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Model independent variance cancellation in CMB lensing cross-correlations

Antón Baleato Lizancos∗ and Simone Ferraro†

Berkeley Center for Cosmological Physics, Department of Physics,
University of California, Berkeley, CA 94720, USA and

Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
(Dated: January 25, 2023)

Cross-correlations of CMB lensing reconstructions with other tracers of matter constrain pri-
mordial non-Gaussianity, neutrino masses and structure growth as a function of cosmic time. We
formalize a method to improve the precision of these measurements by using a third tracer to
remove structure from the lensing reconstructions. Crucially, our method enjoys the variance reduc-
tion benefits of a joint-modelling approach without the need to model the cosmological dependence
of the ancillary tracer. We present a first demonstration of variance cancellation using data from
Planck and the DESI Legacy Surveys, showing a 10–20% reduction in both lensing power and cross-
correlation variance using the Cosmic Infrared Background (CIB) or DESI Legacy Survey Luminous
Red Galaxies (LRGs) as matter tracers.

I. INTRODUCTION

The cosmic microwave background (CMB) is the oldest
light we can observe; it is made up of photons which
(for the most part) last scattered at redshift z ≈ 1100.
The CMB we see has been gravitationally lensed by the
distribution of matter – both luminous and dark – that
the photons encountered along their trajectory, an effect
that can be harnessed to reconstruct maps of that very
matter distribution in projection (see [1] for a review).

These reconstructions can in turn be cross-correlated
with other tracers of matter to extract insights that can-
not be gleaned with either tracer alone. This is one of
the most promising ways to measure the growth of cos-
mic structures, primordial non-Gaussianity, or the sum
of the neutrino masses [2]. Moreover, cross-correlations
make it possible to isolate contributions from different
redshifts, a prized property in times of tantalizing dis-
crepancies between probes of early and late cosmic times
(see, e.g., [3–7] and references therein). Heuristically, if
κ̂ is a reconstruction of the CMB lensing convergence1

and g is some other tracer of the matter distribution
– such as a galaxy survey – with redshift support zg,
the ‘clumpiness’ of matter at the time corresponding to
zg can be determined from a ratio of angular spectra,

σ8(zg) ∼ C κ̂g/
√
Cgg, where σ8 refers to the amplitude of

the linear matter power spectrum on a scale of 8 h−1 Mpc
[8, 9]. Similarly, galaxy bias, including any scale depen-
dence induced by primordial non-Gaussianity, can be ex-
tracted from b(zg) ∼ Cgg/C κ̂g. For a typical tracer g, its
auto-correlation is measured much more accurately than
its cross-correlation with lensing, so the uncertainty on
σ8(zg) and b(zg) is dominated by the error on C κ̂g.

Reducing the cross-correlation error requires limiting
chance correlations between features in the lensing and

∗ a.baleatolizancos@berkeley.edu
† sferraro@lbl.gov
1 We write the reconstruction as κ̂ to differentiate it from the true
κ. Note, however, that g and I are noisy observations.

galaxy maps. One way to account for these is to intro-
duce a third tracer, I, which correlates with structures
in κ̂ that are not correlated with g, and modeling every-
thing jointly (e.g., [2]). Often times, however, we might
be interested in obtaining constraints that are indepen-
dent of I, be it because the tracer cannot be modelled
easily or accurately, or to avoid introducing a dependence
on physics from the cosmic era sourcing I.

In this work, we explore an alternative approach to
variance reduction that relies solely on measurable quan-
tities and limits the dependence on redshifts different
from those we intend to isolate. Our method entails sub-
tracting a filtered version of I from κ̂ in a procedure anal-
ogous to ‘delensing’. In section II, we derive the optimal
form of these filters and forecast potential gains in signal-
to-noise. Then, in section III, we demonstrate that the
variance reduction seen on real data from Planck and the
DESI Legacy Surveys matches theoretical expectations.
In an appendix, we generalize our method to the case
where g and I are correlated, explaining how to account
for this in real analyses.

II. THEORY

Consider Ĉ κ̂gl , the measured angular cross-correlation

of κ̂ and g. In general, Ĉ κ̂gl follows a χ2 distribution
with 2l+ 1 degrees of freedom, but away from the lowest
few multipoles the distribution can be approximated as
Gaussian by the central limit theorem. In this regime,

the variance of the ith multipole bin of Ĉ κ̂gl is given by

σ2
(
Ĉ κ̂gi

)
=

1

(2li + 1)fsky∆l

[
C κ̂κ̂i Cggi +

(
C κ̂gi

)2
]
, (1)

where fsky is the fraction of sky covered by the observa-
tions, ∆l is the width of the bins (which we assume to be
uniform for simplicity), and li is the central multipole of
the ith bin. This expression suggests that, by removing
structure from the κ̂ map, we can suppress C κ̂κ̂i and thus
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lower the variance of the measurement2.
With this goal in mind, let us introduce a third tracer,

I, which is partially correlated with κ̂ (and possibly also
with g). This can be any tracer of low redshift mat-
ter such as a the cosmic infrared background (CIB) or a
galaxy density or weak lensing (shear) field. We can use
it to obtain a ‘redshift cleaned’ convergence map as

κ̂cln
lm = κ̂lm − flmIlm , (2)

where f is a filter to be optimized shortly; throughout
this work, we will assume that I is statistically homoge-
neous such that the optimal f is isotropic (i.e., indepen-
dent of m), but the method applies more generally.

Recently, refs. [10–12] determined the weights that
approximately null contributions from a given redshift
range. Let us instead determine the choice of f that
maximizes the signal-to-noise on a measurement of the
cross-correlation. The signal-to-noise ratio of the ith bin
is defined as

(S/N)i ≡
C κ̂gi

σ
(
Ĉ κ̂gi

) =

√√√√ (2li + 1)fsky∆l

1 +
(
ρκ̂gi

)−2 , (3)

where ρκ̂g is the correlation coefficient between the lens-
ing reconstruction, κ̂, and tracer g, and is defined as3

ρκ̂gi =
C κ̂gi√
C κ̂κ̂i Cggi

, (4)

where we take C κ̂κ̂i and Cggi to include reconstruction
noise and shot noise, respectively. It follows that the
choice of fl that maximizes the signal-to-noise is also that

which maximizes ρκ̂
clng
l .

