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CORIOLIS EFFECTS IN NUCLEI ®

- F. S. Stephens

1. Intrqduction

Coriolis effects are not very common in our normal experience.‘ Pérhéps‘
the most familiar objeét where these effects are large is the gyroséopé or the
"top", as the childhood-toy version is usualiy célled. The sidewise précession
of a‘leaning top under thé influence of the downward pull of gravity is indeed
a st?iking behavior, and one whése mystery téstifiés to our unfamiliafify with
Coriolié effects. A less common example, but one much more analogous to the
nﬁelear>effects I waht to discusé, is a ship's gyrocompass. In this case the
tendeﬁc& of a spinning‘gyroscope (whose axis is kept in the plane of the earth's
surface) fo align its axis with that of the rotating earth, is used as a navi-
gationél aid. A partiecle in an érbit of a rotating nucleus has a similar
tendency, as we shall see. Iﬁ thé cése of rotational nuclei; Coriolis effects
é?e much more apparent than in our everyday experience, and it is thé‘pufpose
of ﬁhese léctﬁres to e#amine what we knowlabout such effécts. | |

Ifbis eésy to estimate the maximum Coriolis eﬁergy of a particular
particle iﬁ a rotating nucleus. For‘a particle orbit having angular momentﬁﬁ,
J, in ; nucleus with spin, I; énd moment of inertia, ¥, this energy i; given by:

2

o~ fl--. s . .
Ecor(max) ~2 o Ij . | (1)

In rare-earth nuclei there exist orbitals with j as large as 13/2, and

h2/2ﬂ is around 0.0l MeV. Thus when I is only 7/2, the maximum Coriolis

" Work done under the auspices of the U.S. Atomic Energy Commission.



energy is almoat-q.s MeV, or quite.eomparable with,the.energy separations
between particle atates-in sueh; a nucleus. This indicates that for these
favorable cases the Coriolis effects can.be exéected to affect the nuclear
structure significantly even for such low‘spins. Equation (1) also shows
clearly that these effeets heCOne larger with increasing spin and also with
v:decrea51ng moment of inertia. _ |
| In the present lectures I want to review the Corlolls effects in

nuclei, beglnnlng with cases where they are relatively small; that is, good
rotational nuclei (small h /20’), low;J orhitals, and relatively low spin values.
”n. example of this type is the famous case of l83W Then I want to proceed
tc some intermediate cases where J is large, I is moderately large, but h /20‘

235U and the odd-A Er

remains small (rotational nuclei) These cases are
nuclei. With these as background I will then descrlbe two 51tuat10ns that.
we have proposed mlght correspond to cases where the Coriolis effects have
changed the nuclear structure in a maJor way. The first of these is the case
where J is large, I is moderately large, and h ﬂay’becomes 1arge, that is,
"~ in the more ‘Vibrational" nuclei. I will consider mainly the odd-A la, Au, and
T1 nuclei in this category§ The other situation is that of very large I
(~20) in rotationalvnuclei, where these effects can be shown to provide one
possible explanation.for the pequliar.hehevior4recently-observed'in even-even
nuclei. 'ThroughOut these discussions I will try to emphasize the physical
effects occurring rather than the mathematical detail, although some of the
latter will be essential. |

It is important to'keep in mind that in all these eaees we are treating
Jjust one phyeical syétem;:a particle courled to a core that is deformed and can

rotate. In the first cases I will discuss, the deformation of the core is large




and the partlcle is strongly coupled to it so that as the core rotates ‘the.
particle folloﬁsi The Corlolas effects are then a small perturbation on the

rotational spectra: In the last casesa'the coupling to the deformed shape is

" weak and/or the rotational freguencies are large, so that the particle cannot

follow the core rotation, resulting in Coriolis effects that completely obscure
the simpie retational bands. It is certainlyvtrue that at some point, as the
coupling decreases (8 gets'smaller)5 this rotational modei will cease to apply
to nuclei, dbut in order_td-find that point we must first understand just what
the model implies clesr ddwnito_the limit of zemo coupling. Furthermore, there
is some intriguing exberimentel evidence that suggests the model appiies rather

well at surprisingly weak'couplings_for.at least some special states.

2. Coriolis Effgcts‘as Perturbations in Rotaticnal Spectra

2. %

.A} Bbhrl) discussed COrioiis effects in his original paper om nuclear
rotation in 1952, but it was.some,four years later before A. K. Kefmane)‘
applied these ideas to a.specific case, namely l83W. I want to begin with
this case, both because of its historicai interest, and because it illustrates
the effects in a simple case where only two bsnds are involved. The basic
equatipns necessary to understand nucleam Coriolis effects are very simple,
provided the deformed core is assumed to be axially symmetrlc and furthermore

that K = Q for all the low—lylng states. The Hamiltonian of the system can

be written:

' 2 . 2

_ h ‘ : -
H=H +3 R 20 o L LR |
=1y L2 s n + 2 (2 4 R, (2)
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vhere Hp is the Hamiitonian of the particle in the absence of rotation (a
Nilsson3) Hamiltonian for example), ¥ is the moment of inertis of the axially-
symmefric core, and ﬁ ié thé:fofational angular momentum of thé‘coré (rotation
is not alibwed.aroﬁhd the'symﬁetry axis); A éoupling betwéen the pafticle and
tﬁe rotation comes about through the sharing of the total angular momentum

between the particle and.the'core. This can be expressed by:
> > ' , :
R=1I-3 . | (3)

One should clearly.distinguish between the particle-rotation coupling which.
we are discussing, ana thevparticle-core coupling, which is contained in Hp.
(The major part of thg particle~core coupling is sphericaliy symmetric and
of no interest here; howevér; if the core is deformed, then there is also a
coupling to the deformation, which we discussed at the end of the prévious
section.) Putting eq. (3) into eﬁ. (2), gives the usuai expression for the

rotational nucleus:
L2 : . 2
= h” : 2] h® 22, 2]_
Hpr+2q.[I(I+l)-K.]+HC+§—§EJ >~ Q . (k)
wheré',Hc is the Coriolis operator which is given by:
2 | 2 | :
_ h J2> 21 _ b i) :
H.= -2 3% [I"'j-—n]__%?’ IE[+J-+I-J+] - ' (5)

These are the general equations which we will use repeatedly later on, but for

the present case of good rotational nuclei they can be further simplified.

- For such cases, ! is a constant for a given band, as is 032). These may

therefore be included in Hp, giving:




-
Ok

H,=ﬁ.?+-f3-—[I(I+1ﬂ g . - (6

The matrix elements of’Hc'can be written:

o . |
(1,941 IHCII,QZ)?_—'%,'? ATR) (13+1)  (@er]gle) (7)

where the matrix elément,'( Qil|j+l9 ), must, in generai, be calculated from:
the detailed'(é.g.vNilésoh) wave functions. Fpr the special case where j is

a go9d quantum number;-thése can be written:
- 4sea, 5,00 = VFER) (G . | (8)

‘Gengrally; Hé vis_non;diégonél, conﬁecting bandé that differ in 0 by one
unit. However, as is well kngwn,‘there is 8 diagonal c@ntribution to bénds.”
with @ = 1/2. ’The§e rather simple basic equations will be used to treat all
‘the cases of Coriolis coﬁpling mentioned. |
The.183W»case treatéd by Kerman.involved only two bands with»Q = 3/2
and © = 1/2 and is shown in‘fig. 1. The initial bandhead energies, Hp',
Kerman took_as.ﬁarameters, as he also did the initial h2/22f value for each
band. In addition'he ﬁook thé Q=1/2 baﬁd decoupling parsmeter to be
ad justable. For a given value of these five parameters he could than calculate
thevinitial eﬁérgieg of the levels in ea¢h band. For the parameters of his |
final fi£, these.are‘shoyﬁ_in fig. 1. Takingbas avsixth parameter thevvalue‘

of { Q= 3/2|j+|9 =f1/2;), Kerman diagdnalized the 2 X 2 matrix for each spin,



giving the shifts shoﬁﬂ in fig. 1. As is usual, the levels repel each other;
levels of a given spin moving equal distances.up_and down. The experimental
energies are listed at the edges of fig. 1, and it can be seen thst the fit
is indeed exéellent, Kérman_aiso conSidéred somé 20.Mlhand E2 transition
probabilities,_achieving feagonﬁble success st the expense of 5 additional
parameters. | »

Subsequent workh’s) on'183W has tended to cénfirm the basic principles
of the'Kermah.analysis, though some problems have afisén; Rowéh) showed that
Varioué rotation-vibration (AK.=<12) admixtures of thé typé found in even-even
nuclei in the region of 183W permitted one to obtain fits as good as Kerman's
over a réther broad rahge of the paraméters (though he obtained better fits
for two particular sets;of parameters). Brockmeier gz_gl.s) later showed
that including other Nilsson states could also significantly affect the fit.
There ére probably two conclusions to be drswn from this case: 1) there is
clearly a significant Coriolis mixing of théée bands; and 2) the detaiisaof
this mixing arevprobably nof very well determined due to'the many paremeters
involved, and the possibility of contributions from a number of additional
effects.:

There‘are many othgr cases of modéfate Coriolis mixing of two or three
close-lying 5énds. The single-particle-transfer reactions have proved to be a
powerful method for such stﬁdies since théy give more direct evidence on the
wave functions of the obsérved bends. However, I do notbwant to pursue such
detailed analyses. The purpose of discussing this case was 1) to diSplathhé
analysis of Coriolis~effects in a simple case and 2)‘to show fhat even in a ‘
case of low ha/éa; j and I, appreciable Corioiis effects occur. We will now

g0 on to cases where the effects are larger and, at the same time, ‘the
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calculations are much less ambigueus.
2;2 235U |

The unlque—parlty hlgh—g orbitals within each major shell provide much
the best cases to observe and understand large Corlolls effects in nuclel.. It
is esseatial to appreciate the reasons. for this. The most obvious factor for
these ofbitals is thatlthe Coriolis matrix elements inerease'approximately
troportional to J for low values of £, as shown by egs. (7) and (8).'3for the
. 235 ‘

orbital, which is involved in U, this implies matrix elements around

J15/2 ,
. o ' 183W R . ‘o .

