
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Deep Store: An Archival Storage System Architecture

Permalink
https://escholarship.org/uc/item/6683b1tc

Authors
You, Lawrence L
Pollack, Kristal T
Long, Darrell DE

Publication Date
2005

DOI
10.1109/icde.2005.47

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6683b1tc
https://escholarship.org
http://www.cdlib.org/

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4133531

Deep Store: an archival storage system architecture

Conference Paper · May 2005

DOI: 10.1109/ICDE.2005.47 · Source: IEEE Xplore

CITATIONS

139
READS

361

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Fault-tolerant archival storage arrays View project

File system usability View project

Darrell D. E. Long

University of California, Santa Cruz

307 PUBLICATIONS 8,699 CITATIONS

SEE PROFILE

All content following this page was uploaded by Darrell D. E. Long on 29 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4133531_Deep_Store_an_archival_storage_system_architecture?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4133531_Deep_Store_an_archival_storage_system_architecture?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Fault-tolerant-archival-storage-arrays?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/File-system-usability?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Cruz?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-9474ec4c457d17c1aac15b881460f55c-XXX&enrichSource=Y292ZXJQYWdlOzQxMzM1MzE7QVM6MTAxOTg2NDEwMTcyNDI1QDE0MDEzMjY4NjM3NDg%3D&el=1_x_10&_esc=publicationCoverPdf

Deep Store: An Archival Storage System Architecture

Lawrence L. You, Kristal T. Pollack, and Darrell D. E. Long
University of California, Santa Cruz
Jack Baskin School of Engineering

1156 High Street
Santa Cruz, California 95064

Abstract

We present the Deep Store archival storage architecture,
a large-scale storage system that stores immutable data effi-
ciently and reliably for long periods of time. Archived data
is stored across a cluster of nodes and recorded to hard disk.
The design differentiates itself from traditional file systems
by eliminating redundancy within and across files, distribut-
ing content for scalability, associating rich metadata with
content, and using variable levels of replication based on
the importance or degree of dependency of each piece of
stored data.

We evaluate the foundations of our design, including
PRESIDIO, a virtual content-addressable storage frame-
work with multiple methods for inter-file and intra-file com-
pression that effectively addresses the data-dependent vari-
ability of data compression. We measure content and meta-
data storage efficiency, demonstrate the need for a variable-
degree replication model, and provide preliminary results
for storage performance.

1. Introduction

The need for large-scale storage systems is becoming ob-
vious; a study estimated that over five exabytes (5× 1060

bytes) of data was produced [14] in 2002, an increase more
than 30% over the previous year. Furthermore, the fraction
of data that is fixed content or reference data continues to
increase, accounting for 37% of all stored data, and was ex-
pected to surpass mutable data by the end of 2004. This is
unsurprising, especially in the face of the over 10,000 legal
regulations placed on companies in the U.S. for corporate
compliance [25]. The storage for compliance increased by
63% just in 2003, even before some of the most demand-
ing regulations, such as the Sarbanes-Oxley Act, went into
effect.

Further compounding the need for archival storage is
the increasing volume of material converted into the dig-

ital domain. Permanent records archives, in which data
is not removed, will only continue to grow. The National
Archives and Records Administration (NARA) aim to have
36 petabytes of archival data on-line by the year 2010. As
a result of these increased demands for reference storage,
for both archival and compliance purposes, it is a rapidly
growing area of interest.

Despite the plummeting cost of low-cost consumer stor-
age devices, the cost of managed disk-based storage is
high—many times the cost of a storage device itself and
higher than tape. As recently as 2002, the cost for enter-
prise disk storage was over $100 per gigabyte, compared to
tape at $10 per gigabyte. A trend for near-line and archival
storage is to use cheaper disks, such as ATA devices, instead
of SCSI devices, in order to bring down storage cost closer
to that of magnetic tape [10].

A new class of storage systems whose purpose is to re-
tain large volumes of immutable data is now evolving. The
engineering challenges include: improving scalability, to
accommodate growing amounts of archival content; im-
proving space efficiency, to reduce costs; increasing relia-
bility, to preserve data on storage devices with short oper-
ational lifetimes and inadequate data integrity for archival
storage; and locating and retrieving data from within an
archival store. High-performance disk-based storage de-
signs have been evolving to use lower-cost components, but
they continue to be expensive to manage.

Metadata will undoubtedly perform an essential role in
managing information throughout its lifetime. Data by it-
self is fragile over the long term because it may be hard
to interpret after many years, especially when the systems
which created it no longer exist. Future interpretation and
presentation of data require rich metadata describing it. De-
scriptive metadata for each file captures information for en-
abling diverse search features. Unfortunately, the rich meta-
data substantially increases file size overhead, when space
efficiency is an important goal in reference storage.

The trade-off between space efficiency and redundancy
for reliability has always been an issue; however, for

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

archival systems the trade-off is deepened. By the very na-
ture of archives, they will continuously grow over time be-
cause data is rarely removed. This creates the need for a
space-efficient solution to archival storage. However, the
need for a reliable system is also heightened in the case of
archival storage since as stored data gets older it is more
likely that there will be undetected cases of bit rot, and as
devices age the likelihood of their failure grows.

2. System architecture

To address these problems, we propose an archival stor-
age architecture designed to retain large volumes of data
efficiently and reliably.

Traditional disk-based file systems, which include
direct- or networked-attached storage (DAS/NAS) and stor-
age area networks (SAN), do not have the properties desir-
able for archival storage. They are designed to have high
performance instead of a high level of permanence, to allo-
cate data in blocks instead of maximizing space efficiency,
to read and write data instead of storing it immutably, and
to provide some security but not to be tamper-resistant.
Archival data must be retained for retrieval after a period of
time that exceeds the life expectancy of disk-based storage
systems hardware and likely to exceed the practical lifetime
of the storage system software and their interfaces. Digital
data must be stored reliably and automatically managed by
the storage system in order to be preserved beyond single
failures. In some cases, data lifecycles may include a re-
quirement to destroy certain content after a period of time.

We desire the following properties in an archival storage
system that set it apart from file systems: significantly re-
duced storage cost, immutable properties (write once, read
many), cold storage (write once, read rarely), dynamically
scalable storage (incremental growth of storage), improved
reliability (checksums, active detection, preferential repli-
cation), and archival storage compliance (WORM, required
duration, lifecycle management).

