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Abstract

In drug discovery, it is generally accepted that neighboring molecules in a given descriptors' space 

display similar activities. However, even in regions that provide strong predictability, structurally 

similar molecules can occasionally display large differences in potency. In QSAR jargon, these 

discontinuities in the activity landscape are known as ‘activity cliffs’. In this study, we assessed 

the reliability of ligand docking and virtual ligand screening schemes in predicting activity cliffs. 

We performed our calculations on a diverse, independently collected database of cliff-forming co-

crystals. Starting from ideal situations, which allowed us to establish our baseline, we 

progressively moved toward simulating more realistic scenarios. Ensemble- and template-docking 

achieved a significant level of accuracy, suggesting that, despite the well-known limitations of 

empirical scoring schemes, activity cliffs can be accurately predicted by advanced structure-based 

methods.
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Introduction

In medicinal chemistry, it is usually accepted that structurally similar compounds share 

similar biological activities. Activity cliffs are exceptions. An activity cliff is formed when a 

pair of structurally similar molecules display a large difference in potency.1 Understanding 
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activity cliffs is a key feature of modern structure-activity relationship (SAR) studies.2 

However, studying activity cliffs is not easy, as it raises the problematic question of how to 

practically define an activity cliff. Two key criteria are often used: i) the similarity criterion 

and ii) the potency difference criterion.3 The first criterion depends heavily on the metric 

used to assess compound similarity (i.e. ‘local’ vs. ‘global’ molecular similarity). The 

second depends on the specific experimental assay used for activity measurements. The 

concept of activity cliff formation is thus heavily affected by the context, depending on the 

target and the adopted molecular representation. Furthermore, establishing a threshold for 

discriminating between high and low structural similarities is an arbitrary process, which 

could lead to biasing of the activity cliff assessment. These uncertainties mean that 

computational analysis of activity cliffs in large compound datasets is challenging and 

potentially questionable.4-6 Therefore, researchers are beginning to adopt a consistent 

definition of activity cliffs that looks at similarity in terms of matched molecular pairs 

(MMP), and extracting activity data from publicly available repositories.7-9

Despite these challenges, modern drug discovery should consider activity cliff formation. It 

is undeniable that structural similarity does not always equate to biological similarity, as 

presented in compelling examples by Kubinyi.10 For this reason, computational tools aimed 

at efficiently predicting activity cliffs could be valuable for hit-to-lead and lead optimization 

campaigns.2,3,11 Cruz-Monteagudo et al have recently reviewed some relevant 

contributions.4 Bajorath and co-workers identified several chemical transformations that are 

preferentially responsible for activity cliff formation in different classes of compounds 

active against diverse targets.12 Several analysis tools, e.g. the SAR index (SARI)13 or the 

structure-activity landscape index (SALI),14,15 have been devised to mine large molecular 

datasets for activity cliffs at the two-dimensional (2D) level. Moving from MMPs to SAR 

analysis, the concept of ‘activity ridges’ (multiple overlapping activity cliffs formed by a 

series of cliff-forming compounds) has been introduced,16 and, subsequently, the three-

dimensional (3D) similarity assessment of activity cliffs has been proposed by Bajorath and 

co-workers.17 Here, the comparison is directly performed on experimentally-determined 

binding modes. In contrast to approaches focusing primarily on the ligand, Seebeck and 

colleagues proposed a method to identify activity cliffs that considers the structure of the 

target and derives target-specific pharmacophore constraints.18

A 3D interpretation of activity cliffs is based on the idea that local differences in an overall 

similar pattern of contacts with the target can explain the potency difference between cliff-

forming partners.19 This approach is relevant as it expands the ligand-centric view of 2D 

activity cliffs.20 Small modifications of the ligand structure may compromise important 

interactions with the receptor or hamper the ability of the binding site to adopt an 

energetically favorable conformation, significantly shifting the new compound's potency 

away from the parent one, and thereby forming an activity cliff. At the structural level, 

activity cliffs can be analyzed and compared in terms of hydrogen bond formation, ionic 

interactions, lipophilic or aromatic group interactions, presence of explicit water molecules, 

stereochemistry, or a combination of these.19 In this light, it would be natural to consider a 

structure-based approach as well suited to studying and predicting activity cliffs. As long as 

we were able to: i) predict the 3D conformation of the complex formed by a ligand at its 

receptor binding site, and ii) provide a reasonable estimate of the binding free energy, in 
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principle, we should be able to predict activity cliffs. Is this actually the case? One possible 

approach could rely on pathway-based methods for free energy calculations.21 

Computational protocols based on docking, free energy perturbation (FEP), and molecular 

dynamics can lead to binding affinity predictions in good agreement with the experimental 

data.22 In recent years, thanks to improvements in the quality of force fields, sampling 

methods and hardware solutions, the throughput of this kind of studies increased to up to 

thousands of molecules per year.23 For example, Wang and colleagues, while the present 

study was under review, reported an automated methodology that, combining FEP and 

advanced enhanced sampling methods while exploiting the computational power of GPUs, 

was efficiently used in prospective drug discovery campaigns.24 Other authors have favored 

a different strategy based on end-point methods: MM-PB(GB)/SA rescoring of bound ligand 

conformations generated by ligand docking. In fact, pairing MM-GBSA rescoring with 

advanced docking schemes, it is possible to improve the accuracy of docking results.25,26 

Also in this case, highly automated implementations can be conceived.27

In this paper, we report on the study of 3D activity cliffs (3DAC) by means of an advanced 

docking engine. We study a set of 146 3DACs formed in 9 different pharmaceutically 

relevant protein targets, extracted from a database previously compiled by Hu and co-

workers from publicly available structural data.19 Starting from an ideal scenario, we 

gradually increased the complexity of the simulation scheme in order to resemble, as closely 

as possible, real-life prospective drug discovery efforts. While structure-based methods have 

already been applied to some specific case studies28-30 with the aim of rationalizing 3DAC 

formation, the one outlined here is, to our best knowledge, the most comprehensive study on 

applying ligand docking and virtual ligand screening (VLS) to rationalize and address 

3DACs.

Methods

3DAC database

A 3DAC database encompassing 215 3DAC pairs was previously compiled by Hu and 

colleagues19 according to a procedure which is here briefly summarized. Protein-ligand 

complexes, for which detailed potency measurements were determined and available in 

ChEMBL31 and Binding DB,32 were filtered out from the PDB, and targets with two or 

more small molecule ligands available were selected. The similarity of the ligands was 

assessed by both 2D Tanimoto similarity33 and 3D similarity function,34 taking into account 

the positional, conformational, and chemical differences between the binding modes of the 

compounds. In the original database, two molecules were considered cliff partners only if: i) 

they shared at least 80% 3D similarity, and ii) their potency differed by at least two orders of 

magnitude. 3DACs were formed by 268 X-ray structures of protein-ligand complexes 

collected from the PDB, spanning over 38 different UniProt families. In the study described 

here, only nine molecular targets displaying five or more 3DACs were considered. Due to 

mutations in the binding site, entry 2IW8 from the CDK2 family was removed. The final 

3DAC dataset encompassed 9 pharmaceutically relevant targets (see Table 1) and overall 

158 unique protein-ligand complexes (PDB IDs) forming 146 3DACs (including two S/R 

optical isomers in both their forms). The targets were: Cyclin-dependent kinase 2 (CDK2; 
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UniProt: P24941), Prothrombin (THRB; UniProt: P00734), Heat shock protein HSP 90-

alpha (HS90A; UniProt: P07900), Coagulation factor X (FA10; UniProt: P00742), 

Leukotriene A-4 hydrolase (LKHA4; UniProt: P09960), Beta-secretase 1 (BACE1; UniProt: 

P56817), Proto-oncogene tyrosine-protein kinase Src (SRC; UniProt: P12931), Mitogen-

activated protein kinase 14 (MK14; UniProt: Q16539), and Serine/threonine-protein kinase 

Chk1 (CHK1; UniProt: O14757).

