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Abstract

We study the sparse non-negative least squares (S-NNLS) problem. S-NNLS occurs naturally in a 

wide variety of applications where an unknown, non-negative quantity must be recovered from 

linear measurements. We present a unified framework for S-NNLS based on a rectified power 

exponential scale mixture prior on the sparse codes. We show that the proposed framework 

encompasses a large class of S-NNLS algorithms and provide a computationally efficient 

inference procedure based on multiplicative update rules. Such update rules are convenient for 

solving large sets of S-NNLS problems simultaneously, which is required in contexts like sparse 

non-negative matrix factorization (S-NMF). We provide theoretical justification for the proposed 

approach by showing that the local minima of the objective function being optimized are sparse 

and the S-NNLS algorithms presented are guaranteed to converge to a set of stationary points of 

the objective function. We then extend our framework to S-NMF, showing that our framework 

leads to many well known S-NMF algorithms under specific choices of prior and providing a 

guarantee that a popular subclass of the proposed algorithms converges to a set of stationary points 

of the objective function. Finally, we study the performance of the proposed approaches on 

synthetic and real-world data.

Keywords

Sparsity; Non-negativity; Dictionary learning

1. Introduction

Least squares problems occur naturally in numerous research and application settings. At a 

high level, given an observation x ∈ ℝd of h ∈ ℝn through a linear system W ∈ ℝd × n, the 

least squares problem refers to
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arg min
h

x − Wh
2
2 . (1)

Quite often, prior information about h is known. For instance, h may be known to be non-

negative. Non-negative data occurs naturally in many applications, including text mining [1], 

image processing [2], speech enhancement [3], and spectral decomposition [4,5]. In this 

case, (1) is modified to

argmin
h ≥ 0

x − Wh
2
2 (2)

where h ≥ 0 refers to the elements of h being constrained to be non-negative and (2) is 

referred to as the non-negative least squares (NNLS) problem. A solution to (2) can be 

obtained using the well-known active set Lawson–Hanson algorithm [6] or one of its many 

variants [7]. In this work, we are interested in a specific flavor of NNLS problems where n > 

d. Under this constraint, the linear system in (2) is underdetermined and admits an infinite 

number of solutions. To constrain the set of possible solutions, a sparsity constraint on h can 

be added, leading to a sparse NNLS (S-NNLS) formulation:

argmin
h ≥ 0, h 0 ≤ k

x − Wh
2

2 (3)

where ||·||0 refers to the ℓ0 pseudo-norm, which counts the number of non-zero entries. 

Solving (3) directly is difficult because the ℓ0 pseudo-norm is non-convex. In fact, solving (3) 

requires a combinatorial search and has been shown to be NP-hard [8]. Therefore, greedy 

methods have been adopted to approximate the solution [8,9]. One effective approach, called 

reverse sparse NNL S (rsNNL S) [10], first finds an h such that x − Wh 2
2 ≤ δ using the 

active-set Lawson–Hanson algorithm and then prunes h with a greedy procedure until ||h||0 ≤ 

k, all while maintaining h ≥ 0. Other approaches include various relaxations of the ℓ0 pseudo-

norm in (3) using the ℓ1 norm [11] or a combination of the ℓ1 and ℓ2 norms [12], leading to 

easier optimization problems.

The purpose of this work is to address the S-NNLS problem in a setting often encountered 

by practitioners, i.e. when several S-NNLS problems must be solved simultaneously. We are 

primarily motivated by the problem of sparse non-negative matrix factorization (S-NMF). 

NMF falls under the category of dictionary learning algorithms. Dictionary learning is a 

common ingredient in many signal processing and machine learning algorithms [13–16]. In 

NMF, the data, the dictionary, and the encoding of the data under the dictionary are all 

restricted to be non-negative. Constraining the encoding of the data to be non-negative leads 

to the intuitive interpretation of the data being decomposed into an additive combination of 

dictionary atoms [17–19]. More formally, let X ∈ ℝ+
d × m be a matrix representing the given 
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data, where each column of X, X(: , j) ∈ ℝ+
d , 1 ≤ j ≤ m, is a data vector. The goal of NMF is 

to decompose X into two matrices W ∈ ℝ+
d × n and H ∈ ℝ+

n × m. When n < d, NMF is often 

stated in terms of the optimization problem

θ* = argmin
θ ≥ 0

X − WH
F

2 (4)

where θ = {W, H}, W is called the dictionary, H is the encoding of the data under the 

dictionary, and θ ≥ 0 is short-hand for the elements of W and H being constrained to be non-

negative. Optimizing (4) is difficult because it is not convex in θ [20]. Instead of performing 

joint optimization, a block coordinate descent method [21] is usually adopted where the 

algorithm alternates between holding W fixed while optimizing H and vice versa 

[17,19,20,22,23]:

UpdateW given H (5)

Update H given W . (6)

Note that (5) and (6) are a collection of d and m NNLS problems, respectively, which 

motivates the present work. The block coordinate descent method is advantageous because 

(5) and (6) are convex optimization problems for the objective function in (4), so that any 

number of techniques can be employed within each block. One of the most widely used 

optimization techniques, called the multiplicative update rules (MUR’s), performs (5)–(6) 

using simple element-wise operations on W and H [17,19]:

W t + 1 = W t ⊙ XHT

W tHHT (7)

Ht + 1 = Ht ⊙ WTX
WTWHt (8)

where ⊙ denotes element-wise multiplication, A/B denotes element-wise division of 

matrices A and B, and t denotes the iteration index. The MUR’s shown in (7)–(8) are 

guaranteed to not increase the objective function in (4) [17,19] and, due to their simplicity, 

are widely used in the NMF community [24–26]. The popularity of NMF MUR’s persists 

despite the fact that there is no guarantee that the sequence W t, Ht
t = 0
∞

 generated by (7)–(8) 

will converge to a local minimum [27] or even a stationary point [20,27] of (4).
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Unlike traditional NMF methods [17,19], this work considers the scenario where W is 

overcomplete, i.e. n ≫ d. Overcomplete dictionaries have much more flexibility to represent 

diverse signals [28] and, importantly, lead to effective sparse and low dimensional 

representations of the data [18,28]. As in NNLS, the concept of sparsity has an important 

role in NMF because when W is overcomplete, (4) is not well-posed without some 

additional regularization. Sparsity constraints limit the set of possible solutions of (4) and, in 

some cases, lead to guarantees of uniqueness [29]. The S-NMF problem can be stated as the 

solution to

θ* = argmin
θ ≥ 0, H 0 ≤ k

X − WH
F

2 (9)

where ||H||0 ≤ k is shorthand for H(: , j) 0 ≤ k
j = 1
m

. One classical approach to S-NMF 

relaxes the ℓ0 constraint and appends a convex, sparsity promoting ℓ1 penalty to the objective 

function [11]:

θ* = argmin
θ ≥ 0

X − WH
F

2 + λ H
1

(10)

where ||H||1 is shorthand for ∑ j = 1
m H(: , j) 1. As shown in [11], (10) can be iteratively 

minimized through a sequence of multiplicative updates where the update of W is given by 

(7) and the update of H is given by

Ht + 1 = Ht ⊙ WTX
WTWHt + λ

. (11)

We also consider an extension of S-NMF where a sparsity constraint is placed on W [12]

θ* =  arg min 
θ ≥ 0, H 0 ≤ kh, W 0 ≤ kW

X − WH
F

2 (12)

which encourages basis vectors that explain localized features of the data [12]. We refer to 

(12) as S-NMF-W.

