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Whereas preclinical investigations
and clinical studies have estab-

lished that CD8C T cells can profoundly
affect cancer progression, the underlying
mechanisms are still elusive. Challenging
the prevalent view that the beneficial
effect of CD8C T cells in cancer is solely
attributable to their cytotoxic activity,
several reports have indicated that the
ability of CD8C T cells to promote
tumor regression is dependent on their
cytokine secretion profile and their abil-
ity to self-renew. Evidence has also
shown that the tumor microenvironment
can disarm CD8C T cell immunity, lead-
ing to the emergence of dysfunctional
CD8C T cells. The existence of different
types of CD8C T cells in cancer calls for
a more precise definition of the CD8C T
cell immune phenotypes in cancer and
the abandonment of the generic terms
“pro-tumor” and “antitumor.” Based on
recent studies investigating the functions
of CD8C T cells in cancer, we here pro-
pose some guidelines to precisely define
the functional states of CD8C T cells in
cancer.

Introduction: The Relevance of
CD8C T Cells in Cancer

CD8C T cells are essential for clearing
viral, protozoan, and intracellular bacterial
infections.1 Multiple lines of evidence
show that CD8C T cells are also a key
component of antitumor immunity. Ini-
tial studies in preclinical cancer models
showed that CD8C T cells have a role in
the prevention of tumor growth. Uytten-
hove et al. showed that escape of P815
mastocytoma was due to loss of distinct
CD8C T cell specificities2 and Nakayama
and Uenaka showed that antibodies
against CD8C effectively blocked the
spontaneous rejection of transplantable
tumors.3 Shankaran et al. and Smyth
et al. later showed that adaptive immune
responses were essential to prevent growth
of mutagen-induced spontaneous
tumors.4,5 Interestingly, Shankaran et al.
further reported that TAP1-transfected
transplantable sarcomas were eliminated
in wild-type mice in a CD8C T cell
dependent-manner, suggesting that high
expression of tumor antigens could drive

activation of anticancer CD8C T cell
responses.4 Subsequent work from Koebel
et al. showed that during the equilibrium
phase of cancer growth, where cancer cells
persist but are kept in check by the
immune system,6 depletion of CD8C T
cells drives cancer cell growth, underscor-
ing the importance of CD8C T cells in
controlling cancer growth over long time
periods.7

CD8C T cells have also been shown to
be essential effector cells in the context of
anticancer therapies. Depletion of CD8C

T cells has been shown to abrogate the
anticancer efficacy of oxaliplatin and
doxorubicin against EL4 thymoma and
MCA2 fibrosarcoma tumors, respec-
tively.8,9 Similarly, the therapeutic effect
of local radiotherapy in melanoma, of
interferon therapy in leukemia, and of
bacille Calmette-Guerin therapy in blad-
der cancer is abrogated in the absence of
CD8C T cells.10-12 Altogether, these
results establish that CD8C T cells can
control spontaneous and carcinogen-
induced tumor growth, invasiveness of
transplantable cell lines as well as the ther-
apeutic efficacy of some anticancer
treatments.

In line with this substantial amount of
preclinical work, it has been established in
human cancers that CD8C T cell infil-
trates can predict patients’ survival. While
in kidney cancer CD8C T cell infiltrates
have been associated with worse outcome
and with higher tumor grade,13,14 they are
linked to a better clinical outcome in the
vast majority of other cancer types. In
ovarian cancer, the presence of CD3 T
cell infiltrates have been shown to corre-
late with improved survival rates.15 In
colon cancer, tumors without signs of
metastatic invasion exhibit increased num-
bers of effector-memory CD8C T cells,
thereby indicating that the presence of
effector-memory CD8C T cells in the
tumor microenvironment correlates with
a better prognosis.16 These findings were
subsequently confirmed in other cohorts
and an international consortium is cur-
rently evaluating the possible utilization of
immune infiltrate data to predict patient
survival in routine clinical settings.17,18

