
Enabling Scalable Smart-Building Analytics

by

Arka Bhattacharya

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Culler, Chair
Professor Randy Katz

Professor Edward Arens

Fall 2016

Enabling Scalable Smart-Building Analytics

Copyright 2016
by

Arka Bhattacharya

1

Abstract

Enabling Scalable Smart-Building Analytics

by

Arka Bhattacharya

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Culler, Chair

Modern buildings are being integrated with myriad (often >1000s) networked sensors to
improve convenience, occupant comfort accessibility and energy-efficient operations. These
technological improvements hold the promise of significant advances in centralized operation
and management, fault diagnosis, and integration to an emerging smart grid. As of 2012, 14%
of the buildings in the U.S. deployed Building Management Systems (BMS) to provide some
kind of programmatic interface to the the sensors, actuators, and historical data management.
Innovations in "Internet of Things" (IoT) devices have further led to connected lights, power
meters, occupancy sensors and appliances that are capable of interfacing with the underlying
BMS systems used in building automation. New buildings are installed with a BMS by design,
and older buildings are being continuously retrofitted with networked systems for improved
efficiency.

However, whether provided by novel sensor networks or legacy instrumentation, extracting
meaningful information from sensor data and taking actions based on that data depends funda-
mentally on the metadata available to interpret it. There are more than 5 million commercial
buildings in the US, with the sensors in each building set up with customized and obscure meta-
data. One cannot achieve scalable deployments of software analytics and applications across
buildings if deploying them requires vendors and domain experts spending spending 100s of
hours fixing each building. Today even well-established applications do not get deployed at
scale because of this very reason. Thus, the major challenge is scalability , i.e a paradigm where
an application can be written once and deployed on 100s or 1000s of buildings.

This thesis evaluates the challenges with existing metadata of sensors in smart-buildings and
proposes ways to normalize it to uniform standard that would allow scalable (write-once and
deploy everywhere) application development. We develop three empirical criteria for successful
metadata schemas — (a) completeness, or the ability to capture all sensors, (b) ability to capture
all relationships between sensors required by state-of-the-art applications, and (c) flexibility in
incorporating novel sensors and applications, and usability. We empirically demonstrate that no
existing smart-building sensor metadata schema satisfy these properties and develop a schema
based on an underlying graphical data model, Brick, that does. We validate Brick across 6

2

large and diverse commercial buildings (comprising more than 17,000 sensors) in two different
continents and set up by different BMS vendors.

We also develop a human-in-the-loop synthesis technique which uses syntactic and data-
driven steps to parse legacy metadata into a common schema. This technique allows building-
experts, who might not be conversant with sophisticated regular expression programs, to parse
more than 70% of the legacy metadata in a building to a common schema by providing ex-
ample parses of only about 1% of the sensors. We also show how to use active perturbations
of subsystems in a building to construct functional relationships between subsystems that may
have been missing or incorrectly captured in legacy metadata with an accuracy of 80%. Fi-
nally, we demonstrate the power of our normalized smart-building metadata schema paradigm
by using the standardized sensor and relationship representations to implement both simple (e.g.
finding errant zones, identifying inefficient air handling subsystems to save energy) and so-
phisticated applications (e.g finding rough occupancy estimates) that scale across real-world
smart-buildings.

i

Contents

Contents i

List of Figures iv

List of Tables vii

Acknowledgements ix

1 Introduction 1
1.1 Trends In Building Intelligence . 1
1.2 Problem Statement . 3
1.3 Thesis Roadmap . 4

2 Background 6
2.1 Legacy Building Metadata . 6
2.2 Building Applications and Required Semantic Relationships 7
2.3 Shortcomings of Prior Normalized Smart-Building Metadata Schema Proposals 8
2.4 Empirical Evaluation of Existing Schemas . 10

2.4.1 Project Haystack . 11
2.4.2 Building Information Models (IFC) 12
2.4.3 Semantic Sensor Web . 13

2.5 Related Work on Normalizing Legacy Metadata Tags Into a Uniform Smart-
Building Metadata Schema . 13
2.5.1 Extracting Information From Legacy Metadata Schemas 13
2.5.2 Challenges in Normalizing Legacy Metadata 14

2.6 Technical Problem Statement . 15

3 Normalizing Legacy Smart-Building Metadata 18
3.1 Brief Overview of Technique . 18
3.2 Automated Metadata Construction Techniques 20

3.2.1 Syntactic Clustering . 20
3.2.2 Rule Synthesis and Rule Application 21
3.2.3 Syntactic Example Selection . 24

ii

3.2.4 Data-driven Example Selection . 25
3.2.5 Running Portable Building Applications 25

3.3 Evaluation . 26
3.3.1 Clustering . 27
3.3.2 Syntactic Example Selection . 28
3.3.3 Application-Oriented Qualification with Syntactic Example Selection . 30
3.3.4 Application-Oriented Qualification with Data-Driven Example Selection 30
3.3.5 Results of Applications . 33

3.4 Conclusion . 33

4 Capturing Underspecified Legacy Metadata Through Active System Perturbation 34
4.1 Overview Of Technique . 34
4.2 Problem Instance . 35
4.3 Prior Techniques . 36
4.4 Mechanism of Perturbation . 37
4.5 Results . 39
4.6 Conclusion . 40

5 Designing BRICK- A Combined, Unified Metadata Schema 41
5.1 An Example Building - Sensors and relationships 42
5.2 Schema Design . 43

5.2.1 Design Principles . 43
5.2.2 Tags and Tagsets . 43
5.2.3 Class Hierarchies . 44
5.2.4 Fundamental Relationships . 46
5.2.5 Function Blocks . 46

5.3 RDF and SPARQL . 47
5.3.1 Representing Knowledge in RDF . 47
5.3.2 Querying Knowledge with SPARQL 48

5.4 Applications . 50
5.4.1 Designing Relationships . 51
5.4.2 Results . 52
5.4.3 Example Application: ZonePAC . 52

5.5 Case Studies . 53
5.5.1 Gates Hillman Center at CMU . 54
5.5.2 Rice Hall at UVA . 54
5.5.3 Engineering Building Unit 3B at UCSD 55
5.5.4 Soda Hall at UC Berkeley . 56
5.5.5 Green Tech House . 56

5.6 Discussion . 57

6 Enabling Non-Trivial Scalable Building Applications 59

iii

6.1 Simple Diagnostics Applications . 59
6.1.1 Applying Applications on One Building 61
6.1.2 Porting Application to Other Buildings 61

6.2 Occupancy Detection . 62
6.2.1 Background and Feasibility . 63
6.2.2 Methodology . 65
6.2.3 Energy Savings Potential . 75
6.2.4 Related Work . 81
6.2.5 Conclusions . 82

7 Conclusion 83
7.1 Contributions . 83
7.2 Future Work . 84

Bibliography 86

iv

List of Figures

2.1 Analysis of tags and sensor labels in the three buildings. 17

3.1 High-level view of major steps in our Algorithm 19
3.2 Language for learning substring extraction . 23
3.3 Advantage of apriori clustering in Building 3 : Rules are not over-generalized . . . 27
3.4 Percentage of sensor names (tags) each field appears in. The x-axis is sorted accord-

ing to the frequency of occurrence of a field . 28
3.5 Sensor qualification rate for the three buildings. The Random generator achieves

70% full sensor name qualification within 24 examples for Building 1, 15 examples
for Building 2 and 43 examples for Building 3. It takes substantially more examples
for Building 3 because its subsystems had no similarity in metadata because they
were installed by different vendors. 29

3.6 Rate of full qualification of required sensors for the Rogue Zone application on
Building 1 using sameLeft example selection method. (P) denotes number of re-
quired sensors fully qualified (positive), N shows number of unrequired sensors
fully qualified(negative), UP shows the number of required sensors yet to fully-
qualified (unkown positive), and UN shows the number of non-required sensors yet
to be fully-qualified (unkown negative). The dotted vertical line shows the steps in
which a remaining required sensor example was presented to the expert. 31

3.7 Rate of full qualification for Rogue Zone application in Building 1 using data-driven
example selection after 5 steps of syntactic example selection. P, N, UN and UP is
defined in Figure 3.6. TP indicates true-positive required sensors that have been
labelled by the data-driven classifier at that step. TN shows the number of true
negative required sensor identifications made by our data-driven classifier. In this
case, UP is the same as false negatives and UN same as false positives, but this is
unknown to the data-driven classifier. The dotted vertical line shows at which step a
remaining required sensor example was presented to the expert. 32

3.8 Total number of expert examples required to qualify all the required sensors for
an application, as a function of the number of initial syntactic selection steps (the
remaining steps have data-driven example selection). 32

v

4.1 AHU and VAV configuration in our building testbed. On the right, the VAV control
logic is represented. Tzone is kept around the Tsetpoint by the control inputs u =
[DMP,RVP]. Tzone it is also influenced by parameters controlled by the AHU (v =

[Tsa, FLWsa]
AHU) and external disturbances w=[Toat, internal gains]. 36

4.2 Comparison of our technique against prior methods 39
4.3 Overview of perturbation statistics across all zones in a building. The zones are

sorted and grouped according to their ground-truth AHU data on the y-axis. The
x-axis shows the 4 different perturbation experiments, Pi is the perturbation experi-
ment for AHU i. 40

5.1 A simple example building that highlights the components to be modeled in a build-
ing schema. 42

5.2 Information concepts in Brick and their relationship to a data point. 45
5.3 A subset of the Brick class hierarchy . 45
5.4 Brick classes and relationships for a subset of the example building in Figure 5.1. . 47
5.5 An example of a heat exchanger modeled in gray as a function block. 48
5.6 RDF triples instantiating a VAV and a Temperature Sensor and declaring that the

VAV measures temperature via that sensor. 48
5.7 A simple SPARQL query for retrieving all rooms connected to a given Air Handling

Unit (AHU). 49
5.8 ZonePAC query for airflow sensors and rooms for VAVs. The query returns all

relevant triples for ZonePAC to bootstrap itself to a new building. 52

6.1 List of hot and cold rogue zones generated through a scalable building efficiency
application on Building 1 in our testbed. 60

6.2 Evaluation of our portable applications on all 10 buildings in our testbed. (AHU :
Air handling units) . 61

6.3 Occupancy indicative sensor readings and the ground truth occupancy (shaded in-
tervals) of an office over 7 days. 64

6.4 Proposed unobtrusive occupancy detection approach. 67
6.5 The damper position sensor readings of a cafeteria in Building 2 (blue) and upward

and downward edges that are detected by Canny edge detector (vertical red lines),
representing the occupancy start and end times, respectively. 68

6.6 The occupancy indicative signal representing the reheat valve position of a zone
over 12 weeks of measurements (top), the intrinsic mode functions, and the trend
(bottom) extracted by Complete Ensemble EMD algorithm. The weekends are rep-
resented in red. 69

6.7 The aggregated IMF components for low, medium, and high frequency bins and the
occupancy indicative signal representing the reheat valve position (bottom). The
weekends are represented in red. 70

6.8 The apparent occupancy of a cafeteria in Building 2 strongly suggests that it has
always been closed on weekends. 72

vi

6.9 Occupancy indicative signal (green curves), ground truth occupancy intervals (shaded
areas), and inferred occupancy intervals (intervals between each pair of vertical red
lines) of two offices during a week. 73

6.10 The average weekday occupancy of Buildings 1, 2, and 3 estimated over three
months. The shaded boundary of each curve shows the 95% confidence interval
of the average number of occupied zones divided by the total number of zones in
that building. 74

6.11 Occupancy profiles of Building 2 summarize the rough occupancy estimate of every
zone in this building. Each horizontal line depicts the apparent occupancy of a zone
and its 10th percentile and 90th percentile of start time and end time distributions,
and vertical red lines represent the average occupancy start and end times of all
zones. The darker a point is, the greater would be the number of days that the
corresponding zone has been occupied at that particular time over the observation
period. 76

6.12 Energy Savings on Reheat and Occupant Comfort Violations for three different lev-
els of aggressiveness and different durations of training window (WND=1, 4, and
8 weeks) for three adaptive schedules. In general, higher energy savings and lower
violations are favored. 78

6.13 Weekday occupancy profile of Building 1 (y-axis on the right) and the normalized
energy consumption of the building due to reheat at the present time (no schedule),
and under Per-Day and Weekly schedules using 8 weeks of training data. The energy
consumption profiles are normalized by the maximum energy consumption that was
recorded when the building does not run a schedule. The potential energy saved
on reheat for a given schedule is the area between its curve and the baseline No-
Schedule curve. 80

vii

List of Tables

2.1 Relationships required and expressibility of apps existing metadata schemas 12

3.1 Application Results . 33

4.1 Correlation matrix (showing raw data from two AHU and two VAV boxes). 36

5.1 List of the Brick relationships and their definitions. All definitions follow the form
A <relationship> B, where relationship is the first one listed, not the
inverse. All Brick relationships are asymmetric, and transitive where marked. If a
relationship → is transitive, then if A → B and B → C, then A → C is a valid
relation. Asymmetric simply means that if A→ B, then B → A is invalid. 44

5.2 This table shows at a high level which entities and relationships are required by each
of the eight representative applications. 50

5.3 Number of matching triples in each building for the SPARQL queries consisting the
eight applications. A non-zero number indicates that the application successfully
ran on the building. Buildings with ‘-’ did not have any relevant points exposed in
the BMS. 52

5.4 Case Study Buildings Information. GTH does not expose any BMS points, so num-
bers are not available. 54

6.1 Size of the clusters formed in each building . 72
6.2 Energy saved on reheat and occupant comfort violations for two static schedules . . 77

viii

To Mom and Dad

ix

Acknowledgments

My graduate school journey at UC Berkeley has been an incredible experience. I have had the
good fortune of engaging with and learning from myriad people who were all exceedingly smart,
wise and helpful in equal measure. This thesis would not have materialized without their help
and I would like to take this opportunity to thank a few of them.

First and foremost I would like to thank David Culler, who has been my advisor and mentor
throughout my stay in Berkeley. He was always incredibly patient with me, affording me the
time and freedom to explore and grow as a researcher and as a person. David was an invaluable
resource in helping me learn the art of scoping, framing and making progress on seemingly
open-ended problems. I have tried to learn from his remarkable ability to reason through large
complex systems, his expertise across almost every area of computer science, and his ability to
quickly identify the crux of an idea and apply it to problems in completely different contexts.
I rarely had a meeting with David from which I did not leave more invigorated and with many
more ideas than I had gone in with.

I would also like to acknowledge Randy Katz, Ed Arens and Ras Bodik for being the nicest
and most helpful committee members, helping me focus on the right questions and always giv-
ing me great suggestions. Thanks to Kamin Whitehouse, Yuvraj Agarwal and Eugene Wu for
helping make some of the ideas in this thesis more concrete. I am especially thankful to Aman
Kansal for not only getting me started down the research path when I was an undergraduate
student, but also being the best collaborator I could have hoped for during my first couple of
years in graduate school.

I would like to thank the old RADLab/AMPLab folk for the frequent fun discussions, and
always inspiring me with their brilliance — Matei, TD, Zats, Radhika, Shivaram, Sameer,
Mosharaf, Rachit and Vyas. I will be eternally grateful to Ganesh, Ali and Prashanth for be-
ing role-models, friends and invaluable mentors, often going out of their way to help me find
my footing during my first few years in Berkeley. Panda, a veritable human encyclopedia, was
always my go-to resource for help and advice when Google failed; I am thankful to him for
being so generous with his time. I would also like to thank my academic “brothers” — Jay,
Steve, Andrew and Jorge for taking me under their wing, and demonstrating that research could
be both intellectually challenging and societally meaningful! Thanks to the 410 crew — Gabe,
Michael, Shankari, Kaifei and Jack — for always keeping my spirits up and providing frequent
constructive feedback. Special thanks to Albert for all the late-night chats, all the birthday cakes,
and being almost super-naturally helpful and nice in every possible way (including teaching me
a lot about cars). I also want to thank Harry Stark for allowing me to hack and play with the
massive building under his charge. Thanks to Sara, Alex, Caroline, Marco, Omid, Bharathan,
Jason, Dezhi and Joern for being great collaborators and teaching me so much along the way.

A special thank you to all my friends, many of whom made the transition from undergrad
in the small, sleepy town of Kharagpur, India, to life in the bustling Bay Area alongside me —
Kamble, Jog, Madhura, Kedia, Anuj, Debanjan, Bhandaru, Raj, Nishank, Dibyendu, Sabrina,
Momo, Shaunak, Aastha, Ajith, Amit, Arindam, Shubham, Diptesh, Sayantan, Himanshu, De-

x

bkishore and Aamod. Navigating the new set of experiences together was thoroughly enjoyable
and memorable.

Finally, I would like to thank my parents who have been constant pillars of support and
guidance from halfway across the world — my dad, who was perennially anxious about my
progress in grad school, balanced by my mom who helped me relax and see the bigger picture.
My brother always seemed to have infinite faith in my abilities, and I thank him for providing a
sense of safety that I knew I could always fall back on.

Berkeley is a weird and funny town, full of warm, interesting people, great food and great
weather. I could not have asked for a better place or a better school to do my PhD. As this
chapter of my life, sometimes frustrating but always rewarding, comes to a close I want to thank
everyone (some of whom I might have forgotten to mention) who helped make this a wonderful
journey.

1

Chapter 1

Introduction

1.1 Trends In Building Intelligence
There is a big trend towards making large commercial buildings more responsive, energy effi-
cient and easy-to-maintain. There are about 5 million commercial buildings in the U.S alone,
and they consume 19% of all U.S energy production. 90% of the consumed energy comes from
non-renewable sources, making curtailment of building energy consumption a requisite step to-
wards the worldwide effort to mitigate global warming and ensuring a more sustainable future.
Also, an increase of renewable energy penetration into the electricity grid and a heightened em-
phasis on supply-following loads puts the onus on commercial buildings to be more responsive
to signals from the grid and possibly curtail its energy usage on demand. Additionally, commer-
cial buildings need to be responsive to occupant comfort and desires, since occupants typically
spend 40-60 hours a week in them. Finally, commercial buildings typically contain large me-
chanical and electrical systems controlling its different aspects, viz. its environment, lighting,
power, etc. These systems need constant monitoring and supervision to identify faults which
may lead to inefficient energy-use or adversely affect occupant comfort.

To gain more insight into building operation, modern buildings are increasingly being inte-
grated with a variety of networked sensors and equipment to improve convenience, accessibility
and energy-efficient operations. These technological improvements hold the promise of signif-
icant advances in centralized operation and management, fault diagnosis, and integration to an
emerging smart grid. As of 2012, 14% of the buildings in the U.S. deployed Building Man-
agement Systems (BMS) [12] to manage data collection and remote actuation of the connected
building infrastructure. Innovations in "Internet of Things" (IoT) devices have led to connected
lights, power meters, occupancy sensors and appliances that are capable of interfacing with
the underlying SCADA systems used in building automation. New buildings are installed with
BMS by design, and older buildings are being continuously retrofitted with networked systems
for improved efficiency. New networked devices thus present an opportunity for a building
"applications plane" to provide new capabilities to building operators and occupants alike.

The current state of the art to improve the operation and responsiveness commercial building,

2

termed manual building commissioning, is inefficient and does not scale. It involves the facilities
management having to spend between $10,000-$80,000 on a commissioning team comprising
5-10 professional experts to periodically (at intervals of 5-10 years) physically come to the
building premises and spend 100s of hours manually inspecting all building systems, data from
the networked sensors and blueprints to suggest improvements in building operation and control,
identify faults or fix mechanical and electrical subsystems. Due to the high costs involved in the
process most commercial buildings skip the periodic commissioning process or do it much less
frequently than recommended. Moreover, this approach of individually ‘fixing’ a building does
not scale to the millions of buildings in the U.S alone.

We posit that most of the utility of manual building commissioning can be obtained at scale
through novel software. As we show later in the thesis, automated software can monitor data
from the large sensor deployments for faults or inefficiencies, give the building manager more
insight into building operation, and implement actuation that makes a building more responsive
to occupants as well as the grid. Moreover, monitoring and self-correction can be done at inter-
vals of hours or days rather than the 5-year timelines of manual commissioning teams. In theory,
software applications can be deployed across the entire commercial building stock and achieve
the scale that current manual commissioning teams cannot handle.

However, deploying novel software applications on one building, let alone across the entire
smart-building stock is challenging. One of the main obstacles is the lack of uniform metadata
to semantically interpret the data associated with the networked devices. Most BMS systems
contain only limited, customized, obscure and often inaccurate metadata on its sensors. Even
the most modern BMS systems present a cacophony of data and information flows that vary by
buildings, vendors and across locations. Also, the existing metadata is often attached to specific
visual graphics, where only an expert with enough context can infer the locational, functional
and physical attributes of a sensor. The lack of a common data representation prevents interop-
erability between buildings and limits scalability of applications as developers need to map the
heterogeneous data of each building to a common format. NIST estimates that the U.S. building
industry loses $15.8 billion annually due to lack of interoperability standards [101]. Attempts
have been made to address this problem. Building Information Models (BIM) [47] were intro-
duced to address the interoperability concerns both for the design and operation of buildings.
The resultant schemata – Industry Foundation Classes (IFC) [31] and Green Building XML
(gbXML) [193] – were oriented towards design and construction efforts. As a consequence,
only limited support was provided for BMS information. More recently, several schemata, e.g.
Project Haystack [4], SAREF [63], have emerged to highlight the importance and use of building
metadata.