5 times larger than that found by Kerman for - . This situation is typlcal

for all the high-j orbltals, and leads 1mmed1ately to the conclusion that any

study of the largest Corlolls effects w1ll 1nvolve these orbitals. The second

'fundamental reason for ch0051ng these orbitals is that they are well separated

from any. other orbltals of the. same parity, 'so that, to a very goad spproximation,

J is pure.’ This can be verlfled from the Nllsson wave functlons of:

orbital in the 50-82 shell 11) the i. orbital in the 82-126

i) the h11/2 13/2

shell and 111) the j15/2 orbltal in the shell beyond 126 This means not

only that the above pure-j estimates for the Coriolis matrix elements are abeut

eorrect,butualso that all prgperties of the component states of these orbitals
can be calculated with much higher than average reliability. To say it.
slightly differently, tﬁe properties of these states ere not much affeeted by .
the small admixtures of ether J-values, and hence not sensitive to the exact
size_of these admixtures. Yet another favorable aspect for the component
states ef avhigh-j'orbital is that they will not Coriolis mix very much with
states ffem other'orbitals. This is both Because of the pure j-value and
because these other orbitals:are at least one major shell remoted in energy.

We can summarize the properties~of,the high-} components as: 1) they comprise



a closed set of statesbwhose Coriolis iﬁteractions among themselves are the
largest.possible; 2) they have very Wéak Coriolis interactions with,stétes
from other j-shells; and 3) their propértiés can be calculated with the
highest reliability of ény states in deformed nuclei. |

One point abouﬁ fhe reliability of calculatgd properties is illustrated

in fig. 2. Here we show the components of an h orbital as a function of

_ 11/2 _
deformationB). These components would be one of the closed sets of levels
meﬁtioned.gbove. One sees that since they come from a given orbital (hll/2)
their relative energies are indépendent of the shell model parameters in the
calculation, and depend only on the energy sblitting of this orbital with
deformation. .This‘gives much more religble relative energies than would
otherwise be the case. To get the energies of the components one siﬁply goes
to the appropriate deformation, say B = +6.275,'and reads off the energies at
that deformation. A line on fig. 2 hag been drawn to show these energies.
In gddition to B, one also needs to know the locastion of the Fermi surface, A
aﬁd the pairiﬁg'gap; 2A, in order to caléulate these energies as they migﬁt Bé

expected to occur in a particular nucleus. The appropriate‘equation for the

observed energy E(Q) in terms of the eigenvalues from fig. 2, EQ,‘is:

.Hp z B(Q) = V(EQ-A)2'+ T ‘ (9)

There is also a UV-factor6) to be included on the Coriolis matrix elements due
to the pairing, but that is a small correction.

| If we pick a Fermi. surface near the Q = 7/2 level and apply eq. (9) to
the eigenvalues of the 315/2 Nilsson orbital at B = 0.275, the bandhead energies

shown in fig. 3 result. We can then construct rotational bands on all these

1~



bandﬁeads according to eq. (6)_; where pr is equated with E(Q). The first

few of thesé are shown for eaéh‘band on fig; 3. The matrix elemments,

€ Qilljilﬂ >, as calculated from thé Nilsson wave functions are also shown on
fig. 3; and, By'cqmpariéon with eq. (8), fhey can all be seen to be within 10%

of the pure-j values. The proéedure then is to pick_oﬁt from each band the state
of a particular spin,:I, and_diagonalize the»resulting matrix. For the 315/2

shell this will be an 8 X 8 matrix if I >:15/2, and smaller if I < 15/2.
Three things shouid be pointed out especially on fig. 3. First, a

pattern much like this results from any high-j orbital. An hll/2 orbital, for
exémple, would have two fewer bands (13/2 and 15/2) and "~ 30% lower matrix
elements, but otherwisé would be very simildar. The second thing to note is
that Coriolis effects are much bigger for the low 2 bands. Not only are

the energy separations of the»bands smaller here, bﬁt also the matrix elements
are largest. Thus the very largesf Coriolis effects wili occur in low-{l bands
of high-j orbitals. Finally, the Q = 1/2 band has very anomalous spacings.
Large decéupling factorsbalways occur in these high-j orbitals, so this is a
general feature. These anomalous spacings are transmitted to the { = 3/2 band_
in the mixing proéess, and then on to the @ = 5/2 band in a second order
process, etc. The resulting anomalous spacings in the higher-{i bands are a very
charaéteristic ané important féature of the mixing we are describingvhere.

There are three favorable circumstances that make.235

U a very good case
for studying such Coriolis caicuiations. The level scheme worked out from
Coulomb excitatioﬁ studies7) several years ago is shown in fig. 4. The first
favorable‘featufe is that many levels are observed in the j15/2 component

bands. Three bands, Q = 5/2, 7/2, 9/2, are seen and there are a total of 15

rotational spacings in these bands (bandhead energies are not included in the
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fits in this case). A éeéond advantage is that anomalous spacings coming from
the mixing with the Q =’-1/2‘ vand are ébSered in‘both.the Q= 5/2 and 7/2 bands.
This information alone tells éome rather specifié things about the Coriolis matrix
elements. Finally the B(E2) values between the Q = T/2 ground-band and boih

the € = 5/2 and § = 9/2 bands werevdeﬁermined. If one assumes that these B(E2)
values result only from collective E2 transitions introduced by the mixing,

then they give immedistely the admixed amplitudes, and hence the Coriolis matrix
elements involved. The assumption that the non~collective B(E2) values can be
neglected is vefy likely to be essentially correct, but effects of 20% or so

in the deduced mixing'amplitudes cannot be excluded. Consideration of these

235

features, and the other known E2 and Ml relati#e intensities, makes the U

case a real test for our description of these Coriolis effects.

235

I do not want to discuss the detéils of the calcﬁlations for U, but

only give an indication of the kind ofiresults dbtained. Figure 5 gives
the results for the rotationsal energies where only one adjustable parameter
was used. This plot is designed so that it gives a straight line for a

rotational band if the band follows ‘the equafion,

E=Ey+AI(I+1) + B I5(1+1)° ~ (10)

where the intercept of the line on fig. 5 would be A and the slope ﬁould be
B. We use the plot because it can show the rotational energies on a sufficiently
sensitive scale to see easily the anomalies in the Q % 5/2 and 7/2 bands. In
the calculation all ba.néhead energies and matrix elements were taken from the

Nilsson wave functions except the matrix elements, (5/2|3j |7/2 ) and

(T/QIJ_|9/2 >, which were determined from the B(E2) values as described above.
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~ The one parameter was h2/2€r, which comes into all the rotational band energies
(eq. (6)) énd matrix elements (eq. (7)) eicept the above two. The results
clearly.show the correct anomaly coming'frbm the 2 = 1/2 band into the = 5/2
and 7/2 bands. ‘However the final effective h2/23rvalues for the = 5/2 and
9/2 bands are nét'correctly given.

The.results of a three parameter fit are shown in fig. 6. Here the.
matrix elements, (5/2rj_|7/2 > and (7/2|j‘]9/2v), were allowed to vary from
the values indicated by the B(E2) values but their ratio was held constant,
and the matrix element, (3/2[3_'5/2 ), could vary. The former of these Went
up by 20%, and the latter ﬁent down by 20%. The fit here is excellent (note
the expansion of.the ordihéte scale). Also the known relative M1 and E2
traﬁsition probabilities were adequaﬁely given by wave functions from this fit.
This fit iéba very'étrong indication that we know how to make this kind of
Calcﬁlation. ‘Oné minor puzéle comes out, whose solution is not at present
understood. The matrix elements, (5/2Ij_l7/2 ) and (7/2]3_,9/2 ) , have values
only about half as large as expected. This result comes from the measured B(E2)
values almost completely unambiguously. This kind of effect on the Coriolis
matrix elements near the Férmi surface has been observed in other similar
cases, and is the ouﬁstanding remaining mystery in such calculations.

235U case in some detail for two reasons.

I have discussed the
First to show rather carefully how cne treats such a j-shell, and secondly,
to try to convince you that one does know how to make these éalculations. I

now want to go on to cases where the effects are bigger, but the data more

meager.
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2.3. 0dd-A Er Isotopes
. The calculated and experimental spectra of three odd-A Er isotopesa)

are shown in fig. 7. These data are for the lowest positive-parity band in

these Er nuclei, and this band is ciearly composed of heavily admixed components

neutron orbital. One sees & reasonsbly normal = 5/2 band in

163Er, and a band with some inverted level-orders

in l61Er. The calculations were very similar to those described for 235U,

of the i
165

13/2

Er, large anomalies in

except that here no data were available on higher bands. NevertheleSs, the

three parameter fits shown are impressive, and leave,nb doubt that the spectra

are basically correctly interpreted. Figure 8 shows the rotational-energy

plots like the ones just discussed for 235U. The plot for l65Er looks much

235

like that of U until one appreciates the ordinate scale. These effects are

235U, and become still larger in l63Er and l61Er. In

much larger than those in
the latter c#se the inverted levels show up as negative points on such a plot.
We can understand why these effects are big and get bigger with decreasing
mass number. The rotational constant, h2/28’, which comes into the Coriolis
matrix elements (eq. (7)), is about twice as big here as in 235

with decreasing mass number in these Er nuclei.

2.4, Summary

In the Er nuclei the Coriolis effects are producing large distortions
in the rotationél bands. These effects can be calculated in some detail, as
we have seen, but it now seems more useful to broaden our perspective on.this
problem rather than to study in detail such fits. There is no difficulty

in solving eq. 4 for any deformation (except exactly zero) and it seems

U and is increasing




essential to uhderstand,kin a general way, the nature of these solutionms.

