W recovers the orthonormality constraint

CTSC = 1. (1.3)

The corresponding constraint terms in LRPA may be viewed as energetic penalties for violat-

ing the constraints, and they both vanish at the stationary point. The total differential of

LRPA reveals the physical meaning of the Lagrange multipliers [43]: D∆ corresponds to a

correction to the KS density matrix DKS due to correlation and orbital relaxation, and W

is the energy weighted density matrix [48]. The RPA density matrix

DRPA =
dERPA

dh

∣∣∣∣
stat

= DKS + CD∆CT (1.4)

facilitates the analysis of RPA calculations in terms of natural orbitals and occupation num-

bers. Within a spin-restricted formalism, the RPA natural orbitals of stretched H2 exhibits

significant fractional occupation, which resembles the exact solution from coupled-cluster

singles and doubles (CCSD) (see Figure 1.1). This result agrees with prior observations that

RPA is capable of partially capturing static correlation [31, 49, 50].

The stationarity of the Lagrangian ensures that the orbitals and orbital energies satisfy

Wigner’s 2n+1 rule, and the Lagrange multiplies satisfy a stronger 2n+2 rule [46]. Thus, it

is not necessary to solve coupled perturbed KS (CPKS) equations for each perturbation; in-

stead, the Lagrange multipliers can be determined by solving a single set of CPKS equations.

With the RI approximation, numerical frequency integration, ERI prescreening techniques,

and iterative subspace methods [51, 52], the RPA energy gradient implementation in Tur-

bomole has achieved the same O(N4 logN) scaling as single-point RPA energy calculations.

6
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Figure 1.1: Natural orbital occupation numbers of highest occupied natural orbital (HONO)
and lowest unoccupied natural orbital (LUNO) of ground-state H2 using spin-restricted RPA-
PBE and CCSD as a function of interatomic distance. aug-cc-pV5Z basis set was used for
all computations. An orbital is considered occupied if the occupation is > 1 while it is
considered unoccupied if occupation is < 1.

In a typical application, the computational cost for a gradient vector with respect to all

nuclear displacements is ∼ 5 times that for the corresponding RPA energy. Routine RPA

molecular structure optimizations are feasible for systems with ∼ 100 atoms using triple- or

quadruple-zeta basis sets on single workstation computers [43].

Other recent implementations of RPA analytical gradients [53, 54] are based on the ring-

CCD formulation with a HF reference and scales as O(N6). Analytic energy gradients

were also implemented for range-separated hybrid functionals with short-range semilocal

approximation and long-range RPA [54].

1.2.1 Molecular Properties of Radicals

To further assess the performance of RPA, we report the equilibrium structures of a variety

of small radicals calculated within RPA for the first time, see Table 1.1. These molecules

were selected because accurate experimental bond lengths were available in the literature.

Radicals are usually short lived and experimentally elusive intermediates, but single reference

methods are often unsuitable for them due to spin contamination and instabilities [55–57].

On the other hand, the RPA structures agree well with experiment, with errors comparable

7



to closed-shell species [43]. Thus, RPA is a viable approach for computing structures of open

shell species. The dependence on the semi-local functional used to generate the KS orbitals

is weak, with MAEs of 0.51 pm and 0.56 pm for PBE and TPSS orbitals, respectively.

Table 1.1: Deviations of computed equilibrium bond lengths (pm) of small radicals from
experimental reference values; mean absolute deviations (MAEs) are also provided. aug-cc-
pV5Z basis sets [58] were used.

parameter reference RPA(TPSS) RPA(PBE)
OH O-H 96.97a 0.16 0.27
H2O+ O-H 100.1a 0.02 0.10
HF+ H-F 100.1b 0.40 0.47
NH+ N-H 107.0c 0.28 0.16
HCP+ H-C 107.3b 0.20 0.37
CH3 C-H 107.67b -0.37 -0.19
N+

2 N-N 111.642a -0.35 -0.26
CO+ C-O 112.83a -0.95 -0.82
NO N-O 115.08a 0.42 0.57
CN C-N 117.18a 0.12 0.23
CO+

2 C-O 117.682b -0.07 0.023
BO B-O 120.5a 0.18 0.31
CF C-F 127.2a 0.44 0.66
F+

2 F-F 130.5d 3.27 3.66
HCP+ C-P 160.0b -0.39 -0.28
MAE 0.51 0.56

aReference[59], bReference[60], cReference[61], dReference[62]

Although RPA MAEs for the equilibrium bond lengths using the TPSS and PBE function-

als are 0.51 pm and 0.56 pm respectively which suggests that the method is accurate for

calculations of bond lengths, it needs to be noted that RPA does not always describe the en-

ergetics of radicals accurately. [50] For example, consider the potential energy curve (PEC)

of H+
2 [42], which both at the equilibrium bond length as well as at the dissociation length

are inaccurately described by RPA. The approximate exchange kernel (AXK), which is a

beyond-RPA correction results in a much more accurate description of the PEC around the

equilibrium bond distance for molecular radicals since it partially corrects the self-correlation

error of RPA. [42]
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1.3 Conclusions

The analytical gradients within the post-KS RPA using the RI approximation (RIRPA) was

successfully extended for open-shell systems. The accuracy of this implementation was tested

for a set of molecules and MAE for RPA based on TPSS and PBE SL inputs were found to

be 0.51 pm and 0.56 pm, respectively. Thus RPA is a reliable method for calculations of first-

order properties of not just closed-shell systems but also radicals with open-shell electronic

structure.
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Chapter 2

Generalized Kohn-Sham

semicanonical projected RPA

This chapter contains verbatim excerpts, reprinted with permission, from V. K. Voora, S. G.

Balasubramani, and F. Furche, Phys. Rev. A 99, 012518, 2019. © 2019 American Physical

Society. This material is based upon work supported by the National Science Foundation

under CHE−1464828 and CHE−1800431.
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2.1 Introduction and Summary

Electronic structure methods based on the random-phase approximation (RPA) [21, 22] are

rapidly gaining popularity in solid-state and molecular applications [32, 33, 63]. As opposed

to semilocal (SL) density functional approximations (DFAs), RPA-based methods capture

noncovalent interactions [64], which have recently moved into the focus of research in soft

matter, nanomaterials, and catalysis [65]. RPA-based methods are comparable in cost with

but more robust than perturbative approaches for small-gap systems and offer a way out of

the functional inflation dilemma faced by SL DFAs [34].

The vast majority of today’s RPA calculations are performed in a “post Kohn–Sham” fashion,

i.e., by evaluating the RPA energy functional using Kohn–Sham (KS) orbitals generated from

a variational SL DFA calculation [31]. Apart from the lack of a variationally stable energy,

a major limitation of this SL-RPA approach is that SL densities are relatively inaccurate

for open-shell systems, negative ions, and small-gap compounds, producing large “density-

driven errors” in energies and other properties [66, 67]. For example, SL DFAs produce

qualitatively incorrect densities and ionization potentials for negative ions [16], and overly

delocalized states for correlated materials [68].

Unlike SL energy functionals, the RPA energy explicitly depends on the unknown KS poten-

tial, making straightforward minimization with respect to the density or KS orbitals impos-

sible. In this paper, we distinguish density- or orbital-selfconsistent (OSC) RPA approaches,

which minimize the energy after choosing an approximate KS potential, from functional

selfconsistent (FSC) approaches, which aim to determine the KS potential functional self-

consistently by requiring its exchange-correlation (XC) part to coincide with the functional

derivative of the RPA energy. The optimized effective potential (OEP) approach [69–72] has

been claimed to achieve “fully selfconsistent” RPA results [71]. However, while OEP-RPA

produces accurate KS orbital energies, OEP-RPA results for bond energies and noncovalent
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interactions are less accurate than their SL-RPA counterparts [71]. This result is puzzling,

because the OEP-RPA KS potentials are considerably more accurate than SL ones [73], and

recent orbital-optimized RPA approaches improve upon SL RPA energetics [74].

Observables such as quasiparticle spectra and ionization potentials (IPs) have traditionally

been the domain of many-body Green’s function theory (GFT) [75–77]. For example, quasi-

particle self-consistent GW theory [78, 79] yields highly accurate IPs and band gaps for a

wide variety of materials, but accurate total energy differences and related properties such

as structures or thermodynamic quantities remain elusive. GW approaches starting from

SL DFAs [80–82] and even fully self-consistent GW [83] face a similar dilemma, producing

high quality quasiparticle spectra and excitation energies, but energy differences generally

inferior to SL-RPA [84, 85].

Here we generalize the SL-RPA energy functional using a simple semicanonical projection

(sp) of the SL KS Hamiltonian. The resulting spRPA energy is a functional of the KS one-

particle density matrix that may variationally be minimized using an OSC generalized KS

(GKS) scheme [86]. Semicanonical approaches have successfully been used to devise pertur-

bative corrections to SL-RPA in the past [87]. The present variational GKS spRPA method

is designed to (i) recover SL-RPA for SL densities; (ii) reduce density-driven error by deter-

mining the density from the stationary point of the RPA rather than a SL energy functional;

(iii) systematically improve SL-RPA energetics; (iv) approximate FSC RPA without sacri-

ficing the variational principle; (v) yield a complete GKS effective one-particle Hamiltonian,

unlike orbital optimized [74] or Brueckner [88] RPA, providing an intuitive one-electron pic-

ture and GKS orbital energies which accurately approximate quasiparticle spectra [89]; (vi)

establish a straightforward connection to GFT and GW theory; (vii) eliminate the need for

KS inversion or OEP approaches, which can be ill conditioned [90] and require cumbersome

regularization [91–93].
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2.2 Variational Minimization of Potential-Dependent

Functionals

2.2.1 Statement of the Problem

Variational minimization of a functional with respect to the density or the KS orbitals

requires knowledge at least of the energy functional and its functional derivative for a given

trial density. Here we consider functionals that depend on the density ρ(x) through the KS

orbitals and occupation numbers |φp〉 and np and explicitly on the KS potential Vs[ρ](x);

x = (r, σ) denotes space-spin coordinates. This large class includes functionals derived from

many-body perturbation theory [94–96] as well as RPA. The resulting XC energy thus takes

the general form

EXC[ρ] = EXC[|φ[ρ]〉 ,n[ρ],Vs[ρ]], (2.1)

where the KS orbitals and occupation numbers were gathered in the column vectors |φ〉 ,n.

Kohn and Sham[5] showed that variational minimization of the total energy as a functional

of ρ leads to the KS equations

H0[ρ] |φp〉 = εp |φp〉 , (2.2)

where H0[ρ] = T + Vs[ρ] is the noninteracting KS one-particle Hamiltonian, T is the one-

particle kinetic energy operator, and

Vs[ρ](x) = Vext(x) + VH[ρ](x) + VXC[ρ](x) (2.3)

is the KS one-particle potential. Vext(x) is the external one-particle potential, and VH[ρ](x)

13



is the Hartree potential. The XC potential is the (total) functional derivative of the XC

energy with respect to the density,

VXC[ρ](x) =
δEXC[ρ]

δρ(x)
. (2.4)

The OSC minimizing density is given by

ρ(x) =
∑
p

np|φp(x)|2, (2.5)

with occupation numbers normally [97] chosen according to the Aufbau principle. While

this section focuses on density-based “proper KS” schemes, analogous considerations apply

to the GKS framework [86], if the local XC potential in Eq. (2.4) is replaced by the nonlocal

one defined by the functional derivative of the XC energy with respect to the KS density

matrix.

However, Eqs. (2.1)-(2.5) do not completely determine the energy as a functional of the

density: Obtaining the KS potential via Eq. (2.4) requires knowledge of EXC[ρ], which in

turn is defined in terms of the KS potential. Two different avenues have been used to bypass

this quandary: The first uses the density (or, in GKS framework, the orbitals and occupation

numbers) as independent variable. In this case, an additional condition specifying the KS

potential as a functional of the density (or the orbitals and occupation numbers) is required.

The second approach considers the density (or the orbitals and occupation numbers) as de-

pendent variable(s), and the potential as independent variable. This potential-functional

approach requires specification of the density (or the orbitals and occupation numbers) as

functional of the potential. In the following, we discuss different choices for either func-

tional(s), which lead to qualitatively different XC energy functionals, labeled by subscripts

a-d.
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2.2.2 KS Potentials and Energy Functionals

Semilocal Potentials. Since SL KS potentials are readily available, a straightforward

choice for the XC energy functional is

EXC
a [ρ] = EXC[|φ[ρ]〉 ,n[ρ],VSL

s [ρ]]. (2.6)

Here, the SL XC potential is the functional derivative of a SL XC energy functional such as

PBE [7],

VXC SL[ρ](x) =
δEXC SL[ρ]

δρ(x)
, (2.7)

and VSL
s [ρ] is obtained by replacing VXC[ρ] with VXC SL[ρ] in Eq. (2.3).