The favorable prognostic value of CD8C

T cell infiltrates has also been documented
in other cancer types, such as breast cancer
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and epithelial ovarian cancer.19,20 These
findings suggest that, in humans, even in
situations when tumors are detectable,
CD8C T cells can control tumor progres-
sion. The clinical relevance of CD8C T
cells in human cancer is further under-
scored by recent studies in breast cancer
patients showing that the combination of
high CD8C and low FOXP3 cell infil-
trates after chemotherapy was significantly
associated with favorable clinical
responses.21 These results were confirmed
in two other studies, where CD8C tumor
infiltrating T cells were found to be an
independent predictive factor for patho-
logical complete response after anthracy-
cline or anthracycline-taxane-based
chemotherapy.9,22 Collectively, these pre-
clinical and clinical observations indicate
that CD8C T cells should not only be
contemplated as a putative therapeutic
tool but also as a biomarker to monitor
the efficacy of cytotoxic chemotherapy.
However, recent data also indicate that
intra-tumoral CD8C T cells often lose
their effector functions and exhibit a dys-
functional state. Accordingly, the terms
“antitumor” and “pro-tumor” have been
used in the literature to describe CD8C T
cells in cancer. Given the advances in our
knowledge of CD8C T cell phenotypes in
cancer, these terms are clearly an oversim-
plification. Here, we discuss the different
functional states of CD8C T cells in can-
cer and propose some guidelines for more
accurate designation of CD8C T cells that
exhibit different functional phenotypes.

CD8C Effector T Cells in Cancer

Na€ıve CD8C T cells that undergo
priming in vivo in the presence of helper
factors produced by CD4C T cells differ-
entiate into effector T cells that express
high levels of perforin and granzymes.23,24

The coordinated delivery of these cyto-
toxic molecules to cancer cells can drive
caspase activation and ultimately cell
death23,25-27 (Fig. 1a). Given the demon-
strated potential of CD8C T cells to kill
cancer cells, CD8C T cells are often
refered to as cytotoxic T lymphocytes
(CTLs). Several different methods can be
employed to assess CD8C T cell cytotoxic-
ity: direct measurement of target cell

killing (for example by the chromium 51
release (51Cr) assay28), flow cytometry
based or ELISPOT measurement of gran-
zyme B, a component of lytic granules in
CD8C T cells,29,30 and detection of the
expression of CD107a, which is present
on the cell surface of degranulating CD8C

T cells. While the individual merits of
these different methods have been
debated, they have all been used to dem-
onstrate CTL activity in cancer. Using
quantification of CD107a, Rubio et al.
showed that tumor-cytolytic T cells could
be elicited in patients after vaccination
and that tumor cell killing is associated
with the ability of CD8C T cells to recog-
nize their targets.31 Using a 51Cr release
assay, Takeshima et al. showed that in
tumor-bearing mice local radiotherapy
could elicit cytotoxic tumor-specific
CD8C T cells that prevent tumor
growth.32 Importantly, they further dem-
onstrated the importance of CD8C T cells
in mediating tumor regression following
radiotherapy in vivo by using a neutraliz-
ing CD8C antibody. This key experiment,
which was replicated in other studies,10

was essential because the detection of acti-
vated or even antigen-specific cytotoxic T
cells in ex vivo/in vitro assays does not nec-
essarily ensure that CD8C T cells drive
tumor regression in vivo.

CD8C T cells can also kill tumors via
the Fas/Fas ligand pathway. Indeed, it has
been proposed that FasL-driven CD8C T
cell killing could be essential for the elimi-
nation of large and/or disseminated
tumors.33-35 However, it should be noted
that tumors can lose Fas expression or
develop mutations in the cell death path-
way engaged by FasL, thus developing
resistance to FasL/Fas-mediated CD8C T
cell cytotoxicity. Other mechanisms by
which tumors can resist CD8C T cell
cytotoxicity are increased expression of
anti-apoptotic molecules such as Bcl-2,
Bcl-xl, and Mcl-1 and changes in compo-
nents of the cytoskeleton that impair the
formation of stable immunological synap-
ses between cytotoxic CD8C T cells and
tumor cells.36,37