The motivation of this work is to develop a maximum aposteriori (MAP) estimation 

framework to address the S-NNLS and S-NMF problems. We build upon the seminal work 

in [30] on Sparse Bayesian Learning (SBL). The SBL framework places a sparsity-

promoting prior on the data [31] and has been shown to give rise to many models used in the 

compressed sensing literature [32]. It will be shown that the proposed framework provides a 

general class of algorithms that can be tailored to the specific needs of the user. Moreover, 

Fedorov et al. Page 4

Signal Processing. Author manuscript; available in PMC 2019 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inference can be done through a simple MUR for the general model considered and the 

resulting S-NNLS algorithms admit convergence guarantees.

The key contribution of this work is to detail a unifying framework that encompasses a large 

number of existing S-NNLS and S-NMF approaches. Therefore, due to the very nature of 

the framework, many of the algorithms presented in this work are not new. Nevertheless, 

there is value in the knowledge that many of the algorithms employed by researchers in the 

S-NNLS and S-NMF fields are actually members of the proposed family of algorithms. In 

addition, the proposed framework makes the process of formulating novel task-specific 

algorithms easy. Finally, the theoretical analysis of the proposed framework applies to any 

member of the family of proposed algorithms. Such an analysis has value to both existing S-

NNLS and S-NMF approaches like [33,34], which do not perform such an analysis, as well 

as to any future approaches which fall under the umbrella of the proposed framework. It 

should be noted that several authors have proposed novel sets of MUR’s with provable 

convergence guarantees for the NMF problem in (4) [35] and S-NMF problem in (10) [36]. 

In contrast to Zhao and Tan [36], the proposed framework does not use the ℓ1 regularization 

function to solve (9). In addition, since the proposed framework encompasses the update 

rules used in existing works, the analysis presented here applies to works from existing 

literature, including [33,34].

1.1. Contributions of the paper

• A general class of rectified sparsity promoting priors is presented and it is shown 

that the computational burden of the resulting inference procedure is handled by 

a class of simple, low-complexity MUR’s.

• A monotonicity guarantee for the proposed class of MUR’s is provided, 

justifying their use in S-NNLS and S-NMF algorithms.

• A convergence guarantee for the proposed class of S-NNLS and S-NMF-W 

algorithms is provided.

1.2. Notation

Bold symbols are used to denote random variables and plain font to denote a particular 

realization of a random variable. MATLAB notation is used to denote the (i, j)th element of 

the matrix H as H(i, j) and the jth column of H as H(:, j). We use Hs to denote the matrix H at 

iteration s of a given algorithm and (H)z to denote the matrix H with each element raised to 

the power z.

2. Sparse non-negative least squares framework specification

The S-NNLS signal model is given by

X = WH + V (13)

where the columns of V, the noise matrix, follow a N(0, σ2I) distribution. To complete the 

model, a prior on the columns of H, which are assumed to be independent and identically 
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distributed, must be specified. This work considers separable priors of the form 

p H(: , j) = ∏i = 1
n p H(i, j) , where p(H(i, j)) has a scale mixture representation [37,38]:

p H(i, j) = ∫
0

∞
p H(i, j) γ(i, j) p γ(i, j) dγ(i, j) . (14)

Separable priors are considered because, in the absence of prior knowledge, it is reasonable 

to assume independence amongst the coefficients of H. The case where dependencies 

amongst the coefficients exist is considered in Section 5. The proposed framework extends 

the work on power exponential scale mixtures [39,40] to rectified priors and uses the 

Rectified Power Exponential (RPE) distribution for the conditional density of H(i, j) given 

γ(i, j):

pRPE H(i, j) γ(i, j); z = ze
−

H(i, j)
γ(i, j)

z

γ(i, j)Γ
1
z

u H(i, j)

where u (·) is the unit-step function, 0 < z ≤ 2, and ∫ 0
∞ta − 1e−tdt. The RPE distribution is 

chosen for its flexibility. In this context, (14) is referred to as a rectified power exponential 

scale mixture (RPESM).

The advantage of the scale mixture prior is that it introduces a Markovian structure of the 

form

γ(: , j) H(: , j) X(: , j) (15)

and inference can be done in either the H or γ domains. This work focuses on doing MAP 

inference in the H domain, which is also known as Type 1 inference, whereas inference in 

the γ domain is referred to as Type 2. The scale mixture representation is flexible enough to 

represent most heavy-tailed densities [41–45], which are known to be the best sparsity 

promoting priors [30,46]. One reason for the use of heavy-tailed priors is that they are able 

to model both the sparsity and large non-zero entries of H.

The RPE encompasses many rectified distributions of interest. For instance, the RPE reduces 

to a Rectified Gaussian by setting z = 2, which is a popular prior for modeling non-negative 

data [38,47] and results in a Rectified Gaussian Scale Mixture in (14). Setting z = 1 

corresponds to an Exponential distribution and leads to an Exponential Scale Mixture in (14) 

[48]. Table 2 shows that many rectified sparse priors of interest can be represented as a 

RPESM. Distributions of interest are summarized in Table 1.
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3. Unified MAP inference procedure

In the MAP framework, H is directly estimated from X by minimizing

L(H) = − log ∏
j = 1

m
p H(: , j) X(: , j) . (16)

We have made the dependence of the negative log-likelihood on X and W implicit for 

brevity. Minimizing (16) in closed form is intractable for most priors, so the proposed 

framework resorts to an Expectation-Maximization (EM) approach [45]. In the E-step, the 

expectation of the negative complete data log-likelihood with respect to the distribution of γ, 

conditioned on the remaining variables, is formed:

Q H, Ht ≐ X − WH
F

2

+ λ ∑
i = 1, j = 1

i = n, j = m
H(i, j)

2 1
γ(i, j)

z − logu H(i, j) (17)

where 〈·〉 refers to the expectation with respect to the density p γ(i, j) |H(i, j)
t , t refers to the 

iteration index, Ht denotes the estimate of H at the tth EM iteration, and ≐ refers to dropping 

terms that do not influence the M-step and scaling by λ = 2σ2. The last term in (17) acts as 

a barrier function against negative values of H. The function Q H, Ht  is separable in the 

columns of H. In an abuse of notation, we use Q H(: , j), H(: , j)
t  to refer to the dependency of 

Q H, Ht  on H(:, j).

