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ABSTRACT OF THE THESIS

Multi-Broadcasting in Ad-Hoc Radio Networks

by

Jordan Samuel Kuschner

Master of Science, Graduate Program in Computer Science
University of California, Riverside, March 2024

Dr. Marek Chrobak, Chairperson

The challenges of gossiping and broadcasting in ad-hoc radio networks have been

well-studied. Broadcasting, or one-to-all exchange, is dissemination of a message

from a single source node to all other nodes in the network. Gossiping, or all-to-all

exchange, is the dissemination of a message from each node to all other nodes in the

network. Many-to-all exchange, on the other hand, has gone relatively unstudied in

ad-hoc radio networks. We refer to this challenge as multi-broadcasting. Due to the

unstudied nature of multi-broadcasting, the fastest previously known deterministic

algorithm was the Õ(n4/3) proposed in [10]. If a network has a set Q of nodes

with messages where |Q| = q < n, we provide three different deterministic multi-

broadcasting protocols under three different models. The first assumes knowledge of

both the set Q and the value q and runs in time O(qn log n log log n). The second only

assumes knowledge of the value of q, and runs in time O(qn log3 n). The final model

has the same assumptions as the second model, with the additional knowledge that
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the nodes of Q are at most a distance σ apart. Under this model, multi-broadcasting

can be completed in time O(q2σ∆ log2 n). Lastly, we provide a protocol that can

determine the correct value of q in O(log n) time, thus the need for knowledge of

q under the second and third models is not necessary at a small additional cost in

runtime.
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Chapter 1

Introduction

In a radio network, the devices act as both transmitters and receivers. If a device is

within the transmission range of another device, it will receive transmissions from that

device. However, if two devices transmit simultaneously, a collision at the receiving

device occurs and the transmission is not received. We assume there is no collision

detection, so neither transmitters nor the receivers are aware of the collision. With

this obstacle, the ad-hoc radio network provides two main challenges: broadcasting

and gossiping. In broadcasting, a single device wants to share its message with all

other devices in the network. In gossiping, also known as total information exchange,

all devices want to share their own message to all other devices in the network. These

two challenges further create another challenge: a scenario where many, but not

all, devices want to distribute their message throughout the network. We coin this

challenge as multi-broadcasting.
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Related work. Naively, both broadcasting and gossiping can be solved in time

O(n2) by performing n rounds of RoundRobin transmission where for each time

slot i = 1, 2, · · · , n the node with the label i is given the sole opportunity to trans-

mit. In [2], Chlebus et al. proposed a broadcasting algorithm that runs in time

O(n11/6), the first sub-quadratic upper bound on this problem. DeMarco and Pelc

subsequently reduced the upper bound to O(n5/3 log3 n) in [9] before Chlebus et al.

further improved the upper bound to O(n3/2) in [1]. A significant breakthrough in

broadcasting occurred when Chrobak et al. proposed a nearly optimal O(n log2 n)

time broadcasting algorithm in [3]. Some time later, DeMarco improved the upper

bound to O(n log n log log n) in [8] which is currently the best known upper bound

for deterministic broadcasting.

With their nearly linear time broadcasting algorithm, Chrobak et al. proposed the

first sub-quadratic gossiping algorithm that ran in timeO(n3/2 log2 n) in [3]. Gossiping

later saw some improvement by Xu in [13] by dropping the poly-logarithmic factor

for a runtime of O(n3/2). This upper bound was again improved to Õ(nD1/2) in [11]

where they also proposed a Õ(D∆3/2) protocol, where ∆ is the maximum in-degree of

the network (Õ notation is a shorthand for asymptotic notation that hides logarithmic

factors). Gasieniec, Radzik, and Xin proposed an Õ(n4/3) time gossiping algorithm

in [10] which is the fastest deterministic gossiping algorithm to date.

The challenge of multi-broadcasting has gone relatively unstudied, particularly

under the ad-hoc radio network model. To date, the only known algorithm for this
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model was proposed by Clementi et al. in [5] and runs in time O(D∆2 log3 n), how-

ever this algorithm does not leverage the fact that we have fewer than n rumors to

disseminate and so it is essentially equivalent to a naive gossiping algorithm. Prior

to this paper, the best way to accomplish multi-broadcasting was to simply use the

Õ(n4/3) algorithm for full gossiping proposed by [10].