Strategies have also been developed to
assess CTL activity in vivo. For this, the
selective elimination of adoptively trans-
ferred carboxyfluorescein diacetate succi-
nimidyl ester (CFSE)-labeled target cells

bearing a specific CD8C T cell peptide
has been examined in preclinical mod-
els.38 While this technique has the major
advantage of assessing CD8C T cell cyto-
toxicity in vivo, it does not inform as to
the killing mechanism employed nor does
it allow for visualization of the killing pro-
cess. In regards to the latter, the develop-
ment of intra-vital imaging represents a
major advance in monitoring T cell anti-
cancer functions in vivo in mice at the sin-
gle-cell level. Using this technology, the
group of Amigorena has found that acti-
vated cytotoxic CD8C T cells can infiltrate
tumors and arrest in close contact to and
kill tumor cells provided that the tumor
cells express cognate antigen.39 Using a
similar methodology, Breart et al. found
that in contrast to in vitro cytotoxic assays
where tumor cell death occurs within
minutes after incubation with cytotoxic T
cells, the in vivo destruction of one tumor
cell by a cytotoxic T lymphocyte in the
tumor bed took on average 6 h, possibly
explaining the limited ability of CD8C T
cells to eradicate established tumors.40

While the cytotoxicity of CD8C T cells
against tumor cells has been a major focus,
it is important to note that some studies
suggest that direct tumor cell killing may
not be the major or only mechanism
responsible for tumor regression. It has
been shown that CD8C T cells can also
recognize tumor antigens processed by the
stroma41 and studies using longitudinal
confocal microscopy imaging have shown
that vessel regression occurs immediately
following CD8C T cell entry from the
blood stream into the tumor.42 Thus,
cytotoxicity against tumor stroma may
also be a major mechanism of tumor
regression.

Although much attention has been
given to the cytotoxic function of CD8C

T cells, it is not the sole mechanism
responsible for the anticancer activity of
CD8C T cells. Activated CD8C T cells
also secrete cytokines like TNFa and
IFNg, which can induce cancer cell senes-
cence and play essential roles in the con-
trol of anticancer immune responses and
tumor growth43 (Fig. 1a). IFNg has
indeed been shown to be critical for cancer
immunosurveillance and its secretion by
CD8C T cells can enhance antigen presen-
tation, the antitumor functions of
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macrophages, and limit tumor angiogene-
sis.44-46 CD8C T cell-derived IFNg was
further shown to be critical for the anti-
cancer efficacy of chemotherapeutic drugs
such as doxorubicin and oxaliplatin.8

Importantly, the ability of these drugs to
prevent tumor outgrowth was not com-
promised in perforin-deficient mice, sug-
gesting that in this system CD8C T cells
do not prevent tumor growth through

direct cytotoxic activity. Accordingly,
immunization of mice with chemother-
apy-treated dying tumor cells failed to
elicit CD8C T cell cytotoxicity but instead
induced their secretion of IFNg. Thus, in
some contexts the ability of CD8 T cells
to produce IFNg may be more critical
than their cytolytic function for antitumor
efficacy.8 These observations are in line
with previous studies that identified
IFNg-dependent anti-angiogenesis as a
general mechanism involved in tumor
rejection by CD8C T cell effectors.47

Altogether, these observations under-
score that the “antitumor” activity of
effector CD8C T cells in tumor tissue can
be ascribed to both their direct cytolytic
activity and their cytokine secretion.
Indeed, poly-functional CD8C T cells
that exhibit cytotoxicity along with pro-
duction of TNFa and IFNg may be the
most robust antitumor effectors. In this
regard, it is also important to note that the
efficacy of effector CD8C T cells in the
tumor microenvironment may be limited
as they undergo terminal differentiation
and lose their ability to self-renew. The

Figure 1. CD8C T cell phenotypes in the
tumor microenvironment. (a) Effector CD8C T
cells that undergo terminal differentiation are
characterized by low IL-2, strong IFNg and
TNFa release as well as high expression levels
of the transcription factors Eomes and Id2.83–
85 They do not express the surface markers
CD62L, CCR7, CD27 but express killer cell lec-
tin-like receptor G1 (KLRG-1) and PD-1.63,86–89