There are two effects we must consider when maxi-
mizing ρκ̂

clng with respect to f : on the one hand, any
non-zero field we add to κ̂ will affect the variance (i.e.,
‘noise’) of κ̂cln; on the other, if tracers g and I are corre-
lated, the cross-correlation signal will itself be impacted.
Taking both into account, we determine the optimal filter
to be

fl =
CκIl
CIIl

(
ρκ̂gl − ρ

gI
l /ρ

κ̂I
l

ρκ̂gl − ρ
gI
l ρ

κ̂I
l

)
≡ CκIl
CIIl

γl , (5)

granted ρgIl 6= 1 (when ρgIl = 1, g and I are one and the
same tracer, and one must logically set fl = 0). Note

that CIIl includes all sources of noise. If tracers g and

I are completely uncorrelated, ρgIl = 0, so γl = 1 and
f → CκIl /CIIl – a form familiar from several applications
of variance reduction in cosmology [11, 13].

The form of fl given in equation (5) guarantees an im-
provement in the S/N of the cross-correlation. However,
the goal of this work is to achieve this while removing
structure in κ̂ that correlates with I; this sets the addi-
tional requirement that fl > 0 (c.f. equation 2)4. It can
be shown that fl > 0 if and only if

ρκ̂Il >
ρgIl
ρκ̂gl

or ρκ̂Il >
ρκ̂gl
ρgIl

. (6)

When ρgIl = 0, the first condition is met automatically.

On the other hand, when ρgIl 6= 0 the situation is more

nuanced, as the ρκ̂Il -ρκ̂gl plane splits into regions where
either one or none of the above conditions are satisfied:
for reference, a prerequisite for the first condition to be

met is that ρκ̂gl > ρgIl ; for the second, the proviso is ρκ̂gl <

ρgIl . We study this general case in detail in appendix A.
Though both of these qualitatively-different scenarios

in principle allow for variance cancellation that results
in improved S/N, they differ in their practical benefits.

When ρgIl 6= 0, our efforts to cancel variance will to some
extent entail a reduction of the signal, making modeling
difficult unless the removed signal can be accounted for
accurately enough; moreover we will have introduced an
undesired dependence on tracer I. In appendix A, we

show that when ρκ̂Il > ρgIl /ρ
κ̂g
l , measurement uncertain-

ties are typically small enough that the removed signal
can either be ignored or restored based on direct mea-

surements of ĈgIl , with the benefits from variance cancel-
lation outweighing the additional error introduced when
characterizing this correction term empirically. However,

when ρκ̂Il > ρκ̂gl /ρ
gI
l the penalty from restoring the signal

is higher, and values of {ρκ̂Il , ρκ̂gl , ρ
gI
l } that both satisfy

ρκ̂Il > ρκ̂gl /ρ
gI
l and lead to overall improved precision are

in most cases only possible if ĈgIl can be measured on
a patch of sky larger than the one where we carry out
the redshift cleaning. In fact, it is true more generally
that the balance of factors – and thus the change in S/N
after cleaning – depends on the relative sizes of these two
patches.

Leaving the caveat of signal restoration to appendix A,

the fractional change in signal-to-noise per mode of C κ̂gl
that can be attained using our optimal weights is

2 It follows from equation (1) that removing the correlated part
also leads to lower variance, though the gain is typically sub-
dominant to that stemming from a reduction in Cκ̂κ̂i .

3 This is not to be confused with the correlation between g and the

true lensing convergence, ρκgi = ρκ̂gi
(
1 +Nκκ

i /Cκκi
)1/2

, where
Nκκ is the power spectrum of the reconstruction noise.

4 Assuming I is positively correlated with κ. The converse holds
when they are anticorrelated, as would be the case for a map of
the tSZ effect below 217 GHz, for example.
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∆(S/N)l
(S/N)l

=

1 +

[
1 +

(
ρκ̂gl

)2
]−1

 1 + γl(γl − 2)
(
ρκ̂Il
)2(

1− γlρgIl ρκ̂Il /ρ
κ̂g
l

)2 − 1



− 1

2

− 1 . (7)

Figure 1 shows the improvement in signal-to-noise as a

function of ρκ̂gl and ρκ̂Il in the limit that g and I are un-
correlated. Improvements of several tens of percent are
achievable with realistic tracers, especially whenever ρκ̂Il
is significantly higher than ρκ̂gl . For a given value of ρκ̂Il ,
the fractional improvement in S/N is larger the smaller

ρκ̂gl is. This is because with lower ρκ̂gl , the term propor-

tional to C κ̂κ̂l dominates the error in equation (1) more
clearly, amplifying the impact of cleaning. The method
is thus especially suited to improve low-significance mea-
surements or to make first detections.

To illustrate the promise of redshift cleaning, we con-
sider as a potential application the use of low-redshift
(z < 4) measurements from the future Vera Rubin Ob-
servatory (VRO) LSST [14] to clean CMB-S4 [15] lensing
reconstructions, and subsequently correlating these with
the highest-redshift bin of LSST (z > 4)5. We find that
the S/N of the cross-correlation is improved by ∼ 100%
at l ∼ 50, as shown by the star in figure 1.6 This gain
could be important, for instance, when searching for fNL,
the signal of which peaks at high redshifts and large an-
gular scales [2]. Since CMB-S4 is overwhelmingly sig-
nal dominated at these low ls, the only way to improve
measurement significance is by getting around the cos-
mic variance of κ. Our method does precisely this while
bypassing the need to model the low redshift tracers7.

Another promising application is to improve measure-
ments of σ8. With existing data, the gains are modest:
the cross in figure 1 shows a 10% gain in precision of

C κ̂gl=150 when using GNILC CIB to clean AdvACT DR6
and cross-correlate with Legacy Survey BGS (assuming
ρgI = 0; more details about these tracers to come). How-
ever, the figure also shows that improvements of a factor
of two or greater on the large-scale amplitude of fluctua-
tions are possible with upcoming experiments.