Our Contribution. In this paper, we explore various methods to improve the

upper bound of Õ(n4/3) for distributing a set, Q of rumors such that |Q| = q < n,

under a variety of different conditions. First, we introduce a naive algorithm for

where the source set, Q, is known by all nodes in the network. Then, we modify the

naive algorithm to work when the size of Q is known, but not the actual members of

Q. Under our final model, we assume the nodes of Q are within some distance σ of

each other. For this model, we first show an O(σ∆ log n log∆) time bounded-radius

broadcasting algorithm that transmits a source message µv from a node v to all nodes

within distance σ of v. For all models, we assume that the maximum in-degree of

the network is bounded by ∆ ≤ n. Later, we describe a protocol that can find the

correct value of q through a repeated doubling process such that knowledge of q is

not necessary for the second and third models.

Organization. The rest of the paper is organized as follows: in Chapter 2, we

review the basic definition of the radio network model and selectors, as well as full

[3] and limited [4] broadcasting algorithms. Additionally, we discuss some practical
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applications of selectors outside the field of radio networks. In Chapter 3, we propose

a bounded-radius broadcasting algorithm that can disseminate a rumor to all nodes

within a distance σ from v and prove its correctness and runtime of O(∆σ log n log∆).

Then, in Chapter 4, we describe three different protocols under the previously men-

tioned environments and prove the correctness and runtime of each. We also describe

a procedure to ”guess” the value of q using a repeated doubling procedure and prove

its correctness. Lastly, in Chapter 5, we wrap up our thoughts and discuss some open

ideas for further improvement.
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Chapter 2

Preliminary Knowledge

In this section, we provide the basic definition of an Ad-Hoc Radio Network model.

We then review the definition of selectors. After, we discuss previous broadcasting

algorithms. Lastly, we explain a couple of the many practical applications of selectors

outside the scope of radio networks.

Ad-Hoc Radio Network Model. We can model a radio network as a directed

graph, G = (V,E) where nodes represent processors and an edge, e = (u, v), denotes

the fact that v is within range of u to receive a transmission. We define u to be an

in-neighbor of v, and we refer to the set of all in-neighbors of v as NB(v). Particularly

in our setting, we state that for all v ∈ V , |NB(v)| ≤ ∆ ≤ n. In the Ad-Hoc model,

nodes are only aware of their own label, a unique identifier in the set, {1, 2, . . . , n},

as well as the upper bound on the number of other nodes, n. Our model allows for an

unbounded message size, so a node will aggregate any messages it has already received
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into a single message and transmit its entire knowledge base in a single transmission.

Time is discrete and divided into equal length time-steps, where in each time-step, a

node determines whether or not it should transmit. We assume nodes can perform

any necessary internal computations in constant time and do not account for these

computations in the runtime of our protocols. Additionally, we operate under the

assumption that the nodes do not have collision detection. That is, if two nodes, u1

and u2 transmit along edges (u1, v), and (u2, v) in the same time step, a collision will

occur and node v will receive no transmission. Furthermore, v cannot distinguish a

collision impacted transmission from a complete lack of transmission and so collided

transmissions are lost. The absence of collision detection necessitates the need for a

protocol to efficiently schedule transmissions from each processor in order to either

avoid collisions entirely or only allow collisions on nodes who do not need to receive

the colliding messages. Note that there exists other radio network models, ad-hoc

or not, that do have collision detection. See [12], which explicitly talks about how

collision detection can accelerate protocols in the ad-hoc model. For broadcasting,

we assume that every node is reachable from the source node, v. For gossiping and

multi-broadcasting, we further assume that G is a strongly connected graph.

Selectors. For a given value of k, a selector, or a selective family of sets, can be

represented as S̄ = S1S2 . . . Sm, where for any size-k set X ⊂ U , some set Si ∈

S̄ intersects with X on exactly one element. For {Si ∩X} = {x}, we say that

Si isolates x. If S̄ isolates exactly 1 element from any size-k subset of n, we refer to
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S̄ as a weak selector, and if S̄ isolates all k elements from any size-k subset of n, we

say that S̄ is a strong selector.