If they contain some new regularities, then it is necessary fo knoﬁ-jUst

Awhat these are so that they could be recognized if they occur in the Er. (or.
other) level schemes. Along the same line it would be.intereéting to under-
stand the physiéal process occuring in these distorted bands. These questions
willlbe taken up in the next section, and in the beginning of section U we
will return bfiefly to fhese Er nuclei and examine them from a somewhat

different viewpoint.
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3. Coriolis Effects in Nuclei with Small Deformations

Whether the Coriolis effects will be large or not in a particular case

depends on the relationship of the rotational energy given by,

E =

E ot S I(I+1) : (11)

I\)I’-‘-“‘
XY

‘and the energy separation between interacting states, that is the splitting
between components of the j-shell of interest. We need.to be able to estimate
this relationship easily, and thus need to extend our mathematical framework a

little further. That will be the first objective of the present section.

3.1. Calculations in Nuclei with Small Deformations

In cases where the Corioiis effects are large, we must use eq. (U4)
ratﬁer than the simplified eq. (6). There is some problem here, as the so
called "recoil term", h2/2I [632> -92], mey already be empirically contained in
the evaluations of Hp' However, the simple limiting églutions are not reached
if the recoil term is not explicitly taken into account, so that in this sec-v
tion, ét.least; we will use the full eq. (4).

It ﬁould be convenient to be able to evalusate Hp in a simple way.
This quantity can be expressed by giving the energy of the system és a function
of 3 that is, as a function of the orientation of j to the symmetry axis of
the core. For a core with quadrupole deformation, the Nilsson calculations
correspond to an evaluation of these energies as was mentioned (see fig. 2), but
if the deformgtion, B, is not too large (i.e. if j is pure), then we can use

the limiting approximation6):




I
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2
_ ) . 2068 1897 - 3(J+1) _
e, = By(nLy) + 373 [ ErSY) ] MeV (12)
The numerical coefficient, 206/11.1/3

, in eq. (12) gives reasonable agreement

with the Nilsson, solutions for the h and i orbitals up to around

11/2 13/2
B =10.3, and a comparison of these two values for EQ is given in fig. 2. Since
we consider only a single j—shell,'the Eo(nzj) can be taken to be zero.

Using egs. (4), (7), (8), (9), and (12) we could diagonalize a given

Jj-shell for any value of I; however, there are four parameters to be fixed:

h2/2 s B, A, and A, We can reduce these four parameters to two essential ones

-in the following way. There is a very general empirical relationship between

h2/25 and'B (as defined from the E2-transition lifetime) that essentially all
%)

even-even nuclei follow For the purpose of our survey we will use this

relationship to eliminate one df these variables. This gives:

2 - 1225
6(h /2%) = E2+’~-A—77§_—B—é- MeV (13)

We use B explicitly here on;y to interconnect h2/25 and €qs and one could take
the poiﬁt of view that egs. (12) and (13) just define an empirical relationship
between these quantities. That is to say, if we pick a value for the splitting
of a given j-shell according to eq. (12), then eq. (13) does nothing more for

us than pick a value of h2/23 that a real nucleus with the selected value for
the splitting would be likely to have. However, some deformation is implicitly
required for eq. (2) br (h) to.have any physical meaning and it may well be that
this is a physically real parameter. Of the remaining parameters, A is not very

important and we teke it always to be 0.8 MeV; so that there remain just two

parameters B and A.
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‘We now have a simple set of equations that can be diagonalized for any
vaiﬁes of I, B, and A, Befére we look at some of the detailed solutions, let
us considerthe-limiting cases of large and small valugsvfor B. For large
B (20.3), the Coriolis effects are relatively unimportéht since h2/27 is small
(eq. (7)) and the different 9 components are widely separated (eq. (12)). This
results in the usual strong-coupling limit of pure rotational bands with good
! values. As we move toward smaller B, the Coriolis effects become more
important and perturb this structure, mixing § values, This is the process we
examined in section 2, and our model was shown to be relisble in this region.
At the other limit, B =0, h2/25 is large and the { separations are essentialiy
zero, i.e. Hp.is a constant (egs. (9) and (12)), and although the diagonaliza-
tion of eq. (L) appears complex, eq. (2) is now transparent, giving the result
that the energies are just those.due to the rotation of the core. It is, of
course, true that the core of an odd-A nucleus is somewhat different from that
of the adjacént even-even nucleus due to the blocked level, but we ignore that
for the moment. _In this limit there are states at each core energy having
spin values that range from |R - JI to R + j, and R is a good quantum number.
This is Just the spherically symmetric limit, and Waé'discussed by Vogello).
Near this limit, eq; (4) gives results identical to those of a weak-coupling
mddelll) with (apart from the pairing effects) a pure quadrupole-quadrupole
particle-core interaction., The relevant feature of such a model is that the
core state is split into a multiplet centered on the core energy, but hot
othérwise dependent on that energy nor on any other property of the core. Thus
even though the pure-rotational core energies given by eq. (4) are not realistic

for this region, the splitting of the core levels will be reasonable, if the
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real interaction is quadrupole-quadrupole (plus the pairing effects) and if

~ our estimate of the effective quadrupole strength (egs. (12) and (13)) is

about right. Thus we will also examine eq. (l4) in this region of small B-values,

but we should at best ohly take seriously the positions of the various lefels
relative to the position of the related core state. |

| We now want to examine the solutions to eq. (k) as a function of B and
A. Our first objective will be to show that in.the heavier elements a study
of the interesting new physical situations really does not require any varia- .
tion of A. The argument can be made with reference to fig. 2. For very large
Coriolis éffects, h2/2$ must be large, which means B must be small (eq. (13)).
However, once we are past the region of Sn, B is.only small at the beginning
or end of major shells. In the middle of major shells one finds regions of
large deformation--the rare-earth and actinide regions. Since the unique-
parity high-j orﬁitals lie more or less in the middle of the major shell it

follows that regions of very large Coriolis effects occur only if A is quite

‘low or Quite high in this orbital. When A is in the middle, the nuclei have

large deformations, and the Coriolis effects are minor perturbations and
already basically understood. Furthermore, it can be seen from fig., 2 and

eq. (9) that for pure-j wave functions the regions of low and high A are

identical if one just interchanges the prolate and the oblate side. This is

not exactly true for the Nilsson solutions (solid lines), but is a rather
good approximation in that case. Thus the interesting new situations can be
studied using only a single value for A, and we have chosen a value corre-
sponding to the bottom of fig. 2, -4.5 MeV. This is below the entire orbital

for IBI 2 0.3. For very high \ values (top of fig. 2), we then only interchange

~the prolate and oblate sides. For comparison with particular cases, it is
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clear one should use A &alues as close to reality as ﬁossible, but the present
single choice will show all the new effects. Note that for our choicerof A,

" low ) values, and hence large Coriolis effects, occur on the prolate side, ahd
high §2 values, with smaller Coriolis effects, on the'oblate side,

The solutions of eq. (4) for the h orbital with A = -4.5 MeV

11/2
(fig. 2) are shown in fig. 9. The ordinate here is the eigenvalue for spin, I,

minus the lowest I = 11/2 eigenvalue, divided by E Only the yrast levels

2+°

(lowest energy for each I) are plotted except for the second lowest I = 11/2
state. The spin sequence I = Jj, J+ 2, J + 4, . .. . has been darkened to help
make these levels stand out. At B = 0, the degenerate solutions having the
core energy values are apbarent. A region of possible application for avweak-
coupling model is seeﬁ betwéen -0.1 < B < 0.1, where the splitting of the core
‘multiplets is less than the core energy separations. Outside this region such
& model could not be expected to a.ppiy° On the oblate side, where the Corioli;
effects are weak (due to the large separations between Q-components, eq. (12),
and the sméll matrix elements, eq. (8)), a recognizable Q = 11/2 rotational
band develops very quickly. The order of levels is correct all the way from
B =0, and.by B= ~0.15 the band spacihgs_are becoming rather close to the
rotational ones. This is cleafly what should be expected, since the I = 11/2
level is nearest to A, and the Coriolis effects are weak on this side.

On the prolaté side the situation is more interesting. The Q = 1/2
level is nearest to )\ over the range of B values plotted, so that the lowest
levels are tending toward the energies for such a band. But the Coriolis
effecfs are large on this side, and even at f= 0.3 the levels are rather far

from those of an = 1/2 band. The outstanding feature on this side is the
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coincidence of the enérgies .of the "favored yrast" states (I = J, j + 2,
J+ b, . 0) with_thosevof the core states for essentially all B-values. Note

that the separations between these levels are very small compared to what one

would expect for any normal rotational band--as may be judged by those at the

same B on the oblate side of fig. 9. These levels lie very low ip'energy'for
theif spin value; thus'the name, favored. The favored/gzggtof high-spin states
is important because there seems to be experimental evidence accumulating that
it occurs frequentiy in odd—A nuclei, In the next subseétion we will examine
the physical effect responsible fbr this behavior. A final éomment about -

fig. 9: if J - 11/2 is added to all spin values, then it would apply apfroxi_

mately to any high j-shell.' Thus the process we are interested in, is a very

general one.

3.2. The Physical Effect:
The physical picture for the oblate side of fig. 9 is rather simple.

Here the Coriolis effects are wéak and the particlé follows the core rotational

motion even for rather sﬁall values of B, and thus the usual strong—coupling

description applies. At, or very near, the center of fig., 9, where B is very
small, the particie does.not feel the core rotational motion at all since the
coupling to the deformation is small and the rotational frequency is large.