The main drawback of this approach is that it violates Eq. (2.4),

δEXC
a [ρ]

δρ(x)
6= VXC SL[ρ](x). (2.8)

As a result, there are two KS systems, one related to minimization of EXC
a [ρ], and the other

generated by VXC SL[ρ], whose density is generally different from the orbital density ρ. The

XC energy is defined in terms of the relatively inaccurate SL potential, giving rise to density-

driven error. In explorative calculations using the RPA energy functional, the total energy

differences we obtained from such schemes were not significantly more accurate than the

post-KS semilocal ones.

“Exact” Potentials Via KS Inversion or OEP. For a noninteracting v-representable

trial density, the “exact” KS potential Vs[ρ] (and thus H0[ρ]) may be determined, up to a

constant, by inversion of the KS equations. One thus might wonder if this choice results in

better properties than the use of SL potentials. While the uniqueness of Vs[ρ] is guaranteed
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by the Hohenberg–Kohn theorem [3], general trial densities may not be pure-state noninter-

acting v-representable; see, e.g., Ref. [98] for examples. In common finite basis sets, this

condition is rarely satisfied [99], and KS inversion procedures can be ill-posed [100].

The OEP approach claims to bypass some of these difficulties [69–71, 95] by using the

local KS potential Vs(x) as independent variable[101, 102] and the KS orbitals φp[Vs] and

occupation numbers np[Vs] as dependent variables; the functionals φp[Vs] and np[Vs] are

defined by the requirement that they satisfy the KS equations (2.2) and minimize the total

KS kinetic energy. The resulting XC energy thus becomes a potential functional,

EXC
b [Vs] = EXC

b [|φ[Vs]〉 ,n[Vs],Vs]. (2.9)

To make a connection to density functionals, OEP methods consider the density generated

by the KS orbitals and occupation numbers,

ρs[Vs](x) =
∑
p

np[Vs]|φp[Vs](x)|2. (2.10)

By the HK theorem, Vs is a functional of ρs, and thus the XC potential can be obtained

from the chain rule,

δEXC
b [Vs]

δVs(x)
=

∫
dx′

δEXC
b [ρs]

δρs(x′)

δρs[Vs](x
′)

δVs(x)
. (2.11)

Since ρs[Vs] is the KS density, δρs[Vs](x
′)/δVs(x) is the well-known KS density-density

response function, which is an explicit functional of the KS orbitals and orbital energies

for a given potential Vs [71, 95], and Eq. (2.11) becomes the OEP integral equation [103].

While grid-based OEP approaches are fairly straightforward, basis-set OEP approaches can

be ill-posed similar to KS inversion [90] and require additional regularization [91–93].

OEP approaches to potential-dependent XC functionals have been dubbed “fully selfcon-
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sistent” [71, 104]. Even though they use the “exact” KS potential, however, they lack

functional selfconsistency, causing the KS density ρs to differ from the functional derivative

of the energy with respect to the external potential:

In potential functional theory, the density as a functional of the KS potential is defined by

δE[Vs]

δVext(x)
= ρ[Vs](x), (2.12)

where E[Vs] is the total energy potential functional [101, 105]. Eq. (2.12) is the equivalent of

Eq. (2.4) in density functional theory and thus fundamental; it may be viewed a consequence

of the Hellmann-Feynman theorem, and as such is commonly used to define the density and

all related properties even for approximate energy functionals. For inexact XC functionals

with explicit dependence on the KS potential, however, the KS density, defined by Eq.

(2.10), generally differs from the exact one, defined by Eq. (2.12): Evaluating the functional

derivative of the total energy expression defined by the potential functional EXC
b [Vs] in Eq.

(2.9) using the Hellmann-Feynman theorem and Eq. (2.12) yields

ρs[Vs] +

(
δEXC

b [Vs]

δVs(x)

)
|φ[Vs]〉,n[Vs]

= ρb[Vs](x), (2.13)

where the functional derivative is a partial derivative at fixed orbitals and occupation num-

bers, and ρb[Vs](x) = δEb[Vs]/δV
ext(x) is the Hellmann-Feynman density generated by

EXC
b [Vs]. The quantity

ρXC
b [Vs](x) =

(
δEXC

b [Vs]

δVs(x)

)
|φ[Vs]〉,n[Vs]

, (2.14)

is zero for the exact XC functional by construction, but generally nonzero for the approximate

explicitly potential-dependent XC functionals discussed here (see, e.g., Ref. [71] and Sec.

17



2.3.2 for examples). An immediate consequence is that

δEXC
b [ρs]

δρs(x)
6= δEXC

b [ρb]

δρb(x)
, (2.15)

i.e., the OEP XC potential produces the functional derivative of the XC energy with respect

to the noninteracting KS density ρs rather than ρb[Vs], which is the correct density by Eq.

(2.12).

In conclusion, even using the “exact” KS potential produces the paradoxical result of two

different densities corresponding to two different KS potentials, and the less accurate of

the two (according to the Hellmann-Feynman theorem) is used to obtain the total energy.

This confirms that lacking functional selfconsistency is a fundamental problem of explicitly

potential-dependent functionals which, contrary to previous suggestions [71, 95], cannot be

remedied by the OEP approach.

Functional-Selfconsistent Potentials. The paradoxical result of two different densities

and KS potentials are caused by inconsistency of the KS potentials defining the XC energy

functional with the functional derivative thereof. A resolution is possible if the KS potential

satisfies the functional selfconsistency condition

ρXC[|φ〉 ,n,Vs](x) = 0. (2.16)

By Eq. (2.13), the orbitals and occupation numbers generated by such an FSC KS potential

yield the correct Hellmann-Feynman density, and thus Eq. (2.16) is an exact constraint

for the KS potential Vs. Eq. (2.16) is equivalent to requiring the XC energy functional

to be stable with respect to variations of the KS potential at fixed orbitals and occupation
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numbers. Thus, the chain rule yields for the FSC XC potential

VXC[|φ〉 ,n,Vs](x) =
δEXC[|φ〉 ,n,Vs]

δρ(x)

=

(
δEXC[|φ〉 ,n,Vs]

δρ(x)

)
Vs

,

(2.17)

since the partial derivative with respect to Vs vanishes according to Eq. (2.16). For potential-

independent XC functionals, the partial derivative is a total derivative, and Eq. (2.17)

reduces to the conventional definition of the XC potential. For potential-dependent XC

functionals, Eq. (2.17) is a statement of the functional selfconsistency condition.

It may be possible to define a FSC XC potential Vs,c[|φ〉 ,n] as a functional of the orbitals

and occupation numbers implicitly by Eqs. (2.16) or (2.17). The conditions under which the

functional selfconsistency constraint uniquely determines Vs,c and the resulting XC energy

functional

EXC
c [|φ〉 ,n] = EXC[|φ〉 ,n,Vs,c[|φ〉 ,n]] (2.18)

depend on the specific form of the XC energy functional (2.1). If such a unique potential

Vs,c exists, then the density (or KS orbitals and occupation numbers) minimizing the energy

functional associated with EXC
c are generated by it, because, by Eq. (2.17), Vs,c is obtained

from the functional derivative of EXC
c . At the same time, Eq. (2.16) guarantees that the

resulting KS density equals the Hellman-Feynman one. In this sense, the FSC KS potential

is optimal for a given explicitly potential-dependent energy functional.

It is important to distinguish orbital and functional selfconsistency in such a scheme: The

latter determines the KS potential and thus the energy functional for fixed density, while

the former determines the minimizing density (or the KS orbitals and occupation numbers).

Mixing the two may produce ill-defined energy functionals, causing problems such as initial

state dependence and multiple solutions familiar from selfconsistent GFT approaches [106].
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Semicanonical KS. The above analysis suggests that lack of functional selfconsistency

of SL and OEP KS potentials critically limits the accuracy of these approaches. We take a

step towards a fully FSC solution by constructing an approximation to the FSC KS Hamil-

tonian, which leads to an explicit energy functional of the orbitals and occupation numbers.

Using a GKS framework to achieve orbital selfconsistency allows us to bypass the numerical

challenges of OEP methods and obtain orbital energies corresponding to physical ionization

potentials and electron affinities.

Rather than imposing the full functional selfconsistency condition, which implies that the

KS potential entering the XC energy functional is identical to the functional derivative

thereof, see Eq. (2.17), we only require that the KS potential defining the XC energy

generate the same eigenstates (up to unitary equivalence) as the one obtained from functional

differentiation. This weaker condition is readily imposed by semicanonical projection of a

readily available SL KS Hamiltonian HSL
0 . In the most general case, the KS density matrix

takes the form

D =
∑
λλ′

Pλnλλ′Pλ′ , (2.19)

where Pλ denotes orthogonal projectors belonging to blocks of KS orbitals with degenerate

occupation numbers, and nλλ′ = nλδλλ′ is diagonal, with nλ denoting occupation number

matrices [107]. For example, for integer KS occupations 1, 0, there are two distinct matrices

nλ with eigenvalues nλ = 1, 0. The sp KS Hamiltonian is defined by

H̃0 =
∑
λ

PλH
SL
0 Pλ, (2.20)

and contains only the diagonal (λ = λ′) blocks of HSL
0 . H̃0 commutes with D by construction;

thus, one may find a common “semicanonical” basis in which both H̃0 and a given KS density

matrix are diagonal. Moreover, H̃0 is invariant under unitary transformations of KS orbitals

20



with degenerate occupation numbers, since the projectors Pλ are invariant. If D is generated

by HSL
0 , then H̃0 = HSL

0 ; perturbation theory implies that the deviation of the sp orbital

energies from the SL ones is quadratic in HSL
0 − H̃0. The nonlocal sp XC potential may thus

be defined as

ṼXC[|φ〉 ,n] = VXC SL[ρ] + H̃0[|φ〉 ,n]− HSL
0 [ρ], (2.21)

and the corresponding sp XC energy functional,

EXC
d [|φ〉 ,n] = EXC[|φ〉 ,n, ṼXC[[|φ〉 ,n]], (2.22)

is an explicit functional of the KS orbitals and occupation numbers only, which may be

subject to OSC optimization using GKS methodology. We will thus focus on functional of

type EXC
d [|φ〉 ,n] in the following.

2.2.3 spRPA Energy Functional

For a given KS determinant Φ, the RPA total energy,

ERPA = 〈Φ|H|Φ〉+ EC RPA, (2.23)

equals the expectation value of the physical Hamiltonian H plus the RPA correlation energy,

[29, 108]

EC RPA = −1

2

∫ 1

0

dα=
∫ ∞
−∞

dω

2π
〈
(
ΠRPA
α (ω)− Π0(ω)

)
V〉. (2.24)

V is the bare electron-electron Coulomb interaction, ΠRPA
α (ω) = (1 − αΠ0(ω)V)−1Π0(ω)

denotes the time-ordered RPA polarization propagator at coupling strength α and real fre-
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quency ω, and Π0(ω) is its noninteracting KS equivalent; brackets stand for traces. The rank

four operator Π0(ω) factorizes as [109]

Π0(ω) =

∫ ∞
−∞

dω′

2πi
G0(ω′)⊗G0(ω′ − ω), (2.25)

into a convolution product of one-particle KS Green’s functions G0(ω).

The KS Green’s function corresponding to the sp KS Hamiltonian H̃0 is

G0(ω) = n1/2(ω − H̃0 − i0+)−1n1/2 + (1− n)1/2(ω − H̃0 + i0+)−1(1− n)1/2; (2.26)

this symmetrized form remains Hermitian even for density matrix variations causing off-

diagonal occupation number matrices. By construction, G0(ω) reproduces D,

D =

∫ ∞
−∞

dω

2πi
eiω0+G0(ω). (2.27)

On the other hand, the quasiparticle spectrum of the sp Green’s function is given by the

semicanonical KS eigenvalues of H̃0, which approximate the semilocal ones in a perturbative

sense.

Eqs. (2.20)-(2.26) define the spRPA energy as a functional of the KS density matrix,

EspRPA[D], or, equivalently, the spectral projectors Pλ and occupation number matrices nλ

– clearly, a functional of type d according to Sec. 2.2.2. EspRPA[D] depends on the SL XC

potential DFA entering H̃0, for which we choose PBE [7]. This introduces a dependence on

the choice of SL potential; however, this dependence is less strong than for SL-RPA, since

the current scheme is OSC and partially FSC, and even for SL-RPA, the dependence of

energy difference on the specific choice of SL potential is moderate [63]. The spRPA energy

functional is conveniently evaluated by expressing G0 in the semicanonical basis, factorizing

the interaction V, and performing the frequency integration along the imaginary axis, in
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analogy to SL-RPA [35].