Writing novel and useful software applications on building sensor deployments require not
only information about the properties and characteristics of each individual sensor, but also
knowledge about relationships between sensors and various subsystems in a building. For ex-
ample, a fault detection algorithm trying to identify rogue zones in a building (i.e thermal zones
which are always much hotter than the desired setpoints) need to identify all zone air tempera-
ture and setpoint sensors in a building, and be able to relate which zones these sensors are in,
and which setpoint corresponds to which temperature sensor. Similarly other application might

3

require identifying the functions of other sensors, the location of a sensor, information about
which subsystem a sensor is a part of, etc. Since this information is represented in different
ways in each building, scalably deploying these applications face an insurmountable hurdle.

1.2 Problem Statement
Given the heterogeneity in the type and metadata of sensors in existing large sensor networks
in commercial buildings, this thesis tries to answer the question — Is it possible to deploy
applications scalably across smart-buildings comprising large apriori sensor networks ?

There are several aspects to this question. First and foremost is our notion of smart-building
applications. We draw from the wide variety of applications that have been proposed in the
industry and prior academic literature. These applications can be broadly classified into a few
categories such as occupancy modeling, energy apportionment, web displays, model-predictive
control, participatory feedback, fault detection and diagnosis, non-intrusive load monitoring or
demand response. While it is hard to predict what kind of applications will be prevalent in
the digital world of the future where every aspect of a building’s control system and occupant
interaction will be monitored through networked sensors, taking into account all existing appli-
cations provide a firm ground to make progress about the kinds of sensor relationships building
metadata services need to provide.

Deploying applications on the smart-buildings assumes the presence of an operating system
managing the sensors, a safe and robust application environment and an efficient metadata and
data archiver system. There is a lot of existing work in this area, and such capabilities are
provided to a limited extent by existing building management systems and by novel systems
such as [65, 224]. This thesis makes contributions to sensor metadata management, and the
ability for applications to express and query the relationships it needs to run, assuming that the
above-mentioned systems are in place.

We achieve scale by proposing a normalized metadata schema and a way to express appli-
cations, such that we can write an application once and deploy it without any additional effort
or customization to 1000s of buildings. It is important to note that not all applications can scale
throughout the building stock because they might require control subsystems, sensors or rela-
tionships that are not available in every smart-building. However, even scaling the deployment
to a large number of buildings with similar configuration is a substantial improvement on the
state of the art.

Finally, it is not merely enough to propose a normalized metadata schema for all networked
sensor systems in smart-buildings going forward. More than 14% of existing commercial build-
ings in the U.S alone already have legacy sensors with obscure metadata. Manually re-mapping
the metadata of these sensors is an arduous task. We propose automated human-in-the-loop pro-
gram synthesis and data-based intrusive and non-intrusive techniques to transform the metadata
of legacy BMS systems into a normalized metadata namespace.

4

1.3 Thesis Roadmap
The remainder of this thesis addresses the solution to the problem statement. In Chapter 2 we
provide detailed background to the existing state-of-the-art. We design an empirical methodol-
ogy to evaluate the effectiveness of existing metadata schemas for sensors deployed in smart-
buildings. We compare the most commonly cited existing schemas along three categories —
(1) completeness, or how many of the existing sensors can they capture, (2) ability to capture
relationships , or whether they can capture relationships required by applications that have al-
ready been proposed by the community, and (3) flexibility and ease-of-use , i.e whether they can
capture potential novel sensors which might be built in the future and whether they are easily un-
derstandable and usable by practitioners. We show that none of the existing metadata schemas,
viz Project Haystack, Industry Foundation Classes, or Semantic Sensor Web schemas satisfy
these requirements.

We then present a technique to transform the obscure, terse and inconsistent legacy metadata
of existing building sensors to a normalized schema in Chapter 3. We develop an automated syn-
thesis technique which when combined with simple data-driven machine learning learns how to
transform and normalize legacy metadata tags into a well-formed representation using a small
number of examples from an expert, e.g., the building manager. Such building managers under-
stand the metadata tags, but they are unlikely to be adept at writing complex regular expression
programs to transform them to a common, understandable namespace. The transformation to
such a namespace yields semantic relationships between sensors, which enables analytics ap-
plications to be deployed without a priori building-specific knowledge. We demonstrate our
technique on three large commercial buildings comprising 1586, 2522 and 1865 sensors respec-
tively and come from completely different institutions with different building systems, installers,
and BMS vendors. We show that a few examples are sufficient to produce rules to parse a large
fraction of the tags in each building. Our technique is able to normalize the metadata of 70%
of all sensors in just 24, 15 and 43 examples for the three buildings. The synthesis technique is
robust enough to handle the presence of obscure and noisily encoded sensor metadata.

To tackle missing legacy metadata that capture relationships between sensors in a building,
in Chapter 4 we present a novel subsystem perturbation and voting-based data-analysis tech-
nique. We show that common techniques in existing academic literature are not effective in this
context due to the characteristics of the data (response lags, nested control loops, tight variable
boundaries). Our algorithm utilizes perturbations of subsystem variables and guarantees that the
building systems operate within normal operating regimes. We were able to identify missing
functional relationships correctly in 80% of the cases.

Chapter 5 describes our novel metadata schema , Brick, which satisfies the three empirical
criteria we lay out in Chapter 2. Brick has an underlying graphical data model, and defines
nodes and edges to capture all possible sensor information and relationships in smart-buildings.
Our design of Brick is grounded by the information from BMS across five buildings spread
across two continents, comprising more than 615,000 sq-ft of floor space and more than 15,700
data points, whose BMS systems were set up by different vendors, and have vastly varying sub-
systems and sensors. We further refine our design requirements using eight canonical building

5

applications that require integrated information across commonly isolated building subsystems:
HVAC, lighting, spatial and power infrastructure. We demonstrate that 98% of BMS data points
across our five buildings can be mapped to Brick, and our eight applications can easily query the
mapped building instances for required information. We open source the Brick schema files, the
BMS metadata from our buildings, the application queries that run on top of Brick and tutorials
on how to map existing building metadata to Brick.

We demonstrate the power of normalized sensor metadata across large commercial buildings
in Chapter 6. We first show results from three applications which identify opportunities for large
energy savings in buildings — finding errant rogue zones, finding stuck dampers and identifying
inefficient air handling units — on 10 large commercial buildings. These diagnostic applications
only require access to archived sensor data and exploit relationships expressed between sensors
and its subsystems. We then demonstrate a non-intrusive occupancy detection technique which
can be applied to diverse smart-buildings in order to quantify possible energy savings in its
HVAC systems through implementation of simple schedules. Specifically, we employ a step
change detection algorithm for identifying step edges of the occupancy indicative signal, which
are then associated with occupancy start and end times, and consider the application of an em-
pirical decomposition technique for removing the effect of noise and other dominant factors. We
evaluate the efficacy of these techniques in three large commercial buildings in the United States
and show through simulations that huge energy savings can be obtained using simple schedules
that can be easily programmed into legacy HVAC systems. Should facilities managers want to
further increase the energy savings, we propose adaptive schedules that can track occupancy of
each zone for a given tolerance for occupant discomfort.

We conclude and discuss future avenues of research in Chapter 7.

6

Chapter 2

Background

2.1 Legacy Building Metadata
While advances in cyberphysical systems have provided new infrastructures for monitoring and
interacting with physical environments, traditional automation and control infrastructures dom-
inate the building stock and must also advance. The monitoring and actuation networks that are
wired into commercial buildings for their basic operation are increasingly accessible through the
BMS (Building Management System) or SCADA (Supervisory Control and Data Acquisition)
systems that host higher level control, retain historical data, and provide visualization. Many of
these systems provide some kind of programmatic interface to the sensors, actuators, and his-
torical data under their management [16, 65, 224]. But, whether provided by novel networks or
legacy instrumentation, extracting meaningful information from sensor data and taking actions
based on that data depends fundamentally on the metadata available to interpret it. While devel-
opment of effective metadata schema has become an active topic for emerging systems, it has
long been a core challenge in the legacy setting.

Often, a critical step in the deployment and engineering of large automation or building sys-
tems is formulating consistent naming conventions so that the many aspects of a “point” — its
function, type, position, role, and so on — are represented in its “tag”, typically a highly con-
strained alphanumeric string ([82, 45]). These encodings are often quite sophisticated , as they
have to convey many distinct attributes and relationships, i.e., metadata, in a compact represen-
tation that is interpreted by various engineers over many years.

However, this terse metadata is designed to be used by specially trained engineers in the field;
it is not designed for machine translation. Typically, tags are attached to various screens as part
of the human-machine interface of BMS and SCADA systems, so engineers can check status and
plot trends. With knowledge of the intention of the naming scheme and the ad hoc association
to various views, the syntax and semantics of the tag are aparent to the well-trained engineer
or facilities manager. But, developing an algorithm to parse the tag and soundly identify each
of the semantic attributes in it is an altogether different story. There may be no field delimiters
or multiple, spurious ones; symbol definition may be context dependent; different schemas may

7

encode the same type of sensor; and each vendor or each deployment may follow different rules.
Thus, even with programmatic access to tags, data, and other descriptive information, scal-

ing analytics or intelligent control across the commercial building stock to, say, improve energy
efficiency is likely to be intractable, as long as the basic steps in interpreting the metadata in-
volve labor intensive manual efforts by highly trained professionals with deep knowledge of
each building. Sophisticated applications may be developed for a particular building, but re-
quire customized building-specific logic and queries, which are not portable or scalable across
buildings.

There have been extensive efforts to standardize and automate of the management of sen-
sor metadata in SCADA and related systems. However, tag naming remains heterogenous and
inconsistent between commercial vendors/agents [227]. Some tools (e.g [54, 83]) have been cre-
ated to automate the generation of tag namings, but are largely oriented to making the tags more
“human readable” for later manipulation rather than making them interpretable by computers
for direct analysis.

2.2 Building Applications and Required Semantic
Relationships

Typically the vendor (e.g JCI, Siemens) contracted to set up the digital control systems of a
particular building uses company and deployment-specific guidelines to “tag” sensor points.
Often, the only metadata accompanying a sensor stream is its tag ([82]); wherein the vendor
and the facilities manager try to encode all the pertinent information for a particular sensor. In
our test buildings a sensor tag BLDA1R465__ART encodes the following information: BLD
denotes the site name, A1 indicates it is part of the first air handling unit, R465 indicates it is
located in room 465, and ART indicates it is an air temperature sensor. Another sensor labelled
BLDA1R465__ARS indicates that it is in the same room 465 (R465), part of the first air han-
dling unit (A1) but is a room temperature setpoint (ARS). Note, the two example tags not only
encode the location and function of the sensors, but also the semantic relationship between them
and other sub-systems in the building.

These encodings typically vary between buildings (often, even those deployed by same the
vendor) — for instance, in another building in our data set, a tag looks like this: BLD.S2-06:CTL
STPT:PRIORITY with 06 indicating that the sensor was part of the 6th variable air volume
unit on the second floor (S2), and CTL STPT:PRIORITY means that it is an air temperature
setpoint.

Such custom, condensed encodings are widespread. We surveyed several different BMS
vendors (e.g [16, 202, 125]) and found many variants of such encodings and no other avail-
able metadata for the sensors. This makes it hard to infer a sensor’s context uniformly across
buildings and precludes the development of applications that can scale across buildings. This
non-uniform metadata problem is exacerbated by the custom metadata schemas of wireless sen-
sor networks and novel sensors (such as BLE temperature and humidity sensors, etc.) deployed

8

in buildings, making it extremely hard to deploy new applications like energy visualization,
demand response, energy disaggregation, occupancy modeling, model predictive control, or
anomaly detection in an unknown building, and porting the same application across buildings.

2.3 Shortcomings of Prior Normalized Smart-Building
Metadata Schema Proposals

There have been many efforts to come up with a common metadata schema for all buildings. We
evaluate three of these schemas: (1) Project Haystack [4], (2) Industry Foundation Classes [121],
and (3) Semantic Sensor Networks [59].

Project Haystack [4] aims to address heterogeneity in buildings using Tags to label differ-
ent entities such as sensors or subsystems. For example, a temperature sensor in a particular
thermal zone in a building would have the Tags: [zone, temperature, sensor]. Tags
provide a flexible and easy to use framework for annotating metadata to building data points.
An application can identify the set of concepts or sensors in a building by querying for tags.
Haystack provides a vocabulary of tags that describes building equipment, weather, different
types of data points and properties such as unit and data type. Haystack captures relationships
between subsystems using references (akin to foreign keys in databases). The referential sys-
tem is not generic and one can express only a few kinds of relationship in Haystack, e.g which
zone is served by which variable air volume unit, or which air volume unit is served by which
air handling unit. It defines tagging models, data formats and data structures to exchange data
over HTTP using REST APIs. Their documentation provides guidelines for which specific tags
and references can be used, how to use the tags to create hierarchies and relationships between
different entities of interest. Haystack uses a customized data format (Zinc) and there are no
standard tools that enforce or verify the myriad set of rules laid out in their documentation. The
lack of tools and a number of key missing concepts, such as rooms and floors, make it difficult
to map existing buildings to Haystack.

IFC [31] is a standardized Building Information Model (BIM) that developed from the need
to have a common exchange model for 3D architectural drawings. Common exchange formats
include Industry Foundation Classes (IFC), COBie, and gbXML. IFC is the most comprehensive
format of the three. It was first standardized in 2000 as ISO 16739 [121] and supports explicit
modeling of sensors, actuators and controllers since version 4 (published in 2013). COBie is
a subset (view) of IFC that focusses on simple export formats such as Excel [75]. The Green
Building XML schema gbXML [100] is another format that concentrates on energy performance
analysis tools and has rudimentary elements to model sensors, and no dedicated taxonomy of se-
mantic types for sensors. In this thesis, we only evaluate IFC. They are well designed to capture
relationships within building components. For example, IFC is good at capturing space related
information. However, the concept of Sensors was only added in the latest version and is still in
its infancy. Thus, IFC lacks many of the common metadata attributes found in a typical BMS.
Further, the focus on building CAD models makes IFC too verbose for a concise representa-

9

tion that application developers can grasp easily. To determine functional relationships between
different subsystems in a building, one would have to traverse the spatial relationships.

Semantic ontologies provide an alternative approach, with a formal language to represent
essential concepts, domain hierarchies and relationships between the concepts. Ontology mod-
els the semantics of a certain domain. They usually base on a very atomic concept of defining
objects (nouns) and their relationships (verbs) in terms of triples. Ontology models usually have
a open world-assumption, that states that the knowledge is never fully defined and extensible
by default. This results in the behaviour that many ontologies reference to other so called up-
per ontologies that specify specialize vocabulary that is reused. The Semantic Sensor Network
(SSN) ontology is a set of domain independent concepts to model sensors [59], defined by the
W3C consortium. It is derived from several scientific ontologies and strongly orients on the
Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) standard. The SSN on-
tology is domain independent and, therefore, provides no specific taxonomy to model domain
specific sensor tags. The classes range from the physical devices (Sensor) that sample individual
values (Observation) of a physical variable (Property) belonging to the system monitored (Fea-
tureOfInterest). This enables various function like classifying sensors, searching for sensors,
composing sensors, transforming data, collating data, infering domain knowledge, and produc-
ing and analysing events. Considerable approaches from the Sensor Web domain are SensorML
[42], OntoSensor [195], and the Semantic Sensor Network Ontology (SSN) [59]. Other do-
main ontologies such as [178, 41] provide similar concepts to describe sensors and the observed
context. Also IFC can be represented as ontology due to the similarity in representation [32].
There exist also domain specific ontology that provide approaches to describe building sensors
with ontologies. They primarily try to overcome the long history of interoperability problems
in buildings due to the diversity of systems and technologies [178]. There is a wide research
community is concentrated on developing middleware solutions. The often add a special kind of
intelligent gateway to the network that convert messages from heterogeneous devices to achieve
interoperability. Other approaches assume special device architectures that support agents or
Web Services where ontologies are used here to model the system in an abstract, platform in-
dependent way. The main focus of the system model lies on interoperability as well as plug
and play functionality at runtime. Other approaches use ontologies to model devices for con-
text awareness or Ambient Intelligence features. Most of the examples are of an academic
nature such as eHome [190], DogOnt [41], LinkSmart [81], SENSO [149], CONON [106], In-
telliDomo [216], Charatsis et al. [48], AMIGO [102], eDIANA [18] and A3ME [114]. The
first commercial approach is BrightCore [146]. Some of these approaches use own definitions
of the building structure, but, not one considers a connection to a BIM. Only the ThinkHome
project [189] intended to use a standardized BIM (IFC), but results have not yet been published.
A number of ontologies focus on realizing specific applications like controlling things [41], en-
ergy management [142], or automated design and operation [181]. Daniele et al. [63] combined
these ontology modeling efforts in collaboration with industry to create a simple but unified
model called SAREF. They identify 20 recurring concepts in homes and buildings across these
ontologies, and lay out the steps to convert SAREF to a custom ontology.

Haystack Tagging Ontology (HTO) [49] maps the Haystack tags to an ontology, with each

10

tag corresponding to an ontology class. Thus, HTO is able to combine the flexibility of tags
and the formal modeling of ontologies to define essential BMS metadata and the relationships
between entities. However, HTO confines the ontology to the defined tags, and the building
entities which are a collection of tags (e.g. zone temperature sensor) are not modeled. HTO also
does not provide a way to compose complex subsystems in a building and relies on Haystack
tagging for mapping raw metadata to the ontology.

2.4 Empirical Evaluation of Existing Schemas
We use sensor metadata from three large commercial buildings, each set up by a different Build-
ing Management System (BMS) vendor, and a list of 87 published smart-building applications[2]
to evaluate the three schemas based on the following criteria:

• Completeness: Could all the distinct sensor metadata information (such as a sensor’s lo-
cation, type, etc.) contained in these buildings be represented by these schemas?

• Ability to Capture Relationships: Is it possible to express all the sensor relationships (re-
quired by the applications we study) through these schemas?

• Flexibility: How flexible are these schemas to capture uncertainty in the metadata (e. g.
uncertainty over whether an air pressure sensor is located before or after a damper), or
the emergence of new sensors (e. g. Apple iBeacon, Kinect, card swiping machines) and
subsystems (e. g. a smart couch) ?

Our results show that none of the three schemas capture all the available sensor metadata,
nor express all the relationships required by novel applications, nor capture any notion of uncer-
tainty, nor allow easy extensibility to model novel sensors.1

We evaluate the effectiveness of the metadata schemas on three buildings set up by different
BMS vendors [10]. One of the buildings (henceforth referred to as DUB) is located in Dublin
, Ireland and two (SODA and SDH) in Berkeley, California, U.S.A. The metadata of the BMS
sensors in these buildings were manually mapped against a set of Haystack tags to the extent
possible. In cases where Haystack did not have the relevant tags, we developed our own consis-
tent tag names.

Terminology: We define a sensor label as a collection of tags capturing a sensor’s metadata.
For example, in one of the buildings in our testbed, a sensor was encoded with the metadata
SODA1R465__ART. This indicated that the sensor was a zone air temp sensor (ART) in zone
465 (zoneRef : 465) which is served by ahu 1 (ahuRef : 1) in the site SOD (SOD). Hence its
sensor label is ‘site ahu ahuRef zone zoneRef zone return temp sensor’ , each of the terms in the
label being a ‘tag’. Sensor labels indicate which tags the building vendors put together while
framing the custom metadata of a sensor. The three buildings have 2028, 2551, and 1586 sensors
respectively, comprising of 510, 148, and 281 distinct sensor labels.

1This work was done in collaboration with Joern Ploennigs, IBM Research Ireland [39]

11

The results for the three buildings, labeled SODA, SDH and DUB are shown in Figure 2.1.
The histogram of the tags is shown in Fig. 2.1a. Many tags, such as site, zone, sensor are com-
mon accross the buildings. This illustrates that a taxonomy of common tags exists between
various buildings. However, Fig. 2.1b shows that none of the three studied schemas has a tax-
onomy that includes all the tags used in these buildings. Hence, none of the three schemas are
complete. The most common sensor labels (or aggregation of tags) in our dataset are shown
in Fig. 2.1c. Although tags are common across buildings, sensor labels are not, showing that
different BMS vendors use different combination of tags while describing a sensor which might
perform the same function. Also note that the frequency of occurrence of individual tags are
Pareto distributed, implying that getting a common taxonomy of a few tags can result in normal-
izing a large amount of building metadata.

We quantify the extent to which the tags identified in our testbed are expressible in the three
studied metadata schemas. We also analyze a set of 87 applications from the building application
literature[2] to quantify whether the schemas can capture the required sensor relationships.

The main classes of applications, their metadata relationship requirements and whether these
relationships can be expressed in Project Haystack, IFC and Semantic Web is shown in Table 2.1.
The first column lists the needed relationships between different dimensions of metadata. For
example, ‘sensor ↔ function’ states that a link between the sensor entity and the functional
semantic of the sensor is required. Hierarchical relationships are possible such as ‘location
↔ location’ refers to relating the sub-locations to a location. The second column provides an
intuitive query example for each relationship. the applications listed in the columns 3 to 10. An
‘X’ indicates that a specific relationship is required to automate the application. The last three
columns show which relationships are supported by the studied metadata schema. The last three
rows in the table then compute the applicability of each schemata as the fraction of the required
relationships the is captured by a particular schema.

2.4.1 Project Haystack
Completeness: Figure 2.1b shows the tags supported by Haystack in our three testbed build-
ings. Project Haystack supports 54 % of the unique tags used in the three datasets. Weighted by
the occurrence frequency of the tags in the dataset, Haystack supports 63 % of the tags. While
Haystack has well-defined tags to capture very commonly used sensor types, e. g. zone tem-
perature sensors, its tags are incapable of representing (a) building-specific sensors such as a
fault-detecting sensor that is monitoring the status of a pump in the condensor water loop, (b)
common sensors outside the HVAC system, such as whether a light array is monochromatic or
has hue controls, or whether an entire light panel is controlled by a single sensor or by multiple
sensors.