Selectors have been well studied across the literature and it is known that for

a given k, a weak selector has size m = O(k log n) while a strong selector has size

m = O(k2 log n). In [7], DeBonis et al. introduced (k, p, n)-selectors which guarantee

isolation of at least p elements from a size-k subset of n nodes. They additionally

showed that for any p = αk where α < 1, a (k, p, n)-selector is larger than a weak

selector by a constant factor, thus asymptotically its size is equal to a weak selector,

O(k log n). Using (k, p, r)-notation, a weak selector is a (k, 1, n)-selector while a strong

selector is a (k, k, n)-selector. We will use this notation throughout the remainder of

this paper.

Interleaved Sequences of Selectors. Consider the following group of sets: X =

(x1, x2), Y = (y1, y2, y3), and Z = (z1, z2, z3, z4). We can interleave these sets into a

single, infinitely repeating sequence as shown below:

W = (x1, y1, z1, x2, y2, z2, x1, y3, z3, x2, y1, z4, x1, y2, z1, x2, y3, z2, . . . )

Such a sequence is called an interleaved sequence. The period of an interleaved se-

quence is the least common multiple, or LCM of the lengths of all individual se-

quences. In the above example, the period of W is LCM(2, 3, 4) = 12. A stage of

an interleaved sequence comprised of β individual sequences is the next β steps of

the infinite sequence. For our application to selectors, we can interleave (2j, 2j−1, n)-
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selectors for j = 1, 2, . . . , log∆ by interleaving the sets Si ∈ S̄j for each j. Because the

size of each (2j, 2j−1, n)-selector varies by an increasing power of 2, the period of the

interleaved sequence of selectors is simply the size of the largest selector, O(∆ log n)·β,

where the β factor accounts for the interleaving. For β = log∆ the sequence has a

period length of O(∆ log n log∆). In [10], they show that an interleaved sequence

of geometrically increasing strong selectors can transmit a message along a length-

k path in time O(k2 log3 n). They call this interleaved sequence of selectors a path

selector.

Limited and Full Broadcast. In [3], they propose an O(n log2 n) time full broad-

casting algorithm that will successfully deliver a message from a source node, v, to all

other nodes in the network. It is implemented using stages of interleaved (2j, 1, n)-

selectors for j = 1, 2, . . . , log n, where each stage iterates over the next log n sets of

the interleaved sequence of selectors. In the proof of runtime, they show that, over the

course of O(n log n) stages, a source message originating from a node v will reach all

other nodes. In [4], they propose an O(k log2 n) time limited broadcasting algorithm

that successfully delivers the source message to at least k nodes by using O(k log n)

stages of interleaved selectors. We derive our radius broadcasting algorithm in a

similar style to these broadcasting algorithms. The currently fastest known deter-

ministic broadcasting algorithm was proposed by DeMarco in [8] and runs in time

O(n log n log log n).
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Applications of Selectors. It is well-known that the study of selectors has prac-

tical applications in many different areas such as resolving multiple-access channel

(MAC) contention, group testing, coding, bioinformatics, and of course, radio net-

works. We discuss here the applications to multiple-access channels and group test-

ing. We will also heavily utilize both (k, k/2, n)-selectors and (k, k, n)-selectors in our

multi-broadcasting protocols.

Broadcast Channel

1 2 3 6 7 8 9 124 5 10 11

Figure 2.1: A MAC Channel with n = 12 nodes connected to it, and a size-k subset
of nodes that want to transmit, {2, 6, 8, 11}.

The MAC contention challenge involves a group of n nodes connected to a broad-

cast channel, some k of which want to transmit to the channel. If a node successfully

transmits to the channel, then the channel will relay that message to all other nodes

attached to the channel. If multiple nodes transmit to the channel simultaneously,

the messages will collide and be lost in the channel, and the transmitting nodes will

have no knowledge that the collision occurred. Figure 2.1 above represents the MAC

contention challenge where n = 12 nodes are connected to the MAC. If only 1 non-

specific node must transmit to the channel then a (k, 1, n)-selector can isolate a node

from the size-k set in time O(k log n). For any p that is a constant fraction of k, a
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(k, p, n)-selector will isolate p nodes from the size-k set still in O(k log n) time. If

all k nodes must transmit to the channel, then a (k, k, n)-selector can facilitate these

k transmissions in time O(k2 log n). To target a specific node or group of nodes,

we must also use a (k, k, n)-selector. Selectors for MAC contention resolution were

studied in [1].