2.3 Variational GKS Minimization of Semicanonical

Projected RPA

2.3.1 Energy Lagrangian and Euler Equations

Within the GKS-spRPA formalism, the ground state energy is obtained as the minimum of

the spRPA energy functional with respect to D, subject to the Fermion N -representability

constraint that D have eigenvalues between 0 and 1 whose sum is the total electron number

N . We explicitly impose the latter by the substitution n = m†m, where the Hermitian

matrices m satisfy 〈m†m〉 = N . The GKS-spRPA energy Lagrangian is thus

LspRPA[|φ〉 ,m, η, µ] = EspRPA[D[|φ〉 ,m]]

− 〈η(〈φ|φ〉 − 1)〉 − µ
(
〈m†m〉 −N

)
. (2.28)

Here, the GKS orbitals were gathered in the transpose vectors |φ〉, i.e., 〈φ|φ〉 is a matrix

with respect to GKS orbital indices (but a scalar with respect to the one-particle Hilbert

space). In this notation, the GKS density matrix becomes

D[|φ〉 ,m] = |φ〉m†m 〈φ| . (2.29)

the Hermitian Lagrange multiplier matrix η enforces orbital orthonormality, and the real

scalar Lagrange multiplier µ accounts for normalization of D. The present approach is a

special case of variational density matrix functional minimization [107, 110, 111]. A necessary

condition for a minimum of the GKS-spRPA energy subject to the above constraints is that
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the first partial derivatives of LspRPA with respect to all variational parameters vanish.

Requiring stationarity with respect to the GKS orbitals leads to the GKS self-consistent field

(SCF) equations

HspRPA
0 [D] n |φ〉 = η |φ〉 , (2.30)

where the effective one-particle GKS-spRPA Hamiltonian is defined as the functional deriva-

tive of the spRPA energy with respect to the GKS density matrix,

HspRPA
0 [D] =

δEspRPA[D]

δD
. (2.31)

Eq. (2.30) is equivalent to

HspRPA
0 n = η. (2.32)

The Hermiticity of all three matrices in the previous equation then implies that HspRPA
0

and n commute, and since n is block-diagonal, so must be HspRPA
0 , i.e., matrix elements of

the spRPA Hamiltonian between orbitals belonging to different occupation number blocks

must vanish (“Brillouin’s Theorem”). Evaluating nλ as nijλ = nλδij, where indices i, j label

orbitals with identical occupation numbers nλ, and defining the Hermitian matrices

ελλ′ =

 0 λ 6= λ′,

ηλλ/nλ λ = λ′,
(2.33)

Eq. (2.30) takes a more familiar form,

HspRPA
0 [D] |φiλ〉 =

∑
j

εijλ |φjλ〉 . (2.34)

Eq. (2.34) is form-invariant under unitary transformations of orbitals belonging to degenerate
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occupation numbers nλ. A unique “canonical” GKS-spRPA orbital basis may be defined by

requiring εijλ to be diagonal with elements εiλ, in which case takes the form of the canonical

GKS equations,

HspRPA
0 [D] |φiλ〉 = εiλ |φiλ〉 , (2.35)

which need to be solved iteratively along with the orthonormality and normalization con-

straints.

The occupation numbers are determined by the stationarity condition for m,

(HspRPA
0 − µ)m = 0. (2.36)

In the canonical basis, Eq. (2.36) simplifies to (εiλ − µ)n
1/2
λ = 0. The second variation of

LspRPA with respect to m is nonnegative for bound states with an Aufbau occupation, i.e.,

for all i,

nλ =

 1; εiλ < µ

0; εiλ > µ
, (2.37)

where the ionization potential µ is chosen such that the normalization condition 〈n〉 = N

is satisfied. If εiλ = µ, then any nλ with 0 ≤ nλ ≤ 1 yielding correct normalization is

permissible[107].
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2.3.2 One-Particle GKS-spRPA Hamiltonian

The effective one-particle GKS-spRPA Hamiltonian may be analyzed by decomposing the

functional derivative in Eq. (2.31) according to

HspRPA
0 [D] = HHF

0 [D] + VC spRPA[D]. (2.38)

Here, HHF
0 [D] is the well-known Hartree-Fock one-particle Hamiltonian, and VC spRPA[D]

denotes the nonlocal RPA correlation potential resulting from the functional derivative of

the spRPA correlation energy. Since the spRPA correlation energy depends on D only

through the sp Green’s function, Eq. (2.26), the functional chain rule yields

VC spRPA[D] =

∫ ∞
−∞

dω

2π
ΣC(ω)

δG0(ω)

δD
. (2.39)

The functional derivative δG0(ω)/δD is a rank-four tensor operator.

ΣC(ω) =
δEC spRPA

δG0(ω)
(2.40)

is the correlation part of the RPA self-energy [73]. Eqs. (2.39) and (2.40) hold for any

correlation energy functional of the GKS Green’s function, and reveal the close connection

of the GKS correlation potential and the corresponding self-energy. If the correlation energy

further depends on G0 through Π0 only, then the functional chain rule may be used once

more to show that the correlation self-energy has the form[75, 76]

ΣC(ω) =

∫ ∞
−∞

dω′

πi
WC(ω′)G0(ω′ − ω). (2.41)

The correlation part of the effective interaction

WC(ω) =
δEC RPA

δΠ0(ω)
(2.42)
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is also a rank four tensor operator. Within RPA,

WC(ω) = V(1− Π0(ω)V)−1; (2.43)

thus, ΣC(ω) is identical to the correlation part of the GW self-energy [112, 113], evaluated

at the spGKS Green’s function.

To gain further insight into the physical meaning of the nonlocal RPA correlation potential,

one may decompose the total density matrix derivative into a sum of three partial derivatives,

VC spRPA[D] = VC,1[D] + VC,2[D] + VC,3[D]. (2.44)

The first term corresponds to the partial density matrix derivative at fixed sp Hamiltonian

H̃0. Denoting (anti)commutators by (curly) brackets, this part of the potential is found to

be

VC,1
λλ′ =

∫
dω

2π


1

nλ−nλ′

[
G0(ω),ΣC(ω)

]
λλ′
, λ 6= λ′,

πi
{
δ(ω − H̃0),ΣC(ω)

}
λλ′
, λ = λ′.

(2.45)

The off-diagonal (λ 6= λ′) blocks of VC,1 reduce to the gradient of the RPA energy with

respect to orbital rotations, thus establishing a link to orbital-optimized RPA approaches

[74]. The diagonal (λ = λ′) blocks, on the other hand, result from variations corresponding

to changes in the occupation numbers and cannot be obtained in an orbital optimization

framework. In the semicanonical basis, the λ blocks of H̃0 are diagonal,

H̃0ijλ = δij ε̃iλ, (2.46)
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and thus the diagonal blocks of VC,1 spRPA take the form

VC,1
ijλ =

i

2

(
ΣC
λij(ε̃iλ) + ΣC

λji(ε̃jλ)
)
. (2.47)

Perturbative expansion of the GKS-spRPA orbital energies around the SL ground state

solution reveals the physical significance of Eq. (2.47):

εiλ = εSL
iλ + iΣXC

iiλ (εSL
iλ ) + V C,3

iiλ − V
XC SL
iiλ

+ O(‖HspRPA
0 − HSL

0 ‖2). (2.48)

Here, ΣXC(ω) is the XC self-energy within the G0W0 approximation, and V XC SL is the SL XC

potential. The GKS-spRPA orbital energies hence reduce to the quasiparticle GW energies

with unit normalization factor [76] in a perturbative first-order SCF sense apart from VC,3,

which is typically small compared to VC,1.

The remaining parts of the GKS-spRPA correlation potential arise from changes in H̃0. The

second term accounts for the semicanonical projection and its diagonal part vanishes,

VC,2
λλ′ =


1

nλ−nλ′
[HSL

0 ,T]λλ′ , λ 6= λ′,

0, λ = λ′,
(2.49)

Here, the RPA unrelaxed difference density matrix [43] or first-order density matrix [113]

T =
δEC spRPA

δH̃0

(2.50)

familiar from RPA analytical derivative theory has been introduced. Since the spGKS RPA

Lagrangian is stationary at the converged spGKS density matrix D, there are no additional

“orbital relaxation” terms, and the corresponding total interacting spRPA one-particle den-

sity matrix is simply D + T; an explicit expression for T is provided in Appendix A.1. The
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density generated by T equals ρXC(x), Eq. (2.14). Since GKS-spRPA is not fully FSC,

ρXC(x) does not vanish, but is found to be small in most circumstances. The remaining part

of the correlation potential,

VC,3 = FHXCT (2.51)

accounts for changes in the density entering the SL Hamiltonian due to ρXC(x); FHXC is the

SL Hartree-, exchange-, and correlation (HXC) kernel.

2.4 Results

2.4.1 Ionization Potentials and Fundamental Gaps

Table 2.1: Comparison of highest occupied molecular orbital (HOMO) energies (in eV) to
experimental vertical ionization potentials for negatively charged atoms. G0W0 calculations
were carried out using PBE orbitals. aug-cc-pVTZ basis sets [58, 114] were used.

PBE HF G0W0 GKS-spRPA Ref.
H− +1.5 −1.4 +0.3 −0.9 −0.751

Li− +0.8 −0.4 −0.0 −0.8 −0.682

F− +1.5 −4.9 −1.9 −3.2 −3.403

Au− +0.5 −1.2 −1.7 −2.4 −2.314

Comparison of the computed highest occupied molecular orbital energies to the experimental

first IPs of negatively charged atoms, see Table 2.1, suggests that GKS-spRPA is substantially

more accurate than G0W0 for negative ions, where G0W0 suffers from density-driven error.

The GKS-spRPA highest occupied molecular orbital (HOMO) energies also improve greatly

upon SL DFAs, and negative ions such as H− are correctly bound.

For ionization potentials of neutral molecules in the GW27 benchmark [82, 119], OEP-RPA

and GKS-spRPA reduce the errors by ∼50% compared to the G0W0 method, see Table

2.2. Both OEP-RPA and GKS-spRPA have similar mean absolute errors of ∼0.3 eV for
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Table 2.2: Mean absolute (MAE), mean signed (MSE, computed−reference) and maximum
absolute (Max AE) errors (eV) for highest occupied molecular orbital energies of GW27
testset [82]. For reference values, negative of the ionization potentials from CCSD(T) were
used [119]. def2-TZVPP basis-sets [120] was used for CCSD (T), PBE, HF, G0W0 and GKS-
spRPA. For comparison, OEP-RPA results from Ref. [71] using aug-cc-pCVTZ basis-sets
[121] are also shown. For G0W0 and GKS-spRPA, the exchange-correlation potential was
approximated using the PBE functional.

Error PBE 5 HF G0W0
6 OEP-RPA 7 GKS-spRPA

Measure
MAE 3.83 0.65 0.64 0.26 0.30
MSE 3.83 −0.31 0.64 −0.08 −0.29
Max AE 6.49 2.22 1.29 0.84 0.68

the GW27 testset. The mean signed errors show that GKS-spRPA ionization potentials are

systematically too large, whereas the OEP-RPA HOMO energies can be too small or too

large, as is also reflected in higher maximum absolute deviations.

OEP-RPA and GKS-spRPA quasiparticle energies differ substantially for HOMO-LUMO

gaps, see Table 2.3: OEP-RPA HOMO-LUMO gaps do not contain derivative discontinuities

since they come from a local KS potential [122], and substantially underestimate fundamen-

tal gaps. G0W0 and GKS-spRPA, on the other hand, yield fundamental gaps within 1 eV

of the coupled cluster reference results for unpolar molecules. For the highly polar tetra-

cyanoethylene molecule, G0W0 and GKS-spRPA underestimate the fundamental gap by 3.3

and 1.7 eV, respectively, which may indicate residual self-interaction error.

Table 2.3: Gaps (in eV) obtained as differences between the lowest unoccupied and high-
est occupied molecular orbital energies, and reference fundamental gaps computed using
differences of CCSD(T) total energies. CCSD(T), GKS-spRPA and G0W0 calculations use
aug-cc-pVTZ basis-sets while OEP-RPA results [71] were obtained using aug-cc-pCVTZ
basis-sets [121]. For GKS-spRPA, the exchange-correlation potential is approximated using
the PBE functional.

OEP-RPA8 G0W0 GKS-spRPA CCSD(T)
Li2 1.23 4.43 5.28 4.76
Na2 1.18 4.35 4.98 4.48
LiH 2.94 6.92 7.66 7.67
CH3NO2 9.82 11.48 11.41
C2(CN)4 6.96 8.48 10.29
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2.4.2 Noncovalent Interactions

GKS-spRPA substantially reduces the underbinding error observed in SL-RPA calculations

of weakly interacting noble gas dimers and the dimers of S22 dataset [123], see Figs. S1 and

S2.

 0

 1

 2

 3

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22

E
rr

o
r 

(k
c
a

l/
m

o
l)

S22

RPA
GKS−spRPA

Figure 2.1: Errors (computed−reference [124]) in binding energies for the dimers of S22
dataset. The PBE XC potential and aug-cc-pwCV(T,Q)Z[125] basis set extrapolation were
used.

While RPA based on PBE [7] orbitals (RPA-PBE) produces hardly any binding for He2 and

substantially underbinds Ne2, the nuclear potential energy curves obtained from GKS-spRPA

closely resemble those obtained from the coupled cluster singles doubles with perturbative

triples (CCSD(T)) [132] method, which is nearly exact for these systems.