Ability to Capture Relationships: Table 2.1 compares the relationships required by com-
mon applications toward the support in Haystack. Although Project Haystack is capable of cap-
turing relationships between HVAC subsystems, it cannot model relationships between spatial
elements, such as the list of rooms in a floor. Also, Haystack is unable to capture relationships

12

Table 2.1: Relationships required and expressibility of apps existing metadata schemas

Needed Relationships Common Applications Schemata

Relationships Example O
cc

up
an

cy
M

od
el

lin
g1

E
ne

rg
y

A
pp

or
tio

nm
en

t2

W
eb

D
is

pl
ay

s3

M
od

el
-P

re
di

ct
iv

e
C

on
tr

ol
4

Pa
rt

ic
ip

at
or

y
Fe

ed
ba

ck
5

Fa
ul

tD
et

ec
tio

n
an

d
D

ia
gn

os
is
6

N
on

-I
nt

ru
si

ve
L

oa
d

M
on

ito
ri

ng
7

D
em

an
d-

R
es

po
ns

e8

H
ay

st
ac

k

IF
C

Se
m

an
tic

W
eb

sensor↔ function sensorsOf(type) X X X X
sensor↔ location sensorsIn(room) X X X X X X X X X
location↔ location roomsIn(building) X X X X
asset↔ location ahuOf(room) X X X X X X X
sensor↔ asset sensorsOf(AHU) X X X X X X X X
asset↔ asset ahuSupplying(vav) X X X X X X X
location↔ persons occupantOf(room) X
location ↔ organisa-
tion

ownerOf(room) X X X

gadget↔ persons macAddrOfPhone(user) X
gadget↔ location computerIn(room) X
meter↔ location meterOf(room) X X X X X
meter↔ gadget meterOf(computer) X
meter↔ asset meterOf(ahu) X
meter↔ sensor sensorUnder(meter) X X
Applicability Haystack 42% 50% 75% 100% 100% 100% 50% 100% 77 %

IFC 58% 83% 100% 100% 100% 100% 50% 100% 86 %
Semantic 25% 50% 100% 25% 25% 25% 50% 25% 41 %

References: 1[139, 127]; 2[98, 122]; 3[24]; 4[173, 207]; 5[110, 124]; 6[179, 220]; 7[150]; 8[222]
A more complete set of citations is available in [2].

Applicability denotes what fraction of the required relationships is captured by a particular schema.

between different views (spatial, HVAC, power) of a building, e. g. which set of rooms/floors an
HVAC zone comprises of.

Flexibility: The schema has no way to capture any uncertainty, does not capture any novel
sensors/electronic gadgets (such as computers, iPhones, etc.), and requires consensus among the
community to include new sensor tags into the vocabulary.

2.4.2 Building Information Models (IFC)
Completeness: IFC supports 11 predefined semantic types, such as CO2, heat, temperature
and sound sensors, with additional properties specifying units, values, type, etc. 22 generic
measurement types such as count, electric current, length and time are available. IFC provides
concepts for 29 % of the unique tags in our dataset (Figure 2.1b), and 60% when weighted by
tag occurrence frequency.

Ability to Capture Relationships: IFC has its foundation in 3D geometrical modelling and
provide comprehensive ways to model spatial and asset relationships (Table 2.1). The main
shortcoming with IFC is that metadata is primarily related via 3D objects, making it hard to

13

query even simple things, such as if two devices are located within the same room. It is also
not possible to assign multiple sensor types to a device, e. g. modeling multi-sensors that sample
semantically different values. Concepts for humans and novel sensors do not exist.

Flexibility: Although, IFC and gbXML formats are built to be extensible, an extension to the
standardized core model requires consensus from a community primarily focused on building
design. Also it is unable to capture uncertainty of 3D objects such as room size, wall thickness,
etc.

2.4.3 Semantic Sensor Web
We us the Smart Appliances REFerence (SAREF) ontology([62]) in our comparison.

Completeness: SAREF classifies device functionality roughly into Sensing, Actuating, Me-
tering. For each function a specific sensor type can be defined as a literal. By default 5 types
(Temperature, Occupancy, Humidity, Motion, Smoke, Pressure) are provided. Meter types such
as Water, Gas, Pressure, Energy, and Power are provided. This small set of default tags results
in a coverage of only 11% of the tags in our dataset, (8% when weighted by frequency).

Ability to Capture Relationships: The SAREF ontology allows modeling hierarchies of
spatial elements, but does not specify modeling of assets (such as AHUs, VAVs, etc.). This
strongly reduces the applicability of the SAREF ontology to the use cases defined in Table 2.1.
Units are specified using the external ontology – Units of Measure (OM). SAREF links 20
ontologies that define concepts for other areas. This demonstrates an inherent strength of the
semantic web, as additional ontologies can be linked and reused to model aspects such as orga-
nizational structure, novel devices, etc. However, a strict guideline of which ontology should be
used is not provided by SAREF.

Flexibility: Ontologies differentiate between classes (kind of things) with attributes (proper-
ties of things) and individuals (instances of classes) with relationships (links between instances).
While such ontologies are helpful in defining a clear and verifiable meta-model, it only allows
capturing uncertainty on an individual level, such as multi-lingual names. Also, addition of
novel sensors and taxonomies requires a consensus by the standards body.

2.5 Related Work on Normalizing Legacy Metadata Tags
Into a Uniform Smart-Building Metadata Schema

2.5.1 Extracting Information From Legacy Metadata Schemas
There have been various data-driven efforts to capture the contextual and semantic relationships
between sensors in order to build applications, such as type classification of sensors [169] and
finding spatial relationships between sensors ([91, 116, 141]). However, these techniques either
classify sensors into broad categories (type classification), and do not capture semantic (or func-
tional) relations between sensors (e.g which air temperature sensor is related to which setpoint

14

sensor), and hence are not useful in writing applications which depend on the semantic relation-
ships between sensors. Even if techniques like [91, 116, 141] can predict that an air flow sensor
and a temperature sensor are in the same room, it cannot determine the air handling system the
room is a part of — information often encoded in the sensor metadata tag directly.

There has also been prior work in substring extraction[107], and log record manipulation[131]
using examples from a human. However, spreadsheet and log data comprise records encoded
in very few schemas or formats, requiring only two or three human examples to synthesize pro-
grams to extract all the required fields. These techniques fail to parse building sensor metadata,
which present a far more heterogenous and noisy dataset, containing many different schemas
and hundreds of encoded fields (comparison shown in Figure 3.3). We achieve the required
robustness using a combination of clustering and domain-specific language contructs. We draw
from the boolean classification techniques in [107] to avoid over-generalization of synthesized
rules. In the building domain, industrial softwares like PI from OSIsoft [170] give users the abil-
ity to generate wildcard regular expressions to select a set of tags. Our domain-specific language
provides for much more powerful regular expressions than such software. [201, 180] use string
matching to find the most likely fields in building tags. This approach breaks down when fields
are represented by only one or two characters, as shown in our previous examples.

2.5.2 Challenges in Normalizing Legacy Metadata
Experts, often facility managers or maintenance professionals, are not well-equipped to con-
struct the correct regular expression programs themselves to parse legacy metadata into a nor-
malized schema. Moreover, inconsistencies in the metadata structure including obscure and
noisy tag encodings require hundreds of very complex regular expressions, which would make
manual regex generation error-prone, if not impossible. Automatically synthesizing regular ex-
pression programs that transform primitive metadata into a common desired namespace using
examples from the expert addresses both these concerns.

Unlike machine opcodes, the language of the primitive metadata was not created with the
intention of being machine decode-able. Machine opcodes generally have specific fields which
specify how to parse a particular sequence of characters/bits (fixed field encodings) which make
designing a language for parsing tractable. On the other hand, primitive sensor metadata may
suffer from the following inconsistencies which make parsing hard2 :
• Context-dependence: Different fields may be coalesced in a context-dependent way. For

instance, the sixth letter — C — in
BLDA1C600A_ART denotes the value for the field room, while in
BLDC1C2____TMR it denotes the value for field chiller.
• Multiple Schemas: Tags within a particular building may comprise several different schemas.

For instance, a sensor with the metadata
BLDA1C600A_ART should be parsed as

2we illustrate examples from one building in our dataset. These challenges appear in all the three buildings in
our dataset

15

BLD A 1 C 600A_ ART , each token representing the value of a different field. In the
same building, there exists sensors with metadata such as
BLDS03AR179ART, which is tokenized as
BLD S 03A R 179 ART .

• Variable Delimiters: The metadata schema also does not depend on specific delimiters.
As shown in the example
BLD A 1 C 600A_ ART , letters themselves can be the delimiters for some tokens,

and underscore characters for others.
• Spurious Delimiters : Some tokens may have delimiters as a part of the token. For in-

stance, in the same dataset a sensor with the tag
BLDA2S14SASA_M, for example, should be parsed as
BLD A 2 S 14 SASA_M .

• Multiple values for the same field: some fields may be expressed by multiple different
values. For instance, the field room may be denoted by an R or a C, while the field damper
valve position maybe expressed as either VAV or VP.
• Noisy metadata: The tags of some sensors may have misplaced or wrong tokens borne out

of human error.
There have been various data-driven efforts to capture the contextual and semantic relation-

ships between sensors in order to build applications, such as type classification of sensors [169]
and finding spatial relationships between sensors ([91, 116, 141]). However, these techniques
either classify sensors into broad categories (type classification), and do not capture semantic
(or functional) relations between sensors (e.g which air temperature sensor is related to which
setpoint sensor), and hence are not useful in writing applications which depend on the semantic
relationships between sensors. Even if techniques like [91, 116, 141] can predict that an air
flow sensor and a temperature sensor are in the same room, it cannot determine the air handling
system the room is a part of — information often encoded in the sensor metadata tag directly.

2.6 Technical Problem Statement
Given the background developed in Sections 2.3, 2.4 and 2.5 we articulate our problem state-
ment in more detail — “Is it possible to normalize legacy smart-building sensor metadata with
little effort into an expressive, complete, usable and uniform metadata schema such that novel
applications leveraging the resulting standardized sensor and relationship representations can be
run unmodified across diverse smart-buildings ?”

In the following chapters, we describe a human-in-the-loop synthesis technique coupled
with perturbation of sensors and careful analysis of the associated data to normalize the legacy
metadata of existing building sensors. Our technique uses clustering and data-based sensor as-
sociation to circumvent the challenges related to machine-parsing described in Section 2.5. We
also design a metadata schema based on a general graphical data model that satisfies the empir-
ical criteria laid out in Section 2.4. Finally, we demonstrate this normalized metadata paradigm
where sensors, its attributes and inter-relationships have standard representations can enable

16

applications which can not only diagnose common problems in buildings, but can measure re-
sponse of building subsystems to occupant behavior which can then be used to improve occupant
comfort and mitigate energy loss.

17

power
condenser

lights
fanRef
pirRef

loopRef
reheat
chilled
speed

volume
damper

occupied
socket

gain
off

handler
handlerRef

supply
water

lighting
indicator

fault
position

min
max
coil

pressure
perc
load

lightingRef
fan

electricalsystemRef
discharge

variable
loop
cmd

return
pid

elec
meter

heating
flow

cooling
valve

priority
point

sp
fcuRef

fcu
zoneRef

room
roomRef

ahuRef
ahu

sensor
air

temp
zone

vavRef
buildingRef

siteRef
building

vav
site

0 2000 4000 6000

dataset DUB SDH SODA

(a) Most frequent tags. (b) Tags supported by metadata schema.

site window windowRef switch switchRef
lighting load elec meter electricalsystemRef site siteRef building buildingRef

site return air handler handlerRef cooling coil valve
site return air handler handlerRef damper alarm variable

site return air handler handlerRef flow sp
site return air handler handlerRef occupied sensor

site return air handler handlerRef supply fan alarm variable
site return air handler handlerRef supply fan speed

site return air handler handlerRef volume sensor
occupied pirRef site siteRef building buildingRef

site elec meter power sensor sensorRef demand
site elec meter power sensor sensorRef pf

site elec meter power sensor sensorRef reactive
fcu air temp sp fcu air temp cooling sp fcuRef site siteRef building buildingRef room roomRef

socket load elec meter electricalsystemRef site siteRef building buildingRef room roomRef
socket load elec meter electricalsystemRef site siteRef building buildingRef

lighting load elec meter electricalsystemRef site siteRef building buildingRef room roomRef zone zoneRef
lightLevel lightingRef site siteRef building buildingRef

socket load elec meter electricalsystemRef site siteRef building buildingRef room roomRef zone zoneRef
site ahu ahuRef vav zone zoneRef discharge air pressure sensor

fcu air temp sp fcuRef site siteRef building buildingRef room roomRef
fcu fan speed sensor fcuRef site siteRef building buildingRef room roomRef

fcu fault fcuRef site siteRef building buildingRef room roomRef
site vav vavRef cooling coil pid variable
site vav vavRef heating coil pid variable

site vav vavRef heating cooling indicator
site vav vavRef heating cooling indicator priority point

site vav vavRef valve cmd priority point
site vav vavRef valve position

occupied pirRef site siteRef building buildingRef room roomRef
site ahu ahuRef vav zone zoneRef reheat discharge air pressure sensor

site vav vavRef air volume sensor
site vav vavRef damper position

site vav vavRef max air flow sensor
site vav vavRef max air flow sensor priority point

site vav vavRef min air flow sensor
site vav vavRef min air flow sensor priority point

site vav vavRef zone temp
site vav vavRef zone temp sp

site vav vavRef zone temp sp priority point
lighting fault lightingRef site siteRef building buildingRef

lights lightingRef site siteRef building buildingRef
fcu cooling valve perc cmd fcuRef site siteRef building buildingRef room roomRef

fcu discharge air temp sensor fcuRef site siteRef building buildingRef room roomRef
fcu heating valve perc cmd fcuRef site siteRef building buildingRef room roomRef
fcu return air temp sensor fcuRef site siteRef building buildingRef room roomRef

site ahu ahuRef vav zone zoneRef temp sp off
site ahu ahuRef vav zone zoneRef pid loop gain

site ahu ahuRef vav zone zoneRef temp sp
site ahu ahuRef vav zone zoneRef temp

0 50 100 150 200

dataset DUB SDH SODA

(c) Most frequent sensor labels.

Figure 2.1: Analysis of tags and sensor labels in the three buildings.

18

Chapter 3

Normalizing Legacy Smart-Building
Metadata

In this chapter we develop an automated synthesis technique that learns how to transform and
normalize legacy metadata tags of sensors in large-commercial buildings into a well-formed
representation (cf., [4]) using a small number of examples from an expert, e.g., the building
manager. As mentioned in Section 2.5 building managers understand the tags, but they are
unlikely to be adept at writing complex regular expression programs to transform them to a
common, understandable namespace. The transformation to such a namespace yields semantic
relationships between sensors, which enables analytics applications to be deployed without a
priori building-specific knowledge.

3.1 Brief Overview of Technique
We draw inspriation from programing-by-example techniques developed in [107]. To our knowl-
edge, this work is the first attempt to apply these techniques to buildings, and find that the tech-
niques must be fundamentally rethought to work well in building systems. Our approach is
shown in Figure 3.1. To reduce the complexity of parsing the varied and inconsistent schemas
contained within a building, we first cluster the sensor metadata into chunks which are more
likely to share a common schema. An example is selected from one of the clusters and provided
to an expert to parse into a common namespace (In practice, a simple GUI is provided for this).
Based on the example parse, we synthesize rules from a domain-specific language which are
consistent with the expert-provided example. We then apply these rules to parse the field en-
codings of the remaining sensor tags in that cluster, i.e., to generalize the example to a program
that can parse many of the tags. Based on the resultant parsing, a new example is selected to be
presented to the expert, and so on. Ideally, a few iterations of this example-driven synthesis loop
should produce rules that correctly parse a large fraction of the tags. In practice, this is the case,
but several important factors and subtleties arise, which we study in the sequel.

Once progress has been made in qualifying tags through these syntactic methods, if we have

19

Syntac'c	 Clustering	

Rule	 Synthesis	 and	 Rule	
Applica'on	

Primi%ve	 Building	
Sensor	 Metadata	

	 	 	 	 Expert	
parses	 	

selected	
	 example	

Syntac'c	 Example	
Selec'on	

Data-‐driven	 Example	
Selec'on	

Normalized	 Field/Value	 Pairs	 Can	 run	 portable	 applica%ons	

Figure 3.1: High-level view of major steps in our Algorithm

access to the data streams for the points associated with the tags, we can employ learning on
the data to attempt to find points that are semantically related, but with syntactically distinct
tags. This ‘boosting’ is represented by the second loop in the figure. In either loop, an important
question is how to select the next example to present to the expert, since the human in the loop
is the precious resource. And, a critical question is when to stop. Typically, most of the tags in a
building conform to a few simple encoding formats, but many indiosyncratic formats are present
with few tags each. With proper clustering, selection, rule synthesis and generalization, the vast
majority of tags are resolved with a few examples, but a long tail of obscure ones remains.
On the other hand, the real goal of this process is to enable portable applications on buildings
and any such application only requires certain types of points. Thus, we also study how many
examples are needed to resolve all the points that are relevant to certain important applications.

The three large commercial buildings used in our study have 1586, 2522 and 1865 sensors
respectively and come from completely different institutions with different building systems, in-
stallers, and BMS vendors. We find that, indeed, a few examples are sufficient to produce rules
to parse a large fraction of the tags in each. Our technique is able to normalize the metadata of
70% of all sensors in just 24, 15 and 43 examples for the three buildings. The synthesis tech-
nique is robust enough to handle the presence of obscure and noisily encoded sensor metadata.

20

However, the pre-clustering step is essential in some buildings to avoid over-generalization of
the synthesized rules. We study the criteria used to select the next example to present to the
expert and find that random selection generally performs better than application-specific heuris-
tics, and choosing a random example from the cluster with the largest number of yet-unqualified
tags is robust.

Each building has a long list of obscure tag formats which slows convergence; to parse the
entire set of tags requires in 161, 116 and 196 examples respectively. However, the applications
of interest generally do not require normalizing the metadata of all sensors in a building, but
only specific sensor types. That is not to say they are uniformly encoded throughout — in one
of our buildings, the zone temperature sensors were encoded six different ways.

The Data-Driven Example Selection builds a random forest classifier for the set of sensors
required for an application from the set of sensors already normalized, and applies it to the
remaining sensors in the building to identify similar sensors that have not yet been presented
to the expert. This classifier is built using a feature vector computed from the physical data
associated with the sensors. For three applications on the two of our buildings with accessible
data streams the required sensors are parsed with an order of magnitude fewer examples than
with only syntactic example selections.

The techniques developed here are likely to be applicable to the other large legacy sensor
networks, such as industrial processing, or urban monitoring, and provide a metadata framework
that can be adopted without need for such learning-based transformations in emerging sensor
networks.

We describe our program synthesis and example selection techniques in Section 3.2. We
evaluate our synthesis technique on three large commerical buildings, and run three portable
efficiency applications on them in Section 3.3.

3.2 Automated Metadata Construction Techniques
We now describe the techniques used to perform each of the four main components of our system
, i.e apriori Syntactic Clustering (3.2.1), Rule Synthesis and Application (3.2.2), selecting an
example for the expert using only the sensors’ metadata syntax (3.2.3) or through data (3.2.4).

3.2.1 Syntactic Clustering
Given a building’s sensor tags, we perform syntactic clustering on them. This preconditioning
step has three advantages — (a) tags in a resulting cluster are more regular, and hence helps our
rule synthesis algorithm converge , (b) the cluster with the most number of unqualified tags is a
good metric to decide which example to next select for an expert’s parse , (c) the rule synthesis
and application happens only on the tags in the same cluster as the expert-provided example,
and is computationally fast.

In constructing the feature vector, we aim to cluster tags which resemble fixed field en-
codings together. Unlike clustering text documents, we have no apriori notion of delimiters or

21

words. We assume all non-alphanumeric character to be a potential delimiter. We replace con-
tiguous runs of alphabets, numerals and special characters with a single number — alphabets
are denoted by 1 , numerals by 2 and each special character as an independent but consistent
number. Thus, the tag BLDA1R465__ART is denoted in our feature space as 〈1, 2, 1, 2, 3, 1〉,
and BLDS03AR179ART as 〈1, 2, 1, 2, 1〉1. Intuitively, points which are close together in this
space have the same relative positioning of alphanumeric characters, and thus can be parsed by
a similar synthesized program. The feature vector corresponding to a particular sensor is then
padded with 0s to make them have the same number of dimensions.

We perform agglomerative clustering based on the jaccard distance between the feature vec-
tors as the distance metric2. We define the hetereogeneity metric within a cluster to be the aver-
age of all-pair jaccard distances, and at each step merge two clusters if the heterogeneity of the
resultant cluster is below a specified threshold3. Clusters thus formed are more regular (since
they have similar positioning of alphabets, numerals and delimiters). Tags with idiosyncratic
schema form their own clusters.

3.2.2 Rule Synthesis and Rule Application
Our synthesis technique selects a sensor tag and presents the example to an expert for a parse.
We first introduce terminology that we will use throughout this section, followed by an overview
and a description of the synthesis technique.

Terminology: The expert is expected to point out (Field, Value, Value Type) tuples in the
sensor tag. A field is mapped on to a substring of the tag, which is called its value. A field can
have a constant or a variable value. A value is a constant if it is not specific to that particular
tag, and variable otherwise.