Selectors are also helpful tools in group testing. Consider a case where we know

that in a group of n people, k of them are known to be positive for some disease, like

COVID-19. Each person has a unique identifier and their own sample. To save tests,

a (k + 1, k + 1, n)-selector can be used to isolate the k positives. An administrator

will collect n samples, one from each person. They will mix the samples according to

the groups specified by a (k + 1, k + 1, n)-selector and apply each mixed sample to a

test. If this test reads negative, then the administrator knows that this whole group

of people is negative and can eliminate all of them as potential positives. If a test

reads positive, then the administrator can eliminate known negative people who also

participated in a negative test. Once all negative people are eliminated, only the k

positives will remain. Thus, the positive people have been identified using O(k2 log n)

tests. Group testing algorithms with selectors are described further in [7].
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Chapter 3

Bounded-Radius Broadcasting

For networks where the diameter of Q is at most some value, σ, it may be advan-

tageous to perform a broadcast from a source node v to all nodes within a distance σ

from v. For networks that have a bounded in-degree of ∆, one could use Phase I of

the Õ(n∆)-time gossiping algorithm described in [10], however with a cost of using

a O(∆2 log n) strong selector, it is only viable for very small values of ∆. However,

the runtime of Phase I in [10] is independent of the size of our message set, Q. As

such, our goal is to design a new radius broadcasting algorithm that can efficiently

perform a partial broadcast to all nodes within a distance σ from the source node,

v. We can modify the broadcasting algorithm described in [3] to achieve this task.

In their protocol, they interleave (2j, 1, n)-selectors for j = 1, 2, . . . , log n and they

define a stage as the next log n steps of the interleaved sequence of selectors. With

the in-degrees of the nodes bounded by ∆ ≤ n, we can instead interleave (2j, 2j−1, n)-
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selectors for j = 1, 2, . . . , log∆. We assume that ∆σ < n, otherwise we can use the

O(n log n log log n) time full-broadcasting algorithm instead. Formally, the modified

procedure works as follows:

Algorithm BrBroadcast(∆, σ): In each stage, s, for j = 1, 2, . . . , log∆, the

transmission set in the j-th step of stage s is S̄j,s mod mj
.

Theorem 3.1. BrBroadcast(∆, σ), successfully broadcasts a message, µv, from a

source node v to all nodes within distance σ of v in time O(σ∆ log n log∆).

Proof. Consider any arbitrary fixed path, P = ⟨v0, v1, . . . , vσ⟩, where v0 = v. To

prove the runtime and correctness of BrBroadcast(∆, σ), we show that for each

i = 1, 2, . . . , σ, the delay between message µv’s arrival at vi and its arrival at vi+1 is

at most 2c ·∆ log n log∆, where c is the constant in the asymptotic upper bound on

the size of a (2j, 2j−1, n)-selector. Figure 3.1 below depicts the path P as part of a

subset of nodes in the entire network, where nodes vi, h, and c have µv.

v0

v1
vi

vi+1

vσ

c

d

h

a

v2

vσ-1

Figure 3.1: A fixed path, P , in green, of length σ originating from v0. At time ti, vi
and nodes shaded in red have µv. Nodes that are not labeled vi are other nodes in the
network that are not members of P . Dashed edges indicate a multi-hop connection.
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Let X be the set of in-neighbors of vi+1 such that every node in X has received µv.

X is dynamic and can grow to size 2b for 0 ≤ b ≤ log∆, where b = log(|NB(vi+1)|).

Let ti be the time that vi receives µv. Therefore, at time ti, |X| > 0. In Figure 3.1,

X = {vi, h, c} at time ti.

Claim 1. ti+1 ≤ ti + 2c ·∆ log n log∆.

Claim 1 will show that node vi+1 receives µv by time ti + 2c ·∆ log n log∆. Thus,

for |P | = σ, vσ will receive µv after σ · 2c · ∆ log n log∆ = O(σ∆ log n log∆) time

steps, so Claim 1 will prove Theorem 3.1.

