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ABSTRACT 

This dissertation focuses on the biological structures that allow animals to exhibit 

classical conditioning. The project presents a computational neuroscience model 

combining insights from two influential accounts of learning. The first, Chorley & Seth 

(2011), offers a biologically realistic model of dopamine activity and association learning. 

The second, Redish et al. (2007), is an abstract model of internal state representation, 

perhaps residing in the hippocampus, that accounts for many classical conditioning 

phenomena. Combining these two models produces a biologically realistic explanation of 

both association learning and unlearning. The proposed model exhibits classical 

conditioning phenomena while demonstrating how spiking neurons in the brain could 

implement reward prediction. Specifically, this dissertation project makes the following 

original contributions: 1) a replication of the model of Chorley and Seth (2011), 2) the 

presentation of a new model, based on Chorley and Seth (2011) but incorporating a 

simple spiking neuron model of the hippocampus inspired by Redish et al, (2007), 3) a 

demonstration that the hippocampal model continues to exhibit association learning, 4) 

and now exhibits extinction, 5) reinstatement, 6) spontaneous recovery, 7) and blocking, 

8) as well as a demonstration that the hippocampal model mirrors the results of relevant 

lesion studies, 9) and, finally, an analysis of how the hippocampus model represents 

context. While previous models of learning and unlearning based on temporal difference 

methods are powerful and account for some classical conditioning phenomena, this 

dissertation suggests that, contrary to temporal difference methods, learning and 

unlearning associations are not the result of a single mechanism.  



 
 

1 

CHAPTER 1: INTRODUCTION 
This dissertation focuses on processes for obtaining reward and the faculties 

required to support reinforcement learning. It pertains to faculties all mammals have, 
irrespective to the type of input the environment may give (e.g. auditory, visual, tactile), 
that help to associate unemotional environmental input with positive or negative valence, 
resulting in taking actions to seek or avoid that input. Environmental input here refers to 
anything the animal can sense, from a ringing bell, or a ripe berry, to a dollar bill, a bowl 
of food, or even abstract things like safety, trust, friendship, and frustration. An animal 
can pass an emotional judgment on all of these things, and from there it can take actions 
to seek or avoid these environmental inputs. 

This kind of learning has been understood by modeling associations; abstract 
numeric strengths of how much an animal likes or dislikes an environmental input 
(Rescorla & Wagner, 1972). These mathematical learning models made great progress 
in explaining a variety of learning phenomena, like blocking and extinction (explained in 
more detail further on in this proposal). These models were limited, however, to only 
reproducing classical conditioning, which is the passive learning of associations in the 
environment. Twenty years later, a group of scientists studying macaque monkey brains 
found a surprising neural firing pattern in the basal ganglia that seemed to involve 
learning to predict rewarding stimuli (Ljungberg, Apicella, & Schultz, 1992; Romo & 
Schultz, 1990; Schultz & Romo, 1990). Around the same time, a group of computer 
scientists put forth a formal model of reinforcement learning that built upon the passive 
learning in the Rescorla and Wagner (1972) model. This computational model allowed 
the learning agent to interact with its environment, and, critically, it involved the learning 
of predictions of future reward (Barto, 1995; Barto, Sutton, & Anderson, 1983; Sutton, 
1988). A seminal insight arose when the activity of certain cells in the macaque limbic 
system - cells that deliver the neurotransmitter dopamine – were shown to encode for 
changes in expected future reward – a key variable in the abstract computational models 
of reinforcement learning (Montague, Dayan, & Sejnowski, 1996). This gave rise to an 
account of learning in which associations were updated based on the difference between 
a prediction of reward when a stimulus was presented and the actual presence or 
absence of reward moments later (Sutton, 1988). This signal of the difference over time 
in expected and actual reward was called the temporal difference (TD) error. 

While this work made huge progress in marrying neuroscience with 
computational models of action selection, the approach could not explain all aspects of 
reinforcement learning, and it did have a few drawbacks. For example, in environments 
with clear goals (e.g. find a goal location, produce a specific action sequence, etc.) it 
was proven that this model will lead to an efficient solution. However, large problems 
(e.g., involving many inputs or allowing for many different actions) can require an 
intractable amount of time to solve through this form of reinforcement learning. Real-
world problems that involve noisy environmental input, including cases in which sensory 
states are never exactly revisited, require value function approximators – learned 
functions from inputs to expected reward. Unfortunately, the use of such value function 
approximators violates the assumptions of the proofs of learning convergence, making 
those proofs irrelevant for large real-world problems. There are some ways to 
circumvent the problems of tractability, but using those methods also removes any 
guarantee of learning a correct solution (Boyan & Moore, 1995; Sutton, 1996). The 
model also did not accurately characterize the behaviors of animals, such as the 
phenomena of spontaneous recovery and gradual extinction (which will later be 
explained in detail). There were also some critics of the TD error approach who claimed 
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that it did not accurately model the processes that occurred in the mammalian brain. 
These critics had been frustrated by the lack of a reinforcement learning account 
implemented using models of spiking neurons similar to those found in the brain. While 
some work has been done to implement the temporal difference error approach in 
biologically plausible neuron models, it hasn’t been able to rely solely on spiking neurons 
to implement the learning process. For example, most models required the abstract 
subtraction of two neural activation values, separated in time, representing rewards and 
predictions of rewards (Barto, 1995; Castro, Volkinshtein, & Meir, 2009; Florian, 2005, 
2007; Potjans, Morrison, & Diesmann, 2009; Rao & Sejnowski, 2001; Roberts, Santiago, 
& Lafferriere, 2008; Rusu & Florian, 2009). However, none of these approaches relied 
solely on the function of networks of spiking neurons. They all required at least some 
abstract non-neural mathematics to be done in support of the modeled neural 
processes. 

In 2011, Chorley and Seth published a paper demonstrating how a network 
composed entirely of spiking neurons could model the dopamine signal that was found 
by Schultz and colleagues (Ljungberg et al., 1992; Romo & Schultz, 1990; Schultz & 
Romo, 1990). This was the first model of the temporal difference error in the brain that 
used only biologically realistic spiking neurons, making use of a specific pattern of 
connectivity. Instead of having an abstract variable for the dopamine signal, as others 
were forced to do, this model calculated it through the spikes arising from environmental 
input traveling through the model. This model was able to hold a predicted expected 
future reward value in the form of spiking activity and pass that value to the rest of the 
model. 

As a preliminary modeling effort and a part of this dissertation work, the model 
described in Chorley and Seth (2011) was replicated and analyzed (described in more 
detail later in this dissertation). Analyzing the results of the replicated model revealed 
that it lacked an important capability; the Chorley and Seth model did not have the ability 
to extinguish learned associations. While the model could learn associations between 
neutral stimuli and reward, it did not “unlearn” these associations when reward was no 
longer delivered. This deficit had further ramifications. Since the model did not extinguish 
associations, it could not show spontaneous recovery, gradual extinction, and other 
learning phenomena related to extinction. 

This observation prompted a review of the neuroscientific literature on extinction 
in mammals. Through this review, it was discovered that the hippocampus is crucial to 
the extinction process. Importantly, the model in Chorley and Seth (2011) did not model 
the hippocampus. Similarly, rats with bilateral lesions of the hippocampus have trouble 
extinguishing learned associations. When placed in a T maze, these rats learned that 
food is down one arm of the “T”, but when the food was instead placed in the other arm, 
they could not extinguish the previously learned association. They continued to behave 
as if they thought the food was down the original arm (Kimble & Kimble, 1970). In 1986, 
Weikart and Berger performed similar hippocampal lesions on rabbits and trained them 
on an eye-blink conditioning task with two stimuli, a bell and a light. One stimulus 
predicted an air puff to the eye, and the other did not. Air puffs were aversive, and they 
caused the rabbits to blink. The rabbits with hippocampus lesions could learn as well as 
controls that one of the two stimuli strongly predicted an air puff to the eye, and that the 
other could be ignored. Learning was seen in a tendency to blink when presented with 
the predictive stimulus but not when presented with the other. Halfway through the 
experiment, however, the stimuli were switched, and the learned stimulus no longer 
predicted the air puff. Instead, the ignored stimulus began to strongly predict the air puff. 
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Control animals quickly learned to ignore the newly non-predictive stimuli, responding 
instead to the newly predictive stimulus as a predictor of the air puff. In contrast, the 
hippocampally lesioned animals continued to produce a blink response to the originally 
predictive stimulus while also successfully acquiring an association with the newly 
predictive stimulus. Thus, the lesioned animals came to respond to both stimuli (Weikart 
& Berger, 1986). This, and other similar studies, suggested that for an animal to 
extinguish a previously learned association it needed a hippocampus. This implied that, 
for the Chorley and Seth (2011) model to properly extinguish learned associations, it 
also needed a hippocampus. 

Redish et al. (2007) proposed a novel way to think about how learning and 
extinction occur. While the Redish model was largely agnostic concerning the neural 
basis of its proposed mechanisms, there was one key aspect of the model that reflected 
interesting properties of the hippocampus. We will revisit this model later in this 
document. For now, it is important to note that a central claim of the Redish model was 
that, in order for a learning system to show both extinction and spontaneous recovery, it 
needed to be able to create new internal representations of the current state of the 
environment. This theory suggested that the learning of extinction depends critically on 
an animal’s internal representation of the environmental state, and how the context cues 
and environmental state change throughout the extinction process. According to this 
account, the internal state represented by the animal during the learning of an 
association does not change much throughout association learning trials, but the internal 
state represented by the animal during the extinction of an association changes 
substantially over time.  This change in context representation is based on the 
expanding amount of time since the previously associated unconditioned stimulus (US - 
reflecting an external reward signal) last occurred. This theory posited that entrance into 
the experimental environment invokes a specific state representation in the rat’s brain, 
and, with each presentation of an association learning trial, the state stays largely the 
same. In contrast, on each trial during which the US is expected but remains absent, the 
context changes slightly, so that the learning occurring throughout extinction trials 
involves associations within slightly different internally represented contexts. The Redish 
model thus correctly modeled extinction, as well as the related phenomena of 
spontaneous recovery and renewal (Redish, Jensen, Johnson, & Kurth-Nelson, 2007). 

The research project described in this dissertation is about adding a spiking 
model of the hippocampus to the Chorley & Seth model, producing a spiking neural 
network model that exhibits extinction and other related phenomena. Specifically, this 
dissertation project offers the following original contributions: 

 a replication of the model of Chorley & Seth 

 the presentation of a new model, based on Chorley & Seth but 
incorporating a simple spiking neuron model of the hippocampus 

 a demonstration that the hippocampal model continues to exhibit 
association learning 

 a demonstration that the hippocampal model exhibits extinction 

 a demonstration that the hippocampal model exhibits reinstatement 

 a demonstration that the hippocampal model exhibits spontaneous 
recovery 

 a demonstration that the hippocampal model exhibits blocking 

 a demonstration that the hippocampal model mirrors the results of lesion 
studies when the hippocampus component of the model is removed 

 an analysis of how the hippocampus model represents context 
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The newly proposed model offers a viable alternative to abstract TD accounts – an 
alternative that is more aligned with established biological findings. 
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CHAPTER 2: BACKGROUND 
Learning 
This section reviews relevant current research into the nature of reward learning. 

There are many learning processes in the mammalian brain, from the many levels of 
visual learning in the occipital, temporal, and parietal lobes to learning associated with 
action selection in the basal ganglia - a kind of learning that is directly related to reward. 
Here I will cover those brain areas most closely associated with reward learning; brain 
structures known to have a relation to reinforcement learning and its immediately 
supporting structures. The focus is on mechanisms for behavioral change so as to obtain 
reward and the learning facilities required to support this reinforcement learning. This 
includes learning to select actions so as to achieve reward, sensitive to association 
learning and motor control behavior. Not all learning processes depend directly on the 
delivery of an external reward, and reinforcement learning depends on many learning 
mechanisms in the brain that lack such a reward-based orientation. Let us consider the 
fundamental nature of learning. 

The American Psychological Association defines learning as “a process based 
on experience that results in a relatively permanent change in behavior or behavioral 
potential” (Gerrig & Zimbardo, 2010). In a very abstract sense, learning is the process of 
gathering information about one’s environment and using it to modify how one will 
interact with the environment in the future. In this abstract sense, there are three 
categories of timescales of learning, in which any living thing (from a virus to a human) 
modifies the relationship between it and its environment. 

The largest timescale is over many lifespans along the line of heredity of an 
organism. Processes at this time scale are very slow in how they modify the relationship 
between the living thing and its environment; these are the processes of biological 
evolution. The organism, viewed as a species, modifies its relationship with its 
environment by changing how its descendants interact with the environment. This 
timescale is on the order of tens of thousands of years for humans, and hours for 
viruses, and the resulting modifications are stored in the organism’s DNA. 

The next timescale is over a single lifespan of a living thing, and this is what we 
generally refer to as learning. At this timescale, the organism modifies its relationship to 
its environment over its lifespan. This is not done through modifying its descendants, but 
through modifying its behavior, or the organizations of its movements. Here, it modifies 
this relationship on the order of minutes, days, months, or years for humans, and the 
modifications are stored in the organism’s body. 

The shortest timescale is over fractions of a lifespan of a living thing. This is the 
timescale of action and movement. Here, the organism modifies its relationship to its 
environment very quickly, by changing its orientation or spatial location, modifying how it 
will interact with its environment in the next few seconds for humans or milliseconds for 
viruses, and this modification is stored in the organism’s immediate spatial location and 
orientation. 

Notice that I did not provide an example for viruses at the intermediate timescale 
of learning. This is because (to the author’s knowledge) it has not yet been shown that 
viruses change their patterns of behavior based on information from their environment at 
a higher level than just movement. It may be that not all living things implement all of 
these organism-environmental modifiers, and there may be others not mentioned here 
(such as culture or religion, which would occur on a timescale between evolution and 
learning), however it is interesting to note these relationships, nonetheless. 
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The purpose of these modifications of the relationship between an organism and 
its environment is a long-debated issue, but here we simply argue that they are made for 
the organism to exist longer and reproduce more. While we will not fully cover that 
argument here, the basic explanation is that, whether or not there is a purpose for 
modifying an organism-environment relationship, it just so happens that those organisms 
that exist longer and reproduce more exist in larger numbers. In contrast, those 
organisms that don’t exist very long and do not reproduce very much do not exist in very 
large numbers, and they eventually go extinct. Therefore, while the purpose of the ability 
to change an organism’s relationship with its environment is unclear, those that do so in 
ways that keep them and their species existing in larger numbers are the ones that 
mostly make up things that exist, and thus mostly make up the things that we can study 
and learn from. 

Let us now focus on reward learning. This is the modification of an organism’s 
pattern of behavior so as to increase the likelihood and magnitude of external reward. 
Typically these modifications support efforts by the organism to exist longer and to 
reproduce more. I will review the biological evidence of the importance of different brain 
areas to reward learning, summarize some current research and models of reward 
learning, and explain what we can learn from them. 

 
Classical Conditioning Phenomena 
There are some important terms to know that are necessary to understanding 

classical conditioning phenomena. An unconditioned stimulus (US) is a stimulus that 
automatically elicits a response from the subject, such as a reward (e.g., food). A 
conditioned stimulus (CS) is a stimulus that is neutral initially to the subject, such as a 
bell or a light. While a CS is initially neutral, over many association trials with a US 
where the CS precedes the US, the CS can come to elicit the same response that the 
US elicits. 

In many learning experiments, associations between stimuli and reward are not 
only created but are also perturbed to better understand the learning process. One such 
perturbation process involves the unlearning of a previously learned association. After 
many association trials of a stimulus and a reward, the animal expects the reward to 
occur after the stimulus is presented. When the animal is then repeatedly presented with 
the stimulus without reward, the association between the stimulus and the reward is 
slowly unlearned. This is called extinction. Another interesting phenomenon occurs when 
an animal learns an association, has that association extinguished, and then is removed 
from the experimental setting, only to be returned after some time has passed. After 
returning to the original setting, and upon presentation of the stimulus, the animal 
responds as if the association has not been completely extinguished. This is called 
spontaneous recovery (Pavlov, 1928). In other experiments, multiple stimuli are 
presented to the animal and the specific stimuli that predict reward are changed after an 
initial association is acquired. Here, a stimulus that previously predicted reward stops 
doing so, and a previous stimulus that did not predict reward starts to predict reward. 
This learning perturbation process is called reversal. During reversal, the loss of the 
association between the previously predictive stimulus and reward can be seen as a 
kind of extinction. 

We can learn more about how learning works by modifying the way stimuli are 
presented to the subject. If, after association and extinction trials, the subject is 
presented with just the reward, and no other stimuli, the subject usually shows a 
reinstatement of the previously extinguished association. It’s important to note that this 
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phenomenon is similar to spontaneous recovery in that, for both, the subject learns, 
extinguishes, and then shows the association again. However, the difference is that in 
spontaneous recovery, the subject is presented with a large amount of time outside of 
the experimental environment and then returned to the original context it learned in, at 
which time the subject is again presented with the conditioned stimulus. In 
reinstatement, immediately after extinction occurs, and in the same context, the subject 
is presented with the rewarding stimulus, and this results in a brief reappearance of the 
association with the conditioned stimulus. Another similar phenomenon is renewal, 
where, after learning and extinction occur, if the subject is placed in a new context and 
presented with the conditioned stimulus, the subject sometimes shows renewed 
responding, as if the extinction did not occur. 

There are other classical conditioning phenomena involving the presentation of 
multiple conditioned stimuli. For example, in blocking, if one stimulus is already 
associated with the US and another is not, the presentation of those two stimuli at the 
same time, followed by the US, blocks the learning of an association between the new 
stimulus and the US. Here, because the first conditioned stimulus already provides the 
animal with all of the information needed to predict the upcoming US, there is no need to 
form an association involving the second conditioned stimulus, as such a new 
association would provide no additional predictive power. We know that blocking occurs 
because, afterward all of the learning trials, when the subject is just shown the second 
CS, the subject treats the stimulus as neutral, ignoring it (Kamin, 1969). Another 
phenomenon involving multiple stimuli is overshadowing. This is where one stimulus is 
more salient, or more powerful. In this case, when both stimuli are presented before the 
US, an association is formed only between the US and the more powerful, more salient 
stimulus. You can also get second order conditioning, where one stimulus is paired with 
a reward, and then another stimulus is paired with the first stimulus. The subject treats 
the initially learned conditioned stimulus as rewarding, allowing learning even when the 
subsequent stimulus never precedes the US during training (Holland & Rescorla, 1975). 

Each of these learning phenomena is important in order to understand what the 
brain does when it learns and unlearns associations. Damage can be done to specific 
parts of the brain to understand which classical conditioning phenomena are affected. 
Knowing which classical conditioning phenomena are affected by damaging which brain 
areas can help us better understand how the brain works. 

 
Neuroscience 
The Basal Ganglia 
The basal ganglia are brain structures located below the folds of the cerebral 

cortex in the human brain. Homologues of these structures can be found in most 
vertebrate animals and even some arthropods (Strausfeld & Hirth, 2013). The basal 
ganglia take on multiple functional roles, including action selection, habit formation, 
memory, and learning associations (Packard & Knowlton, 2002). 