Sample Input: Suppose the expert is presented with an example BLDA1R465__ART. This
tag indicates that it is in Building BLD, is part of the first air handling unit, indicated by the
character A1, in room 465 (R465) and it is the area temperature sensor (ART). The expert
should provide the parse as: BLDA1R465__ART : (site, BLD, const), (ahu, A, const), (ahuRef4,
1, var), (zone, R, const), (zoneRef, 465, var), (zone air temp sensor, ART, const). The site field’s
value is BLD, which is not specific to that particular sensor tag. Hence, the expert should mark
it as a constant. On the other hand, the value of the zoneRef field is specific to that sensor, and
hence should be marked as variable.

Sample Output: The synthesis technique should be able to identify the learned fields in a new
tag automatically. For example, given a new tag BLDA5R577A__ART, it should output the set
of tuples: BLDA5R577A__ART : (site, BLD), (ahu,A), (ahuRef,5), (zone,R), (zoneRef,577A),
(zone air temp sensor, ART, const). If there exists a portion of the tag for which the synthesis
technique has not yet received an example, it should remain unmapped to any field-value tuple.

1since BLDA is a continuous run of alphabets, it is replaced by a single 1
2so that strings with a higher number of common coordinates would be clustered together
3We set the threshold to 0 in our experiments
4ahuRef, zoneRef are idioms from the Haystack taxonomy

22

We term each of these tuples as a qualification, because it qualifies a set of alphanumeric
characters into field-value pairs in a common namespace. A tag is fully qualified, if every al-
phanumeric character in it was correctly qualified by the set of outputted field-value pairs. The
goal of the expert should be to use fields from the set of markers and idioms defined in Project
Haystack [4]. There might be cases where the correct field (such as specific alarms, etc) is not
part of the Haystack taxonomy. In these cases, we expect the expert to use an easily understand-
able long-form field name, which is consistent5 across the entire building.

Synthesis technique overview (within each cluster6) : The high-level aim of the technique
is to learn two sets of information from the given input-output examples — (a) which fields are
applicable on a particular sensor tag, and (b) what is the set of regular expressions that transform
the tag to the value of the corresponding field.

From each expert example, and for each field in the expert-provided qualification, the set of
all expressions from the language (shown in Figure 3.2), that could extract the required field’s
value is computed. If there are multiple examples for the same field, the substring extraction
rules of the multiple examples are intersected to obtain a more concise set of expressions. If the
substring extraction rules cannot be intersected, they are maintained as two disjoint sets, which
we shall hereby term as a partitions.

Finally, for each field and each disjoint set of extraction rules/regular expressions therein, a
classifier in the form of If Then ... Else statements is built, where the conditions are boolean
in the Disjunctive Normal Form (DNF)7. These classifiers dictate whether a particular field is
applicable to a particular sensor tag, and which regular expression partition should be applied to
it. Thus, we can independently consider each field to be a potential output for a sensor tag. If a
field is deemed to be applicable by its classifier, then the value of that field would be generated
by the regular expressions synthesized by our technique.

Learning a classifier for each field separately has two advantages. The classifier is able to
identify and extract fields from other sensor tags, irrespective of the formatting of the rest of
the tag. Suppose two zone temperature sensors have the tags BLDA1R465__ART (expansion
described above) and BLD_300___ART : (site, BLD), (zoneRef, 300), (zone air temp sensor,
ART) . In both cases, the first three characters denotes the value of the site field, and the substring
ART denotes that it was a zone air temp sensor. Learning classifiers for the fields site and zone
air temp sensor would enable us to gain useful information by automatically applying these
fields on the second sensor, even though we might not know its zoneRef. Thus, we are able to
transform as much of the metadata as possible without having to depend on another example
from the expert.

The language : The language is designed to take into account various possible metadata
encodings that can occur in sensor tags. We assume that the substring corresponding to the
value of a field can be obtained by either (a) extracting substrings between two constant indices,
(b) extracting the substring between two other fields or regular expressions, and (c) as a constant

5This can be achieved by presenting the expert a set of fields that has already been used in that building to
qualify that particular substring.

6the clusters formed in Section 3.2.1
7same technique as in [107]

23

Transformation Program P 	
:= 	
if 	
 	
b1 	
then e1 	

	
 	
 	
 	
 	
 	
 	
else if 	
b2 	
then e2	

	
 	
 	
 	
 	
 	
 	
…..	

	
 	
 	
 	
 	
 	
 	
else tag not exist in string	

Boolean classifier bi 	
 	
:= 	
d1 ⋁ d2 ⋁ …⋁ dn	

Conjunct di 	
 	
 	
 	
:= 	
p1 ⋀ p2 ⋀ …. ⋀ pn	

Predicate pi 	
 	
 	
 	
:= 	
Occurs(v, r, k) | OccursAtPos(v, r, c)	

	

Occurs(v, r, k) 	
 	
 	
:= 	
True, iff regular expression r occurs in string v , k times	

OccursAtPos (v, r, c) 	
 	
:= 	
True, iff regular expression r occurs in string v at index c
	

Extraction Rule e 	
 	
 	
:= 	
Substring (v, p1, p2)	

Substring(v , p1, p2) 	
 	
:= 	
Substring of string v between positions p1 and p2
Position pi 	
 	
 	
 	
:= 	
Constant(k) | PrecedeSucceed(r1, r2, c) | ConstantWidth(k)	

PrecedeSucceed(r1, r2,c) 	
:= 	
Index at the cth intersection of regular expression r1 and r2 	

ConstantWidth(k)	
 	
 	
:= 	
Index p1 + k, where p1 is starting index of substring	

Regular Expression r 	
 	
:= 	
Tokens(T1, …. Tn)	

Token T 	
 	
 	
 	
 	
:= 	
Alphabets| Numeric | specialToken | ε	

	
 	
 	
 	
 	
 	
 	
| constant tag value entered by expert	

Figure 3.2: Language for learning substring extraction

width substring if the left index is identified. The classifiers, which are constructed to determine
whether a particular field is applicable on a sensor’s tag, is based on the general format of the
string — (a) whether a particular regular expression occurs at a particular index, or (b) how
many times a particular regular expression occurs in the sensor tag.

The top level expression of the language is the classifier — the If bi Then ei structure, which
applies the substring expression ei to the input only if it matches the boolean expression bi.
The boolean function is in the Disjunctive Normal Form and is composed of predicates of the
form Occurs(vi, r, k) , which evaluates to true, iff the input vi has k occurrences of the regular
expression r, or
OccursAtPos(vi, r, c) which evaluates to true iff the input vi has a regular expression r which
occurs at index c.

The Substring expression SubString(vi, p1, p2), evaluates to the substring between positions
p1 and p2 of the string vi. Constant(k) denotes the integer position k in the substring. A position
expression PrecedeSucceed(r1, r2, c) when applied on a string s evaluates to an integer position
t in the subject string s such that r1 matches some suffix s[0..t] and r2 matches some prefix of
s[t...l] (where l = Length(s)). Also, t is the cth such match starting from the left end of the string.
If such an position t does not exist in the string, this operator fails. ConstantWidth(k) is an
operator which indicates a constant offset index from the position p1. The regular expressions are
either just a single token τ , or a token sequence, Tokens(τ1..τn), or ε (which matches the empty
string). The tokens τ comprise of a single token to denote alphabetic characters (referred to as
AlphTok) , one for numeric characters (referred to as NumTok), one for each special character,
and one for each constant value entered by the user. The output is obtained by applying the
resultant SubString(vi, p1, p2) operation.

24

We provide a couple of examples to elucidate how the field-value extraction technique works.
Example 1: Tag : BLDA1R465__ART, desired output value : ART (for the field zone air

temperature sensor).

Possible programs synthesized: SubString(s, Constant(11), Consant(14)), or
SubString(s, PrecedeSucceed(UnderscoreToken, ART,1),
ConstantWidth(3)) .

Example 2: Suppose the synthesis algorithm has seen two examples (a) BLDA1R465__ART,
for which the value for field ahuRef is 1 and
(b) BLD_300___ART, in which the field ahuRef does not exist, and hence should not be ap-
plied.

Possible programs synthesized to extract the value of the field zoneRef is : If b1 Then e1,
where b1 = OccursAtPos(s, (A), 3), e1 = Substring(s, Constant(4), ConstantWidth(1)). This
program ensures that the field ahuRef is only applied to tags similar to the former, and not to the
latter.

Example 3: Consider the following tags from our testbed, in which the first sensor is a status
indicator connected to supply fan 4, while the second is a variable air volume unit airflow sensor
in room 5871.

Tag 1 : BLDA4S1831_STA : [(site, BLD, const), (ahu, A, const), (ahuRef,4, var), (supply
fan,S, const), (supply fanRef,1831, var), (status point,STA,const)] ; and

Tag 2: BLDA3R5871_VAV : [(site, BLD, const), (ahu, A, const), (ahuRef, 3, var), (zone, R,
const), (zoneRef, 5871, var), (vav, VAV, const)]

Both these sensor tags have the exact same arrangement of numeric and alphabetic charac-
ters, and special symbols, and no classifier comprising only tokens for alphanumeric and special
characters would be able to discern between the two. This can result in erroneous extra fields
being applied to sensor names.

Token Set: To solve this problem, and get a more expressive set of tokens, we utilize the
values marked as constant in the examples provided by the expert as special tokens. In the
example above, the tag BLDA4S1831_STA is treated as a set of tokens — (BLD), (A), NumTok,
(S), NumTok, NumTok, NumTok, NumTok ,UnderscoreTok, (STA).

Note that utilizing the constant values as tokens enables us to have a different token set for
each building. The set of tokens increase as the expert gives more examples. Note that the new
tokens provide enough expressibility for the regular expressions to differentiate between the two
tags BLDA4S1831_STA, and BLDA3R5871_VAV.

3.2.3 Syntactic Example Selection
We choose the cluster8 with the maximum number of not-yet-fully qualified sensors, and choose
one of them as the next example to present to the expert. We evaluated four different techniques

8as described in Section 3.2.1

25

to choose an unqualified sensor from that cluster, the results of which are presented in our
evaluation (Section 3.3.2).
• Random: Select an example at random.
• MinLeft : Select the example with the minimum tag length left to qualify. The intuition is

to complete partial parse of sensors.
• MaxLeft : Select the example with the maximum tag length left to qualify. The intuition

is to help the synthesis technique cover the space of unseen fields (i.e the long tail in
Figure 3.4).
• SameLeft : Select an example with the most frequent unqualified substring. This method

seeks to find a commonly occurring field.

3.2.4 Data-driven Example Selection
Often the same sensor types in a building are specified in the form of multiple different schemas.
This may occur because of mistakes on part of the vendor, later addition of such sensors, etc.
For instance, zone temperature sensors in Building 1 in our testbed was encoded in 6 disparate
schemas, comprising of 78%, 11%, 6%, 2% , 2% and 1% of the sensors. It is unlikely that a
purely syntactic example selection method will happen upon the tags with rare encodings. In
contrast, because the characteristics in the associated data of sensors of the same type tend to be
similar, data-based selection can identify the rare-encoding sensors as being similar to sensors
with a more common encoding, and present one of these rare examples to the expert for parsing.

To utilize this approach, an expert should specify which are the sensor types an application
needs (henceforth termed as Required Sensors). Our technique first transforms each sensor
stream into two new data streams M and V that contain the running median and variance values
of the original data stream, using a 45-minute long sliding window. The length of the window is
set to 45 minutes to smooth over any transient phenomena and noises. We compute the minimum,
maximum, median and variance of each of the two streams M and V , resulting in the following
8-tuple: 〈min(M),max(M),median(M), var(M),

min(V),max(V),median(V), var(V)〉.9
This 8-tuple is then used as a feature vector to train a random forest classifier based on sen-

sors which have already been fully qualified, and to classify the yet-unqualified sensors. We
choose a random forest classifier because it is an ensemble learning algorithm which is more
robust to noise and in general outperforms other learning techniques like SVM or linear regres-
sion. We choose the sensor which the classifier classified as a required sensor with maximum
likelihood and select that example be parsed by the expert.

3.2.5 Running Portable Building Applications
We study three important applications, that with normalized metadata can run portably across
buildings — Finding Rogue Zones, Finding Zones with Stuck Dampers, and Finding Inefficient

9Described in more detail in [115]. In our experiments, we use the same one week time window of data from
the month of July for all sensors.

26

Air Handling Units.

1. Finding Rogue Zones : A thermal zone is rogue if its air temperature is constantly above
its required setpoint, i.e it requires constant cooling. Rogue zones are typically caused
by high thermal load, incorrect setpoints, or faulty sensors, and should be rectified before
implementing further sophisticated efficiency techniques. Rogue zones are an artifact of
poor planning or wrong setpoints, and can be fixed if brought to the attention of a building
manager. This application queries for sensors having the zone air temp sensor field, and
for each such sensor, queries for a sensor with the zone air temp setpoint field having the
same field-value for the zoneRef field, and checks whether the temperature is always more
than its respective setpoint (factoring in a tolerance factor of 2F).

2. Finding Stuck Dampers: Finding zones where the dampers are stuck, i.e they do not
modulate the amount of chilled air entering a zone. This application queries for all sensors
with the field zone damper and the corresponding zone number (zoneRef), and checks
whether its data stream remains constant or shows any variation.

3. Finding Inefficient Air Handling Units (AHUs): An AHU is considered “inefficient” if
it serves rogue zones as well as over-cooled zones. Typically, a hot rogue zone drives
the AHU to supply air that is too cold, resulting in other zones supplied by the same
air handler always being too cold and uncomfortable. Identifying such AHUs may lead
to making some over-cooled zones more comfortable. This application first computes
whether a zone is over-heated or over-cooled using the same technique as the Rogue Zone
application, and then queries for ahuRef (the air handling unit ID) field of each over-heated
rogue zone, and checks if any of the other zones served by the same air handling unit is
over-cooled. This application requires the same sensors as the Rogue Zone application,
but requires an extra ahuRef relationship between the zones.

3.3 Evaluation
In this section we evaluate each part of our technique on the legacy metadata tags of three large
commercial buildings. We manually ground truth-ed all sensor tags in three buildings with
BMS’ installed by different vendors, having 1586, 2522 and 186510 sensors respectively. We
simulate the role of the expert in our experiments. When the simulated expert is asked for a
parse, it consults the ground truth and provides the correct parse. A sensor tag is considered
fully qualified if (a) the correct fields and field-values are extracted by the synthesized rules
(b) No extra incorrect field is identified, and (c) the field-values explain every alphanumeric
character of the sensor tag.

We first evaluate the advantage of our a priori clustering approach (3.3.1), and compare
convergence with existing spreadsheet synthesis techniques. We next evaluate the effectiveness

10we did not have access to sensor stream data for this building

27

and convergence of our algorithm for different syntactic example selection mechanisms (3.3.2).
We then compare and contrast the efficacy of the syntactic example selection method (3.3.3) to
the data-driven example selection method (3.3.4) to parse enough sensor tags to run a particular
application, following which we report the results of the portable applications on the buildings
in our testbed (3.3.5).

3.3.1 Clustering
We evaluate the number of expert examples required for full qualification of all sensors in a
building with and without apriori syntactic clustering. With clustering, the synthesized rules
from the expert’s parsed example are only applied to the cluster the example is in. Without
clustering, the synthesized rules are applied to all sensors. We present the results from Building
3 in our dataset. We also compare the results to the parse generated by the spreadsheet synthesis
algorithm presented in [107] (Flash-Fill).

0

20

40

60

80

100

0	 50	 100	 150	 200	 250	

%
 S

en
so

rs
 F

ul
ly

 Q
ua

lif
ie

d

Examples

With Clustering Without Clustering

Flash-Fill

Figure 3.3: Advantage of apriori clustering in Building 3 : Rules are not over-generalized

Figure 3.3 shows the rate of full qualification in Building 3. Without clustering there is a
sharp drop in the number of sensors fully qualified because erroneous fields start getting applied
to sensor tags which were previously fully qualified. Figure 3.4 provides the intuition for this
behavior. In all the buildings, a few fields (about 20 in each building) are applicable on a lot
of sensors11, while there is a long tail of fields applicable only to a handful of sensors. In the

11This is pretty common in commercial buildings, where a majority of the sensors are related to zone informa-
tion. Thus, fields such as zone temp setpoint, zone airflow, etc are very common

28

0

20

40

60

80

100

0 20 40 60 80 100

O
cc

ur
re

nc
e

Fr
eq

ue
nc

y
(%

)

Fields (Ordered By Frequency)

Building 1 Building 2 Building 3

most frequent least frequent

Figure 3.4: Percentage of sensor names (tags) each field appears in. The x-axis is sorted accord-
ing to the frequency of occurrence of a field

absence of clustering, the synthesis technique over-generalizes rules for these rare or erroneous
fields. With clustering, 100% of the sensors are fully qualified. The apriori clustering step avoids
over-generalization of the synthesized rules by restricting the rules to the cluster in which a
particular example parsed by the expert lies. The spreadsheet-based synthesis technique (Flash-
Fill) fails after 10 examples, because its underlying language and tokens is not robust enough to
disambiguate the large number of fields.

Without the apriori clustering, Building 1 also showed a drop in the number of fully qualified
sensor tags after 100 examples, settling at full qualification of 90% of the sensors. Building 2’s
sensors’ schemas were much less noisy, and our synthesis technique could parse all sensor tags
without clustering (these results are omitted due to space constraints).

3.3.2 Syntactic Example Selection
We now study the selection methods (described in Section 3.2.3) used to select which example
the expert should parse following the initial clustering.

Figure 3.5 shows the rate of sensor qualification for each of the four example selection
methods on all buildings. With the exception of MinLeft in Building 1, all the selection methods
qualify sensors at roughly the same rate — they correctly classify the most frequently occurring
sensors within a handful of examples. With addition of more examples, the rate of new sensors
fully qualified decrease because the synthesis technique starts encountering obscure fields which
are not applicable widely. MinLeft performs poorly for Building 1 because its metadata is very

29

0	

20	

40	

60	

80	

100	

0	 50	 100	 150	 200	

Se

ns
or

s F
ul

ly
 Q

ua
lif

ie
d

Examples

Random	 SameLe2	

MinLe2	 MaxLe2	

(a) Building 1

0	

20	

40	

60	

80	

100	

0	 50	 100	 150	 200	

Se

ns
or

s F
ul

ly
 Q

ua
lif

ie
d

Examples

Random	 SameLe2	

MinLe2	 MaxLe2	

(b) Building 2

0	

20	

40	

60	

80	

100	

0	 50	 100	 150	 200	 250	

Se

ns
or

s F
ul

ly
 Q

ua
lif

ie
d

Examples

Random	 SameLe2	

MinLe2	 MaxLe2	

(c) Building 3

Figure 3.5: Sensor qualification rate for the three buildings. The Random generator achieves
70% full sensor name qualification within 24 examples for Building 1, 15 examples for Building
2 and 43 examples for Building 3. It takes substantially more examples for Building 3 because
its subsystems had no similarity in metadata because they were installed by different vendors.

noisy, and the approach gets stuck trying to fully qualify idiosyncratic sensors with obscure
fields.

Thus, the convergence of the synthesis technique (i.e its ability to fully qualify all sensors)
is not affected by decision of the example selection criteria. Also, the apriori clustering enables
all the four selection criteria to quickly qualify the most frequently occurring sensors, since all
of them seek out examples from the biggest clusters first.

The number of examples required for full qualification of all sensor tags in the three build-
ings using the Random method was 161, 116 and 196 respectively, and that for the SameLeft
method was 176, 149 and 218 respectively. We use the SameLeft method in all the studies in the
following subsections because of its deterministic nature.

30

3.3.3 Application-Oriented Qualification with Syntactic Example
Selection

We present the number of examples required to obtain full-qualification of all sensors for the
Rogue Zone application (developed in Section 3.2.5) in Building 1. The results for other appli-
cations on other buildings are similar, except when stated explicitly. The Rogue Zone applica-
tion’s set of required sensors are sensors with the fields zone temp sensor or zone temp setpoint.
In Building 1 there are 462 such sensors, and their tags are in 10 different schemas, some of
which are very frequent, while others not so.

Figure 3.6 shows that 147 examples are required to fully qualify all the required sensors
for the Rogue Zone application (compared to 176 examples required for full qualification of all
sensors). The first two examples fully qualify the required sensors (denoted by P in the Figure)
with the most frequent schemas. Required sensors encoded in more obscure schemas with infre-
quent fields require more examples because the aim of the syntactic selection method is to select
examples from large clusters. As the expert parses more examples, the number of fully qualified
non-required (N) sensors increase steadily. Even though fewer expert examples are required for
application-oriented qualification, the number of examples required is still prohibitively large to
enable easy deployment of the Rogue Zone application.

The number of examples required to fully qualify all sensors for the Rogue Zone application
on Building 2 was 67 (compared to 149 examples for qualifying all sensors). Similarly the Iden-
tifying Stuck Dampers application took 137 and 1 example for Buildings 1 and 2 respectively
(all dampers in Building 2 were encoded with the same schema).

3.3.4 Application-Oriented Qualification with Data-Driven Example
Selection

We now evaluate the number of examples required to fully qualify sensors for the same appli-
cation and building as in the previous experiment (i.e Rogue Zone application on Building 1).
We use the syntactic selection method to select the first five examples, so that the data-driven
classifier has positive and negative instances in its training set, and thereon apply our data-driven
classifier, and select the maximum likelihood required sensor to present to the expert for parsing.

Figure 3.7 shows that only 24 expert examples are required to obtain full qualification of
all required sensors. After step 5, the data-driven classifier has 356 positive and 472 negative
examples of fully qualified sensors in its training set. Out of the remaining 758 sensors (its test
set, out of which 106 are required sensors), it classifies 231 sensors as required sensors, out of
which 102 are true positive (denoted by TP in the Figure). It selects the example which it has
classified as required with maximum likelihood.