Perturbative expansion of the GKS-spRPA energy around the SL ground state provides a

rationale for the significant accuracy gains upon variational optimization for weak inter-

molecular interactions: The lowest-order total energy change in ‖HspRPA
0 − HSL

0 ‖ is

E(2) =
∑
ijλλ′

(nλ − nλ′)
| 〈φSL

iλ |H
spRPA
0 − HSL

0 |φSL
jλ′〉 |2

εSL
iλ − εSL

jλ′
. (2.52)

The exchange portion of HspRPA
0 − HSL

0 gives rise to the “single excitations” correction to
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Figure 2.2: Computed PECs of noble gas dimers compared to reference data [126–129]. aug-
cc-pV6Z[130] basis sets were used for He2, Ne2 and Ar2, and aug-cc-pV5Z[58, 131] basis sets
were used for Kr2; an additional set of atomic basis mid-bond functions was employed to
speed up basis set convergence. The PBE XC potential was used.

SL-RPA, which were shown to be important for noncovalent bonding by Ren and co-workers

[133]. Replacing the SL orbitals and orbital energies in Eq. (2.52) with the GKS-spRPA

ones obtained in the first iteration corresponds to the “renormalized single excitations” (rSE)

correction [87] plus additional correlation-relaxation contributions. While the rSE approach

also improves considerably upon SL-RPA for noble-gas dimers, it spuriously overbinds in

cases such as Ne2 [87], whereas GKS-spRPA remains accurate, reflecting the additional

stability resulting from variational optimization. Similar to orbital optimized RPA [74],

GKS-spRPA thus implicitly accounts for singles corrections to all orders. A comparison of

equilibrium properties for Ar2 and Kr2 and mean average errors for binding energies of S22

dataset shows that the GKS-spRPA improves upon both SL-RPA and OEP-RPA, see Table.

2.4.
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Table 2.4: Comparison of SL-RPA, OEP-RPA and GKS-spRPA results for molecular equi-
librium properties (bond lengths, re, in Å and binding energies, De, in kcal/mol), as well as
mean absolute errors (MAEs) in binding energies of dimers in the S22 benchmark [123]. For
SL-RPA and GKS-spRPA, the exchange-correlation potential was approximated using the
PBE functional. Negative binding energies indicate bound states.

Reference
SL OEP 9 GKS sp Expt.

Ar2

re (Å) 3.84 3.85 3.79 3.775 [128]
De (kcal/mol) −0.201 −0.193 −0.247 −0.284 [128]

Kr2

re (Å) 4.12 4.13 4.07 4.06 [129]
De (kcal/mol) −0.293 −0.299 −0.343 −0.393 [129]

Be2

re (Å) 2.40 2.52 2.45 2.45 [134]
De (kcal/mol) −1.018 +0.498 −1.911 −2.67 [134]

S22
MAE (kcal/mol) 0.83 1.08 0.64

Table 2.5: Mean absolute (MAE), mean signed (MSE, computed−reference), and maximum
absolute (Max AE) errors in kcal/mol for SL-RPA and GKS-spRPA using the G21 AE
[135] and HEAT [12] atomization energy benchmarks. RPA and GKS-spRPA correlation
energies were obtained using cc-pV(Q-5)Z[58] extrapolation for the G21 AE set, and using
aug-cc-pV(Q-5)Z[58, 131] extrapolation for HEAT. Core orbitals with energies below −3
Hartree were frozen, and the exchange-correlation potential was approximated using the
PBE functional.

Benchmark Error Measure RPA GKS-spRPA
MAE 9.08 8.92

G21 AE MSE −9.08 −8.84
Max AE 25.39 25.43
MAE 10.09 10.01

HEAT MSE −10.09 −10.01
Max AE 25.81 24.77

2.4.3 Covalent Bonding

Compared to SL-RPA, GKS-spRPA reduces errors in atomization energies marginally but

systematically for nearly all molecules contained in the G21 [135] and HEAT [12] atomization

energy benchmarks. The mean absolute errors of SL-RPA and GKS-spRPA for binding
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energies of covalently bound molecules are within ∼ 0.1 kcal/mol of each other, see Table

2.5 and SI. This result reflects the accuracy of SL orbitals for covalent bonds. Orbital

optimization using OEP-RPA, on the other hand, tends to worsen errors in reaction energies

[71].

Table 2.6: Reference values and deviations ∆ from CCSD(T) in kcal/mol for the G21 AE
atomization energy benchmark.[135] The energies were obtained using cc-pV(Q-5)Z[58] ex-
trapolation, core orbitals with energies below −3 Hartree were frozen, and the exchange-
correlation potential was approximated using the PBE functional.

molecule CCSD(T) ∆(RPA) ∆(GKS-spRPA)

LiH 57.7 −1.24 −1.03

BeH.doublet 50.1 0.02 0.36

CH.doublet 83.8 −2.52 −2.58

CH2.triplet 189.7 −9.76 −10.45

CH2 180.4 −5.35 −5.19

CH3.doublet 306 −11.13 −11.71

CH4 418.7 −13.43 −13.77

NH.triplet 82.6 −0.09 −0.06

NH2.doublet 181.6 −2.07 −2.08

NH3 296.6 −5.38 −5.56

OH.doublet 106.7 −2.95 −3.19

H2O 232.1 −8.19 −8.79

HF 141.1 −8.09 −8.80

SiH2 153.9 −4.72 −4.19

SiH2.triplet 133.5 −5.65 −5.42

SiH3.doublet 228.7 −7.39 −6.48

SiH4 324.3 −8.40 −6.76

PH2.doublet 154 −0.62 −0.21

PH3 241.6 −2.62 −1.27
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H2S 183.7 −6.38 −6.54

HCl 107.4 −6.64 −7.91

Li2 24.1 −5.04 −4.48

LiF 137.7 −8.44 −7.67

C2H2 402.1 −20.90 −21.34

C2H4 560.7 −22.98 −23.05

C2H6 709.8 −25.39 −25.43

CN.doublet 177.3 −5.15 −4.62

HCN 310.4 −11.70 −11.39

CO 257.8 −13.47 −13.24

HCO.doublet 277.1 −13.49 −13.11

H2CO 372.2 −16.47 −15.57

H3COH 510.9 −19.46 −19.06

N2 226.1 −3.09 −2.37

N2H4 435.7 −8.29 −7.59

NO.doublet 150.7 −2.89 −2.04

O2.triplet 119.9 −6.74 −7.08

H2O2 267.5 −10.93 −11.16

F2 38.2 −7.96 −8.36

CO2 386.7 −22.36 −20.58

Na2 16.7 −0.05 −0.22

Si2.triplet 76.2 −10.44 −10.62

P2 115.7 −0.19 1.38

S2.triplet 103.8 6.69 −7.01

Cl2 60.1 −10.30 −11.74

NaCl 99.3 −4.37 −4.84

SiO 192 −11.54 −10.31
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CS 170.9 −10.51 −10.45

SO.triplet 125.7 −7.86 −7.46

ClO.doublet 64.8 −6.27 −6.78

ClF 62.6 −9.77 −9.93

Si2H6 535 −16.40 −13.25

CH3Cl 394.6 −18.07 −18.85

H3CSH 472.3 −16.83 −16.64

HOCl 165.6 −10.67 −11.27

SO2 262.1 −21.93 −19.14

MAE 9.08 8.92

Table 2.7: Reference values and deviations ∆ from CCSDTQ in kcal/mol for the HEAT atom-
ization energy benchmark [12]. The energies were obtained using aug-cc-pV(Q-5)Z[58, 131]
extrapolation, core orbitals with energies below −3 Hartree were frozen, and the exchange-
correlation potential was approximated using the PBE functional.

molecule CCSDTQ ∆(RPA) ∆(GKS-spRPA)

N2 228.41 −5.21 −4.58

H2 109.52 −0.65 −0.94

F2 38.99 −8.59 −9.09

O2 120.77 −7.70 −8.13

CO 259.13 −14.81 −14.68

C2H2 405.45 −24.48 −24.77

C2H 266.07 −21.66 −21.84

CH2 190.81 −11.04 −11.70

CH 84.22 −2.93 −2.99

CH3 307.95 −13.26 −13.83
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CO2 390.15 −25.81 −24.29

H2O2 269.2 −13.24 −13.43

H2O 233.13 −9.63 −10.14

HCO 279.30 −15.75 −15.44

HF 141.65 −9.01 −9.62

HO2 175.53 −9.57 −9.52

NO 152.62 −4.90 −4.13

OH 107.28 −3.76 −3.93

HNO 205.82 −6.80 −5.68

CN 181.07 −8.83 −8.39

HCN 313.32 −14.57 −14.34

CF 132.77 −12.42 −11.42

NH2 182.65 −3.27 −3.26

NH3 298.16 −7.29 −7.44

NH 83.12 −0.68 0.62

OF 52.95 −6.76 −6.16

MAE 10.09 10.01

2.4.4 Beryllium Dimer

The potential energy curve (PEC) of beryllium dimer is a stringent test for approximate

electron correlation theories, because it requires an accurate description of long-range dis-

persion interactions and strong near-degeneracy correlation between low-lying excited 1P

states of the isolated Be atoms [136]. The HF PEC is repulsive, second-order Møller-Plesset
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perturbation (MP2) theory produces binding energies nearly 3 times too small compared to

experiment, while those from local and SL density functional theory are 3-5 times too large

[137, 138]. Some of the SL functionals also display a small unphysical maximum. RPA-PBE

produces too shallow well depth and an unphysical repulsive barrier at intermediate bond-

ing distances, see Fig. 2.3, which neither the perturbative rSE correction nor second order

screened exchange (SOSEX) correct entirely [33, 139, 140]. However, the combination of

these corrections, i.e. RPA-PBE+rSE+SOSEX, removes this unphysical barrier [33]. OEP-

RPA does not remove the barrier and produces a positive well-depth, i.e., Be2 is unbound

within OEP-RPA, see Fig. 2.3 and Table 2.4. GKS-spRPA not only removes the unphysical

barrier, but also considerably improves the well-depth, yielding results close to the CCSD(T)

ones. As CCSD(T) calculations are approximately 2 orders of magnitude more costly than

GKS-spRPA calculations for many applications, this is a significant result, even though both

methods fall short of capturing the strong static correlation at short bond distances.
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Figure 2.3: Computed GKS-spRPA aug-cc-pwCV5Z [141] PECs of Be2 molecule compared
to OEP-RPA (using plane-wave basis sets with 50 Ry cutoff) [70], experiment [134] and
complete basis-set limit CCSD(T) [142].

38



2.5 Conclusions

OSC optimization of approximate XC energy functionals with an explicit dependence on the

KS potential requires specification of the KS potential as functional of the density and/or the

KS orbitals and occupation numbers. However, most choices, including the so-called “exact”

KS potential, produce an inconsistency between the KS potential and the functional deriva-

tive of the thus defined energy expression. Equivalently, the KS density used to evaluate

the energy functional differs from the presumably more accurate Hellmann-Feynman den-

sity. This paradox appears to have been overlooked previously, and casts doubt onto OSC

schemes for explicitly potential-dependent functionals such as OEP-RPA and OEP-based

many-body perturbation theory.

This paradox is resolved by imposing the exact constraint on the KS potential that it must

stationarize a given approximate XC energy functional at fixed KS orbitals and occupation

numbers. If this condition uniquely determines the KS potential, this FSC potential is opti-

mal in the sense that it is consistent with the energy functional it defines, and the resulting

KS density equals the Hellmann-Feynman density. The FSC condition is a constraint on the

KS potential and as such distinct from the OSC variational principle or OEP methods. If this

condition gives rise to a unique KS potential, it provides a more consistent definition of the

mapping between the KS potential and the best available approximation to the interacting

density than the “exact” KS potential.

The GKS-spRPA scheme implements the FSC condition approximately, by requiring the

GKS potentials defining the energy and obtained from its functional derivative to have

the same ground state density matrix (and, equivalently, GKS determinant). Our results

show that GKS-spRPA overcomes major limitations of SL DFAs and SL-RPA resulting

from density-driven error: Negative ions are bound when they should be, and noncovalent

interaction energies are significantly improved. GKS-spRPA covalent binding energies are
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only slightly more accurate than the SL-RPA ones, but the improvement is very systematic,

as expected for a well-defined OSC variational approach. Errors previously attributed to

missing beyond-RPA correlation, such as the spurious maximum in the Be PEC [33, 140]

or inaccurate energy differences [104] vanish upon GKS optimization, suggesting that they

may be primarily caused by lacking variational stability and functional selfconsistency rather

than inherent errors of the RPA method.

The GKS-spRPA orbital energies match experimental ionization potentials and electron

affinities of atoms and molecules within a few tenths of an eV, surpassing the popular G0W0

method in accuracy. Analysis of the nonlocal GKS-spRPA correlation potential supports

these observations, showing that quasiparticle GW energies are a first-order perturbative

limit of canonical GKS-spRPA orbital energies. Unlike KS band gaps, the GKS-spRPA

band gaps contain the energy derivative discontinuity at integer particle numbers, and thus

accurately approximate the observable fundamental gap; this is of particular interest for

infinite systems such as periodic solids, where IPs cannot be obtained from total energy

differences.