5 We assume the LSST bins to be disjoint. Further details about
our parametrization of the tracers are given in appendix C.

6 Improvements are even larger at lower l, but we do not focus on
those scales here as they require a more refined treatment due to
the Limber approximation breaking down and systematic effects
becoming more important.

7 Further work is needed to assess the impact of decorrelation be-
tween κ and I due to scale-dependent bias and non-linearities.
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FIG. 1: Fractional change in the signal-to-noise ratio

per mode of Ĉ κ̂gl after cleaning κ̂ with an optimally

filtered tracer I, in the limit that ρgIl = 0. The grey

region corresponds to values of ρκ̂gl and ρκ̂Il
incompatible with ρgIl = 0 (see appendix B). The star

and cross represent two particular combinations of data
outlined in the legend and described in the main text.

III. DEMONSTRATION

We now present a first demonstration of variance can-
cellation by cross-correlating CMB lensing data from
Planck with galaxy survey data from the DESI Legacy
Survey (LS) [16]. Since the benefits of our method are
predicated on being able to remove true lensing modes
that do not correlate with g, and the Planck lensing noise
levels are relatively high – only a handful of modes are
signal-dominated [17] – it is at present difficult to find
a combination of data sets for which the S/N improves.
However, this will soon change dramatically as data from
AdvACT [18], SO [19], SPT-3G [20], and CMB-S4 [15]
become available. It is therefore useful to demonstrate
that variance cancellation can be achieved and under-
stood irrespective of whether the S/N improves for the
particular scenario under consideration. Hence, and in
order to maximize the variance reduction, we set γl = 1
in the weights for the remainder of this section.
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A. Data

We work with the minimum variance combination of
CMB lensing reconstructions obtained from temperature
and polarization data from the fourth data release of
Planck [17]. The resulting κ̂ map covers ∼ 67% of the
sky and is signal-dominated on scales 10 . L . 70.

As per large-scale structure tracers, we consider var-
ious samples of galaxies photometrically selected from
Legacy Survey data for spectroscopic follow-up with
DESI. We define a ‘BGS’ sample as the targets to be
observed by the DESI Bright Galaxy Survey (BGS) dur-
ing ‘bright’ time [21, 22]. This sample is relatively-low
redshift: figure 18 of ref. [21] shows its redshift distri-
bution, which is mostly confined to z < 0.5. We work
also with an ‘LRG’ (Luminous Red Galaxy) sample, us-
ing directly the maps provided by ref. [4], which are
spectroscopically-calibrated and split into four redshift
bins with redshift distribution given in their figure 2;
this sample is explained in detail in [4, 23]. Since the
first bin has significant overlap with the BGS sample, we
will exclude it whenever we use the LRGs as tracer I
and BGS as tracer g in order to limit the correlation be-
tween the two samples; the remaining LRG sample spans
0.5 < z < 1. The galaxy maps thus produced cover
∼ 50% and ∼ 44% of the sky for BGS and the full LRG
sample, respectively, and are largely contained within the
Planck κ̂ footprint. Note that while for now we are re-
stricted to using photometric samples with small but non-
zero redshift overlap, spectroscopic data from DESI [24]
and Euclid [25] will soon allow us to use samples that are
non-overlapping, better ensuring ρgI ≈ 0.8

Finally, we work also with the cosmic infrared back-
ground (CIB) which is a tracer of star formation and as
such originates from a wide range of cosmic times peak-
ing at z ∼ 2. Since this closely matches the CMB lensing
kernel, the CIB is highly correlated with CMB lensing
(e.g., [13, 26]), making it a paradigmatic candidate to be
used as tracer I (as suggested already in [11]). Specif-
ically, we use the map extracted from Planck 353 GHz
data using the GNILC algorithm [27], masking modes
with l < 100 to avoid contamination from spurious arti-
facts and residual galactic dust on large angular scales.
This overlaps with the κ̂ patch across ∼ 51% of the sky.

B. Methods

In order to determine the weights fl, and also to later
model the variance reduction, we need fiducial spectra for
all the auto- and cross- spectra between κ̂, I and g. We
follow the approach in [28] to fitting the spectra involving
galaxies, CIB and lensing on the patch where they over-
lap, but use the pyccl code [29] and the galaxy redshift

8 There will be a small contribution from magnification bias; if
significant, it could be handled by following appendix A.

distributions given in the LS target selection papers cited
above. Note that this does not introduce any unwanted
dependence on cosmology or physics at a different red-
shift, since we do not utilize the best-fit parameters for
anything else. Moreover, the fitting form we use to get fl
need not be the actual physically correct model: all that
is required to avoid bias is a smooth fit [28], and any de-
viation of the fiducial spectrum from the truth will only
result in suboptimal variance reduction.

When coadding LRG maps from different redshift bins
to then use them as tracer I, we first re-weight the galaxy
bins using equation 20 of [13] to better match the CMB
lensing kernel and thus maximize the cross-correlation
with lensing. Admittedly, this only improves perfor-
mance marginally for the tracers we consider.

We measure the angular pseudo- cross-spectrum on
scales 10 < l < 1000 on the same sky patch before and
after redfshift cleaning, and estimate the variance on es-
timates of the bandpowers in each of the two cases from
the scatter of the measured Ĉl’s within bins of width
∆l = 90. When doing this, it is important that the un-
derlying spectrum be flat over the size of the bin. We
ensure this by first dividing the Ĉl’s by a smooth fiducial
spectrum – the appropriate model for each measurement
given in appendix E – and multiply the result by the
binned version of this fiducial.

We verify that the pipeline is unbiased by applying it
to 1000 Gaussian simulations of all the tracers sharing
a degree of correlation that matches what is seen in the
data9. The scatter of these outputs gives us our error
bars.