This is expwvessed by the degeneracy of all the orientations of the particle

‘angular momentum relative to that of the core. In this region the rotational

energies are very high (eq. (13)) and the model we are discussing is not likely
to be applicable. A guess as to the limit for applicability of the present

model might be something like [B] 5 0.1 (E2+ <1 MeV). The interesting region
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occurs on the prolate side of fig. 9 ;here the partiéle is neithér completely
decoupled from the rotation nor strongly coupled to it.. We will be particularly
interested in the favored yrast band on this side because so far most of the
experimental data available are for such levels.. In order to make up the I
value, these levels must have R nearly parallel to J and we saw in fig. 9 that
they coincide with'thé core energies out to very large B values.v These are the
properties that seem to be important to understaﬁd.

To demonstrate the physical effect involved for these states, we need
only consider qualitatively a particle coupled to a rotating core., The princi-
pal influence of the rotation on this coupling can be expressed by introducing.
the Coriolis effects, and these depend essentially on the Coriolis force, prd—A
pértional to ﬁ»x 3, where ﬁ and 3 are thé core and particie angular momenta.
But for those staﬁes where ﬁ is coupled almost parallel_to 3, achieving the
maximum I, R x 3 is nearly zero. Thus the rotation has little effect on the
coupling of the particle to the core for this orientation of the two, and the
energy changes of the system just reflect the core energy changes. This is the
reason we refer to such & band of levels as rotation-particle decoupled, or
Just "decoupled". We will use this name more/fzss interchangeably with "favored
yrast"; however, the former name implies this intérpretation, vhereas the latter
does not imply any particular interpretation.

This argument can be illustrated using fig. 10, where we show & wheel
(representing the high-j particle) on a turntable (a blurred-out rotating core
vhere the axis of.the core lies in the plane of the turntable). 1In fig.AIOa
the angular momenta of the two are perpendicular, producing a maximum Coriolis

force (R x 3). Thus the wheel (particle) "feels" the rotation of the turntable
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(core);_ The resultant‘fofce is in a direction which tends to produce the con-
figuration in fig. 10b, wﬁéfe the two angular momenta‘are parallel and the
Coriolis force on the wheel thus vanishes. 1In the orientation represented in
fig. lOb,-the wheel can ﬁb longer- feel, orvinteract with, the rotation of the
turntable. They are depouplgd.

| Another illustration of this point is éhown in fig. ll; In the upper
pdrtion the usual strong—coﬁpling scheme is représented. Here J précesses
around the nuclear symmetry (z) axis with constant pfojectioh Q. A mixture of
R values is required to construct a good total angular momentum, I. If this
state lies lbwest in energj it is because the energy advantage in the state
{2 1s so great that R values larger than the minimum oﬁé can be afforded; There
are really two éoupling séhemes reﬁresented in fhe lower part of fig. 11. 1In
the first, R is a good quantum number of the system, and its direction is
specified by the fact that it hés zero projectioﬁ on thé’symmetry axis., It is
shown in fig. 11 as beiné parallel with the rotationalvaxis (or x-axis) which ‘
is similarv(espeéially at high spin values). This.scheme correspondsrto the
spherical limit,‘which was- discussed in some detail above, and requires a
mixture of  values, as'indicated. The third scheme is a very intéresting one
and corresponds to éharp projections of j on the rotational axis. The decoupied
state; are the ones whefe-this projection is a maximum; 11/2 for the hll/2
orbital we have been discussing. Mottelsonlz) has pointed out that this is a
simplevcoupling scheme which might apply to all the levels at moderately large
rotational frequencies, 'Iﬁ_fact, around B = +0.2 on fig. 9, the solutions to
eq. (4) do correspénd to this coupling scheme with remarkable accuracy. For

example, at B = 0.2 the lowest I = 11/2 solution "contains" (square of the
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of the overlap integral) 98% of the state having a projection of 11/2 on the
rotation axis; whereas_if contains only 46% of the R = 0 stafe and 55% of the
Q= l/2bstate. Thus, it is mueh the best represented in the first of these
three coupling schemes. The present scheme and the one with sharp R vaiues
are similar, and become virtually identical for large spin values, but the
salutions to eq. (h)varound_s = +0.2 on fig. 9 clearly correspond much more
accurately with the present scheme. Both schemes give very nearly the R(R+1)
relative energy spacings of the core for the favored yrast states, and this

can perhaps help explain the very flat behavior with energy of these states in

this region of deformation.

3.3. 0dd-A La Nuclei

13) (lh

Gamma-ray studies on the light odd-A La nuclei following Sn(~ N,3n)La
reactions revealed a cascade of stretched E2 transitions, in each La nucleus,
having energies very close to the values for the Ba nuclei with one less proton.
Studies of the Ba(uHe,t)La reactionlh) indicated that this cascade was based

on an 11/2 state. Fig. 12 shows the energies of these cascades compared with
the even-even Ba nuclei. The correspondence is remarkable, and provided the
main incentive for studying eq. (4) at low B valuesls). If one used the even~
even Ce nuclei for comparison instead of the Ba ones, the correspondence would
be rafher similar, as the even-even energies are not changing very rapidly with
proton number in‘this region. It has been suggestedls) that these states com-

prise the decoupled band based on the h orbital. Unfortunately there is

11/2

no informetion on the location of the other negative parity states in the La

nuclei.
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Qualitafive evidence on the spectroscopic factors from the (hHe,t)
reaction tends to support this interpretatidn. In the deformed coupling scheme,
fransfer of a particle from the groﬁnd state of an even-even nucleus to an
odd-A one populates states with R = 0. Norﬁally.the R = 0 state is distributed

equally over the (2j+1)/2 component bands of a j-orbital. However the Cpfiolis
mixing, which'we are discussing, builds up the R = 0 amplitude in the lowest

I = j state, until it is a pure R = 0 state at the sphérical limit. This
behavior is consistent with the observed spéctroscopic factors in the La nuclei,
but a quantitative analysis of the data has not yet been made.

In:fig. 13 the resglts of a calculation are shown which look very much
like those shown in the prolate portion of fig. 9. Actually, in fig. 13 the
Fermi surface is kept exactly at the = 1/2 level at all deformations. This
is about 2.5 MeV.differeht from fig. 9 at B~ 0.2, and just shows the insensi-
tivify of the results to the exact location of the Fermi surface, provided it
is beloﬁ the entirevbrbital. In the La nﬁclei, A ls probablj somewhere between
vthese tﬁo_values. If B is fixed at 0.25, fig. 14 shows the effect of varying
A, The,relatife spacings of the favored yrast states are not very much affected
until X gets up to about the Q = 5/2 level, then they begin to rise sharply |
toward.their rotational values., Only when A reaches the 9/2 level or above, do

the spectra have réasonably good rotational bands for this 8 value.

3.4. The Au Region
Before discussing the nuclei in the Au region, we should add one more
aspect to our mathematical framework. One of the serious drawbacks of eq. (2)

_is'that the core spacings_afe always those of a rigid rotor, i.e. they follow
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eq. (11). It is easy to relax that requirement somewhat if we use instead of

eq. (2):

H=H + h2/2j (22 LR 4 c§6] R ' - (14)

" where B and C can be varied to give approximate fits to the relevant even-
"even nuclei. Small effects due fo such things as centrifugal stretching, and
perhaps quadrupoie vibrations of the core can be included in this way. Although
more complex mathematically, eq. (14) can be diagonalized in Just the'same way
as eq. (2).
| For the nuclei in the Au region, we will fix B and A in a particular
case, so that there remain no adjustable parameters. We fix B by averaging the
value for the two adjacent even-even nuclei., For this value of B, A is fixed
at or'near the le#el corresponding to the correct number of particles according
to fhe Nilsson diagram. Thus for each odd-A case we calculate two spectra,
corresponding to either a prolate or an oblate shape for the nucleus. Within
the framework of our model,-these'are unique predictions for each case.
We will now discuss Eriefly our conclusions about this region of the
periodic table. We will first:consider the h proton orbitals,

g/2 804 By, /5

A portion of the Nilsson diagram for protons is shown in fig. 15, which con-

tains particulafly these orbitals, . The Tl and Au nuclei have )\ values around

3 or 4 MeV on this figure, and this lies completely below the h orbital for

9/2
IBI < 0.2. Thus the situation described in constructing fig. 9 is applicable,
and we need only change J from 11/2 to 9/2. The calculation for the correct J
and A is shown in fig. 16. The similarity to fig. 9 is apparent. For the Tl

nuclei we use a IBI value of 0,11, which is taken from the Hg nuclei. Since
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the odd proton is, in thls case, lifted out of the 50- 82 shell we have not

averaged the_Pb and Hg values. One set of dots in fig. 16 shows the location

of the levels of 199

T1l, taken as representative of the lighter Tl isotopes and
ﬁormaliZed to the lowest I = j calculated level. The rotational-bandlike char-
acter of these lévels has previouslyls) been noted, and, according to fig. 16,
immediétely requireé an obléte shape for theée'states.__This, also, was previously
proposed. The calculated energy spac1ngs are cons1derably w1der than those
obsérved, but this 1s largely corrected if one dlagonallzes eq. (14), dashed
lines in fig. 1k, instéad'of eq. (2), with B and C adjusted to abproxiﬁate the

198 . :

lowest few‘ Hg levels. A more detailed comparison of these levels is shown

in fig. 17. It seemsvthat the prediction of: (&) rotational bands in Tl
nuclei; (b) the approximate h2/2j'value of these bands; and (c) the sign and
rough magﬁitude of the deviations from a purely rotational spectrum, are rather
éohviﬁcing'for a calculation with no adjﬁstable parameters. To show that our

calculations go over into the region of large deformation in reasonable fashion,

we have alsd indicated in fig. 16 the predictions for l79Re, where B is taken

178

from l80wvand ~ 0s, together with the observed statesl7)

. A lower A-value '

should be used fér Re, but this would make very little difference here. Again
_tﬁe order of levels is correct, as is the approximate spacing of these levels.
In this case the prolate.shape requires a spectrum between the decoupled'type 
“and one having Q = 1/2, ’Our interpretation 6f fhese levels is consistent with
that previously made 7) |

The situation for the h orbital is shown in fig. 18, and is quite .