While terminal effector CD8C T cells exhibit
strong cytolytic functions in vitro, their anti-
cancer activity in vivo is limited because of
their inability to self-renew compared to
stem-cell like memory CD8C T cells.78,90,91 (b)
Dysfunctional CD8C T cells are characterized
by cocomittant expression of two or more
inhibitory receptors such as CTLA-4, PD-1,
Lag-3, Tim-3, and BTLA.65,92,93 These cells
exhibit defects in cytotoxicity, proliferative
capacity, and secretion of pro-inflammatory
cyotkines: IL-2, TNFa and IFNg.55,56,94 (c)
Senescent CD8C T cells express killer cell lec-
tin-like receptor G1 (KLRG-1) and CD57 but
not CD27 or CD28.87,95 They are characterized
by short telomeres, poor proliferative capacity
and activation of DNA damage response
(DDR) genes.66,68,95,96 These cells were also
shown to express PD-1 in chronic lymphocytic
leukemia patients.95 Senescent CD8C T cells
lack cytotoxicity,96 and were shown to express
the proinflammatory mediators Il6 and Il8 in
lung cancer tissue.68

e998538-4 Volume 4 Issue 4OncoImmunology



“antitumor” potential of CD8C T cells
that retain self-renewing capacity is dis-
cussed below.

Cancer-Driven CD8C T Cell
Dysfunction

Although effector CD8C T cells can be
found in the tumor microenvironment, it
is also well established that tumors can
drive CD8C T cell dysfunction. In the lit-
erature, the terms “anergic” and
“exhausted” have both been used to
describe dysfunctional CD8C T cells.
Whether the CD8C T cells in cancer are
anergic or exhausted has been a matter of
debate. Here, we will discuss the use of
these terms to describe dysfunctional
CD8C T cells in cancer.

Anergy typically refers to a general state
of diminished function of a given immune
response. In the 1980s, the term was
applied to T cells induced into a state of
non-responsiveness in vitro upon engage-
ment of the T cell receptor (Signal 1) in
the absence of a costimulatory signal (Sig-
nal 2). In a number of in vivo settings,
such as tolerance induction by i.v. injec-
tion of antigens without adjuvants, it was
hypothesized that T cell unresponsiveness
was similarly induced by antigen recogni-
tion without appropriate co-stimulatory
signals.48 Anergic T cells fail to proliferate
and produce effector cytokines in response
to subsequent stimulation. T cell anergy is
believed to be operative in cancer given
that tumors often poorly express co-stimu-
latory molecules such as B7-1/B7-2, that
dendritic cells present in tumor tissue
express low MHC and low B7-1/B7-2 but
high PD-L1 (B7-H1),49 and that mye-
loid-derived suppressor cells (MDSC) and
tumor-associated macrophages (TAM)
contribute to sub-optimal antigen presen-
tation in the tumor environment.50 More-
over, MDSCs and TAMs can produce
arginase-1 and TGF-b and drive oxidative
stress, all of which drive suppression of
CD8C T cell responses.51

The term “exhaustion” comes from the
study of the CD8C T cell response to
chronic viral infections in mouse models
where antigen is not cleared despite ongo-
ing stimulation. There is also an evidence
for virus-specific T cell “exhaustion” in

humans in the setting of chronic HCV
and HIV. Similar to anergic T cells,
“exhausted” T cells exhibit defective
responses to antigen stimulation; however,
unlike anergy which develops as a result of
a sub-optimal first encounter of T cells
with cognate antigen, exhaustion develops
progressively as a result of chronic stimu-
lation of T cells in the face of high antigen
burden.52 Indeed, the T cells that develop
an “exhausted” phenotype are those that
undergo robust activation in the acute
phase of the anti-viral response.

“Exhausted” CD8C T cells express high
levels of co-inhibitory receptors such as
PD-1, Lag-3, CD244, CD160, and Tim-
3, and it has been shown that interfering
with the signaling through one or more of
these receptors can improve anti-virus
CD8C T cell responses.53,54 CD8C T cells
that express inhibitory molecules and
exhibit severe functional deficits have also
been described in cancer55-59 (Fig. 1b).
These observations have led to the wide-
spread use of the term “exhaustion” to
describe the dysfunctional CD8C T cells
in cancer. However, whether the dysfunc-
tional CD8C T cells observed in cancer
are truly analogous to those that arise in
chronic viral infection is an open question.
Resolution of this issue awaits elucidation
of the molecular programs specifically
associated with dysfunctional T cells in
cancer. These studies are currently at an
early stage. An initial study of the dysfunc-
tional CD8C T cells from the tumor-infil-
trated lymph nodes of melanoma patients
indicates that the gene profile of these cells
is significantly enriched for genes identi-
fied in exhausted LCMV-specific murine
CD8C T cells; however, these cells fail to
upregulate Batf, a key driver of T cell
exhaustion in HIV infection.57