C. Results

Figure 2 shows that we are able to effectively remove
structure from the lensing maps, and that we do so by
an amount that agrees with theoretical expectations. To
state this more quantitatively, we fit for an amplitude pa-
rameter A, which linearly rescales the fiducial model of
equation (D2) (the solid lines in the figure). Proceeding
by least-squares minimization10, we obtain best-fit pa-
rameter values and associated uncertainties that can be
interpreted as highly-significant detections of lensing re-
moval: 41σ when using GNILC CIB maps to clean Planck
PR4 κ̂, and 25σ when using LRG bins 1-4. We test
goodness-of-fit by calculating the reduced-χ2 of a binned
model with the best-fit value of A and translating this to
a probability-to-exceed (PTE); the latter values, quoted
in the figure legend, suggest the fits are excellent. More-
over, constraints on A are consistent with the fiducial
value of unity.

9 See appendix F of [30] for details on how to generate such simu-
lations.

10 Since the bins are wide (∆l = 90), we ignore correlations between
them.
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The reduction is greatest at low l because it is on those
large scales that the Planck lensing reconstructions have
highest S/N per mode. In addition, whenever we clean
with a galaxy map, such as our LRG sample, this is com-
pounded with the fact that it is at low-l that contri-
butions from low redshift structures make up a higher
fraction of the total lensing power (see, e.g., [1]). It is
reassuring that below l < 100, where we masked modes
in the CIB map to avoid the impact of systematics, the
variance is unchanged.

This removal of structure from the CMB lensing map
translates to lower variance when cross-correlating it with
other tracers. In figure 3, we demonstrate this for two
tracer combinations: in the left column, we clean the
Planck κ̂ map with the GNILC CIB map, and subse-
quently correlate this with the combination of all four
LRG bins; on the right, we clean it with LRG bins 2-4
(recall that this sample spans 0.5 < z < 1), weighted
to match the lensing kernel, and cross-correlate with the
BGS sample (z < 0.5).

We consider two estimators of the variance change.
The first (top row) shows the fractional difference in vari-
ance before and after redshift cleaning. Applying the
same significance test as above, we report reductions in

the variance of C κ̂gl with confidence slightly above 3σ.
This effect is well captured by our fiducial models, which
are consistent with the constrained A within 1σ, and
yield very plausible PTEs at the best fit values of A.

This first estimator makes intuitive sense, but it is
rather noisy. In appendix E, we derive an alternative
one that agrees with the first in the mean when γl = 1

and ρgIl = 0 but is less noisy in general; heuristically, it
quantifies the variance associated with structures that get
removed during the cleaning process. These conditions
are not grossly violated in the cases we consider here,
particularly in the right column of figure 3: γl = 1 by

design, and though ρgIl is strictly speaking not zero, it is
small. In this situation, the two estimators differ slightly
– in appendix E, we model exactly by how much – but
the second is still a reasonable estimator of the variance
change given the statistical errors. Results from this es-
timator are reported in the bottom two panels, showing
a detection significance of approximately 14σ in the two
cases we consider.

For completeness, we show in appendix E, figure 6,
that we can also successfully reduce the variance of the
CMB lensing power spectrum by the expected amount,
using either the CIB or the LRG samples. We detect this
effect with up to 4σ confidence.

IV. CONCLUSIONS

We have explored a method to reduce cosmic variance
in CMB lensing maps by invoking an ancillary tracer
which, importantly, does not need to be modelled in
detail. This is particularly useful when the tracers are
poorly understood, as is the case with the CIB or low-
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FIG. 2: Fractional change in lensing power after
cleaning a Planck PR4 κ̂ map with different filtered

tracers (setting γl = 1). To reduce sample variance, we
bin the numerator only after taking differences between
spectra. The data are in excellent agreement with the

model (shown as solid lines for a fiducial A = 1).

−0.2

−0.1

0.0

∆
σ

2
(C

κ̂
g

l
)
/
σ

2
(C

κ̂
g

l
)

A= 1.07± 0.35
PTE = 0.38

g = LS LRGs bins 1-4
I = 353 GHz GNILC CIB

A= 1.30± 0.43
PTE = 0.42

g = LS BGS
I = LS LRGs bins 2-4

0 250 500 750
l

−0.10

−0.05

0.00

-σ
2
(∆
C
κ̂
g

l
)
/
σ

2
(C

κ̂
g

l
)

A= 0.99± 0.07
PTE = 0.05

0 250 500 750
l

A= 0.95± 0.07
PTE = 0.09

FIG. 3: Variance cancellation in the cross-correlation of
tracer g with a Planck PR4 κ̂ map after cleaning the

latter with a filtered tracer I (setting γl = 1). Top row:
fractional change in the variance per mode. Bottom

row: (minus) the variance associated with the
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fiducial models with A = 1, while the best-fit values are
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redshift tracers in the non-linear regime. Since our for-
malism is built around correlation coefficients determined
from measurable quantities, it automatically accounts for
the gravitational lensing of g and I, as well as their decor-
relation with each other and with κ due to gravitational
non-linearities and non-linear bias. With some minor
modifications, it is likely that the method could be ap-
plicable to galaxy weak lensing as well.

We identified simple conditions that need to be met
for the technique to result in improvements in the S/N
of CMB lensing cross-correlations. These are automati-

cally satisfied when ρgIl = 0; hence, the method promises
to be useful when spectroscopic data are available. On

the other hand, when ρgIl 6= 0, some amount of signal
is removed during the process, and any benefits depend

on the hierarchy between ρgIl , ρκ̂Il and ρκ̂gl (though when

ρgIl � 1, the bias from signal suppression is typically
negligible). In appendix A, we explored ways to partially
restore the removed signal, should it be needed, includ-

ing direct measurements of ĈgIl . When the correlation
between g and I is significant, the method is especially
suited to enhance deep CMB lensing measurements lim-

ited to compact sky areas, especially when ĈgIl can be
measured over larger regions. Users interested in the
technique can simply evaluate equations (A9) or (A10)
to assess whether benefits are accessible to them.