Let t′ = ti + 2c · ∆ log n log∆. At time t′, |X| ≤ 2b. We prove Claim 1 by

showing that in the interval, [ti, t
′], a node in X will transmit µv to vi+1. We can

divide [ti, t
′] into intervals based on the growth of X. For j = 0, 1, 2, . . . , b, we define

Ij to be the interval where 2j−1 < |X| ≤ 2j holds true. Let X ′ ⊂ X be the set

of nodes in X at the start of an interval, Ij. If the length of Ij is shorter than the

length of the appropriate (2j, 2j−1, n)-selector, that is, |Ij| < c ·2j log n log∆, then the

(2j, 2j−1, n)-selector may not isolate any nodes in X ′ because X will exceed size 2j

before the protocol finishes iterating over the (2j, 2j−1, n)-selector. However, if there

exists j such that an interval Ij has length |Ij| ≥ c · 2j log n log∆, then the protocol

will iterate over the entire (2j, 2j−1, n)-selector within the first c · 2j log n log∆ steps

of Ij and isolate 2j−1 in-neighbors of vi+1, regardless of whether they contain µv or

not. Since |X ′| > 2i−1, then, by the pigeonhole principle, at least one node in X ′ will

be isolated by the selector, and this node will successfully µv transmit to vi+1.

13



Claim 2. There exists j such that an interval, Ij has length |Ij| ≥ c · 2j log n log∆

We first show that by proving Claim 2, Claim 1 will also hold. Consider the first

j where |Ij| ≥ c · 2j log n log∆ holds. Let t′′ =
∑j−1

κ=0 |Iκ| be the sum of the interval-

lengths from I0 to Ij−1. Since these intervals are all shorter than c · 2κ log n log∆, the

sum of these intervals is less than 2c · 2j−1 log n log∆. Thus, t′′ < c · 2j∆ log n log∆.

Then, during the first c · 2j log n log∆ steps of Ij, the protocol will iterate over the

full (2j, 2j−1, n)-selector which will isolate a node from X ′ and node vi+1 will receive

µv at time ti+1 with

ti+1 ≤ ti + t′′ + c · 2j log n log∆

≤ ti + c · 2j log n log∆ + c · 2j log n log∆

= ti + 2c ·∆ log n log∆

We now prove Claim 2 by contradiction. Assume that all intervals Ij for j =

0, 1, 2, . . . , b have length |Ij| < c · 2j log n log∆. Then the following must hold true:

t′ − ti =
b∑

j=0

|Ij| < c ·
b∑

j=0

2j log n log∆ = 2c · 2b log n log 2b ≤ 2c ·∆ log n log∆

showing that t′ − ti < 2c · ∆ log n log∆, which is a contradiction. Therefore, there

must be some Ij such that |Ij| ≥ c · 2j log n log∆, proving Claim 2. This completes

the proof of Theorem 3.1.
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Chapter 4

Protocols Under Various Models

In this chapter, we propose multi-broadcasting under three different models. The

first model assumes full knowledge of Q: that is, all nodes in the network know which

nodes are in Q and which nodes are not, and consequently all nodes know the size,

|Q| = q, as well. The second model assumes the nodes know the size q but do not

have any knowledge on the specific members of Q. Nodes that are in Q are aware

that they are part of Q by virtue of having a message, but they are not aware of

other members of Q. Under the third model, Q has a diameter at most σ. That is,

any two nodes in Q are reachable via a path of length at most σ. We then describe

a different protocol that can guess the correct value, q in log n time, thus enabling

protocols under the second or third model to work without knowledge of the size of

Q. Under all three of models, we assume that the network has a bounded maximum

in-degree of ∆ ≤ n.
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4.1 Full Knowledge of Q

We start with a naive algorithm under the assumption that all nodes in the net-

work have knowledge of both the size of Q and the individual members of Q. We

utilize the O(n log n log log n) time broadcasting algorithm to distribute the messages

of Q throughout the network.

Protocol NaiveMB(Q, n): The node in Q with the smallest label initiates a

broadcast. Once this broadcast is complete, the node in Q with the next smallest

label initiates a broadcast. This continues until the node with the largest label in Q

initiates a broadcast. When this final broadcast finishes, the protocol terminates.