The basal ganglia, within the limbic system, have been found to be very 
important in the formation of associations between related stimuli. The substantia nigra 
pars compacta (SNc), specifically, is adapted to using stimuli in the environment to 
predict changes in expected reward. Here, reward is a term used for a class of stimuli 
that, through evolutionary pressures, has shaped the brain to treat them as intrinsically 
desirable. Over an evolutionary timescale, this class of stimuli has proven to extend the 
existence of an organism and increase its ability to reproduce. Thus, organisms have 
evolved to develop behaviors that lead to the acquisition of such reward. Through 
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evolution, these organisms have evolved to perceive the reception of reward when they, 
for example, eat food with nutrients used to maintain the organism’s body. The basal 
ganglia learn which stimuli in the environment reliably predict reward. Neurons in the 
SNc actually fire for the arrival of unexpected reward in the same way that they fire for 
stimuli that predict reward (Romo & Schultz, 1990; Schultz & Romo, 1990). 

Dopamine is an important neurotransmitter released primarily by neurons found 
in two nuclei in the midbrain. The substantia nigra pars compacta (SNc) projects 
dopaminergic connections to the striatum. Also, just ventrally to the basal ganglia, the 
ventral tegmental area (VTA) projects dopaminergic connections to the frontal lobe, 
nucleus accumbens, amygdala, and hippocampus. 

Corbett and Wise (1980) sunk electrodes into the midbrain of rats looking for an 
area that encodes for reward. When the rats pressed a lever, the electrode would 
stimulate a specific area of the brain. They found that rats would self-stimulate in this 
way most energetically when the electrode was touching the dopamine fiber bundles that 
originate in the VTA and enervated the frontal lobes (Corbett & Wise, 1980). Bozarth and 
Wise (1981) injected morphine into the VTA of rats, where this dopaminergic fiber 
bundle originates, and found that rats will self-administer morphine in the same way 
(Bozarth & Wise, 1981). Both of these studies suggested that this dopaminergic fiber 
bundle, and dopamine in general, are involved in the representation of reward. While this 
early research suggested that dopamine explicitly encodes reward, more recent 
research has offered an alternative interpretation. 

In a collection of studies (Ljungberg et al., 1992; Romo & Schultz, 1990; Schultz 
& Romo, 1990), dopaminergic neurons in the substantia nigra pars compacta (SNc) 
were recorded via electrodes sunk into the brains of macaque monkeys. The electrodes 
recorded a low level of activity, consisting of a slow base rate of electrical action 
potentials (or spikes), but this activity changed as the monkeys were presented with 
stimuli. The monkeys were kept in a semi-hungry state and presented with a box that the 
monkeys could reach inside in order to collect a rewarding food morsel. The researchers 
found three interesting results. The first result was that when the monkeys received the 
food morsel, the electrodes sensed an increased firing rate of the dopamine (DA) 
neurons in the SNc. The DA neurons’ rapid firing did not correlate with touching anything 
else inside of the box, and it did not correlate with muscular contractions used to make 
similar reaching movements. The second result was that, over the course of many trials, 
the DA neurons in the SNc reduced their rate of firing for the onset of food and began to 
fire rapidly to the opening of the latch over the box. The latch consistently opened 
immediately before the monkeys could collect the food morsel. The SNc neurons began 
to fire less for the reward, and more for the stimuli that predicted reward. Indeed, the rate 
of firing upon the onset of food eventually returned to the base firing rate of the DA cells. 
The third result that the researchers found was that, after many trials, if the latch over 
the box opened and there wasn’t food inside, the neurons in the SNc fired at a rate even 
lower than their base rate of firing upon a reach into the box. This research suggests that 
the SNc is important for indicating the unexpected presence of reward and for learning 
stimuli that predict future reward (Ljungberg et al., 1992). 

In 1996, Montague, Dayan, and Sejnowski created a model of how an animal 
might use this dopamine signal to learn to select actions that lead to reward. They 
proposed that the dopamine activity in the SNc indicates prediction error about reward; 
dopamine activity above baseline indicates that the actual reward is greater than the 
amount of reward predicted. Conversely, dopamine activity below baseline indicates the 
actual reward is less than that predicted. The model can use the fluctuations in 
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dopamine levels to improve reward predictions so as to more accurately match the 
environment. While this publication was mainly a computational modeling paper (which 
will be described in more detail later), it is important to note that a dopamine signal like 
that seen in the SNc of the macaque monkey can be used to help it to learn to act so as 
to maximize its future reward (Montague et al., 1996). 

While the substantia nigra pars compacta (SNc) in the basal ganglia is important 
for learning, so is the striatum. The striatum is a major recipient of incoming synapses 
from dopaminergic neurons in the SNc. The importance of the striatum for action 
selection is demonstrated by Kravitz et al. (2010). Kravitz and colleagues optogenetically 
stimulated the SNc and striatum in rats and observed their behaviors. Optogenetics is 
the technique of adding light-receptive proteins to specific neurons. These proteins can 
depolarize or hyperpolarize a neuron depending on the color of light shone on them. In 
this paper, Kravitz and colleagues targeted specific neurons in the striatum: neurons with 
either D1 or D2 receptors, two different kinds of neural receptors that are sensitive to 
dopamine (DA). D1 receptors depolarize the cell, driving it toward firing, while D2 
receptors hyperpolarize the cell, inhibiting it and reducing the likelihood that it will fire. 
Within the striatum, there are neurons for which D1 receptors dominate on their 
dendrites and other, distinct, neurons for which D2 receptors dominate on their 
dendrites. Thus, D1 neurons fire more frequently when DA is present and D2 neurons 
fire more frequently when DA is absent. In the Kravitz paper, these researchers were 
able to excite D1 and D2 neurons in the striatum separately, and observe the results. 
What they found was that activating the D2 neurons in the striatum led to an increase in 
substantia nigra pars reticulata (SNr) activity, while activation of D1 neurons led to 
inhibition of the SNr. The SNr is a portion of the substantia nigra that is separate from 
the SNc; the SNr indirectly inhibits the thalamus. Thus, D1 neurons in striatum inhibit an 
inhibitor, effectively exciting the thalamus, while D2 neurons in striatum excite the SNr, 
which inhibits the thalamus. Furthermore, in an open environment, they found that rats 
that had their D1 neurons activated showed increased movement and exploratory 
activity, while similar rats with their D2 neurons activated exhibited increased freezing 
behavior, refusing to move or explore (Kravitz et al., 2010). 

This research is consistent with some computational models of the striatum. In 
these models, separate neurons driven by D1 and D2 receptors in the striatum are 
characterized as being ‘Go’ and ‘No Go’ neurons, respectively. Activation of the ‘Go’ 
neurons corresponds to choosing an action, while activation of ‘No Go’ neurons 
corresponds to suppression of an action. In these models, cortical connections to the 
striatum determine the action that is selected. Thus, the pattern of connections from 
cortex to striatum can determine which stimuli prompt which actions. When reward is 
predicted with DA firing, “Go” cells activated by cortex are strengthened, and the 
connections between the active cells become stronger, making it more likely that the 
current stimulus will trigger the currently considered action in the future. With low DA, the 
stimulus is associated with the “No Go” cells for the considered action. This decreases 
the likelihood of taking the considered action, and it results in action selection learning in 
the basal ganglia (Frank, 2005; O’Reilly & Frank, 2006). Models of this kind account for 
association learning, but there are other learning effects that are not clearly covered by 
this account, such as some of the reversal learning effects seen in patients with 
Parkinson’s disease. 

In patients with Parkinson’s disease, the dopaminergic neurons in the SNc die, 
and initiating actions becomes hard to do. Patients with Parkinson’s disease have great 
trouble walking, and they usually experience rigidity and hand tremors. It is not 
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immediately clear how these motor symptoms relate to the fact that the dopaminergic 
neurons in the SNc spike for rewarding stimuli and stimuli predictive of rewarding stimuli. 
Do Parkinson’s disease patients have trouble predicting rewarding stimuli? 

Shohamy, Myers, Hopkins, Sage, and Gluck (2009) showed that patients with 
Parkinson's disease can use preceding stimuli to predict rewarding stimuli; however, 
they do so differently than control patients. In Shahomy et al., patients with Alzheimer's 
disease (a disease where neurons die throughout the brain, but focally in the 
hippocampus), along with patients with lesions to the hippocampus, were compared with 
patients with Parkinson’s disease, as well as age-matched control participants. The task 
was a slot-machine-like game, where three different images appeared on a computer 
screen and coins were guaranteed to come out for every trial. The participants were 
asked to guess which of two colors the coins coming out of the machine would be, given 
the images on the computer screen. The color of the coins was determined by the 
pattern of images shown. The relationship between the displayed pattern of images and 
the color of the coins was deterministic, so memorizing all combinations of patterns 
would allow the participant to achieve 100% performance on predicting the color of the 
coins. However, simply using one of the three images to guess the color of the coins 
provided 80% accurate performance. Results showed that most participants opted to 
use this single-image prediction strategy. The relationship of the pattern of images to the 
color of the coins was set up such that the errors a participant made could be used to 
determine which particular image the participant was using to guess the color of the 
coins. Recall that each of the three images individually was correlated with the correct 
answer, such that a guess based on only one of the images could produce 80% 
accuracy, leaving 20% error trials. The researchers could use these error trials to 
determine which image each participant was using to make their predictions. 

Halfway through the experiment, the color of the coins associated with each 
image was reversed. The participants were not told what was happening, and the 
images they were previously using to predict one color, now predicted the opposite color 
80% of the time. The researchers found several different results. The participants with 
Alzheimer's disease or hippocampal damage perseverated on the image for which they 
originally learned the association, and they never learned the new coin color association. 
The controls learned that the color had switched after a few of trials, and they used the 
same image they were using before to guess the opposite color coin. The patients with 
Parkinson’s disease also learned the new coin color association as easily as controls. 
However, the puzzling result is that the patients with Parkinson’s disease found it easier 
to learn a new association of a different image to the color, rather than simply reversing 
the learned association between the old image and the previous color. In other words, 
these patients chose to learn a new association when given the option to reverse what 
they learned based on one image or learn a new association involving a different image 
(Shohamy, Myers, Hopkins, Sage, & Gluck, 2009). Theoretical and computational 
models have yet to thoroughly explain this phenomenon. 

This finding in conjunction with the data from Ljungberg, et al. (1992) suggests 
that the SNc is important for creating and modifying associations. Neural activity in this 
nucleus is clearly implicated in the ability to learn an association, as well as the ability to 
unlearn an association that is no longer valid. Consistent with this, Parkinson’s patients 
have trouble unlearning an association. 

While these results concerning the substantia nigra pars compacta are intriguing, 
there are further results that speak to the roles played by nearby systems in the 
midbrain. Within the dorsal portion of the striatum are the caudate nucleus and the 
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putamen. These structures of the striatum are similar, but they vary anatomically. It has 
been found that Parkinson’s patients seem to lose neurons in the posterior putamen as 
well as the SNc, and the posterior putamen is associated with habitual behaviors, while 
the rostromedial putamen is predominantly associated with goal-directed behavior. This 
loss of neurons in patients with Parkinson’s disease in their posterior putamen adds to 
our understanding of these brain structures, as these patients lose the ability to walk, 
with the orchestration of actions required to walk being a habitual behavior (Redgrave et 
al., 2010). 
 

The Hippocampus 
While the basal ganglia are involved with learning associations, the hippocampus 

is involved with memory and space. In many learning experiments, the memory of the 
participant is measured by perturbing their learning and extinction processes. This 
section discusses what happens to some of the previously covered classical conditioning 
phenomena when the hippocampus is damaged. 

In 1957, Scoville and Milner found that, when performing lobotomies and other 
brain surgeries to alleviate patients of debilitating epilepsy or intractable psychosis, 
medial temporal lobe lesions led to severe memory impairment, while working memory 
and IQ remained intact. While these lesions sometimes alleviated the symptoms of 
patients with epilepsy or psychosis, these patients suffered from severe memory deficits 
when the surgeries were located near the medial temporal lobe, primarily when damage 
occurred to the hippocampus. The hippocampus is located medially in the temporal lobe, 
near the insular cortex. Scoville and Milner described these patients, such as patient 
Henry Molaison (H.M), in the following way: 

  
 

[Patient H.M.] could no longer recognize the hospital staff nor find 
his way to the bathroom … he did not remember the death of a 
favorite uncle three years previously, nor anything of the period in 
the hospital, yet could recall some trivial events that had occurred 
just before his admission to the hospital. His early memories were 
apparently vivid and intact … he will read the same magazines 
over and over without finding their contents familiar. This patient 
has even eaten luncheon in front of one of us (B. M.) without 
being able to name, a mere half hour later, a single item of food 
he had eaten; in fact, he could not remember having eaten 
luncheon at all … (Scoville & Milner, 1957) 

  
 

Patients with these medial temporal lobe lesions suffered from severe memory loss. 
Most patients suffered from anterograde amnesia; they had trouble forming new 
memories after the surgeries. Some even experienced additional partial retrograde 
amnesia; they were unable to remember some events that happened up to three years 
before the surgeries. For most patients however, memories formed three or more years 
before the surgeries were left relatively intact.  

Scoville and Milner concluded that the hippocampus was important for memory. 
They found that for complete bilateral hippocampal lesions, patients were unable to form 
new memories from the time of the surgery onward. They also found that the extent of 
lesioning to the hippocampus predicted the amount of memory impairment. Patients with 
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lesions near the hippocampus such as the amygdala and uncus showed little to no 
memory impairment, as well as patients with only unilateral lesions of the hippocampus 
(Scoville & Milner, 1957). This research profoundly shaped our understanding of 
learning, and it provided evidence that the hippocampus is important for learning and 
memory. 

In 1970, Kimble and Kimble performed hippocampectomies on rats and ran them 
in a T-maze, with food on one end of the T-maze arm, signaled by a light. Three groups 
of rats underwent training: rats with hippocampectomies, rats with lesions in neocortex 
overlying the hippocampus, and unoperated controls. All three groups learned the 
association between the light and food. Halfway through the experiment, extinction trials 
began. The food was removed so that neither arm of the T-maze had food, but the light 
continued to appear. The researchers measured the amount of time that the rats spent 
at the top of the T-maze, considering which arm to travel down. They argued that 
incremental changes in this delay time suggested incremental changes in the animal’s 
association between the light and the food, eventually learning that the light was no 
longer predictive of a food reward. The time that the control and neocortically lesioned 
rats spent at the top of the T-maze increased over trials once the extinction trials 
(removal of the previously present association) had begun, whereas the rats with 
hippocampectomies continued to run towards the light, not learning that the light no 
longer predicted food. These rats did not explore the other arm of the T-maze and 
continued to run toward the arm with the light throughout the entire experiment. The 
authors concluded that hippocampal lesions had negative effects on the abilities of rats 
to learn extinction. This shows that the rats without hippocampi are able to learn 
associations; however, they fail to extinguish a learned association (Kimble & Kimble, 
1970). While the hippocampus seems to play an important role in learning new 
memories, it does not seem necessary to learn an association between a stimulus and a 
reward. It does seem to be required to unlearn such a stimulus-reward association, 
however. 

In 1986, Weikart and Berger performed similar hippocampectomies on rabbits 
and presented them with an eye-blink conditioning task. In this experiment, before 
training, one group of rabbits had hippocampectomies, while another group had lesions 
in the overlying parietal neocortex, and a third group of rabbits received sham surgeries, 
with no brain damage, acting as the control group. Both a light and a bell were presented 
intermittently to the rabbits, with one stimulus signaling an imminent puff of air to the 
rabbit’s eye. Rabbits naturally blink to puffs of air to their eyes. After learning, stimuli that 
predicted imminent air puffs caused rabbits to blink their eyes in preparation. Thus, a 
blink following the stimulus that predicted the puff of air (even if no puff of air was 
delivered) indicated that the rabbit was learning the association between the light or bell 
and the puff of air. The rabbits from all conditions learned the association of the 
predictive stimuli to the puff of air. Halfway through the experiment, the predictive and 
unpredictive stimuli were reversed, resulting in the previously unpredictive stimuli now 
predicting the onset of the air puff and the previously predictive stimuli no longer 
predicting the onset of the puff of air. The neocortical lesion and control rabbits stopped 
blinking to the previously predictive stimulus and began blinking to the stimulus that now 
predicted the air puff. However, the researchers found that the rabbits with hippocampal 
lesions continued to blink to the first stimulus. Surprisingly, these rabbits also acquired 
the association between the second stimulus and a subsequent puff of air. These rabbits 
with hippocampal lesions could learn both associations, but they did not unlearn the first 
association when it no longer was useful for predicting the air puff. The authors 
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concluded that the hippocampus is important in order to properly learn tasks that require 
the reversal of an association (Weikart & Berger, 1986). 

In 1997, Packard and Teather trained rats in one of two tasks and injected an 
antagonist of N-Methyl-D-aspartate (NMDA, a neurotransmitter implicated in synaptic 
change) into the hippocampus and dorsal striatum to understand these structures’ roles 
in the rats’ spatial learning. It had been previously shown that inhibiting NMDA receptors 
in the brain inhibits long-term-potentiation, and inhibiting NMDA receptors in the 
hippocampus impairs learning and memory (Collingridge & Bliss, 1987). The two tasks in 
the Packard and Teather study involved the Morris water maze task, where the rat is 
placed in a tub of clouded water, with a small hidden platform just below the water’s 
surface that the rat can rest on (Morris, 1984). Since these animals find swimming 
aversive, they intrinsically seek out the platform in order to escape their current situation. 
In the first experiment, the rats were placed in the bucket at different locations, while the 
platform was always found in the same location. This was called the hidden platform 
task. In the second task, the rats were placed in the same location each time, while 
visual cues on the sides of the bucket indicated the location of the platform. This was 
called the visually cued platform task. In the hidden platform task, 2-amino-
phosphonopentanoic acid (AP5, an NMDA antagonist) injected into the hippocampus 
impaired learning performance, while AP5 injected into the dorsal striatum did not. In 
contrast, in the visually cued platform task, AP5 injected into the hippocampus had no 
effect on learning, while AP5 injected into the dorsal striatum impaired learning 
performance. This research suggests that both the hippocampus and the dorsal striatum 
use NMDA receptors when learning, and that effectively inactivating those NMDA 
receptors with NMDA antagonists impairs their ability to learn. Crucially, this research 
shows that these two structures learn different aspects of a task without requiring the 
other to function. Namely, the hippocampus is recruited for spatial tasks while the basal 
ganglia is recruited for cued response tasks (Packard & Teather, 1998) 

Packard and McGaugh (1996) performed similar experiments on rats in a cross-
maze (a modular T-maze with two possible, opposite, starting positions). They injected 
lidocaine (an anesthetic which inhibits activation) into the hippocampus and the caudate 
nucleus within the basal ganglia while training rats to consistently approach an arm of 
the T-maze baited with food. Importantly, the animals were trained using only one of the 
two starting positions. After eight and sixteen days of training, the rats were put in the 
opposite starting position, and the researchers observed which arm the rats entered. 
Rats that entered the baited arm of the maze on these test trials learned the spatial 
location of the baited arm (place learning), while rats that entered the non-baited arm 
learned the individual action to take at the location of choice (response learning). After 
eight days, control rats showed spatial learning, however after sixteen days, the 
response became over-learned, and they sometimes exhibited response learning. Rats 
with hippocampally injected lidocaine showed no strategy preference after eight days, 
but after sixteen days showed response learning from over-learning. Rats with lidocaine 
injected into their caudate nucleus showed spatial learning after both eight and sixteen 
days of training. This research suggests that when the hippocampus is chemically 
inhibited, spatial learning is impaired, and when the caudate nucleus is chemically 
inhibited, response learning is impaired (Packard & McGaugh, 1996). This is further 
evidence of the functional differences in learning between the hippocampus and the 
basal ganglia; the hippocampus learns spatial associations, while basal ganglia learn 
state-response associations. 
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These studies can give us a glimpse into how the hippocampus works. It is not 
necessary for forming associations; however, it is necessary for unlearning associations. 
Without a hippocampus, rats are unable to explore other options to learn new 
associations as in the T-maze (Kimble & Kimble, 1970). The Weikart and Berger (1986) 
work suggests that animals can learn other associations, but they have great difficulty 
extinguishing the first association that they learned. The work of Packard & Teather 
(1998) and Packard and McGaugh (1996) suggest that an animal without a 
hippocampus can learn state-action associations using the basal ganglia, and those with 
lesions to the basal ganglia can learn spatial associations using the hippocampus. When 
combined with the other studies discussed here, this provides evidence that the basal 
ganglia can learn associations but cannot extinguish them without the additional support 
of the hippocampus. Overall, these studies show that the hippocampus may not be 
needed for forming associations, but it is crucial for unlearning those associations. 