We then demonstrate that variance cancellation can
already be achieved using existing tracers. First of
all, we report a reduction in Planck PR4 CMB lensing
power with 41σ confidence when using GNILC CIB, or
25σ using LS LRGs. These lead to 4σ and 2σ detec-
tions of variance reduction in the CMB lensing auto-
spectrum. We then demonstrate variance cancellation
in the cross-correlation of CMB lensing with galaxy sur-
veys at 3σ confidence with standard estimators, or 14σ
with a taylor-made estimator. The theoretical framework
we develop proves excellent when it comes to faithfully
modelling empirical results.
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Appendix A: Generalization

In equation (6), we identified the two conditions which,
if met, guarantee that fl > 0, meaning that variance can-
cellation is possible and will in theory result in improved

S/N on C κ̂gl . When ρgIl = 0, the first condition is al-
ways satisfied, but the situation is more nuanced when

ρgIl 6= 0.

In general, when ρgIl 6= 0, the ρκ̂Il -ρκ̂gl plane can be di-
vided into regions where fl is positive or negative. This is
illustrated in the left column of figure 4: in the green re-
gions, fl > 0, and conversely for the red ones. The curves
separating these regions are given by the limit where the
inequalities in equation (5) become equalities11.

In the regions where fl < 0, there can be no gain in S/N
from variance cancellation, so equation (2) is essentially
telling us to fold I in as a tracer of g. In fact, a derivation
of fl using a Lagrange multiplier that constrains fl to be
non-negative returns fl = 0 in this regime.

The regions we are interested in, however, are those
where fl > 0, so we now characterize them in detail.

When ρκ̂gl > ρgIl , either the first of the two conditions is

met – namely ρκ̂Il > ρgIl /ρ
κ̂g
l – or none are. This is telling

us that when gl is more correlated with κ̂l than with Il, it
is necessary (though not sufficient) that Il itself be more
correlated with κ̂l than with gl. Qualitatively, the type
of variance cancellation we can obtain in this branch is
a natural extension of that we see in the ρgIl = 0 limit.

At the dividing line between regions, ρκ̂Il = ρgIl /ρ
κ̂g
l , the

weights are zero because this equality can only be sat-
isfied when κ̂l = Il, in which case we are better off not
doing anything.

On the other hand, when ρκ̂gl < ρgIl , only the second

condition – that is, ρκ̂Il > ρκ̂gl /ρ
gI
l – can be satisfied. This

time, the necessary (but, again, insufficient) condition is
that when gl is less correlated with κ̂l than with Il, κ̂l
must be significantly more correlated with Il than with gl
(linearly more so). In this case, the weights are undefined
at the boundary between regimes because the one re-

quirement in our derivation of fl was that ρκ̂Il 6= ρκ̂gl /ρ
gI
l .

These conditions are in fact quite idealized. Both they
and equation (7) tell us about the S/N in a way we cannot

directly work with, because when ρgIl 6= 0 we need to

11 In the discussion that follows, it will be useful to note that the
physically allowed region – as determined in appendix B – is

tangent to the top axis where ρκ̂gl = ρgIl , and to the right axis

where ρκ̂Il = ρgIl ; these are also the points where the thresholds
in equation (6) intersect the axes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

< 0 0 > 0

(j)

0.0 0.2 0.4 0.6 0.8 1.0

(k)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(l)

FIG. 4: Generalization of the theory of variance cancellation to the case of ρgIl 6= 0. Left column: sign of fl; where
positive (green) variance cancellation can in theory lead to improved S/N. However, the two green branches differ by

the extent to which the signal is reduced. Middle column: ratio of bias from signal suppression to statistical
uncertainty after redshift cleaning. The bias-variance tradeoff can be optimized by minimizing the MSE after a

direct measurement of ĈgIl is used to partially restore the signal. Right panel: fractional change in S/N per mode of

C κ̂gl at the MSE optimum after cleaning and restoring the signal from a measurement of ĈgIl on the same patch,

showing only regions where there is a gain in S/N. Animations at intermediate values of ρgIl can be found onlinea.

a https://abaleato.github.io/kappa_delensing/

https://abaleato.github.io/kappa_delensing/
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know what has happened to the cross-correlation signal
through the redshift cleaning process. Whenever tracers
g and I are correlated and fl > 0, the signal decreases as

C κ̂
clng

l = C κ̂gl − flC
gI
l . (A1)

As long as the optimal weights in equation (5) are used,
it is in principle still advantageous to pursue variance
cancellation. However, attempts to fit the data with a
theoretical model for Cκgl will be biased, all the while

that the variance is reduced. Moreover, the data will
have acquired a dependence on I, and thus on physics
at redshifts different from that which we would like to
isolate.

Let us formalize our definition of this bias as

∆C κ̂gl ≡ 〈Ĉ
κ̂clng
l 〉 − C κ̂gl

= −flCgIl . (A2)

The ratio of the bias magnitude to the statistical uncer-
tainty after cleaning is then

|∆C κ̂gl |
σ
(
Ĉ κ̂

clng
l

) =
√

(2l + 1)fsky

(γlρgIl ρκ̂Il )−2 [
1 +

(
ρκ̂Il
)2
γl(γl − 2)

]
+

(
ρκ̂gl

γlρ
gI
l ρ

κ̂I
l

)2 (
1− γlρgIl ρκ̂Il /ρ

κ̂g
l

)2


− 1

2

,

(A3)

which is larger the more modes are observed – hence the
factor of

√
(2l + 1)fsky, where fsky tracks the size of the

patch where cleaning is performed (small patches offer
greater tolerance to bias due to their higher sample vari-
ance). This expression is evaluated in the central column

of figure 4 for three values of ρgIl , immediately reveal-
ing a significant qualitative difference between the two
variance cancellation branches identified in equation (6):

the fractional bias is smaller when ρκ̂Il > ρgIl /ρ
κ̂g
l than in

the alternative branch where ρκ̂Il > ρκ̂gl /ρ
gI
l . In fact,

when ρgIl � 1, the bias can be safely ignored across
the former branch for most reasonable values of l and
fsky (as expected, since this is the natural continuation

of the ρgIl = 0 case studied in the main text). On

the other hand, when ρκ̂Il > ρκ̂gl /ρ
gI
l the bias is gener-

ally larger than the statistical uncertainty except at the
largest angular scales and smallest sky patches, for which√