11/2

similar to thet of fig. 9, except that the oblate and prolate sides are reversed.

This revérsal is seen in fig. 15 to be & result of the fact that A is now above
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the h orbital rather than below it. The predicted position of 195Au is

194

indicated, with B taken from l96Hg and Pt, and the experimental points are .

11/2

again shown as dofslB). In this case an oblate shape is clearly indicated by
the decoupled—type Au spectrum. Again the order of levels and spacings are
surprisingly‘well given, and are improved somewhat by.the use of eq. (14), as
the more detailéd comparison of fig. 19 shows. However, the reversal of the

of the I = 13/2 and 9/2 states aoes not come about easily, as far as we can see,
for purely oblate shapes. "Since Avis not entirely above the h_: orbital at

11/2
179

B v 0.2, we readjusted it for Re as shown in the lower portion of fig. 18;

however the differences are really not very large. The previously identified

2 = 9/2 band in 179

Re is shown to be in father‘good agreement with the calcula-
tions for a prolate shape, although the moment of inertia of the band is
underestimated. This is not surprising since.itvalways happens for these high-j
orbitals in ﬁell—deformed nuclei if the Coriolis strength is not reduced some-
what compared with the a priori estimates.

| Our recent éxperimental resultslg) on the high-spin states in the odd-A
Hg nuclei also seem to indicate the presence of decoupled bands. A series of

189,195,197,199

two or three stretched E2 transitions were observed in Hg whose

energies approximated those of the adjacent even-even nuclei. 1In some cases

it could be shown that these cascades terminated in the well-known 113/2

This is precisely what one would expect from the i orbital around B = 0.1

13/2
according to the present calculations. Thus in Tl, Hg, and Au, the high-j
orbitals seem consistently to occur with oblate shapes, having either the

decoupled or. near-rotational type of spectra.

isomers.




3.5. Summary

It seems to us‘that the model of a particle coupled to a non—sphérical
rotational cofe works véry wgll for the high-j orbitals in the region just
below lead and also in the La region. Most of the data are on the favored
yrast states, but some data exist.onvlower spiﬁ sfateé.‘ It’is not very clear
at pfesent Just what this agreementbmeans. Thrée possiiilities occur fo us:
(1) the ieast general would.be that the picture is valid‘only for states of the
ma#imum I; thét is for ﬁhe high-spin yrast stateé which are generally the ones
obéérved experimentally; (2) it mighf be that out of some:more general model there
does : 'emérge a set éf core states that look like rotational states‘and
déuple as we describe, ﬁut other core states would aiso be present giving‘rise
to additional states beyond those we calculate; and  (3) the rotational core 
‘states may bevthé only iow-lying ones and thus, for the high—j orbitais, our
calculations are both valid (approximately) and complete., The lower-spin states
in Au suggest that perhaps moré.thah (1) is true, but much work remains to
decide just where the truth liesgg'For lower-~j orbitalé_the situation is even
less clear. Extensive calculations have beén made by Malik and Scholzzo) in the
mass region,'A‘= 25-80. The results of such attempts are generally encouraging
although the data were nowhere sufficient to provide an altogether convincing
picture. Thevhigh;spin yrast states have not been studied there, and‘so far
they‘are the only ones for which there is extensive data that support the model
in a vefy specific ﬁay.

Even within the ﬁodel there are s number of.approximations. It is
fairly easy to show that_éomé, such as the assumption of pure j-values are

not serious. The three that seem to us most likely to be serious are:



. _‘28—'.

(a) the use bf'a-perfect‘rotqr Hamiltonian for the core (eq. (14) represents
only a very limited‘attempt £o relax this); (b) the neglect of the effect of
the odd-particle_on the core parameters; and‘ (c) the restriction of the core
to axially‘symmetric shapes; We cannot estimate véry spécifically how serious
any of these are likely.to be. Thus, the model we discuss seems to have some
very promising aspects;'but much work remains to be done; first to understand
the model'more,completely, and second to understand the limits of its appli-

cability to nuclei in the region of small deformations.
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k. Coriolis,Effectgﬁin Even-Even Nuclei

There are some indicétions‘that the Coriolis effects in the high-j
orbitais also play an.important role in the high spin_states of even-even
nﬁclei. It is not difficult to see that this.might be the case. If one con-
‘siders the Ques£ion of which two-quasi particle (2qp) states of an even-even
nucleus are likely to lie lowest iﬁ energy at spin 20, then the maximum Coriolis
energy given by éq.'(l).becomes an importaﬁt factor. If both particles éfe in
a high-j orbital, then eq. (1) applies, approximately, for each particle, and
a total energy lowering of S MeV is feasonable to expect for i,,,, particles.

It seems clear thatvsuchvan energy‘might Be degisivé_in establishing these
states as the ones that are systematicélly lowest at such spin values. Later '
in this section we will try to show in some detail why an understanding of thé'
lowest 2qp states may be important for these spin values. It is clear that we
dé not yet fully'understand the yrast states in even-éven»nuclei around spin 20;
‘however, the présent discuésion, supported by detailed galculations, suggests
that they éould'weli be strongly influenced by Coriolis effects.

v_The present séction will be divided into three parts. First I will
summarize thé experimenﬁal.data bearing on high—spiﬁ states in even-even nuclei.
Second, I will try to show, usiﬁg odd-A nuclei in the Er region, that & high-j
p;rticle in this region would tend to be largely decéupled at the spin values |
involved., Finally, I will discuss the results of our two-particle Coriolis

calculations and compare them with some other interpretafions.

4,1, Experimental Daﬁa and Interpretation -
Of the two types of data bearing on the qﬁestioh of very high spin states

in even-even nuclei, the older one has t6 do with the de=excitation cascade in
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product nuclei following heavy-ion compound-nucleus (HI,xn) reactions. This informa~
tion hasvrecently beén summarized and some of its implications about the nature
of such high-spin staﬁes:discussed?l). The gamme-ray spectra from these produét
nuclel almost inVariably consist of a set of diséréte linés on a continuous
background. In:rgtatiénal and fibrgtional nuclei the lines correspond to the
transitions in the ground-state collective band (gsb)+, and represent the last
"steps of the de-excitation.}lThﬁs the gamma-ray transitions between the high-
spin states are in the continuous background. Up to now very feﬁ direct studies
of this continuum have been made, so that the information about the high—spin
states is based on observgtions of the transitions between lowef—spin states--
i.e., the discrete lines. The following pointé, made in ref, gl),,are felevant
to the presenf.discﬁssion: a’ the maximum spin observed in the gsb raﬁges from
around 16 for rotors to around 6 for vibratdrs, and this maximum is character-
istic of the particular nucleus (not of the reaction); b) however, when hea&y
ions are used to produce the compound nucleus (bringing in high angular momentum )
then the gsb is fed mostly at of near the highestiobserved ievel; whereas wiﬁh
light projectiles the feeding pattern is felated to thé distribﬁtion of angﬁlar
momentum brought in by the projectileé.c) the mean time interval between the
reaction and population of the gsb in rotétional nuclei is very short, < 10 psec;
and d) very high-spin isomers--I > 20 h--have never been observed. It should |
be\emphasized that these are features observed in (especiélly) rdtational and
vibrational nuclei, and wouldvnot apply, without modification or qualification,

to closed-shell or near-closed-shell nuclei.

TThe gsb refers to the collective band based on the ground-state configuration
of a particular nucleus. For the even-even nuclei considered here, this is a
completely paired configuration--zero quasi-particles--, and the levels of this

band are the yrast levels at low spin values.
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.'_To undefétahd_these four points, the'de—exéitation ﬁas described in
ref.gl) as cénsisting of three‘éascades, whose existence had been previously
proposed by Grdvereg)based éﬁ numerical studies of the pfocess.» These are schem-
atically indicated in fig. 20. Since the'initiai energy (20 MeV) and level den=-
sity are high, a stétistiéal cascadé (I)‘consiSting mainly of high-energy dipole
transitions is expected to occur first. This carries off around half the excit-
ation energy but very'littie angular‘moméntuﬁ and is terminafed by coming into
a region where thevievel density is no longer high. This region is located Just
above the yrast level and would be ® 10 MeV for I ® 35 in the abbve.example. At
this point the cascade is forced to begih'carrying'off angﬁlar momentum and
follows, more or less élosely, the yrast levéls down iﬁ_spin. This is called
the yrast cascade (II). At some Spinthe yrast levels become those of the gsb
and an energy gaﬁ devélops between theée levels and others>of the same spin.
At this point the popﬁlation shifts rather suddenly info the gsb through which
it cascades (IIi)‘to the.grbund state. fig. 20, which is taken from ref. 217,.
shows the_esseﬁtial featﬁres of ﬁhese three cascades; Fpr_lighter projectileé,
where less angular mdmentum is bfought in, the lehgth of the yrast cascade short-
ens, until it is essentially absent in reactions induced by hHe.

Two interesting conclusions were drawn in ref.?l)'about this de-excita-
tion. Firsﬁ, the very short feéding times and absence of isomeric states witﬁ
high spin indicate ﬁhat energies in the high—spiﬁbyrast region must be very
sﬁooth and the transitions between these levels must be enhancedbover the
éingle—parti¢le vélue if‘they are E2.v (Other éhoices for ﬁhe prédominant
multipolarity turn out té be mﬁch moré'diffiCultbto explain.) Furthermore,
to aveid the.generatiqn of discrete lines in this region, the.popuiation muét

be spread over several (3 5) levels. It was suggestegl) that the presence
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of rotational bands admixed by the'strong Coriolis force preseﬁt at these high
spins might préduce‘such féatures. Mottelso§3) has pointed out that the spec-
trum of an asymmetric rotor ié a particularly simple dne'fulfilling these
reqﬁirements of the yrast cascade, but a model for the defexcitatioﬁ based on
this suggestion has not been published. The second conélusion of ref,. 21) was
that the'feedingvpoint of the gsb was near its intersection with other levels.
No other way could be foﬁnd to explain the population batterns. This inter-
section implies a major change in the nature of the yrast levels above this
spin value.