These studies examined the functional properties of the hippocampus, as a 
whole, but there has been some work examining the differential properties of distinct 
regions of the hippocampus. In 1993, Moser, Moser, and Anderson selectively lesioned 
portions of the rat hippocampus and found that spatial memory was partially affected. 
Using rats, they lesioned either the dorsal or ventral portion of the hippocampus and put 
them in the visually cued Morris water maze with spatial cues that allow the rat to orient 
itself (Morris, 1984). After a few trials of placing a healthy rat in the tub, it can find the 
platform quickly and regularly. In Moser et al., both sets of hippocampally lesioned rats 
were able to learn the location of the platform; however, the rats with dorsal lesions to 
their hippocampus took significantly longer to learn the location of the platform. Rats with 
ventral lesions to the hippocampus showed no significant difference compared to sham 
surgery rats without lesions and healthy control rats. The authors concluded from this 
research that the dorsal portion of the rat hippocampus is important for spatial learning 
(Moser, Moser, & Andersen, 1993). 

Related work has also been done in humans. In 2000, Maguire et al. measured 
the size of the posterior and anterior hippocampi in New York City taxi drivers. They 
found a positive correlation between length of time spent as a taxi driver and the size of 
the posterior hippocampus. While it’s possible that people with larger posterior 
hippocampi are drawn to being taxi drivers for longer lengths of time, it seems more 
plausible that spending time as a taxi driver increases the size of your posterior 
hippocampus. This increase in posterior hippocampus led to an equal decrease of 
anterior hippocampus (Maguire et al., 2000). This is consistent with the work done with 
rats. 

Taking these two papers on spatial learning into consideration, it seems that the 
dorsal hippocampus in rats and posterior hippocampus in humans are important for 
spatial learning and memory, while the ventral/anterior hippocampus is comparatively 
more important for other types of learning and memory. It is important to make the 
distinction between learning an association and spatial memory, as both are affected by 
the hippocampus. Lesions to the hippocampus do not hinder the learning of an 
association (Kimble & Kimble, 1970; Quirk & Mueller, 2008; Tracy, Jarrard, & Davidson, 
2001; Weikart & Berger, 1986), but hippocampal lesions do interfere with extinction. In 
contrast, lesions to the dorsal/posterior hippocampus will decrease spatial understanding 
as shown in Moser et al. (1993) and suggested in Maguire et al. (2000). 

In 2012, Liu, et al. studied rats that had been conditioned to associate the sound 
of a tone with a light foot shock. Learning was indicated by an innate fear response - 
freezing - upon the sound of the tone. Using optogenetic methods, they were able to 
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identify hippocampal neurons that become active during the learned freezing response, 
and they were able to activate those neurons at a later time, when no tone was 
presented. The way they did this was by marking neurons that were active during the 
fear response with a protein, and using this protein marker to add specific light-sensitive 
proteins to those marked neurons. Later, when the animal was moved to a new 
environment, the researchers could shine a light on the hippocampus, thereby 
selectively activating those neurons that were active during the learned fear response 
via the light-sensitive proteins. The researchers found that the rats froze in place 
significantly more often when the specific fear-conditioning-related hippocampal neurons 
were active. This is a clear demonstration that the activation of hippocampal cells can 
give rise to a learned response. The authors conjectured that, upon this hippocampal 
stimulation, the rats re-experienced episodes involving both the tone and the shock, 
during which the association was learned (Liu et al., 2012). 

This collection of studies provides a wealth of information concerning the function 
of the hippocampus: 1) the hippocampus provides explicit memory formation for 
introspection as we see from Scoville and Milner (1957), 2) lesions to the hippocampus 
destroy the ability to explore alternative actions in a familiar environment as we see from 
the rats in Kimble and Kimble (1970), 3) the hippocampus is not necessary for learning 
associations but appears to be necessary for extinction as we see in both Weikart and 
Berger (1986) and Kimble and Kimble (1970), 4) the hippocampus and basal ganglia 
learn tasks in different ways and can do so without the other as seen in Packard and 
Teather (1998) and Packard and McGaugh (1996), 5) the dorsal/posterior portion of the 
hippocampus is related to spatial memory as shown in Moser et al. (1993) and Maguire 
et al. (2000), and 6) that neurons in the hippocampus encode some fear conditioning 
memories as shown in Liu et al. (2012). 

 
Modeling Learning 
Since the earliest days of scientific psychology, there have been efforts to 

mathematically and computationally specify the mechanisms of learning. These 
reinforcement learning (RL) paradigms have captured some learning phenomenon quite 
robustly. Pavlov (1928), Skinner (1938), and Thorndike (1933) all discussed 
reinforcement learning, but Thorndike (1911) first discussed this in terms of the Law of 
Effect: animal responses that are closely followed by a satisfactory environmental state 
will be more likely to occur again (Hull, 1943; Pavlov, 1928; Skinner, 1938; Thorndike, 
1898; Thorndike & Jelliffe, 1912). Some accounts of learning involved the simple 
strengthening of associations with the co-occurrence of stimuli (Hebb, 1949). While 
these models aligned well with observations of neural synaptic plasticity, they could not 
account for many aspects of learning. The Rescorla-Wagner model of learning, which 
strengthens associations in proportion to the difference between expectations and the 
actual appearance of stimuli (such as rewards), was among the first models to provide 
an explanation for some learning phenomena seen in experimental data, such as 
blocking and extinction (Rescorla & Wagner, 1972). 

When the Rescorla-Wagner model is used to build an association between a 
neutral stimulus and reward, it can be seen as a form of temporal difference (TD) 
learning, updating the association based on the difference between a prediction of 
reward when the stimulus is presented and the actual presence or absence of reward a 
moment later (Sutton, 1988). This difference in expected and actual reward is called the 
temporal difference (TD) error. Building on the Rescorla-Wagner model, Barto, Sutton, 
and Anderson (1983) developed the adaptive actor-critic architecture, in which learning 
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the expected future reward in each environmental state, and learning the action that 
should be taken in each state, are divided into two separate systems. The adaptive critic 
system learns how good a state of the environment is, and the actor system learns the 
best action for each state (Barto et al., 1983). Described briefly, the adaptive critic 
produces a prediction of expected future reward, given features of the current 
environmental state, and this prediction is used to calculate the TD error. The adaptive 
critic learns by updating reward associations with features of the environment in 
proportion to the TD error. Similarly, a positive TD error increases the associations 
between current environmental features and the action selected by the actor system, 
while a negative TD error decreases the likelihood that the chosen action will be 
selected again, in that state, in the future. The actor-critic division of labor in this 
architecture allows the model to select actions that maximize the amount of 
environmental reward. Sutton (1988) proved that the actor-critic architecture would 
always converge to the optimal solution given a discrete environment and sufficient time, 
and this proof was extended in generality by Dayan (1992). An actor-critic system 
learning from TD error would always find the best way to receive the most reward, given 
enough experience (Dayan, 1992; Sutton, 1988). There is increasing evidence that TD 
learning using the actor-critic architecture provides a good description of dopamine-
based learning in the basal ganglia. Phasic firing of DA neurons mirrors the temporal 
difference error - the difference between expected and actual rewards - and DA can 
affect synaptic plasticity in the manner required by TD learning (Barto, 1995; Montague 
et al., 1996). 

The TD learning approach, using the actor-critic architecture, has been found to 
be quite powerful. For example, Boyan (1992) and Tesauro (1992) used the actor-critic 
architecture to play backgammon at the champion level. Importantly, these applications 
of TD learning used a mathematical value function approximator (VFA) to implement the 
adaptive critic, rather than implementing the adaptive critic as a look-up table, mapping 
environmental states to expected future reward values. One benefit of using a VFA is 
that it supports generalization from previously encountered environmental states to novel 
ones, estimating future reward for a novel state based on its similarity to experienced 
states. Using a VFA can also speed up learning in larger environments, such as 
backgammon, so that not every environmental state needs to be visited individually in 
order to learn a general policy for selecting actions (Boyan, 1992; Tesauro, 1992). 

It is worth noting that proofs of optimality for TD learning do not apply when the 
adaptive critic is implemented as a VFA, however. Given their experience with VFAs and 
backgammon, Boyan and Moore (1995) decided to investigate empirically the 
performance of the actor-critic approach when using a VFA. They found that learning 
can sometimes be robust when using a VFA, but there are relatively simple learning 
problems for which the introduction of a VFA leads to a divergence in learning. This 
means that, for some learning tasks, the use of a VFA can result in the adaptive critic 
never reaching stable estimates of future reward and the actor never reaching a stable 
mapping from state features to the selection of an action (Boyan & Moore, 1995). 

A number of different approaches to addressing this problem have been 
proposed. Boyan and Moore (1995) proposed a type of off-line learning mechanism in 
which the learner takes actions in the environment for a while without changing the actor 
or the critic. These action sequences, along with the corresponding experiences of the 
learner, are called “roll-outs.” The actor and critic are only updated based on aggregated 
data from each roll-out. The result is superior learning using a VFA for the adaptive critic. 
When performing TD learning with a VFA in the standard way, every update to the 
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adaptive critic can change the learner’s expected reward not only for the current 
environmental state but also for a wide variety of states with similar features. Thus, the 
function of the adaptive critic can fluctuate wildly as the actor makes even small changes 
to its action selection policy. Following Boyan’s and Moore’s roll-out strategy keeps the 
actor from changing long enough for the learner to converge on a reasonable 
approximation of the expected reward from different states, reducing the likelihood of 
divergence1. Unfortunately, this strategy involves episodic rather than incremental 
learning, forcing the learner to remember whole roll-outs before improving the adaptive 
critic or the actor in any way (Boyan & Moore, 1995). 

In response to Boyan and Moore, Sutton (1996) presented an on-line learning 
version of TD learning with a VFA that was able to learn complex learning tasks. 
Sutton’s innovation was to encode the features of the environmental state using a 
sparse coarse code - namely the CMAC encoding used in an early model of the 
cerebellum (Albus, 1975). This encoding restricted changes to the adaptive critic and to 
the actor so that the responses for only a limited range of environmental states were 
affected by any one TD learning update. This was shown to support robust learning 
(Sutton, 1996). One problem with Sutton’s solution is that it requires knowledge 
concerning the similarity structure of the environment in order to design an appropriate 
coarse code for environmental features. Thus, with this strategy, the representation of 
environmental features needs to be hard-coded into the model for each specific 
environment that the learner encounters. 

While these models capture many learning phenomena in a high-level and 
abstract way, they lack biological plausibility or, at least, complete biological 
implementations. For example, in temporal difference models, predictions of reward are 
encoded over discrete “time steps”, and the mathematical difference between these 
predictions is the basis for action selection at one specific temporal scale. The TD 
approach also requires the changing of reward associations from environmental features 
that are potentially no longer being sensed. For many researchers, whether it is possible 
for neurons in the brain to implement the needed calculations is not important, as these 
models are seen as models of behavior rather than brain function. Some work has been 
done to implement these models using connectionist neurons, i.e. continuous activation 
neurons (Barto, 1995), but even these models require the abstract subtraction of two 
neural activation values, separated in time, representing rewards and predictions of 
rewards. Other research has shown that temporal difference algorithms can be 
implemented using spike-timing-dependent plasticity, which is a biologically based 
process where the connection strength between two neurons can be strengthened or 
weakened based on the precise timings of the firing of pre- and post-synaptic neurons 
(Castro et al., 2009; Florian, 2005, 2007; Potjans et al., 2009; Rao & Sejnowski, 2001; 
Roberts et al., 2008; Rusu & Florian, 2009). 

                                                
1
 “Roll outs” are a solution to noisy reward that requires aggregation or a learning algorithm that 

easily over-learns from single examples. By aggregating the results of multiple runs before 
updating your VFA, you can avoid over-learning or catastrophic interference (forgetting that 
results from the learning of new information). There is little biological evidence for a mechanism 
like “roll outs”, but some researchers have suggested that something like this might happen 
during  sleep. Other researchers, however, see sleep as a more complicated process. This 
account also fails to explain learning that takes place over, say, 30 minute training sessions 
where the animals can learn tasks without needing to sleep (Sutton, 1996). 
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Rae and Sejnowski (2001) used spike-timing-dependent plasticity (STDP) in 
multi-compartment neural models of cortical neurons and found that the neurons started 
to predict the spike timings of the input, doing so similarly to TD learning. Roberts et al. 
(2008) similarly found another STDP implementation to provide prediction of reward. 

Similar follow up studies by Florien (2005, 2007), Di Castro et al. (2009), and 
Potash et al. (2009) showed various versions of TD-like reinforcement learning 
algorithms for spikes emerged within a neural network using a reward signal that 
modulated STDP, using different flavors of integrate-and-fire neural models. Potash et 
al. (2009), in particular, implemented the actor-critic model of Barto (1995) using 
specifically connected spiking neurons that employed STDP, proving that an actor-critic 
model of learning can be implemented with spiking neural networks, producing 
performance at the same level as Barto’s (1995) discrete model. 

These models made use of biologically realistic, though somewhat approximate, 
mathematical characterizations of individual neurons. Hodgkin and Huxley (1952) 
studied giant squid neurons and their axons and made biophysically accurate models of 
neurons. These models, however, are computationally intensive to simulate. In 2003, 
Izhikevich took these models and derived a lower dimensional version that is 
computationally simple and maintains biological plausibility. Later, Izhikevich (2007) 
proved that, with spike-timing-dependent plasticity, these neurons can learn 
associations, purely through the statistics of how often reward and predictive stimuli 
occur. 

In 2011, Chorley and Seth created a spiking model of the striatum and the 
dopamine (DA) neurons in the substantia nigra pars compacta based on the Izhikevich 
(2007) model, where all of the learning occurred directly due to the connectivity of the 
neurons. In this model, all of the calculations were done in spikes. They proved that it 
was possible to achieve the same DA fluctuations due to reward solely with a spiking 
neural network where the calculations are done at the neural level, and not at some 
abstract level outside of the system. The DA neurons in their model gave the same 
activity levels as in the SNc of monkeys, as previously reported in the literature (Chorley 
& Seth, 2011). 

While this model made many progressive steps forward, it does have some 
limitations when it comes to modeling the full range of learning phenomena. For 
example, the model does not account for extinguishing learned associations, and it does 
not account for spontaneous recovery. These missing pieces of the puzzle can be filled 
in if we remember that animals without hippocampi also exhibit these limitations – they 
cannot extinguish, nor can they spontaneously recover associations (as they cannot 
extinguish them in the first place). A model of the hippocampus might need to be added 
to the Chorley and Seth (2011) work in order to capture extinction and related 
phenomena. One approach would be to have the hippocampus learn an internal 
representation of the current environmental state, with this state representation resulting 
in better performance than pure TD learning in capturing all of the neuroscience data. 

Redish, Jenson, Johnson, and Kurth-Nelson (2007) suggested that a model of 
the environment is required to exhibit spontaneous recovery. They further gave strong 
evidence to support their claim that “any mechanism that produces development of a 
new state in response to repeatedly low delta would produce the appropriate extinction 
with renewal” (Redish et al., 2007). Here, delta is the difference between observed and 
expected reward values - the TD error. Redish and colleagues (2007) claim that, in order 
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for a learning system to show both extinction and spontaneous recovery, it needs to be 
able to create new internal representations of the current state of the environment.2 

This claim by Redish and colleagues (2007) is further solidified by recent work by 
Gershman et al. (2013), where rats were given extinction trials in which the rewarding 
stimulus was presented less and less frequently in relation to the predicting stimulus. 
This is called gradual extinction, highlighting the difference between this approach and 
that used in typical extinction paradigms, where reward presentation is suddenly and 
completely stopped after an association is learned. Rats experiencing gradual extinction 
showed significantly less spontaneous recovery than rats that were given normal 
extinction trials (Gershman, Jones, Norman, Monfils, & Niv, 2013). Gershman and 
colleagues’ experimental evidence further strengthens the claim by Redish and 
colleagues, because the way in which internal representations of the environmental 
states change during standard extinction versus gradual extinction can explain how 
reward associations are learned so as to produce spontaneous recovery. Gradual 
extinction revisits the states where reward recently occurred, using slowly changing 
internal representations, and weakens the previously learned associations. Normal 
extinction, in contrast, abruptly changes the internal representation of the environmental 
state by suddenly removing the presence of any reward in that state, resulting in less 
weakening of the associations from the features of the original state representation. The 
larger residual associations in the standard extinction case produce the robust 
phenomenon of spontaneous recovery. 
 
 
  

                                                
2
 In Redish and colleagues (2007), the model created new internal representations of the 

environment when the most recent context cues were sufficiently different from the running 
average of the previous context cues. This measure of difference could also be affected by strong 
negative prediction errors, which force the model to reassess the importance of the current cues 
being used (Redish, 2007). This is further explained in later sections. 
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CHAPTER 3: 
THE FOUNDATIONS OF A NEW MODEL OF ASSOCIATION AND EXTINCTION 

Introduction 
In this section, I review the computational neuroscience models that this 

dissertation work builds upon, many of which were mentioned previously. This section 
goes into much more depth, describing each model in detail. First, I review the work 
done by Izhikevich (2007) that provided the initial neural network structure that was 
modified by Chorley and Seth (2011). After that, I review parallel work by a separate 
modeling group (Redish et al., 2007) which motivates the modifications to Chorley and 
Seth (2011) that I have made. 