Receptors and ligands preparation

Experimental 3D coordinates of protein-ligand complexes, as retrieved from the PDB, were 

used to generate standard ICM objects.35 During the initial step, hydrogen atoms and 

missing heavy atoms were added, atom types and charges were assigned from residue 

templates, and molecules were assigned internal coordinates. Missing side chains and polar 

hydrogen atoms were optimized and assigned a low energy conformation. The cognate 

ligands were deleted from the complexes upon optimization.36 Where relevant for binding 

site composition, structural ions were retained. Other chains, prosthetic groups, and 

heteroatoms not involved in defining the ligand binding site were deleted. 3D coordinates of 

the ligands from the 158 crystallographic complexes were extracted and converted to the 

ICM internal coordinates format. Stereochemistry, hydrogen atoms, and formal charges 

(according to ICM pKa model at pH equal to 7) were assigned. Each ligand was also 

assigned MMFF37 force field atom types and partial charges. Upon conversion, the initial 

binding score of each ligand-receptor complex was calculated without any further 

optimization by means of the standard ICM empirical scoring function.38

ICM docking

ICM docking procedure uses Monte Carlo sampling to globally optimize a fully flexible 

ligand (in internal coordinates) within the protein binding site, represented by five pre-

calculated grid potential maps.38,39 The ligand binding site was defined by including all 

residues with at least one non-hydrogen atom within a 5 Å cut-off distance from the co-

crystallized ligand. The grid potential maps were calculated on a rectangular mesh 

encompassing the ligand binding site, and extended an additional 4 Å in any direction. 

Every time, two independent Monte Carlo runs were performed, adjusting the simulation 

length according to the default thoroughness value of 1. The five poses assigned the best 

energies during each Monte Carlo run were rescored by the ICM empirical scoring function. 

The quality of the results was assessed by computing the RMSD between the coordinates of 

non-hydrogen atoms of the overall top-scoring ligand pose with respect to those of the 

crystallographic native pose. A heavy-atom RMSD ≤ 2 Å cut-off was applied as a measure 

of success. A self-docking exercise (namely, each ligand was docked back into its cognate 

crystallographic receptor structure) was carried out on all individual complexes. For 

consistency, the docking procedure was carried out by applying exactly the same protocol 

on each complex. Subsequently, for each protein family, all binders were docked to all 

protein conformers, and the results were analyzed in terms of (1) Single Receptor 

Conformation (SRC) cross-docking, i.e. if ligands A and B forming a 3DAC were co-

crystallized with the same protein in complexes A and B, we assessed the performance of 

ligand A within receptor B and vice versa; (2) Multiple Receptor Conformation (MRC) 

docking, in which cliff-forming ligands were assigned the best score obtained across 
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individual runs on all receptor conformers, but excluding the scores obtained from the 

ligand's cognate receptor.40

MRC docking with optimally selected pocket conformers

The ALiBERO41 algorithm typically consists of two main steps: i) generation of a local 

population of receptor conformers, and ii) flexible-ligand rigid-receptor small scale Virtual 

Ligand Screening (VLS), from which the best-performing ‘children’ pockets are selected for 

iterative pocket optimization. Here, only the second step of the ALiBERO procedure was 

taken, selecting the best performing pocket variants among X-ray structures without 

generating new optimized conformers. The protein-ligand complexes within each of the nine 

protein targets explored were structurally aligned and superimposed according to ICM 

iterative procedure.38 After superimposition, a consistent definition of the binding pocket 

residues was adopted including all amino acids within 5 Å from all the co-crystallized 

ligands. Two independent sets of calculations were carried out. In the first exercise, the 

ALiBERO engine was used to select the team of pocket variants that better separates 3DAC-

forming ligands according to their pIC50 values, discriminating more active cliff partners 

from the less active ones (ALiBERO-Set). This procedure was applied to all protein targets, 

with the VLS performance measured by the NSQ_AUC fitness function. The docking 

calculations were performed once for each receptor conformation, without using the 

subsequent Monte Carlo refinement step. The maximum number of complementary pockets 

was set to 6.

In the second application of ALiBERO, the ability to correctly predict 3DAC was assessed 

by assigning to cliff partners the scores generated by the team of selected pockets that better 

separated decoys from actual ligands. This latter experiment was performed on four pre-

selected protein targets (CDK2, HS90A, THRB, and FA10). All 3DAC-forming ligands 

were labeled as active, while the decoys specific for each of the individual proteins were 

regarded as inactive. Decoy sets (bona fide non-binders) for CDK2, THRB, HS90A, and 

FA10 protein families were retrieved from the Database of Useful Decoys (DUD, http://

dud.docking.org).42 The decoy libraries comprised 2053 molecules (CDK2), 1490 

molecules (THRB), 970 molecules (HS90A), and 594 molecules (FA10), respectively, 

keeping the ligand to decoy ratio in the range of 1:50 – 1:57. The four decoy libraries were 

retrieved as SDF files. Hydrogen atoms and charges were assigned automatically by ICM.

Template docking

Experimental 3D coordinates of the 3DAC-forming protein-ligand complex containing the 

more potent ligand (ligand A (Lig-A) at receptor A (Rec-A)) were retrieved from the PDB, 

and used to generate standard ICM objects according to the procedure described above.35 In 

this case, the crystallographic water molecules present in the experimental 3D coordinates 

were retained and their orientations optimized. The binding site was defined around the co-

crystallized ligand, retaining explicit water molecules as well as structural ions, if present. 

The receptor grid potential maps were calculated on a rectangular mesh with a default value 

box margin of 3 Å in any direction around the ligand. The ligand was then subjected to one 

cycle of energy minimization (to limit the ligand's strain) and the Lig-A score in Rec-A was 

calculated. Subsequently, the stronger binder Lig-A was used to constrain the posing of the 
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weaker ligand (Lig-B) of the respective 3DAC. The bound pose of Lig-B underwent one 

cycle of energy minimization before the Lig-B score was assigned.

Similarity Assessment

The similarity between the networks of interactions established by the 3DAC-forming pairs 

at the binding pocket was numerically assessed by a procedure previously developed in 

house.43,44 The script i) enumerates the atomic contacts existing between heavy ligand and 

protein atoms of the target structure (Lig-A at Rec-A) and the model structure (Lig-B at 

Rec-A), and ii) assembles vectors of atomic contact strengths for all ligand-protein atom 

pairs in the target structure and in the model. The strength of each contact is calculated by a 

continuous function. Then, a third vector (the match contact vector) is constructed, assigning 

to each contact the lower weight obtained between target and model. The weight of the 

match vector is expressed as a summation of each individual contribution and it is compared 

to the weight of the target contact strength vector. The similarity between the two patterns of 

interactions fraction is thus reported as recall of the target structure contacts.

Collection and preparation of random non-binders

To explore the statistical reliability of the implemented scoring scheme in predicting 

3DACs, we generated a Gaussian distribution of scores assigned to random drug-like 

molecules (bona fide non-binders). A collection of 1960 drug-like molecules (Mw ≤ 500 and 

≥ 150, XlogP ≤ 5, rotatable bonds ≤ 7, PSA < 150, HB-donors ≤ 5, and HB-acceptors ≤ 10) 

was randomly selected from the ZINC database v.12 (https://docking.org).45 These ligands 

were automatically prepared according to the standard ICM procedure and docked at all 

receptor conformations of four pre-selected target families (CDK2, HS90A, THRB, and 

FA10). The ratio of binders to non-binders was in the range of 1:54 to 1:163.