In order to compute the expectation in (17), a similar method to the one used in [39,41] is 

employed, with some minor adjustments due to non-negativity constraints. Let p(H(i,j)) = pR 

(H(i,j))u (H(i,j)), where pR(H(i,j)) is the portion of p(H(i,j)) that does not include the 

rectification term, and let pR(H(i,j)) be differentiable on [0, ∞). Then,

1
γ(i, j)

2 = −
∂logpR H(i, j)

t

∂H(i, j)
t

1
z H(i, j)

t z − 1 . (18)

Turning to the M-step, the proposed approach employs the Generalized EM (GEM) M-step 

[45]:

Ht + 1 such that Q Ht + 1, Ht ≤ Q Ht, Ht . ( GEM M‐step )

In particular, Q H, Ht  is minimized through an iterative gradient descent procedure. As with 

any gradient descent approach, selection of the learning rate is critical in order to ensure that 

the objective function is decreased and the problem constraints are met. Following Lee and 
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Seung [17,19], the learning rate is selected such that the gradient descent update is 

guaranteed to generate non-negative updates and can be implemented as a low-complexity

Hs + 1 = Hs ⊙ WTX

WTWHs + λΩt ⊙ Hs z − 1

Ω(i, j)
t = − 1

H(i, j)
t z − 1

∂logpR H(i, j)
t

∂H(i, j)
t

(19)

where s denotes the gradient descent iteration index (not to be confused with the EM 

iteration index t). The resulting S-NNLS algorithm is summarized in Algorithm 1, where ζ 
denotes the specific MUR used to update H, which is (19) in this case.

3.1. Extension to S-NMF

We now turn to the extension of our framework to the S-NMF problem. As before, the signal 

model in (13) is used as well as the RPESM prior on H. To estimate W and H, the proposed 

framework seeks to find

argmin
W , H

LNMF(W , H), LNMF(W , H) = − logp(W , H X) . (20)

The random variables W and H are assumed independent and a non-informative prior over 

the positive orthant is placed on W for S-NMF. For S-NMF-W, a separable prior from the 

RPESM family is assumed for W. In order to solve (20), the block-coordinate descent 

optimization approach in (5)–(6) is employed. For each one of (5) and (6), the GEM 

procedure described above is used.
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The complete S-NMF/S-NMF-W algorithm is given in Algorithm 2. Due to the symmetry 

between (5) and (6) and to avoid unnecessary repetition, heavy use of Algorithm 1 in 

Algorithm 2 is made. Note that ζh = (19), ζw = (8) for S-NMF, and ζw = (19) for S-NMF-W.

4. Examples of S-NNLS and S-NMF algorithms

In the following, evidence of the utility of the proposed framework is provided by detailing 

several specific algorithms which naturally arise from (19) with different choices of prior. It 

will be shown that the algorithms described in this section are equivalent to well-known S-

NNLS and S-NMF algorithms, but derived in a completely novel way using the RPESM 

prior. The S-NMF-W algorithms described are, to the best of our knowledge, novel. In 

Section 5, it will be shown that the proposed framework can be easily used to define novel 

algorithms where block-sparsity is enforced.

4.1. Reweighted l2

Consider the prior H(i,j) ~ pRST (H(i,j); τ). Given this prior, (19) becomes

Hs + 1 = Hs ⊙ WTX

WTWHs + 2λ(τ + 1)Hs

τ + Ht 2

. (21)

Given this choice of prior on H(i, j) and a non-informative prior on W(i, j), it can be shown 

that LNMF (W, H) reduces to

X − WH
F

2
+ λ ∑

i = 1, j = 1

i = n, j = m
log H(i, j)

2 + τ (22)

over H ∈ ℝ+
n × m and W ∈ ℝ+

d × n (i.e. log u(·) term have been omitted for and brevity), where 

λ = 2σ2(τ + 1). The sparsity-promoting regularization term in (22) was first studied in [49] in 

the context of vector sparse coding (i.e. without non-negativity constraints). Majorizing the 

sparsity promoting term in (22), it can be shown that (22) is upper-bounded by

X − WH
2

2
+ λ H

Qt
F

2
(23)
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where Q(i, j)
t = H(i, j)

t + τ. Note that this objective function was also used in [50], although it 

was optimized using a heuristic approach based on the Moore–Penrose pseudoinverse 

operator. Letting R = H/Qt and λ 0, (23) becomes

X − W Qt ⊙ R 2
2

(24)

which is exactly the objective function that is iteratively minimized in the NUIRLS 

algorithm [34] if we let τ → 0. Although Grady and Rickard [34] gives a MUR for 

minimizing (24), the MUR can only be applied for each column of H individually. It is not 

clear why the authors of Grady and Rickard [34] did not give a matrix based update rule for 

minimizing (24), which can be written as

Rs + 1 = Rs ⊙ WTX

WTW Qt ⊙ Rs .

This MUR is identical to (21) in the setting λ, τ → 0. Although Grady and Rickard [34] 

makes the claim that NUIRLS converges to a local minimum of (24), this claim is not 

proved. Moreover, nothing is said regarding convergence with respect to the actual objective 

function being minimized (i.e. (22) as opposed to the majorizing function in (24)). As the 

analysis in Section 6 will reveal, using the update rule in (21) within Algorithm 1, the 

iterates are guaranteed to converge to a stationary point of (22). We make no claims 

regarding convergence with respect to the majorizing function in (23) or (24).

4.2. Reweighted ℓ1
Assuming H(i,j) ~ pRGDP (H(i,j); 1, 1, τ), (19) reduces to

Hs + 1 = Hs ⊙ WTX
WTWHs + λ(τ + 1)

τ + Ht

. (25)

Plugging the RGDP prior into (20) and assuming a non-informative prior on W(i,j) leads to 

the Lagrangian of the objective function considered in [51] for unconstrained vector sparse 

coding (after omitting the barrier function terms): X − WH
F
2 + λ∑i = 1, j = 1

i = n, j = m log H(i, j) + τ . 

Interestingly, this objective function is a special case of the block sparse objective 

considered in [33] (where the Itakura–Saito reconstruction loss is used instead of the 

Frobenius norm loss) if each H(i, j) is considered a separate block. Lefevre et al. [33] did not 

offer a convergence analysis of their algorithm, in contrast with the present work. To the best 

of our knowledge, the reweighted ℓ1 formulation has not been considered in the S-NNLS 

literature.
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4.3. Reweighted ℓ2 and reweighted ℓ1 for S-NMF-W

Using the reweighted ℓ2 or reweighted ℓ1 formulations to promote sparsity in W is 

straightforward in the proposed framework and involves setting ζw to (21) or (25), 

respectively, in Algorithm 2.

5. Extension to block sparsity

As a natural extension of the proposed framework, we now consider the block sparse S-

NNLS problem. This section will focus on the S-NNLS context only because the extension 

to S-NMF is straightforward. Block sparsity arises naturally in many contexts, including 

speech processing [24,52], image denoising [53], and system identification [54]. The central 

idea behind block-sparsity is that W is assumed to be divided into disjoint blocks and each 

X(:, j) is assumed to be a linear combination of the elements of a small number of blocks. 

This constraint can be easily accommodated by changing the prior on H(:, j) to a block 

rectified power exponential scale mixture:

p H(: , j) = ∏
gb ∈ 𝒢

∫
0

∞
∏

i ∈ gb

p H(i, j) γ(b, j) p γ(b, j) dγ(b, j)

p H(gb, j)

(26)

where 𝒢 is a disjoint union of gb b = 1
B  and H

gb, j
 is a vector consisting of the elements of 

H(:, j) whose indices are in gb. To find the MAP estimate of H given X, the same GEM 

procedure as before is employed, with the exception that the computation of the weights in 

(17) is modified to:

1
γ(b, j)

z = −
∂logpR H

gb, j

∂H(i, j)
1

z H(i, j)
z − 1

where i ∈ gb. It can be shown that the MUR for minimizing Q H, Ht  in (19) can be modified 

to account for the block prior in (26) to

Hs + 1 = Hs ⊙ W1X

WTWHs + λΦt ⊙ HS z − 1

Φ
gb, j

t = − 1
H(i, j)

t z − 1

∂logpR H
gb, j

t

∂H(i, j)
t  for any i ∈ gb .