Thus, data-driven example selection (after 5 steps of syntactic example selection) leads to a
6x reduction in the number of expert examples required compared to purely syntactic example
selection, making it feasible to deploy the Rogue Zone application on Building 1 within a few
minutes.

31

0	

200	

400	

600	

800	

1000	

1200	

1400	

1	 21	 41	 61	 81	 101	 121	 141	

Se

ns
or

s

Examples

N	

UN	

UP	

P	

147	 examples	
required	

Figure 3.6: Rate of full qualification of required sensors for the Rogue Zone application on
Building 1 using sameLeft example selection method. (P) denotes number of required sensors
fully qualified (positive), N shows number of unrequired sensors fully qualified(negative), UP
shows the number of required sensors yet to fully-qualified (unkown positive), and UN shows
the number of non-required sensors yet to be fully-qualified (unkown negative). The dotted
vertical line shows the steps in which a remaining required sensor example was presented to the
expert.

However, one cannot apply the data-driven technique until the syntactic technique has iden-
tified at least one positive example for each required sensor. Figure 3.8 shows the number of
examples needed12 for full qualification of all required sensors for the Rogue Zone and Stuck
Dampers application as a function of the initial number of syntactic example selections for
Buildings 1 and 2. In general, fewer syntactic steps gave better results. This result was a sur-
prise to us, because our intuition was that our algorithm would need to perform several syntactic
steps to build up an adequate training set for the data-driven classifier. However, the SameLeft
syntactic selection method always chose the first few example in a way to provide a sufficiently
large training set for the data-driven example selection method to progress. Building 2’s dampers
were all encoded in the same schema, and hence all required sensors were parsed by the first
syntactic example.

Note that in this experiment, our algorithm stops when the last required sensor is qualified.
In practice, a heuristic would be required to infer that further positive examples are unlikely to
be obtained. Thus, a small number of of additional examples would be required ensure conver-
gence.

12the sum of data-driven example selection steps and syntactic example selection steps

32

0	

200	

400	

600	

800	

1000	

1200	

1400	

1	 21	

Se

ns
or

s

Examples

N	

TN	

UN	

UP	

TP	

P	

Start of data-
driven examples

24	 examples	
required	

Figure 3.7: Rate of full qualification for Rogue Zone application in Building 1 using data-driven
example selection after 5 steps of syntactic example selection. P, N, UN and UP is defined in
Figure 3.6. TP indicates true-positive required sensors that have been labelled by the data-driven
classifier at that step. TN shows the number of true negative required sensor identifications
made by our data-driven classifier. In this case, UP is the same as false negatives and UN same
as false positives, but this is unknown to the data-driven classifier. The dotted vertical line shows
at which step a remaining required sensor example was presented to the expert.

0

10

20

30

40

0 5 10 15 20 25

To

ta
l E

xa
m

pl
es

Initial Syntactic Steps

Building 1 Building 2

(a) Rogue Zone Application

0

10

20

30

40

0 5 10 15 20 25

To

ta
l E

xa
m

pl
es

Initial Syntactic Steps

Building 1 Building 2

(b) Stuck Dampers Application

Figure 3.8: Total number of expert examples required to qualify all the required sensors for an
application, as a function of the number of initial syntactic selection steps (the remaining steps
have data-driven example selection).

33

3.3.5 Results of Applications
We ran our portable applications for finding rogue zones, stuck dampers and inefficient AHUs
to Buildings 1 and 2 (Table 3.1), after the expert had parsed all the required sensors.

Results : We were able to identify all the zones and dampers in the two buildings. Building 1
was the more inefficient building with 5 hot rogue zones, and 17 over-cooled zones, and 4 zones
having stuck dampers. We identified two inefficient air handling units in Building 1 which were
trying to cool down extremely hot electrical closets and in the process over-cooling multiple
office spaces. The inefficient AHU application could not run on Building 2 because none of the
sensors encoded the relationship between zones and their corresponding AHUs.

Table 3.1: Application Results

Building 1 Building 2
Number of Thermal Zones 201 78
Number of Rogue Zones 5 2
Number of Over-cooled Zones 17 0
Number of Zones with Dampers 175 55
Number of Zones with Stuck Dampers 5 0
Number of Air Handling Units 4 NA
Number of Inefficient AHUs 2 NA

3.4 Conclusion
In order to build meaningful applications at scale for buildings with disparate sensor metadata
schemas, existing building sensor metadata schemas should be augmented and normalized to
a common namespace to the extent possible. The normalization helps capture the semantic
relationships between sensors, which is critical in enabling such applications.

We developed an approach which can normalize the primitive metadata of each building to
field/field-value pairs in a desired common namespace using a few examples from an expert (e.g
the facilities manager, often the only person familiar with the existing building metadata). We
demonstrated that our synthesis technique is robust and achieves full sensor qualification for all
sensors for 3 different BMS systems, even when presented with obscure and noisy tags. Our
technique takes very few examples to fully qualify the most commonly occurring sensors (24,
15 and 43 examples for the three buildings in our testbed for qualifying 70% of the tags). We
used the relationships inferred in the transformed metadata to run three unmodified analytics
applications on two of the buildings. The data-driven example selection method reduces the
effort to deploy a new application in an unknown building. The three applications could be
deployed in under 30 examples from the building manager.

34

Chapter 4

Capturing Underspecified Legacy
Metadata Through Active System
Perturbation

The legacy metadata in buildings capture most, but often not all of the relationships required
to run desired applications. For example, certain BMS systems may not capture which Air
Handling Unit (AHU) is connected to which Variable Air Volume (VAV) Unit, or which chiller
is connected to which AHU. There may be multiple AHUs, chillers, VAVs, or other subsystems
in a large commercial building and the knowledge of their inter-relationships is required by
many applications, e.g identifying errant AHUs or finding the root cause of thermal discomfort
in certain zones.

The reasons for omission of these relationships from legacy BMS metadata can vary —
it may be simple oversight, or maybe the pre-installed applications which were shipped with
the BMS system did not require these relationships. In certain cases, these inter-relationships
are captured but may even be incorrect. In this chapter we describe a general technique to
deduce inter-relationships between various mechanical subsystems in a smart-building through
careful impulse-response analysis. This work was done in collaboration with Marco Pritoni, UC
Davis [185].

4.1 Overview Of Technique
Functional relationships between HVAC subsystems imply some physical media (such as air or
water) is transferred from one subsystem to the other. Our insight is that if we perturb the control
parameters of the upstream subsystem in a way that changes the property of the physical media
reaching the subsystem downstream, the latter’s control parameters will change noticeably to
compensate for the change. For example, consider an AHU that supplies air at a certain temper-
ature and pressure to a particular VAV, which ,in turn, supplies it to a specific room. The VAVs
are generally equipped with dampers and local reheat to supply the air at just the right tempera-

35

ture and volume required to maintain the room’s desired temperature setpoint. If we perturb the
temperature or pressure of the air that the AHU sends the VAV, the latter would have to change
its damper and reheat control parameters to compensate, since its control loop has been set up
to maintain a constant room temperature. For each perturbation in the output of an upstream
subsystem, we can quantify which downstream subsystem’s control parameters changed and
thus identify which pair of subsystems are connected. This technique can run during the normal
operation of a building, totally transparently to its occupants.

Although our intuition is simple, there are certain challenges associated with perturbing
the upstream subsystems (e.g an AHU) and picking up the resulting signals in the downstream
subsystems (e.g a VAV). First, the perturbations have to be small so as not to affect the daily
operation of the subsystems. Second, there can be confounding factors such as external envi-
ronment, occupancy, etc that obscure the results of the perturbation in each subsystem. Finally,
the signal to noise ratio may be low, making it really hard to pick up the resulting signal in the
downstream subsystem when the upstream system is perturbed only by a small amount.

We solve the first two challenges through careful experiment design and the third through
repeated perturbations. Our experiment takes in the maximum deviation of control parameters
of the upstream system allowed by a building manager. We perform two step changes — the
first setting the value of the control parameter to the lowest allowable limit, and then a day
later to the highest allowable limit. This allows us to get an intermediate step change of twice
the allowed deviation. Operating each regime over an entire day and over consecutive days
also helps us eliminate confounding variables such as outside air temperature, occupancy, etc
to a large extent. Finally, we repeat this experiment, once for each upstream subsystem. We
attribute the downstream subsystem to the upstream subsystem whose perturbation has caused
the maximum change in the latter’s control parameters.

We next describe details of our technique in the context of finding the functional relationships
between AHUs and VAVs in a large commercial building.

4.2 Problem Instance
We analyze data from a large commercial building with 3 chillers, 4 air-handling units (AHU)
and 179 thermal zones. A variable air volume (VAV) box modulates the airflow from the AHU
to each zone. One AHU is associated to multiple VAVs. VAV modulation is achieved through
a combination of two control actions: adjusting the air damper position (DMP) and regulating
the local reheat valve (RVP) (Figure 4.1). The temperature in each zone (Tzone) is influenced
also by the supply air temperature (Tsa) and flow (FLWsa) coming from the AHU. All these
points are monitored and recorded by the BMS system, and represent the datasets used here.
In addition, the room temperature is impacted by uncontrolled variables, such as weather (Toat
is the outdoor air temperature), internal gains, and other thermal gains. This configuration is
typical of a large number of buildings. The association between AHU and VAV is not stored
in the BMS system; however, for the purpose of the experiment, ground truth association was
collected from building blueprints to verify the results of the proposed method.

36

VAV#
zone#

VAV#
zone#

AHU#

C# zone#

VAV#Control#Logic#

+# +#_#

w=[Toat,#gains..]#

u=[DMP,#RVP]##Tsetpoint## Tzone##

v=[Tsa#,#FLWsa]AHU##

Figure 4.1: AHU and VAV configuration in our building testbed. On the right, the VAV control
logic is represented. Tzone is kept around the Tsetpoint by the control inputs u = [DMP,RVP].
Tzone it is also influenced by parameters controlled by the AHU (v = [Tsa, FLWsa]

AHU) and
external disturbances w=[Toat, internal gains].

4.3 Prior Techniques
Techniques commonly employed to detect relationships in data streams include: correlation of
raw data [141], correlation of transformed data [119], principal component analysis (PCA) and
clustering [161, 117], statistical process control [226], and model-based system identification
(i.e., building a model and looking for the best fit from a VAV to an AHU). We also tested
conventional correlation methods to find relationships between AHU and the corresponding VAV
boxes. Table 4.1 shows an example of these coefficients. Results show very poor correlation.
Desired values inside the bold boxes should be higher, in absolute value, than the corresponding
values in the other rows. The same test was repeated with data resampled at 5 min, 15 min and
daily, yielding similar results. Thus, this method does not allow identifying which VAV boxes
are connected to which AHU.

Table 4.1: Correlation matrix (showing raw data from two AHU and two VAV boxes).

Example V AVAHU3 Example V AVAHU5

Tzone DMP RVP Tzone DMP RVP
AHU 3 Tsa -0.06 0.06 0.11 -0.11 0.24 0.29
AHU 5 Tsa -0.20 -0.19 -0.06 -0.04 -0.01 0.02

Unlike prior research [119], the variable measured in this test are pressures, temperatures,
flows and actuator positions, which show delayed and attenuated responses to changes in input
variables, thus reducing correlation. Further, AHU and VAV boxes/zones are physically distant
(differently from [141]), and variables in the latter are significantly influenced by additional
measured and non-measured disturbances (Figure 4.1). For this reason, sensor values show
a small signal to noise ratio. In addition, sensor readings are frequently constrained between

37

physical limits (e.g. max damper position) and kept around setpoints by nested control loops.
Also, cross-talk between systems (i.e., zones might influence each other) and similarity in the
way different AHU are controlled (setpoints and daily behavior are similar) make correlation
of raw data ineffective. Next, we construct feature vectors for the data of each VAV. Features
included were Tzone, DMP , RV P , Tsetpoint, measured flow (FLW), flow setpoint (FWS), day
of the week, time of the day. We apply Principal Component Analysis to these feature vectors
to identify the two principal components and correlate them to the Tsa. Unfortunately, results of
this analysis is not very different from what we obtain with the raw data (Table 4.1). Again, this
method is ineffective in inferring the desired functional relationship.

Finally, we test a completely different and novel approach involving system identification
(SID) techniques. SID is often used in control engineering to find a mathematical relation-
ship (model) between inputs and outputs variables in an observed system [5]. We construct a
physics-inspired black-box dynamical model to predict Tzone, based on the available sensor data:

Tzone,t = β1Tzone,t−1 + FLW t ∗
t−k∑
t

β2iRV P i + β3FLW t ∗ TAHU
sa,t + β4 ∗ Toat,t

where variable names are defined above, βi are the statistical coefficients, and t stands for
time. The equation is in the form of an autoregressive (AR) time series model with exogenous
inputs and interactive effects (some variables are multiplied). The term with the sum represents
the lag in the effect of the reheat valve. The model is based detailed physical knowledge of the
heat transfer processes in VAV boxes. Note that all the variables in this equation belong to the
VAV with the exception of (TAHU

sa,t), that represents the supply air temperature controlled by the
AHU at time t. The idea is that using the TAHU

sa,t from the AHU actually connected to each VAV
would improve the model fit. Both linear regression and lasso [211] are used to fit the model
over 15-min resampled data.

While this model fits the data very well (R2=76-95% depending on the zone), it fails to
capture the difference in AHU. Plugging in different TAHU

sa,t did not change the fit of the model
as we had expected, because the majority of the variation in the output variable Tzone,t is captured
by the first term of the model (zone temperature at the previous time step) and the remaining βi
coefficients are relatively small. With the calculated coefficients, the input variable TAHU

sa,t would
have to change by more than 20F to produce measurable effects in the output variable. Such
large temperature differential never occurs spontaneously in our recorded data, and if artificially
produced would seriously compromise occupantsâĂŹ comfort.

4.4 Mechanism of Perturbation
To obtain the functional relationships between AHUs and VAVs, we perturb each AHU so that
we can generate a distinguishable signal in the connected VAV boxes. In practice, by changing
the supply air temperature in an AHU (input), the VAV box will respond by changing some
controlled variables (reheat and damper position) to maintain its desired output, i.e temperature

38

setpoint for a particular zone. 1 The AHU supply air temperature was chosen over the AHU
flow rate as it is practically easier to tune. Also significantly perturbing flow rates might provide
insufficient ventilation or damage the ducts due to high pressure.

We took care to ensure that the perturbation had no impact on occupant comfort. The temper-
ature setpoint for the supply air in the AHU is set one day to 52F (cold mode) and the following
day to 60F (hot mode), thus deviating a maximum of 5F from the normal setpoint for a week-day
of 57F. Since thermal systems have a significant response lag, the perturbation was sustained for
a full day in each mode. This also helps reduce the effect of confounding factors such as occu-
pancy and external environment effects. We then computed the average daily values for RVP,
DMP and Tzone for each zone.

The perturbation algorithm can be described in the following steps:

1. Perturb the supply air temperature of an AHU at the time for two consecutive weekdays,
one day in cold mode (52F) and one day in hot mode (57F).

2. Collect data for each VAV for the following sensors: RVP, Tzone, DMP.

3. Obtain the daily average for each of these sensors for every VAV.

4. For each VAV and each day of perturbation combine data into average daily vectors of the
form [RVP, DMP, Tzone].

5. For each VAV calculate the Euclidian distance between vectors on the hot mode day and
cold mode day. At the end of this step each zone will have a metric for the AHU hot-cold
perturbation.

6. Repeat steps 1-5 for each AHU.

7. For each VAV take a vote to select the AHU whose perturbation has a highest metric
(calculated in step 5). The AHU selected with this method is associated with that VAV
box.

Even though, in theory, VAVs which are not connected to the perturbed AHU should show no
change in their average values over the two days, we found that this did not hold up in practice.
External confounding factors resulted in most VAVs showing some deviation in their behavior
during each 2-day experiment. Hence, we adopt a voting method where we attribute a VAV to
the AHU whose perturbation caused the largest deviation between the hold and cold mode days.

1If the operating conditions fall outside a VAV box’s control regime and it is unable to maintain its desired
output and keep up with zone cooling/heating load, the zone temperature (Tzone) will be affected and change

39

4.5 Results
We applied the algorithm described in the previous section to our testbed building. As shown
in Figure 4.2 our algorithm correctly identified the relationship between VAV box and AHU in
79% of the cases, a 2x improvement over all prior methods.

Technique AHU Attribution Details Accuracy

Random Randomly allocate VAV
boxes to AHUs

25%

Correlation (Raw) AHU whose supply air
temperature has max.

correlation to VAV sensors

38%

Correlation (PCA) Same as above but with
principal components

32%

State Identification AHU whose supply air
temp gives lowest error

32%

Perturbation + Voting Perturb all AHUs and
attribute VAV to AHU

which caused max internal
perturbation

79%

Figure 4.2: Comparison of our technique against prior methods

Figure 4.3 shows the advantage of using voting to attribute VAVs to AHUs. Figure 4.3a
shows a case where we simply attributed a relationship without voting, if our difference metric
exceeded a pre-defined threshold magnitude. Choosing the right threshold is challenging and
hard to generalize. We show results for a threshold magnitude of 2, but our results show similar
performance for other thresholds as well. Even though a lot of zones were in AHU5 showed
large deviations when AHU5 was perturbed, the same cannot be said for AHUs 2, 3 and 4. With
voting however, it becomes much more apparent which AHU a VAV belongs to (Figure 4.3b),
because we are taking into account zone characteristics and comparing the difference metric
across different perturbation periods for the same zone.

There were some zones that were misclassified though. These zones could be grouped into
three categories: (a) VAVs that showed no response to any perturbation, (b) VAVs that had a
unexpected behavior, such as counter-intuitive responses to perturbations, and (c) VAVs that
responded more strongly to the perturbation of the ‘wrong’ AHU. For instance a zone had very
frequent oscillations of its damper and reheat valve position (about 20 cycles per day) ranging
between values of 0% and 40%. This behavior shows that the local VAV control system is
misconfigured, resulting in unexpected behavior during our perturbation experiments. Some

40

(a) Each perturbation as a standalone experi-
ment. Our metric – the deviation magnitude of
the vector — is normalized across all zones for
the same perturbation experiment.

(b) Application of voting across perturbation
periods. Our metric – the deviation magnitude
of the vector — is normalized for each zone
across its values for the different perturbation
periods, and not against all other zones.

Figure 4.3: Overview of perturbation statistics across all zones in a building. The zones are
sorted and grouped according to their ground-truth AHU data on the y-axis. The x-axis shows
the 4 different perturbation experiments, Pi is the perturbation experiment for AHU i.

zones were seldom occupied and had control parameters set to never maintain a reasonable zone
temperature. Our perturbation experiment had little effect on those zones.

4.6 Conclusion
We showed a novel algorithm to infer functional relationships between HVAC components of
large commercial buildings. Our technique does not impact the occupants of the building under
perturbation, and is able to identify the required relationships correctly in 80% of the cases.

41

Chapter 5

Designing BRICK- A Combined, Unified
Metadata Schema

Designing a comprehensive schema for all IoT sensors in order to run any possible application
in any context is a difficult problem. Instead, we focus on creating an information exchange
platform that is focused on commercial buildings where interactions among devices and people
are core to sophisticated applications. In building such a platform, we are guided by the sensors,
attributes and relationships that have been shown to be useful in the published literature with a
view towards composability and extensibility as laid out in Section 2.4. Our schema — Brick,
is evaluated on the same empirical criteria, which we restate here:

• Completeness: Can Brick represent all the sensor metadata information (such as a sen-
sor’s location, type, etc.) contained in a building’s BMS?
• Expressiveness: Can Brick capture all important relationships between sensors that are

(a) (overtly or tacitly) mentioned in a building’s BMS, and (b) expressed in canonical
smart-building applications in published academic literature?
• Usability: Can Brick represent the information in a way that is easy to use for both the

domain expert and the application developer? Can the schema provide support automation
with machine readable data formats and querying tools?

Brick builds upon prior work in several ways. We utilize the tagging concept of Haystack
and extend it with mechanisms to model relationships and entities. We use the location concepts
from IFC. We use a semantic representation to utilize its flexibility and extensibility proper-
ties. The semantics allows us to formalize, restrict, and verify the usage of tags, entities, and
relationships.

Our design of Brick is grounded by the information from BMS across five buildings spread
across two continents, comprising more than 615,000 sq-ft of floor space and more than 15,700
data points, whose BMS systems were set up by different vendors, and have vastly varying sub-
systems and sensors. We further refine our design requirements using eight canonical building
applications that require integrated information across commonly isolated building subsystems:
HVAC, lighting, spatial and power infrastructure.

42

AHU Power	Meter

Supply	Fan

Lighting	Controller

HVAC	ZONE

VAV
Lighting	Zone

Damper

Return	Fan

Thermostat
Temperature
CO2	Sensor

Room	102Room	101

Supply	AirReturn	Air

Figure 5.1: A simple example building that highlights the components to be modeled in a build-
ing schema.

We demonstrate that 98% of BMS data points across our five buildings can be mapped to
Brick, and our eight applications can easily query the mapped building instances for required
information. We open source the Brick schema files, the BMS metadata from our buildings,
the application queries that run on top of Brick and tutorials on how to map existing building
metadata to Brick. Brick was developed in collaboration with researchers at UC San Diego,
UC Los Angeles, CMU, IBM Research in Ireland, University of Virginia, Southern Denmark
University and UC Berkeley [23].