Very recently A. Johnson-gﬁ_gl?h) have found some irregularities in
the rotational energy spacings of rare-earth nuclei just in the region of spin
where they are populated heavily in these (HI,xn)_reactions. These are.shown
in fig. 21, where the moment of inertia for several rare-earth nuclei is plotted
against the square of the rotationalvfrequency; The irregularity, called back-
bending or S—sh@pes, is apparent. This seems to be a fairly general behavior
in this region of the periédic table, énd it lends very sfrong support to'the‘
previbus proposal that a major change is occurring in the yrast levels neaf this
point. Johnson g§.§;} suggest that this change is due to the phase transition
associated with the loss of pairing correlations predicted by Mottelson and
Valatigs) to occur at afound this spin value. I would like to point
out that a simple,' very general iﬁterpretation of this behavior is that the
ground band is interseéting some otherllévelvor level;. This interpretation
probably can be equivalent to that 6f Mottelson and Valatin if
fhe band'intersécted is one with no pairing correlations. Since fhis point is

an important one for the present arguments, I will discuss it briefly.




In’the'géneral case where the ground band intersects another band,
the features of the rotational spacings can be reasonably well characterized.
Fig. 22 shows the simplified situatidn of two bands with constant--but different--
moments of inertia around their interéection point at‘Ic (16 in this case).
We waﬁt to follow the lowest band, and if there is no intersgction between the ‘
bands we simply.change suddenly from one to the other ét Ic' When plotted as
of vs. wg, this makes a diséontinuity as shown by the dashed line in Fig. 23.
This d15continuity causes_lbwer values of w2 above Ic if‘ég/gg > (I; + 2)/Ic.

This might generally be the case around I = 20 since (Ié + 2)/1c is then only

~ 2.2. As an interaction is introduced between the bands; the discontinuity is
rounded, first into an S—sﬁaped curve like A iﬁ Fig. 23, and then with incfeasing
interaction, like7B and finally.C. This range covers the observed behaviqrs,
those of Johnson et al. being of the S-shaped variety (A or B in Fig. 23), where-
asbmost previously measured onés appear to be more likevC. Thus, for intersecting
bands, . the occufrence.of S-shaped curves depends on two factors: (1) the
difference between the effectivé moménts_of inertia of the two bands at their
intersectién point, which determines the transition to be made,and (2) the
strength of the interaction between the bands which determines how sharply this
transitioh is made. |

To summarize, thé above discussion shows that there is good evidencé
for a major chdnge in the nature of the yfasﬁ levels of rare-earth nucleil
,somewhat beléw I= 26, and furthermore, ihat at higher spin values a new very
regular struéturé devélops. Both types of infofmétion_én these high spin levels
have been showﬁ to be cbnsistent with an intersection of_the ground band with

another band (or bands). The interesting physics is in what kind of a band is
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intersecting the ground band; and sb far two different answers have been given.
The Mottelson-Valatin argument would éuggest that a band with no pairing correla-
pions is the one lying lowest after this intersection. We have suggested26)

that the intersecﬁing band.mayvbe.a 2qp band composed of particles in high-J
orbitals (due to the enormous Coriolis energies'afailable to these bands at

such high spin.values). In the next subsection I will fry to show that in the

Er region, at the spin'values where these S-shaped curves are observed, it is

reasonable to suppose that particles in the i orbital would be decoupled.

13/2
We will then go on in section 4.3 to see what such decoupling means in an even-

2van nucleus.

L.2. Decoupling in the Er Region

The decoupled state, described in,sectién 3, is one where the particle
angular momentum, j, is parallel fé the core angular momentum, R. In this
situation there is no Coriolis coupling between the particle and the core. vThus,
if a core is’rotated at different frequencies, the energy changes of ﬁhe system
are just the differences in core rotational energy. That is, the energy spacings
of the decouplea éystem are'just those of the related even-even core. We saw
this‘behavior in the odd-A La, Au, and Hg nuclei in sectibn 3. We now want to
examine the odd-A Er nuclei to see the kind of behavior to be expected in that
region. | |

The high-j orbital involved inthe odd-A Er nuclei is the i neutron

13/2
orbital. Fig. 24 shows the rotational energies, in units of h2/23, expected in
bands based on this orbital for the sirongly-coupled and the decoupled schemes,

On the left is the usual rotational-band picture with the correct relative
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ciergies. If 0 is less thén 13/2, then thére will be levels 1oﬁer than the
one shown at I = 13/2, but the relative eneigies of the levéls shown is inde-
pendent of that., The I = 17/2 to I‘= 13/2 energy differenée is 32%; . On the
right side_of'fig. 2l are shown the favored yfast levels of the decoupied
scheme. Here the I = 17/2 ﬁo I>= 13/2 energy difference is just the even-even
1 =2 1t0 I =0 energy difference, namely - 6 %; o Thus, it is eésy to see that
a measure of this particular eﬁergy difference, relatifé to that of the adjacent
ey en-even nucléi, givéé'a véry simple and direct measure bf how decoupled the
ii3/2 particle'is; | | |

In fig. 25 I have made a plot of the 17/2 -~ 13/2 energy difference
divided by E2+ (as defined to be the average ofrthe two adjacent even-even
nuclei) as ahfﬁnction of neutron number for nuclei in the region of erbium.
The coupled and the decoupled limits, discussed abové, are shown,.and the solid
points répresent'the known nuclei, Itvié appafeﬁt ﬁhét on the right side of
fig;'25 the points are about midway between the two limits; whéreas, on the
left side the nﬁglei are eésentially completely decoupled. Tentative data on
lSSEf indicates that it, too, is at the decoupled limit for these'spins. The
open points show the effect of going to highef spin values in the Er nuclei.
The second highest point represents (E21/2 - E17/2)/(El++ - E2+), and so on
(except. in the case of l57Er, where the order is inverted). At higher spin
values the points. are cleérly nearer the decoupled limit; so that, by the time
one is four units of spin aﬁpve the minimum, all the Er.nuclei are withianO%
of the decoupled limit. I should point out that the coupled limit on fig. 25

moves down as the spins increase, so that the approach to the decoupled line

is not quite so impressive as it appears on the figure. ' Nevertheless, the
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three heavier Er nuclei move down rather strongly at the higher spins even if
one plots as a percentage of the difference between the limits. It is clear

why the higher spin values and/or the lighter Er nuclei apprbach the decoupled

limit. Eq. (1) shows that the Coriolis effects go up with both spin and h2/2_'(.

The increasebin h2/25 is rather sharp as one moves ﬁoward lower neutron number
in this region.

Th¢ relevancé’of'this discussion to the even—even nuclei is as follows,
It is possible to show, in lowest order, that if you couple two high~-j parti—
cles to their makimumrJ, (23 - 1) then the degree of decoupling of the two
particles at spin I = J should be similar to that of one particle at spin,

I = J. This would say that in a 2qp state, based on particles, with

113/
I

J =12, wé might expect the amount of decoupling indicated for the soiid
pointé in fig. 25; that is, they should be decoupled around N ¥ 90, but inter;
mediate at.N ~ 98, However, going a few units of spin higher than 12 should
produce essentially complete decoupling for all the nuclei in this region.

This simple and direct evidence enables us tolmake predictions about the energy
of the 2qp states which are indepéndent of the detailed calculations we would
otherwise have to use. (Note, however, that the caléulations describe these
odd-A Er nuciei father well, fig. 70). The calculations have been done for the
even-even caées26), énd éive the same result--that by I = 16 or so all these
cases should‘be eSsenﬁially decoupled--but' I belie?e that fig. 25 is perhaps a:
Imore convinecing argument for this. We now want to see just what this means‘for

an even-even nucleus.




k.3, The‘Even—Evén Nuclei

In fig. 26 I have drawn simple estimates for the energies of three
bands.in an even-even nucleus. The solid line is the ground—stafe band with &
conét&nt-?alue of‘h2/25 éf lSerV. The dashed liﬁe is the estimated curve for
the decoupléd case. Here I have estimated that it takés 1.5 MeV to remove a

pair of i particles from the pairing correlations. Then it takes some

13/2
additional recoil energy (eq. (4), see also section 3.1) to decouple the parti-
cles. This can'be estimated to be about 1 MeV. Thus by expending about 2.5 MeV

we have two i 2 particles that can be oriented in any direction to give any

13/ B , _
spin value up to I = 12 without further expenditure of energy. This is indi-
cated_by the flat portion of the dashed line in fig. 26 out to I = 12, Beyond
I= 12 additionai angular momentum can be added by rotating the core with
anéuléf momentum, 2h, ﬁh,'etc., and I have taken the ground-band value of h2/25
to extend the decoﬁpled cufve in this‘region} On this naive picture it can be
seen that the ground band’intersééts the decoupled band around I = 12, and we
have prbpoéed that this is the intersecﬁion the experimental data have indicated.
A failuré.of the decoupled band to decouple cbmpletely will raise that curve
in‘fig. 26, and produce an intersection at higher spin values, in better agree-
ment with the data. The dotted curve in fig. 26 represents the Mottelson-
Valatin case., Hefe’I assumed 2.5 MeV was reéuired to destroy all ££é pairing_
correlations in the nucleus, and then rotation could occur with the rigid body
moment of inerfia-— ¢7 keV, This liné also intersects the ground band and
‘could produce the experimental intersection. Fig. 26 is quite schematic and
cerfainly one should not try to estimate from it which intersection occurs at
lower I values.. In faét, probably neither of these:two upper bands exist at