 
Izhikevich Neuron Model 
Izhikevich initially created a realistic spiking model of neurons in 2003 by 

analyzing real neural spiking data and distilling down the equations rendered by Hodgkin 
and Huxley (1952). Hodgkin and Huxley made scientific history by analyzing giant squid 
neurons and creating very complex and biologically complete equations of the 
movement of ions that cause neurons to fire. This made great progress in modeling 
neurons in a very complete manner, but the equations were very complex and are 
computationally very expensive to model (Hodgkin & Huxley, 1952). Izhikevich (2003) 
simplified these equations while maintaining the same biological behavior, allowing for 
many more neurons to be modeled in the same amount of time (on the order of three 
orders of magnitude more, x1000). (See Appendix A for details.) 

Izhikevich and colleagues made progress understanding and applying this new 
model (Izhikevich, 2003, 2004, 2006, 2007; Izhikevich & Hoppensteadt, 2009), and in 
2007 they proposed a neural network that would produce some of the same neural 
spiking behaviors observed in dopamine neurons in animals: mainly the shift of 
dopamine activity to the earliest US-predicting stimuli. 

 
Learning to Predict Using Izhikevich Neurons 
In this section, I review some of the important work reported in Izhikevich (2007). 

This material will help us to understand the reinforcement learning model of Chorley and 
Seth (2011). An important problem addressed in Izhikevich (2007) was the distal reward 
problem (Hull, 1943), also called the temporal credit-assignment problem (Minsky, 
1961). It asks, in a general sense: how do we predict reward? This is the problem that, 
given a reward, and any number of preceding stimuli that occurred before that reward, 
how do we know which of the stimuli (or temporally separated combinations of the 
stimuli) are predictive of the reward? How do we learn that one stimulus tells us that 
reward is coming when there are many different stimuli that occurred before the reward? 
This problem has been approached from many different angles, with varying degrees of 
success. In Izhikevich (2007), the problem was approached from the perspective of the 
neuron: how do neurons know which spike caused reward? And how is dopamine (a 
neurotransmitter signaling reward prediction error that is diffused in a global manner to 
many neurons at a time) used in conjunction with this? In what way are the efficacies of 
certain synapses increased or decreased to support this type of learning? 

In order to solve these problems, the paper suggested that, on each synapse 
between any two neurons, there is an eligibility trace - a value that keeps track of how 
eligible that synapse is for a change in synaptic strength – a weight change. The idea is 
that if a pre-synaptic neuron fires an action potential that contributes to the activation of 
a synapse to a post-synaptic neuron, and the post-synaptic neuron fires shortly 
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thereafter (sending an action potential on to other neurons), then the pre-synaptic 
neuron probably helped cause the post-synaptic neuron to fire. Whether it actually did or 
not in a particular situation is not important. The general idea is if a post-synaptic neuron 
fired after a pre-synaptic neuron fired, the pre-synaptic neuron probably helped. The 
eligibility trace keeps track of how often events of this kind occur, and the value 
increases greatly if the time between pre- and post-synaptic firing is very small, inversely 
related to the difference in time. (Times less than a few milliseconds have the most 
effect, while times larger than 50ms have little effect, and times larger than 5000ms have 
effectively zero effect.) 

The inverse is true if the opposite firing order occurs. If the post-synaptic neuron 
fires before the pre-synaptic neuron, then the eligibility trace is decreased, to a degree 
inversely related to the difference in the time between the spikes. This inversion when 
the opposite spiking order occurs makes sense: If the post-synaptic neuron fired before 
the pre-synaptic neuron, it is not possible that the spike from the pre-synaptic neuron 
caused the post-synaptic neuron to fire. This leads to a synaptic plasticity profile similar 
to that shown in Figure 1b. The closer in time the spikes occur, the larger the change in 
the eligibility trace, and the sign of the change is dependent on whether the pre- or post-
synaptic neuron fired first. 

The last important aspect of the eligibility trace is that the value decays to zero 
over time. This means that, in order to have a very large eligibility trace, the pre-synaptic 
neuron needs to fire before the post-synaptic neuron closely in time a few times in close 
temporal proximity.3 

How does the eligibility trace cause the synaptic strength to increase and 
decrease? The synaptic strength is modified based on the product of the eligibility trace 
and the current dopamine level, as seen in Figure 1c, where the pre-synaptic neuron 
fires closely before the post-synaptic neuron fires. Below that, the extracellular dopamine 
level is depicted as sharply rising a short time later. Directly below the dopamine plot is 
the eligibility trace, which increases radically because of the closeness in time between 
the firings of the pre- and post-synaptic neurons. The eligibility trace then slowly decays. 
In this model, the synaptic strength is modified simply by the product of the extracellular 
dopamine and the eligibility trace, so we can see when both the dopamine and eligibility 
trace values are greater than 1, the synaptic strength increases, as shown at the bottom 
of Figure 1c.  

This modification of synaptic weights, using the combination of current dopamine 
level and relative spike timing, is called dopamine-modulated spike-timing-dependent 
plasticity (DA-STDP). (See Appendix A for details.) 

The Izhikevich (2007) paper made multiple contributions, including existence 
proofs of some interesting properties of networks of neurons implementing DA-STDP. 
Perhaps most importantly, the paper described a neural structure that includes 
dopamine neurons which behave similarly to those measured during experimental 

                                                
3
 In this model, it’s important to note that if one pre- post- spike pattern occurs in a short 

enough time span after another pre- post- spike pattern occurs, while the two pre- post- 
spike pairs will increase the eligibility trace, the eligibility trace will decrease somewhat 
due to the inter-spike-pair post- pre- spike pattern. It’s also important to note that 
research is still being done related to triplets of spikes and synapse change due to spike-
timing-dependent plasticity. Thus more complex functions for eligibility traces have been 
investigated (Froemke & Dan, 2002; Pfister & Gerstner, 2006).  
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Figure 1. (taken from Izhikevich, 2007). The implementation of spike-timing-dependent plasticity 
(STDP). (a) is a depiction of two connected neurons, one pre-synaptic (1) neuron and one post-
synaptic (2) neuron. (b) is a graph of the effect of the interval of the spikes between the pre- and 
post-synaptic neuron (x axis) and the change in eligibility trace that spike interval causes (y axis). 
Note positive (right of 0, unshaded) intervals mean the pre-synaptic neuron fired before the post-
synaptic neuron, which means neuron 1 might have caused neuron 2 to fire, so increase the 
eligibility trace. While negative (left of 0, shaded) intervals mean the pre-synaptic neuron fired 
after the post-synaptic neuron, which means neuron 1 could not have caused neuron 2 to fire, so 
decrease the eligibility trace. (c) (top) is a depiction of the spike trains of the pre- and post-
synaptic neurons, and how it, in addition to extracellular dopamine and the eligibility trace 
(middle), can affect the synaptic strength (bottom). Notice that the eligibility trace jumps in value 
when the pre-synaptic neuron fires directly before the post-synaptic neuron, and over time with no 
other similarly close spike intervals the eligibility trace decays back to zero. Also of interest to 
note is that the eligibility trace drops a small amount on the pre-synaptic neuron’s third spike, 
because it follows the spike of the post-synaptic neuron closely enough in time to register on the 
graph in b of this figure. 

 
studies. The model involved a neural structure with four groups of neurons (see Figure 
2a). One group of neurons represented neurons that either directly or indirectly projected 
onto midbrain neurons that release dopamine. (While both the ventral tegmental area 
(VTA) and the substantia nigra pars compacta (SNc) have high concentrations of 
dopaminergic neurons, the VTA was the focus of this paper.) These neurons, when fired, 
increased the level of dopamine in the model. Another group of neurons encoded the 
unconditioned stimulus; these had strong synaptic connections to the dopamine neuron 
group, as well. The other two groups represented two conditioned stimuli, and they were 
connected to each of the other three neuron groups with initially weak weights.  

In this network structure, when neurons from the first conditioned stimuli (CS) 
group fired, there was a chance that some of those neurons participated in causing the 
firing of CS2, US, and VTA neurons, which would increase the eligibility traces on those 
synapses. When the unconditioned stimulus (US) was presented shortly after, it caused 
the VTA group to fire, raising the dopamine level temporarily. Those eligibility traces that  
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Figure 2: (Taken from Izhikevich, 2007). This is a model that explains the foundational principles 
of dopamine activity when learning associations between a conditioned stimulus and an 
unconditioned stimulus. This figure shows the structure and network behavior during association 
learning. (a) shows the structure of the model. There are four interconnected neuron groups, with 
the ventral tegmental area (VTA) group connected to dopamine (DA) cells, and the unconditioned 
stimulus (US) group strongly connected to the VTA group. Conditioned stimulus (CS) 1 and 2 are 
fully connected to the other groups, but with weak strengths. (b) After 100 trials of being 
presented with just the US, DA activity arose for the unpredicted presence of the US. (c) For the 
next 100 trials, CS1 was presented shortly before the US, and the network came to produce DA 
activity for CS1. Notice that the DA group continues to weakly activate for the US. (d) For a 
further 100 trials, CS2 was presented shortly before CS1 which was presented shortly before the 
US. Notice that DA activity arose for CS2 which predicted CS1, which in turn predicted the US. 
Notice, similarly, that the DA activity continued to weakly activate for both predicted stimuli CS1 
and US.  
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were still high enough during dopamine release caused the strengthening of the 
corresponding synapses, according to DA-STDP. In simulated trials in which CS1 
preceded US, the synapses from CS1 to both US and VTA were strengthened because 
they both caused DA to fire. Since CS2 was not presented during these trials, it 
produced fewer (noise) spikes that might contribute, through their initial weak weights, to 
spikes in VTA, so synapses from CS2 were not strengthened in a similar way. As the 
synapses from CS1 to US and VTA were strengthened, the generation of spikes in CS1 
increased the production of DA, via US and VTA. This meant that, over association 
trials, the firing of conditioned stimulus neurons came to cause VTA neurons to fire.  

Thus the model captured the learning of association between a given conditioned 
stimulus and a rewarding unconditioned stimulus. This was accomplished using a model 
that solely used a structured spiking neural network, along with eligibility traces. 
Importantly, there are some candidate biophysical mechanisms for maintaining eligibility 
traces (Izhikevich, 2007). This model was only an existence proof that something of this 
sort can occur, and it does have some limitations in its ability to account for some 
experimental evidence. For example, the dopaminergic neurons in the model continued 
to fire even for predicted reward, unlike the SNc, which only fires for unpredicted reward 
and unpredicted stimuli that predict reward. Another phenomenon that this model did not 
show is the canonical dip in dopamine level when an expected reward does not occur as 
expected (Ljungberg, Apicella, & Schultz, 1991). This model only showed the transferal 
of a dopamine burst from the US to the CS and to further CS’s beyond that. It did not 
model extinction or related phenomena. 

Overall, this work was instrumental in understanding how to model the changes 
in synaptic weights that occur over time between two neurons. This work showed how 
eligibility traces could be implemented in model neurons and argued for the biological 
plausibility of such synapse-specific variables. It also proposed a number of neural 
network structures that have helped the modeling community to understand how the 
dopamine activity in mammalian brains could come to be modeled using a biologically 
plausible spiking neuron model. 

 
How Chorley and Seth Modeled the Dopamine Response 
The model published in Chorley and Seth (2011) built on the neural network 

structure presented in Izhikevich (2007). A major goal was to better model the response 
of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) when the animal 
is presented with unconditioned stimuli (rewarding stimuli), conditioned stimuli (stimuli 
that predict reward), and erroneous stimuli (stimuli that do not predict reward). Izhikevich 
(2007) showed how dopamine neurons can learn to fire for stimuli that predict reward, as 
well as unpredicted reward, but the model continued to fire for rewarding stimuli at a 
reduced level, even when the stimulus was predicted. This is not normally the case for 
the dopamine neurons in the SNc in animal subjects (Ljungberg et al., 1992). The 
Izhikevich (2007) model also did not show the canonical dip in dopamine activity for 
learned predictable rewarding stimuli that do not appear (Ljungberg et al., 1991). 
Chorley and Seth (2011) built upon that model to better parallel what is seen in the SNc 
of mammals. Mainly, this was accomplished by adding a second pathway for stimulus 
information to enter the model, introducing a way in which the timing of stimuli could be 
used to predict when dopamine activity would occur in the SNc. This second pathway 
also provided a mechanism through which an equal and opposite inhibition signal could 
be sent to the SNc, allowing the original pathway to continue to increase DA activity 
when predicted reward occurs, but stopping the DA response if it had been predicted.  
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Figure 3: (Taken from Chorley and Seth, 2011) This is the structure of the network as described 
in Chorley and Seth 2011. There are two pathways in this model. The “lower pathway” passes 
through sensory neurons (SEN), interneurons (INT) and then to dopaminergic neurons (DA). This 
pathway is analogous to the Izhikevich (2007) model (see Figure 2). The lower pathway knows 
that the unconditioned stimulus (US - food) is good and fires strongly for it, firing INT and then 
DA. And it learns that the conditioned stimulus (CS - bell) predicts the food, and thus is also good. 
Thus after learning occurs, the lower pathway causes brief increases in firing activity in DA for 
both the unconditioned stimulus and the conditioned stimulus. The “upper pathway” passes 
through the prefrontal cortex (PFC), striatum (STR), and then to dopaminergic neurons (DA). This 
pathway acts to inhibit those brief increases in DA activity that are predictable. In this model, only 
the US is predictable (by the presence of the CS), and this “upper pathway” learns to inhibit DA at 
the right time so that the brief increase of activity that the “lower pathway” causes when the food 
occurs is met with an equal amount of inhibition, which cancels it out and keeps the DA activity at 
baseline. This leads to dopaminergic firing activity that replicates the firing activity seen in the 
substantia nigra of real animal brains. The diagonal arrows through connections symbolize plastic 
connections, while the dotted line from DA to STR symbolizes dopamine-modulated post-
synaptic-facilitation (DA-PSF). The dotted lines from DA to the plastic connections between PFC 
and STR and between SEN and INT symbolize dopamine-modulated spike-timing-dependent 
plasticity (DA-STDP). Both of these mechanisms are reviewed in the text. The Roman numerals I, 
II, and III on the synapses and to the right symbolize the types of connectivity between each 
neuron group. 

 
This section will further describe that model. See Figure 3 for more details. As a part of 
this dissertation work, I have replicated the Chorley and Seth model, and will present 
data from my replication that, to my knowledge, accurately reflect the results reported by 
Chorley and Seth (2011) (See Figure 4). 

The model of Chorley and Seth (2011) was made up of 1400 Izhikevich neurons, 
divided into 5 groups, connected in a pattern as seen in Figure 3. For simplicity, both the 
excitatory neurons and the inhibitory neurons were modeled with Izhikevich (2003) 
regular spiking neurons with appropriate parameters. (See Appendix B.) There were two 
groups of 50 excitatory neurons that broadly signified sensory neurons that fired in the 
presence of each of the two stimuli: the unconditioned stimulus (US - the reward) and 
the conditioned stimulus (CS - the bell)4. These two groups of neurons were labeled as  

                                                
4
 Here, I refer to the conditioned stimulus as “the bell”, which initially was not rewarding, but after 

many trials of the bell preceding the reward, it came to predict the reward. Similarly, I refer to the 
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Figure 4: Replication of the Chorley and Seth (2011) model. The only major differences between 
this figure and Figure 3 is that the sensory and inter-neurons have been split into two different 
groups to make it easier to understand. Note, however, that the pattern of connectivity in this 
pathway is identical to that used by Chorley and Seth. The connectivity is as follows. Prefrontal 
cortex (PFC) has excitatory feed-forward connections to striatum (STR), connected at a 10% 
connectivity: each PFC neuron is connected to only 10% of the STR neurons. All other 
connections are all-to-all (100% connectivity) and feed-forward: STR has inhibitory connections to 
dopaminergic neurons in the substantia nigra pars compacta (DA). The sensory neurons for the 
bell (SEN-Bell) have excitatory connections to the bell interneurons (INT-Bell), which have 
excitatory connections to DA. Similarly for the sensory neurons for food (SEN-Food), they have 
excitatory connections to the food interneurons (INT-Food), and have excitatory connections to 
DA. 

 
sensory neurons, as they fired when they sensed the presence of a stimulus. All neurons 
were injected with a small amount of noise, producing a low level of background firing. 
Firing rates were briefly increased in the appropriate sensory neurons in order to model 
the presentation of a stimulus. (See Appendix B for details.)  

The two sensory neural groups were connected to two corresponding interneuron 
groups in a feed-forward all-to-all fashion, one interneuron group for each stimulus. (See 
Appendix B for further details.) Each of those interneuron groups had 50 excitatory 
neurons. It was these connections between the sensory neuron groups and the 
interneuron groups that formed the primary locus of learning, capturing the strength of  

                                                                                                                                            
unconditioned stimulus as the reward or “the food”. This is to help the reader more easily intuit 
the structure of the model. Notice that further on in this document, the conditioned stimulus is 
sometimes labeled “light” instead of “bell.” There is no meaningful difference between these two 
from the perspective of the model; conditioning to the stimulus labeled “light” is no different than 
to the stimulus labeled “bell.” It is only important in later simulations (e.g., on blocking and 
overshadowing) that there is a need for two separate conditioned stimuli. 
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Figure 5: This is a graph of the spiking activity of one trial of a replication of Chorley and Seth 
(2011) before any training has occurred. Each trial was 3000ms, the presentation of stimuli was 
1500ms in total, and the start of the 1500ms of stimuli presentation was randomly chosen within 
the first 1000ms of a trial. An experiment had between 100 and 400 trials in total. Shown here is a 
1500ms portion within one of the first 3000ms trials where the stimuli are presented. The X axis 
shows time in seconds, and while trial number is not shown here, given that each trial is 3000ms, 
we can estimate trial number by dividing time in seconds by 3 (thus this is trial number 4 shown 
here). Notice that the dopaminergic neurons (DA) fired strongly for Food initially, and not for the 
Bell. 

 
associations between each conditioned stimulus and reward. Thus, these were the 
connection weights that were learned using dopamine-modulated spike-timing-
dependent plasticity (DA-STDP) over conditioning training trials. For the unconditioned 
stimulus, these connection weights were initialized to their maximal values, capturing the 
strong association between the US and reward (and corresponding dopamine activity) 
prior to the onset of conditioning trials. For the conditioned stimulus, these connections 
were set to their minimal values, corresponding to no initial association with reward. This 
can be seen in Figure 5. (The illustrated data are from a replication of Chorley and Seth 
(2011) that is discussed later in this dissertation.) The neuron group SEN-Food briefly 
increases its firing rate for the presence of food, and because it has strong connections 
to INT-Food, it causes a similar increase in firing rate in the INT-Food neuron group. In 
this first trial of an experiment, however, when SEN-Bell increases its activity for the 
onset of the bell, the connections to INT-Bell are weak, and so there is not a similar 
increase in firing rate in the INT-Bell neuron group. 
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The two interneuron groups were then both connected all-to-all to the dopamine 
(DA) neuron group. This connection was not plastic. The synaptic strengths were not 
learnable, and these strengths were fixed for all neurons at a specific value (6% of the 
maximum weight value). The DA neuron group represented the dopamine neurons in the 
substantia nigra pars compacta (SNc). Dopamine neurons in this area have been shown 
to fire for unpredicted reward and unpredicted stimuli that predict reward (Ljungberg et 
al., 1992; Romo & Schultz, 1990; Schultz & Romo, 1990). 