Data analysis and figures of merit

To assess the reliability of a structure-based method in predicting 3DAC on a specific 

protein family, the overall performance on each protein family was measured by a cliff score 

(CS), a normalized value that ranges between 0 (100% inaccurate) and 1 (100% accurate):

(1)

where n is the number of activity cliffs (3DAC). ΔScore, a partial score obtained by 

individual 3DACs, is calculated as follows:

(2)

where score-a and score-b are scores assigned to the cliff-forming partners.
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In this way, the contribution of each individual 3DAC depends on how significant the 

difference between the binding scores of the two cliff partners (score-a and score-b) actually 

is. ΔScore ranges between 0 and 1, with lower values of ΔScore (≤ 0.5) indicating 

successfully predicted 3DAC. This sigmoidal shape function makes it possible to 

simultaneously take into account whether the activities of the two partners were correctly 

ranked and how significant the difference was in terms of assigned scores.

To provide a more conservative estimate of prediction accuracy, a cut-off value of 2.8 score 

units was also introduced. This cutoff approximates the thermodynamic difference in terms 

of free energy of binding (2.8 kcal/mol) between two binders whose activities (pIC50) are 

two orders of magnitude apart. Because of the stochastic nature of ICM Monte Carlo 

sampling, it is also worth emphasizing that this threshold value is well above the average 

range of two standard deviations around the mean energy value provided by iterated docking 

runs returning poses within the success threshold. Any 3DACs with score difference ≤ 2.8 

were then considered as dubiously assigned and regarded as incorrect. Results for all 

computations were reported with and without applying the cut-off. When applied to CS, the 

cut-off value translated into a 0.5 empirical correction to be added to those ΔScore values 

generated by a difference in terms of score-a and score-b ≤ 2.8. In turn, this negatively 

affected the resulting CS of the protein family (CS became smaller).

To assess the overall VLS performance, we applied the area under the receiver operating 

characteristic (ROC) curve, abbreviated as AUC,46 figure of merit. Moreover, we adopted a 

normalized square root AUC version (NSQ_AUC),47 which is more sensitive to early hit 

enrichment.

To evaluate the statistical significance of the cliff-forming ligand-binding scores obtained by 

MRC VLS with respect to scores generated by random non-binders, we assumed that score 

values were distributed according to a Gaussian distribution. Hence, we could calculate the 

standardized value of the binding score, the Z score (Z) as:

(3)

where MRCscore is the best score obtained by a ligand across the pocket conformations, 

excluding its own cognate receptor, χ̄ is the mean score obtained by the non-binders, and s is 

the standard deviation.

Software and Hardware

All the receptor and ligand preparations, the ICM binding score calculations, docking 

simulations, as well as the energy evaluations were carried out using ICM 3.8 (Molsoft LLC, 

San Diego, CA). The docking simulations were performed on a Linux Quad-core AMD 

workstation (8 CPUs).
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Results and Discussion

3DACs Database

The systematic identification and classification of molecular similarity, and careful selection 

of the activity data from repositories is crucial for activity cliff analysis. In this work, we 

used a previously compiled database of 3DACs19 to adopt widely accepted and published 

standards.48 From the initial 3DACs collection,19 we retained a selection of 9 

pharmaceutically relevant molecular targets. Our database encompassed 158 unique X-ray 

structures, forming 146 3DACs (see Table 1). In particular, each target was represented by 8 

to 34 conformers, co-crystallized with 8 to 36 ligands (including three optical isomers that 

were explored in both configurations), forming 8 to 26 3DAC pairs per molecular target. 

Considering the matched molecular pair (MMP) formalism4 which defines MMP as a pair of 

compounds that only differ at a single site represented by a substructure (such as a ring or an 

R-group), our database comprised 23 MMPs (15%) while all the other 3DACs contained 

multiple substructure modifications, and 31 (20%) even contained scaffold modifications 

(including three isosteres). The formation of an activity cliff is usually regarded as an 

isolated event (i.e. structural neighbors of cliff-forming compounds are not taken into 

account). However, it has been shown that activity cliffs are often formed in a coordinated 

manner.16 These groups of cliff-forming compounds produce a so-called ‘activity ridge’. 

Activity ridges usually encompass multiple compounds spanning over different degrees of 

potency. They are thus much more informative than individual cliffs in terms of structure-

activity relationships.49 While we could identify activity ridges among the ligands of the 

four most populated target families described here (see Figure S1 in the Supporting 

Information), the focus of our study remained activity-cliff-forming pairs of compounds, and 

results will be analyzed accordingly.

Overview of 3DAC prediction protocols

Our results will be presented in terms of increasing practical applicability of the adopted 

docking schemes. Figure 1 is a schematic overview of the workflow. In the first series of 

calculations, we explored the accuracy of unconstrained docking schemes, namely protocols 

in which the conformational space of both cliff-forming partners is independently explored 

within the binding pocket. Here, we started from what could be considered an ideal 

situation: i) we simply calculated the binding score for the crystallographic ligand pose in its 

cognate, experimentally-solved pocket conformation. Then, we performed: ii) SRC docking 

of each ligand with its cognate receptor structure (self-docking), followed by iii) SRC cross-

docking across the two cliff-forming structures. Moving to increasingly more realistic 

scenarios, we assessed the performance of free docking schemes in predicting 3DACs in 

situations more and more closely resembling prospective drug discovery endeavors. On each 

target family, we performed: iv) multiple receptor conformation (MRC) docking studies of 

all binders against all the receptor conformations. In line with our previously reported 

studies, this approach can be considered a practical way to implement receptor 

flexibility.40,50 Then, we used the ALiBERO paradigm, attempting v) to select the sub-

ensemble of receptor conformers most suited at separating cliff partners, and vi) to identify 

the family of pocket variants that provides the best enrichment of true binders in a 
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retrospective virtual ligand screening (VLS) run, concurrently estimating the ability of this 

structural ensemble to predict 3DAC.

Then, we performed a second set of calculations, introducing the template docking 

approach. Here, we assumed that: vii) the bound conformation of one of the cliff-forming 

ligands was experimentally known and could be used to guide the prediction of the binding 

mode of the partner compound. Finally, we explored a situation in which viii) the bound 

pose of the more potent cliff-forming compound was predicted by means of docking at the 

ALiBERO-Set, the ALiBERO-selected receptor conformation set that better separates cliff-

partners, and this pose was in turn used as template to generate the binding pose of the 

weaker 3DAC partner.

Prediction of 3DACs from crystallographic complexes

By means of a straightforward estimation of the ligand binding score within the 

crystallographic complexes, we were able to establish a baseline for the ability of an 

advanced docking procedure to correctly predict 3DACs. This approach can be considered a 

pure assessment of the scoring function performance, with no noise generated by a less than 

exhaustive sampling or a non-perfectly adapted receptor structure. Results for the individual 

receptors are summarized in Table 2 and graphically represented in Figure 2. In the most 

simple accuracy evaluation approach, a prediction was considered successful when, 

comparing the raw binding scores of the cliff-forming complexes, the complex formed by 

the more potent ligand was assigned a better (more negative) score. In this way, correctly 

predicted 3DACs ranged between 27% (FA10) to 92% (THRB), with a median performance 

of 71% (HS90A, MK14). However, this success measure is somewhat crude because it 

completely ignores the extent of the score differences. When a 2.8 score units cut-off was 

taken into account (see Methods), the overall success rate decreased, as expected, but not 

dramatically, ranging from 9% (FA10) to 79% (THRB), with a median performance of 57% 

(MK14). When the performance of each protein family was assessed by means of the cliff 

score (CS, see Methods), values spanned between 0.28 and 0.85 without applying the cut-

off, and between 0.19 and 0.79 when the cut-off was applied. While the two assessment 

methods usually highlight similar trends, CS figures, incorporating in a continuous way the 

difference between simple docking scores (score-a and score-b) obtained by the 3DAC-

forming partners, provides a more accurate insight into the target performance, reaching 

beyond a simple binary (correct/not correct) assessment of 3DAC predictions.