Moreover, it has recently been sug-
gested that “exhaustion” is a misnomer as
“exhausted” cells are not completely
devoid of function as the term
“exhaustion” implies. Rather these cells
exhibit an attenuated response that is opti-
mized for minimizing tissue damage while
still preserving some level of response
against abnormal cells (virally infected or
cancerous).60 Indeed, a key function of
co-inhibitory receptor expression on
highly active T cells is to contract ongoing
T cell responses in order to restore

immune homeostasis and prevent immu-
nopathology. Unfortunately, tumors have
taken advantage of this mechanism to
dampen antitumor T cell responses.

At this juncture, we recommend
against ascribing the CD8C T cells in can-
cer as either “anergic” or “exhausted."
This terminology is not useful as these
states have been defined and largely stud-
ied in other T cell types, such as CD4C T
cells, or in disease conditions that differ
significantly from cancer, namely chronic
viral infection. We recommend that the
term dysfunctional instead be used to
describe the poorly functional CD8C T
cells in cancer.61 We further caution
against ascribing cells as dysfunctional
based on expression of co-inhibitory
receptors alone as these molecules are also
found on effector T cells that retain func-
tional properties.62 Indeed, expression of
these inhibitory receptors could also
reflect a state of previous activation of
CD8C T cells indicating that expression
of these receptors may identify antitumor
specific T cells associated with a good
prognosis63,64 . Dysfunctional CD8C T
cells should be defined as cells that exhibit
defects in proliferation, lack of inflamma-
tory cytokine production and/or cytotoxic
functions, together with expression of one
or more co-inhibitory receptors (Fig. 1b).

It is important to note that CD8C T
cell dysfunction in the tumor microenvi-
ronment is believed to be reversible, at
least to some extent. In pre-clinical cancer
models, blockade of signaling through
CTLA-4, PD-1, Tim-3, and Lag-3 have
been shown to improve CD8C T cell
responses (reviewed in 65). Accordingly,
the current success of strategies that inter-
fere with signaling through the PD-1
inhibitory receptor in the clinic is
believed, at least in part, to be due to the
ability of PD-1 blockade to re-invigorate
CD8C T cell responses.

CD8C T Cell Senescence in Cancer

Senescent CD8C T cell phenotypes can
also arise in the tumor microenvironment.
Senescence refers to an irreversible state of
growth arrest that develops in cells upon
repeated cellular division, termed replica-
tive senescence, or in response to DNA
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damage. General characteristics of senes-
cent cells include: short telomeres, irre-
versible cell cycle-arrest, activation of
DNA damage response (DDR) genes,
robust secretion of factors that constitute
the senescence-associated secretory pheno-
type (SASP), and accumulation of senes-
cence associated heterochromatin foci
(SAHF).66 Specific cell surface markers
ascribed to senescent T cells are loss of
CD28 and CD27 and high expression of
CD57 and KLRG-1 (Fig. 1c).

While senescence has historically been
associated with aging, it is now recognized
that replicative senescence also develops in
the context of chronic antigen stimula-
tion, such as that which occurs in cancer.
Indeed, it has been shown that culture of
tumor cells with normal healthy human T
cells in low tumor to T cell ratios can
induce a phenotype consistent with T cell
senescence in vitro.67 These cells exhibit
decreased CD28 and CD27 expression
along with concomitant up-regulation of
gH2AX (H2A histone family member X)
and ATM (ataxia telangiectasia mutated),
both of which are induced as part of the
DDR to double strand DNA breaks
(Fig. 1c). A recent study further reported
the presence of CD8C T cells that exhibit
characteristics of senescence in vivo in
human lung cancer tissue.68 These cells
are CD28¡CD57C and exhibit accumula-
tion of heterochromatin protein-1 gamma
foci, a component of SAHF.