(27)

Next, we show examples of block S-NNLS algorithms that arise from our framework.
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5.1. Example: reweighted ℓ2 block S-NNLS

Consider the block-sparse prior in (26), where p (H(i, j)|γ(b, j)), i ∈ gb, is a RPE with z = 2 

and γ(b,j) ~ pIGa(γ(b,j); τ/2, τ/2). The resulting density p(H(:, j)) is a block RST (BRST) 

distribution:

p H(: , j) = ∏
g0 ∈ 𝒢

2Γ τ + 1
2

πτΓ τ
2

1 +

H
gb, j 2

2

τ

− (τ + 1)
2

∏
i = 1

n
u H(i, j) .

The MUR for minimizing Q H, Ht  under the BRST prior is given by:

Hs + 1 = Hs ⊙ WTX

WTWHs + 2λ(τ + 1)Hs

τ + St

(28)

where S
gb, j

t = H
gb, j

t

2

2
.

5.2. Example: reweighted ℓ1 block S-NNLS

Consider the block-sparse prior in (26), where p(H(i, j)|γ(b, j)), i ∈ gb, is a RPE with z = 1 and 

γ(b,j) ~ pGa (γ(b,j); τ, τ). The resulting density p(H(:, j)) is a block rectified generalized 

double pareto (BRGDP) distribution:

p H(: , j) = ∏
gb ∈ 𝒢

2η 1 +

H
gb, j 1

τ

−(τ + 1)

∏
i = 1

n
u H(i, j) .

The MUR for minimizing Q H, Ht  under the BRGDP prior is given by:

Ht + 1 = Ht ⊙ WTX
WTWHt + λ(τ + 1)

τ + Vt

(29)

where V
gb, j

t = H
gb, j

t

1
.

5.3. Relation to existing block sparse approaches

Block sparse coding algorithms are generally characterized by their block-sparsity measure. 

The analog of ℓ0 sparsity measure for block-sparsity is the ℓ2 − ℓ0 measure 
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∑gb ∈ 𝒢1
H

gb, j 2
> 0

, which simply counts the number of blocks with non-zero energy. 

This sparsity measure has been studied in the past and block versions of the popular MP and 

OMP algorithms have been extended to Block-MP (BMP) and Block-OMP (BOMP) [55]. 

Extending BOMP to non-negative BOMP (NNBOMP) is straightforward, but details are 

omitted due to space considerations. One commonly used block sparsity measure in the 

NMF literature is the log −ℓ1 measure [33]: ∑gh ∈ 𝒢 log H
gh, j 1

+ τ . This sparsity 

measure arises naturally in the proposed S-NNLS framework when the BRGDP prior is 

plugged into (16). We are not aware of any existing algorithms which use the sparsity 

measure induced by the BRST prior: ∑gb ∈ 𝒢 log H
gb, j 2

2 + τ .

6. Analysis

In this section, important properties of the proposed framework are analyzed. First, the 

properties of the framework as it applies to S-NNLS are studied. Then, the proposed 

framework is studied in the context of S-NMF and S-NMF-W.

6.1. Analysis in the S-NNLS setting

We begin by confirming that (GEM M-step) does not have a trivial solution at H(i, j) = ∞ for 

any (i, j) because 〈(γ(i, j))−z〉 ≥ 0, since it is an expectation of a non-negative random 

variable. In the following discussion, it will be useful to work with distributions whose 

functional dependence on H(i, j) has a power function form:

f H(i, j), z, τ, α = τ + H(i, j)
z −α

(30)

where τ, α > 0 and 0 < z ≤ 2. Note that the priors considered in this work have a power 

function form.

6.1.1. Monotonicity of Q H, Ht  under (19)—The following theorem states one of the 

main contributions of this work, validating the use of (19) in (GEM M-step).

Theorem 1.: Let z ∈ {1, 2} and the functional dependence of pR(H(i, j)) on H(i, j) have a 

power function form. Consider using the update rule stated in (19) to update H(i, j)
s  for all 

(i, j) ∈ 𝒥 = (i, j):H(i, j)
s > 0 . Then, the update rule in (19) is well defined and 

Q HS + 1, Ht ≤ Q HS, Ht .

Proof.: Proof provided in Appendix A.

Theorem 1 also applies to the block-sparse MUR in (27).
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6.1.2. Local minima of L(H)—Before proceeding to the analysis of the convergence of 

Algorithm 1, it is important to consider the question as to whether the local minima of L(H) 

are desirable solutions from the standpoint of being sparse.

Theorem 2.: Let H* be a local minimum of (16) and let the functional dependence of 

pR(H(i, j)) on H(i, j) have a power function form. In addition, let one of the following 

conditions be satisfied: 1) z ≤ 1 or 2) z > 1 and τ → 0. Then, H(: , j)* 0 ≤ d.

Proof.: Proof provided in Appendix B.

6.1.3. Convergence of Algorithm 1—First, an important property of the cost function 

in (16) can be established.

Theorem 3.: The function −log p(H(i,j)) is coercive for any member of the RPESM family.

Proof.: The proof is provided in Appendix C.

Theorem 3 can then be used to establish the following corollary.

Corollary 1.: Assume the signal model in (13) and let p(H(i, j)) be a member of the RPESM 

family. Then, the cost function L(H) in (16) is coercive.

Proof.: This follows from the fact that X − WH F
2 ≥ 0 and the fact that −log p(H(i, j)) is 

coercive due to Theorem 3.

The coercive property of the cost function in (16) allows us to establish the following result 

concerning Algorithm 1.

Corollary 2.: Let z ∈ {1, 2} and the functional dependence of pR(H(i, j)) on H(i, j) have a 

power function form. Then, the sequence Ht
t = 1
∞

 produced by Algorithm 1 with S, the 

number of inner loop iterations, to 1 admits at least one limit point.

Proof.: The proof is provided in Appendix D.

We are now in a position to state one of the main contributions of this paper regarding the 

convergence of Algorithm 1 to the set of stationary points of (16). A stationary point is 

defined to be any point satisfying the Karush–Kuhn–Tucker (KKT) conditions for a given 

optimization problem [56].

Theorem 4.: Let z ∈ {1, 2}, ζ = (19), t∞ = ∞, S = 1, the functional dependence of 

pR(H(i, j)) on H(i, j) have a power function form, the columns of W and X have bounded 

norm, and W be full rank. In addition, let one of the following conditions be satisfied: (1) z 

= 1 and τ ≤ λ/maxi, j (WTX)(i, j) or (2) z = 2 and τ → 0. Then the sequence Ht
t = 1
∞
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produced by Algorithm 1 is guaranteed to converge to the set of stationary points of L(H). 

Moreover, L Ht
t = 1
∞

 converges monotonically to L H* , for stationary point H*.

Proof.: The proof is provided in Appendix E.