(2l + 1)fsky . 1.
If the bias amplitude is unacceptably large for the ap-

plication at hand, there are ways to mitigate it. The
approach we consider here is to actively try to restore
the signal we have removed, fitting our theory model to
a corrected cross-spectrum

C̃ κ̂
clng

l ≡ Ĉ κ̂
clng

l + flC
corr
l . (A4)

For example, if we somehow knew the true CgIl with no

uncertainty, we could set Ccorr
l = CgIl , and this would

eliminate all bias while also retaining all variance sup-
pression. The gain in S/N would then simply be given

by equation (7). Though CgIl is unlikely to be known
perfectly, it could conceivably be predicted from theory
rather accurately if the redshift distributions of the sam-
ples are known. Alternatively, it could come from a fit to
a wide range of scales and maybe even a larger sky patch,

ideally in a way that remains cosmology-independent de-
spite having to assume a fitting form.

If none of these approaches are viable, CgIl can still be
determined from the data on a multipole-by-multipole
basis, but at the cost of increased variance. If we set
Ccorr
l to the measured g-I correlation on the same patch

where we do the cleaning, Ccorr
l = ĈgIl , we will have

achieved exact unbiasedness but also restored all of the
variance we had originally set out to remove.

We therefore seek solutions that lie between the two
limits we have seen, compromises between bias and vari-

ance reduction12. These entail setting Ccorr
l = WlĈ

gI
l ,

where Wl is a filter that we must optimize such that this
correction moves us in the direction of unbiasedness but
only insofar as we are willing to see the variance increase.
One could, for example, choose the form of Wl that re-
sults in the largest amounts of variance reduction subject
to the ratio of bias-to-variance,

|〈C̃ κ̂
clng

l 〉 − C κ̂gl |
σ
(
C̃ κ̂

clng
l

) =
|flCgIl (Wl − 1) |

σ
(
Ĉ κ̂

clng
l + flWlĈ

gI
l

) , (A5)

being smaller than some threshold. Note that this ex-
pression differs from (A3) in that both the numerator and
denominator are calculated after applying the correction.
In particular, the denominator depends on a number of
factors, including the size of the patches where cleaning

12 The metrics we will be introducing in equations (A5) and (A6)
are not adequate in the regime where the optimal weights are
negative – f < 0, where, heuristically, I is included as a tracer
of g to boost the cross-correlation signal. Since the focus of this
work is the regime where f > 0, we show only results appropriate
for this case.
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is performed and where ĈgIl is measured. These need
not be the same; if the latter is larger, the uncertainty
introduced when restoring the signal will be compara-
tively smaller; and if the patches are disjoint, the covari-
ance between them will be greatly reduced. In regions
where (A3) is already below the threshold, the constraint
should be inactive and Wl = 0: no signal needs to be re-
stored, so variance reduction should be maximal. On the
other hand, when the constraint is active, the desired
threshold value should be exactly enforced.

Yet another possibility is to choose the form ofWl that
minimizes the mean-squared-error13,

MSE ≡ 〈
(
C̃ κ̂

clng
l − C κ̂gl

)2

〉 , (A6)

thus reducing bias and/or variance according to their rel-
evance in the scenario at hand. This will limit the gains
in S/N promised by equation (7), but it will also offer
the key benefit of limiting the bias amplitude to being
at worst of the order of the statistical error. It can be

shown that the weights that accomplish this are

Wl =

(
CgIl

)2

− Cov
[
Ĉ κ̂

clng
l |κ̂∩g∩I , ĈgIl |g∩I

]
/fl(

CgIl

)2

+ σ2
(
ĈgIl |g∩I

) , (A7)

where we have differentiated between measurements
made on the patch where ĈgIl is measured (which we
denote as g ∩ I) or in the patch where we carry out the
redshift cleaning (κ̂ ∩ g ∩ I).

When the two patches are one and the same, the
weights reduce to

Wl = 1−
[

ρκ̂gl
γlρ

gI
l ρ

κ̂I
l

+
1

γl(ρ
gI
l )2

]

×
[

1 +
1

(ρgIl )2
+ (2l + 1)fsky

]−1

. (A8)

As expected, Wl → 0 when ρgIl → 0, indicating that the
bias is best left untreated, as it is small to begin with.

At the other extreme, Wl → 1 as ρgIl → 1 – the bias is so
large that mitigating it costs us practically all variance
reduction.

To see this more explicitly, we calculate the change in
S/N after minimizing the MSE when the κ̂ ∩ g ∩ I and
g ∩ I patches are actually the same:

∆(S/N)l
(S/N)l

=

1 +

[
1 +

(
ρκ̂gl

)2
]−1

 1 + γ′l(γ
′
l − 2)

(
ρκ̂Il
)2(

1− γ′lρ
gI
l ρ

κ̂I
l /ρ

κ̂g
l

)2 − 1



− 1

2

− 1 , (A9)

where γ′l ≡ γl (1−Wl); notice that this expression re-
duces to equation (7) when Wl = 0, and gives zero when
Wl = 1. The right column of figure 4 evaluates it for
l = 100 and fsky = 0.03, a sky fraction similar to that
surveyed by SPT-3G. These values help us illustrate some
important features without loss of generality. Note, in
particular, that gains in S/N are limited to a subregion

of the branch where ρκ̂Il > ρgIl /ρ
κ̂g
l .