The variability between successful and unsuccessful 3DAC predictions made by simple 

estimation of the ligand's binding energy was quite remarkable, considering that neither 

ligand sampling nor structure optimization was performed at this stage. However, X-ray 

structures are spatially and temporally averaged experimental outputs. They could therefore 

sometimes present a less than fully reliable picture of the actual protein-ligand complex.51 

Since no filtering measure aimed at assessing the quality of the crystals was taken into 

account when the benchmark was compiled, it is reasonable to assume that, in some specific 

cases, the final results could have benefited from some form of refinement.38

Husby et al. Page 9

J Chem Inf Model. Author manuscript; available in PMC 2015 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prediction of 3DACs by SRC self-docking

In SRC self-docking, the co-crystallized ligands were docked into their cognate receptors. In 

this way, we were able to take into account the role of ligand conformational sampling 

within a perfectly adapted binding pocket in predicting 3DACs. In over 95% of the protein-

ligand complexes explored in this study, the native pose could be recovered within the 2.0 Å 

threshold. Only 7 out of 158 protein-ligand complexes were poorly reproduced in self-

docking runs. In other words, predictions related to 8 out of 146 cliff pairs could not be 

considered fully reliable because at least one of the assigned scores was not generated by a 

pose closely resembling the native one. Ligands incorrectly docked into their cognate 

receptor conformations were: three BACE1-binders (3L5D, 3MSJ, 3MSL), two LKHA4-

binders (3CHP, 3FU0), one HS90A-binder (1UY8), and one THRB-binder (2PKS). The 

overall self-docking results are summarized in Table 2 and graphically represented in Figure 

2. A direct comparison of self-docking scores assigned to cliff-forming complexes correctly 

predicted 3DACs in a range between 27% (FA10) and 76% (HS90A), with a median 

performance of 61% (BACE1). When the 2.8 units cut-off was taken into account, the 

overall success rate slightly decreased, as expected, ranging from 18% (FA10) to 71% 

(THRB), with a median performance of 59% (HS90A). When the performance of each 

protein family was assessed by means of CS, values spanned between 0.29 and 0.76 without 

a cut-off, and 0.25 and 0.74 when the cut-off was applied. Results provided by self docking 

were still representative of an ideal situation and, for this reason, it is not surprising that they 

were indeed in line with those provided by a simple binding score estimation (Figure 2). The 

LKHA4 family is the exception to this close correlation, with self-docking significantly 

outperforming the assessment provided by simple binding score estimations. This can be 

explained by considering that, in specific crystallographic complexes, even a limited 

structural refinement, in this case provided by the ligand sampling procedure, can optimize 

the binding mode according to the adopted force field, resulting in 3DAC predictions that 

are more in line with the experimental results.38

Prediction of 3DACs by SRC cross-docking

In the cross-docking step, we docked the 3DAC-forming ligands to their cliff partner's 

receptor conformation. Thus, in each cliff pair A-B, Lig-A was docked at Rec-B, and Lig-B 

was docked at Rec-A. This exercise was fundamental to understanding the putative role of 

local structural rearrangements in the pocket on cliff predictions by means of docking.52,53 

The overall cross-docking results are summarized in Table 2 and graphically represented in 

Figure 2. When directly comparing the cross-docking scores, the correctly predicted 3DACs 

ranged between 20% (CHK1) to 67% (THRB), with a median performance of 53% (SRC). 

Here too, taking in account a 2.8-unit cut-off, the overall success rate decreased, but this 

time more significantly. The 3DACs predictive ability dropped to 0% for the CHK1 family 

(a small family encompassing only five cliff-pairs), while the THRB family had the best 

result with only 54% of correctly predicted 3DACs. The median performance was 33% 

(BACE1). CS values ranged between 0.15 (CHK1) and 0.64 (THRB) without a cut-off, and 

0.05 (CHK1) and 0.60 (THRB) when the cut-off was applied. In 8 out of 9 targets, the 

ability to predict 3DACs deteriorated with respect to self-docking. This points to a relevant 

role for local pocket rearrangements in 3DAC predictions: being able to correctly predict 
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local rearrangements at the binding pocket can actually be one of the most important 

advantages of docking protocols in predicting cliffs with respect to ligand-based methods.

In an attempt to take an intermediate step toward an unbiased and more challenging 

scenario, we also considered the case in which only one of the 3DAC-forming ligands was 

co-crystallized at its target's binding site. In this combined protocol, the scores of Lig-A at 

Rec-A were obtained by means of ICM binding score calculations or SRC self-docking, 

respectively, while the scores of Lig-B were retrieved from the cross-docking at Rec-A. The 

results are summarized in Table S1, and graphically represented in Figure S2 in the 

Supporting Information. Overall, these calculations provided comparable 3DAC predictive 

ability with respect to the individual protocols discussed above. These results are 

particularly interesting considering that hit optimization protocols based on the systematic 

exploitation of crystallography are becoming increasingly popular.

Prediction of 3DACs by MRC docking

Applying a Multiple Receptor Conformations (MRC) docking protocol, we accounted for a 

certain degree of receptor flexibility. In each family, all co-crystallized ligands were docked 

at each pocket variant and each ligand was assigned the best score obtained among the 

individual runs. Furthermore, we did not include the scores obtained upon docking ligands 

to their cognate receptors, as this would have introduced a bias toward the optimized native 

conformation. If a ligand achieved the top score upon docking at its cognate receptor, that 

score was omitted, and the second best score displayed by that ligand (in a different receptor 

conformer) was considered. In this way, we were able to apply an unbiased MRC docking 

protocol, mimicking the real-life situation when the structural data of the protein-ligand 

complexes are not known prior to docking simulations. Results for the individual receptors 

are summarized in Table 3 and graphically represented in Figure 2. When we simply 

compared the MRC-docking scores of the cliff-forming complexes, correctly predicted 

3DACs ranged between 35% (HS90A) and 77% (CDK2), with a median performance of 

67% (67% SRC). When the 2.8-unit cut-off was considered, the overall success rate 

decreased, ranging from 24% (HS90A) to 64% (FA10), with a median performance of 44% 

(44% BACE1). Assessing the performance of each protein family by means of the cliff 

score, the CS values spanned between 0.37 (HS90A, LKHA4) and 0.69 (THRB) without a 

cut-off, and 0.31 (HS90A) and 0.64 (FA10) with the cut-off applied. On average, and with 

the only exception being the HS90A family, MRC docking significantly outperformed the 

SRC approach. Analyzing the data from another angle, we attempted to establish whether 

some specific conformations of the receptor were systematically providing a better 

performance with respect to the others. We also assessed whether the ensemble ability to 

predict 3DACs was superior to all single variants or at least to the majority of them. In line 

with the analysis that we previously reported,52 results for individual runs and MRC docking 

were ranked in terms of success rate at correctly predicting 3DACs. The percentile in which 

the MRC accuracy fell is reported in Table 3. For example, when the ensemble approach 

systematically outperformed all the individual runs, the ensemble performance fell in the 

100th percentile. Conformations displaying accuracy over 75% are explicitly listed (Table 

3). For the CDK2 family, the cliff-predicting power of MRC docking fell in the 100th 

percentile, and in two more cases the MRC score fell in the 90th percentile and above 
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(THRB and FA10). Furthermore, the top MRC docking score was well above the 65th 

percentile in 6 out of 9 protein families. It is worth pointing out that, while families such as 

THRB and CDK2 consistently displayed above-average performance in all of the docking 

protocols, the performance of FA10 increased in parallel to the accuracy of the protocol. 