The reason that S = 1 is specified in Theorem 4 is that it allows for providing convergence 

guarantees for Algorithm 1 without needing any convergence properties of the sequence 

generated by (19). Theorem 4 also applies to Algorithm 1 when the block-sparse MUR in 

(27) is used. To see the intuition behind the proof of Theorem 4 (given in Appendix E), 

consider the visualization of Algorithm 1 shown in Fig. 1. The proposed framework seeks a 

minimum of −log p(H (:,j)|X (:,j)), for all j, through an iterative optimization procedure. At 

each iteration, −log p(H (:,j)|X (:,j)) is bounded by the auxiliary function Q H(: , j), H(: , j)
t

[45,56]. This auxiliary function is then bounded by another auxiliary function,

G H(: , j), H(: , j)
S , defined in (A.1). Therefore, the proof proceeds by giving conditions under 

which (GEM M-step) is guaranteed to reach a stationary point of −log p(H (:,j)|X (:,j)) by 

repeated minimization of Q H(: , j), H(: , j)
t  and then finding conditions under which 

Q H(: , j), H(: , j)
t  can be minimized by minimization of G H(: , j), H(: , j)

S  through the use of 

(19).

6.2. Analysis in S-NMF and S-NMF-W settings

We now extend the results of Section 6.1 to the case where W is unknown and is estimated 

using Algorithm 2. For clarity, let (zw,τw) and (zh,τh) refer to the distributional parameters 

of the priors over W and H, respectively. As before, τw, τh > 0 and 0 < zw, zh ≤ 2. First, it is 

confirmed that Algorithm 2 exhibits the same desirable optimization properties as the NMF 

MUR’s (7)–(8).

Corollary 3.—Let zw, zh ∈ {1, 2} and the functional dependence of pR(H(i,j)) on H(i,j) have 

a power function form. If performing S-NMF-W, let the functional dependence of pR(W(i,j)) 

on W(i,j) have a power function form. Consider using Algorithm 2 to generate W t, Ht
t = 0
∞

. 

Then, the update rules used in Algorithm 2 are well defined and 

LNMF W t + 1, Ht + 1 ≤ LNMF W t, Ht .

Proof.—The proof is shown in Appendix F.

Therefore, the proposed S-NMF framework maintains the monotonicity property of the 

original NMF MUR’s, with the added benefit of promoting sparsity in H (and W, in the case 

of S-NMF-W). Unfortunately, it is not clear how to obtain a result like Theorem 4 for 

Algorithm 2 in the S-NMF setting. The reason that such a result cannot be shown is because 

it is not clear that if a limit point, W∞, H∞ , of Algorithm 2 exists, that this point is a 

stationary point of LNMF (·,·). Specifically, if there exists (i, j) such that W(i, j)
∞ = 0, the KKT 

condition − X − W∞H∞ H∞ T ≥ 0 cannot be readily verified. This deficiency is unrelated to 
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the size of W and H and is, in fact, the reason that convergence guarantees for the original 

update rules in (7) –(8) do not exist. Interestingly, if Algorithm 2 is considered in S-NMF-W 

mode, this difficulty is alleviated.

Corollary 4.—Let zw, zh ∈ {1, 2}, S = 1, and the functional dependence of pR(H(i,j)) on 

H(i,j) and of pR(W(i,j)) on W(i,j) have power function forms. Then, the sequence Ht, W t
t = 1
∞

produced by Algorithm 2 admits at least one limit point.

Proof.—The objective function is now coercive with respect to W and H as a result of the 

application of Theorem 3 to −log pR(H(i,j)) and −log pR(W(i,j)). Since LNMF W t, Ht
t = 1
∞

 is 

non-increasing sequence, the proof for Corollary 2 in Appendix D can be applied to obtain 

the stated result.

Corollary 5.—Let W t, Ht
t = 1
∞

 be a sequence generated by Algorithm 2 with ζw = (19). 

Let zh, zw ∈ {1, 2}, the functional dependence of pR(H(i,j)) on H(i,j) have a power function 

form, the functional dependence of pR(W(i,j)) on W(i,j) have a power function form, the 

columns and rows of X have bounded norm, the columns of W∞ have bounded norm, the 

rows of H∞ have bounded norm, and W∞ and H∞ be full rank. Let one of the following 

conditions be satisfied: (1h) zh = 1 and τh ≤ λ/maxi, j W∞ T
X

(i, j)
 or (2h) zh = 2 and τh → 0. 

In addition, let one of the following conditions be satisfied: (1w) zw = 1 and 

τw ≤ λ/maxi, j H∞XT
(i, j) or (2w) zw = 2 and τw → 0 . Then, W t, Ht

t = 1
∞

 is guaranteed to 

converge to set of stationary points of LNMF(. , .).

Proof.—The proof is provided in Appendix G.

7. Experimental results

In the following, experimental results for the class of proposed algorithms are presented. 

The experiments performed were designed to highlight the main properties of the proposed 

approaches. First, the accuracy of the proposed S-NNLS algorithms on synthetic data is 

studied. Then, experimental validation for claims made in Section 6 regarding the properties 

of the proposed approaches is provided. Finally, the proposed framework is shown in action 

on real-world data by learning a basis for a database of face images.

7.1. S-NNLS results on synthetic data

In order to compare the described methods, a sparse recovery experiment was undertaken. 

First, a dictionary W ∈ ℝ+
100 × n is generated, where each element of W is drawn from the RG 

(0,1) distribution. The columns of W are then normalized to have unit ℓ2 norm. The matrix 

H ∈ ℝ+
n × 100 is then generated by randomly selecting k coefficients of H(:,j) to be non-zero 

and drawing the non-zero values from a RG(0,1) distribution. The columns of H are 

normalized to have unit ℓ2 norm. We then feed X = WH and W to the S-NNLS algorithm and 
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approximate H(:,j) with H(: , j). Note that this is a noiseless experiment. The distortion of the 

approximation is measured using the relative Frobenius norm error, H − H F / H F. A 

total of 50 trials are run and averaged results are reported.

We use Algorithm 1 to generate recovery results for the proposed framework, with the 

number of inner-loop iterations, S, of Algorithm 1 set to 2000 and the outer EM loop 

modified to run a maximum of 50 iterations. For reweighted ℓ2 S-NNLS, the same annealing 

strategy for τ as reported in [49] is employed, where τ is initialized to 1 and decreased by a 

factor of 10 (up to a prespecified number of times) when the relative ℓ2 difference between 

H(: , j)
t + 1 and H(: , j)

t  is below τ /100 for each j. Note that this strategy does not influence the 

convergence properties described in Section 6 for the reweighted ℓ2 approach since τ can be 

viewed as fixed after a certain number of iterations. For reweighted ℓ1 S-NNLS, we use τ = 

0.1. The regularization parameter λ is selected using cross-validation by running the S-

NNLS algorithms on data generated using the same procedure as the test data.

We compare our results with rsNNLS [10], the SUnSAL algorithm for solving (10) [57], the 

non-negative ISTA (NN-ISTA) algorithm1 for solving (10) [58], NUIRLS, and ℓ1 S-NNLS 

[12] (i.e. (11)). Since rsNNLS requires k as an input, we incorporate knowledge of k into the 

tested algorithms in order to have a fair comparison. This is done by first thresholding H(: , j)
by zeroing out all of the elements except the largest k and then executing (8) until 

convergence.