Although senescent T cells are irrevers-
ibly cell-cycle arrested, it is important to
note that they are not completely devoid
of function. The senescent CD8C T cells
found in lung cancer tissue produce IL-6
and IL-8, two hallmark SASP factors.68

These two features distinguish senescent
CD8C T cells from dysfunctional CD8C

T cells (Fig. 1b and c) as the dysfunctional
T cells are not irreversibly cell-cycle
arrested they exhibit severely impaired
production of pro-inflammatory cytokines
and other effector molecules.

The two SASP factors that are reported
to be expressed by senescent CD8C T
cells, IL-6 and IL-8, are both pro-inflam-
matory cytokines. IL-6 can suppress regu-
latory T cell function (Treg)69 and
promote the differentiation of IL-17-pro-
ducing Th17 cells.70 The dampening of
Treg function could benefit antitumor

immunity by relieving an important
mechanism of immune suppression in
tumor tissue. However, the outcome of
promotion of Th17 cells in tumor tissue is
less clear as both “pro-tumor” and
“antitumor” properties for Th17 cells
have been described.71 Notwithstanding
how IL-6 may shape antitumor T cell
responses, IL-6 can promote tumorigene-
sis through its effects in driving cellular
proliferation, promoting cell survival by
delivering anti-apoptotic signals, and aug-
menting MDSC suppressive func-
tions.72,73 Indeed, high levels of IL-6 have
been associated with multiple cancers and
are associated with poor prognosis.74 IL-8
also exhibits pleiotropic tumor promoting
effects. It can promote angiogenesis, can-
cer cell survival, proliferation, migration,
and resistance to chemotherapy.75 Thus,
by virtue of their production of IL-6 and
IL-8 senescent CD8C T cells could be
considered “pro-tumor.”

It is also important to note that termi-
nal effector CD8C T cells can also exhibit
loss of CD28 and upregulation of KLRG-
1. Moreover, vaccine-induced CD8C T
cells with optimal antitumor effector func-
tion have been noted to express high levels
of KLRG-1.76 Thus, senescent phenotype
cannot be ascribed solely on the basis of
loss of CD28 and expression of KLRG1.
Senescent cells must further exhibit SAHF
and activation of DDR genes (Fig. 1c).

Stem-Cell Like Memory CD8C

T Cells

Terminal effector CD8C T cells limit
tumor outgrowth. However, these cells
can become dysfunctional or senescent in
the tumor microenvironment. Recent
studies that examine the efficacy of ex vivo
generated CD8C T cells on tumor clear-
ance after adoptive transfer into tumor-
bearing hosts show that terminally differ-
entiated effector CD8C T cells are ineffec-
tive at eliminating tumors in vivo
compared to less differentiated T cells77,78

(Figs. 1a and 2). This occurs in spite of
their higher secretion of IFNg and cyto-
lytic activity. Instead, it has been suggested
that CD8C T cells that share properties
with na€ıve T cells such as CCR7 and
CD62L expression and have the ability to

self-renew are more potent for fighting
tumors (Fig. 2). Because of their ability to
self-renew and persist for long periods of
time, these CD8C T cells have been
termed stem-cell like memory T cells.
Unfortunately, in contrast to terminal
effector CD8C T cells, stem-cell like
memory CD8C T cells are predominantly
found in lymphoid tissue and not in the
tumor microenvironment.

It is well known that the omnipotency
of na€ıve T cells is progressively lost with T
cell differentiation to memory and effector
T cells. Among antigen-experienced T
cells, the stem-cell like memory T cells are
the ones with the highest potency, produc-
ing progeny for both immediate immu-
nity and its long-term maintenance, based
on self-renewal. It is likely that tumor-
antigen specific effector T cells depend on
continuous differentiation from self-
renewing memory T cells. Therefore, it
remains a major aim to develop methods
inducing self-renewing T cells in vitro for
adoptive transfer, or in vivo by active
immunization. In this regard, the recent
identification of IL-7 and IL-15 as molec-
ular signals guiding human naive T lym-
phocytes to differentiate into stem-cell
like memory CD8C T cells in vitro pro-
vides impetus to investigate their antican-
cer potential in clinical trials.79,80 Progress
in basic research, bioengineering, and
therapy development will likely further
exploit the potential of T cell stemness, as
a fundamental basis of robust and long-
term T cell responses including the capa-
bility to home to tumors and exert effector
functions therein.