MRC docking fell in the 90th percentile (with and without the cut-off value applied) 

outperforming most of the individual conformers and achieving an overall accuracy even 

better than that obtained in self-docking and simple binding score calculations. While it is 

quite counterintuitive that docking results can improve when a non-native receptor structure 

is used, this behavior is known and has previously been reported,53 further highlighting the 

fundamental role of receptor flexibility in docking studies. We can summarize the results of 

the MRC docking performed to correctly separate stronger and weaker 3DAC-forming 

binders as follows: i) the performance of 3DAC predicting methods depends on the protein 

family examined and, within that, on the specific crystallographic structure being used; ii) 

without any a priori knowledge of the nature of the pocket, the MRC approach statistically 

provides better results than a randomly selected pocket conformation.

Prediction of 3DACs by MRC docking with optimally selected pocket conformers

MRC docking provided interesting and yet suboptimal results. One possible reason could be 

traced back to the known phenomenon of MRC performance deteriorating due to 

conformational overload. In this case, the anti-cooperative behavior of a large ensemble of 

pockets increases the rate of false positives, limiting the possibility of accurately predicting 

3DACs.53 In principle, this issue could be overcome by carefully selecting pocket 

structures.54 In our first attempt to select the combination of receptor conformers better 

suited to predicting 3DACs, we adapted the ALiBERO protocol. ALiBERO was originally 

designed to optimize the ability of an ensemble docking procedure to separate true binders 

from decoys in a VLS exercise. It introduces local variants of receptor conformations using 

a normal modes analysis and automatically selects the combination of pocket variants that 

returns the best performance. In our case, only the original X-ray structures were used (i.e. 

only one ALiBERO generation was studied) and no local variants were introduced. In these 

retrospective calculations, the less potent cliff-forming partners were labeled as non-binders 

and the more potent ones as binders. Results were assessed by the NSQ_AUC figure of 

merit (see Methods). Thanks to the ALiBERO paradigm, we were able to obtain the 

ALiBERO-Set, an optimal combination of receptor pockets purposely selected because of 

their cooperative power in correctly predicting 3DACs. Results for the individual receptors 

are summarized in Table 4 and graphically represented in Figure 2. The accuracy ranged 

between 71% (MK14) and 100% (CHK1 and BACE1), with a median performance of 88% 

(HS90A). Considering the 2.8 units cut-off, the overall success rate slightly decreased, but 

the 100% 3DACs-predicting ability in BACE1 and CHK1 was not affected. The median 

performance was found at 82% (FA10 and HS90A). CS spanned between 0.74 (CDK2) and 

0.98 (BACE1) without a cut-off, and between 0.61 (MK14) and 0.98 (BACE1) when the 

cut-off was applied. This exercise selected the pocket variants that assign to the most potent 

cliff partner the best possible score and, at the same time, the worst possible one to weak 

cliff partners. Not surprisingly, the ALiBERO-Set docking returned the most accurate results 

of all the free docking protocols employed in this study. In particular, the best performance 

in correctly ranking 3DAC-forming ligands was usually obtained when two to three pocket 
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conformers were combined, as indicated by their NSQ_AUC values approaching 1 (see 

Methods). Even the most populated family, CDK2, achieved the best performance when 

only five pockets were combined with ROC of 0.75 (Table 4).

Although these results have to be regarded as the product of a purely retrospective exercise, 

they are nevertheless quite interesting as they clearly show, in line with what has already 

been reported for general purpose docking and screening protocols,40,53-55 that it is possible, 

by selecting an optimal combination of a few variants, to significantly improve the 3DACs-

predicting performance not only with respect to SRC but also with respect to a 

comprehensive ensemble of conformations, the latter likely being unnecessarily large.

Prediction of 3DACs by MRC docking with pocket conformers selected by an independent 
VLS performance screen

The selection of an ideal team of pockets purposely assembled according to the ability of 

predicting 3DACs could be very difficult to obtain in a real life prospective drug discovery 

program. Conversely, as long as some activity data on several actual binders are available 

for a given target, it is usually possible to select an ensemble of crystallographic (or 

computationally generated) pocket variants that provides an optimal separation between 

binders and non-binders. Decoys can be collected from repositories of experimental 

results31,32 or computationally generated.56,57 The objective of this part of the study was to 

evaluate the ability of an ALiBERO-selected team of pocket variants optimized for VLS to 

predict activity cliffs. This experiment was only carried out on the four most populated 

target families, namely CDK2, THRB, HS90A, and FA10. We analyzed the results in terms 

of i) ligand-decoy separation and, using the scores obtained by true binders in the best 

possible pocket combination, we assessed ii) the 3DACs predictive power. All cliff-forming 

compounds were labeled as active. Decoys retrieved from DUD were labeled as inactive. As 

for the ALiBERO implementation reported in the previous section, the genetic algorithm 

was set to produce one generation, only employing crystallographic structures and without 

introducing computationally refined pocket variants. The results are reported in Table 5. 

Interestingly, the ensembles of pockets providing the best performance in separating ligands 

from decoys varied quite significantly with respect to the ALiBERO-Set (Table 4). In terms 

of results, they were almost identical for CDK2, and only marginally deteriorated for THRB 

and FA10. It was only for HS90A that the performance of the team of pockets optimized to 

separate binders from decoys was remarkably lower (CS considering cutoff, 0.29) than that 

of the pocket selection purposely assembled to identify cliffs (CS considering cutoff, 0.83). 

These results suggest that, on average, when optimizing a VLS protocol to enrich true 

binders, it is concurrently possible to correctly separate strong binders from weak binders 

even when their structures are extremely similar, thus devising a reliable tool for the 

prospective assessment of activity cliffs.

3DAC prediction by restrained (template) docking

In the final part of this multi-layered study, we investigated two more scenarios starting 

from the assumption that the bound conformation of Lig-A had been reliably determined and 

could be used as a template to guide the generation of the bound pose of the weaker binder 

(Lig-B). The idea was that similar molecules would display very similar binding modes 
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within the pocket. In other words (and in contrast to the previously described free docking 

protocols), in using template docking, we excluded the possibility that an activity cliff could 

be formed because two molecules, even if structurally very similar, bound at the same 

pocket in two radically different ways.

In the first case, the bound pose of Lig-A was taken directly from the crystallographic 

complex. Crystallographic water molecules within the ligand's binding site were preserved. 

Results are summarized in Table 6 and graphically reported in Figure 2. On average and as 

expected, the template docking protocol provided very satisfactory results. The accuracy 

ranged between 80% (CHK1) and 100% (FA10, LKHA4, BACE1, SRC, MK14). 

Considering the 2.8 units cut-off, the overall success rate slightly decreased, but three 

families (FA10, BACE1, MK14) still retained 100% accuracy in 3DACs prediction. The 

median accuracy was 90% (SRC and HS90A). CS spanned between 0.78 (CHK1) and 0.99 

(BACE1, LKHA4, MK14) without cut-off, and between 0.69 (CHK1) and 0.99 (BACE1, 

MK14) when the 2.8 kcal/mol cut-off was applied.