The S-NNLS results are shown in Fig. 2. Fig. 2 a shows the recovery results for n = 400 as a 

function of the sparsity level k. All of the tested algorithms perform almost equally well up 

to k = 30, but the reweighted approaches dramatically outperform the competing methods 

for k = 40 and k = 50. Fig. 2b shows the recovery results for k = 50 as a function of n. All of 

the tested algorithms perform relatively well for n = 200, but the reweighted approaches 

separate themselves for n = 400 and n = 800. Fig. 2c and d show the average computational 

time for the algorithms tested as a function of sparsity level and dictionary size, respectively.

Two additional observations from the results in Fig. 2a can be made. First, the reweighted 

approaches perform slightly worse for sparsity levels k ≤ 20. We believe that this is a result 

of suboptimal parameter selection for the reweighted algorithms and using a finer grid 

during cross-validation would improve the result. This claim is supported by the observation 

that NUIRLS performs at least as well or better than the reweighted approaches for k ≤ 20 

and, as argued in Section 4.1, NUIRLS is equivalent to reweighted ℓ2 S-NNLS in the limit λ, 
τ → 0. The second observation is that the reweighted ℓ2 approach consistently outperforms 

NUIRLS at high values of k. This suggests that the strategy of allowing λ > 0 and annealing 

τ, instead of setting it to 0 as in NUIRLS [34], is much more robust.

In addition to displaying superior S-NNLS performance, the proposed class of MUR’s also 

exhibits fast convergence. Fig. 3 compares the evolution of the objective function L(H) 

under the RGDP signal prior (i.e. the reweighted ℓ1 formulation of Section 4.2) for 

1We modify the soft-thresholding operator to Sβ (h) = max (0, |h| − β).
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Algorithm 1, with S = 1, with a baseline approach. The baseline employs the NN-ISTA 

algorithm to solve the reweighted ℓ1 optimization problem which results from bounding the 

regularization term by a linear function of H(i,j) (similar to (23), but with H /Qt
F
2

 replaced 

by H /Qt
1. The experimental results show that the MUR in (25) achieves much faster 

convergence as well as a lower objective function value compared to the baseline.

7.2. Block S-NNLS results on synthetic data

In this experiment, we first generate W ∈ ℝ+
80 × 160 by drawing its elements from a RG (0,1) 

distribution. We generate the columns of H ∈ ℝ+
160 × 100 by partitioning each column into 

blocks of size 8 and randomly selecting k blocks to be non-zero. The non-zero blocks are 

filled with elements drawn from a RG (0,1) distribution. We then attempt to recover H from 

X = WH. The relative Frobenius norm error is used as the distortion metric and results 

averaged over 50 trials are reported.

The results are shown in Fig. 4. We compare the greedy NN-BOMP algorithm with the 

reweighted approaches. The reweighted approaches consistently outperform the ℓ0 based 

method, showing good recovery performance even when the number of non-zero elements 

of each column of H is equal to the dimensionality of the column.

7.3. A numerical study of the properties of the proposed methods

In this section, we seek to provide experimental verification for the claims made in the 

Section 6. First, the sparsity of the solutions obtained for the synthetic data experiments 

described in Section 7.1 is studied. Fig. 5 shows the magnitude of the n0th largest coefficient 

in H(: , j) for various sizes of W, averaged over all 50 trials, all j, and all sparsity levels tested. 

The statement in Theorem 2 claims that the local minima of the objective function being 

optimized are sparse (i.e. that the number of nonzero entries is at most d = 100). In general, 

the proposed methods cannot be guaranteed to converge to a local minimum as opposed to a 

saddle point, so it cannot be expected that every solution produced by Algorithm 1 is sparse. 

Nevertheless, Fig. 5 shows that for n = 200 and n = 400, both reweighted approaches 

consistently find solutions with sparsity levels much smaller than 100. For n = 800, the 

reweighted ℓ2 approach still finds solutions with sparsity smaller than 100, but the 

reweighted ℓ1 method deviates slightly from the general trend.

Next, we test the claim made in Theorem 4 that the proposed approaches reach a stationary 

point of the objective function by monitoring the KKT residual norm of the scaled objective 

function. Note that, as in Appendix E, the −log u (H(i,j)) terms are omitted from L(H) and the 

minimization of L(H) is treated as a constrained optimization problem when deriving KKT 

conditions. For instance, for reweighted ℓ1 S-NNLS, the KKT conditions can be stated as

min H, WTWH − WTX + λ τ + 1
τ + H = 0 (31)
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and the norm of the left-hand side, averaged over all of the elements of H, can be viewed as 

a measure of how close a given H is to being stationary [27]. Table 3 shows the average 

KKT residual norm of the scaled objective function for the reweighted approaches for 

various problem sizes. The reported values are very small and provide experimental support 

for Theorem 4.

7.4. Learning a basis for face images

In this experiment, we use the proposed S-NMF and S-NMF-W frameworks to learn a basis 

for the CBCL face image dataset2 [12,35]. Each dataset image is a 19 × 19 grayscale image. 

We used n = 3d and learned W by running S-NMF with reweighted-ℓ1 regularization on H 
and S-NMF-W with reweighted-ℓ1 regularization on W and H. We used τw, τh = 0.1 and ran 

all algorithms to convergence. Due to a scaling indeterminacy, W is normalized to have unit 

ℓ2 column norm at each iteration. A random subset of the learned basis vectors for each 

method with various levels of regularization is shown in Fig. 6. The results show the 

flexibility offered by the proposed framework. Fig. 6 a–c show that decreasing λ encourages 

S-NMF to learn high level features, whereas high values of λ force basis vectors to resemble 

images from the dataset. Fig. 6 d–f show a similar trend for S-NMF-W, although introducing 

a sparsity promoting prior on W tends to discourage basis vectors from resembling dataset 

images. It is difficult to verify Theorem 5 experimentally because W must be normalized at 

each iteration to prevent scaling instabilities and there is no guarantee that a given stationary 

point W* has unit column norms. Nevertheless, the normalized KKT residual for the tested 

S-NMF-W algorithms with W normalization at each iteration on the CSBL face dataset is 

reported in Table 4.

7.5. Computational issues

One of the advantages of using the proposed MUR’s is that inference can be performed on 

the entire matrix simultaneously in each block of the block-coordinate descent procedure 

with relatively simple matrix operations. In fact, the computational complexity of the 

MUR’s in (21), (25), (28), and (29) is equivalent to that of the original NMF MUR given in 

(8) (which is 𝒪(nmr) where r ≤ min (m, n) [35]). In other words, the proposed framework 

allows for performing S-NNLS and S-NMF without introducing computational complexity 

issues. Another benefit of this framework is that the operations required are simple matrix-

based computations which lend themselves to a graphics processing unit (GPU) 

implementation. For example, a 9-fold speed-up is achieved in computing 500 iterations of 

(19) on a GPU compared to a CPU.

8. Conclusion

We presented a unified framework for S-NNLS and S-NMF algorithms. We introduced the 

RPESM as a sparsity promoting prior for non-negative data and provided details for a 

general class of S-NNLS algorithms arising from this prior. We showed that low-complexity 

MUR’s can be used to carry out the inference, which are validated by a monotonicity 

guarantee. In addition, it was shown that the class of algorithms presented is guaranteed to 

converge to a set of stationary points, and that the local minima of the objective function are 

sparse. This framework was then extended to a block coordinate descent technique for S-
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NMF and S-NMF-W. It was shown that the proposed class of S-NMF-W algorithms is 

guaranteed to converge to a set of stationary points.