Additional properties to distinguish Deep Store from
other archival storage systems include: much lower latency
than the tape systems which it replaces, a simple interface
and design, searching capabilities (essential to petabyte-
scale storage systems), and accessibility across decades or
centuries as well as across local or distributed systems.

2.1. Architectural overview

The Deep Store architecture consists of these primary
abstractions: storage objects, physical storage components,
a software architecture, and a storage interface. We briefly
describe each of these in turn.

The primary storage objects presented to the archival
store are the file and its metadata. A file is a single con-

Store

Retrieve

Store

Metadata

File

Archival
Storage
Interface

Content Analysis

Interfile/intrafile
Compression

Data placement onto
storage device

Archival
Storage
Service

Deep Store Client Deep Store Node

Retrieve

storage
buffer

content-
addressable store

Figure 1. Architectural block diagram

tiguous stream of binary data. It is identified by its content.
A hash function, such as MD5 [22] or SHA-1 [24] digest,
is computed over each file to produce the primary portion
of its content address. Simple metadata associated with the
file, such as its filename and length, are contained within a
metadata structure. The metadata can also be identified by
content address. Content-addressable systems (CAS) sys-
tems like EMC Centera store files in this manner [7].

The primary unit for storage is a Deep Store storage
node. Multiple nodes connect over a low-latency/high-
bandwidth network to make up a storage cluster. Each node
contains a processor, memory, and low-cost disk storage.
Content analysis, which is absent from most file systems,
includes fingerprinting, compression, and data storage and
retrieval; these are necessary operations, but they must have
high throughput to be practical. The performance growth
rates for silicon-based processors and memories historically
have been greater than the capacity and latency improve-
ments of magnetic disk. Considering the ever increasing
CPU-I/O gap, this disparity implies a potential performance
benefit to effective bandwidth from the reduction of stored
content—in other words, compression can benefit I/O per-
formance.

The software architecture is embodied in processes that
execute on each storage node: an archival storage service, a
temporary storage buffer, a content analyzer, and a content-
addressable store. The archival storage interface accepts
input using a common system interface such as function in-
terface, pipes, sockets, or WebDAV, all of which we have
found to be suitable for a simple client-server request mech-
anism. The storage buffer minimizes request latency; our
implementation stores the uncompressed content in a CAS.
The content analyzer eliminates redundancy and can also
be used for extracting metadata. The efficient CAS stores
content and metadata alike.

The storage interface consists of operations on objects,
such as files or file metadata, which are addressed by con-
tent. The storage operations are:

• Store object

• Retrieve object

• Delete object

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

• Verify object

This simplicity in design is motivated by the need for
long-term preservation, but not at the expense of flexibility.
For content-addressable storage of disparate types using dif-
ferent efficient storage methods, we required a uniform stor-
age interface. Toward the goal of long-term preservation, a
simpler specification and ease of implementation helps en-
sure that data written today from one client system can still
be read from a completely different client system in 1, 10,
or even 100 years. These operations form the basis for other
storage operations.

2.2. PRESIDIO

Achieving optimal data compression in large storage sys-
tems is difficult due to many factors: variability of redun-
dancy in the stored content, tradeoffs in space efficiency
versus performance, and selecting the most appropriate ef-
ficient storage method. Redundancy exists in many forms:
files with low information entropy, files which are similar to
others (including themselves), and the exact duplication of
data.

Redundancy-elimination techniques include the com-
monly known intra-file compression or stream-based com-
pressors like gzip that work well within a file; and inter-file
compression techniques like single-instance storage in CAS
systems, delta compression, and chunk-based compression,
all of which work well across files. Compression rates vary
with content, and in some cases inter-file and intra-file com-
pression are complementary [27].

Reference data varies widely in its type, content, and re-
dundancy. Although the original input data created (typed
or entered) by humans is relatively small, the aggregate
volume is significant [13]. Examples include the creation
and distribution of email, hypertext markup (HTML), word
processing or office documents (Word, Excel, PowerPoint),
and paper-replacement files (PDF). Within the context of a
file, template data, such as presentation information, fonts,
formatting, and repetitious metadata, are included for com-
pleteness but are redundant within the scope of an archive.
Computer-generated data such as transactions or logs can
have high levels of redundancy due to common strings.
Delta compression works well on these data, where differ-
ences are fine-grained.

Other data, such as digitized content is often created and
immediately compressed: zip/gzip for general-purpose con-
tent, JPEG for visual content, and MPEG/MP3 for audio
and video content. Even when static compression coding
techniques are used, the content-based symbol probabilities
differ from file to file. This makes any contiguous sub-
section of a compressed representation more unique than
similar among files, making it difficult to realize any fur-
ther compression. In these instances, duplicate suppression

of identical data—chunks or whole files—can be effective
when the storage space overhead is small.

We introduce PRESIDIO (Progressive Redundancy
Elimination of Similar and Identical Data In Objects), a
storage compression framework which incorporates multi-
ple efficient storage methods to easily and practically re-
duce redundancy when possible. The main data types in
PRESIDIO are illustrated in Figure 2.

Handle: a file handle that contains a content address
(CA), such as an MD5 or SHA-1 hash. Our prototype stores
only an MD5 hash (16 bytes), but we anticipate that we will
augment the handle with a small amount of metadata to re-
solve collisions.

Constant Data Block: a content-addressable data block
of variable size containing a string of bits that is stored lit-
erally (i.e. raw binary data).

Virtual Data Block: a content-addressable data block.
Each block contains a type code such as “constant”
(K), “concatenation” (“chunk list,” Σ), and “differential”
(“delta,” ∆). Each block has a content address; the con-
tents are reconstructed polymorphically but stored virtually.
Handles can be embedded within other blocks of data. The
polymorphic behavior is flexible because it allows a single
address to map transparently to multiple instances or alter-
nate representations.