As described so far, the Chorley and Seth (2011) model was very similar to what 
was presented in Izhikevich (2007). Both models incorporated sensory neuron groups 
that fired for conditioned and unconditioned stimuli, and both had a connection pathway 
from these groups to dopaminergic neurons. In Izhikevich (2007), there was a third 
conditioned stimulus and no interneurons, but the spiking behavior of the dopaminergic 
neurons was largely the same across the two models. Using the Izhikevich neurons, 
along with eligibility traces, the appropriate conditioned stimulus learned to cause the 
dopaminergic neurons to fire just as strongly as the unconditioned stimulus, correctly 
learning when a conditioned stimulus was predictive of reward.5 This learning occurred 
in the “lower pathway” in the Chorley and Seth (2011) model (see Figure 6). Through the 
plastic connections between conditioned stimuli neural groups and their corresponding 
interneurons, the model learned to fire dopaminergic neurons for stimuli that predict 
reward, essentially learning associations between conditioned stimuli and reward. 

Beyond Izhikevich (2007), the Chorley and Seth (2011) model included another 
neural pathway. The second portion of the Chorley and Seth (2011) model was the 
“upper pathway” (see Figure 3). This additional pathway learned to inhibit dopaminergic 
neurons from firing during the presentation of stimuli that were predictable. In this way, 
only unpredictable rewarding stimuli or unpredictable stimuli that predict reward came to 
cause a phasic dopaminergic response, as seen in animal studies (Schultz, 1998; 
Schultz & Romo, 1990). In this upper pathway, there were 1000 excitatory neurons that 
provided about 1-5Hz of random spiking activity over time. These neurons represented a 
portion of the prefrontal cortex (PFC), and they were used to maintain information about 
presented stimuli over time (see Figure 6). When a stimulus was presented to the model, 
both the lower pathway and the upper pathway were affected, but they were affected in 
different ways. As previously discussed, the lower pathway briefly increased its firing 
rate in the neural group associated with the stimulus presented. However, in the PFC 
portion of the upper pathway, the firing activity was not simply increased, but it was 
changed to be a stereotyped (i.e., identical whenever triggered) 1000ms time-locked 
pattern of neural spikes, starting when the stimulus was presented. Of the 1000 PFC 
neurons, there were 500 neurons that fired in a specific pattern whenever the 
conditioned stimulus appeared, and there were 500 other neurons that fired in a 
(different) specific pattern when the unconditioned stimulus appeared. Thus, every time 
a particular stimulus was presented, the same spatio-temporal pattern of neural spikes 
was generated across a population of neurons in PFC dedicated to that stimulus. The 
unconditioned stimulus caused one set of neurons to fire in a specific way over time, and 
the conditioned stimulus caused another set of neurons to fire in another specific way.6 

                                                
5
 It’s important to note that given any number of stimuli that do not predict the rewarding 

unconditioned stimulus, the model can learn the stimuli that best predicts reward, solving the 
distal reward problem. 
6
 If the patterns of spiking in the PFC for the stimuli are sufficiently sparse, there is good reason 

to think that a common population of neurons could be used to encode all stimuli, rather than 
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Figure 6: Chorley and Seth (2011) replication, showing representative performance of the model 
after learning has occurred over 200 trials, each taking about 3 seconds. Notice that increases in 
activity in both the Bell and Food sensory neuron groups created corresponding increases of 
activity in both of the inter-neuron groups. This shows that the model continued to respond 
strongly to the Food, but it had also learned a positive association with the Bell. Also notice that 
the DA neuron group fired strongly for the Bell after learning, and no longer fired for the Food. 
This shows that the model learned that the Bell predicted Food.

7
 

 
This mechanism was used to represent a working memory trace of each presented 
stimulus, maintained in the prefrontal cortex, encoded as a polychronous neuronal group 
(Izhikevich, 2006). The idea that the brain sometimes encodes stimuli in this way, as an 
extended temporal pattern of spikes over a population of neurons, has increasing 
support (Izhikevich & Hoppensteadt, 2009; Martinez & Paugam-Moisy, 2009; St. Clair & 
Noelle, 2013, 2015). Given that the presentation of a stimulus caused a subset of the 
cells in this prefrontal cortex (PFC) neuron group to fire in a stereotyped manner, the 

                                                                                                                                            
using segregated groups, with one group for each stimulus (St. Clair & Noelle, 2013). This has 
not been explicitly tested, however.  
7
 It is important to explain the much higher activity in the two inter-neuron groups for bell and 

food, as well as the STR neuron group. This is caused by the increase in strengths of weights to 
these neuron groups, and may be a side effect of the exact formula and curve for DA modulated 
STDP. This is a problem Izhikevich (2007) has dealt with and accordingly increased the amount 
of long-term depression from reverse spike ordering (a post- and then a pre-synaptic spike) to 
balance the change in weights over time. 
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specific PFC neurons that fired at specific points in time after a stimulus was presented 
were the same every time. This meant that the model could reliably learn very specific 
properties of the representation of a stimulus, such as, after 498ms, neuron 45 in the 
PFC fires, and after 499ms neuron 348 fires, etc. This is important, and it is the key to 
how this model learned to inhibit dopaminergic firing for predicted stimuli at the right 
time. 

The 1000 neuron prefrontal cortex (PFC) group was connected, in a feed-forward 
fashion at 10% connectivity, to a neuron group of 100 inhibitory neurons, labeled striatal 
(STR) neurons (see Figure 3). This connection between PFC and STR was plastic, 
changing based on dopamine-modulated STDP. What was learned by these 
connections was which neurons in PFC predict a phasic burst of activity in the DA 
neuron group, at some particular (short) delay. In other words, these connections 
became strong for those PFC neurons that fired when a dopamine spike was about to 
occur. This synaptic learning arose through a combination of dopamine-modulated 
STDP (DA-STDP) and dopamine modulated post-synaptic facilitation (DA-PSF).  

Dopamine-modulated spike-timing-dependent plasticity (DA-STDP) was 
explained in the previous section on the Izhikevich (2007) model, as well as in Appendix 
A. As a quick recap, the timing between a spike at a pre-synaptic neuron and a spike at 
a corresponding post-synaptic neuron modifies a decaying eligibility trace; a pre-synaptic 
spike followed closely by a post-synaptic spike greatly increases the eligibility trace, 
while the opposite order greatly decreases the eligibility trace. Larger times between 
spikes reduce the strength of eligibility trace change exponentially, with a greater than 
50ms difference producing close to no change (5000ms is zero change). The weight of 
the connection between the pre-synaptic and post-synaptic neurons is increased by the 
product of the dopamine level and the eligibility trace. If either are below baseline (a 
negative eligibility trace or a dip in dopamine level) the weight decreases. 

Dopamine-modulated post-synaptic facilitation (DA-PSF) involves an increase of 
the excitability of a neuron when there is an increase of dopamine above its baseline 
firing level, along with a corresponding decrease in the excitability of the neuron when 
there is a decrease of dopamine below its baseline firing level. A baseline firing level 
maintains an even excitability level, around the same value as neurons that are not 
affected by DA-PSF. The details of this mechanism are described in Appendix B.  

It’s important to note that DA-PSF was only implemented in the striatal (STR) 
neuron group in the Chorley and Seth model, and DA-STDP was only implemented in 
two places: 1) on the connections between the sensory groups and the interneurons and 
2) on the connections between the PFC neuron group and the STR neuron group. 

In high level terms, what DA-PSF did in the STR neuron group is increase the 
probability that a spike from the PFC neuron group would cause a spike in the STR 
neuronal group when there was a phasic dopamine response, so that the eligibility trace 
would increase and DA-STDP would, therefore, increase the weight of that connection. 
This is important because there was no increase of spiking activity that the network 
could rely on for pre-synaptic neurons to “cause” post-synaptic neurons to fire in the 
upper pathway like there was in the lower pathway. DA-PSF briefly increased the firing 
rate of the STR neurons in the moments after the US was presented, increasing the 
probability of the PFC neurons (time-locked in a polychronous neuronal group 
representing the US) to cause an STR neuron to spike. This increased the weights of the 
specific neurons that always fired directly before the DA neurons fired for the US. 

The striatal (STR) neuron group was connected in a feed-forward all-to-all 
manner to the dopamine (DA) neuron group. The strengths of the synapses from these 
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neurons were not plastic, and they were fixed at 6% of the maximum synaptic strength. 
Because the STR neurons were inhibitory, they could counteract the excitatory input that 
the DA neurons received from the lower pathway. Recall that the lower pathway learned 
to activate the DA neurons in the presence of rewards and stimuli that predicted 
rewards, using spike-timing-dependent eligibility traces and DA-modulated STDP. With 
the lower pathway activating DA when predictable rewarding stimuli occurred, the upper 
pathway could learn to strengthen the connections to STR from neurons in the PFC that 
fire when a phasic dopamine response occurred. 

When a phasic dopamine response occurred, DA-PSF increased the probability 
of a PFC spike causing a spike in STR, thereby increasing the eligibility trace of that 
connection. At that point, because the DA level was high, the synaptic strength of the 
PFC to STR connection also increased. Over trials, if the same group of PFC neurons 
spiked every time before a phasic dopamine response (e.g. those PFC spikes predicted 
a phasic dopamine response), the PFC to STR connection weight would substantially 
increase. Note that if it was not the same PFC neurons that reliably fired before the 
dopamine response then the connections would not increase consistently enough to 
cause neurons in STR to spike, and this meant that STR would not inhibit the phasic 
dopamine response. This explains how the model could use the presentation of a 
previous stimulus - one that occurs regularly before a rewarding stimulus - to inhibit a 
phasic dopamine response at the time of the subsequent presentation of the rewarding 
stimulus, matching recordings from SNc. See Figure 6. Notice that there is no increase 
in dopamine activity at the onset of the Food, but there is one for the onset of the Bell. 

Chorley and Seth (2011) found a few interesting results from running their 
simulations. Their model built upon the work done by Izhikevich (2007), and so some of 
their results replicated those found in Izhikevich (2007), including: 1) a shift in DA 
responses from the unconditioned stimulus to the conditioned stimulus, and 2) the model 
still produced strong DA responses for unpredicted rewarding stimuli. Unlike the 
Izhikevich (2007) model, their new model produced a measurable dip in the dopamine 
activity when an expected reward didn’t arrive. Chorley and Seth (2011) also tested the 
robustness of their model in three ways: a) they modified the specific timing delay from 
the conditioned stimulus to the unconditioned stimulus, showing that there wasn’t 
anything special about the 500ms delay between stimulus and reward that they regularly 
used - that the model could also learn when the delay was anywhere in the range 200-
900ms, b) they modified the specific timing between the conditioned stimulus and the 
unconditioned stimulus every trial, adding noise and varying the delay each trial by up to 
100ms, showing that their results continued to hold in this case, as well, and c) they 
modified the noise in the PFC spike patterns specific to each stimulus, changing the 
input of up to 10% of the neurons8, showing that here, as well, the model maintained 
similar performance. It’s important to note that Chorley and Seth (2011) specifically 
mentioned in the discussion section of their paper that their model does not account for 
extinguishing learned associations, and they did not investigate that aspect of classical 
conditioning, as they “consider that process to involve additional, active, mechanisms.” 
(See Figure 7.) 

                                                
8
 In Chorley and Seth (2011), they describe percent noise in their discussion as the percent of 

neurons in the PFC at each timestep that instead of receiving the time-locked input (which is the 
stimulus-specific time-locked injection of voltage uniformly ranging from -6.5 to +6.5), they receive 
a random voltage value between -6.5 and +6.5. 
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Figure 7: A replication of Chorley and Seth (2011), showing representative data after 200 trials of 
association learning and 100 trials of extinction. Notice that the dopamine (DA) group of neurons 
continued to fire for the Bell, even after 100 trials of extinction. In this model, there is nothing that 
can counteract the learned association of the Bell in the “lower pathway.” Because the Bell was 
unpredictable, the “upper pathway” could not inhibit the dopamine response to the Bell from the 
lower pathway, as it usually did for the predictable Food. 

 
The Chorley and Seth (2011) model is important because it was the first model of 

dopamine activity in the SNc that used only spiking model neurons, DA-STDP, and DA-
PSF. Most other models required either forced downtime in activity between the 
conditioned stimulus and the unconditioned stimulus (e.g. Houk et al., 2007), or they 
used an abstract non-neural formula to save the value of the prediction of reward for use 
later in time (Barto, 1995; Castro et al., 2009; Florian, 2005, 2007; Potjans et al., 2009; 
Rao & Sejnowski, 2001; Roberts et al., 2008; Rusu & Florian, 2009). Thus, this model 
provided progressive work towards a fully biologically-plausible model of reinforcement 
learning, accomplished solely through a network of spiking neurons, DA-STDP, and DA-
PSF. 

 
The Redish Model of Association Learning and Extinction 
Work by Redish et al. (2007) provided some insights that suggest ways to 

introduce extinction into the Chorley and Seth (2011) model. The classical 
understanding of learning and extinction (which doesn’t fully account for all learning 
phenomena) is that the animal learns an association and either directly unlearns it during 
extinction, or somehow lowers its strength temporarily during extinction (Rescorla & 
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Wagner, 1972). Redish and his colleagues proposed that, instead, during extinction, 
learning occurs in relation to a changing internal representation of the state context 
(Redish et al., 2007). They demonstrated that this model accounts for many phenomena 
not previously accounted for, such as spontaneous recovery, gradual extinction, and the 
effect of different schedules of reinforcement on gambling addicts. 

The theory behind this model is as follows. The model continually determined 
what state in state space it was in based on the context information available to it. The 
contextual cues that determined its state in state space could include the sensory input 
to the model from its environment, the amount of reward currently being delivered, and 
the reward-recency, among other things. The model estimated the ‘importance’ of each 
cue in determining its current state in state space, weighting the cues that provided more 
information higher9. This was the ‘attention’ that that cue was given. Uninformative cues 
were given little or no ‘attention’ and were not used to determine the current state, while 
informative cues were given more ‘attention’ and provided more information about the 
current state. Each trial the model gathered another data point (another set of cue 
values) to better categorize and define its state and updated which cues were providing 
the most information and should, therefore, be valued more. As it gathered more data 
about a state, it monitored the variance of the most recent set of data points (the cues 
that made up the most recent set of trials, modified by the ‘importance’ each cue has), 
comparing that to the variance of all of the cues in that state (also modified by the 
‘importance’ the cues have). When these measures diverged past a threshold value, the 
model entered a new discrete state. It is important to note that this comparison was 
weighted by an ‘attention’ parameter that made cues more or less important when 
calculating this difference between all the cues of a state and the most recent cues. This 
‘attention’ parameter was itself modified by the temporal difference (TD) error, or the 
value-prediction error. Redish and his colleagues theorized that tonicly low levels of TD 
error caused the model to reassess its current evaluation of the importance of each 
context cue. Sufficiently frequent low levels of TD error caused the model to change its 
evaluation of the importance of each cue, so that when it compared the difference 
between all of the cues that made up the current state and the most recent cues, they 
would diverge, treating the current situation as a new state. It effectively increased its 
weighting of previously ignored environmental cues, reducing the importance of 
previously important environmental cues, and this changed how it represented the 
current state. When it changed how it encoded the current state, if the collection of 
weighted cues changed to a sufficient degree, the model treated the current situation as 
a distinctly (and discretely) separate new state. In this new state, the model had different 
expectations, and new associations between the state and appropriate actions could be 
learned. It is important to note that the Redish model ignored positive TD error 
(unexpected reward) and only used negative TD error (expected reward that did not 
occur) in its calculations. Doing so, the model would not enter a new state during 
association trials, when there was positive TD error (the reward was unpredicted and the 
model was learning to predict it) and would thus build an association from essentially a 
single state to reward. However, the model would enter new states during extinction, 

                                                
9
 The entropy (in terms of information theory) of a cue in the cue space for a state was measured 

and compared with the entropy of all cues observed in that state. If the cue provided information 
about that state - if a cue increased the entropy of the total cues for a state - then it was weighted 
as more ‘important’, and more ‘attention’ was paid to that cue. Cues that did not increase the 
entropy of all of the cues observed in that state were ignored, or, at least, given less importance. 
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because there was negative TD error (the predicted reward did not occur). The Redish 
model, in all of its detail, is fairly complicated, but it is important to note that these 
complications are not all necessary to produce similar patterns of behavior. The authors 
acknowledge this: 

 
 

Any mechanism that produces development of a new state in 

response to repeatedly low   [TD error] would produce the 
appropriate extinction with renewal. We have built a model based 

on increased attention to cues in response to low   for simulation 
purposes, but it is important to note that any model that produces 
state changes in response to the undelivered, expected reward 
would produce similar results. … (Redish et al., 2007) 

  
 

Thus, the central insights of this model are quite general. In order to capture the learning 
effects of interest, it is not important to fully implement this model or use any of the same 
mechanisms that it uses. It’s only important to have a model that changes its internal 
representation of the current state context in appropriate situations, such as when 
expected reward repeatedly fails to appear.  
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CHAPTER 4: REPLICATING THE CHORLEY AND SETH MODEL 
In this dissertation, the original accomplishments achieved include replicating the 

model described in Chorley and Seth (2011). This model, described in detail in Appendix 
B, was implemented from scratch using MATLAB (The Mathworks Inc., 2016), and the 
phenomena reported by Chorley and Seth (2011) were reproduced through the 
execution of simulations. Details concerning the implementation of this replication may 
be found in Appendix D. 

The model in Chorley and Seth (2011) could learn when a conditioned stimulus 
predicted an unconditioned stimulus, providing the same dopaminergic response pattern 
as seen in experimental studies (Ljungberg et al., 1991, 1992; Romo & Schultz, 1990; 
Schultz & Romo, 1990). It could not, however, extinguish those learned associations, 
and it continued to provide a dopamine response for stimuli that used to predict reward 
but no longer do. This phenomenon – being able to learn associations but unable to 
extinguish them – is very similar to what is seen in behavioral studies with animals that 
have lesions to the hippocampus (Jarrard & Davidson, 1991; Kimble & Kimble, 1970; 
Quirk & Mueller, 2008; Tracy et al., 2001; Weikart & Berger, 1986). 