Appendix A.: Proof of Theorem 1

Due to the assumption on the form of pR (H(i,j)), the functional dependence of 〈(γ(i,j)
−z)〉, 

and hence Ω(i, j)
t , on H(i, j)

t  has the form τ + H(i, j)
t z −1

 up to a scaling constant, which is 

well-defined for all τ > 0 and H(i, j)
t ∈ [0, ∞). As a result, (19) is well defined for all (i, j) 

such that H(i, j)
S > 0.

To show that Q H, Ht  is non-increasing under MUR (19), a proof which follows closely to 

Hoyer and co-workers [11,17] is presented. We omit the −log u(H(i,j)) term in Q H, Ht  in our 

analysis because it has no contribution to Q H, Ht  if H ≥ 0 and the update rules are 

guaranteed to keep H(i,j) non-negative.

First, note that Q H, Ht  is separable in the columns of H, H(:,j), so we focus on minimizing 

Q H, Ht  for each H(:,j) separately. For the purposes of this proof, let h and x represent 

columns of H and X, respectively, and let Q(h) denote the dependence of Q H, Ht  on one of 

the columns of H, with the dependency on Ht being implicit. Then,

Q(h) = x − Wh
2

2
+ λ ∑

i
qi hi

z

where q represents the non-negative weights in (17). Let G(h, hs) be

G h, hs = Q hs + h − hs T ∇Q hs + h − hs T K hs h − hs

2 (A.1)

where K(hs) = diag ((WTWhs + λzq ⊙ (hs)z−1)/hs). For reference,

∇Q hs = WTWhs − WTx + λzq ⊙ hs z − 1
(A.2)

∇2Q hs = WTW + λz(z − 1) diag  q ⊙ hs z − 2 . (A.3)

It will now be shown that G(h, hs) is an auxiliary function for Q(h). Trivially, G(h, h) = Q(h). 

To show that G(h, hs) is an upper-bound for Q(h), we begin by using the fact that Q(h) is a 

polynomial of order 2 to rewrite Q(h) as Q(h) = Q(hs) + (h − hs)T ∇Q(hs) + 0.5(h − 

hs)T∇2Q(hs)(h − hs). It then follows that G (h, hs) is an auxiliary function for Q(h) if and 
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only if the matrix M = K(hs) − ∇2Q(hs) is positive semi-definite (PSD). The matrix M can be 

decomposed as M = M1 + M2, where M1 = diag ((WTWhs)/hs) − WTW and M2 = λz(2 − z) 

diag(q ⊙ (hs)z−2). The matrix M1 was shown to be PSD in [17]. The matrix M2 is a diagonal 

matrix with the (i, i)th entry being λz(2 − z)qi hi
s z − 2

. Since qi hi
s z − 2 ≥ 0 and z ≤ 2, M2 has 

non-negative entries on its diagonal and, consequently, is PSD. Since the sum of PSD 

matrices is PSD, it follows that M is PSD and G(h, hs) is an auxiliary function for Q(h). 

Since G(h, hs) as an auxiliary function for Q(h), Q(h) is non-increasing under the update rule 

[17]

hs + 1 = arg min
h

G h, hs . (A.4)

The optimization problem in (A.4) can be solved in closed form, leading to the MUR shown 

in (19). The multiplicative nature of the update rule in (19) guarantees that the sequence 

HS
S = 1
∞

 is non-negative.

Appendix B.: Proof of Theorem 2

This proof is an extension of (Theorem 1 [59] and Theorem 8 [60]). Since L(H) is separable 

in the columns of H, consider the dependence of L(H) on a single column of H, denoted by 

L(h). The function L (h) can be written as

x − Wh
2

2
− ∑

i = 1

n
2σ2logp hi . (B.1)

Let h* be a local minimum of L(h). We observe that h* must be non-negative. Note that −log 

p(hi) → ∞ when hi < 0 since p(hi) = 0 over the negative orthant. As such, if one of the 

elements of h* is negative, h* must be a global maximum of L(h). Using the assumption on 

the form of pR(hi), (B.1) becomes

x − Wh
2

2
+ ∑

i = 1

n
2σ2 αlog τ + hi

z − logu hi + c (B.2)

where constants which do not depend on h are denoted by c. By the preceding argument, 

logu hi* = 0, so the logu hi*  term makes no contribution to L(h*). The vector h* must be a 

local minimum of the constrained optimization problem

min
x = Wh + v∗

∑
i = 1

n
log τ + hi

z

ϕ(h)

(B.3)
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where v*= x − Wh* and ϕ(·) is the diversity measure induced by the prior on H. It can be 

shown that ϕ(·) is concave under the conditions of Theorem 2. Therefore, under the 

conditions of Theorem 2, the optimization problem (B.3) satisfies the conditions of 

(Theorem 8 [60]). It then follows that the local minima of (B.3) are basic feasible solutions, 

i.e. they satisfy x = Wh + v* and ∥h∥0 ≤ d. Since h* is one of the local minima of (B.3), 

∥h*∥0 ≤ d.

Appendix C.: Proof of Theorem 3

It is sufficient to show that limH(i, j) ∞p H(i, j) = 0. Consider the form of p(H(i,j)) when it is 

a member of the RPESM family:

p H(i, j) = ∫
0

∞

p H(i, j) γ(i, j) p γ(i, j) dγ(i, j) C.1)

where H(i,j)|γ(i, j) ~ pRPE (H(i,j)|γ(i,j); z). Note that

pRPE H(i, j) γ(i, j) p γ(i, j) ≤ pRPE 0 γ(i, j); z p γ(i, j) .

Coupled with the fact that p(H(i,j)|γ(i,j)) is continuous over the positive orthant, the 
dominated convergence theorem can be applied to switch the limit with the integral in 
((C.1):

lim
H(i, j) ∞

∫0
∞

p H(i, j) γ(i, j) p γ(i, j) dγ(i, j) = ∫0
∞

lim
H(i, j) ∞

p H(i, j) γ(i, j) p γ(i, j) dγ(i, j) = 0.

Appendix D.: Proof of Corollary 2

This proof follows closely to the first part of the proof of (Theorem 1, [36]). Let 

𝒮0 = H ∈ ℝ+
n × m |L(H) ≤ L H0  Lemma 1 established that L(H) is coercive. In addition, 

L(H) is a continuous function of H over the positive orthant. Therefore, 𝒮0 is a compact set 

(Theorem 1.2, [61]). The sequence L Ht
t = 1
∞

 is non-increasing as a result of Theorem 1, 

such that Ht
t = 1
∞ ∈ 𝒮0. Since 𝒮0 is compact, Ht

t = 1
∞

 admits at least one limit point.