Theorem 4.1. NaiveMB(Q, n) successfully completes multi-broadcasting in time

O(qn log n log log n).

Proof. With full knowledge of Q, each node in Q will know exactly at what time

step it can initiate a full broadcast without contention in the network. Nodes not in

Q will not initiate a broadcast and act only as participating members in broadcasts

initiated by nodes in Q. After a single execution of broadcasting from v, all nodes

in the network have message µv. Then, after q executions of broadcasting from all

nodes in Q, all nodes in the network will have all messages of Q.

16



4.2 Knowledge of |Q|

Without knowledge of the members of Q, the nodes in Q can not coordinate their

broadcasts by labels. Instead, we use a (q, q, n)-selector of size m = O(q2 log n) to co-

ordinate broadcasts. Additionally, rather than performing a full broadcast from each

node inQ, they will instead perform q limited broadcasts using LimitedBroadcast(ρ)

from [4]. The value of ρ will be determined later. To facilitate limited broadcasting

via the selector, we iterate over the m sets of the selector in phases, where the length

of each phase is equal to the length of LimitedBroadcast(ρ), O(ρ log2 n). After

the limited broadcast phases, full dissemination of each message will be completed

using a set cover concept, described in Phase II of DoGossip in [3], which we will

refer to as SetCoverFlush(). Formally, the protocol works as follows:

Protocol StrongMB(q, n):

for i = 1, 2, . . . ,m

– during Phase i

—– if v ∈ Si, v initiates LimitedBroadcast(ρ).

SetCoverFlush()

Theorem 4.2. For ρ = (n/q) log1/2 log n, StrongMB(q, n) completes multi-broadcasting

in time O(qn log3 n log1/2 log n).

Proof. LimitedBroadcast(ρ) disseminates a message µv from a source node v

to ρ nodes in time O(ρ log2 n). Using a (q, q, n)-selector of size O(q2 log n) will isolate
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each node in Q, so it takes time O(q2ρ log3 n) to perform q limited broadcasts, one

from each node in Q.

Once the limited broadcasting portion of the protocol is complete, each message

originating from a node in Q is now in at least ρ nodes. SetCoverFlush() will re-

peatedly find the node in the network with the most messages and broadcast from that

node, flushing the messages contained in this broadcast. A message is flushed once

all nodes in the network have received it, and flushed messages will not be counted

in a node’s message count during the FindMax portion of SetCoverFlush().

With all messages in at least ρ nodes, SetCoverFlush() will perform at most

O((n/ρ) log n) broadcasts. On each broadcast, it takes time O(n log2 n log log n) for

FindMax and it takes an additional time O(n log n log log n) for the actual broad-

cast. Therefore, SetCoverFlush() takes time O((n2/ρ) log3 n log log n) to flush

all q messages from the network. After SetCoverFlush() completes, all messages

from Q have been flushed so StrongMB(q, n) completes multi-broadcasting in time

O(q2ρ log3 n + (n2/ρ) log3 n log log n). For ρ = (n/q) log1/2 log n, StrongMB(q, n)

runs in time O(qn log3 n log1/2 log n+qn log2 n log1/2 log n) = O(qn log3 n log1/2 log n).
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σ

Figure 4.1: A model where H ⊂ V has diameter σ. All nodes of Q are contained
within H.

4.3 Q With Diameter σ, |Q| is known

We next consider a model where both the size of Q is still known, the members of

Q remain unknown, but we know that the max distance between any two nodes in Q

is at most σ. Figure 4.1 above depicts this model, where Q ⊂ H. Nodes of Q can be

located anywhere within H, and it is important to note that H may have nodes that

do not actually have messages. Although they are not members of Q, these nodes

can act as intermediate nodes in broadcasts initiated by nodes in Q.

By using the bounded-radius broadcasting protocol from Chapter 3, we can first

gather all q messages into all nodes of Q. We will again facilitate these bounded-

radius broadcasts with a (q, q, n)-selector of size m = O(q2 log n), iterated over in

m phases, with each phase length equal to a single call of BrBroadcast(∆, σ).

Once all bounded-radius broadcasting is complete, all nodes of Q will initiate full

broadcasting to complete multi-broadcasting. Since all broadcasts carry the same
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messages, this is equivalent to a single broadcast from any node in Q. We assume

q2 ≤ ∆, otherwise we can use σ repetitions of a (∆,∆, n)-selector as described in [10].