Analyzing the variation of the binding score components upon template docking can provide 

interesting insights into what drives the activity cliff formation. Table S2 of the Supporting 

Information reports details on the individual contributions to the binding score values for 

each ligand studied in the template docking exercise. In most cases (96%), when using the 

bound pose of the stronger cliff partner to constrain the sampling of the weaker one, the 

potency drop (score becoming less negative) varied between 2.0 score units (3DAC in 

HS90A, formed by ligand h64 in PDB id: 2FWY upon its transformation into pu7) and 41.9 

score units (3DAC in BACE1, formed by ligand vg5 in PDB id: 2VJ6, upon its 

transformation into vg3). The key element that we could observe was that these drops were 

mainly explained by loss of hydrogen bond interactions, either those formed between the 

ligand and the receptor, or those that involved bridging waters. Figure 3 reports an example 

of how analyzing interaction patterns can explain potency loss.

In the CDK2 family, ligand 4sp (PDB id: 1H1S, Figure 3a) forms a MMP with ligands 2a6 

(Figure 3b) and 6cp (Figure 3c), while ligand dt1 is related to 4sp because of an isoster 

replacement (Figure 3d) with structural modifications at the core common scaffold. The 

more potent ligand 4sp forms four hydrogen bonds with the receptor, three of which involve 

the nitrogen atoms of the central scaffold, and are preserved in the other two less potent 

MMP-forming ligands, 2a6 and 6cp. The fourth hydrogen bond of 4sp involves the 

sulfonamide group of the ligand. This last bond is lost upon structural modification of 4sp 

into the weaker partners 2a6 and 6cp, resulting in a drop of binding score by 8.6 and 10.4 

score units, respectively. In dt1, the hydrogen bond formed between the sulfonamide and the 

receptor is preserved but, due to the modification introduced in the ligand core, another 

hydrogen bond is lost and the binding score drops by 10.4 units.

In Figure 4, another example from the HS90A family is reported. Here, a network of 

bridging waters was involved in shaping the interaction pattern. Although in this second 

example the structural change of Lig-A, cxz (PDB id: 3BMY, Figure 4a) into Lig-B, 2ei 

(Figure 4b), encompassed more pronounced structural modifications, the common 

interaction pattern remained comparable, and the loss of binding energy (9.1 score units) 
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upon structural modification could be predicted correctly modeling one hydrogen bond loss, 

a different steric fit, and increased ligand strain.

Further examples describing the prediction of interaction patterns from 3DAC in THRB and 

FA10 families are reported in the Supporting Information (Figure S3 and S4, respectively).

In the second set of template docking calculations, the template pose was produced by 

docking Lig-A at the ALiBERO-Set of pocket variants and used to guide the generation of 

the bound conformation of Lig-B. This can be considered an attempt to combine the best 

results obtained by means of a free docking protocol, i.e. ALiBERO-Set docking, with the 

template docking paradigm (see Table 2). The success rate ranged between 78% (BACE1) 

and 100% (CHK1, SRC and HS90A). Considering the 2.8-unit cut-off, the overall 

performance ranged between 64% (FA10) and 100% (SRC), with a median accuracy of 83% 

(LKHA4). In terms of CS, the median accuracy was 0.87 (MK14 and CHK1) spanning from 

0.77 (FA10) and 0.99 (SRC) without cut-off. When the 2.8 kcal/mol cut-off was applied, CS 

ranged between 0.67 (FA10) and 0.99 (SRC), with a median value of 0.84 (LKHA4 and 

CDK2). While on average marginally less accurate than the predictions obtained using a 

crystal structure as template, this set of results clearly suggests how template docking can 

still provide accurate results in the absence of a crystal structure, as long as a reliable pose 

for the template is generated by computational means.

Last, we briefly characterized the role played by pocket plasticity in template docking. In all 

restrained docking attempts carried out so far, we have always modeled the weaker cliff 

partner using the more potent one as template. In principle, since we assume that small 

structural variations do not change the overall bound pose of the scaffold, the difference 

between going from the more potent ligand to the less potent one or the other way around 

should be marginal. However, we reasoned that, also in this case, the flexibility of the 

binding pocket could be expected to affect the success rate of the predictions. In fact, less 

potent cliff partners tend to be smaller than their stronger counterparts and, as such, are 

lodged in smaller and less permissive pockets. We tested this hypothesis studying the CDK2 

family. In the first set of calculations, the bound pose of the more potent Lig-A was obtained 

using the pose of Lig-B within Rec-B cognate pocket. Accuracy dropped to only 60% (40% 

when the 2.8 unit cut-off was applied), with CS values of 0.51 and 0.41 (2.8 units cut-off 

applied), respectively. This is not surprising as Lig-A's volume was significantly larger in 

over 90% of the cases. As expected from our previous studies on the role of pocket size in 

cross docking attempts,54,58 higher success rates could be restored when the bound pose of 

Lig-A was obtained first free docking Lig-B into Rec-A pocket variant (cross-docking) and 

then using this pose to guide the docking of Lig-B's more potent counterpart. A successful 

prediction occurred in 24 out of 26 cases (92%) when no cut-off was applied and in 21 out 

of 26 cases (81%) when the cut-off value of 2.80 units was considered. CS was 0.85 and 

0.81, respectively. The insights on the importance of receptor flexibility previously gained 

studying free docking approaches can be applied to conceive a protocol that combines 

template docking and MRC-based strategies. For a detailed overview of the results please 

refer to Table S4 in the SI.
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Discussion on cliff prediction via structure-based methods

Taken together, our results suggest that docking protocols can be successfully applied to the 

prediction of activity cliffs with just some protein-family-dependent variations in the 

accuracy of the results. This is to be expected as activity cliff formation is dependent on the 

target5 and the general accuracy of docking-based modeling methods is affected by the 

specific nature of the binding pocket. CDK2 family can be considered a good example of the 

average trend that can be expected from this kind of calculations. In the first set of 

calculation solely based on binding score estimation, the accuracy of prediction for this 

family was 73% and decreased to 62% when the 2.8 units cut-off was considered (Figure 2). 

The accuracy rate did not significantly deteriorate in the self-docking exercise, confirming 

that, in a perfectly adapted structure, issues of docking-based predictions are usually related 

to the scoring function (soft failures) rather than to an incorrect sampling of the ligand (hard 

failures) (Figure 2). The success rate decreased in the SRC cross-docking experiment, due to 

variations that were introduced in the binding pocket. This happened even when, as with 

CDK2, the conformational fit effect was very limited, mainly involving one or two side 

chain rotamers (Figure 2). The ability to correctly predict activity cliffs could be restored by 

an unbiased MRC protocol. Notably, the MRC results outperformed the predictions 

provided by every individual conformer. The same predictive ability associated with a 26-

pocket-variant ensemble could be retrospectively matched by identifying the minimal 

combination of pockets (5 conformers) most suited to predicting cliffs. A performance in 

line with the ideal cases could also be obtained by identifying a combination of 

crystallographic structures that optimally enriched known CDK2 binders over decoys. This 

last result is particularly interesting because, since the number of targets characterized in 

terms of structures is constantly increasing, together with the number of reported known 

binders,59 this protocol can genuinely be translated to prospective drug discovery programs. 

Coagulation factor X provided another interesting case study. Idealized protocols such as 

binding score calculations and self-docking did not provide very accurate predictions. This 

is likely due to the peculiar nature of the FA10 binding pocket, which encompasses several 

sub-pockets and solvent-exposed regions and severely challenges the reliability of the 

scoring function. Moreover, this target has already been reported to display significant 

conformational fit effects.58,60 When receptor conformational variability was introduced, the 

quality of 3DACs predictions improved significantly. In particular, a limited number of 

conformers systematically achieved better performances than the other pocket variants. 

Interestingly, both ALiBERO-selection based protocols identified teams of only two 

pockets. In both CDK2 and FA10 cases, when 3DACs were predicted by means of template 

docking, very accurate results could be generated (Figure 2).