low spih values as a discrete band. Nevertheless, fig. 26 can give an overall

impression of the situation I will be discussing.
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I will describe briefly the mathematics used in the éven—évén case S0
that one has some idea of what is involved. In fig. 27 the coupling séheme is
indicatéd, where two particles with angular momentum, j,vcouplé_to'a total J,
whichithen couplesvwith R to give_I.‘ The projections of the two j values on
the symmetry axis are labeled Ql.vand 92. Fig. 28 shows the 1ow§st few il3/2
component levels, in a situation where A is between the 3/2 and 5/2_components.
The left side shows the main configuration of the even-even ground state, and
the right side éhows a 2qp state of the type we are discussing. This state has
¥ o= l,‘and is connected to the ground state by a lérge Coriolis matrix element

e Tyrve we have discussed. If we consider only the lowest three levels in

"

fig. 28, Q = 1/2, 3/2, and 5/2, and generate all the 2qp states possible, then
tﬁe resulting spectrum is shown in fig. 29. The Fermi surface was assumed td
be between the Q = 3/2 and 5/2 states in this figure; Al]l the non-zero Coriolis
matrix elements have been shown as lines between the connected states. One sees
that with only three values a complicated pattern develops. ‘However, this
sysﬁem can be diagonaiiied in Jjust the previous way; énd, in fact, the full
i13/2 orﬂital has‘beén studied26), including all possible (L49) 2qp states. Also
the ldwesf 4 Q-levels have been used to comstruct all poséible 2qp and Lgp
states, and this system wasbalso studied; so that, we have a reasonable ideav
what to expect from the calculations in these even-even cases. It should per-

haps be noted that eq. (4) applies to such a system if J is substituted for 3,

and one needs only the additional relationship:

pre

J

HOE RO | | (15)

The reliability of these 2qp calculations is not expected to be much worse than

that of the one-particle case (section 2).
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The lowest two solutions of the even-even case (with the Fermi surface
located as in fig. 28) are shown in fig. 30 for three different g values:

g = 0.3, solid lines; B'='O.2, dashed lines; and 8 = 0.1, dotted lines. The

B
likely to apply here, but it was included to showvthé trends. In all three

0.1 case should not be taken too seriously, since the model is not so

cases the 2qp (largely decoupled) band starts out around 2.5 MeV, is réther
flat out to I = 12, and'thén goes up with about the gréund—band h2/23 value.,
In all cases if crosses ﬁhe ground band; however, for the B = 0.3 éase the
crossing is very smooth, and not so apparent since the levels repel eéch other
and do not'get‘clbéér tbgetﬁer fhan about 1 MeV. Nevertheless, plotted on an
o xé;_me plot, thé gfound—band line in fig. 30 does have a typical "kink" in
vit (not quite an S—shape). The earlier intersections in the B =0,2 ana O.l
cases are caused mainly by the wider ground—band spacings Vhich aré jﬁst dge
to:the‘larger h2/23 value used. One sees that the kink, which was not even
visible for B = 0.3; bééomes very large for B >= 0;2, and patholdgical (though
‘probably not at:éll_reliable) for B = 0., . The numbefs on fig. 30 are the cal— .
culated total populations‘passing through each state. -These are obtained from
the (collective)'B(Eé) values and energies obtained from the calculations, where
equal ihitial.pépuiation_was assumed in all (50) levels at I = 30. The cal-
culated pqpﬁlations look. very much like the experiméntal ones,.in general., Thé
feeding in all cases comes in around the infersection_pdint. The reason for |
this is easy to underétand, and.will be discussed briefly, since it is a simplé
and veryvgenefal argument.

In fig,'3;, ﬁe indicate the lowest few solutions from the matrix diagon-

alization for spin I, and label them m = 1, 2, etc.,, according to energy. The
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same is done for spin I + 2, with n as the laﬁeling index. The Coriolis inter-
action varies slowly wifh'I,‘for large I, so that the main difference between
the matrices forvI and I + 2 is that the initial energies of each state differs
by the rotational énérgy--as in eq. (4) or (6). Thus the main difference in the
solutions will be this difference of a rotational energy, which is quite smooth
with I. To higher order, if the interaction is increasing with I--the Coriolis
»interaction is approximately linear with I--then in thevenergy region of interest
the I + 2 states will be lowered with respect to the I states, and the mixed
band will be compressed in energy over the input bands. Since the difference
between the I and.I + 2 métfices is smali;,the lowest_solution from I will have
a wave function similar to that of the leeSt solution of I + 2, etc;

We now consider the B(E2) values between the states indicated in fig. 3l.

The wave functions for a given solution, |IM,m ), can be written:

|mM,m ) =) aﬁ(l) b . (16)
K . .

where the a%(l) are the calculated amplitudes, ¢K signifies a particular input
configuration--0Ogqp or 2qp in our cases--and the ,OiK is the usual rotational
wave function. The B(E2) value between two such states can be written:
. _ o . : . )12
B(E2;I + 2,n > I,m) = ), [{m',m|M(E2,u)|TI + 2 M,n) | (17)
. ) uM! : .

where M(E2,u) is the usual E2 operator. In evaluating eq. (17) it is clear
that the B(E2) values between componénts ¢K and ¢K' are of single particle

strength or smaller unless K = K', in which case they are the enhanced rota-

tional values, igFan. Keeping only the'enhanced térms gives:

B(E2;I+2,n » I,m) = E%F Q§ [L(I+2 K 2 0|I+2 2 T K YaE(I) a;(I+2)]2 . (18)
_ 0 - | .

For large I the above Clebsch-Gordan coefficients are virtually independent of
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K, and approach the limit, Y3/8. Eq. (18) can then be written:
s .. 3°5 2 m ‘n 2
. . > - :

CB(E2; v2,n > Im) S gz 4 [(2 ag(I) ap(1+2)1° (29)
The remaining summation in eq. (19) looks like the one occurring in an
orthogonality integral, which would be written:

: n o' _ : ‘ I

}I; a (1) & (1) = ém,m, . , | o (20) -

. Since we have argued abové that the states n look much like the states m for

n.=m, it follows from egs. (19) and (20) that

- 15 2

~ 1587 % %m0 (21)

B(E2; I+2,n » I,m

thét is, the transitions having solid lines in fig. 31 have the full rotational
strength, and thése with'dashed 1inesvvanish. It is easy to see that transi-
tions of the type I+2,n'+ I+2,n' also vaniéh. since in this approximation the
‘Clebséh—Gordan coeffiéiehf again‘factoré 6ut and the sum in eq. (19) now really
is the drthogonality integral. Thesé ére precisely the selection rules needed
in section 4.1 to bring the population down in spin very quickly, but keep it:
spread over several bénds. The population then feeds rather shérply into the
ground band‘at_a priticél‘gpin value. vThe reason for this is that the.ground
band intersects the 2gp bands rather sharply near this épin value and the assﬁmp—
tion that the matrices look.nearly the same for adjacent spin values is then
-not valid, particulérly_relative to-the ground band. Thus, at the point where
the ground band intefsects other_bands, not only does the developing energy gap
(with decreasing I) favor population of the ground band, but the B(E2) values

for this population also peak in just this region. This seems to provide a
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very general explahationvfor rapid population of the ground band near this
point, in accordance with the observations.

To show that thebprésent-calculations éanbreélly-fit the detailed
rotational-band spacingé, I have compared in fig. 32 a calculation wifh the
data on 158Dy faken by Tieberger g§;§£.27). There is bné parameter in the
calculation. It was made at a time when we did not include the recoil term in
the diagonalization, in which case the Coriolis effects turn out to be too
strong.' Thus for.the calculation shown in_fig. 32 all Coriolis matrix elements
were reduced by a.factor of O.T, which was adjusted to give the kink at abqut
the right place. Iﬁclusion of the recoil term has very mﬁch the same effect,r
with no parameter involved. The agreement in fig. 32 seems exéellent, and

' couid be easily improved by vafying slightly some of thé other numbers going
into the calculation. The slope on the expefimental curve at very low spin
values is probably a feature that does not come naturally out of such a model.
It is, perhaps, the effect of the rotation on the moment of inertia--the so-_
calledFCoriolis ﬁnti-pairing effect. But at higher spin values, around ‘the
kink, the present'calculations can account very well fof'the behavior.

It is easy to make predictions using this model, since the éalculations
are rather simple.  Two expected‘tfends will be discussed. First, the Coriolis
effects are very sensitive to A for reasons discussed in section 2, Théy are
large for low A values, and small for high A values. 'Fig; 33 shows the results
of diagonalizingthe even-even case for various A values, keeping everything
else fixed. One seeé fairly viélent behavior (S-shapes) for low A values,
moderate behavior (kinks) for intermediate A values, and quite smooth behavior

for high A values. There is some hint that this trend may occur in the
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exéérimental.dafa; but much mere data on heavy Yb, Hf, and W nuclei are needed
to test this. Another prédiction we can make is that when h2/23 becomes larger
and X is low the S-shapes can become quite large (seevfig. 33), resulting in
apparent moments of inertia that temporarily exceed thé rigid body value.

This kind of Behavior séeﬁs unlikely on a pairing—collapsé model, Thus data on

still'lighter Er and Dy nuclei might serve to diétinguish-between these models.