Formally, the protocol works as follows:

Protocol BdMB(σ, q) :

for i = 1, 2, . . . ,m

– during Phase i

—– if v ∈ Si, v initiates BrBroadcast(∆, σ).

all nodes in Q initiate broadcast

Theorem 4.3. BdMB(σ, q) completes multi-broadcasting in networks with a bounded

diameter on Q in time O(q2σ∆ log2 n log∆).

Proof. Each execution of BrBroadcast(∆, σ) takes time O(σ∆ log n log∆),

as shown in Theorem 3.1, and using a (q, q, n)-selector will take time O(q2 log n)

to initiate BrBroadcast(∆, σ) from each node in Q. After this initial phase, all

nodes in Q have all q messages, thus a single broadcast from any or all nodes in Q

will complete multi-broadcasting.

4.4 Doubling to Find |Q|

In Sections 4.2 and 4.3, we described protocols that rely on knowledge of the size

of the set Q, but not the actual members of Q. In this section, we describe a protocol

that can repeatedly call a multi-broadcasting procedure with geometrically increasing
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values of q′ passed as a parameter for q until the first instance of q′ > q is found. This

protocol leverages the concept of informing by silence [3] where nodes can interpret

the lack of transmission as additional knowledge. Let P (n, q) be a protocol that

successfully performs multi-broadcasting in time tP,q = O(P (n, q)) if a value q′ ≥ q is

passed, and has unknown performance if q′ < q is passed. We can start from q′ = 1

and repeatedly double q′ until q′ ≥ q is found.

Protocol Doubling(q′): all nodes in Q start counting from time t = 0 and at

the same time, P (n, q′) is initiated. If any node v ∈ Q counts to t = tP,q′ without

transmitting, then v broadcasts a failure signal. The protocol then initiates a call to

Doubling(2q′). If no node broadcasts a failure signal, then the protocol terminates.

Theorem 4.4. Doubling(q′) will successfully determine the correct value of q within

⌈log n⌉ calls.

Proof. Although the nodes in the network are unaware of the individual members

of Q, each node itself knows whether or not it is part of Q by virtue of whether or

not it has a message to transmit. For a successful multi-broadcasting operation to

occur, all nodes in Q must transmit at least once, otherwise some message in Q must

have never left its source node. Therefore, if after tP,q′ time steps, some node has not

transmitted then it knows a failure has occurred and this node will broadcast a failure

signal to the rest of the network. If multiple nodes broadcast a failure signal, collisions

are mitigated as the same exact message is being transmitted and can be treated as a

single transmission. Thus, after tP,q′ steps, the protocol will know whether to continue
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calling Doubling(2q′) or terminate the protocol. Since the previous value of q′ is

geometrically increasing in each call, the correct value of q will be found after log q

calls. Since q < n, at most ⌈log n⌉ calls will occur. This completes the proof of

Theorem 4.4.

If we are not aware of a diameter bound on the nodes of Q, then P (n, q) =

StrongMB(q, n). If we are aware of a diameter bound, σ, on Q, then P (n, q) =

BdMB(σ, q). In either case, we can drop the requirement on the knowledge of q

because we can determine it using Doubling(q) which increases the runtime of

StrongMB(q, n) or BdMB(σ, q) asymptotically by a factor of O(log n).
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Chapter 5

Conclusions

In Chapter 3, we presented a bounded-radius broadcasting algorithm for radio

networks with a maximum in-degree of ∆. We proved that BrBroadcast(∆, σ)

will successfully disperse a message from a source node v to all nodes within distance

σ of v in time O(∆σ log n log∆).

In Chapter 4, we discussed the challenge of multi-broadcasting under three differ-

ent models: (i) A network where both Q and |Q| are known, (ii) A network where

only |Q| is known, and (iii) A network where |Q| is known and Q has a known di-

ameter σ. We proposed a multi-broadcasting protocol for each model and proved the

correctness and runtime of each protocol. For (i), we showed that NaiveMB(Q, n)

completes multi-broadcasting in time O(qn log n log log n). For (ii), we showed that

StrongMB(q, n) completes multi-broadcasting in O(qn log3 n log1/2 log n). For (iii)

we showed that BdMB(σ, q) completes multi-broadcasting in time O(q2σ∆ log2 n).
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Additionally, we described and proved a procedure that can find the correct value of

|Q| = q in O(log n) time so knowledge of |Q| is not necessary under models (ii) and

(iii) at this additional O(log n) cost. For all full broadcasts, we utilize the protocol

described in [8] which runs in time O(n log n log log n).