R

D
Constant

Data

Concatenated
Data

Differential
Data

R

D

Differential
Data

R

R

Single reference
(base) file

Multiple reference
(base) files

List of chunks

PRESIDIO Class Definitions

Traditional CAS
content; literal data

H

H

Handle

Virtual Data

Constant Data

PRESIDIO Classes

Object Identification

Content Addressable
Objects

H

C
C
C
C
C
C

Κ

Σ

∆

∆

Figure 2. PRESIDIO data classes

Objects are stored by content; each lettered box indicates
the content address type: C for “chunk,” R for “reference
file” (virtual or real object), and D for a “delta file” (also
virtual or real). Embedded handles, H, contain the hash for
the whole file.

2.3. CAS object types

To find a single content-addressable object, first a han-
dle is presented to the Virtual Object Table. The handle’s
content address is used as a hash key to look up the storage
location of the Virtual Data Block that is referenced by the
table. The Virtual Data Block is retrieved and the handle is
compared for its identity.

Reconstruction of the real image of the data block fol-
lows. The framework currently allows for three different

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

types of reconstructible data, or any combination of them.

Constant Data (K) If the Virtual Data Block is a Con-
stant Data Block, then the reconstruction is complete and
the data block is returned. A variation of this is the Com-
pressed Constant Data Block (Z type, not shown), which is
compressed using the zlib stream compression library.

Concatenated Data (Σ) If the Virtual Data Block is a
Concatenated Data Block, reconstruction consists of iter-
ating through the list of handles and retrieving them re-
cursively. The concatenated data is returned serially to the
Archival Storage Service.

Differential Data (∆) If the Virtual Data Block is a Dif-
ferential Data Block, then reconstruction consists of first re-
constructing the Reference Block (R) and the Delta Block
(D). A delta reconstruction, using a delta-based compres-
sion program such as xdelta, applies the delta file to com-
pute the resulting Version Object which is returned to the
Archival Storage Service. Note that Version Objects can
refer to multiple Reference Blocks.

The framework can be extended to different types of Vir-
tual Data Blocks; for instance, a single version (instance) of
a file’s metadata can be extracted from a data block storing
the entire version history for that file.

Virtual
Object Table

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

∆

Κ

Σ

Σ

Κ

Κ

∆
CAS

Objects

Figure 3. PRESIDIO content-addressable ob-
ject storage

Figure 3 illustrates the simple relationship between con-
stant data CAS objects and virtual data CAS objects. Ob-
ject data (files and internal metadata) are stored as small
objects. A single handle can be used to store object data.
Each entry in the Virtual Object Table consists of a group
number (G), a megablock number (MB), and an offset in the
megablock (O). (Additional information, such as the block
type and length, are not shown.) Our prototype, which uses
16 bit group and megablock identifiers and a 32 bit offset,
addresses a maximum of 16 exabytes (18×1019 bytes).

MB = 0

MB = 1

MB = 2

MB = 3

...
megablock (MB) size = 16 MB to 4GB

O = 64

Figure 4. Megablock (MB) storage

Objects are placed within megablocks sequentially to re-
duce storage overhead from unused portions of blocks and
to maximize contiguous writes. Stored data (white boxes)
are stored contiguously. Unused data (dark gray boxes) may
be present. Megablock fragmentation can be temporary; a
periodic cleaner operation will reclaim unused space. A
fixed megablock size from 16MB to 4GB is selected for
uniformity across nodes and the ability of group migra-
tion. Compared to file systems, which typically have block
sizes in kilobytes, this range of megablock sizes is better
matched for large-file storage on cluster file systems such
as GPFS [23] and GFS [9]. Files larger than the size of a
megablock are divided into chunks smaller than or equal to
the size of a megablock and stored as virtually, as a Con-
catenated Data Block.

G = 01

see inset

G
ro

up
 (

G
)

si
ze

G = 53 G = 98 ...

Figure 5. Group (G) and node storage

A storage group, shown in Figure 5, contains a number
of megablocks, placed on a recording device using a stor-
age mechanism such as a cluster file system. In this exam-
ple, the group numbers are 01, 53, and 98. Each group is
stored on the node of a server cluster. For reliability, groups
can be recorded with varying levels of replication or coding.
A small distributed hash table is maintained on each Deep
Store node to allow a single node to look-up a node num-
ber from the group number. Groups can be migrated from
existing nodes to newly added nodes to distribute load. The
simple group and megablock structure is easily ported to
new large-scale storage systems, and allows group migra-
tion to yield efficient storage for a wide distribution of file
sizes, including small objects such as file metadata, with

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

very small object-naming overhead. The group also serves
to contain a naming space that is unique across a cluster.

2.4. Archival metadata

Metadata for files typically contain fields for information
such as create time, ownership, and file size. This informa-
tion is used by both the file system and users in order to
understand the file. In the case of archival storage, archived
files must be understood far into the future, by both future
file systems and users. An example of file content, meta-
data, and content addresses is shown in Figure 6.

<?xml version="1.0"?>
<file>
 <name>deepstore-icde2005-20040701.pdf</name>
 <ca>378089202069c7540a7b7775f0559f88</ca>
 <mode>00444</mode>
 <uid>1005</uid>
 <gid>513</gid>
 <size>169908</size>
 <mtime>1099977500</mtime>
</file>

7191f482b94929b7
fac006b69ef53a6f

378089202069c754
0a7b7775f0559f88

File Handle

File Metadata

378089202069c754
0a7b7775f0559f88

File (Virtual Data)

Contents Handle

Figure 6. Metadata and file content

In order to ensure that files can be understood in the
future, the metadata must contain a wealth of information
about the context, the format, etc. We leave the problem
of deciding what fields belong in archival metadata to the
archivists. Instead we aim to support archival metadata that
is rich and extensible by storing metadata in an XML for-
mat. Previous work has also shown this to be an ideal for-
mat for archival metadata because of its application inde-
pendence and widespread use for data exchange [17].

In addition to storing archival metadata in a rich, ex-
tensible format we also enable searching and versioning
for metadata. Since a large amount of information must
be stored in the metadata for future use and understand-
ing, why not take advantage of this information for search
and retrieval? Search-enabled storage is especially impor-
tant for an archival system because it is likely that someone
trying to find a file created 100 years previous won’t know
where to look for it in the system. Some of the most useful
information to search over will likely be found in the meta-
data. For example, a user looking for a file may know the
author and roughly what time period it was created in. Ver-
sioning of metadata is also useful for archived files, if not
essential. Archives are generally concerned with preserving
the history and provenance of stored data, so it is consistent
to treat metadata with the same consideration. For instance,
keywords may be added as new topics become relevant to
existing information, or access controls may be changed af-
ter some event. Recording these types of changes may prove
useful to understanding the context and history of the data
even further.