The GKS-spRPA GKS solution is considerably more resilient to symmetry breaking than

OSC SL KS solutions, as suggested by the location of the Coulson–Fischer point for the

H2 ground state. Moreover, GKS-spRPA eliminates the spurious second Coulson–Fischer

point observed in non-OSC SL-RPA approaches. In conjunction with the above results,

these improved stability characteristics provide additional evidence for the viability and

robustness of the GKS-spRPA energy functional. In particular, the high stability of the

GKS-spRPA solution bodes well for applications to response properties, whose accuracy can

sensitively depend on the stability of the reference state.

From a computational viewpoint, the cost of a GKS-spRPA is on the order of that of a

SL-RPA calculation times the number of GKS iterations; thus, GKS-spRPA calculations

for systems with hundreds of atoms are within reach. KS-spRPA is considerably less costly
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than OEP-RPA, because it does not require ad-hoc regularization or special basis sets,

and it is relatively straightforward to implement starting from RPA analytical gradients.

While GKS-spRPA does not achieve complete functional selfconsistency, its considerably

improved performance for energy differences and density-related properties compared to

both SL RPA and OEP-RPA suggests that semicanonical projection provides a simple yet

relatively accurate approximation to the FSC RPA potential.

The GKS scheme with semicanonical projection presented here may be applied beyond RPA

to turn any conserving [143–145] energy functional of the KS one-particle Green’s function

into a density functional, and provides a solution to the conundrum of how to obtain ac-

curate energy differences and choose the non-interacting system, e.g., in GW theory [146]:

All observables, such as self-energies or response properties, are obtained as derivatives of

a single, variationally stable energy functional of the KS density matrix, combining and en-

hancing the accuracy of RPA for energetics with the one of GW for quasiparticle spectra.

Thus, GKS-spRPA is a step towards accurate, efficient, and universal electronic structure

methods sharing favorable characteristics of both DFT and GFT.
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Chapter 3

Static polarizabilities within the

GKS-spRPA

This chapter contains verbatim excerpts from a manuscript under preparation titled “Static

polarizabilities within the generalized Kohn–Sham semicanonical projected random phase

approximation (GKS-spRPA)”, reprinted with permission, from S. G. Balasubramani, V. K.

Voora and F. Furche. This material is based upon work supported by the National Science

Foundation under CHE−1464828 and CHE−1800431.
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3.1 Introduction

Technologically advanced optical and optoelectronic devices such as organic light emitting

diodes [147], organic liquid crystal displays [148] are often based on π-conjugated molecules

[149] that have large optical response properties such as polarizabilities (α) and hyperpolariz-

abilities (β). Theoretical calculations that help guide experimental design of such molecules

with tailored (non)linear optical response properties [2] would help speed up materials dis-

covery. Density functional theory (DFT) [4, 150] within the Kohn–Sham (KS) [5] or the

generalized KS (GKS) [86] framework has been the workhorse for computations of higher-

order molecular properties[151, 152] because of the cheap computational cost and reasonable

accuracy. However, the electronic structure of systems such as transition metal complexes,

metal clusters with small-gaps and π-conjugated molecules are not accurately described by

popular density functional approximations (DFAs) such as PBE and B3-LYP.

Champagne and coworkers [17, 153, 154] have systematically assessed the use of semilocal

(SL) and hybrid density functional approximations (DFAs) for the calculations of polarizabili-

ties and hyperpolarizabilities. They found large overestimations of the (hyper)polarizabilities

of π-conjugated oligomers using SL functionals. This was initially attributed to the wrong

exponential asymptotic decay of the KS potential, however, long-range corrected function-

als did not provide substantial improvements. [153] Recent studies using (optimally tuned)

range-separated hybrids (RSHs) for calculating (hyper)polarizabilities have reported im-

proved results compared to SL DFAs but contain adjustable parameters which limit their

predictive power. [155–157] Scuseria and coworkers [158] noted that the inclusion of large

fractions of HF exchange appeared to be the reason for the success of various RSHs [158].

Champagne and coworkers [155] have argued that not only long-range exchange but long-

range correlations are also important for obtaining accurate polarizabilities of these conju-

gated systems. Champagne and coworkers also used wave function based methods such as

Hartree-Fock (HF), nth-order Møller-Plesset perturbation theory (MPn) and coupled cluster
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theory (CC) to analyze the polarizabilities of conjugated molecules. [159] They used the

6-31G basis set for calculations involving MP2, MP4 and CCSD(T), whereas Oviedo et al.

used the cc-pVDZ basis set for their calculations of static polarizabilities of polydiacetylene

(PDA) and polybutatriene (PBT) oligomers with the CCSD(T)-F12 method. [156] These

small basis sets are insufficient to obtain converged static polarizabilities [160] and using

larger basis sets is not practical for calculations involving methods such as CC since their

computational cost scales undesirably with system size (O(N5) or larger). These studies lead

to the following question: can one obtain molecular properties using a method that contains

both nonlocal exchange and nonlocal correlation from first principles with a computational

cost of ≤ O(N5), and if so, would that solve the problems faced by SL/hybrid and RSH

DFAs for these π-conjugated systems?

To answer these questions, we consider here the random phase approximation (RPA) [20–22,

28, 161], which is the simplest post-KS DFA based on the adiabatic-connection fluctuation-

dissipation theorem (ACFDT). [19, 29, 108, 162] Post-KS RPA is a parameter-free DFA that

is compatible with HF exchange and seamlessly includes van der Waals interactions. [30]

The first molecular tests of post-KS RPA for calculating ground state energies using finite

basis sets were carried out in 2001 [31], and in the following two decades RPA has been

implemented in many electronic structure program packages and tested on several molecular

and extended systems [32–34, 163–165].

The computational scaling of post-KS RPA, using the resolution of identity (RI) approxi-

mation [166–168] and imaginary frequency integration is O(N4 log(N)), with system size N .

[35] Post-KS RPA has been shown to work well for systems with a small- or even zero-gap,

such as extended systems [169], metal clusters [34], transition metal compounds [170] and

it has been extensively benchmarked for dispersion interactions of large, noncovalently in-

teracting complexes, where it performs much better than the second-order Møller–Plesset

perturbation theory (MP2) [36, 37] and SL/hybrid DFAs. [171]
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Analytical molecular first-order properties within the post-KS RPA were efficiently imple-

mented and tested by Burow et al. [43] Upon extensive benchmarking, they concluded that

the post-KS RPA predicted molecular geometries more accurately than MP2 and semilo-

cal/hybrid DFAs especially for van der Waals complexes and transition metal compounds.

They also reported vibrational frequencies, which are second-order properties, that they had

obtained using numerical finite differences of the analytical gradients.

Numerical energy derivatives can be straightforward to implement but are prone to insta-

bilities and are not very resource efficient. [45, 172] Analytical derivatives however, are

algorithmically tedious to implement but are robust, [173, 174] provide a direct method for

calculating molecular properties and are usually preferred over numerical schemes. [48, 175–

179]

Here, we present the very first analytical implementation of α(0) within the newly de-

veloped orbital self-consistent GKS semicanonical projected RPA (GKS-spRPA) [180] and

benchmark the accuracy of its linear response properties. Specifically, we aim to understand

if GKS-spRPA, which includes HF exchange as well as long-range nonlocal correlations, can

address the problem of overpolarization faced by SL/hybrid DFAs for calculations of α(0)

of π−conjugated polymers. Furthermore we test the accuracy of GKS-spRPA α(0) for met-

allocenes and small metal clusters where HF is qualitatively incorrect and MP2 is not very

accurate. [181, 182]

This chapter is organized as follows: in section 3.2 we briefly review the GKS-spRPA the-

ory as well as set up the notations and define some intermediates that will be used in the

remainder of the manuscript. Next, we introduce the variational Lagrangian along with the

GKS-spRPA Fock matrix. The intermediates that are required to build both the first-order

Fock matrix as well as the right hand side are derived and some strategies for efficient imple-

mentation are discussed. In section 3.3 the implemented GKS-spRPA static polarizabilities

are tested on a wide range of molecular systems. Furthermore, the basis set and numerical
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frequency grid convergence behavior of the method are discussed. Finally, in section 3.4 we

provide conclusions.

3.2 Theory

3.2.1 Review of the GKS-spRPA

In this manuscript, we use the standard notations to denote orbital indices which are as

follows, occupied: {i, j, k, l, . . .}, virtual: {a, b, c, d, . . .}, general: {p, q, r, s, . . .}, atomic:

{µ, ν, κ, λ, . . .} and auxillary: {P ,Q,R,S, . . .}. {φp(x)} denotes molecular orbitals(MOs),

{χµ(r)} denotes atomic orbitals (AOs) and x = {r, σ} denotes the space-spin coordinates.

The AOs and MOs are related through the MO coefficients

φp,σ(x) =
∑
µ

Cp
µ,σχµ(r). (3.1)

The one particle (spin-unrestricted) density matrix and the AO overlap matrix are given by

Dµν,σ =
∑
i

Ci
µ,σC

i∗
ν,σ (3.2)

Sµν =

∫
dr χµ(r)χν(r). (3.3)

For post-KS energy functionals such as the RPA, the reference (semi)local KS orbitals and

orbital energies are obtained as the solution of

HKS
σ Cσ = εσSCσ (3.4)

where the KS Hamiltonian can be separated into a one electron part h, the Hartree or
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Coulomb potential VH and the exchange-correlation potential VXC as

HKS
pq,σ = hpq,σ +

∑
rs,σ′

VH
prσqsσ′Drs,σ′ + VXC

pq,σ′ [D] (3.5)

Consider orthogonal semicanonical projection operators P̂ which project onto the occupied-

occupied and virtual-virtual diagonal blocks of the KS Hamiltonian

H̃ = P̂HKSP̂. (3.6)

The spRPA energy functional employing the resolution of identity (RI) approximation[166,

167] can be expressed as a functional of the density matrix D and the semicanonical projected

KS Hamiltonian H̃ as

EspRPA[D, H̃] = EHF[D] + EC spRPA[D, H̃], (3.7)

EC spRPA =
1

2

∫ ∞
∞

dω

2π
〈ln (1 + Q(ω))−Q(ω)〉, (3.8)

where 〈.〉 denotes the trace operation. Q(ω) can be expressed in the RI basis as

QPQ(ω) =
∑
ia,σ

BPaiσ
(εaσ − εiσ)

ω2 + (εaσ − εiσ)2
BiaσQ, (3.9)

where the RI factorized [166, 167] two electron integrals (Mulliken notation) are

(ia|jb) ≈
∑
PQ

(ia|P)(P|Q)−1(Q|jb) =
∑
R

BiaRBRjb;

BiaR =
∑
Q

(ia|Q)(Q|R)−1/2. (3.10)

The GKS-spRPA Hamiltonian is obtained as

HGKS-spRPA =
δEspRPA

δDT
= HHF + Vc GKS-spRPA. (3.11)
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The occupied-virtual block of HGKS-spRPA (here after denoted HRPA for sake of brevity) is

HRPA
ia = 2HHF

ia + γia − γai + H+
ia[T] + [T,HKS]ia, (3.12)

where

H+
µνκλ =

δVHXC
µν

δDκλ

, (3.13)

is the Hartree-exchange-correlation kernel, T is the RPA unrelaxed difference density matrix

defined as

T =
δEC spRPA

δH̃
T

0

, (3.14)

and the γ is defined as

γpq =
∑
µ

∂EC spRPA

∂Cp
µ

Cq
µ. (3.15)

Detailed expressions for γ and T are given in Appendix A.1. The condition for the GKS-

spRPA orbital self consistency is HRPA
ov = 0 and the algorithm is provided in the supporting

information. This self consistent scheme can be extended to other post KS energy functionals

such as the AXK[42], SOSEX[41], rPT2[87], etc.

3.2.2 The Energy Lagrangian

The variational principle is key for the computation of higher order molecular properties as

derivatives of the energy Lagrangian. The 2n+ 1 and 2n+ 2 rules for the variational param-

eters and Lagrange multipliers respectively, can be employed for the nth order derivative[47].

The GKS-spRPA energy functional is invariant under occupied-occupied and virtual-virtual
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orbital rotations. [180] For such energy functionals, a convenient way to express variations

with respect to orbital coefficients is through the anti-Hermitian orbital rotation matrix κκκ.

[183] Thus, a change of variable can be made from C to κκκ and for example the occupied MO

coefficients can be expressed as

Ci
µ(κκκ) = Ci

µ(0) +
∑
a

κiaCa
µ(0) + . . . (3.16)

More details about derivatives with respect to κκκ can be found in the supporting information.