My replication demonstrated these patterns of responding. Illustrative data, 
showing the acquisition of an association, are shown in Figures 5 and 6. Notice how the 
model initially produces a strong DA response only for the US (Figure 5) but, through 
learning, comes to produce a burst of DA for the CS (Figure 6). Importantly, due to the 
functioning of the “upper pathway”, learning results in the suppression of a predicted DA 
response for the US (Figure 6). If the model is subsequently presented with extinction 
trials, in which the CS is presented but the US is not, the Chorley and Seth (2011) 
replication fails to lose its association from the CS, continuing to produce a strong DA 
response when the CS is presented (Figure 7).  

In this way, my replication explicitly shows that the Chorley and Seth (2011) 
model, reflecting aspects of the cortical interactions with the basal ganglia, is able to 
explain the DA response during the learning of an association but not during extinction 
trials. 
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CHAPTER 5: A MODEL THAT INCORPORATES THE HIPPOCAMPUS 
 In addition to replicating the Chorley and Seth (2011) model, this dissertation 

presents an augmented model that merges aspects of learning in the basal ganglia with 
a hippocampally produced internal representation of the state context in order to 
produce a spiking neural network model that exhibits extinction and related phenomena. 
This work uses the ideas of Redish and colleagues (2007) to augment the Chorley and 
Seth (2011) model to be able to replicate animal behavior results. This dissertation 
combines the model of Chorley and Seth (2011) with the idea of conjunctively coded 
states, conceptualized as being formed in the hippocampus, from Redish et al. (2007). 
See Figure 8 for information about the connectivity of this augmented model. 

In brief, I propose that a hippocampus is needed to unlearn previously learned 
associations. While the literature contains many models of the hippocampus, the focus, 
here, is on the generation of sparse conjunctive codes of sensory states (McClelland, 
McNaughton, & O’Reilly, 1995), as suggested by Redish and his colleagues (2007). As 
in previous models, the Redish model viewed the dopamine signal as encoding the error 
in expected reward. This value was high if the model received more reward than 
expected, and it was low if the model received less reward than expected. This 
description precisely describes the dopamine signal in the substantia nigra pars 
compacta (SNc); it is high when an unexpected reward or an unexpected stimulus that 
predicts reward appears, and is particularly low when an expected reward does not 
occur. 

 
 Methods 

The augmented model adds a new hippocampal group of neurons to the Chorley 
and Seth (2011) model. This group of neurons represents the sensory state and context, 
mirroring the state representations used in Redish et al. (2007). The Redish et al. (2007) 
model used discrete and abstract states without offering a biologically plausible 
implementation of those states. In the proposed model, these states are seen as 
encoded across a population of neurons, with the population providing a distributed 
sparse conjunctive code of the current context. The hippocampus is well suited to learn 
such a code through an unsupervised learning process (McClelland et al., 1995), but the 
research proposed here is not focused on representational learning. Thus, as a 
simplification, the proposed augmented model uses a hardcoded sparse conjunctive 
code to represent the kinds of contextual states suggested by Redish et al. (2007). The 
idea is that, while other areas of the brain process individual sensory cues separately, 
the hippocampus processes these cues conjunctively. That is, there are sets of neurons 
in the hippocampus that activate for a conjunction of multiple cues. To keep things 
simple, the hard-coded context representation used in the proposed augmented model 
involves a population of neurons with each neuron responding to the combination of 
exactly two cues. There are a total of 6 sensory stimuli and contextual cues available to 
this model: the presence of the US (“Food”), the presence of CS1 (“Light”), the presence 
of CS2 (“Bell”), the perception of being in Context1 (“Room A”), the perception of being 
in Context2 (“Room B”), and the reward-recency (an internal physiological cue 
analogous to time-since-last-reward, implemented in Redish et al. (2007); “R”). With 6 
contextual cues, there are 15 (6 choose 2 = 15) order-independent conjunctions. For 
each conjunction of two context cues, we designate a subgroup of 20 neurons in the 
hippocampus to activate only when both of the two contextual cues are active. There are 
three types of stimuli into the hippocampus neuron group: sensory stimuli, contextual 
stimuli, and reward-recency. Sensory stimuli are encoded in the form of short bursts of  
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Figure 8: This is a schematic diagram of the augmented model of Chorley and Seth (2011), with a 
hippocampus component added. The “upper pathway” through the PFC and STR is essentially 
unchanged. However, in the “lower pathway” a very simple model of sparse conjunctive encoding 
in the hippocampus is added. In this augmented model, the neurons in the hippocampus are 
divided into groups, with each group encoding for the conjunction of a pair of cues. The inter-
neuron group (INT-H) receives input from the corresponding hippocampal neuron groups, 
allowing them to represent conjunctions of pairs of cues as well. The cues included information 
about the sensory cues, as well as other context cues like the Room (A or B), and the reward-
recency. Lastly, the “lower pathway” continues to get sensory information from the individual 
sensory neuron groups. Each sensory input projected to all of the conjunctive groups in INT-H 
that involved the corresponding sensory cue. Note that the arrows shown here between the 
sensory groups (SEN-Bell, SEN-Light, and SEN-Food) and the INT-H neuron group is a visual 
simplification to keep the image concise. In the model, those connections are much less neatly 
connected to each subgroup in INT-H. Note that, to support simulations involving multiple 
conditioned stimuli, this model includes both a Bell and a Light as conditioned stimuli, and many 
of the following simulations involve learning associations from the Light to the Food. 

 
spikes at stimulus onset. Contextual stimuli are encoded by an elevated firing rate for the 
current context of the learner: Context1 or Context2. The reward-recency is encoded 
using a variable firing rate, with the rate falling to baseline over time, until a reward (US) 
is presented, at which time the firing rate is elevated to its maximum value.10 Each of the 
neural subgroups in the hippocampus fire conjunctively for two of the six cues mentioned 
above: when both of those are on/high, then that subgroup shows a burst of firing 
activity. For neuron subgroups that include one of the other cues (Context1, Context2, 
reward-recency), the spiking activity is fairly straightforward: the activity of the neuron 
subgroup is equal to the product of the spiking activity of the two stimuli. For example, 
the Context1 x US conjunctive hippocampal neurons are only highly active for the 15ms 
when the model is in Context1 and the US appears (since sensory stimuli are encoded 

                                                
10

 Notice that Redish et al. (2007) encoded this as time-since-last-reward, and this value slowly 
increased each millisecond, resetting it to zero when reward was received. In this augmented 
model, the inverse of time-since-last-reward is used, reward-recency: it is reset to 1 when reward 
is received and slowly decays to zero. This is a simpler way of modeling it in the context of this 
model, and bounding the activity is necessary in a spiking neural network. 
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by bursts of spikes), even if the model is in Context1 for a longer period of time. For 
conjunctions of two sensory stimuli, there is a brief burst of firing activity on the onset of 
overlap of their temporally-extended time-locked polychronous group (PNG) in the PFC. 
That means that if the PNG for the CS starts, and 500ms later the PNG for the US starts, 
because each PNG is 1000ms in length, both PNGs overlap for 500ms. At the onset of 
this overlap, the neurons corresponding to the hippocampal conjunction for these two 
stimuli briefly increase in firing activity. (See Appendix C for details.) 

The interneuron groups of the Chorley and Seth (2011) model are changed to be 
aligned with the hippocampus subgroups, rather than being aligned with each stimulus. 
Each conjunction subgroup in the hippocampus is connected all-to-all only to the 
corresponding subgroup in this so-called inter-hippocampus neuron group. This inter-
hippocampus group of neurons represents the sub-hippocampal cortex, such as the 
entorhinal cortex and the bundle of neural fibers that run from the hippocampus up to the 
fornix, and cingulate cortex, and back down to the entorhinal cortex and hippocampus, 
called the Papez circuit (Papez, 1937; Wyass & Van Groen, 1992).11 

The original sensory groups of neurons are still included in the model, and these 
groups are connected to the inter-hippocampus neuron group in such a way that the 
subgroups within the inter-hippocampus group that include a contextual cue that is one 
of the sensory cues have incoming connections from that sensory neuron group. 

The inter-hippocampus neuron group then connects to the dopaminergic group of 
neurons, matching the connectivity of the original interneurons in the Chorley and Seth 
(2011) model. (See Appendix C for details.) This preserves the ability of the sensory 
neuron groups to continue to learn the dopaminergic spiking activity behavior shown in 
Chorley and Seth (2011) and Izhikevich (2007), while maintaining a conjunctive 
hippocampal state encoding. 

 
Results 
Extinction and Reinstatement 
Simulations of the hippocampus-augmented model have demonstrated its ability 

to exhibit the extinguishing of a learned association. The model continues to learn to 
predict rewards given a predictor stimulus, as also shown by Chorley and Seth (2011) 
and Izhikevich (2007). However, interestingly, the model now can extinguish previously 
learned associations.  

Simulations of association trials were conducted, showing that the augmented 
model is capable of learning when a reward (US) is predicted by a conditioned stimulus 
(CS). In other words, it can be shown that the dopaminergic response for an 
unconditioned stimulus (US) can move from the US to a US-predicting CS. This is 
illustrated in Figures 9 & 10, where Figure 9 displays representative firing patterns prior 
to learning and Figure 10 displays representative firing patterns after 200 association 
trials in which the Light preceded Food. Notice the shift in the DA response from the time 
at which Food was presented to the time at which the Light was presented. While this is 
not novel, it is important to show that the model can still learn associations in this way. 
 

                                                
11

 There is some research to suggest aspiration or ablative lesioning destroys this pathway and 
affects behavior (Jarrard & Davidson, 1991) while other inactivation or excitotoxic lesions destroy 
only hippocampal neurons while leaving axons that pass through the hippocampus and thus, the 
Papez circuit, intact (Corcoran & Maren, 2001). 
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Figure 9: An initial learning trial of the modified model. Notice that the dopaminergic neurons fire 
strongly for the Food, and not for the Light. Here the upper pathway from PFC to STR to DA 
remains as it was in Chorley & Seth (2011); however the lower pathway is modified. There are 
still CS (Bell and Light) and US (Food) neural groups; however they instead are connected to 
hippocampal interneurons (INT-H). INT-H stands in place for all of the INT neuron groups in 
Chorley & Seth (2011). INT-H sends excitatory connections to DA. INT-H also receives excitatory 
input from the hippocampal neuron group. Both INT-H and HIPP are conjunctive neuron groups, 
where each subsection is a conjunction of 2 of the 6 sensory stimuli (i.e. Bell, Light, Food, Room 
A, Room B, Reward-recency). The subsections in HIPP are connected only to their corresponding 
subsection in INT-H, and the three sensory groups for Bell, Light, and Food are connected to 
each subsection of INT-H that is a conjunction of one of them (e.g. the SEN-Light group is 
connected to the subsections Reward-recency+Light (RL), Light+Room-A (LRa), Light+Room-B 
(LRb), Light+Food (LF), and Bell+Light (BL) in INT-H).  
 

Not only does the augmented model learn, but it also can extinguish learned 
associations (Figure 11). This happens because different hippocampal state 
representations arise during extinction trials, roughly implementing the ideas of Redish 
and his colleagues (2007). Redish captured extinction by having the state representation 
change over extinction trials in a way that it didn’t during association trials. The Redish 
model accomplished this through a specific mechanism that noted when reward was 
predicted but did not arrive, using this as a trigger for the generation of new discrete 
states. In the augmented Chorley and Seth model, a simpler approach is taken. The 
hippocampal state in this model is sensitive to the reward-recency (perhaps related to 
satiation), and this internal cue remains fairly constant over association trials, since Food 
arrives regularly. In contrast, the reward-recency declines linearly over extinction trials, 
causing the hippocampal state to substantially shift over those trials. In this way, the 
augmented Chorley and Seth model succeeds at producing a changing state 
representation during extinction, as in the Redish model, but it does so without 
introducing a special mechanism for detecting the failure of reward predictions.  
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Figure 10: The augmented model after learning has occurred. Displayed is data from a 
representative trial in which the system had been presented with 200 association trials between 
the Light and Food. Notice that the dopaminergic neurons now fire strongly for the Light, and no 
longer for the Food. 
 

 

 
Figure 11: The model can extinguish learned associations when the state changes. This diagram 
shows an example trial after 200 association trials between the Light and Food, followed by 100 
extinction trials, in which the Light is presented but no Food is delivered. Notice that the 
hippocampal groups that are firing for the Light have changed from Figure 10. Also notice that the 
dopaminergic neurons do not fire very strongly at the time of the presentation of the Light. 
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Figure 12: The average maximum DA value when the Light and Food appear for the replication of 
Chorley and Seth (2011). This figure graphs the maximum DA value within a 50ms window after 
either the Light (upper) or Food (lower) was presented on each trial throughout the experiment. 
The Y axis is the amount of DA in the model and the X axis is the trial number. The blue line is 
the DA value, while the green line is the averaged DA value, averaging over the last 10 data 
points. The experiment is first associative: the Light precedes and predicts the Food. Then 
extinction trials begin at trial 201 (the first vertical dotted line), during which only the Light is 
presented. The second and third (very close) vertical dotted lines at trials 301 and 302 are a 
single trial of just the Food presented, followed by more extinction trials of only the Light. Notice 
that, initially, the DA levels rise for the Light and drop for the Food, but, during extinction and even 
after the Food is presented on trial 301, the DA levels for the Light (upper graph) remain relatively 
high. 

 
The overall learning and extinction profile of the model can be more succinctly 

summarized. (See Figures 12 and 13.) By recording the maximum dopamine response 
in the 50ms after the Food appears, we can measure the model’s response to Food over 
many trials. We can do the same for the 50ms after the Light appears. By examining 
these measures over trials, we can assess how well the model learns an association, 
how well it extinguishes it, and how well it can reinstate a learned association. Figure 12 
shows this information for my replication of Chorley and Seth (2011). This is the model 
that could learn associations but could not extinguish them. Notice that the dopamine 
(DA) level for the Food (lower) drops after 50 trials of learning, showing that the model 
correctly simulates dopamine levels in animals: there is no dopamine response for food 
that is predicted by a light. Notice the further drop in DA below baseline during  
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Figure 13: The average maximum dopamine (DA) value when the Light and Food appear for the 
hippocampally augmented Chorley and Seth (2011) model. Notice that the DA levels rise for the 
Light and drop for the Food. However, during extinction trials, the dopamine activity for the Light 
drops precariously, exhibiting extinction. Also, after the Food is presented on trial 301, higher DA 
levels for the Light are reinstated. Finally, after more trials of extinction (302-400), the DA levels 
drop down again, nearing baseline levels. 

 
extinction. This is also what we see in animals. When a predicted US does not occur, 
there is a dip in dopamine at the time it was expected.  

It is also important to notice the upper part of Figure 12. This displays the DA 
response at the time that the Light is presented. Notice that the dopamine level for the 
Light rises during the first 50 trials of learning and then remains noisy and fairly high 
throughout the remainder of the experiment, over the subsequent trials of learning (trials 
50-200), extinction trials (trials 201-300), a single trial of Food (trial 301), and further 
extinction trials (trials 302-400). Notice the lack of strong effects on the DA response to 
the Light that these changes in reinforcement schedules have, once the association is 
learned.  

Figure 13 shows representative results for the same sequence of trials, this time 
presented to the augmented model. We can compare these results with those from the 
replicated Chorley and Seth model (Figure 12): the lower portions are similar, if a little 
less noisy in the augmented model. What is important to note, however, is that the 
dopamine level for the Light (upper) drops off during extinction in the augmented model 
that has a hippocampus. This shows that this augmented model can unlearn 
associations. 
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Extinction arises in this model due to changes in the state representation 
encoded in HIPP that arise over the course of extinction trials. As the extinction period 
advances, the reward-recency cue declines, causing fewer and fewer spikes in the 
neuron clusters that encode cue conjunctions involving reward-recency. The DA-STDP 
strengthened synapses from neurons in these HIPP clusters, which came to help drive a 
conditioned DA response through INT-H, stop contributing to the generation of 
corresponding INT-H activity. In this way, as the state representation changes, the DA 
response to the Light declines, demonstrating extinction. 

These simulations also demonstrate the presence of another established 
conditioning effect in the augmented model which is absent in the Chorley & Seth (2011) 
replication. This is the effect of reinstatement, in which an extinguished association 
returns simply by providing the US, alone. Reinstatement can be seen at trial 301, when 
the model is given a single trial of Food. After that trial, the dopamine level for the Light 
jumps back up, just as you would expect for a healthy subject. Further extinction trials 
(302-400) extinguish the association once again, as we also see in animals. Note that 
this effect does not appear in the model lacking a hippocampus (Figure 12), since 
extinction does not occur. It arises in the augmented model, however, due to a large 
change in the HIPP state representation upon the presentation of Food. The single trial 
of Food presentation resets the reward-recency cue, returning the HIPP state 
representation approximately to what it was before the onset of extinction trials. The 
sudden increase in spiking in HIPP neurons associated with reward-recency allows the 
synapses that were strengthened during the association trials to, once again, play a role 
in producing a strong DA response to the Light. 

Thus, simulations of the augmented model show that the hippocampus can 
explain extinction and can still learn associations. It also exhibits the phenomenon of 
reinstatement. There is good reason to believe that this model will also account for a 
number of other phenomena related to classical conditioning, which are explored next. 

 
Spontaneous Recovery 
Recall that spontaneous recovery is the phenomenon of classical conditioning 

where the animal spontaneously recovers a previously extinguished association when 
brought back to the original learning context after a period of absence. After learning an 
association and subsequently extinguishing it, the animal is brought to its home cage, 
and the next day when it is returned to the original experimental setup the animal 
continues to predict that the unconditioned stimulus (US) will occur after the conditioned 
stimulus (CS) occurs. This is strange because the previous day, by the end of extinction, 
the animal no longer predicted the US after the CS. 

This phenomenon was replicated in the augmented model by making the 
following modifications to the experimental setup. As before, the first 100 trials were 
learning trials in Room A where we presented the Light (CS) before the Food (US). The 
next 100 trials were extinction trials, still in Room A, where we presented just the Light 
(CS) and no Food (US). The difference in this experimental setup was that these 200 
trials were followed by 100 trials in Room B with no stimuli, no CS or US. This 
represented bringing the animal back to its cage that night. After that, there were 50 
trials of just the Light, but back in Room A, to test the dopaminergic activity of the model 
in response to the Light. The results are displayed in Figure 14. Notice that the 
dopaminergic activity in response to the Light was initially strong in trials 301-350, when 
the simulated animal was returned to the training environment. The dopaminergic activity 
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Figure 14: The dopaminergic activity of the augmented model during a spontaneous recovery 
experimental setup used to test the model’s ability to spontaneously recover previously 
extinguished associations. The first 100 trials are learning trials in Room A. Trials 101-200 were 
extinction trials in Room A. Trials 201-300 were trials in Room B without any stimulus: Light, Bell, 
nor Food were presented. Trials 301-350 were trials back in Room A with the presentation of just 
the Light (i.e., further extinction trials). Notice that trials 300-350 show similar dopaminergic 
activity for the Light as trials 101-150, the trials when extinction originally occurred. This means 
that when the model was brought back to the experimental setup, it spontaneously recovered its 
previously extinguished association. 

 
for the Light was about as high as it was during the first 50 trials of extinction. This 
shows that the model spontaneously recovered the previously extinguished association. 