While the ability to separate binders from non-binders in general-purpose screening 

experiments can usually be considered a good indicator of likely accurate 3DACs 

predictions, there are exceptions to consider, as became evident when analyzing the results 

for the HS90A family. The binding pocket of this chaperone is characterized by the presence 

of a loop (residues 100 to 115), which can adopt three different conformations, namely 

closed, open, and helix.61 All variants were represented in our conformational set. When all 

conformations were indiscriminately used in the MRC docking approach, the 3DACs 

predictive power of the best performing structures was overwhelmed by the noise generated 
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by the others. This explains the less than ideal performance of MRC docking, far below the 

results characterizing individual pockets that adopt the helix (2FWZ) or closed (2CCT) 

rearrangements. In this case, the ALiBERO-Set did not encompass a team of pockets, but 

only a single conformer in which the loop is in a close conformation (2VCJ). In the 

retrospective VLS exercise carried out on a set of ALiBERO-selected receptor 

conformations that better separates ligands from decoys, the ensemble returning the best 

ROC value (0.72, Table 5) encompassed an open and a closed loop conformation. This 

selection of pockets was particularly apt at capturing the structural diversity of all binders 

and enriching them with respect to non-binders. However, in this case, it only provided a 

modestly accurate 3DACs prediction, since only the narrower pocket variants could 

reproduce the specific network of interaction that characterizes tight binders, assigning them 

scores significantly higher than their corresponding partners. In HS90A, the conformations 

displaying an open loop rearrangement, and so a wider, more permissive pocket, provided 

worse predictive power in terms of activity cliffs but better results in terms of general 

separation between binders and non-binders. This is consistent with the observation that, 

when a template was used to guide sampling, the issue posed by false positives generated by 

a larger, more permissive pocket became less relevant and the accuracy of the predictions 

increased accordingly.

Sampling and, even more, scoring functions suffer from well-known limitations,62,63 and yet 

several of the proposed protocols could achieve a significant level of accuracy. Even when a 

difference of 2.8 score units, approximately corresponding to the two orders of magnitude 

change in activity that was used to define a cliff, was introduced as cut-off value for an 

accurate prediction, the reported results only slightly deteriorated. Several elements explain 

this overall acceptable performance. First, our analysis assigned a pivotal role in forming 

activity cliffs to the loss of H-bond interactions. While several components that contribute to 

the thermodynamics of protein-ligand binding (for example de-solvation and entropy loss 

upon binding) remain more difficult to capture, H-bond interactions, being local, directional, 

and enthalpic in nature, can be efficiently described by scoring schemes.64 In CDK2, a 

family which consistently provided accurate results, a higher number of hydrogen bonds 

between the more potent cliff-forming partner and the receptor (with respect to the same 

kind of interactions formed by the weaker ligand) could be observed in 14 out of 26 

instances. In the FA10 family, the more active compound formed more hydrogen bonds in 

only 3 out of 11 3DACs; in all the other FA10 cliff pairs, both partners displayed an equal 

number of hydrogen bonds. In this case, hydrogen bonds alone were not sufficient to explain 

and predict cliff formation. Other factors, such as steric clashes and the structural role of 

solvent within the binding site, had to be taken into account and correctly addressed to 

endow a computational tool of predictive power. In this family, accuracy improved only 

when receptor flexibility was taken into account.

Second, despite some encouraging results,65 scoring functions have been proven inadequate 

to distinguish the potency of members of congeneric series.22,66 However, scoring functions 

are optimized to separate true binders from non-binders,67 and this feature can be exploited 

in 3DAC prediction. In the task at hand, since partners are by definition separated by at least 

two orders of magnitude in terms of potency, the more potent partner likely behaves like a 

true binder, while the weaker molecule more closely resembles a random non-binder. This 
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can be verified by examining 3DAC binding scores from a statistical perspective. To this 

end, we generated Gaussian score distributions docking a set of 1960 random non-binders 

(drug-like molecules randomly selected from ZINC) at multiple receptor structures (see 

Methods). Then, each individual score was normalized and expressed in terms of Z score. In 

turn, from Z scores, p values could be calculated. In this framework, a true binder should be 

assigned a score that is significantly separated from random noise.68 This analysis was 

carried out on the results generated by MRC VLS on four preselected targets, namely 

CDK2, THRB, HS90A, and FA10. MRC VLS is particularly apt for this exercise, as random 

distortions that could be introduced in score predictions by a single receptor conformer tend 

to average out in a conformational ensemble. Instead of just comparing binding scores, 

accuracy of 3DAC predictions could now be assessed by means of a two-fold, more 

stringent success criterion: i) the more potent compound is assigned a more negative binding 

score and ii) this score is significantly separated from random noise (p-value < 0.05). 

Results are summarized in Table S3 of the Supporting Information. Only in HS90A did the 

reliability of 3DAC predictions drop substantially, confirming the challenges posed by this 

family in all reported docking protocols, and making it difficult, in this case, to disentangle 

posing and scoring inaccuracies. In CDK2, THRB, and FA10, introducing statistical 

significance as a second condition for accuracy did not affect the quality of the results.

Third, it is worth analyzing our retrospective results in terms of protein-ligand interaction 

patterns established by 3DAC-forming ligands at the same binding pocket. For this, we used 

a procedure developed in house (see Methods for details). Accuracy was expressed in terms 

of recall of the conserved ligand-receptor contacts established by the strongest (Lig-A in at 

Rec-A) and the weakest (Lig-B in at Rec-A) cliff partners. The contact similarity was 

assessed in the four following scenarios: i) pose of Lig-A from X-ray co-crystal, pose of 

Lig-B freely docked; ii) both poses obtained by unconstrained docking; iii) pose of Lig-A 

from X-ray co-crystal, Lig-B pose obtained by template docking; iv) pose of Lig-A 

generated by the docking at the ALiBERO-Set, pose of Lig-B obtained by template docking. 

The results are summarized in Table 7. In most cases, our simulations were able to recover 

over 50% of the shared contacts. As expected, when Lig-B pose was generated by means of 

template docking, the success rate increased with respect to free docking. No significant 

difference could be observed between simulations in which the conformation of Lig-A was 

retrieved directly from a crystal structure and simulations using the pose obtained by 

docking at the ALiBERO-Set. Even when unconstrained docking was used, the accuracy of 

the results remained fairly high (see Table 7). This analysis helped us to establish that, on 

average, docking protocols are able to recover most of the contacts shared by the cliff 

partners. If the shared contacts are correctly recognized, the difference between assigned 

docking scores depends on the ability of simulations to specifically reproduce the tighter 

interactions displayed by the more potent cliff-forming compound which are absent in the 

weaker one. This is another feature that helps explain the acceptable predictive power 

displayed by most of the outlined protocols.

Finally, it is worth mentioning that, while the results generated here were obtained by means 

of protocols largely based on ICM, it is reasonable to believe that similar results can be 

reproduced employing different docking schemes, provided that certain features are 

available: i) an efficient sampling algorithm, ii) a scoring function encompassing terms for 
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ligand entropy loss upon binding and desolvation, iii) the ability to take into account 

receptor flexibility and induce fit effects, and iv) template docking schemes that exploit a 

known bound pose of a ligand to guide the posing of a similar one.