The GKS-spRPA energy Lagrangian (GKS-spRPA will be denoted as RPA unless mentioned

otherwise for sake of brevity) can be expressed as

LRPA(κκκ, ε,T ,W |S,Vxc,X) = ERPA(κκκ, ε|X)

+
∑
σ,ij

(
Tij,σ(HKS

ij,σ − εij,σδij)
)

+
∑
σ,ab

(
Tab,σ(HKS

ab,σ − εab,σδab)
)

−
∑
σ,pq

(
Wpq,σ(Spq,σ − 1pa)

)
(3.17)

where the Lagrange multipliers T is the RPA unrelaxed difference density matrix and the

W is the energy weighted density matrix. The variational parameters are the semicanonical

KS orbital energies ε and the orbital rotation matrix κκκ. The one electron Hamiltonian and

the two, three and four index electron repulsion integrals can be compactly written as a

set X = {h, (P|Q), (ia|P), (ia|jb)}. [35, 184] κκκ and ε parametrically depend on S, Vxc

and X. The Lagrangian (L and LRPA are used interchangeably to denote the GKS-spRPA

energy Lagrangian) is required to satisfy stationarity with respect to the multipliers and the

variational parameters,

∂L

∂κκκ

∣∣∣∣
stat

=
∂L

∂W

∣∣∣∣
stat

=
∂L

∂T

∣∣∣∣
stat

=
∂L

∂ε

∣∣∣∣
stat

= 0. (3.18)
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At the stationary point the optimized parameters and multipliers are denoted by κκκ =

κ, W = W, ε = ε, T = T and we have

ERPA(κ, ε|X) = LRPA(κκκ, ε,T ,W |S,X,VXC)|stat (3.19)

Apart from the stationarity of LRPA with respect to κ, GKS-spRPA orbital self-consistency

also implies that

dERPA

dκia
= HRPA

ia = 0 (3.20)

is satisfied upon reaching self-consistency following the algorithm described in Appendix A.3.

3.2.3 Second derivatives of the GKS-spRPA energy functional

The general expression for the second derivative of the GKS-spRPA energy with respect to

perturbations ζ and χ, upon satisfaction of all the stationarity conditions listed in Eqn. 3.18,

can be obtained as

∂2E

∂χ∂ζ
=

(〈(
∂2L

∂χ∂κ

)
∂κ

∂ζ

〉
+

〈(
∂2L

∂χ∂ε

)
∂ε

∂ζ

〉
+

〈(
∂2L

∂χ∂X

)
∂X

∂ζ

〉
+

〈(
∂L

∂X

)
∂2X

∂χ∂ζ

〉
+

〈(
∂2L

∂χ∂S

)
∂S

∂ζ

〉
+

〈(
∂L

∂S

)
∂2S

∂χ∂ζ

〉
+

〈(
∂2L

∂χ∂VXC

)
∂VXC

∂ζ

〉
+

〈(
∂L

∂VXC

)
∂2VXC

∂χ∂ζ

〉
+

〈(
∂2L

∂χ∂W

)
∂W

∂ζ

〉)∣∣∣∣
stat

(3.21)

When χ and ζ are static electric field perturbations Eq. 3.21 refers to the static polar-

izability, when χ and ζ refer to nuclear displacements then Eq. 3.21 corresponds to the

geometrical Hessian. In this study we are concerned with the static polarizability and the

field dependence only comes in through the orbital rotation parameter κ and the one elec-

tron Hamiltonian h. The first-order perturbed κ can be obtained as a solution of the linear
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equation

(
∂2L

∂κ∂κ

) ∣∣∣∣
stat

∂κ

∂χ
= −

(
∂2L

∂χ∂κ

) ∣∣∣∣
stat

(3.22)

where the term in the brackets corresponds to the symmetric part of the orbital rotation

Hessian, often denoted as (A + B) in the TDDFT literature which is a supermatrix of

dimensions NoNv × NoNv, where No and Nv denote the number of occupied and virtual

MOs, respectively. [185] The right hand side (RHS) of the above equation at the stationary

point, can be identified as the field derivative of the ov block of the GKS-spRPA Hamiltonian,

∂HRPA
ia

∂χ
. The second term that contributes to the GKS-spRPA static polarizability is due to

the unrelaxed difference density matrix

〈(
∂2L

∂χ∂h

)
stat

∂h

∂ζ

〉
=

〈
∂DGKS-spRPA

∂χ
µζ
〉
, (3.23)

where DGKS-spRPA = DHF+T and µζ corresponds to the ζth component of the dipole moment

matrix. DHF does not explicitly depend on χ resulting in

∂2ERPA

∂χ∂ζ
=−

〈
∂κ

∂χ

(
∂2L

∂κ∂κ†

)−1

stat

∂κ†

∂ζ

〉

+

〈
∂T

∂χ
µζ
〉

(3.24)

Simplified expressions for the RHS and the matrix-vector product are given in Appendix

A.4.5. The orbital self-consistent scheme of GKS-spRPA helps avoid the calculations of

first-order orbital relaxation terms, in the computation of second-order properties, that would

otherwise require solutions of costly coupled perturbed equations. Furthermore, the com-

putational scaling of GKS-spRPA is O(N4log(N) and therefore the calculations of α(0) are

not that much more expensive than the calculations of RPA geometrical gradients [43].
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3.2.4 Strategies for efficient implementation

The solution of the linear problem defined in Eq. 3.22 is necessary to obtain the first part of

the static polarizability within the GKS-spRPA, as shown in Eq. 3.24. Large linear equations

and eigenvalue problems are often encountered during molecular property calculations in

quantum chemistry. [186] Since these problems can be extremely large, involving dense

matrices, iterative techniques are preferred that avoid storage of the entire coefficient matrix

of the linear equation and deal with only the matrix-vector products. [187] Krylov space

methods have been successfully applied in molecular response theory for solving linear and

eigenvalue problems. [188–190] In this study we use a recently developed nonorthonormal

extension of Krylov space methods for solving Eq. 3.22, which exploits the decreasing norm

of the residual vectors to boost screening in integral-direct response calculations. [52]

The construction of the matrix-vector product is the most time consuming step in solving

Eq. 3.22. The matrix-vector product as well as the RHS requires zeroth-order intermediates

that are calculated on the frequency grid. For example Tij as defined in Eq. A.3, requires

three O(N4) steps to build per frequency grid point. Avoiding repetition of these zeroth-

order builds is a necessary step towards an efficient algorithm and we use the following steps

to achieve this.

1. Two index zeroth-order intermediates such as Tij, Tab, γia, γai, γij and γab are built

and stored in memory. The Q matrix is frequency dependent and is written to file for

each grid point ωg as QPQ(ωg).

2. The RHS is built with the zeroth-order intermediates from memory as well as perturbed

first order intermediates. Tζ and µχ are used to get the first contribution to the

polarizability as αζχ =
∑

ij Tζ
ijµ

χ
ji +

∑
ab Tζ

abµ
χ
ba.

3. Starting from the guess vectors {Vζ}, zeroth- and first-order intermediates, the matrix-
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vector product {Mζ} is built to setup and solve the subspace linear problem.

4. The polarizability is obtained using the converged vectors and the matrix-vector prod-

uct as αζχ =
∑

ia Mζ
iaV

χ
ai.

3.3 Results

3.3.1 Basis set convergence of the GKS-spRPA polarizability

The basis set requirements for calculations of molecular response properties are starkly dif-

ferent from that of ground state energy calculations where it is sufficient to describe unper-

turbed molecular orbitals accurately. [191–193] In response calculations, the orbital response

to perturbations need to be considered to obtain converged results, otherwise the basis set

incompleteness error can be quite large typically for smaller systems. [160, 194]

The Karlsruhe def2 basis sets are polarized, segmented contracted and were developed to

describe both the core and the valence electrons as well as provide excellent performance to

cost ratios for large scale DFT and HF calculations [120] First we use these basis sets as

the starting points in our convergence tests of the GKS-spRPA static polarizabilities and

then use the property optimized basis sets developed by Rappoport and Furche[160]. These

are compact augmented basis sets with few diffuse functions that were developed based

on the polarizability variational principle. [160] The exponents were determined based on

maximization of HF isotropic static polarizabilities and this variational maximization leads

to optimal number of diffuse basis functions.

To understand the behavior of the GKS-spRPA polarizabilities with respect to the basis

set size, LiF and HCN are used as test molecules. The geometries were obtained from

experimental results. The basis sets used in this study include def2-SVP, TZVPP, QZVPP,
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SVPD, TZVPPD and QZVPPD. The extended def2-QZVPP basis sets which are constructed

by downward extrapolation from the def2-QZVPP basis sets (1s1p1d1f for the elements H-

Be and 1s1p1d1f1g for all others) as suggested by Rappoport et al.[160], were used to

approximate the basis set limit. We compare the basis set convergence of GKS-spRPA with

HF, PBE, PBE0, MP2 and CC2 methods, as can be seen from Fig. 3.1. The % relative
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Figure 3.1: Basis set convergence of the isotropic static polarizability within the GKS-
spRPA method of LiF and HCN molecules, compared to the HF, PBE, PBE0, MP2 and
CC2 methods.

deviation (%RD = (αmethod−αreference)
αreference

× 100) in the isotropic static polarizability of LiF using

the basis sets def2-SVP, TZVPP, QZVPP, SVPD, TZVPPD and QZVPPD are 23%, 21%,

8%, 8%, 1% and 0.4% respectively. For he HCN molecule the %RD for the same order of basis

sets are 29%, 12%, 6%, 3%, 0.74% and 0.71%, respectively. The def2-QZVPPD basis set

produces %RD of ≤ 0.7%, while the def2-TZVPPD basis set results in ≤ 1% RD compared

to the basis set limit in these test calculations. From this analysis it is concluded that these

basis sets are well suited for calculations of static polarizabilities using the GKS-spRPA

method.
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3.3.2 Convergence with the number of frequency grid points

The matrix-vector product and the right hand side builds of Eq. 3.22 require intermediates

that are computed by integration over imaginary frequency. This is done numerically using

the Clenshaw-Curtis quadrature with a finite number of grid points as described by Eshuis

et al. [35], who used it for computing the RIRPA correlation energy.
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Figure 3.2: The convergence of the isotropic polarizability within the GKS-spRPA method
as a function of the number of frequency grid points for benzene (top) and LiNa (bottom)
molecules using the def2-QZVPPD basis and the PBE input orbitals and orbital energies.

To test the convergence of the GKS-spRPA static polarizabilities with the number of fre-

quency grid points, we chose to study the C6H6 and LiNa molecules. The geometries of

these molecules were optimized at the level of B3-LYP DFA, the cc-pVTZ basis set, m4 in-

tegration grid, scf convergence threshold of 10−8 and the optimized geometries are provided

in the supporting information. The results of GKS-spRPA static polarizabilities calculated

with the def2-QZVPPD basis set and the PBE semilocal input as a function of the number

of frequency grid points are shown in Fig. 3.2.

The semicanonical KS HOMO-LUMO gap for the C6H6 system is 5.13 eV whereas for LiNa

it is 1.31 eV. Increasing the number of grid points from 25 to 200 for C6H6 results in a change

in isotropic static polarizability (αiso) of 0.24 a.u. whereas the same increase in the case of

LiNa results in a change in αiso of 34.01 a.u., as can be seen from Fig. 3.2. Systems with
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small HOMO-LUMO gap would require a large number of frequency grid points to obtain

converged static polarizabilities. Note that quadrature weight derivatives are not taken into

account in this implementation.

3.3.3 Small molecules testset

To analyze the accuracy of the implemented GKS-spRPA static polarizabilities and compare

it with other quantum chemical methods we gathered a set of 25 atoms and small molecules.

The geometries of these molecules were optimized at the MP2/cc-pVTZ level wherever ex-

perimental geometries [195] were not available. A comparison of the GKS-spRPA method

with HF, MP2, PBE and PBE0 is presented in Fig. 3.3 followed by a statistical analysis of

the errors in Table 3.1. All the analytical polarizabilities within GKS-spRPA were calculated

with the def2-QZVPPD basis set with PBE semilocal input and 100 frequency grid points.

The reference CCSD(T) polarizabilities were calculated numerically using the def2-QZVPPD

basis set or are obtained from the numerical CCSD(T) results of Hait et al. [196] or the

analytical CCSD-F12 calculations of Bokhan et al. [197].

The beryllium dimer is a difficult system for standard quantum chemical methods to treat

accurately because of the necessity to not only describe long-range dispersion interactions

but also static correlation due to the near-degeneracy between the low-lying excited states.

[142] We had previously shown that the ground state potential energy surface of this system

is much more accurately described by GKS-spRPA compared to post-KS RPA, optimized

effective potential RPA (OEP-RPA) [70], MP2 and SL DFAs. [180] The %RD of the GKS-

spRPA polarizabilities from the reference CCSD(T) for Be2 is found to be 9% while for HF

it is 42%. PBE, PBE0 and MP2 have %RDs of 22%, 26%, 27%, respectively. This shows

that the accurate description of the energetics of the Be2 at the equilibrium bond distance

by GKS-spRPA is also replicated for static polarizabilities.
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Figure 3.3: Isotropic static polarizabilities of several small molecules computed using GKS-
spRPA is compared with HF, PBE, PBE0 and MP2 methods using the def2-QZVPPD basis
set for all of the systems and methods.