CD8C T Cells as Regulatory Cells
in Cancer?

The existence of several types of CD8C

T cells with regulatory or suppressive
properties in cancer has been proposed.
These include: CD8C CD28¡, CD8C

CD25C, CD8C CD122C, and CD8C IL-
10C T cells.81,82 At present, there seems
to be no consensus in the field as to
whether these are overlapping or dissimi-
lar subsets and, moreover, whether these
are truly distinct from other cell types that
express some of the same surface markers.
For these reasons, this potential class of
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CD8C T cells will not be further discussed
here.

Conclusion

Our understanding of the CD8C phe-
notypes that arise in cancer necessitates
that we move beyond the simplified
nomenclature of “pro-tumor” vs.
“antitumor” T cells. We, and others, have
now identified stem cell-like, terminal
effector, dysfunctional, or senescent
CD8C T cells that are functionally and in
many cases molecularly distinct. Cur-
rently, there are no unique surface markers
that allow for easy discrimination between
these CD8C phenotypes. Thus, accurate
identification requires a more in depth
analysis that includes examination of cell
surface phenotype, functional phenotype,
and expression of intracellular markers.
Here, we have summarized the current
knowledge of CD8C phenotypes in cancer
(Box 1). We recommend avoiding the use
of broad terms like “pro-tumor” or

“antitumor” CD8C T cells without pro-
viding information on their functional
state. We further propose that the term
CTL should only be employed when cor-
responding cytotoxic functions have been
experimentally demonstrated and that the
term “dysfunctional” rather than “anergic”
or “exhausted” be used to describe CD8C

T that exhibit functional deficits in cancer.
Importantly, we caution against ascribing
CD8C T cells as dysfunctional based on
the expression of co-inhibitory receptors
alone. Future studies incorporating T cell
analyses should include appropriate
markers and functional assays to better
define the phenotypes of T cells in periph-
eral blood, peripheral lymphoid tissues,
and tumor biopsy samples.
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Box 1. Distinguishing Features
of CD8C T cell phenotypes

Terminal effector T cells- Surface fea-
tures are expression of KLRG-1 and loss
of CD62L, CCR7, CD27, and CD28.
Important molecular features include high
expression of the transcription factors
eomes and Id2. Important cellular features
are low IL-2 production, strong TNFa,
IFNg, and cytotoxic function but poor
ability to self-renew.

Dysfunctional T cells- Surface features
are expression of multiple co-inhibitory
receptors such as CTLA-4, PD-1, Tim-3,
and Lag-3. Important cellular features are
defects in various effector functions: pro-
liferative response to antigen stimulation,
cytotoxicity, and secretion of pro-inflam-
matory cytokines (IL-2, TNFa, and
IFNg). It is important to note that dys-
functional T cells may not exhibit defects
in all effector functions and thus dysfunc-
tional phenotypes exist across a spectrum
of weak to severe dysfunction.

Senescent T cells- Surface features are
expression of KLRG-1 and CD57 and
lack of CD27 and CD28. Important dis-
tinguishing cellular features are short telo-
meres, irreversible cell-cycle arrest,
activation of DNA damage response
(DDR) genes such as ATM and gH2AX,
the presence of senescence-associated
secretory phenotype (IL-6 and IL-8), and
the presence of senescence-associated het-
erochromatin foci (SAHF). SAHF are foci

Figure 2. Features of stem-cell like CD8C T cells. Stem-cell like memory CD8C T cells share many
phenotypic features with na€ıve T cells (reviewed in 97). They typically express the CD45RA phospha-
tase, the lymph node homing molecules CCR7 and CD62L as well as the costimulatory receptors
CD27 and CD28.77,98 These cells express the transcription factors Id377 and Tcf7,91 secrete IL-2 and
low levels of TNFa or IFNg. These cells also have the ability to self-renew and exhibit potent anti-
cancer responses in vivo.78,90
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of facultative or repressed heterochroma-
tin associated with gene-silencing.

Stem-like T cells- Surface features are
expression of CCR7 and expression of
CD62L, CD45RA, CD27, and CD28.
Important molecular features are expres-
sion of the transcription factors Id2 and
Tcf7. Important cellular features are
potent cytotoxicity in vivo and ability to
self-renew.
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