Unfortunately, rich, extensible, versioned metadata op-
poses the goal of space efficiency. Compressing the meta-
data seems like a logical solution, but this could add com-
plexity for retrieving files as the metadata would have to
be uncompressed before it could be interpreted. Our solu-
tion is to store metadata according to its role in the system.
First we classify system metadata as the subset of archival
metadata that is used for locating and accessing files on the
physical storage devices. We then classify some subset of
the archival metadata as search metadata, metadata that is
selected as useful to search across.

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

Search space
database/index

version
updates

Virtual Data
block (file)

Deep Store nodes

Query

Results

Figure 7. Metadata retrieval and updates

We then store the different types of metadata in struc-
tures complementary to their use, as shown in Figure 7.
The system metadata is stored in a very fast and efficient
look-up structure as it will need to be accessed for every
file operation. Search metadata will be stored in a query-
enabled structure such as an XML database or search index.
Finally the entire set of archival metadata will be stored in
the same storage as the archived data itself, versioned and
compressed losslessly.

In order to enable space efficient versioning we exam-
ined two methods, using delta compression (differencing)
between successive versions, and merging versions into a
single compact XML tree. An interesting approach to the
latter method was developed by Buneman et al. [5]. Their
approach was to merge versions of an XML tree by labeling
the differing nodes with timestamps. This allows elegant
time travel within a single tree and reduces the overheads of
storing multiple files.

Figure 8 shows experimental results for compressing
versioned XML metadata using the differencing and merg-
ing approaches we discussed. The data set consisted of
5,880 original files, from which nine versions were cre-
ated by adding, removing or changing 10% of the file be-
tween successive versions. Rather than merging the version
changes elegantly as previously discussed, we merged the

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

entire version at each step for simplicity, giving us a slightly
worse case scenario. We then used XMill [12], an intra-file
XML compression tool, to compress the single XML tree
containing all the versions. For the delta compression ap-
proach we used the tool xdelta [15] to compute the differ-
ences between each successive version. This means that for
each file the first version was stored and then only the dif-
ferences between the current version and the previous were
stored in a new file for the current version. Each version
file was then compressed using the intra-file compression
tool gzip [8] rather than XMill since the differenced ver-
sion files were not valid XML trees. We can see from Fig-
ure 8 that merging the versions and then compressing the
result using XMill (xmill-appended-versions) is enormously
more space efficient than the differencing approach (delta-
chain-versions) as the number of versions increase. We also
show the results for just compressing each individual ver-
sion with XMill (xmill-all-versions) to show that the savings
are not simply an effect of XMill being more efficient than
gzip. The merging versions method works so well because
XMill uses dictionary compression, so the compression ratio
dramatically increases as the file gets larger since the data
added is very similar, and only one dictionary is created for
all the versions. By intelligently merging the versions [5]
we should be able to achieve even better space efficiency, as
well as a simple method for “time travel” between versions.
One drawback to this method that may make it infeasible in
some cases is that the metadata must be stored on mutable
storage in order to keep all the versions in a single XML
file. This may be unacceptable for some systems depending
on the storage medium and level of security that is required;
however, the differencing method could be used in these
cases.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 1 2 3 4 5 6 7 8 9 10

To
ta

l b
yt

es
 s

to
re

d

Number of versions stored

uncompressed
xmill-all-versions

delta-chain-versions
xmill-appended-versions

Figure 8. Metadata versions

3. Evaluating the architecture

One of the main goals of the architecture is to allow data
to be stored efficiently. The PRESIDIO framework allows
multiple lossless data compression methods to use a com-
mon object storage mechanism. The immutable property
of archived data allows PRESIDIO to address data by con-
tent. Efficient storage techniques are variations on a com-
mon theme: they first identify data that is identical or simi-
lar across files, and then they suppress the storage of redun-
dant information. The scope and resolution of this strategy
varies widely, but PRESIDIO ties the different schemes to-
gether in a common framework.

We first describe common features of efficient storage
methods and then contrast their differences and how they fit
into the framework.

3.1. Efficient archival storage methods

A basic trade-off of data compression is increasing com-
putation and I/O against the potential for higher space effi-
ciency. Each method also lies on a spectrum for the reso-
lution at which they can detect similarity. Although these
methods do not have any a priori knowledge of the data
type or format of the files that are stored, customized appli-
cations may further expand the spectrum with application-
specific knowledge of the content. When storing a file we
take advantage of this spectrum, beginning at the computa-
tionally inexpensive end and progressively working our way
towards the expensive end until we find a method that yields
acceptable compression. The methods using little CPU and
I/O resources detect large blocks of identical data. If sim-
ilarity is not found at a coarse level then we must use pro-
gressively more expensive techniques to find similarity at a
finer grain and eliminate redundancy down to the level of a
byte.

The common steps used to efficiently store files in a pro-
cess employed by the PRESIDIO framework are:

feature selection selecting features (fingerprints or hashes)
from a chunk or file

similarity detection locating a similar or identical chunk
or file already in storage

redundancy elimination suppressing duplicate storage or
compressing data

recording writing the compressed data to storage

All methods perform feature selection as a first step. By
first computing a small representation of the entire file, the
search space for similar data is dramatically reduced. A
small feature that covers a large section of a file is compact
and has low overhead but might not be tolerant of small

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

differences between similar files. A large feature set that
represents a large number of smaller features from a file
may be information that is useful for finding files with some
similarity but at a significant amount of indexing space or
searching time.

Once a candidate file’s feature set has been computed, it
can be used to find similar data that has already been stored.
The methods vary widely and have different processing and
storage requirements.

The compression step includes one or more methods,
typically a combination of suppressed storage, stream com-
pression, and delta compression.

Finally, storage is suppressed, reference counts to ob-
jects are incremented, and new non-redundant data objects
are stored. In some cases computing the feature set is also
the step for determining what to store, and in others further
computation is necessary.

3.2. Comparison of efficient storage methods

We examine four different efficient storage methods:
whole-file hashing, subfile-chunking, delta compression be-
tween similar files, and hybrid chunk and delta techniques.
Each efficient archival storage method has different costs
and benefit.