Appendix E.: Proof of Theorem 4

From Lemma 2, the sequence Ht
t = 1
∞

 admits at least is limit one point. What remains is to 

show that every limit point is a stationary point of (16). The sufficient conditions for the 

limit points to be are tationary are (Theorem 1, [62])
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1. Q H, Ht  is continuous in both H and Ht,

2. At each iteration t, one of the following is true

Q H(: , j)
t + 1, H(: , j)

t < Q H(: , j)
t , H(: , j)

t (E.1)

H(: , j)
t + 1 = arg min

H(: j) ≥ 0
Q H(: , j), H(: , j)

t . (E.2)

The function3 Q H, Ht  is continuous in H, trivially, and in Ht if the functional dependence of 

pR H(i, j)
t  on H(i, j)

t  has the form (30).

In order to show that the descent condition is satisfied, we begin by noting that 

Q H(: , j), H(: , j)
t  is strictly convex with respect to H(:,j) if the conditions of Theorem 4 are 

satisfied. This can be seen by examining the expression for the Hessian of Q H(: , j), H(: , j)
t  in 

(A.3). If W is full rank, then WTW is positive definite. In addition, 

λz(z − 1) diag  Ω(: , j)
t ⊙ H(: , j)

S z − 2
 is PSD because z ≥ 1. Therefore, the Hessian of 

Q H(: , j), H(: , j)
t  is positive definite if the conditions of Theorem 4 are satisfied.

Since S = 1 H(: , j)
t + 1 is generated by (19) with Hs replaced by Ht. This update has two 

possibilities: (1) H(: , j)
t + 1 ≠ H(: , j)

t  or (2) H(: , j)
t + 1 ≠ H(: , j)

t . If condition (1) is true, then (E.1) is 

satisfied because of the strict convexity of Q H(: , j), H(: , j)
t  and the monotonicity guarantee of 

Theorem 1.

It will now be shown that if condition (2) is true, then H(: , j)
t + 1 must satisfy (E.2). Since 

Q H(: , j), H(: , j)
t  is convex, any H(: , j)

t + 1 which satisfies the Karush-Kuhn-Tucker (KKT) 

conditions associated with (E.2) must be a solution to (E.2) [56]. The KKT conditions 

associated with (E.2) are given by [35]:

H(i, j) ≥ 0 (E.3)

3As in the proof of Theorem (1), we omit the −log u (H (i, j)) term from Q(H(: ,  j), Ht
(: ,  j) and explicitly enforce the non-negativity 

constraint on H(:, j).
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∇Q H(: , j), H(: , j)
t

i
≥ 0 (E.4)

H(i, j) ∇Q H(: , j), H(: , j)
t

i
= 0 (E.5)

for all i. The expression for ∇Q H(: , j), H(: , j)
t  is given in (A.2). For any i such that H(i, j)

t + 1 > 0, 

WTX (i, j) = WTWHt + 1
(i, j) + λΩ(i, j)

t H(i, j)
t + 1 z − 1

 because H¯ t+1 was generated by (19). 

This implies that

∇Q H(: , j), H(: , j)
t

H(: , j) = H(: , j)
t + 1

i

= 0

for all i such that H(i, j)
t + 1 > 0. Therefore, all of the KKT conditions are satisfied.

For any i such that H(i, j)
t + 1 > 0 (E.3) and (E.5) are trivially satisfied. To see that (E.4) is 

satisfied, first consider the scenario where z = 1. In this case,

lim
H(i, j)

t + 1 0
∇Q H(: , j), H(: , j)

t
H(: , j) = H(: , j)

t + 1
i

=1 lim
H(i, j)

t + 1 0
WTWHt + 1

(i, j) +
λ H(i, j)

t + 1 0

τ + H(i, j)
t + 1 1

− WTX (i, j) = c + λ
τ − WTX (i, j) ≥2 0

where c ≥ 0, (1) follows from the assumption on pR(H(i,j)) having a power exponential form, 

and (2) follows from the assumptions that the elements of WTX are bounded and τ ≤ λ/

maxi, j(WTX)(i,j). When z = 2,

lim
H(i, j)

t + 1 0
lim

τ 0
∇Q H(: , j), H(: , j)

t
H(: , j) = H(: , j)

t + 1
i

=1 lim
H(i, j)

t + 1 0
WTWHt + 1

(i, j) + 2λ

H(i, j)
t + 1

− WTX (i, j) ≥2 0

where (1) follows from the assumption on pR(H(i,j)) having a power exponential form and 

(2) follows from the assumption that the elements of WTX are bounded. Therefore, (E.4) is 

satisfied for all i such that H(i, j)
t + 1 = 0. To conclude, if H(: , j)

t + 1 satisfies H(: , j)
t + 1 = H(: , j)

t , then it 

satisfies the KKT conditions and must be solution of (E.2).
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Appendix F.: Proof of Corollary 3

In the S-NMF setting (ζw = (8), ζh = (19)), this result follows from the application of 

(Theorem 1 [17]) to the W update stage of Algorithm 2 and the application of Theorem 1 to 

the H update stage of Algorithm 2. In the S-NMF-W setting (ζw = (19), ζh = (19)), the result 

follows from the application of Theorem 1 to each step of Algorithm 2. In both cases,

LNMF Wt, Ht ≥ LNMF Wt + 1, Ht ≥ LNMF Wt + 1, Ht + 1 .

Appendix G.: Proof of Corollary 5

The existence of a limit point W∞, H∞  is guaranteed by Corollary 4. It is sufficient to show 

that LNMF(·,·) is stationary with respect to W∞ and H∞ individually. The result follows by 

application of Theorem 4 to W∞ and H∞.
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Fig. 1. 
Visualization of Algorithm 1.
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Fig. 2. 
S-NNLS results on synthetic data. The legends for (c) and (d) have been omitted, but are 

identical to the legends in (a) and (b).
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Fig. 3. 
Evolution of L (H) for the reweighted ℓ1 formulation in Section 4.2 using Algorithm 1 and a 

baseline approach employing the NN-ISTA algorithm.
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Fig. 4. 
Block sparse recovery results.
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Fig. 5. 

Average sorted coefficient value for S-NNLS with W ∈ ℝ+
100 × n. The value at index n0 

represents the average value of the n0th largest coefficient the estimated H.
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Fig. 6. 
Visualization of random subset of learned atoms of W for CBCL dataset. 6 a–c: S-NMF with 

reweighted ℓ1 regularization on H, λ = 1e − 3, 1e − 2, 1e − 1, respectively. 6 d-6 f: S-NMF-

W with reweighted ℓ1 regularization on H and W, λ = 1e − 3, 1e − 2, 1e − 1, respectively.
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Table 2

RPESM representation of rectified sparse priors.

z P (γ (i, j)) P (H (i, j))

2 pExp (γ (i, j); τ2 / 2) pExp (H (i, j); τ)

2 pExp (γ (i, j); τ2 / 2) pRST (H (i, j); τ)

1 PGa (γ (i, j); τ, τ) pRGDP (H (i, j); 1, 1, τ)
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Table 3

Normalized KKT residual for S-NNLS algorithms on synthetic data. For all experiments, d = 100 and k = 10.

n 200 400 800

Reweighted 𝓁2 10−9.3 10−9.4 10−9.6

Reweighted 𝓁1 10−9.9 10−10.1 10−10.4
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Table 4

Normalized KKT residual for S-NMF-W algorithms on CSBL face dataset.

W H

Reweighted 𝓁2 10−3.9 10−5.3

Reweighted 𝓁1 10−5 10−7.3
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