5.1 An Example Building - Sensors and relationships
We start with a hypothetical building to understand the requirements of uniform building data
representation, outlining the current state of the art. Figure 5.1 shows the major components
of this building that are of interest: an Air Handler Unit (AHU) supplying conditioned air to a
Variable Air Volume Box (VAV), which modulates the air provided to an HVAC zone consisting
of two rooms. The HVAC zone has a thermostat that contains a temperature and CO2 sensor.
The same two rooms are part of a Lighting Zone, and the building Lighting Controller controls
the zone lights based on a schedule. We model the HVAC and lighting systems as examples

43

because these are the systems commonly found in a modern BMS.
At the very minimum, a schema should be able to model the components illustrated in Fig-

ure 5.1 as well as their relevant points such as temperature sensors and their related control
parameters. More realistically, we should be able to model diverse infrastructure systems such
as HVAC, lighting, water, and express the specifics of each installation as per end use and ven-
dor requirements. For example, the AHU in an HVAC system can consist of equipment such
as fans, pumps, heat exchangers, humidifiers, valves and dampers. Each component could have
further types, e.g., fans can have types: supply fan, return fan, exhaust fan, and each fan would
have its associated sensors measuring its speed, air flow and power consumption. In addition
to this heterogeneity, the vendor may choose not to install certain sensors, or to expose esoteric
data points whose functionality is unclear to others.

5.2 Schema Design

5.2.1 Design Principles
Brick’s design focuses on the metadata and data points found in real building deployments and
requirements defined by end use applications. We obtain ground truth information from five
diverse buildings across the US and Europe, which have 15,700 data points and five different
vendors in total (Table 5.4). We pick eight popular applications from the list of smart building
applications compiled by Bhattacharya et al. [39], and formulate metadata queries for these
applications to drive the basic requirements of Brick as well as evaluate how well our building
metadata can be mapped to Brick. Section 5.5 contains our initial findings for the five buildings
evaluated thus far.

We have used terminology and organized the basic concepts in a way that is consistent with
BMS deployments in our buildings and the vocabulary used by the building managers at our
respective institutions. We follow standard ontology design methods so that developers can
leverage available tools for data formatting (e.g., Turtle [9]) and querying (e.g., SPARQL [7]).

5.2.2 Tags and Tagsets
We borrow the concept of tags from Project Haystack [4] (Section 6.2.4) to preserve the flexi-
bility and ease of use of annotating metadata. We enrich the tags with an underlying ontology
that crystallizes the concepts defined by the tags and provides a framework to create the hierar-
chies, relationships and properties essential for describing building metadata. With an ontology,
we can analyze the metadata using standard tools and place restrictions to prohibit arbitrary tag
combinations or relationships. For example, we can restrict the units of temperature sensors to
Fahrenheit and Celsius.

We introduce the concept of a tagset that groups together relevant tags to represent entities.
With Haystack and related tagging ontologies [49], an entity such as zone temperature
sensor from Figure 5.1 is defined by its individual tags, so its properties and relationships

44

Relationship / Inverse Transitive? Definition Endpoints

contains / isLocatedIn Yes A physically encapsulates B
Loc. / Sensor
Loc. / Equip.

controls / isControlledBy No A determines or affects the internal state of B Function Block / Equip.

hasPart / isPartOf Yes A has some component or part B (typically mechanical)
Equip. / Sensor
Equip. / Equip.
Loc. / Loc.

hasPoint / isPointOf No A is measured by or is otherwise represented by point B
Equip. / Sensor
Loc. / Sensor

feeds / isFedBy Yes A “flows” or is connected to B
Function Block / Equip.
Equip. / Equip.

hasInput / isInputOf No Function A has an input B Function Block / Sensor
hasOutput / isOutputOf No Function A has an output B Function Block / Sensor

Table 5.1: List of the Brick relationships and their definitions. All definitions follow the form
A <relationship> B, where relationship is the first one listed, not the inverse. All
Brick relationships are asymmetric, and transitive where marked. If a relationship→ is transi-
tive, then if A → B and B → C, then A → C is a valid relation. Asymmetric simply means
that if A→ B, then B → A is invalid.

with other entities can only be specified at the tag level. With tagsets, we have a cohesive con-
cept of a zone temperature sensor, and we can specify that the temperature is main-
tained between its cooling setpoint and heating setpoint. The concept of tagsets
works well with an ontology class hierarchy - a zone temperature sensor is a subclass
of a generic temperature sensor, and will automatically inherit all its properties. Fur-
ther, we avoid use of complex tags such as chilledWaterCool and hotWaterReheat in
Haystack. The vocabulary of Brick is defined by its list of tagsets.

5.2.3 Class Hierarchies
We define several high level concepts that provide the scaffolding for Brick’s class hierarchy.
As the central emphasis of our design is on representing points in the BMS, we introduce Point
as a class, with subclasses defining specific types of points: Sensor, Setpoint, Command, Status,
Alarm. Each point can have several attributes, and we divide them into properties and rela-
tionships. Properties are attributes that provide specifics about the point: units, data type, etc.
Relationships are attributes that relate the data point to other classes: its location, equipment it
belongs to, etc.

We define three concepts as high level classes to which a Point can be related to: Location,
Equipment and Measurement (Figure 5.2). We can expand these concepts in future versions
to expand the metadata covered by Brick (e.g. Network, People). Each concept has a class
hierarchy to concretely identify each entity in the building. For example, the Equipment class
has subclasses HVAC, Lighting and Power, each of which have their own subclasses. Figure 5.3
showcases a sample of Brick’s class hierarchy.

It is common in a domain to use multiple terminologies for the same entity. For example, in
HVAC systems, Supply Air Temperature and Discharge Air Temperature are
used interchangeably. We identify these synonyms from our ground truth buildings, and mark

45

Point

Location

Measurement

Equipment

Legend

Class

Relationship

isPointOf,
isPartOf

measures

isPointOf,
isLocatedIn

isPartOf isPartOf,
feeds

feeds
isLocatedIn

Figure 5.2: Information concepts in Brick and their relationship to a data point.

Figure 5.3: A subset of the Brick class hierarchy

the corresponding tagsets as being equivalent classes in Brick. Note that the class hierarchy
does not strictly follow a tree structure, and we use multiple inheritance when appropriate. For
example, a desk lamp can be a subclass of both the lighting system and office appliance classes.

46

5.2.4 Fundamental Relationships
Relationships connect the different entities in the building and are essential to providing ade-
quate context for many applications. For example, an HVAC fault detection app running on
our example building (Figure 5.1) needs to know the room in which the temperature sensor is
located, the corresponding temperature setpoint and the status of the VAV that supplies condi-
tioned air to this room.

Table 5.1 defines the basic set of relationships in Brick. We have designed these relationships
to be minimal, multipurpose and intuitive so that it is easy for a user to specify a particular
relationship. The isPartOf relationship is designed to capture the compositions among the
entities in the building. For example, a room isPartOf a floor, an AHU isPartOf the
HVAC system. The feeds relationship captures the different flows in the building - flow of
air from AHU to VAV, flow of water from a tank to a tap or flow of electricity from a circuit
panel to an outlet. Each of these relationships can have sub-properties. For instance, feeds can
be extended to feedsAirTo, feedsWaterTo, etc. Figure 5.4 shows the relationships for a
subset of example building in Figure 5.1.

The Brick schema includes possible relationships among classes as a guideline for users
to add relationships to their instances. For example, using ontology class restrictions we say
that a VAV can have points like zone temperature sensor, discharge air flow
setpoint, reheat valve command, and it can have other equipment as its components
such as damper and reheat valve. These can be exploited by a user interface to guide
users while tagging raw metadata or while establishing relationships between entities. Note that
we do not enforce these restrictions to enable the flexibility to compose building metadata as per
user requirements.

5.2.5 Function Blocks
The tags, tagsets, class hierarchies and fundamental relationships provide sufficient expressive-
ness to describe our building metadata and direct relationships. However, buildings equipment
and points are often grouped by multiple logical views such as control view.

We use Function Blocks to encapsulate details of such logical groups that expose an interface
through named inputs and outputs. These are defined through isInputOf and isOutputOf
relations to the particular function block acting as context. Function Blocks may encapsulate
other Function Blocks via the isPartOf relation.

Consider a heat exchanger as an example: a heat exchanger is an equipment that transfers
heat between two fluid (air/water/steam) flows – a primary and a secondary. The primary is
intended to heat or cool the secondary. It may be considered a simple piece of equipment with
primary input, primary output, secondary input and secondary output. The primary input feeds
the primary output, and it transfersHeatTo the secondary output.

A heat exchanger can be defined as a subclass of a function block and modeled as illustrated
in Figure 5.5. Notice how the instance objects receive relations through the class they are in-

47

Temperature	
Sensor

VAV

Room
101

HVAC	
Zone

AHU

Damper

hasPoint
hasPoint

hasPart

feeds

feeds

Point Equipment Location RelationshipLegend

Lighting
Zone

Lighting
Controller

Power
Meter

hasPart

Room
102

hasPart
hasPart

controls

hasPoint

Figure 5.4: Brick classes and relationships for a subset of the example building in Figure 5.1.

stance of. Similarly, more complex equipment, like VAVs, can be constructed as function blocks
and manipulated at this level.

5.3 RDF and SPARQL
Brick represents knowledge as a graph of entities (nodes) connected by relationships (directed
edges). This section briefly describes how Brick uses the RDF format to represent its knowledge,
and how this knowledge is traversed and queried using SPARQL.

5.3.1 Representing Knowledge in RDF
Brick adheres to the RDF (Resource Description Framework) data model [148], which repre-
sents knowledge as a graph expressed as tuples of subject-predicate-object known as triples.
All buildings in Brick consist of a collection of such triples. A triple states that some subject
entity has some relationship predicate to some other entity object — essentially a directed edge
in a graph. This simple structure enables the succinct and elegant composition of the large,
interconnected structures typical of building subsystems.

All entities and relationships exist in some namespace, indicated by a namespace: prefix.
Brick takes advantage of the standard RDF [5], RDFS [6] and OWL [3] namespaces, which
come with their own graphs defining entities, relationships and restrictions.

48

Class Instance feeds transfersHeatTo instanceOf

building hot water supplybuilding hot water return

campus hot water supplycampus hot water return

Primary Output

Secondary OutputSecondary Input

Primary Input

Figure 5.5: An example of a heat exchanger modeled in gray as a function block.

1 example:myVAV rdf:type brick:VAV
2 example:myTempSensor rdf:type brick:Zone_Temperature_Sensor
3 example:myVAV brick:hasPoint example:myTempSensor

Figure 5.6: RDF triples instantiating a VAV and a Temperature Sensor and declaring that the
VAV measures temperature via that sensor.

The collection of triples in Figure 5.6 gives the representation of the connection of the VAV to
the Temperature Sensor using the hasPoint relationship from the building graph in Figure 5.4.
Line 1 declares an entity identified by the label example:myVAV: this creates the myVAV
entity in the example namespace. All entities are implicitly created the first time they are
mentioned. brick:VAV is a class defined by the Brick ontology that represents a variable
air-volume box. The use of the rdf:type relationship declares that example:myVAV is
a brick:VAV. Similarly, line 2 of Figure 5.6 instantiates a Zone Temperature Sensor. Line 3
uses the Brick relationship brick:hasPoint to declare that example:myVAV is associated
with the given temperature sensor.

5.3.2 Querying Knowledge with SPARQL
Applications query the Brick graph for entities and relationships using SPARQL (SPARQL

Protocol and RDF Query Language) [7]. SPARQL queries specify constraints and patterns of
triples, and traverse an underlying RDF graph to return those that match. For Brick applications,
this underlying graph consists of all the entities and relationships in that building.

While SPARQL has many features, Brick is simple enough to support all of our intended
applications with a simple subset of SPARQL. Figure 5.7, a query for retrieving all rooms which

49

1 example:myVAV rdf:type brick:VAV
2 example:myTempSensor rdf:type brick:Zone_Temperature_Sensor
3 example:myVAV brick:hasPoint example:myTempSensor

Figure 5.7: A simple SPARQL query for retrieving all rooms connected to a given Air Handling
Unit (AHU).

are connected to a given AHU, contains a representative example of each of these features.
Lines 1-3 declare the prefixes for the various namespaces to shorten the references to entities;

for length, we omit these from all later queries in this work. Line 4 contains the SELECT clause,
which states that the variables ?ahu and ?room should be returned (the ? prefix indicates a
variable). The WHERE clause determines the types and constraints on these variables. Line 6
states that ?zone is any entity in the graph that is an instance of the class brick:HVAC_Zone.
Likewise, line 7 declares ?room to be an instance of a brick:Room.

Brick provides both generic (such as AHU) and specific classes of equipment (such as a
RoofTop-Unit AHU). A building represented in Brick can specify the specific subclasses, or
if that information is not available, instantiate a generic class. Line 8 is a common construct
in Brick queries which accounts for this type of uncertainty in how Brick represents buildings.
This sub-query returns all entities ?ahu that are either an instance of a subclass of brick:AHU
or an instance of brick:AHU itself.

An application that does not require specific features of such subclasses may want to query
for the generic class rather than exhaustively specify every possible subclass. Because SPARQL
and RDF do not support the object-oriented programming style of classes, the SPARQL query
itself must specify the semantics of the type-inheritance: entities that instantiate the generic class
directly, or entities that instantiate a subclass of the generic class.

After declaring the types of the entities involved, the query restricts the set of relationships
between the entities on lines 9 and 10 to determine which pairs of entities are connected. Line 9
finds all HVAC zones downstream of a particular AHU by following a chain of brick:feeds
relationships (the + indicates that 1 or more edges can be traversed as long as the edges are of
type brick:feeds). Line 10 links the identified HVAC zones with the rooms they contain.
The correct relationships to use can be determined from the Brick relationship list (Table 5.1).

This example query also illustrates an important quality of Brick queries: establishing a
link between two entities (even across different subsystems such as HVAC and spatial) does not
require explicit knowledge of all intermediary entities. Rather, the query denotes the relevant
entities and relationships: the query in Figure 5.7 is indifferent to whatever building-specific
equipment and details lie between an Air Handler Unit and the end zones. This is possible
because the relationships between those entities all use Brick’s brick:feeds relationship.
What’s more, the query accomplishes this using only a few, straightforward expressions to return
the relevant triples from the collection of thousands of entities and relationships present in the
building.

50

5.4 Applications
In this section, we construct this set by pulling a representative example from each of the eight
common application dimensions identified in Section 2.4, specifically in Table 2.1. We deter-
mine the effectiveness of the schema to be how many of these entities and relationships it can
capture.

Entities O
cc

up
an

cy
M

od
el

in
g

[1
28

]

E
ne

rg
y

A
pp

or
tio

nm
en

t[
12

3]

W
eb

D
is

pl
ay

s
[2

5]

M
od

el
-P

re
di

ct
iv

e
C

on
tr

ol
[2

08
]

Pa
rt

ic
ip

at
or

y
Fe

ed
ba

ck
[1

43
]

Fa
ul

tD
et

ec
tio

n
an

d
D

ia
gn

os
is

[1
98

]

N
IL

M
[1

53
]

D
em

an
d-

R
es

po
ns

e
[2

23
]

Sensors
Temp Sensor X X
CO2 Sensor X
Occ Sensor X X X
Lux Sensor X X

Power Meter X X X X X X
Airflow Sensor X

Equipment
Generic X X

HVAC X X X X
Lighting X X X

Reheat Valve X X
VAV X X

AHU X X
Chilled Water X X

Hot Water X X
Locations

Building X X
Floor X X X

Room X X X X X X
HVAC Zone X X X

Lighting Zone X X
Relationships

Sensor isLocIn Loc. X X X X
Equip isLocIn Loc. X X X X

Loc. hasPart Loc. X X X
Loc. hasPoint Sensor X X X X X

Equip hasPoint Sensor X X X X X
Equip hasPart Sensor X X X X

Equip feeds Zone X X X
Equip feeds Room X X X
Equip feeds Equip X X X

Zone hasPart Room X X X

Table 5.2: This table shows at a high level which entities and relationships are required by each
of the eight representative applications.

51

5.4.1 Designing Relationships
We use these representative applications to establish the set of required relationships as well as
the domains of those relationships. Relationships define how entities are associated, which for
a given entity may include:

• Taxonomy: what class or classes of things define an entity
• Location: which building, floor and room an entity is in, but also where in the room it is
• Equipment Connections: what equipment an entity is connected to, and how it is con-

nected
• Equipment Composition: what equipment an entity is a part of, or what equipment is a

part of it
• Subsystem: how the entity is situated in a building subsystem such as HVAC, Electrical

or Lighting
• Monitoring: what measures the entity or what it measures

Portability and orthogonality are two primary concerns in designing the set of relationships
to include in an effective ontology. When describing or reasoning about a building, the set
of possible relationships between any two entities (i.e. set of named edges between any two
nodes) should be small enough and well-defined such that the “correct” relationship should be
obvious. This orthogonality reduces the possibility of inconsistency across buildings. Taken
to its extreme, orthogonality informs a set of relationships that are specific and non-redundant,
which can lead to overfitting the set of relationships for a particular building or subsystem. To
support the goal of designing a unified metadata across many buildings, these relationships must
also be sufficiently generic to be portable to many buildings.

Resolving these two tensions leads to the set of relationships listed in Table 5.1. We demon-
strate here that this set of relationships is sufficient to cover the requirements of the representative
applications. The specific entities and relationships each application requires are listed in Ta-
ble 5.2. We implemented the eight applications in Table 5.2 and ran them on the five buildings;
the results are collated in Table 5.3. The actual points exposed for each building by the BMS
are the primary limiting factor for whether or not each application runs on a building: if a BMS
exposes no lighting points, then a lighting application cannot run. In addition, applications have
to account for the diversity of points across buildings: Brick defines synonym tagsets where
possible, but there will always be a degree of disambiguation that is application-specific.

Brick allows applications to write portable queries that identify relevant resources in a
building-agnostic manner. An application can then adapt its behavior to the set of returned
resources, likely using some API to interact with the required points. For this reason, we imple-
ment each of the applications as a set of SPARQL queries that return the set of relevant entities
and relationships.

52

Building
Application Soda EBU3B GTH GHC Rice
Occupancy [128] 232 244 139 366 11
Energy Apportionment [123] - - 302 - 4
Web Displays [25] 513 697 81 65 106
MPC [208] 482 482 69 428 110
Participatory Feedback [143] - - 253 - -
FDD [198] 136 229 12 229 -
NILM [153] - 6 82 - -
Demand Response [223] 144 1428 24 2490 4

Table 5.3: Number of matching triples in each building for the SPARQL queries consisting the
eight applications. A non-zero number indicates that the application successfully ran on the
building. Buildings with ‘-’ did not have any relevant points exposed in the BMS.

1 example:myVAV rdf:type brick:VAV
2 example:myTempSensor rdf:type brick:Zone_Temperature_Sensor
3 example:myVAV brick:hasPoint example:myTempSensor

Figure 5.8: ZonePAC query for airflow sensors and rooms for VAVs. The query returns all
relevant triples for ZonePAC to bootstrap itself to a new building.

5.4.2 Results
We implement eight applications — one from each of the application categories in [39] —
as a set of SPARQL queries identifying the relationships in Table 5.2. These queries do not
contain the full operating logic of the application, but rather serve as a bootstrapping step for the
application to discover the set of available and relevant resources. Table 5.3 contains the results
of running these queries over the five buildings for each of the applications.

The applications that ran on the majority of buildings did so because they rely on HVAC
and construction/spatial information readily exposed by the BMS. This includes VAVs, AHUs,
HVAC zones, relevant sensors, and how these connect to each other. The Participatory Feedback
application operates entirely on lighting controls, which rarely appear in a BMS, thus limiting
its portability. Likewise, the NILM application relies on power meters, which also may not be
integrated into the BMS.

The primary challenge in developing portable queries was accounting for the variance in
relationships across buildings. For example, a zone temperature sensor may have either of
the two connections indicated in Figure 5.4: it may have an isPointOf relationship with an
HVAC zone entity or a VAV entity. These inconsistencies arise from differences in building
construction and the representation of the points in the BMS. It is possible to account for these
differences in SPARQL to construct truly portable queries.

5.4.3 Example Application: ZonePAC

53

The ZonePAC [25] application incorporates monitoring and modeling of HVAC zone be-
havior and power usage with occupant feedback to provide a platform for occupants to directly
contribute to the efficacy and efficiency of a building’s HVAC system. ZonePAC requires the
following relationships:

• the mapping of VAVs to HVAC zones and rooms
• the heating and cooling state of all VAVs in the building
• the mapping of VAV airflow sensors to rooms
• all available power meters for heating or cooling equipment

Immediately, the requirements of this application outstrip the features provided by other
metadata solutions. ZonePAC needs to relate entities across subsystems typically isolated or
ignored in modern BMS: the spatial construction of the building, the functional construction of
the HVAC system, and the positioning of power meters in that infrastructure. Brick simplifies
this cross-domain integration and makes it possible to retrieve all relevant information in a few
simple queries.

To identify the airflow sensors and rooms served for each VAV, the application uses the
query in Figure 5.8. The application uses Brick’s synonyms to capture both Discharge Air
Temperature Sensors as well as Supply Air Temperature Sensors. Airflow
sensors have an isPointOf relationship with the VAVs, and the rest of the relationships in
the application mirror those in Figure 5.4. The “Web Displays” row of Table 5.3 contains the
results of running ZonePAC over the five buildings.

5.5 Case Studies
We showcase the effectiveness of our schema by converting five buildings with a wide range
of BMS, metadata formats, and building infrastructure into Brick. We discuss the challenges
faced in converting various buildings into Brick to demonstrate Brick’s robustness as well as to
provide guidance for those facing similar challenges when using Brick.