The error analysis in Table 3.1 shows that the MAEs are the smallest for GKS-spRPA,

followed by MP2, PBE0, PBE and HF. GKS-spRPA includes exact exchange at first order

and correlation of the ring type to infinite order [22]. These particle-hole excitations are

important to describe the polarization of electronic density and that is part of the reason

for GKS-spRPA being successful in predicting static polarizabilities of these systems. While

MP2 also contains particle-hole excitations it only has them at second order and the higher

order excitations can be very important.

Table 3.1: The mean signed error (MSE), mean absolute error (MAE), root mean square
error (RMSE) standard deviation (Std. Dev. ) and the maximum absolute error (Max AE)
in atomic unit (a.u.) for the testset of 25 polarizabilities are reported for several different
methods. All calculations used the def2-QZVPPD basis set for all the atoms and the GKS-
spRPA used the PBE semilocal input.

GKS-spRPA HF PBE PBE0 MP2
MSE -0.92 3.56 1.70 1.35 0.63
MAE 2.34 5.42 3.08 2.74 2.77

Std. Dev. 4.66 10.89 4.77 5.29 5.39
Max AE 17.59 40.43 17.91 20.42 20.59
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3.3.4 Conjugated polymers

The failure of local and semilocal DFAs for estimating the polarizabilities and hyperpolariz-

abilities of conjugated molecules which results in catastrophic overpolarization with increas-

ing conjugation length is well documented. [17, 153] This has been attributed to the absence

of a field-induced counteracting term in the response part of the XC potential in (semi)local

DFAs [198]. A solution to this problem that was conceived in semiconductor physics was the

addition of polarization dependent terms to the XC potential, which leads to polarization

dependent DFT (PDDFT) [199], but the PDDFT XC kernels are unknown and the method

has been applied usually for semiconductors where the susceptibility is overestimated by

∼ 10%, whereas for conjugated polymers the polarizability overestimations can be much

larger. [153]

Figure 3.4: Structures of the polydiacetylene oligomer (PDA1, left) and polybutatriene
oligomer (PBT2, right) as well as the longitudinal axis along which the calculated polar-
izabilities are reported in this study.

Yang and coworkers [159, 200] used the OEP exchange functional (OEP-EXX) [201] for cal-

culating polarizabilities of conjugated oligomers and observed that their results were in good

agreement with HF results. They concluded that the OEP-EXX procedure includes “ultra-

nonlocal” exchange effects that are missing in (semi)local DFAs, but OEP-EXX still misses

significant contributions from nonlocal long-range correlations. Nénon et al. [155] investi-

gated the accuracy of tuned RSHs for calculating static polarizabilities of polydiacetylene

(PDA) and polybutatriene (PBT) oligomers and concluded that the RSH functionals with

larger tuning parameter performed better than the ones with smaller tuning parameter.

Oviedo et al. [156] also performed tuned RSH calculations on PDA and PBT oligomers and

found that with very large tuning parameters broken-symmetry solutions for PBT oligomers
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Figure 3.5: KS semilocal (PBE, PBE0) and HF HOMO-LUMO gaps (denoted as Gaps in
the figure) in units of eV as a function of the number of monomer units of the PDA and
PBT oligomers.

are obtained, which result in more accurate polarizabilities than the closed-shell singlet so-

lutions that they obtain with smaller tuning parameters.

For these systems, the semilocal density functional approximations result in increasingly

smaller HOMO-LUMO gaps as the system size increases which is depicted in Fig. 3.5. As

the gap gets closer to zero, the static polarizability starts to become divergent for (semi)local

DFAs.

We have used the GKS-spRPA method to calculate analytical polarizabilities of these poly-

mers, the resulting %RDs with respect to the reference CCSD(T)-F12 calculations [156] are

reported in Fig. 3.6. The GKS-spRPA results were obtained with a semilocal PBE input,

def2-TZVPPD basis set, DFT numerical integration grids of size 4 [202] and 60 frequency

grid points. The PBE and HF calculations were also carried out with the def2-TZVPPD

basis set and numerical integration grids of size 4 was used for the PBE calculations. The

CAM-B3LYP results, the reference CCSD(T)-F12 results as well as the optimized geometries

of all the molecules were obtained from Oviedo et al. [156], who used the cc-PVDZ basis
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set, froze the core electrons and performed three-point numerical finite field calculations to

obtain the numerical CCSD(T)-F12 static polarizabilities.
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Figure 3.6: %RD in the longitudinal static polarizabilities as a function of the number of
monomer units of the PDA (up) and PBT (down) oligomers calculated using GKS-spRPA
with the def2-TZVPPD basis set and PBE semilocal input, compared to the HF, PBE and
CAM-B3LYP methods.

As displayed in Fig. 3.6, the errors in static polarizabilities rapidly increase with the system

size for the PBE functional. In case of PDA5, the PBE results reach a %RD of ≥ 100%.

The GKS-spRPA errors, on the other hand are almost independent of the system size for

the PDA oligomers with a mean %RD of 13% while HF, PBE, PBE0 and CAM-B3LYP

result in mean %RDs of 11%, 73%, 43% and 23%, respectively. For the PBT oligomers, the

mean %RD for GKS-spRPA, HF, PBE, PBE0 and CAM-B3LYP are 22%, 31%, 54%, 42%

and 29%, respectively. The GKS-spRPA static polarizabilities for both the PDA and PBT

oligomers are more accurate than the CAM-B3LYP results suggesting that the combination

of exact HF exchange and long-range correlations contained in the GKS-spRPA functional

are responsible for its better performance. However, the GKS-spRPA is not a functional self-

consistent scheme which means that it has some dependence on the input semilocal DFA

through the semicanonical projected semilocal orbital energies (for example in Eq. 3.9).

This remaining undesirable dependence on the (semi)local KS input could be responsible for
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the observed errors. The self-correlation error present in the GKS-spRPA energy functional

also contributes to the errors in polarizabilities which can be partially corrected by including

beyond-RPA methods such as the AXK [42] and the SOSEX [41].

3.3.5 Static polarizabilities of metallocenes

Transition metal metallocenes (TMM) exhibit diverse electronic structures with partially

occupied d orbitals and multiple low lying spin configurations. These properties make them

ideal building blocks for molecular spintronic [203] and optoelectronic [204] devices. Theo-

retical predictions polarizabilities and hyperpolarizabilities of TMMs would help in designing

and tuning the properties of these advanced devices. However, TMMs pose challenges to

conventional quantum chemical methods because of the small HOMO-LUMO gap due to

several low lying spin configurations. Experimental polarizabilities of the d6 metallocenes

namely ferrocene, ruthenocene and osmocene were obtained using gas phase refractivity mea-

surements by Hohm et al. [182, 205]. We tested the accuracy of our GKS-spRPA method

Figure 3.7: Structures of ferrocene (Fe(C5H5)2), ruthenocene (Ru(C5H5)2) and osmocene
(Os(C5H5)2) (left to right).

for these metallocenes for which the structures were obtained from Pansini et al. [206]. The

ground state minimum energy structures of the Fe, Ru and Os metallocenes have D3, C2

and Ci symmetries, respectively as shown in Fig. 3.7. The ground spin states of all these

compounds were found to be singlet. GKS-spRPA polarizabilities were calculated using the

PBE input, def2-TZVPPD basis set with DFT integration grid of size 4 [202] and using 60

frequency grid points.
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Table 3.2: The mean signed error (MSE), mean absolute error (MAE), root mean square error
(RMSE) and the maximum error (Max AE) in atomic unit (a.u.) for ferrocene, osmocene
and ruthenocene. All calculations used the def2-QZVPPD basis set for all the atoms and
the GKS-spRPA used the PBE semilocal input.

GKS-spRPA HF PBE PBE0 MP2
MSE -1.87 -14.05 2.07 -3.69 0.86
MAE 2.02 14.05 2.07 3.69 1.54
RMSE 2.43 14.18 2.60 3.74 1.73
Max E -3.50 -12.12 4.20 -3.23 2.64

It can be seen from Table 3.2 that the GKS-spRPA results are very accurate compared to

the experimental results with a MAE of 2.02 a.u. which is similar to the MAEs using MP2

and PBE which are 1.54 and 2.07 a.u.. PBE0 worsens the results of PBE by predicting

polarizabilities that are too small with a MAE of 3.69 a.u. whereas HF predicts the least

accurate polarizabilities for these TMMs with a MAE of 14.05 a.u.

3.3.6 Static polarizabilities of sodium clusters

Experimental static polarizabilities of alkali metal clusters such as sodium and lithium clus-

ters are known to have large uncertainties and poor reproducibility. [207, 208] For example

from Na6 to Na7 the isotropic static polarizability (αiso) according to Rayane et al.[207],

decreases from 816.62 to 800.69, whereas there is an increase observed by Knight et al.[208],

from 754.42 to 808.34. Both Knight et al., and Rayane et al. used molecular beam deflection

of the Nan clusters through a static inhomogeneous transverse electric field to measure the

αiso of the Nan clusters. Accurate theoretical calculations of polarizabilities of these systems

could resolve the uncertain experimental results.

Previous theoretical studies based on MP2 by Chandrakumar et al.[181], also suggest a

decrease in the αiso going from Na6 to Na7, while HF suggests an increase. These clusters

are difficult systems because they can have multiple nearly degenerate local minimum energy
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structures in the ground state. Furthermore clusters with odd number of electrons can

have multiple nearly degenerate spin states that further complicate the electronic structure.

Therefore, accurate theoretical benchmark calculations taking into account the fluxional

nature of the metal cluster structures are necessary especially since these experiments are

typically done at finite temperatures.

In this study, the GKS-spRPA αiso are benchmarked for small Nan clusters (n = 2, 3, . . . , 10)

and we aim to answer two questions: can GKS-spRPA predict the experimental results

accurately?, and how important are the thermal contributions to αiso? To answer the first

question, the geometries of the Nan clusters are optimized to acquire local minimum energy

structures and then αiso are calculated at these geometries to obtain the zero temperature

results. To address the second question, ab initio molecular dynamics (AIMD) calculations

are performed to simulate the equilibrium dynamics of the Nan clusters, and using these

MD trajectories 50 snapshots are randomly selected from which the trajectory averaged

polarizabilities (ᾱiso) are calculated.

The geometries of the Nan clusters were optimized within DFT using the B3-LYP functional

and the def2-TZVPP basis set for the Na atom, gridsize 4 was used along with weight

derivatives to obtain the local minimum energy structures of these clusters and the structures

are shown in Fig. 3.8. The αiso corresponding to these structures are reported in Table 3.3

for HF, PBE and GKS-spRPA methods and it can be seen that the deviations with respect

to available experimental results can be large. The AIMD simulations were carried out using

the B3-LYP functional and the def2-TZVPP basis set. A microcanonical ensemble was used

for the simulation of ground state equilibrium dynamics ensuring conservation of energy.

The AIMD simulations were run for a total of 10 ps with a 20 a.u. timestep. The first 1 ps

of the trajectory was not used for sampling to allow the system to attain equilibrium and

from the remaining 9 ps 50 snapshots were selected at random and used for the calculation

of ᾱiso.
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Figure 3.8: Structures of sodium clusters optimized with the B3-LYP[209] DFA using the
def2-TZVPP basis set. Normal mode analysis is performed to confirm that these are local
minimum energy structures.

Table 3.3: Calculated αiso and ᾱiso of Nan clusters using GKS-spRPA, PBE and HF methods
in a.u., compared to the experimental results.

HF PBE GKS-spRPA Expt.
αiso ᾱiso αiso ᾱiso αiso ᾱiso Knight et al Rayane et al.

Na2 280.53 246.46 249.58 265.24 251.90
Na3 463.99 618.55 434.03 436.80 416.87 415.91 444.83 464.70
Na4 538.74 584.30 500.61 532.64 482.66 535.36 565.58 538.62
Na5 648.28 690.67 621.40 623.87 612.26 621.25 630.03 710.92
Na6 736.75 755.27 669.12 686.30 675.19 692.27 754.42 816.62
Na7 768.02 900.12 706.82 710.88 714.56 724.10 808.34 800.69
Na8 886.41 871.30 817.60 776.39 830.53 805.17 901.14 868.75
Na9 1209.60 1108.76 974.90 982.07 977.24 988.28 1062.98 1042.49
Na10 1100.08 1160.38 1020.34 1075.37 1029.24 1087.50 1309.33 1274.14

Fig. 3.9 depicts the calculated αiso for the Nan clusters using the 50 snapshots selected from

the AIMD simulations for the GKS-spRPA, PBE and HF methods in the form of box plots.

It can be observed that the spread in the HF αiso is considerably larger for clusters with odd

number of electrons which have an open shell electronic structure. Some of the Na3 snapshots

resulted in HF αiso of ∼ 900 a.u. which is qualitatively wrong compared to the experimental

results which are ≤ 500 a. u. for the Na3 cluster. The spread in the GKS-spRPA results are

fairly independent of whether the cluster has odd or even number of Na atoms and none of

the snapshots result in qualitatively wrong over estimations of αiso as is the case with HF.
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Figure 3.9: The calculated αiso using GKS-spRPA, PBE and HF methods in a.u. for the
50 snapshots from the AIMD simulations are represented as box plots. The box represents
the interquartile range (IQR) which is from the 25th (first quartile, Q1) to the 75th (third
quartile, Q3) percentile of the data and the line inside the box represents the median. The
whiskers denote Q1−1.5×IQR and Q3+1.5×IQR and data points that lie outside this range
is denoted by solid black diamonds.