We highlight the significant differences between the dif-
ferent storage methods.

Whole-file hashing A simple content-addressable stor-
age scheme is to use whole-file hashing. A hash function
or digest computes (selects) a single feature from the en-
tire file. Digest functions like MD5 or SHA-1 have good
collision-resistant properties (as well as a cryptographic
property). The digest can then be used to identify the
content-addressable object.

There are several advantages to this method. Comput-
ing a digest is fast at 83 MB/s for SHA-1 and 227 MB/s for
MD5 on our test hardware (Intel Pentium 4, non-HT 2.66
GHz, 533 MHz FSB, PC2100 ECC memory). Only one
feature needs to be computed, and a single hash key can be
used to look up a file in constant or nearly constant time.
Many files are identical, and so when they are detected, the
amount of savings is tremendous. However, the main short-
coming of this method is that there are a significant number
of files that differ partially and would not be detected for
redundancy elimination.

Subfile chunking Files are divided into variable-sized
chunks with a minimum size and a maximum size. Blocks
are divided deterministically by sliding a window and cre-
ating a division when the sliding window’s hash value
matches a criteria, so as to meet a desired distribution of

block sizes [18]. In many cases the following criteria is suf-
ficient: compute the Rabin fingerprint [21] f p = f (A) (f is
a Rabin fingerprint function using a preselected irreducible
polynomial of a fixed-size window of size w over a string
A) and evaluating when the integer expression f p mod D is
equal to a constant R. By selecting a divisor D, the criteria
will be met approximately one in D times. Lower and upper
limits on the block size can be set to reduce the variance in
the block size.

As chunk boundaries are determined, the chunk’s con-
tent address is computed at the same time, i.e. per incre-
ment of the sliding window. The feature set is made up of a
list of chunk identifiers. Using the same hardware as above,
we measured our chunking program chc [27] for feature se-
lection alone (determining boundaries and then computing
MD5 over the chunk) at 36 MB/s using 32-bit Rabin fin-
gerprints, D = 1,024, R = 0, w = 32, with minimum and
maximum chunk sizes set at 64 and 16,384 bytes, respec-
tively.

Each chunk is then stored individually, in a manner sim-
ilar to whole file hashing. Individual chunks are stored with
low overhead in the PRESIDIO content-addressable object
store. Identical chunks are identified in time that is linear
with the number of chunks. While the finer granularity is
better than whole-file hashing, two sets of hashes must be
computed at the same time, and data within a block must
still be identical in order for hash values to match.

Fixed-sized blocks are a degenerate case of chunk-
ing when the minimum and maximum chunk size are
equal. While this condition eliminates the need for a
chunk-dividing algorithm, resemblance detection of iden-
tical blocks will be lower [19]. Shortcomings of chunking
are that chunk identifier lists must be stored, even when no
redundancy exists, adding unnecessary overhead; this stor-
age overhead is small, but when the average chunk size is
large (1 kilobyte and larger), efficiency degrades [27].

Delta compression between similar files Delta encod-
ing [1], an excellent inter-file compression method, is a
compelling mechanism for reducing storage within a cor-
pus that stores similar files. Delta compression is used to
compute a delta encoding between a new version file and
a reference file already stored in the system. When resem-
blance, an estimate of the similarity between two files, is
above a predetermined threshold, a delta is calculated and
only that is stored in the system. There are three key steps
that need to be designed and implemented for efficiency to
delta compress between similar files (DCSF).

First, features are selected from files in a content-
independent and efficient way. We use the shingling tech-
nique (DERD) by Douglis et al. [6], which calculates Rabin
fingerprints [2] over a sliding window on byte boundaries
along an entire file. The window size, w is a preselected pa-

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

rameter. The number of intermediate fingerprints produced
is proportional to the file size. To reduce it to a manage-
able size, a deterministic feature selection algorithm selects
a fixed size (k) subset of those fingerprints (using approxi-
mate min-wise independent permutations [3]) into a sketch,
which is retained and later used to compute an estimate
of the resemblance between two files by comparing two
sketches. This estimate of similarity is computed between
two files by counting the number of matching pairs of fea-
tures between two sketches. Douglis has shown that even
small sketches, e.g. sets of 20 features, capture sufficient
degrees of resemblance. Our experiments also show sketch
sizes between 16 and 64 features using 32-bit fingerprints to
produce nearly identical compression efficiency. Using the
same hardware as above, we measured our feature selection
program at 19.7 MB/s, k = 16, reading a 100 MB input file.

Second, when new data needs to be stored, the system
finds an appropriate reference file in the system: a file ex-
hibiting a high degree of resemblance with the new data. In
general, this is a computationally intensive task (especially
given the expected size of archival data repositories). We
are currently investigating feature-based hashing to reduce
the search complexity. Our method differs from DERD by
allowing delta chains of length greater than one, by stor-
ing and detecting similar files incrementally to more closely
match a growing archive. We used sketch sizes of 16 fea-
tures (k = 16) and sliding window size of 24 bytes (w = 24).

Third, deltas are computed between similar files. Storage
efficiency from delta is directly related to the resemblance.
Highly similar files are more effective at reducing storage
usage than mildly similar ones. Fortunately, it is possible to
reduce the comparison between pairs of fingerprints in fea-
ture sets (16 or more fingerprints each) down to a smaller
number of features that are combined into “super” features,
or superfingerprints/supershingles [4]. Each superfinger-
print is a hash of a subset of the features. If one or more su-
perfingprints match, there is high probability of a high sim-
ilarity. REBL [11], by Kulkarni et al., computed superfin-
gerprints over chunks with 1 KB to 4 KB average size to
yield large numbers of superfingerprints to detect files with
high resemblance. Because our design constraints such as
the number of expected files and real memory prevent this
method from being directly applicable, we are evaluating a
solution to meet those requirements. We measured xdelta at
8.7 MB/s (20 MB total input size, 2.29 seconds) for worst
case performance: a 10 MB input file of zeros and a 10 MB
file of random data, producing a 10 MB output file. Delta
compression programs with higher performance are known
to exist [26] and can be used in practice.

The fourth step, common to all efficient storage methods,
is storing the compressed data. In DCSF, the delta file is
recorded to the CAS.