4.4, Summary

It seems that this model, which takes into account Coriolis effects in
the 2qp states, can account very ﬁicely fbrvfhe experimental data existing in
the light rare-eartﬁ eveh-even nuclei. This includes data on both the heavy— 
ion feéding énd the detailed rotatiohal spacings. The agreement seems so close
that.dne canvperhaps mgké.an even stronger statement of the situation, .as
follows. If théievents bccurring around I = 16 in these even-even nuclei are
not due to Corio;is effects, then one must assume that something has seriously
weakened the Coriolis force; because all the simple.caléulations and expecta-:
tions from theé odd-A nuélei suggest that rather‘large Cériolié effects should 
be present., This statément is not qﬁite so gtrong as it might sound, since
there are some feductionsiof the Coriolis matrix eleméhts in odd-A nuclei that
are not yet really understood. If thesé reductions Shouid become much larger"
in the‘even—evén nuclei, then‘the effects I have described would only occur at
higher spin values. However, at the present time it éeemé;most likely to us -

that the observed features are these Coriolis effects.
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5. Conclusion

.We have traced the Coriolis effects in nuclei from the éoint whére
théy are sﬁall perturbations in good rotational spéctrg, to the point where
they apparently dominate the low-energy spectrum. Thé situation for a par-
ticular case depends on the reiationship of the rotational energy to tﬁe energy
coupling the particle to the non-spherical part of the potential, If the
latter energy is much larger, good rotastional spectra exist; whereas if it
vanishes-the System'is-sphefically symmetric with no ené?gy splitting of the
multiplets formed by coupling a partiéle to a core staté; With the ﬁésumptions.
and simplifications made.in séctions 2 and 3, it is eaéy to make calculations
anywhere between these.limits. Adjacent to each limit, one finds regions where
a perturbation tréatment coﬁld apply. This'ﬁould be a particle-core weak
coupling model near the spherical limit, and a Coriolis. perturbation approach
near the éood rotational region., If the Fermi surface.is near high-Q levels;
then the two perturbation regions merge into each other, and one changes rather
quickly from a spherical region into one of reasonably good rotors. But if the
Fermi surface is neér low-Q states then the Coriolis effects are large, and
there is a broad region where neither of these schemes is very good. In this
region another coupiing scheme applies where the particle angular momentum has
sharp values aiong the‘rbtational axis (or x-axis). 1In this.case the lowest-
lying states.of a gi%en spin have the particle angular momentum parallel to this
axis; resulﬁing in the so-called decoupled levels., These levels are easily
recognized by the fact that their energy spacings are just equal to those of
the even-even core;'aﬁd it appears that levels with this property occur rather

commonly in heavy odd-A nuclei. It may also be that such configurations are
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involved in the yrast states in even~even nuclei at veryvhigh spin values.

Much remains to be learned about this kind of calculation and how it applies

to nuclei, but at present this approach looks quite promising.
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Figure Captions

Fig. 1. The>183w rotétional bands as treated by Kerman.

Fig. 2. The solid lines are the Niisson solutions for the hll/2 orbital
(4 = 0.70) as a function of deformation. The dashed lines are the'energies
given by eq. (12). The vertical line marks B = +O.275,‘and its inter-
sections with the Nilsson lines }epresent the enérgies of the varioué com-
pdnent levels ét fhat deformgtion. | |

Figj 3. The j15/2 bands in 235Uv(as calculated from eqé° (6) and (9)) prior
to the Coriolis diagonalization. The matrix elements of the operator jt
as calcuiated‘frbm the Nilsson wave functions are also shown. Only a few
rotational levels of each band aré indicated. |

235

Fig. 4. Levels Coulomb excited in U.

235

.Fig. 5. . Rotational spacings of bands in U. The ﬁoints are the experimental

| data,vwith the height of a poiht covering the error limits, and the lines
correspond to.the spacings obtéined from the_one-parameter Coriolis calcuia—
tion.

Fig. 6. This plot is like fig. 5, except (1) the linés correspond to the

three-parameter Coriolis calculation, and (2) the ordinate scale has been

doubled.

161,163,165

Fig. 7. The experimental and calculated positive-parity levels in Er

according to ref. 8).
Fig. 8. Rotational spacings of the positive-parity band in the three Er
nuclei. BSome other bands are plotted on this figure but are not relevant

to the present discussion.
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” Fig. 9. The results of diagonalizing eq. (4) for various B values are given
for the lowest state of each spin up to I = 23/2 (the second I = 11/2 state
is included).' The ordinate is the eigenvalue less the lowest I = 11/2

.\\

eigenvalue, in units of E -and the abcissa is B, The Fermi surface, A,'

2+?
is below the entire orbital for this calculation.

Fig. 10. The Coriolisveffects on é spinning wheei_constrained to turn with a
furhtable (a) tend to produce the configuration shoﬁn in (b). For the

 argument made in the text, the éxis'of the wheel in (b)bshould also be
fastened té the turnfable. |

Fig. 11. Thé three coupling schemes are indicated; At the top is the strong-
coupling séheme, With sharp projections on fhe z axis, At the bottom there
are two séheméé, one with sharp values of R, and the other with sharp
projections of j on the rotational (vertical) axis.

Fig. 12. A comparison bf groundpband levels in some Ba isotopes with the
negative—parityvbahdsfin the.neighbqring La nuclei. In most cases (energy
zefb in paréhfhéses) the La 11/2-level is ﬁot the ground state, and ité
:enérgy has been subtractéd from all levels sﬁown for that isotope.

Fig. 13. Like fig; 9, except that the abcissa is B (toé) or the cube root of

the total splitting of the h orbital in units of Esy (bottom). The

11/2 }
Fermi surface, A? is aiways_located on the Q@ = 1/2 state, so that in fhe
1imit of.fery iéfge B, ﬁﬁe levels will.becéme a pure Q = 1/2 band-with a
decoupling parameter of -6. The dots show the effect of diagonalizing |
eq. (14) instead of eq; (4), where B and C werevadjusted tobfit the lowest
few levels in l26Ba (see section 3.k4.). - |

Fig. 1k. The effect of-vérying A is shown for a fixed value of B = 0.25. At

"~ the top, the location of the hll/é component lévels is shown.
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Fig. 15. A portion of the Nilsson diagram for protons in the region of Au.
The méin'igﬁerestvhere is in ﬁhe h9/2 and hll/é orbitals, which are fully

drawn. The ground states of Au and Tl are in the s and d orbitals

1/2 3/2

which are partially drawn,

Fiz. 16. Solution of eg. (4) for the h orbital. Only the experimentally

9/2

observed levels were dréwn.v The dots correspond to the experimental data

from“199Tl and T"Re. The dashed lines correspond to solutions of eq. (1k4).

l99'1‘1 with

Fig. 17. A comparison of the experimental negative-parity levels in
those calculated according to eq. (4) and eq. (14). The dashed levels are
tentative and should probably not be considered very seriously.

Fig. 18. Solutions of eq. (4) for the h orbital with A adjusted for Au

195

11/2
(top) and Re (bottom). The dots show the experimental data for
179

Au and
Re.
195

Fig.‘l9; A compariéon_of the expeiimental ﬁegative—parity,le&els in Au with
those calcuiafed according to eq. (4) and eq. (14).

Fig. 20. -Excitation energy is plotted against anguiar.momentuﬁ in a nucleus
(with mass arouhd~l60) that is the product of an (hOAr,hn) reaction. The
populated.energy and angular momentumvrange is shown, together with the
proposed cascade pathway to the ground staée.

Fig. 21. The reciprocal of-h2/25 (defined from the transition energies) is
plotted against the square of the rotatiénal frequency for several light
rare-earth nuclei, The'value 6f hw is, to a goodvépproximation, Jjust the .
transition energy divided by tvo.

Fig. 22, The solid lines show theienergies of two rotational bands as a

function of I. The bands have different moments of inertia (h2/2'3l = 15 kéV,
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h2/232 = 10 keV) and are arranged to intersect at I = 16, The dotted and
dashed lines show the energiesléf the mixed bands resulting from cases B
aﬁd C, réspectively;-in fig. é3. v _ |
Fig.v23.- The ratid d/d% is éloﬁted vs. w2 for the two bands ihvfig. 22, The
horizontal lines connected by a dashed line cdrrespond to no mixing between
the bands,'C éorrespohds to_inter-bdnd matrix elements comparable to the
méximum gsb-2qp ones used in our calcuiétions, B to matrix elements 3 times
smaller, and A to onés'lO times smaller. We have'used
Ao Eifé;f;' _éhd ho ~ E(Iftii?ngI'z) , which diffgr slightly from

those others have used, but not significantly.

Fig. 2h4. Rotational—level spacings to be-expeéfed from an il3/2 parficle in
(left)‘a normal rétaﬁional band and (right) a decéubled band.

Fig. 25. The T = 17/2 to T = 13/2 energy difference in units of E,, is plotted
against neutron number in the light Er regibn.v The coupled and‘decoupled
limits for this quantity are shown.

Fig. 26. Simple estimates are shown of the ground—band énérgy in an even-even
pucleus (solid line), the energy of thé decoupled state based on two 113/2
particles (dashéd line), and the energy of a State #ith no pairing correla-
tions (dotted line). |

Fig. 27. The cqupling scheme discussed in the text. It should not be inferred
from thié sketch that all these quantities'have”sharp,values simultaneously.

Fig. 28, Placement of particles in the states based on the i orbital in an

13/2
even-even nucleus with a Fermi surface, A. The left side of the figure
represents the most probable situation for the ground state, whereas the

right side shows a low-lying 2-quasiparticle state. Many levels from other

orbitals would be intermixed with these, but for simplicity are not shown.
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Fig; 29. The ten states possible considering.only 29p states in the @ = 1/2,

3/2, and 5/2 components of the 11372 &3
'ne interconnecting lines éhow the locations of non—zero Coriolis matrix
elements.

Fig. 30. The lowest two solutions of the even-even case for B = 0.3 (solid
lines), B = 0.2 (dashed lines), and B=0.1 (dotted lines). The numbers
représent the total population passing through each lével.

Fig. 31. A schematic illustration of the lowest three solutions for spins I
and T+2, with some of the interconnecting E2 transitions indicated.

Fig. 32. A comparison of the calculated and observed values of 237h2-x§,

. DU 158 . | | |
rotational frequency for Dy.

Fig. 33. The variation of the calculated rotational properties with the

Fermi surface, A, is shown,

orbital plus the ground state (Ogp)..
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This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




TECHNICAL INFORMATI)QN DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