The way in which the model accomplishes spontaneous recovery involves the 
way that it models moving from one environmental context to another. In Redish et al. 
(2007), when the model was brought into a new context, the time-since-last-reward 
context cue (here, reward-recency) was reset. This can be justified by one of two 
reasons: The animal has been brought back to its home cage where there is food, or the 
animal possesses an “optimistic critic” that initially predicts the presence of food in new 
environments. Because this reward-recency cue is reset, when the simulated animal is 
brought back to Room A, the hippocampal state is similar to the state it was in during the 
acquisition of the association. During initial association learning, the reward-recency cue 
is high, and during the initial few trials of returning to Room A the reward-recency cue is 
also high. Because conjunctions of other cues and reward-recency drop when reward -
recency drops, the hippocampal activity relies heavily on reward-recency. Thus, as in 
reinstatement, the augmented model explains spontaneous recovery as arising from a 
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return to a hippocampal state representation similar to that present during association 
learning trial and unlike that present during extinction trials. The return to the previous 
state then drives DA-STDP strengthened synapses to produce INT-H activity which, in 
turns, results in a recovered DA response. 

 
Blocking 
Blocking is the phenomenon where previous knowledge of an association from 

one conditioned stimulus limits the learning of an association from a second conditioned 
stimulus when both are presented together prior to reward. To simulate blocking with the 
augmented model, we made use of both the Light and the Bell sensory inputs. The 
model was trained for blocks of 50 trials, instead of the previously used 100 trials, to 
avoid over-learning effects. The model was presented with 50 learning trials involving 
the Light (CS1) and Food (US), followed by 50 learning trials in which the Light (CS1) 
and the Bell (CS2) were presented at the same time, shortly followed by the US. After 
this sequence of learning trials, the model was tested by additional association trials, 
focusing on different CS stimulus items during different simulation runs. During some 
runs, the testing trials involved presenting CS1 followed by US, and others involved 
presenting CS2 followed by US. We focused specifically on the 50 testing trials (trials 
100-150), looking for indications of associations between each individual CS and reward. 
Including the US in the testing trials allowed us to see if, in the context of each CS, the 
US generated a DA response. The lack of a DA response at the time of the US would 
suggest that the US was successfully predicted by the CS. If the DA response was high 
when the US was presented, then the model failed to inhibit the dopamine response to 
the US, which means it did not predict the US, and, thus, did not learn that that particular 
CS predicts the US. (The model context consistently indicated that the simulated animal 
was in Room A during the entire experiment.)  
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Figure 15: Testing Blocking for CS1 (Light). The dopaminergic activity of the model after learning 
CS1-US in the first 50 trials. During trials 51-100, both CS1 (Light) and CS2 (Bell) were presented 
simultaneously directly before the US. Finally, there were 50 test trials incorporating only CS1 
and US. The dopamine activity in response to the Food is particularly salient, as it indicates 
whether or not the model predicted the US given CS1 (Light). Because there is little dopamine 
activity during the last third of the experiment, the model predicted that the US would arrive after 
CS1 and, thus, inhibited the dopamine response to the US. This indicates that the model retained 
the association between CS1 (Light) and the US.  

 
Figures 15 and 16 show the results of the blocking experiment. The lower graph 

in each figure displays the DA response at the time of US presentation. The first 50 trials 
were CS1-US learning trials. Trials 51-100 involved the simultaneous presentation of 
CS1 and CS2 followed by the US. The last 50 trials in Figure 15 are CS1-US trials, and 
the last 50 trials of Figure 16 are CS2-US trials.  

Figure 15 shows that the model retained its knowledge that CS1 predicts the US. 
When presented with CS1-US during the last 50 trials, the dopamine activity remained 
low. Remember that, when Food occurred, it intrinsically sent strong activity to the 
dopamine neuron group through its very strong synaptic weights. This means that the 
observed low dopamine activity when the US was being presented during the last 50 
trials must have been the result of inhibition from the upper pathway, produced as a 
result of the CS1 representation in PFC. In this way, Figure 15 shows that CS1 predicted 
the US via the upper pathway. 
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Figure 16: Testing Blocking for CS2 (Bell). The dopaminergic activity of the model after learning 
CS1-US in the first 50 trials. During trials 51-100, both CS1 (Light)and CS2 (Bell) were presented 
simultaneously directly before the US. Finally, there were 50 test trials incorporating only CS2 
(Bell) and US. The dopamine activity to the Food is particularly salient, as it indicates whether or 
not the model predicted the US given CS2 (Bell), which was first introduced together with CS1 at 
trial 50. The dopamine activity in response to the Food is particularly salient, as it indicates 
whether or not the model predicted the US given CS2. The high level of dopamine activity during 
the last third of the experiment indicates that the model did not inhibit the dopamine response for 
the US after the presentation of CS2. Thus, the model did not predict that the US would arrive 
after CS2 (Bell) was presented. No strong association between CS2 (Bell) and the US was 
acquired during trials 51-100. 

 
In contrast, Figure 16 displays high dopamine activity during the last 50 trials. In this 
case, CS2-US pairings were presented during these trials. The high dopamine activity 
during the last 50 trials is similar to that present during the initial trials of learning. This 
suggests that the US generated dopamine response was not inhibited by the upper 
pathway, driven by the CS2 representation in PFC. In short, the model did not learn that 
CS2 predicts the US. This shows that the learned CS1-US association blocks learning of 
a CS2-US association during trials 51-100, when CS1 and CS2 were presented 
simultaneously (Kamin, 1969). 

The augmented model exhibits blocking by suppressing the dopamine response 
during the conjoined CS1-CS2 trials, leaving little DA to drive DA-STDP in synapses 
from the CS2 related neurons. After 50 trials of learning that CS1 predicts the US, the 
upper pathway in the model comes to inhibit the dopamine burst at the onset of the US. 
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When CS2 is subsequently added to the trials, there is no DA signal to strengthen the 
weights from neurons driven by CS2. In this way, further learning does not occur. CS2 is 
blocked by CS1.  

It is interesting to note that CS2 produced a much stronger DA response during 
the last 50 trials than would be expected if no association from CS2 had been learned. 
The dopamine levels during these trials are much higher than they are for CS1 at the 
very beginning of training, for example, suggesting that CS2 produced a stronger 
response than a neutral baseline. This shows that the model did learn a little bit about 
the CS2-US pairing during the 100 trials of simultaneous CS1-CS2 presentation. 
However, the upper pathway still did not learn to inhibit the dopamine burst upon the 
onset of the Food when presented with CS2 alone. This potential weakness of the model 
is left as a topic for future investigation, but there is one possible explanation that is 
worth mentioning. It is possible that the dopamine response generated by CS1, after 
initial learning, provided support for DA-STDP strengthening of synapses from CS2 
related neurons. The representation in HIPP of the simultaneous presentation of CS1 
and CS2 involved a sudden burst of firing of CS2 associated neurons, potentially 
producing large eligibility traces for many CS2 related synapses. The DA response 
driven by CS1 might have coincided with these large eligibility traces, strengthening the 
association from CS2. In contrast, the representation of CS2 in PFC is a delayed and 
temporally distributed pattern of spikes, and the CA1-driven DA response is not 
appropriately timed to strengthen weights from these spikes to STR so as to inhibit DA at 
the time of the US. The DA response from CA1 is too early to allow the upper pathway to 
learn to inhibit the US DA response, but it might contribute to the strengthening of CA2 
related weights in the lower pathway. This is one hypothesis that should be investigated 
in the future. 
 

Lesioning the Hippocampus 
One of the primary motivations for augmenting the original Chorley and Seth 

(2011) model with a hippocampus was the existence of empirical observations that 
hippocampal lesions in animals impair extinction, a capability lacking in the original 
model, but do not impair the learning of associations, a capability that is robust in the 
original model. The way in which a hippocampus was implemented in the augmented 
model makes fundamental changes to how the state of the animal is represented, 
however, introducing reasons to wonder if the hippocampus implementation left the 
independent association learning capabilities of the Chorley and Seth (2011) model 
intact. Thus, an important test of the augmented model involves its ability to continue to 
learn associations when the hippocampus component is “lesioned” in simulation. If the 
behavior of the augmented model with a hippocampal “lesion” matches the behavior of 
the model described in Chorley and Seth (2011), then there is evidence that the added 
hippocampus does not remove the learning capabilities of the original model.  

In order to model a lesion of the hippocampus in the augmented model, the 
injected current noise driving the sensitivity and base firing rate of the hippocampus 
neurons (see Appendix A) was reduced to zero. Also, the activity of the hippocampus 
neuron group was not affected by the presence of any stimulus. This effectively removed 
all spiking activity in the HIPP neurons. The lesioned model was simulated, using the 
previously employed experimental design of association learning trials, followed by 
extinction trials, followed by a test for reinstatement. 
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Figure 17: One trial of the model after almost 200 trials of CS-US pairings. The first thing to notice 
is that the hippocampal neuron group displayed no activity. It had no background activity, and it 
was not active when either the Light (CS) or the Food (US) arrived. Also notice that the model 
learned to produce a burst of dopamine activity for the Light, and it inhibited the dopamine burst 
for the Food. This shows that the augmented model can still learn associations with the 
hippocampus lesioned. 

 
Figure 19 shows a snapshot of a single trial after the learning of the association 

between the Light (CS) and the Food (US) had occurred. After learning, the model 
characteristically produced a dopamine burst for the CS and inhibited a dopamine burst 
for the Food. This means that the augmented model can still learn associations when the 
hippocampus is lesioned. 

Figure 20 shows the dopamine activity throughout the experiment, showing that 
the dopamine activity for the Light increased over time during learning trials (trials 1-200) 
and did not drop during extinction trials (trials 201-300). Also, the dopamine activity for 
the Food dropped to baseline during learning trials, and it didn’t change after that point. 
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Figure 18: These graphs show the dopamine activity throughout the entire experiment, for both 
the Light and the Food. Trials 1-200 were CS-US pairing association trials, trials 201-300 were 
extinction trials presenting only the CS, trial 301 was a reinstatement trial presenting only the 
Food (US), and trials 302-400 were further extinction trials. This is the same experimental 
structure as the extinction and reinstatement experiment reported early in this chapter. Notice that 
the dopamine activity for the Light rose during early trials, and the dopamine activity for the Food 
dropped off. This demonstrates that the model learned that the Light predicted Food. Also notice 
that during extinction trials 201-300 the dopamine levels for the Light remained high, showing that 
the augmented model with the hippocampus lesioned did not extinguish a learned association. 

 
With the hippocampus lesioned, it cannot provide contextual information, 

particularly about the recency of reward, in order to encode a state change during 
extinction trials. Because the lower pathway of the model does not represent the 
increasing time since last reward during extinction trials, its state remains relatively 
constant during those trials, and the lower pathway continues to excite dopamine when 
the Light appears. In contrast, in the augmented model with a working hippocampus, the 
lower pathway of the model uses the recency of reward to change the state 
representation over extinction trials in the HIPP and INT-H neuron groups, allowing 
extinction of the association to occur. 

 
Analysis of Hippocampal Activity 
The augmented model was partially motivated by the Redish et al. (2007) 

account of extinction, in which a change in state representation plays a central role. The 
sparse conjunctive code used in the hippocampus component of the augmented model 
was intended to produce a similar pattern of state change, with the state representation 
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changing little during association trials but changing substantially during extinction trials. 
While this was the intention, it is worthwhile to examine the patterns of activity in the 
modeled hippocampus more carefully in order to demonstrate the role of changing 
representations in extinction. Here, an analysis of modeled hippocampus activity 
patterns is provided with the goal of illuminating how the changes in activity in the 
hippocampus provide the necessary tools for the model to learn and extinguish 
associations. 

The main idea is that the hippocampal activity doesn’t change very much during 
learning an association, largely because the reward-recency cue remains high. The food 
reward is provided during every trial. This allows the model to associate the active 
neurons in this relatively constant state representation with reward, using DA-STDP. 
During extinction, however, the reward-recency cue drops, since food is not delivered 
during any of these trials. The dropping reward-recency cue affects the activity of each 
subsection of the hippocampus neuron group that encodes a conjunction between 
reward-recency and some other cue. Because a number of the hippocampus 
subsections substantially decrease in activity during extinction trials, the aggregate 
pattern of hippocampal activity becomes different. Thus, the internal state representation 
becomes different.  

These state representation changes can be examined by recording the number 
of spikes generated in each conjunctive bin in HIPP over the course of learning and 
extinction trials. Such an analysis would show which neurons are generating many 
spikes, providing opportunities to strengthen synapses to INT-H, as well as which 
neurons that might already drive INT-H strongly fade in firing rate over extinction trials. 

Data of this kind is displayed in Figures 21 and 22. These two figures are worth 
comparing. During learning trials, the hippocampus provided one context representation. 
During extinction trials, the activity in the hippocampus changed to provide a different 
(shifting) context. The subsections in the hippocampus for conjunctions LF, FRa, RL, 
and RF have higher than baseline activity levels during learning, but during extinction, 
they all drop down to baseline activity levels. This difference in hippocampal activity is 
what allows the model to extinguish learned associations. The DA response is driven by 
hippocampus neurons with synapses strengthened during learning trials, but these same 
neurons become silent over the course of extinction trials, removing support for a DA 
burst. 

It is important to note that this process is also what allows the model to 
spontaneously recover and reinstate previously extinguished associations. In this model, 
extinction arises simply from a change the internal representation of the current context. 
If the model is brought back to a similar internal state representation as when it was 
learning the association (such as what happens in both reinstatement and spontaneous 
recovery), the model will, once again, activate neurons that have had their synapses 
strengthened during learning, and thereby show the previously extinguished association, 
once again. 
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Figure 19: Spiking activity of the 15 subsections in the hippocampus neuron group during 
association trials. a) is all 15 subsections of the hippocampus, while b) removes outlying 
subsection RRa to more easily see the activity in the other subsections. This is the hippocampal 
activity during learning the association. Notice that we can group the activity of the subsections 
into three different activity levels – 1) very high activity for RRa, because this hippocampus 
neuron subgroup is a conjunction of two cues, and the cue Ra (Room A) is constantly present, 
and the cue R (reward-recency) is high for the entire learning period. 2) medium activity for 
subsections LF, LRa, FRa, RL, and RF. These are the subsections that receive small bursts of 
activity at the onset of the conjunctions of these two cues. During learning, the onset of Food 
while the Light is on (LF), the onset of the Light while in Room A (LRa), the onset of Food while in 
Room A (FRa), the onset of the Light and the current level of Reward-Recency (RL), and the 
onset of the Food and the current level of Reward-Recency (RF). 3) very low background noise 
activity levels because the conjunction of the two context cues never appears during learning. 
What is important to take away from this graph is that the activities of these hippocampal 
subsections do not change very much over time, and that the subsections that have very high 
and medium activity levels during learning are different during learning trials (Figure 21) than 
during extinction trials (Figure 22). 

a) 

b) 
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Figure 20: Spiking activity of the 15 subsections in the hippocampus neuron group during 
extinction trials. a) is all 15 subsections of the hippocampus, while b) removes outlying 
subsection RRa to more easily see the activity in the other subsections. In comparing Figure 21 
with Figure 22, we can see two changes, 1) conjunctions RRa and RL drop over time during 
extinction, and 2) the other subsections that had medium activity during learning now have low 
activity during extinction (LF, RL, FRa, and RF). Because the hippocampal activity during learning 
is different than during extinction, the model essentially moves into a new state during extinction 
trials, and, thus, produces different expectations of reward. Contributions from the differential 
neuron subgroups contribute to a DA response during learning trials, but they fall away during 
extinction, extinguishing DA activity. 

 
  

a) 

b) 
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CHAPTER 6: DISCUSSION 
This dissertation discusses a variety of topics, including the theories of learning, 

the phenomena seen in classical conditioning studies, and the effects of lesioning the 
basal ganglia and hippocampus on learning. The document also offers a short history of 
related computational modeling efforts, from temporal difference learning to the 
modeling of it biologically. The first computational model of spiking neurons that 
replicates dopamine activity during association is reviewed, along with some of the 
computational models that led up to it. Some published research on the importance of 
the hippocampus for extinction and spontaneous recovery (Redish et al., 2007) is 
explained, and I show how combining this understanding of the role of the hippocampus 
with the spiking neural network model of Chorley and Seth (2011) produces a new 
augmented spiking model that can both learn associations and extinguish them. 

By augmenting the Chorley and Seth (2011) model with a simple hippocampus, I 
have produced a spiking model without abstract variables that captures learning and 
extinction. This augmented model exhibits extinction and reinstatement, phenomena the 
original model of Chorley and Seth failed to show, and there are other learning 
phenomena that this model is able to capture. Specifically, this dissertation project offers 
the following original contributions: 

 a replication of the model of Chorley & Seth 

 the presentation of a new model, based on Chorley & Seth but 
incorporating a simple spiking neuron model of the hippocampus 

 a demonstration that the hippocampal model continues to exhibit 
association learning 

 a demonstration that the hippocampal model exhibits extinction 

 a demonstration that the hippocampal model exhibits reinstatement 

 a demonstration that the hippocampal model exhibits spontaneous 
recovery 

 a demonstration that the hippocampal model exhibits blocking 

 a demonstration that the hippocampal model mirrors the results of lesion 
studies when the hippocampus component of the model is removed 

 an analysis of how the hippocampus model represents context 
There are a variety of other classical conditioning phenomena that could be 

explored in the future using the augmented model, given time. 
For example, in overshadowing, the salience of one stimulus is stronger than that 

of another. Both stimuli are presented at the same time right before the US, in order to 
build associations, but the association is only strongly established for the more salient 
stimulus. This could be simulated by increasing the amount of injected current in the 
sensory neuron groups for the more salient stimulus, and similarly reducing the injected 
current in the less salient stimulus. It would also need respective increases and 
decreases in the number of neurons in the PFC allocated to each stimuli, or changes in 
the patterns of spikes produced by the two stimuli in PFC, as differences in the inhibition 
of the predicted stimuli is also necessary to capture this effect. 

Reversal is an interesting phenomenon that could be studied using the 
augmented model. In reversal, initially two stimuli are used, with one being presented on 
each learning trial, but only one of the two predicts reward. When the reversal occurs, 
the two stimuli reverse in their ability to predict reward: the predictive stimulus now no 
longer predicts reward and the other begins to predict reward. Animals undergoing 
reversal can learn this change in predictability when it occurs. Reversal may be harder to 
model than extinction, because the reward-recency cue will remain approximately 
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constant both before and after the reversal of contingencies. Thus, even the 
hippocampally augmented model may not be able to tell the difference between 
contexts, and both stimuli may come to have a strong association with the reward. 