Table 5.4 contains a summary of the construction and infrastructure of the five buildings,
and how well Brick was able to capture their exposed BMS points. To evaluate the effect of
“overfitting” Brick’s tagsets to the set of known BMS points, we examined the % of BMS points
covered by Brick’s tagsets for Rice Hall and Soda Hall both before and after we incorporated
their specialized points into Brick. Using an unaltered Brick, we matched 93.5% and 93.1%
of Rice and Soda Hall’s BMS points respectively. After incorporating the BMS-specific points,
they scored 98.5% and 98.7% respectively, using Brick’s class hierarchy to avoid compromis-
ing generalizability. Thus, we can conclude that Brick’s tagsets do not overfit the set of five
buildings. Examining Table 5.4, we can see that Brick matches the majority of points in all five
buildings.

54

Building Name Location Year Size (ft2) # of Points % Tagsets Mapped # Relationships Mapped
Gates Hillman Center (GHC) Carnegie Mellon Univ., Pittsburgh, PA 2009 217,000 8,292 99% 35,693
Rice Hall Univ. of Virginia, Charlottesville, VA 2011 100,000 1,300 98.5% 2,158
Engineering Building Unit 3B (EBU3B) UC San Diego, San Diego, CA 2004 150,000 4,594 96% 8,383
Green Tech House (GTH) Vejle, Denmark 2014 38,000 N/A N/A N/A
Soda Hall UC Berkeley, Berkeley, CA 1994 110,565 1,586 98.7% 1,939

Table 5.4: Case Study Buildings Information. GTH does not expose any BMS points, so
numbers are not available.

5.5.1 Gates Hillman Center at CMU
The Gates and Hillman Center (GHC) at Carnegie Mellon University is a relatively new building,
completed in 2009, with 217,000 square feet of floor space, 9 floors, and 350+ rooms of various
types (offices, conference rooms, labs), and contains over 8,000 BMS data points for various
HVAC sensors, setpoints, alarms, and commands. CMU contracts with Automated Logic for
building management.

The GHC includes 11 AHUs of different sizes serving multiple zones: three small AHUs
serve one giant auditorium, one big laboratory and three individual rooms respectively. Eight
large AHUs supply air to more than 300 VAVs. GHC’s HVAC system also contains computer
room air conditioning (CRAC) systems which are equipped with additional cooling capacity to
maintain the low temperature in a computer room and fan coil units systems to provide cool-
ing and ventilation functions. Despite the existence of these more esoteric subsystems, Brick
matched 99% of GHC’s BMS points, with the remaining points being too uncommon to be re-
quired by most applications (such as a Return Air Grains Sensor which measures the
mass of water in air). The direct translation of BMS tags into Brick was relatively simple, only
requiring a mapping between the human-readable BMS data points and Brick for each unique
data point type.

The major challenge in converting the GHC to Brick was determining the relationships be-
tween pieces of equipment, which were not encoded in the BMS’s labels. While the information
is available through an Automated Logic GUI representation of the building, there was no ma-
chine readable method of understanding which VAV was related to which AHU. This required
examining the building plans directly to incorporate these relationships (of which there were
over 400). While a barrier to generating a Brick representation of a building, this example also
shows the benefits that such a representation provides. Instead of being reliant upon manually
examining a GUI to determine relationships between equipment, the Brick representation shows
these relationships in both human and machine readable formats once represented in Brick.

5.5.2 Rice Hall at UVA
Rice Hall hosts the Computer Science Department at the University of Virginia. The building
consists of more than 120 rooms including faculty offices, teaching and research labs, study
areas and conference rooms distributed over 6 floors with more than 100,000 square feet of floor
space. The building contracts with Trane for building management.

55

Rice Hall contains 4 AHUs associated with more than 30 Fan Coil Units (FCU) and 120
VAVs serving the entire building. Besides the conventional HVAC components, the building
features several different new air cooling units, including low temperature chilled beams and
ice tank-based chilling towers, an enthalpy wheel heat recovery system, and a thermal stor-
age system. The building also contains a smart lighting system including motorized shades,
abundant daylight sensors and motion sensors. Rice Hall’s BMS points are easily interpretable
for conversion to Brick despite it containing some uncommon equipment such as a heat recov-
ery and thermal storage systems, as part of the building design as an energy-efficient “living
laboratory”. Moreover, the set of relationships defined by Brick sufficiently captured how the
uncommon equipment related to other components of the HVAC system.

A few of these points, such as Ice Tank Entering Water Temperature Sensor,
are specific to Rice Hall among the set of five buildings we examined. Nonetheless, Brick’s
structure allows for the clean integration of new tagsets into the hierarchy without disrupting the
representation of existing buildings.

5.5.3 Engineering Building Unit 3B at UCSD
The Engineering Building Unit 3B (EBU3B) at University of California, San Diego hosts the
department of Computer Science and contains offices, conference rooms, research laboratories,
an auditorium and a computer room. The building was constructed in 2004 and has 150,000
square feet of floor space with over 450 rooms. The BMS of EBU3B is provided by Johnson
Control Inc., and contains more than 4500 data points, most of which belong to the HVAC
system and power metering infrastructure.

The HVAC system consists of a single AHU that supplies conditioned air to 200+ VAV units
and some FCUs. There is a CRAC system serving the computer room and there are exhaust
fans for all kitchens and restrooms. The HVAC system also consists of Variable Frequency
Drives (VFD), valves, heat exchangers and cooling coils to facilitate operation of AHU and
CRAC. Brick’s schema provides the necessary tagsets and relationships to account for all of
these components and their data points. The university central power plant provides the hot
and cold water necessary for the HVAC and domestic hot water system. The corresponding
sensors that measure the hot and cold water use were modeled in Brick, but the central plant
was left out as it was not part of the building. The building contains meters that measure power
consumption of various subsystems: lighting, computer room, HVAC system and elevator. The
meters were associated to the corresponding systems with isPointOf relationship as required
by the applications.

An issue that arose in mapping EBU3B to Brick was that the AHU supply air was divided
into two parts that supplied air to two wings of the building. Brick currently does not provide
a means to model this division of supply air which has proven relevant to the diagnosis of
various faults. Moving forward, Brick can address this by modeling the AHU discharge air as
a resource, which can also help model other concepts such as cold water supply from a central
plant. Alternatively, the discharge air can be attributed to the cooling coil that modulates its
temperature, and the cooling coil can be said to feed discharge air to the terminal units.

56

Additionally, EBU3B’s BMS contains data points corresponding to Demand Response events,
which exposes an interesting conflation of the representation and operation of the building. Be-
cause BMS are typically written as monolithic applications over building-specific representa-
tions, they must incorporate external signals such as Demand Response into the set of BMS
points. Conversely, Brick decouples the resources and infrastructure of a building from the
processes managing the building.

5.5.4 Soda Hall at UC Berkeley
Soda Hall, constructed in 1994, houses the Computer Science Department at UC Berkeley. It
comprises mostly of closed small to medium sized office spaces, where either faculty or groups
of graduate students sit. The BMS system, provided by the now-defunct Barrington Systems,
exposes only the sensors in the HVAC system.

The HVAC system of the building runs on pneumatic controls, and comprises 232 thermal
zones. The zones on the periphery of the building have VAVs with reheat, while the other zones
do not. For a VAV with reheat, the same control setpoint indicates both the amount of reheat and
the amount of air flowing into a zone, by using a proprietary value mapping mechanism. While
the value mapping is building-specific, Brick can express the fact that the same sensor controls
both the reheat and air flow by labeling the point as a subclass of both reheat and airflow tagsets.
The logic for communicating with the point correctly would be handled by some other system;
Brick simply identifies the available points.

Unique to the set of buildings presented here, the operational set of Soda Hall’s HVAC com-
ponents is not static. Soda Hall contains a redundant configuration of chillers, condensers and
cooling towers. At any point of time, one of each of these systems is operational, while the others
are kept as hot standby. An isolation valve setpoint indicates which of the redundant subsystems
is currently operating. Brick completely expressed the redundant subsystem arrangement, but
the equipment contained several unique points such as On Timer for the chiller subsystem that
had to be added to Brick’s tagsets.

5.5.5 Green Tech House
The Green Tech House (GTH), constructed in 2014, is a 38,000 square feet office building that
houses a range of organizations and companies with different business purposes. It is a three-
story building containing 50 rooms comprising office spaces, a cafeteria, meeting rooms and
bathrooms. GTH’s BMS limits our access to a subset of the available points, so calculations of
how well Brick covered the points (Table 5.4) are not applicable.

GTH’s BMS exposes some lighting points, but has a substantially different HVAC system.
The HVAC system heats air centrally in order to distribute air to zones with cooling capabilities.
Although the building documentation don’t refer to groups of equipment as AHUs or VAVs,
equivalents are present.

A single AHU recovers heat from the return air using a rotary heat exchanger. This heat
exchanger is the first in a cascade of two between outside air and supply air. Outside and return

57

air are never mixed. The pressure of return and supply air of the north and south side of the
building are measured separately.

AHU heating relies on the second heat exchanger which uses a hot water loop. Additionally,
most rooms have either radiators or floor heating. These are supplied by independent hot water
loops, heated by district heating.

The main challenge in converting GTH’s points to Brick was accounting for the acute differ-
ence in infrastructure compared to Brick’s construction. The current version of Brick assumes
that an HVAC system contains VAVs and AHUs, which is not strictly true for GTH. For the pur-
poses of running Brick applications, we mapped GTH’s HVAC components onto Brick’s model;
however, this is not an ideal solution. It is not Brick’s goal to disguise the construction of build-
ing subsystems, but rather to abstract away the intricacies of subsystem composition between
buildings. Future versions of Brick will account for such variation in subsystem equipment and
construction.

5.6 Discussion
This chapter has addressed an important open problem that was referenced in [26, 39, 40, 95,
118] — Can there be a building metadata schema that is complete, expressive and usable? Com-
pleteness entails that the schema expresses the vast majority of the points found in large com-
mercial buildings that facilities managers thought worthy to include in the BMS tags, as well
as the points and relationships necessary for important building applications. Expressiveness
entails that the schema’s namespace is well-defined, and one can implement applications using
it rather than using the ad-hoc namespace of the particular building. Usability entails that the
schema is understandable, and the total amount of work required to convert the existing build-
ings into the schema is limited and bounded, and can perhaps be automated at a reasonable scale
using solutions such as [26] and [40].

We have defined a schema, Brick, that we believe is a strong candidate to solving this open
problem. Brick builds upon prior work and introduces a number of novel concepts that we
believe adresses this open problem. Brick uses clear tags and tagsets to specify sensors and
subsystems in a building. It defines an ontology and a class hierarchy for this list of tags and
tagsets. Relationships are represented as triples, which allows us to leverage existing tools to
build and query the resulting building representations. Brick proposes Functional Blocks to
abstract out complexity but also aid in system composition and hierarchies. Finally, Brick uses
the notion of synonyms to equate sensors and subsystems similar in function.

Brick is complete, capturing an average of 98% of BMS data points across five diverse build-
ings comprising almost 15,700 data points and 615,000 sq-ft of floor space. Brick is expressive,
successfully running eight canonical applications on these buildings. Four applications ran on
all five buildings, while the remaining applications ran on buildings whose BMS exposed the
requisite points. Brick is usable, as converting each of the buildings’ legacy metadata to the
normalized schema took no more than 20 man-hours. The resulting schema is understandable
and easy to query as shown in Figures 5.6, 5.7 and 5.8.

58

Brick tries to maintain orthogonality in describing tagsets and relationships, i.e. there should
be a single straightforward way to describe an entity, collection of entities and their inter-
relationships. The functional block model in Brick proves very helpful in abstracting out the
complexity and heterogeneity of particular subsytems in buildings, while aiding system compo-
sition and hierarchies. For instance, functional blocks’ easy replication, instantiation and com-
position can help Brick quickly specify the numerous VAV zones and its associated points in a
building. Functional blocks also help hide the subtle differences between complex subsystems
such as an AHU.

Brick distinguishes itself from other industry standards in the building-metadata domain by
virtue of its process of the production of open reference implementations on real buildings serv-
ing as a means of evaluating the effectiveness of the solution. Developing a reference standard
through such a process has been successful in other fields, most notably the IETF [8] for internet
protocols and algorithms. The code, schema, and reference implementations of all the buildings
in our testbed are available at [1].

We hope that our solution to this well-defined open metadata problem lays the foundation for
industry and academic collaboration to produce bonafide standards that could be transformative
in producing energy efficient buildings and portable applications.

59

Chapter 6

Enabling Non-Trivial Scalable Building
Applications

Transformation of the primitive metadata into a common metadata schema yields semantic re-
lationships between the sensors, and enable the development of applications which are portable
across the building stock.

The results of such analytics applications may be used to better inform the manual commis-
sioning, or equipment purchase process, and give the facilities manager insights into problems
plaguing a building. In this chapter, we describe a few applications that were run unmodified on
multiple commercial buildings.

6.1 Simple Diagnostics Applications
Our applications first searched for required sensors in a building, and if matching sensors were
found, it proceeded to perform operations on the corresponding data streams.

Rogue Zones: A thermal zone (or room) is rogue if its air temperature is constantly above
their required setpoints, i.e it requires constant cooling1. The air handling unit, in an effort to
cool these rogue zones down, tries to circulate as much cold air as it possibly can, leading to
energy wastage. Thus, rogue zones are an artifact of poor planning or wrong setpoints, and
can be rectified if brought to the attention of a building manager. To find the rogue zones in
a building, one needs to search for zone air temp sensors, and for each such sensor, find the
correspondingzone air temp setpoint, and check whether the temperature is always more than its
respective setpoint (factoring in a tolerance factor of 2F).

Inefficient Air Handling Units: A hot rogue zone may drive the air handler to supply air
that is too cold, resulting in other zones supplied by the same air handler always being too cold
and uncomfortable. It may be possible that fixing some rogue zones might result in other zones
being more comfortable. This application requires searching for the the air handling unit ID of
each rogue zone, and check if any of the other zones served by the same air handling unit was

1Such hot zones are often caused by server/electrical loads

60

Zone	 Avg	 	 (zone	 temp	 –	
zone	 setpoint)	

Air	 Handler	 Id	 Zone	 Temperature	
Setpoint	 (F)	

Avg	 Zone	 Temp	 (F)	

330B	 10.6	 1	 72	 82.6	

333	 5.5	 4	 72	 77.5	

288	 5.0	 1	 70	 75.0	

627	 53.8	 3	 70	 73.8	

342	 2.7	 1	 71	 73.7	

Zone	 Avg	 	 (zone	 temp	 –	
zone	 setpoint)	

Air	 Handler	 Id	 Zone	 Temperature	
Setpoint	 (F)	

Avg	 Zone	 Temp	 (F)	

340	 -‐2.7	 1	 75	 72.2	

544	 -‐3.4	 1	 75	 771.5	

180	 -‐3.5	 1	 75	 71.4	

300T	 -‐3.5	 4	 75	 71.4	

420A	 -‐3.6	 1	 75	 71.3	

678	 -‐4.0	 1	 72	 67.9	

444	 -‐4.1	 1	 72	 67.8	

384	 -‐4.3	 1	 74	 69.6	

530	 -‐4.5	 1	 75	 70.4	

682	 -‐4.6	 1	 72	 67.3	

626	 -‐4.9	 1	 75	 70.0	

405A	 -‐5.3	 1	 72	 66.6	

405B	 -‐5.9	 1	 72	 66.0	

300B	 -‐6.0	 1	 75	 68.9	

420	 -‐7.0	 1	 75	 67.9	

684	 -‐7.3	 1	 75	 67.6	

287	 -‐8.7	 1	 70	 61.2	

Hot Rogue Zones

Over-cooled Zones

Figure 6.1: List of hot and cold rogue zones generated through a scalable building efficiency
application on Building 1 in our testbed.

over-cooled (i.e constantly had a lower temperature than its corresponding setpoint factoring in
the a tolerance factor of 2F). This analysis fails to run on buildings where the metadata does not
provide enough information to associate thermal zones to its corresponding air handling unit.

61

Building	 Id	 Year	 of	
Construc4on	

BMS	 Vendor	 Num.	 of	 Sense	
Points	

Num.	 of	 Thermal	
Zones	

Num.	 of	 Hot	 Rogue	
Zones	

Num.	 of	 over-‐
cooled	 zones	

Num.	 of	 AHUs	 Num.	 of	 Inefficient	
AHUs	

1	 1994	 1	 1586	 201	 5	 17	 4	 2	

2	 2009	 2	 2522	 78	 2	 0	 NA	 NA	

3	 1961	 1	 367	 42	 28	 1	 2	 1	

4	 1968	 1	 132	 12	 1	 0	 2	 0	

5	 1941	 1	 417	 48	 8	 4	 6	 2	

6	 2007	 1	 6169	 368	 35	 5	 NA	 NA	

7	 NA	 1	 164	 8	 3	 0	 6	 0	

8	 1950	 1	 421	 20	 0	 2	 1	 0	

9	 1982	 1	 277	 9	 2	 0	 3	 0	

10	 1996	 1	 730	 57	 10	 0	 1	 0	

Total	 12813	 843	 94	 29	 25	 5	

Figure 6.2: Evaluation of our portable applications on all 10 buildings in our testbed. (AHU :
Air handling units)

Nighttime setback: To save energy, buildings may opt for more conservative temperature
and airflow setpoints during non-office hours and weekends. Absence of nighttime setbacks
helps identify a simple way to reduce building energy consumption. This analysis searches for
setpoints , e.g zone temp setpoints and verifies whether or not they had reported different data
values for office and non-office hours.

6.1.1 Applying Applications on One Building
We present a detailed of one of the buildings in our testbed — Building 1. Figure 6.1, shows
the result of our applications on Building 1. This building had more than 1586 sensors, 201
thermal zones and 4 air handling units. Three of the hot zones were served by Air Handler 1,
which resulted in a lot of over-cooled zones under the same air handler. We verified with the
facilties manager that zone 330B was a communications closet which produced a lot of heat.
Air Handling Unit 1 in a best effort to cool this zone down, was over-cooling a whole list of
other office spaces, resulting in the occupant discomfort and energy wastage. Also, as can be
seen from the table, none of the zones implemented NightTime Setback, which results in further
energy wastage.

6.1.2 Porting Application to Other Buildings
Table 6.2 shows the summary of the application of our portable applications on each of the 10
buildings in our dataset. The results show that presence of rogue zones irrespective of the age
or BMS of the buildings. Only one building (Building 2) implemented night-time setbacks. We
were able to identify two other buildings with the same inefficiency in air handling units as was
pointed out in Building 1. Our Identifying Inefficient Air Handling Units could not be run on two
buildings because the metadata did not contain enough information to capture the relationship
between zones and air handling units.

62

6.2 Occupancy Detection
Modern commercial buildings are instrumented with thousands of sensors sampling several
environmental parameters, including temperature, humidity, pressure, supply air velocity, and
damper and valve positions in various locations at regular intervals. These measurements are
communicated to a Building Management System (BMS), which monitors building operations
and controls indoor climate using nested control loops. Traditionally, most climate control sys-
tems use temperature and humidity as primary inputs in determining heating, cooling, and ven-
tilation requirements, assuming constant maximum occupancy [21]. A climate control system
that conditions rooms based on their actual usage is indeed more efficient; however, accurate
occupancy information is not normally available in a building, and existing approaches aiming
to incorporate occupancy into the control loops require retrofitting the building with numerous
sensors, which is intrusive, overly costly, and error prone given the scale.

Despite the lack of direct occupancy sensing in most commercial buildings, the large vol-
ume of data available through the centralized BMS provides ample opportunities to learn the
recurring occupancy pattern of each zone through analyzing the measurements of the variable
air volume system (e.g., the damper or reheat valve position sensor) that maintains the zone
temperature around its setpoint. The inferred occupancy patterns can be incorporated into the
scheduling of each zone, thereby optimizing the HVAC energy consumption. Additionally, ab-
normalities in the occupancy pattern of a zone over several weeks could potentially indicate a
wide range of equipment faults and operational inefficiencies, such as duct leakage, sensor drift,
stuck dampers, leaky valves, and improper setpoints, which can be located and addressed by the
facilities manager.

This work investigates the possibility of using scalable unobtrusive time series analysis tech-
niques to develop customized per-zone schedules (which dictate night-time setbacks) that incor-
porate a rough estimate of occupancy obtained from coarse-grained measurements of occupancy
indicative sensors available through the BMS. Specifically, we employ a step change detection
algorithm for identifying step edges of the occupancy indicative signal, which are then associ-
ated with occupancy start and end times, and consider the application of an empirical decom-
position technique for removing the effect of noise and other dominant factors. We evaluate the
efficacy of these techniques in three large commercial buildings in the United States and show
through simulations that huge energy savings can be obtained using simple schedules that can
be easily programmed into legacy HVAC systems. Should facilities managers want to further
increase the energy savings, we propose adaptive schedules that can track occupancy of each
zone for a given tolerance for occupant discomfort. This work was done in collaboration with
Omid Ardakanian [19].

63

6.2.1 Background and Feasibility
A large commercial building’s internal environment is comprised of multiple thermal zones2.
Each thermal zone typically has its own specific operating conditions and performance require-
ments, and these may vary across zones. For instance, a thermal zone housing a cluster of
servers might require low humidity, low temperature and high airflow conditions, whereas a
thermal zone comprising an occupant office might require low humidity, moderate temperature
and moderate airflow. The environment of each zone is controlled by a different control loop.

The major sources of heat gain and loss in a zone are — (a) heat gain from the presence
of occupants3, (b) heat gain from (possibly) periodic external sources such as solar irradiation,
(c) heat gain from internal sources such as servers, displays, incandescent lights, etc, and (d)
conduction heat transfer through the external building envelope, or through walls, floor, ceiling,
windows, and open doors. The Heating Ventilation and Air Conditioning (HVAC) system in
a building extracts or supplies the balance heating or cooling required to maintain the internal
environment of the thermal zone at its specified operating condition.