Consider, on the other hand, the case where patches

κ̂ ∩ g ∩ I and g ∩ I are disjoint. When this is the case,
the covariance in the numerator of equation (A7) can

be ignored14. Furthermore, the precision with which ĈgIl
can be measured increases with the size of the g∩I patch;

in the limit where the error in determining CgIl is made
small this way, Wl approaches unity as the signal can be
accurately restored without adding significant amounts
of variance. To state this more quantitatively, we once
again look at the changes in S/N that can be achieved,
this time specifying that the patches be disjoint15:

13 Though we do not include it here, the impact of systematic effects

in the measurement of ĈgIl such as inhomogeneities in galaxy
samples could be incorporated at this point if its contribution to

the error budget after redshift cleaning is known.
14 Away from the lowest few multipoles.
15 It is straight forward to verify that equations (7), (A9) and (A10)

all equal each other when Wl = 0.
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∆(S/N)l
(S/N)l

=
[
1− (1−Wl) γlρ

κ̂I
l ρ

gI
l /ρ

κ̂g
l

] [
1 +

(
ρκ̂gl

)2
] 1

2

×
{

1 +
(
ρκ̂Il
)2
γl(γl − 2) +

(
ρκ̂gl − γlρ

gI
l ρ

κ̂I
l

)2

+
(
Wlγlρ

κ̂I
l

)2(f κ̂∩g∩Isky

fg∩Isky

)[
1 +

(
ρgIl

)2
]}− 1

2

− 1 . (A10)

Let us use this equation to assess the extent to which

being able to measure ĈgIl on a larger, disjoint patch
improves prospects for redshift cleaning. Suppose the
CMB lensing reconstructions are obtained by a tele-
scope on the South Pole while g and I are both mea-
sured on larger footprints by telescopes on the Atacama
desert and/or space. For example, most of the 1500

deg2 (f κ̂∩g∩Isky ≈ 0.03) covered by SPT-3G are contained

within the 5000 deg2 observed by the Dark Energy Sur-
vey (DES) [33] in its Y3 data release. If g and I are both

drawn from DES observations, then fg∩Isky ≈ 0.09 (after

excising the region of overlap with κ̂ ∩ g ∩ I). More fu-
turistically, if we assume that the 18000 deg2 coverage of

LSST fully contains the SPT-3G patch, fg∩Isky ≈ 0.4. Fi-

nally, if g and I come from satellite observations on 80%
of the sky (we exclude regions near the Galactic plane),

then fg∩Isky ≈ 0.8. Figure 5 shows the gain in S/N associ-

ated with these three scenarios for a fixed ρgIl = 0.4 and
l = 100, so that they can be readily compared to figure 4f,

for which a single patch with f κ̂∩g∩Isky = fg∩Isky ≈ 0.03
is used. Notice that the prospects are significantly im-
proved both in terms of the gain in S/N for fixed values
of the correlation coefficients, and also in terms of the sit-
uations where gains are at all possible, as certain regions

within the ρκ̂Il > ρκ̂gl /ρ
gI
l branch now lend themselves to

improved precision via redshift cleaning.

Appendix B: Relating ρκg, ρκI and ρgI

In order to derive a relation between the correlation
coefficients of tracers κ, g and I, we will exploit an anal-
ogy between the cosine of the angle between vectors X
and Y ,

cos θXY =
X · Y
|X||Y | , (B1)

and the correlation coefficient between projected fields X
and Y (we drop the multipole dependence for notational
convenience),

ρXY =
CXY√

CXX
√
CY Y

. (B2)

Following this analogy, we promote our tracers to vec-
tors in three-dimensional space, and seek an expression

for cos θκg in terms of cos θgI and cos θκI , and similarly
for cos θκI . Such a relation exists only if the three vectors
are coplanar; fortunately, this limit suffices to place an
upper bound on cos θκg, once we realize that for fixed θgI
and θκI , the configuration that maximizes cos θκg is the
one where all the vectors are coplanar. Consequently,

ρκg = cos θκg

≤ cos (θgI − θκI)
= cos θgI cos θκI + sin θgI sin θκI

= ρgIρκI +

√[
1− (ρgI)

2
] [

1− (ρκI)
2
]
, (B3)

where, in the second line, equality holds only when the
vectors are coplanar. By the same logic,

ρκI ≤ ρgIρκg +

√[
1− (ρgI)

2
] [

1− (ρκg)
2
]
. (B4)

Appendix C: Parametrizing tracers for forecasts

In this section, we describe the tracer modelling un-
derlying the forecasts of figure 1.

Our parametrization of the VRO LSST follows [28].
We assume the galaxies can be split into disjoint tomo-
graphic bins with edges at redshifts 0, 0.5, 1, 2, 3, 4 and
7. The first five bins (0 < z < 4) are then combined using
the weights of [13] to more closely match the galaxy ker-
nel to that of CMB lensing. This constitutes our tracer
I – we also retain the last bin (4 < z < 7) to be used
as our g tracer. As per GNILC CIB and DESI BGS (see
section III A for details about these tracers), our models
come from theory-inspired fits to the data, once again
following [28].

On the CMB lensing side, we consider experiments
with the characteristics of CMB-S4 and ACT [34] DR6.
We follow [35] in treating the CMB-S4 Gaussian lensing
reconstruction noise as being white on signal-dominated
scales. We take the white noise level to be ∆κ =
0.2 arcmin to match figure 3 of [2], which shows the re-
construction noise for a minimum-variance combination
of temperature and polarization reconstructions – the for-
mer up to lTmax = 3000, the latter to lE,Bmax = 3500 and ap-
plied iteratively – for a possible Stage-4 experiment with
a symmetric, Gaussian beam with FWHM of 1 arcmin
and 1 µK arcmin white noise. On the other hand, the
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FIG. 5: Impact of the size of the patch where ĈgIl is
measured (g ∩ I, disjoint from κ̂ ∩ g ∩ I) on the possible

gains in S/N per mode of C κ̂gl when ρgIl = 0.4, at the
MSE optimum. (See text of appendix A for what

scenarios these fsky values correspond to.) This is to be
contrasted with figure 4f, which assumes a single patch

with fg∩Isky = f κ̂∩g∩Isky = 0.03 but the same color range

given by the color bar in 4l. Measuring ĈgIl on a patch
of sky larger than that where we redshift-clean increases

both the magnitude of gains in S/N and the domain
where they are possible.

noise curve for ACT DR6 was generated by assuming a
1.4 arcmin beam and a white noise level of 10µK arcmin.