3.3. Measurements

To evaluate our expected storage efficiency, we com-
pressed six data sets using stream compression (gzip),
chunking (chc32), and delta compression between similar
files (dcsf), measuring the total (not just incremental) com-
pressed size. Figure 9 shows these measurements as a per-
centage of the original data.

To illustrate the range of redundancy in data, we selected
data sets which are likely to be archived, binary and textual
data, and small and large files, and dissimilar as well as
highly similar data. Table 1 list for each set its total size in
megabytes, number of files, and average file size in bytes.

Table 1. Data sets

Name size (MB) # files avg. size (B)
PDF papers 239 754 331,908
PPT presentations 63 91 722,261
Mail mbox (3 dates) 837 383 2,291,208
HTML 545 40,000 14,276
PDF statements 14 77 186,401
Linux 2.4.0-9 1,028 88,323 12,209

We briefly describe the content in these data sets. PDF
papers are PDF documents of technical papers (conference
proceedings, journal articles, and technical reports) in a
bibliographic research archive. PPT presentations are Mi-
crosoft PowerPoint presentation files of related work. Mail
mbox are email folder snapshots for a single user on three
separate dates. The HTML set comes from the zdelta bench-
mark [26]. PDF statements are monthly financial state-
ments from investment institutions. And Linux 2.4.0-9 is
ten versions of the Linux kernel source code, 2.4.0 through
2.4.9.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip each 79.0% 72.0% 56.0% 24.5% 21.0% 27.5%

chc32 -d 512 -z 83.6% 42.7% 22.6% 18.4% 8.6% 10.7%

dcsf -L 1 78.5% 51.0% 47.0% 24.9% 7.0% 28.3%

dcsf 75.0% 37.0% 20.0% 7.7% 6.0% 4.3%

PDF
papers

PPT
presentatio

ns

Mail mbox
(3 dates)

HTML
(40,000)

PDF
statements

Linux 2.4.0-
9

Figure 9. Storage efficiency by method

Sizes were measured in the following manner. The gzip
compressor was applied on each file with default param-
eters, and all file sizes were added to produce the com-

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

pressed size. The chc program read a tar file containing
all input files and produced a single chunk archive, using
a divisor of 512 bytes (D = 512), compressing each chunk
with the zlib stream compressor; the total size is a sum of
the single instances of compressed chunks and a chunk list.
The dcsf method computed delta using xdelta (version 1.1.3
with standard options that use the zlib compressor), select-
ing the best file with a threshold of at least one matching
fingerprint in the sketch; reference and non-matching files
were compressed with gzip and the measured size was the
sum of all of these files. The -L 1 option sets a maxi-
mum delta chain length of one, i.e. deltas are only computed
against reference files. This avoids chains of reconstruction,
but at the expense of lower space efficiency.

3.4. Measuring the benefit of high resemblance data

To help understand the importance of file similarity on
the storage efficiency, we conducted experiments to com-
pute the relationship between resemblance (an estimate of
file similarity) and the actual amount of storage that is used.
The amount of data similarity varied widely, and so did the
amount of compression. However, some behaviors were
common, such as the relationship of storage resemblance
and the inter-file compressibility of data. Using the Linux
source code data set (ten versions, 2.4.0–2.4.9), we ran dcsf
to assess the importance of high resemblance data. Our ex-
periments would store all files from version 2.4.0 first in or-
der, then 2.4.1, etc. evaluating each file individually against
previously stored files. The file size after gzip (intra-file
compression only) was compared against xdelta (both intra-
and inter-file compression) and total storage was tabulated
by resemblance.

Linux kernel sources
Storage Efficiency of Delta/zlib vs. gzip

0%

5%

10%

15%

20%

25%

30%

35%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Resemblance (30 features)

B
yt

es
 s

to
re

d

gzip %
delta %

Figure 10. Delta efficiency by resemblance

In Figure 10, the horizontal axis lists the (discrete) re-
semblance: a number of features that were matched and
for each corresponding number of matching features (out

of 30). On the vertical axis, the amount of space that was
necessary to store the files with that resemblance. The delta
graph shows the storage efficiency improving (decreasing)
as the resemblance increases. This confirms the relation-
ship between resemblance (an estimate) and delta (a com-
puted difference between two files). By comparison, the
gzip graph is relatively flat, ranging from approximately
25% to 30%. The reduction in storage illustrates the com-
plementary benefit of intra-file and inter-file compression.

Linux kernel sources: file data stored
(by resemblance, cumulative)

0,000

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 5 10 15 20 25 30

Resemblance (30 features)
B

yt
es

 s
to

re
d

 (
in

 t
h

o
u

sa
n

d
s)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

fi
le

 c
o

u
n

t

file count CDF

uncompressed CDF

gzip CDF

delta CDF

uncompressed total: 100% (1.0GB)
gzip total: 27%
delta total: 4%

Figure 11. Cumulative data stored, by resem-
blance

Using the same data, Figure 11 shows a different view
of the storage efficiency that demonstrates the importance
of finding identical or highly similar data. The resemblance
is still on the horizontal axis, but two sets of data are su-
perimposed. The file count (bar graph) shows the number
of files that are in the workload with a given resemblance.
The other lines show both uncompressed size, the size of
the data set when each file is compressed with gzip, and
finally the delta-compressed size using xdelta. File counts
and sizes are cumulative of all files with lower resemblance.

With 88,323 files and one gigabyte of data, a significant
number of files have very high similarity, in fact many are
identical. The amount of storage required for gzip is only
27% but with delta, the total amount of storage is 4% of the
original, uncompressed source code. The relative flatness of
the delta plot near 30 of 30 features shows only a slight in-
crease in storage space despite the large numbers of copies
that were stored.

What is important to note is that the major benefit comes
from files that have high resemblance (30 out of 30 match-
ing features, which is equivalent to all superfingerprints
matching). PRESIDIO’s progressive feature matching pro-
cess would first attempt to match identical files, then highly
similar files, and then finally somewhat similar files. The
time to search the first two categories is relatively fast and
requires direct lookup of whole files or chunks instead of a
full pair-wise feature resemblance across a large set of files.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

Using these techniques, we have measured a number of
data sets which have high variation in the amount of inter-
file and intra-file redundancy. High levels of compression
are possible, including computer-generated data that was
measured to less than 1% of the original size [27]. By not at-
tempting to fit a single compression scheme to all data, and
providing a framework for one or more schemes, the Deep
Store architecture benefits a wide range of data types.