Conclusions

In this study, we applied structure-based approaches to predict activity cliffs. We used a 

publicly available, independently assembled benchmark to test the accuracy of advanced 

docking and screening protocols in predicting 3DAC. We gradually moved from an ideal 

situation to scenarios that resemble real-life drug discovery efforts, using more complex 

protocols that can exploit readily available structural information, like multiple 

crystallographic conformations of the receptor, activity data from already known binders, 

and even the experimentally-known bound conformation of a congeneric molecule. Thanks 

to the reported results, we could show that, if the bound pose of a cliff-forming partner is 

available from experiments or from a reliable in silico protocol, this can be efficiently used 

in predicting 3DACs. In template docking, taking into account the presence of water 

molecules in the binding site could substantially contribute to the accuracy of the 

predictions. Thus, efforts will have to be made to incorporate the role of water molecules in 

truly prospective protocols.69 Even when a starting bound pose was not available, 

implementing receptor flexibility by means of MRC docking allowed us to almost match the 

ideal accuracy threshold set by purely retrospective binding score calculations and self-

docking runs. Furthermore, in several instances, accuracy could even be improved by 

selecting, thanks to the ALiBERO paradigm, only the minimal structural ensemble out of a 

usually unnecessarily large number of conformational variants. We suggest that advanced 

structure-based methods could be a valuable tool for predicting activity cliffs as long as they 

are able to efficiently describe ligand-receptor interaction patterns, with particular reference 

to hydrogen bonds. What makes structure-based methods particularly interesting and 

differentiate their contribution from the one provided by ligand-based methods is not the 

mere presence of the receptor but actually the possibility to describe the receptor's plasticity. 

The next step in refining our predictive tools could involve devising protocols that combine 

the best predictive features from both structure- and ligand-based methods, such as the 

recently reported Atomic Property Field screening protocol.68,70
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Figure 1. 
Overview of the 3DAC prediction protocols reported in this study. Different docking and 

virtual screening approaches were applied to a pre-compiled benchmark, gradually shifting 

from an ideal situation toward more realistic scenarios.
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Figure 2. 
Accuracy of 3DAC recognition for the 9 targets in this work using different methods. 3DAC 

prediction accuracy is evaluated as a cliff score (CS) as described in Methods. Results are 

reported according to a) simple CS (no cut-off applied) and b) CS with a cut-off of 2.8 score 

units. Each bar represents a different protocol: binding score calculations (white), SRC 

cognate receptor self-docking (yellow), SRC cross-docking (orange), MRC with co-crystals 

excluded (red), and retrospectively identified ensembles of experimental protein conformers 

selected by ALiBERO (ALiBERO-Set, light purple). The performance of the template 

docking approach with the pose of Lig-A, obtained either experimentally (X-ray) (purple) or 

from docking at an ALiBERO-Set (turquoise), is also reported. Black arrows highlight 

results obtained by protocols resembling realistic scenarios.
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Figure 3. 
Insight into the binding pattern of the CDK2 3DACs-forming ligand 4sp, 2a6, 6cp, and dt1. 

The stronger ligand 4sp (green) co-crystallized in 1H1S (a) forms four hydrogen bonds with 

the receptor. The loss of potency upon its modification into 2a6 (purple) (b), 6cp (lila) (c), 

and dt1 (magenta) (d) is due to steric reasons and hydrogen bond loss. The transparent 

spheres represent unsatisfied hydrogen bonds of the ligands.
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Figure 4. 
Insight into the binding pattern of the HS90A 3DACs-forming ligand cxz upon structural 

modification (template docking) into ligand 2ei. The stronger ligand cxz (purple) co-

crystallized in 3BMY (a) forms two hydrogen bonds with the receptor, and two with 

bridging water molecules. The loss of potency upon its conversion to 2ei (green) (b) is due 

to one hydrogen bond loss, steric reasons, and increased ligand strain. The transparent 

spheres represent unsatisfied hydrogen bonds of the ligand.
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Table 5

VLS performance and 3DAC prediction accuracy of ALiBERO-selected pocket conformer sets that better 

separate ligands from decoys.

ALiBERO-selected pocket variants for ligands - decoys separation

Protein CDK2 THRB HS90A FA10

#3DAC pairs 26 24 11 11

ligands 36 28 17 12

decoys 2053 1490 970 594

Best pockets 1h1s+1h01+2r3j 3dhk+3egk+2anm 3k97+2cct 2p94+2vwm

combination (+ 2xmy/2r3h/2vtm/1y8y) (+ 1nt1+3f68) 3k97+2vcj (+2vwl)

ROC 0.85 (0.84) 0.94 (0.95) 0.72 (0.72) 0.83 (0.83)

NSQ_AUC 0.55 (0.55) 0.73 (0.79) 0.33 (0.34) 0.51 (0.52)

3DAC separation from ALiBERO-selected pocket variants

no cut-off
20/26 (77%) 17/24 (71%) 8/17 (47%) 8/11 (73%)

CS = 0.74 CS = 0.67 CS = 0.43 CS = 0.70

2.8 units cut-off 18/26 (69%) 15/24 (63%) 4/17 (24%) 6/11 (55%)
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Table 6

Template docking results.

Protein

Template docking: X-ray Template docking: ALiBERO-Set

Lig-A: X-ray Lig-A: ALiBERO-Set docking

no cut-off cut-off 2.8 no cut-off cut-off 2.8

CDK2
24/26 (92%) 23/26 (88%) 25/26 (96%) 21/26 (81%)

CS: 0.90 CS: 0.88 CS: 0.91 CS: 0.84

THRB
23/24 (96%) 20/24 (83%) 20/24 (83%) 18/24 (75%)

CS: 0.94 CS: 0.88 CS: 0.80 CS: 0.76

HS90A
16/17 (94%) 15/17 (88%) 17/17 (100%) 16/17 (94%)

CS: 0.93 CS: 0.90 CS: 0.94 CS: 0.91

FA10
11/11 (100%) 11/11 (100%) 9/11 (82%) 7/11 (64%)

CS: 0.97 CS: 0.97 CS: 0.77 CS: 0.67

LKHA4
23/23 (100%) 22/23 (96%) 20/23 (87%) 19/23 (83%)

CS: 0.99 CS: 0.97 CS: 0.86 CS: 0.84

BACE1
18/18 (100%) 18/18 (100%) 14/18 (78%) 13/18 (72%)

CS: 0.99 CS: 0.99 CS: 0.77 CS: 0.75

SRC
15/15 (100%) 14/15 (93%) 15/15 (100%) 15/15 (100%)

CS: 0.98 CS: 0.95 CS: 0.99 CS: 0.99

MK14
7/7 (100%) 7/7 (100%) 6/7 (86%) 6/7 (86%)

CS: 0.99 CS: 0.99 CS: 0.87 CS: 0.87

CHK1
4/5 (80%) 3/5 (60%) 5/5 (100%) 4/5 (80%)

CS: 0.78 CS: 0.69 CS: 0.87 CS: 0.77
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Table 7

Conservation of the pattern of interactions formed by cliff partners at the same binding pocket.

Protein

Contact similarity (complexA, complexB) ≥ 50%

Template docking Free Docking

Lig-A: X-ray Lig-A: ALiBERO-Set Lig-B only Lig-A and Lig-B

CDK2 22/26 (85%) 23/26 (88%) 20/26 (77%) 20/26 (77%)

THRB 22/24 (92%) 15/24 (63%) 19/24 (79%) 21/24 (88%)

HS90A 17/17 (100%) 17/17 (100%) 6/17 (35%) 7/17 (42%)

FA10 7/11 (64%) 10/11 (91%) 4/11 (36%) 6/11 (55%)

LKHA4 13/26 (56%) 13/26 (56%) 9/23 (39%) 7/23 (30%)

BACE1 17/18 (94%) 18/18 (100%) 15/18 (83%) 15/18 (83%)

SRC 15/15 (100%) 15/15 (100%) 7/15 (47%) 7/15 (47%)

MK14 6/7 (86%) 5/7 (71%) 2/7 (29%) 4/7 (57%)

CHK1 4/5 (80%) 4/5 (80%) 5/5 (100%) 5/5 (100%)
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