Second-order conditioning has a similar problem, worthy of future exploration. In 
this case, after a CS1-US pairing is learned, a second CS2-CS1 pairing can be learned, 
and, as a result, a CS2-US prediction occurs. Attempting to model this phenomenon 
might introduce problems when attempting to learn the CS2-CS1 association. While, due 
to the learned CS1-US association, dopamine may be present during CS2-CS1 trials, 
supporting synaptic change, the reward-recency cue may introduce state representation 
problems, since it is high in the CS1-US situation but not in the CS2-CS1 situation. The 
differences in state representation might interfere with learning. Also, the CS1-US 
association might become extinguished during CS2-CS1 trials, since CS1 is being 
present without a following predicted reward. If CS1 stops producing a DA response, 
learning CS2-CS1 associations through DA-STDP will become impossible, in this model.  

Renewal is a phenomenon that is similar to spontaneous recovery. Both 
phenomena involve learning an association and extinguishing it in one environmental 
context and then, later, testing for a response to the conditioned stimulus. In 
spontaneous recovery, the animal is returned to the original context after a long delay, 
typically spent in its home cage. In renewal, the animal is tested in a new context after a 
short delay. While these are similar phenomena, the model may have trouble 
generalizing a learned association from one context to a different context. Renewal tests 
for the generalization of a learned response to other new contexts, and thus may be 
harder to implement in this model. 

Finally, gradual extinction is also a phenomenon worthy of exploration within the 
framework of this model. Gradual extinction has only been recently discovered 
(Gershman et al., 2013). This phenomenon arises when, after learning an association 
between a CS and  a US, trials of association learning of CS followed by US are 
interspersed within increasing numbers of extinction trials containing just the CS. This 
type of extinction contrasts with traditional extinction, where the US is suddenly withheld, 
and the CS is presented alone many times until the animal no longer shows a response 
to the CS. Animals experiencing gradual extinction show much less spontaneous 
recovery and reinstatement than those given traditional extinction. This may be a harder 
phenomenon to implement because our hippocampus model implements the ideas of 
Redish et al. (2007) in a hard-coded way with a set number of conjunctive states, 
instead of a dynamically malleable INT-H and HIPP neuron group that can create new 
conjunctions on the fly. Such new state representations might be needed in order to 
capture the interplay between state change and association learning.  

These last two phenomena suggest a more abstract characterization of some of 
the weaknesses of this model. The model exhibits difficulty in generalizing what is 
learned. The inability to flexibly modify hippocampal state representations is another 
weakness. Focusing on the second of these weaknesses first, in the hippocampally 
augmented model, learning is context-driven from the lower pathway, using the 
representation produced by the hippocampus. For example, the model would learn that 
when food present, more food will appear, but when food is absent, more food will not 
appear. This sort of association occurs because the major tool that the model uses to tell 
the difference between states is the reward-recency cue. When reward-recency drops, 
the hippocampus changes states, and the learning that occurred in the state when the 
reward-recency was high is made dormant, unable to produce a dopamine response. 
Instead, different hippocampal conjunctions become available. This poses a problem for 
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the hard-coded conjunctive codes that were used in the reported implementation of the 
model. Ideally, the hippocampus would offer a dynamic encoding of cue conjunctions 
that could change over time and be modified depending on the reward prediction error, 
as described in Redish et al. (2007). This dynamicity is required in order to capture most 
of the phenomena described above that were not explored in this dissertation.  

The other major weakness of this model is its difficulty accounting for 
generalization. This problem might be addressed by a dynamic state-encoding in the 
hippocampus, as just described, but the weakness most likely stems from some 
additional properties of learning and extinction. One theory is that learning is a general 
purpose mechanism that learns something for all contexts, while extinction is a 
discriminatory mechanism that identifies the contexts in which the generalized learning is 
not applicable (Baum, 2012). This idea is an interesting one, but it is somewhat counter 
to the learning mechanisms of the augmented model. In the augmented model, the lower 
pathway learns associations specific to the context encoded by the hippocampus, while 
the upper pathway simply inhibits the predictable stimuli (irrespective of whether 
extinction has occurred or not). One approach to addressing this weakness might 
involve having the hippocampus representation affect the upper pathway of this model, 
allowing the lower pathway to learn generalizable associations, while the upper pathway 
inhibits the learned associations that have been extinguished in certain contexts. 

Using a conjunctive code in the PFC was explored, but it has yet to bear fruit. 
The problem is that the hippocampus would have to learn to inhibit the dopamine spike 
from unpredictable stimuli like Light or Bell. If we implemented a hippocampus in the 
upper-pathway of the model instead of the lower-pathway and kept the lower-pathway 
the same from Chorley and Seth (2011), the lower-pathway would come to learn that 
conditioned stimuli that predict reward are just as rewarding as unconditioned stimuli 
(unconditioned stimuli are modeled as stimuli that have strong connections to the 
interneurons). After many trials of learning, conditioned stimuli come to have the same 
strong connections to the interneurons as the unconditioned stimuli, and thus are no 
different. The upper pathway inhibits the dopamine bursts from the strong connections 
from the unconditioned stimuli by used stimuli that occur directly before it. This means 
that a hippocampus affecting the upper pathway would have to inhibit the conditioned 
stimuli that occur randomly, with nothing to predict them, and the current way the upper 
pathway inhibits dopamine spikes is by using predictable stereotyped spikes in the PFC 
directly before the dopamine burst. With no predictable stererotyped spikes before a 
conditioned stimulus, the upper pathway cannot inhibit the dopamine bursts from the 
conditioned stimuli, and thus this modification of the upper pathway seems to lead to a 
dead end. 

The research in this dissertation is a novel contribution above the work of Redish 
et al. (2007) in the sense that it offers a wholly spiking model and shows how neurons 
could be capable of producing these phenomena. Ultimately, this model challenges the 
dominant view that the method of temporal differences can explain the full range of 
learning phenomena by showing the computational importance of the hippocampus. 
  



57 
     

 
 

APPENDIX A: Izhikevich Neuron Model of Spiking and Synaptic Change 
In 2003 Izhikevich developed a model of neural firing activity that accurately 

captured the myriad of neural bursting types that occur in neurons in the brain. They 
were derived from the complex but complete functions that fully modeled the different 
activities of squid neurons developed by Hodgkin and Huxley (1952). The complex multi-
equation Hodgkin and Huxley model was distilled into two much simpler differential 
equations: 

 

                     
 

           
 

As well as the spike resetting mechanism: if    30mV, then set   to   and set   to   
 . These two functions and spike-resetting mechanism require four parameters, and are 
able to model almost all of the different spiking behaviors observed in neuroscientific 
studies by modifying the four parameter values accordingly. Here,   is the membrane 
potential, and   represents an abstract membrane recovery ability of the neuron to 

recover from large amounts of input, while   is input current from other neurons’ action 
potentials as well as any simulation-specific current injected into the neuron. 

Each of the four parameters represents a different aspect of a neuron’s response to 
input. The parameter   represents the speed of the recovery of the membrane potential 

back to baseline. The parameter   represents how sensitive the recovery variable is to 
changes in the membrane potential. The parameter   is the reset value of the membrane 

potential after a spike. And the last parameter,  , represents how the membrane 
recovery variable   is affected after a spike. Together these four parameters are all 
that’s needed to model the spiking behaviors of many different types of neurons. A few 
types of spiking behavior showcased in the Izhikevich (2003) publication include: regular 
spiking, intrinsically bursting, chattering, fast spiking, low-threshold spiking, thalamo-
cortical, and resonator. For more about how well this model can simulate the behavior of 
neurons, see Izhikevich (2004). For the neuron models in the papers cited in this 

dissertation, all used the parameters for modeling regular spiking neurons (  = 0.02,   = 
0.2,   = -65, and   = 8). 

In 2007 Izhikevich produced a model for synaptic change sensitive to the presence 
of dopamine. Izhikevich developed eligibility traces to model how dopamine affects 
synapse strength. This dopamine-modulated spike-timing-dependent plasticity (DA-
STDP) that was used in this research, and which is heavily based on the work by 
Izhikevich (2007) is described in more detail here. 
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Here,       is the time of the post-synaptic action potential, and      is the time of the 

pre-synaptic action potential.   is the number of DA spikes,   is eligibility trace,   is 
synaptic weight, and   is dopamine level.    is the time constant for eligibility traces that 

determines the rate of decay, while    is the time constant for that determines the rate of 
decay of the dopamine level.   had multiple values.    was set to 100, however    had 
different values for the synapses from the striatum (STR) neuron group to the prefrontal 
cortex (PFC) neuron group than the other synapses (the synapses SEN to INT and HIPP 

to INT).    for PFC to STR synapses was 200, while    for all other synapses was 1000. 
 
APPENDIX B: The Chorley and Seth model 

In 2011 Chorley and Seth developed a model of dopamine activity that occurs 
during learning that was built upon the model of synaptic change from Izhikevich (2007). 
For an illustration of the model see Figure 3. The following equations, modified from 
Chorley and Seth (2011), were used to replicate the Chorley and Seth (2011) model: 

 

       

 

 

   

 
                

 
            

 
Input   for unit   is the sum over all incoming synapses from   to   of the weights   of 

those synapses, plus the noise parameter  . The noise   injected into each neuron at 
each millisecond is a random uniform value between -6.5mA and +6.5mA. This was 
enough to produce low level (1-5Hz) background noise in the firing activity of all 

neurons. The synapse delays   are all randomly selected from a uniform distribution 
between 1ms and 10ms. 
 

                                                 
 
When sensory units are stimulated for 10ms, the noise is increased by 0.5mA every ms, 
linearly increasing the noise from being selected from               to 

              . This created a brief increase of their firing rate, without specifying a 
spike ordering. 
 

              
 
And the calculation for dopamine-modulate post-synaptic facilitation (DA-PSF) effect in 

the STR neuron group was implemented by increasing the   parameter of the Izhikevich 

neuron model according to the squared dopamine level    at each timestep. The   

parameter is the sensitivity of the membrane potential recovery parameter ( ) to 
fluctuations in the membrane potential ( ). 

For the PFC units, there were 1000 excitatory neurons that had about 1-5Hz of 
random spiking activity over time. These neurons represented a portion of the prefrontal 
cortex (PFC), and they were used to maintain information about presented stimuli over 
time (see Figure 6). When a stimulus was presented to the model, both the lower 
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pathway and the upper pathway were affected, but they were affected in different ways. 
The lower pathway briefly increases its firing rate in the neural group associated with the 
stimulus presented for 10ms, as previously mentioned. However, in the PFC portion of 
the upper pathway, the firing activity was not simply increased, but it was changed to be 
a stereotyped (i.e., identical whenever triggered) 1000ms time-locked pattern of neural 
spikes, starting when the stimulus was presented. Of the 1000 PFC neurons, there were 
500 neurons that fired in a specific pattern whenever the conditioned stimulus appeared, 
and there were 500 other neurons that fired in a (different) specific pattern when the 
unconditioned stimulus appeared. Thus, every time a particular stimulus was presented, 
the same spatio-temporal pattern of neural spikes was generated across a population of 
neurons in PFC dedicated to that stimulus. The way this happens is that the input 
currents to these PFC neurons are pre-calculated as a matrix of injected current at each 
timestep for each neuron, specific to each stimulus. The currents are pulled from the 
same distribution of input currents of the background noise so that the overall firing rate 
of the PFC does not change over time. This results in the PFC presenting the same 
spatio-temporal pattern for the neurons that represent a stimulus every time that 
stimulus occurs.  

For the connectivity, the connections from the PFC neuron group to the STR 
neuron group are feed-forward, and have a 10% connectivity to the STR neuron group; 
each PFC neuron is connected to 10% of the STR neurons. This balances the input 
activity into STR because PFC is 10x larger than STR. These connections are plastic, 
initially set to small but non-zero strengths. All other connections are feed-forward and 
have 100% connectivity (all-to-all). The neurons in the STR group are feed-forward and 
all-to-all connected to the DA neuron group, however their connections are not plastic. 
The synaptic strengths are not learnable and are fixed at 1mA. Each sensory neuron 
group is feed-forward and all-to-all connected to their corresponding interneuron group 
with plastic weights, initially set to the minimum weight strengths for the unconditioned 
stimulus, and the maximum weight strengths for the conditioned stimulus. Both 
interneuron group is feed-forward and all-to-all connected to the dopamine neuron 
group, but these connections are also not plastic. They are fixed at 0.6mA.  

All-to-all means each neuron in the first group (for a stimulus) is connected to 
each neuron in the second group (the interneurons for the same stimulus). In this 
context, feed-forward means that these connections are only made from the sensory 
neurons to the interneurons, and not back from the interneurons to the sensory neurons. 
It is important to note that these connections are only from the sensory neurons of a 
stimulus to the interneurons for the same stimulus. Sensory neurons for one stimulus are 
not connected to the interneurons of the other stimulus. 

 
Modifications to Chorley and Seth for the Replication 
The following simplifications to the equations from Chorley and Seth (2011) were 

used to replicate the Chorley and Seth (2011) model: 
 

                                                       
 
When sensory units are stimulated for 15ms, the noise is increased by 2.5mA so that the 
injected noise for each unit is taken from a uniform random distribution between -4mA 

and 8mA,              . In my simulations, I found that a uniform increase in injected 
noise of 2.5mA over 15ms was simpler to code and produced a similar result to linearly 
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increasing the input activation by 0.2mA each ms over 10ms, as described in Chorley 
and Seth (2011). 

In this replication of the Chorley and Seth model, for the PFC units that are 
stimulated to represent different stimuli, the random seed used to calculate the injected 

random noise   is changed depending on the stimulus in order to provide stereotyped 
PFC activation specific to each stimulus. When the CS is presented, the unique random 
seed for the CS is used to calculate the injected random noise, while another unique 
random seed is used when the US occurs. After the 1000ms presentation of the 
stereotyped activation in the PFC of either the CS or US, the unique random seed for 
that stimulus is reset, so that the next time the CS or US occurs, the random noise 
injected into those neurons will be the same stereotyped noise. The random seed used 
to calculate background noise when the CS or US isn’t presented is simply replaced with 
the unique random seed for the specific stimulus. This effectively means that the injected 
noise into PFC remains fairly steady, but specific neurons will get specific injected input 
when either a CS or US occur. 
 
APPENDIX C: A Hippocampal Model of Dopamine Activity  

 In 2011 Chorley and Seth modeled the dopamine activity during learning an 
association. (See Appendix B) This appendix details the modifications done to introduce 
to it a hippocampal model of context. The fully modified model is illustrated in Figure 8. 
 

The Hippocampus 
The hippocampus added to the model has 15 subgroups of neurons, each 

subgroup corresponding to a conjunction of the 6 different context cues: Reward-
Recency, Light, Bell, Food, Room A, and Room B. 6 choose 2 is 15. Each subsection 
has 20 neurons in it, and the injected noise   into all subsections increases by 2.5mA for 
15ms on the onset of the conjunction of the two cues. For some subsections, we 
encoded this differently, so here we will review the spiking activity for each hippocampal 
subsection. 

FRa, FRb, BRa, BRb LRa, LRb: When Food (or Light or Bell) is presented in 
Room A (or Room B), the injected noise into the conjunction of Food and Room A 
subsection of the hippocampus increases by 2.5mA for 15ms on the onset of the Food. 
This also goes for conjunctions between the Food, Light, Bell, and Room A, Room B. 

LF, BF, BL: For conjunctions between the Light, Bell, and Food stimuli, the 
injected noise into the conjunction of the two in the hippocampus increases by 2.5mA for 
15ms when their temporally-extended time-locked polychronous group (PNG) in the PFC 
overlap. This timing was chosen so that the hippocampus provided a short burst of 
activity, otherwise being active for the entire overlap of the two PNGs would provide too 
much activation to INT-H and thus to DA for 500ms. This creates both a small burst of 
activity, and allows for stimuli that aren’t presented at the exact same time to provide 
information about when they overlap. 

RF, RL, RB: For these conjunctions, the value reward-recency (or time-since-
last-reward, see Redish et al. (2007)) was treated as a variable that ranged from 1 to 0: 
it was 1 when the reward-recency was reset, and that value decayed down to 0 over 
time. The injected activity of the subsections RF, RL, and RB increased by the product of 
the reward-recency variable and 2.5mA for 15ms on the onset of the related (Food, 
Light, Bell) context cue. This means that activity bursts in RF, RL, and RB could range 
from as high as an increase in 2.5mA in activity to no increase in activity. 
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RRa, RRb: These conjunctions were the conjunctions of the reward-recency and 
whether the model was in Room A or Room B. Instead of short bursts of activity in these 
subsections, they showed prolonged increases of activity over time. The injected noise 
into these subsections were also equal to the product of reward-recency and 2.5mA, 
however this lasted the entire time the model was in Room A. When the model entered 
Room B, injected noise into RRa returned to baseline (because Ra, if treated like a 
Boolean, was now 0), and the injected noise into RRb became the product of reward-
recency and 2.5mA. 

And finally, the RaRb conjunction was only provided for completeness, because 
in these experiments it is not possible to be in both Room A and Room B, and so this 
conjunction never changed from baseline firing rates. 

 
INT-H 
The neuron group INT-H simply took in the input from the three sensory neuron 

groups and from the hippocampus subsections and wasn’t otherwise modified. What 
was controlled was the specific connectivity from those neuron subgroups to INT-H. 

For the three sensory neuron groups, they were fully feed-forward connected to 
each hippocampal subsection whose conjunction contained that sensory cue. For the 
hippocampus neuron group, each conjunction was fully connected in a feed-forward 
connection to each corresponding subsection in the INT-H neuron group. E.g. the 
neurons in subsection RRa of the hippocampus were fully connected only to the neurons 
in the RRa subsection of INT-H. 

 
Weights 
The connections from the hippocampus neuron group to INT-H were all initially 

set to small non-zero values of 0.15 (weight strengths ranged from 0 to 10), except for all 
subsections that conjuncted with Food, in which case they were set to the maximum 
weight value of 10. 

The connections from the sensory neuron groups to INT-H were all set to zero, 
except for connections from the Food sensory neuron group, in which case it was set to 
the weight maximum of 10. 

 
Maximum Dopamine Burst Analysis 
In order to create graphs of the maximum dopamine bursts over the entire 

experiment, we took the maximum dopamine level between 20ms and 70ms after the 
onset of the stimulus. The delay of 20ms was used because the start of dopaminergic 
bursting consistently began 20ms after the stimuli were presented. Note: with a delay 
range of all connections are 1-10ms, one might think with two connections (from 
HIPP/SEN to INT-H, and from INT-H to DA) it would on average only take 11ms for 
activity to reach DA (5.5ms + 5.5ms, the average of 1-10). It’s important to remember 
that neurons need multiple spikes to fire; a single spike is not enough to cause it to fire. 
So, given the weight values and the spikes that occur, it takes around 20ms for spiking 
activity to travel from the HIPP or SEN neuron groups to the DA neuron group. 

 
APPENDIX D: Implementation 

The replication of Chorley and Seth in this dissertation as well as the 
implementation of the hippocampal model was programmed in MATLAB version 
7.7.0.471. This code made use of an implementation of the Izhikevich neuron produced 
by William Benjamin St.Clair and made available as part of his dissertation work. Code 



62 
     

 
 

for these simulations is available by contacting the author at jjrodny@msn.com or on 
GitHub at https://github.com/JJrodny/Spiking-Networks. 
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