4. Reliability

0 dependencies

1-2 dependencies

>= 3 dependencies

1

43

22

11

3

n chain length n

0 0 0

2

1 1 1 1 12 2 5

files

chunks

references

Delta Encoded Dependencies

Chunking Dependencies

reference
files

version
files

Figure 12. Dependency graphs

The problem of reliability becomes much more interest-
ing when data is stored in a compressed format. How do
we reintroduce redundancy (for reliability) after we have
worked so hard to remove it? Now that files share data due
to inter-file compression, a small device failure may result
in a disproportionately large data loss if a heavily shared
piece of data is on the failed component. This makes some
pieces of data inherently more valuable than others. In the
case of using delta compression for stored files, a file may
be the reference file for a number of files, and in turn those
may be a reference file for another set of files. A single file
may quickly become the root of a large dependency graph,
as shown in Figure 12. If a file for which other files de-
pended on was lost, all the files with a path to it in the de-
pendency graph would be lost as well. Figure 13 shows
the chain lengths for a real set of highly similar data (ten
Linux kernel sources) stored using PRESIDIO with only
delta compression. The average chain length for the set of
files was 5.83, but more interestingly, there were only five
reference files (chain length zero) for this file set. In other
words, in the set of 88,323 files, all of the files depended on
five files.

Sub-file chunking also forms inter-file dependencies.
The dependencies created when using this method are

Dependency chain length for 10 versions of Linux kernel source

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

chain length

n
u

m
b

er
 o

f
fi

le
s

Number of files: 88,323
Average chain length: 5.83

Figure 13. Delta chain length

File dependencies on file chunks for 10 versions of the Linux kernel
source

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

number of references

n
u

m
b

er
 o

f
ch

u
n

ks

Number of files: 88,323
Number of chunks: 200,635
Expected chunk size: 1024 bytes
Average number of references: 4.87
Max number of references: 2,765

Figure 14. Chunk dependencies

shown in Figure 12. If a large set of files all contained the
same chunk, for example a regularly occurring sequence in
a set of log files, the loss of this small chunk would result
in the loss of a large set of files. Figure 14 shows the num-
ber of files dependent on shared chunks for the same set of
files used in Figure 13, stored using PRESIDIO with only
chunk-based compression. The large peak for chunks with
one reference shows the number of unique chunks, and the
peaks seen at 10, 20, 30 and 40 occur since the files are 10
versions of the Linux kernel source. Of the 200,635 chunks
stored, only 89,181 were unique, with an average of five
files referencing a chunk. The data extends out to 2,765 ref-
erences to a single chunk, however, it was truncated to 41
for the graph in the interest of space. There were 72 chunks
not shown with more than 41 references, 17 of which were
over 100.

For our reliability model we place a value on a chunk or
a file based on how many files would be affected if it were
lost. So we would consider the five reference files in our
first example and our chunk with 2,765 references from our
second example to be more valuable than less referenced
data. To protect the more valuable data we would like to

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

store it with a higher level of redundancy than less valuable
data in order to preserve space efficiency while minimizing
the risk of a catastrophic failure. Another issue that must be
considered for preventing catastrophic failure is that of data
distribution. Say we were to distribute files and/or chunks
randomly across devices. If we were to lose an entire de-
vice the effect would likely be devastating. Depending on
the number of devices and the degree of interdependence of
the data, it would be likely that a file in the system would
have a chunk of data lost, or a missing file in its delta chain,
preventing future reconstruction. It is clear that reliability
guarantees for a system storing data with inter-file depen-
dencies is a particularly difficult problem. Building a model
that derives the value of data and developing a strategy for
data placement are the subject of future work.

5. Status and future work

We have investigated and experimented with a number of
archival storage problems that are detailed above. Armed
with initial experimental data that shows the potential for
addressing some of the archival storage problems, our goal
is to prototype the system with a single node and then ex-
pand it to multiple nodes. We have evaluated delta com-
pression for its storage efficiency and are working to first
detect very similar data and then low similarity data with
low time and space overhead. Because content analysis can
be both CPU and I/O intensive, but not necessarily at the
same time, we have determined process scheduling and data
pipelining will be necessary for high average throughput.
The megablock CAS implementation is under experimen-
tation using a database to map handles to stored data and
simple files on a cluster file system to contain the data. The
large-block storage, content-addressable storage, and dis-
tribution of work sets the groundwork for scalability on a
much larger scale.

We continue to evaluate the problems with data reliabil-
ity, including using both erasure coding and mirroring de-
pending on the degree and performance requirements for
the types of data. We are also looking at providing security
for a system that is extended temporally. This is also a dif-
ficult problem because the common security designs used
in systems today may not extend over the decades that are
necessary for the lifetime of archival data storage.

6. Related work

Current archival storage systems are commercially avail-
able and under research, typically configured as network
attached systems that are used in a manner similar to
more traditional network file systems. EMC Corporation’s
Centera on-line archival storage system [7] uses content-
addressable storage (CAS), identifying files with 128-bit

hash values. Each file with identical hash is stored just
once (plus a mirror copy for fault tolerance). Venti [20] pro-
vides archival storage with write-once characteristics. Venti
views files as fixed-size blocks and hierarchies of blocks
that can help reconstruct entire files. Versions of files are
stored at fixed locations and common data is not shared un-
less they are identical on fixed block boundaries. In order
to detect redundancies at a finer grain we divide files into
variable size chunks as was done in LBFS [18]. Chunks can
be uniquely identified by a hash of their contents, allow-
ing only duplicate chunks to have the same address. LBFS
used this idea to eliminate unnecessary network transmis-
sion, both client and server avoid sending data chunks if
they are already found in a cache on the other end.

Our similarity detection for delta compression builds off
a large body of previous work. Initially Manber used finger-
prints to determine file similarity on a single volume, com-
puting the entire contents of the volume as a single opera-
tion or incrementally as new files are changed [16]. Later
Douglis and Iyengar evaluated the efficiency of storage by
using delta encoding via resemblance detection (DERD) [6]
over a number of parameters, showing the relationship be-
tween similarity and delta encoding sizes, and establishing a
number of parameters such as resemblance thresholds, fea-
ture set sizes, and the number of delta encodings to compute
to determine the best match.