The mean absolute deviation (MAD) of the GKS-spRPA αiso and ᾱiso compared to the

experimental results of Rayane et al., and Knight et al. are 95 and 78 a.u., respectively. The

calculated ᾱiso are closer to the experimental results by 17 a.u. compared to the αiso for the

GKS-spRPA method. The MAD of the HF αiso and ᾱiso are 64 and 71 a.u., respectively

and the same for PBE the MADs are calculated respectively to be 94 and 84 a.u. This

indicates thermal corrections of 7 a.u. and 10 a.u. for the Nan clusters using the HF and

PBE methods respectively.

Using these results it is concluded that the GKS-spRPA does not provide significantly better

αiso for the Nan clusters compared to the HF and PBE methods. The maximum average

thermal correction of 17 a.u. obtained using the GKS-spRPA method does not provide any

conclusive evidence that thermal effects play an important role in determining the αiso of

the Nan clusters.
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3.4 Conclusions

The GKS-spRPA α(0) within the RI approximation can be implemented with a computa-

tional scaling of only O(N4 logN) and storage of O(N3) intermediates. Property optimized

basis sets developed for getting converged time-dependent HF and KS polarizabilities and

excitation energies also result in converged α(0) for the GKS-spRPA functional with %RD

of ≤ 1% obtained using the def2-TZVPPD and QZVPPD basis sets. For small molecules,

the GKS-spRPA results in more accurate α(0) compared to HF, MP2, PBE and PBE0

while using the CCSD(T) method as the reference. PDA and PBT π−conjugated oligomers

act as a stringent test for the accuracy of α(0) predicted by DFAs and GKS-spRPA re-

sults have smaller %RD compared to the reference CCSD(T)-F12 results than PBE, PBE0,

CAM-B3LYP and HF for these systems. These results show that the GKS-spRPA effectively

addresses the problem of overpolarization that is encountered while using SL/hybrid DFAs

for these systems and it provides more accurate results than the RSH functional CAM-

B3LYP. The smaller errors obtained using GKS-spRPA, compared to SL, hybrid and RSH

functionals can be attributed to the inclusion of exact HF exchange and long-range correla-

tions, of which the latter is missing in RSHs. For the Nan clusters the GKS-spRPA αiso and

the AIMD trajectory averaged ᾱiso were found to qualitatively agree with the experiments

and showed a monotonic increase with cluster size. Thermal averaging improved the results

by 17 a.u. using the GKS-spRPA method which indicates that thermal effects are not very

important for the αiso of the Nan clusters.

The errors in the GKS-spRPA method could be resulting from the fact that it still contains

spurious self-correlation and that it is not a functional self-consistent scheme that still de-

pends on the (semi)local KS potential. The first issue can be addressed using beyond-RPA

methods such as the AXK [42] and SOSEX [41] while the second issue requires the devel-

opment of functional self-consistent DFAs that would get rid of all the dependence on the

semilocal KS input.

66



Chapter 4

Conclusions

This thesis presented the development and implementation of a generalized Kohn–Sham

(GKS) scheme for the post-KS random phase approximation (RPA) method, called the GKS

semicanonical projected RPA (GKS-spRPA). Orbital self-consistent schemes developed for

explicitly potential dependent energy functionals, such as the optimized effective potential

(OEP) method result in two different densities; one that is obtained from the orbitals and

the other, presumably more accurate, that is obtained from the Hellmann-Feynman theo-

rem. The functional self-consistency (FSC) condition states that a uniquely determined KS

potential stationarize the energy functional that is explicitly dependent on it. Imposing the

functional self-consistency condition would result in an energy functional whose KS density

and the Hellmann-Feynman density will be identical. The GKS-spRPA functional approxi-

mately satisfies the FSC condition by requiring that the GKS potential defining the energy

and the potential that is obtained as its functional derivative have the same ground state

density matrix.

The density-driven errors suffered by the semilocal (SL) density functional approximations

(DFAs) as well as by post-KS RPA are cured by using the orbital self-consistent GKS-
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spRPA method. The GKS-spRPA significantly improves the description of noncovalent

interactions, while covalent binding energies are slightly improved compared to the post-

KS RPA. Approximate ionization potentials (IPs) and electron affinities (EAs) are obtained

from the eigenvalues of the GKS-spRPA one-particle Hamiltonian. The GKS-spRPA IPs

match the experimental IPs of atoms and molecules with the precision of a few tenths of an

eV which is more accurate than commonly used G0W0, which is a Greens function theory

(GFT) based method. The calculations of approximate quasiparticle energies as well as

ground state energies using the same Lagrangian framework is possible within the GKS-

spRPA whereas this is not a feature of other methods such as SL DFAs, GW and correlated

wave function based methods such as Møller-Plesset (MP) perturbation theory.

Furthermore, static polarizabilities (α(0)) within the GKS-spRPA were developed within the

Lagrangian framework and implemented at a computational cost of O(N4 log(N)) which is

on the same order of that of a GKS-spRPA geometrical gradients calculation. α(0) based on

the GKS-spRPA is more accurate than SL, hybrid and range-separated hybrid (RSH) DFAs

for π−conjugated polymers such as polydiacetylene (PDA) and polybutatriene (PBT). SL

DFAs suffer from the problem of overpolarization for these π−conjugated systems and result

in catastrophic overestimation of polarizabilities. GKS-spRPA functional contains nonlocal

HF exchange as well as nonlocal correlation that helps it counter the errors made by SL

functionals as well as by RSH DFAs which typically contain only nonlocal exchange.

Through efficient implementation and careful analysis of the results, the conclusion of this

thesis is that the GKS-spRPA is a method which shares favorable characteristics of both DFT

and GFT and is accurate, efficient and universally applicable for calculations of energies,

geometries, dipole moments, IPs, EAs and static polarizabilities.
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Appendix A

Intermediates involved in the

implementation of GKS-spRPA static

polarizabilities

A.1 Zeroth order intermediates

The expressions for the γ and T matrices introduced in Eq. 3.12 may be expressed as

γip = 2

∫ ∞
−∞

dω

2π

∑
b

(GBQ̃BT )ibpb, (A.1)

γap = 2

∫ ∞
−∞

dω

2π

∑
j

(GBQ̃BT )jajp, (A.2)

Tij =

∫ ∞
−∞

dω

π

∑
a

(
GBQ̃BG− ω2∆−1GBQ̃BG∆−1

)
iaja

, (A.3)

Tab =

∫ ∞
−∞

dω

π

∑
i

(
GBQ̃BG− ω2∆−1GBQ̃BG∆−1

)
iaib

. (A.4)
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A.2 Orbital rotations

Starting from a fixed set of orbitals and a reference determinant (|Φ〉) any determinant[210]

can be written as

|Φ(κ̂)〉 = e−κ̂ |Φ〉 , (A.5)

where the operator κ̂ can be expressed in terms of the fermion creation and annihilation

operators[211] Ĉ†p, Ĉq as

κ̂ =
∑
ia

(
κiaĈ

†
i Ĉa + κaiĈ

†
aĈi

)
, (A.6)

κ̂† =
∑
ia

(
κ∗iaĈ

†
aĈi + κ∗aiĈ

†
i Ĉa

)
, (A.7)

κ̂† = −κ̂(unitary rotations), (A.8)

κ∗ia = −κai and κ∗ai = −κia. (A.9)

Using all these results, for real orbital rotation parameters κia, the orbital rotation operator

may be expressed as

κ̂ =
∑
ia

κia

(
Ĉ†i Ĉa − Ĉ†aĈi

)
. (A.10)

A.3 GKS-spRPA algorithm

The self-consistent scheme of the GKS-spRPA is depicted in this flowchart
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Initial (semi)local KS input D and
H̃

Build the GKS-spRPA Hamiltonian
HGKS-spRPA[D, H̃]

Diagonalize HGKS-spRPA and obtain
DGKS-spRPA

Semicanonicalize HKS[DGKS-spRPA] to
get H̃

new
and Dnew

Converged Input H̃
new

and Dnew

Stop the SCF iterations
yes

no

Figure A.1: Flowchart of the GKS-spRPA scheme.

A.4 First order intermediates

In this section we discuss the definitions and forms of certain important first-order matrices

necessary for calculating second-order properties within the GKS-spRPA. First derivatives

with respect to internal perturbations such as the orbital rotations[47] are defined as

A(1)
pq =

∑
ia

∂Apq
κia

κia. (A.11)

Since the GKS-spRPA energy is invariant to occupied-occupied (oo) and virtual-virtual (vv)

orbital rotations, the only non-zero blocks of the orbital rotation matrix κ are κov. First

derivatives with respect to the external electric field perturbations (say Ex, the electric field

along the x̂ direction) are obtained as

Axpq =

(
dApq
dEx

)
~E=~0

=

(
∂Apq
∂Ex

)
~E=~0

+
∑
rs

∂Apq
∂Frs

(
∂Frs
∂Ex

)
~E=~0

. (A.12)

where F is the KS semilocal Fock matrix and
(
∂Frs
∂Ex

)
~E=~0

= µxrs, the matrix elements of the

dipole moment operator.
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A.4.1 Three center electron repulsion integrals

First order three electron integrals in the RI basis [166–168] can be expressed as

B
(1)
iaP =

∑
b

BbaPκib −
∑
j

BijPκja. (A.13)

A.4.2 KS polarization propagator matrix

The KS polarization propagator matrix in the noncanonical basis can be expressed as

G = ∆(∆2 + ω2
1)−1. (A.14)

The first order G matrix can be derived as

G(1) = ∆(1)(∆2 + ω2
1)−1 −∆(∆2 + ω2

1)−1(∆(1)∆ + ∆∆(1))(∆2 + ω2
1)−1, (A.15)

= ω2G∆−1∆(1)∆−1G−G∆(1)G. (A.16)

A.4.3 KS Semilocal Fock matrix

The first-order KS semilocal Fock matrix has the form

F (1)
pq =

∑
r

κprFrq +
∑
j

Fprκrq + H+
pq[κ] (A.17)

where the symmetric super-matrix H+ is given by

H+ =
δVHXC

δDT
, (A.18)
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and [] denotes its contraction with a matrix X, which is defined as

H+
pq[X] =

∑
rs

H+
pqrsXrs. (A.19)

A.4.4 Q matrix

The definitions of the Q and Q̃ matrices are

QPQ =
∑
iajb

BPiaGiajbBjbQ, (A.20)

Q̃PQ = (1 + Q)−1
PQ − 1PQ, (A.21)

where 1 is the identity matrix. The first derivatives of these matrices are

Q(1) = B(1)GB +BG(1)B +BGB(1), (A.22)

where Eqs. A.13 and A.16 can be used to evaluate this.

Q̃
(1)

= −(1 + Q)−1Q(1)(1 + Q)−1 (A.23)

A.4.5 First-order GKS-spRPA Fock matrix

The occupied-virtual block of the GKS-spRPA Fock matrix [180] is given by

FGKS-spRPA
ia = FHF

ia + γai − γia + H+
ia[T] +

∑
j

TijF
KS
ja +

∑
b

FKS
ib Tba. (A.24)

In the following the expressions for the first derivatives of γai, Tij and H+
ia[T] are provided.

These derivatives are expressed in terms of the first-order matrices derived in Eqns. A.13,
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A.16, A.17, A.20 and A.21.

γ
(1)
ai =

∫ ∞
−∞

dω

2π

∑
Pj

(
B

(1)
jaP

(
GBQ̃

)
Pji

+BjaP

(
GBQ̃

)(1)

Pji

)
. (A.25)

T
(1)
ij =

∑
a

∫
dω

2π

[ (
GBQ̃

)(1)

BG− ω2∆−1
(
GBQ̃

)(1)

BG∆−1 +
(
GBQ̃

)
(BG)(1)

− ω2∆−1GBQ̃ (BG)(1) ∆−1 −
(
∆−1∆(1)ĜBQ̃BG∆−1 + Transpose

)]
iaja

.(A.26)

(
H+
ia[T]

)(1)
=
∑
jb

∂
(
H+
ia[T]

)
∂κjb

κjb =

(∑
b

κibH
+
ba[T]−

∑
j

H+
ij[T]κja

)

+
∑
µνγδjb

∂H+
iaµν

∂Dγδ

Tµν
∂Dγδ

∂κjb
κjb +

∑
µνjb

H+
iaµν

∂Tµν

∂κjb
κjb. (A.27)

In the AO basis this can be expressed more compactly as

(H+
µν [T])(1) = G+

µν [T,κ] + H+
µν

[
T(1)

]
, (A.28)

where the hyper-kernel G+ is defined as

G+
µνκλδχ =

δH+
µνκλ

δDδχ

. (A.29)
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