In multi-broadcasting, several problems remain open due to the relatively unstud-

ied nature of this problem. For one, under the simpler models mentioned in Chapters

4.1 and 4.2, it would be interesting to see an adaptation that allows for larger values

of q. Additionally, one can observe that for k ≈ n2/3, the full gossiping algorithm in

[10] uses at most O(n/k) broadcasts. With only q < n nodes containing messages,

we suspect that it may be possible to perform multi-broadcasting with O(q/k) broad-

casts, possibly with a slight refactoring of k. If such an algorithm exists, it will beat

the Õ(n4/3) full gossiping algorithm for any value of q < n under any ad-hoc radio

network model.

In bounded-radius broadcasting, there are two main problems that remain open:

The first is to perform bounded-radius broadcasting efficiently in radio networks with-

out a bound on maximum in-degree, ∆. Also, it would be interesting to close the gap

between our protocol, BrBroadcast(∆, σ), and the runtime of the full broadcasting

in [6]. Our bounded-radius broadcast protocol was derived from the full broadcast-

ing protocol described in [3], using stages of interleaved selectors. For networks with

in-degree bounded by ∆, it seems possible that one could complete bounded-radius

broadcasting in time roughly equal to O(σ∆ log n log log∆).

24



Bibliography

[1] Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Woj-
ciech Rytter. Deterministic broadcasting in ad hoc radio networks. Distributed
Computing, 15(1):27–38, 2002.

[2] Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Wojciech
Rytter. Deterministic broadcasting in unknown radio networks. page 861–870,
2000.

[3] Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. Fast broadcasting and
gossiping in radio networks. Journal of Algorithms, 43(2):177–189, 2002.

[4] Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. A randomized algo-
rithm for gossiping in radio networks. Networks, 43(2):119–124, 2004.

[5] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed broad-
cast in radio networks of unknown topology. Theor. Comput. Sci., 302(1-3):337–
364, 2003.

[6] Artur Czumaj and Peter Davies. Faster deterministic communication in radio
networks. In Proc. 43rd International Colloquium on Automata, Languages, and
Programming (ICALP’16), pages 139:1–139:14, 2016.

[7] Annalisa De Bonis, Leszek Gasieniec, and Ugo Vaccaro. Generalized framework
for selectors with applications in optimal group testing. In Automata, Languages
and Programming, pages 81–96, Berlin, Heidelberg, 2003. Springer Berlin Hei-
delberg.

[8] Gianluca De Marco. Distributed broadcast in unknown radio networks. SIAM
Journal on Computing, 39:2162–2175, 2010.

[9] Gianluca De Marco and Andrzej Pelc. Faster broadcasting in unknown radio
networks. In Information Processing Letters, pages 53–56, 2001.

25



[10] Leszek Gasieniec, Tomasz Radzik, and Qin Xin. Faster deterministic gossiping in
directed ad hoc radio networks. In Proc. Scandinavian Workshop on Algorithm
Theory (SWAT’04), pages 397–407, 2004.

[11] Leszek Gasieniec and Andrzej Lingas. On adaptive deterministic gossiping in ad
hoc radio networks. Information Processing Letters, 83(2):89–93, 2002.

[12] Dariusz R. Kowalski and Andrzej Pelc. Leader election in ad hoc radio networks:
A keen ear helps. Journal of Computer and System Sciences, 79(7):1164–1180,
2013.

[13] Ying Xu. An O(n1.5) deterministic gossiping algorithm for radio networks. Al-
gorithmica, 36(1):93–96, 2003.

26


	List of Figures
	Introduction
	Preliminary Knowledge
	Bounded-Radius Broadcasting
	Protocols Under Various Models
	Full Knowledge of Q
	Knowledge of |Q|
	Q With Diameter , |Q| is known
	Doubling to Find |Q|

	Conclusions
	Bibliography