7. Conclusions

We have presented the basis for a new storage architec-
ture capable of storing large volumes of immutable data ef-
ficiently and reliably. The Deep Store model for storage
uses a new architecture consisting of abstractions for data
objects, a content analysis phase that includes PRESIDIO, a
new lossless data compression framework that incorporates
inter-file compression with a content-addressable object
storage mechanism. We presented a method for metadata
storage that provides extensibility, versioning and searching
while still maintaining the goal of overall space-efficiency.
We also proposed a model for reliability of files with shared
data using variable levels of redundancy. We then presented
data that helps to show the feasibility of a scalable storage
system that eliminates redundancy in stored files.

8. Acknowledgements

This research was supported by a grant from Hewlett-
Packard Laboratories (via CITRIS), Microsoft Research
with a matching grant from University of California MI-
CRO, Veritas, and by National Science Foundation Grant
CCR-0310888. Additional support for the Storage Systems
Research Center was provided by Engenio, Hitachi Global

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

Storage Technologies, IBM Research, Intel, and Network
Appliance.

Hewlett-Packard Laboratories has provided a generous
gift of a ProLiant server cluster used for our experiments.
IBM Almaden Research provided their GPFS cluster file
system software.

We thank Thomas Schwarz for his insight into reliability
issues in large storage systems and Svetlana Kagan for her
help on block-based file storage and client interfaces. We
are also grateful to members of the Storage Systems Re-
search Center at the University of California, Santa Cruz
for their discussions and comments.

References

[1] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stock-
meyer. Compactly encoding unstructured inputs with dif-
ferential compression. Journal of the ACM, 49(3):318–367,
May 2002.

[2] A. Z. Broder. Some applications of Rabin’s fingerprint-
ing method. In R. Capocelli, A. D. Santis, and U. Vac-
caro, editors, Sequences II: Methods in Communications,
Security, and Computer Science, pages 143–152. Springer-
Verlag, 1993.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzen-
macher. Min-wise independent permutations. Journal of
Computer and Systems Sciences, 60(3):630–659, 2000.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In Proceedings of the 6th
International World Wide Web Conference, pages 391–404,
Santa Clara, California, Apr. 1997.

[5] P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiv-
ing scientific data. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data,
Madison, Wisconsin, 2002.

[6] F. Douglis and A. Iyengar. Application-specific delta-
encoding via resemblance detection. In Proceedings of the
2003 USENIX Annual Technical Conference, San Antonio,
Texas, June 2003.

[7] EMC Corporation. EMC Centera: Content Addressed Stor-
age System, Data Sheet. http://www.emc.com/pdf/
products/centera/centera_ds.pdf, Apr. 2002.

[8] Free Software Foundation. http://www.gnu.org/
software/gzip/gzip.html, 2000.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03), Bolton Landing,
New York, Oct. 2003. ACM.

[10] J. Gray and P. Shenoy. Rules of thumb in data engineering.
In Proceedings of the 16th International Conference on Data
Engineering (ICDE ’00), pages 3–12, San Diego, California,
Mar. 2000. IEEE.

[11] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey. Redun-
dancy elimination within large collections of files. In Pro-
ceedings of the 2004 USENIX Annual Technical Conference,
pages 59–72, Boston, Massachusetts, June 2004.

[12] H. Liefke and D. Suciu. XMill: An efficient compressor for
XML data. In Proceedings of the 2000 ACM SIGMOD In-
ternational Conference on Management of Data, pages 153–
164, May 2000.

[13] P. Lyman, H. R. Varian, J. Dunn, A. Strygin, and
K. Searingen. How much information? 2000.
http://www.sims.berkeley.edu/research/
projects/how-much-info/, Oct. 2000.

[14] P. Lyman, H. R. Varian, K. Searingen, P. Charles, N. Good,
L. L. Jordan, and J. Pal. How much information? 2003.
http://www.sims.berkeley.edu/research/
projects/how-much-info-2003/, Oct. 2003.

[15] J. P. MacDonald. xdelta 1.1.3. http://sourceforge.
net/projects/xdelta/.

[16] U. Manber. Finding similar files in a large file system. Tech-
nical Report TR93-33, Department of Computer Science,
The University of Arizona, Tucson, Arizona, Oct. 1993.

[17] R. Moore, C. Barua, A. Rajasekar, B. Ludaescher,
R. Marciano, M. Wan, W. Schroeder, and A. Gupta.
Collection-based persistent digital archives - part 1.
http://www.dlib.org/dlib/march00/moore/
03moore-pt1.html, Mar. 2000.

[18] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP
’01), pages 174–187, Lake Louise, Alberta, Canada, Oct.
2001.

[19] C. Policroniades and I. Pratt. Alternatives for detecting re-
dundancy in storage systems data. In Proceedings of the
2004 USENIX Annual Technical Conference, pages 73–86,
Boston, Massachusetts, June 2004. USENIX.

[20] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In Proceedings of the 2002 Conference on
File and Storage Technologies (FAST), pages 89–101, Mon-
terey, California, USA, 2002. USENIX.

[21] M. O. Rabin. Fingerprinting by random polynomials. Tech-
nical Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[22] R. Rivest. The MD5 message-digest algorithm. Request For
Comments (RFC) 1321, IETF, Apr. 1992.

[23] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In Proceedings of the 2002
Conference on File and Storage Technologies (FAST), pages
231–244. USENIX, Jan. 2002.

[24] Secure hash standard. FIPS 180-2, National Institute of
Standards and Technology, Aug. 2002.

[25] The Enterprise Storage Group. Compliance: The effect on
information management and the storage industry. http:
//www.enterprisestoragegroup.com/, 2003.

[26] D. Trendafilov, N. Memon, and T. Suel. zdelta: An efficient
delta compression tool. Technical Report TR-CIS-2002-02,
Polytechnic University, June 2002.

[27] L. L. You and C. Karamanolis. Evaluation of efficient
archival storage techniques. In Proceedings of the 21st IEEE
/ 12th NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 227–232, College Park, Maryland,
Apr. 2004.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

View publication statsView publication stats

https://www.researchgate.net/publication/4133531