Appendix D: Modeling changes in spectra

When the weights in equation (5) are employed, the
angular power spectrum of the redshift cleaned conver-
gence map is

C κ̂
clnκ̂cln

l = C κ̂κ̂l

[
1− 2fl

CκIl
C κ̂κ̂l

+ f2
l

CIIl
C κ̂κ̂l

]
, (D1)

such that the fractional change in lensing power after
variance cancellation is

∆C κ̂κ̂l
C κ̂κ̂l

= −2fl
CκIl
C κ̂κ̂l

+ f2
l

CIIl
C κ̂κ̂l

. (D2)

If the fiducials are perfectly matched to the truth, these
expressions simplify to

Ĉ κ̂
clnκ̂cln

l = Ĉ κ̂κ̂l

[
1 +

(
ρκ̂Il
)2
γl(γl − 2)

]
, (D3)

and

∆C κ̂κ̂l
C κ̂κ̂l

=
(
ρκ̂Il
)2
γl(γl − 2) . (D4)

On the other hand, the cross-correlation of κ̂cln with g
gives

C κ̂
clng

l = C κ̂gl − flC
gI
l . (D5)

If the fiducials match the truth, then

C κ̂
clng

l = C κ̂gl

(
1− γlρgIl ρκ̂Il /ρ

κ̂g
l

)
. (D6)

All in all, in the limit that the fiducials match the truth,
the correlation of the cleaned convergence map with
tracer g becomes

ρκ̂
clng
l = ρκ̂gl

 1− γlρgIl ρκ̂Il /ρ
κ̂g
l√

1 + (ρκ̂Il )2γl(γl − 2)

 . (D7)

Furthermore, if g and I are completely uncorrelated, then

ρκ̂
clng
l =

ρκ̂gl√
1−

(
ρκ̂Il
)2 . (D8)

Appendix E: Modeling variance reduction

We now model the change in variance after applying
our method. In doing so, let us follow a route that high-
lights the different contributions to the variance of our
estimator. We begin with the general expression for the
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variance of the difference of two correlated random vari-
ables,

σ2
(
C κ̂

clng
l

)
− σ2

(
C κ̂gl

)
=− σ2

(
C κ̂

clng
l − C κ̂gl

)
(E1)

+ 2σ2
(
C κ̂

clng
l

)
(E2)

− 2Cov
(
C κ̂

clng
l , C κ̂gl

)
.

(E3)

Taking the fields to be Gaussian, we find that

∆σ2
(
C κ̂gl

)
σ2
(
C κ̂gl

) =−
σ2
(

∆C κ̂gl

)
σ2
(
C κ̂gl

)
+

2fl
(
C κ̂κ̂l

)−1

1 +
(
ρκ̂gl

)2

[
C κ̂Il

(
fl
CIIl
C κ̂Il

− 1

)
(E4)

fl
CgIl
Cggl

(
CgIl − C

κ̂g
l

)]
.

(E5)

Heuristically, the first term captures the variance reduc-
tion due to having removed structure common to κ̂ and
I. It can be modelled as

σ2
(

∆C κ̂gl

)
σ2
(
C κ̂gl

) = f2
l

CIIl
C κ̂κ̂l

1 +
(
ρgIl

)2

1 +
(
ρκ̂gl

)2

 . (E6)

In the limit that γl = 1 and the fiducial CgI,fid
l and CII,fid

l
used to build fl are well matched to the truth, the term
in the second line of equation (E4) is zero in the mean.
The same goes for the term in the third line whenever
ρgI = 0. In these circumstances – which are very similar
to some of the cases considered in the main text, where
γl = 1 by construction, and ρgI is small – equation (E6)
becomes a less noisy estimator of the variance change.

Let us also quote, for completeness, the expected frac-
tional change in variance of the convergence bandpowers:

σ2
(
∆C κ̂κ̂l

)
σ2
(
C κ̂κ̂l

) =

(
1− 2fl

C κ̂Il
C κ̂κ̂l

+ f2
l

CIIl
C κ̂κ̂l

)2

− 1 . (E7)

If the fiducial spectra are accurate, this gives

σ2
(
∆C κ̂κ̂l

)
σ2
(
C κ̂κ̂l

) =
(
ρκ̂Il
)2
γl
[
− 4 + 2γl

+
(
ρκ̂Il
)2
γl [4(1− γl) + γl]

]
.

(E8)

In figure 6, we show with actual data that the variance
of estimates of the convergence bandpowers is reduced
after redshift cleaning. The data we work with are the
same that went into producing figure 2: we clean Planck

−0.3

−0.2

−0.1

0.0

∆
σ

2
(C

κ̂
κ̂

l
)
/
σ

2
(C

κ̂
κ̂

l
)

I = 353 GHz GNILC CIB
A= 1.25± 0.29; PTE = 0.54

0 250 500 750
l

−0.3

−0.2

−0.1

0.0

∆
σ

2
(C

κ̂
κ̂

l
)
/
σ

2
(C

κ̂
κ̂

l
)

I = LS LRGs bins 1-4
A= 0.79± 0.34; PTE = 0.84

FIG. 6: Reduction in variance of the CMB lensing
bandpowers after cleaning a Planck PR4 κ̂ map with a
filtered tracer I (setting γl = 1). Solid lines show the

fiducial models with A = 1, while the best-fit values are
annotated in each panel.

PR4 lensing with the GNILC CIB map, or with the com-
bination of all four LRG bins. To gauge the statisti-
cal significance of this demonstration, we proceed as in
section III C and fit the data with a rescaled version of
the model in equation (E8). The best-fit values for this
amplitude parameter A are quoted in the figure. Thus
analyzed, variance cancellation is detected with approxi-
mately 4.3σ confidence when cleaning with the CIB, and
2.3σ with LS LRGs. The models provide good fits to the
data, as evidenced by the PTE values.
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