In this section, we give a short overview of the HVAC system in a building and its associated
sensors, how the internal environment of each thermal zone is maintained by various control
loops in conjunction with those sensors, provide an intuition as to why it is possible to extract
occupancy simply from the HVAC sensors, and make a case for using these occupancy estimates
to design smarter schedules to optimize building-wide energy consumption.

HVAC System

We study large commercial buildings whose HVAC system comprises central cooling and dis-
tributed reheat, which is common in moderate climates yet not universal. Such an HVAC system
typically consists of one or more Air Handling Units (AHUs), which supply cool air through
ductwork to a large number of Variable Air Volume (VAV) systems, each of which controls the
local environment of a thermal zone. If the zone requires cooling to balance the heat gained from
occupancy and external sources, the VAV units open its dampers to the required extent to allow
cooler air to flow into the zone. Conversely, if a zone requires heating to maintain its operating
point, the VAV units reheat the cold air by opening the reheat valve and passing the air through
reheat coils, which maybe simple electric heaters or pipes with hot water running through them,
before supplying it to a zone.

The heating or cooling action of a VAV unit is determined by a control loop, whose job it is to
maintain the temperature of a zone as close to its setpoint as possible, while maintaining the re-
quired minimum airflow for its size and occupancy, as specified in ASHRAE standards [21]. To
do this, the VAV control loop monitors the zone temperature, and actuates the air inflow/outflow
dampers and reheat valves of the VAVs. The Building Management System (BMS) typically

2A thermal zone may comprise a single room, multiple rooms, or may even span floors.
3The total heat generated by an average person per hour is 105Wh, almost equivalent of the heat produced by

a 100W light bulb [61].

64

Figure 6.3: Occupancy indicative sensor readings and the ground truth occupancy (shaded in-
tervals) of an office over 7 days.

logs the instantaneous values of the sensors and actuators associated with each of these subsys-
tems.

Impact of Occupancy on VAV Control

An entry of a human occupant raises the amount of heat load in a zone. This is due to the heat
dissipated from the human body as well as the heat generated by appliances that are used by
the occupant, collectively known as occupancy-induced loads. The VAV control loop for that
zone has to react to this change to maintain operating conditions either by reducing the amount
of reheat for the cold air supplying a zone, or by increasing the airflow into a zone. It is this
response of the HVAC system that our study aims to measure to determine a rough estimate
of when a zone was occupied, and design schedules, which work by implementing night-time
setbacks which widen the guard-band the zone temperature is allowed to float in, based on that
zone’s occupancy characteristics.

In every thermal zone, at least one sensor (e.g., reheat valve or damper position sensor) re-
flects this response to the heat load change when an occupant enters or exits the zone. We refer
to this sensor as occupancy indicative sensor and its readings constitute occupancy indicative
signal. Figure 6.3 illustrates the correlation between the reheat valve position and logged oc-
cupancy hours of an office during a week. The office has been occupied during regular office
hours, i.e., 8:00am–5:00pm, on all weekdays except for Monday which was a holiday. It can be
readily seen that the reheat valve position varies drastically as the occupancy state of the room
changes. In particular, the reheat valve closes to a certain extent when the room gets occupied
and opens once it becomes empty again, highlighting the potential for detecting occupancy from

65

the occupancy indicative signal. Note that the reheat valve also closes to a lesser extent on
nonworkdays; this can be attributed to conduction heat transfer and solar radiation.

Saving Energy Wasted due to Reheat

The AHU and VAV settings often lead to over-cooling of the zones they serve because of two
primary reasons. First, since each AHU supplies a large number of zones, the supplied air has
to be cooled sufficiently to offset the largest heat gain in the building in a reasonable amount
of time. Second, ASHRAE standards regulate the minimum amount of airflow that has to be
let into a zone at any point of time. To precisely control the temperature within a zone, VAVs
typically have reheat mechanisms which reheat the air so that the zone is not over-cooled.

This over-cooling of the air at central AHUs and subsequent reheating of the air at terminal
VAVs at all times, irrespective of occupancy, results in a huge wastage of energy, which could be
mitigated by shutting off the dampers or simply not reheating the air when there is no occupancy.
However, occupancy sensors are seldom deployed in all zones in legacy buildings, resulting in
VAVs and AHUs running on a static and fixed schedule, if any, which leads to huge energy
wastage. Hence, applying a schedule based on a rough estimate of occupancy could result in
substantial energy savings. Energy could also be saved by reducing flow into unoccupied zones,
permitting pressure and temperature resets at the AHU, which we do not evaluate in this work.

Challenges

Several confounding effects, such as solar radiation, equipment load, outside air temperature,
noise, and other transient effects, contribute to the change of heat load in a zone. Hence, the
effect of occupancy is not always pronounced in the occupancy indicative signal, making it
extremely difficult to estimate the exact occupancy state of a zone from this signal at a given
point in time. However, computing energy-efficient schedules only requires a rough estimate of
per-zone occupancy start and end times, which can be obtained using statistical techniques as
long as the zone occupancy pattern exhibits some periodicity and the heat emitted by occupants
is significant enough compared to the energy delivered by the HVAC system and other sources.
Moreover, the longer we observe these confounding effects in a zone, the easier it is for the
statistical techniques to weed them out. The occupancy indicative signal can also be passed
through a number of filters to remove the noise and other unwanted effects. We expand on these
ideas in Section 6.2.2.

6.2.2 Methodology
This section describes our methodology for assessing the potential of unobtrusive analytics to
obtain a rough estimate of occupancy at the level of individual zones despite the many sources
of noise in the underlying signals.

66

Testbed

To demonstrate and evaluate our techniques, we use a testbed comprising three large campus
buildings with Building Management Systems installed by different vendors, henceforth referred
to as Building 1, 2 and 3. These buildings contain 117, 109 and 270 zones, covering an area
of 110,565, 141,000, 305,641 sq.feet, respectively, and comprise mostly faculty and student
offices. The zones in these buildings contain respectively 2, 4 and 3 sensors (and multiple other
setpoints/command points). Buildings 2 and 3 have local VAV control with local reheat with
different sensors and setpoints devoted to controlling air flow and reheat, while Building 1 has
a pneumatically controlled VAV where one setpoint is used to control both local reheat and air
flow. The data from the zone-based sensors is collected at an approximate sampling rate of one
reading every 10 minutes. We run our analysis on three months of data collected between the
months of March and June. The occupancy indicative sensors used for the three buildings are
— (a) the single pneumatic control sensor in Building 1, (b) air flow sensor in Building 2, (c)
the reheat sensor in Building 3.

Existing Energy Saving Strategies

Building 2 implemented a setback strategy which allows the temperature to drift when the zones
are presumably empty. The nighttime setbacks were in effect every day from 7pm–5am during
the time that we were collecting sensor data. The other two buildings neither had a setback
strategy nor ran any other building-wide or zone-specific energy saving schedule, mostly due
to the critical function of only a small fraction of their zones. More specifically, a subset of
zones in Building 3 contain heat-generating equipment that operate uninterruptedly and have
strict temperature requirements. These zones are required to be conditioned at all times. Lack-
ing customized per-zone schedules, these buildings are extremely inefficient in terms of energy
consumption.

Ground Truth Data

In general, we expect that in a large building it will not be possible to groundtruth occupancy of
the many zones, but in developing the solution stratified sampling of occupancy is essential. To
this end, we manually log the occupancy hours of 7 private and shared offices over the period of
two weeks where these rooms are selected from our three buildings such that we have at least
one interior and one perimeter zone in each building. The occupants of each room are asked to
record on a daily basis the times that they come in and leave, and any time range in between
that the room had no occupancy for longer than an hour. In addition to the manual occupancy
logging, we have access to a security camera installed in a large lab with a lot of heat-generating
equipment. The occupancy hours of that lab are also extracted from the video recordings.

67

Distillation

Decomposition
& Filtering

Step Change
Detection

Apparent
Occupancy

Computation

Defining
Schedules

Energy
Savings

Calculation

aggressiveness

occupancy
indicative signal

frequency bands

thresholds, kernel bw

Clustering

normal zones

anomalous zones

Figure 6.4: Proposed unobtrusive occupancy detection approach.

Approach

Our approach is comprised of a few time series analysis techniques that are applied to occupancy
indicative signals from our testbed to roughly estimate the occupancy intervals of individual
zones as shown in Figure 6.4. These techniques include (a) a data cleansing algorithm for cor-
recting and amending incorrect and incomplete data, (b) an empirical decomposition technique
for decomposing a time series into its intrinsic modes and subsequently removing high and low
frequency modes that pertain to noise, and diurnal and seasonal effects, (c) a step change detec-
tion algorithm for identifying the step changes of a time series, and (d) statistical techniques for
calculating apparent occupancy of the zones from their estimated occupancy intervals and com-
paring the apparent occupancy of different zones. We cluster the zones based on their apparent
occupancy and examine the resulting cluster of anomalous zones for potential faults. Various
schedules can be computed for the zones that belong to the normal cluster, which are specified
in Section 6.2.3. We expand on each of these steps in the following.

Distillation

Distillation is the process of removing outliers from the occupancy indicative signal and correct-
ing erroneous readings. Outliers are detected through comparison with their neighbouring points
and substituted with the median of a window of certain length that surrounds them. Apart from
data cleansing, in Building 1 where a single sensor monitors both damper and reheat valve, the
sensor readings are split into two separate signals, one represents the damper position and the
other one represents the reheat valve position. One of these two signals which is more indicative
of occupancy is treated as our occupancy indicative signal.

68

Figure 6.5: The damper position sensor readings of a cafeteria in Building 2 (blue) and upward
and downward edges that are detected by Canny edge detector (vertical red lines), representing
the occupancy start and end times, respectively.

Frequency Decomposition & Filtering

The harmonic components of the occupancy indicative signal that best reveal the zone occupancy
pattern can be identified and extracted in the frequency domain. We adopt Empirical Mode
Decomposition (EMD) [120], which is an adaptive and a posteriori method for decomposing
non-stationary data into intrinsic patterns, trends, and noise with the basis of the decomposition
being derived from the data. This iterative algorithm can be applied to decompose a signal into
a small number of oscillatory, yet not necessarily uniform components termed intrinsic mode
functions (IMFs). An IMF contains the same number of extrema and zero-crossings (or they
differ at most by one), and at any point the envelopes defined by its local maxima and minima
are symmetric with respect to zero. This means that IMFs admit Hilbert transform and the notion
of instantaneous frequency can be defined for them at any point in time.

Following the technique proposed in [92], we apply a variant of EMD, called Complete
Ensemble EMD, to decompose our occupancy indicative signal into a small number of IMF
components. Once the instantaneous frequency is computed for each IMF, the IMFs are grouped
into low, medium, and high frequency bins based on their average instantaneous frequency.
Specifically, the IMFs with an average period greater than 18 hours, between 18 and 2 hours,
and less than 2 hours constitute the low, medium, and high frequency bins, respectively. These
bins are defined such that the low frequency IMF components capture diurnal and seasonal
effects, while the high frequency IMF components mostly capture noise and oscillations of
the control system. We then add the medium frequency IMF components to obtain a filtered
occupancy indicative signal that can be used instead of the original occupancy indicative signal
in the next step. However, our experiments suggest that using filtered occupancy indicative
signal does not improve the accuracy of our approach in most zones, implying that a change in

69

Figure 6.6: The occupancy indicative signal representing the reheat valve position of a zone over
12 weeks of measurements (top), the intrinsic mode functions, and the trend (bottom) extracted
by Complete Ensemble EMD algorithm. The weekends are represented in red.

70

Figure 6.7: The aggregated IMF components for low, medium, and high frequency bins and the
occupancy indicative signal representing the reheat valve position (bottom). The weekends are
represented in red.

the occupancy state of a zone produces a detectable signature in the occupancy indicative signal
that can be identified, despite the noise and other confounding effects. For this reason, we do not
run the edge detector on the filtered signal, but this technique can be used to possibly remove
the compounding effects, such as solar heat gain, in buildings where such effects are dominant.

Step Change Detection

A significant step-edge4 in the occupancy indicative signal can be attributed to a change in the
occupancy state of the corresponding zone. Thus, detecting these step-edges is key in inferring
occupancy. We distinguish two types of step-edges — an upward step-edge is a step-edge where
the mean of the signal increases after the edge, whereas a downward step-edge is the one where
the mean of the signal decreases after the edge.

Several step change detection algorithms have been proposed in the literature. In this work,
we use Canny edge detection [46] to identify step-edges of occupancy indicative signals. This
algorithm has been extensively used in signal processing and computer vision, where it is gener-
ally applied to 2D signals, e.g., images. The Canny detection algorithm consists of the following
steps: (a) input signal is smoothed by a Gaussian filter, (b) gradient of the smoothed signal is
computed, (c) local optima of the gradient of the smoothed signal are found and considered as
candidate edges (d) a simple thresholding technique is applied to preserve strong edges among
the candidate edges, and (e) weak edges that are linked to the strong edges are added to the set of
identified edges. It has been shown that the first derivative of Gaussian kernel is an optimal edge
detector in the sense that it approximates the operator that optimizes the product of signal-to-
noise ratio and localization [46]. To see this, suppose S is our occupancy indicative signal, G is
a Gaussian filter, D denotes the differentiation operator, and ∗ denotes the convolution operator.

4A step-edge is defined as an abrupt change in the mean of the signal.

71

Since convolution is associative, we can write

D ∗ (G ∗ S) = (D ∗G) ∗ S

where D ∗G would be the derivative of Gaussian filter.
We employ a variant of this algorithm which is capable of distinguishing between upward

and downward step-edges of time series data. Specifically, the occupancy indicative signal is
convolved with the first derivative of Gaussian kernel to produce a local maximum at each up-
ward step-edge and a local minimum at each downward step-edge. The obtained local optima
are treated as candidate edges of our occupancy indicative signal, determining the beginning
and the end of occupancy periods. To err on the side of caution, we neglect the weaker up-
ward (downward) step-edge if two consecutive local maxima (minima) are detected. Figure 6.5
shows the step-edges of the occupancy indicative signal of a zone in Building 2 detected by
Canny edge detector. When the occupancy periods are found, a binary vector is constructed for
the inferred occupancy of each zone, where zeros and ones denote unoccupied and occupied
states, respectively.

We note that our step-edge detector might pick up a significant edge that is not due to occu-
pancy or miss a true edge that falls below the specified threshold (i.e., a weak edge). These errors
will lead to spurious detections; nevertheless, these rough occupancy estimates are reasonably
accurate for creating customized per-zone schedules as discussed in Section 6.2.2.

Computing Apparent Occupancy

Most zones in a commercial building are expected to have periodic occupancy patterns as people
tend to maintain consistent weekly schedules. This periodicity can be leveraged to generate
per-zone schedules that repeat every week, can be easily programmed into the building BMS,
and will reduce wastage of energy due to reheating the zones that are believed to be empty.
Computing such schedules requires having a distribution of the zone occupancy for each day of
the week. This can be generated by taking the weekly average of the inferred binary occupancy
vector of each zone over a certain number of training weeks. We refer to this as apparent
occupancy of a zone. Figure 6.8 shows the apparent occupancy of a zone computed using 12
weeks of occupancy indicative sensor readings. The apparent occupancy encodes the probability
that a zone is occupied at a given time on a particular day of the week.

Clustering

The apparent occupancy of a zone offers a lot of insight into how it is used on each day of the
week. For example, a zone whose apparent occupancy peaks between 8am-5pm on weekdays
and is zero at other times, is probably an office occupied during regular office hours. In addition
to the type and function of a zone, the apparent occupancy can also reveal an equipment fault
or a control error. For instance, constant apparent occupancy during the night or throughout the
week might imply a stuck damper or actuator, a temperature sensor drifted out of calibration,
or improper coefficients defined for the control loop. These potential faults, which contribute to

72

Figure 6.8: The apparent occupancy of a cafeteria in Building 2 strongly suggests that it has
always been closed on weekends.

Building 1 Building 2 Building 3
normal zones 99 76 135
anomalous zones 10 6 106
mostly unoccupied 8 27 29
total 117 109 270
pct. anomalous zones 5.6% 5.7% 39.2%

Table 6.1: Size of the clusters formed in each building

energy wastage in commercial buildings, should be detectable from apparent occupancy of the
zones.

We divide the zones in a building into two broad categories, namely anomalous and nor-
mal zones, based on their apparent occupancy. To do this, we first identify the zones which are
mostly unoccupied, i.e., their apparent occupancy does not exceed 125% of its minimum level
more than 90% of the time. These zones are removed from the set of the zones that will be
clustered in the next step as they might be confused with anomalous zones. We then use ag-
glomerative hierarchical clustering to group the remaining zones that show a similar pattern in
their apparent occupancy between midnight and 6am of each day. Two features are selected to
separate these anomalous zones from the rest of the zones: the average, and the peak to average
ratio of apparent occupancy between midnight and 6am of each day of the week. We adopt
complete-linkage clustering where the distance between two clusters is defined as the maximum
distance between their members:

d(C1, C2) = max
~x∈C1,~y∈C2

‖~x− ~y‖

73

The clustering algorithm is stopped when two clusters are formed.

(a) Zone A in Building 1 (b) Zone B in Building 1

Figure 6.9: Occupancy indicative signal (green curves), ground truth occupancy intervals
(shaded areas), and inferred occupancy intervals (intervals between each pair of vertical red
lines) of two offices during a week.

Table 6.1 shows the number of zones that were almost always unoccupied, as well as the
number of zones that are clustered as normal and abnormal in each building. The unoccupied
zones together with the normal zones are considered for applying energy-efficient schedules and
the anomalous zones will be inspected by the facilities manager to locate, diagnose, and possibly
correct the faults Note that Building 3 has a large number of zones housing biotechnology lab-
oratories that must be cooled at all times. This results in their reheat valve being closed almost
always, which translates into high apparent occupancy throughout the day, explaining the high
percentage of anomalous zones in this building.

In an attempt to evaluate the clustering results and map atypical occupancy patterns to the
known faults, the anomalous zones in Building 3 are checked with the facilities manager. These
anomalous zones fall into four categories — (a) zones that contain heavy heat-generating equip-
ment and therefore do not use any local reheat, e.g., zones containing electron microscopes and
pumps, (b) zones that are supposed to be kept at an extremely cold temperature, e.g., zones con-
taining freezers and microbial cultures, (c) corridors and closets which do not house occupants,
and (d) faulty zones including a zone with stuck damper, two neighboring zones which exhib-
ited simultaneous heating and cooling, and a zone where the occupants keep heat-generating
equipment right next to the zone temperature sensor.

Evaluation

Full validation of the proposed unobtrusive occupancy detection approach is impractical owing
to the lack of pervasive occupancy monitoring in our three commercial buildings. Relying on
our knowledge of the approximate occupancy pattern of the zones to validate this approach will
also be anecdotal. In light of this, we attempt to sanity check the occupancy hours identified
by this approach and assess its efficacy in creating reasonable occupancy schedules through
(a) matching the ground truth occupancy to the inferred occupancy intervals of the 8 zones
where ground truth data were available, and (b) comparative analysis of the overall weekday
and weekend occupancy profile of the buildings in our testbed.

74

Figure 6.10: The average weekday occupancy of Buildings 1, 2, and 3 estimated over three
months. The shaded boundary of each curve shows the 95% confidence interval of the average
number of occupied zones divided by the total number of zones in that building.

Figure 6.9 depicts measurements of the reheat valve position of two of these zones over the
period of one week, the ground truth occupancy of these zones, and the identified occupancy
intervals5. It can be observed that our approach successfully identifies all occupancy intervals,
and the inferred start and end times are within a few hours from the actual occupancy start and
end times. These errors will not impact the inferred occupancy schedule of a zone since we
have several weeks of measurements and exploit percentile statistics to define the schedules
(described in Section 6.2.3) rather than choosing the earliest start the latest end times that are
detected, which are more sensitive to noise and spurious occupancy detections.

We now inspect the aggregate occupancy profile of the zones within a building. Figure 6.10
shows the average number of zones that are identified as occupied on weekdays in a building,
normalized by the total number of zones in that building, and the upper and lower 95% confi-
dence limits. We see that at least 40%, 75%, and 67% of the zones are unoccupied at any time
in Buildings 1, 2, and 3, respectively. Furthermore, the total number of occupied zones is higher
between 4-6pm than any other time intervals in Buildings 1 and 2, while Building 3 reaches its
maximum occupancy just before noon.

Figure 6.11 shows the start and end times of apparent weekday and weekend occupancy of
the zones in Building 2, where the start and end times are defined as the 10th percentile and the
90th percentile of start times and end times, respectively. It also shows the number of times a

5The identified occupancy intervals and ground truth occupancy data were in agreement in the other 6 zones,
but we do not show these graphs due to space constraint.

75

zone has been occupied at a particular time on a weekday or a weekend. Note that the vertical
lines represent the average start and end times of the identified occupancy intervals. It can be
seen that (1) several zones have never been occupied on weekends, (2) the zones were occupied
on average for a longer period of time on weekdays than weekends, and (3) the average start
time of occupancy intervals moves toward the afternoon on weekends as compared to weekdays,
implying that people who come to their office on weekends tend to arrive later than the time they
usually arrive on weekdays. These observations are perfectly reasonable for our buildings and
suggest that rough occupancy estimates of the zones can serve the purpose of computing zone-
specific schedules as discussed next.

6.2.3 Energy Savings Potential
An HVAC schedule to control the period of operation of a VAV can be programmed into a
building’s BMS. Most commercial buildings work on a fixed schedule, if any6. These schedules
are set using the facilities manager’s intuition and apply to all thermal zones regardless of their
occupancy pattern. For instance, a facilities manager may arbitrarily decide that the HVAC
system should maintain the environment comfortable between 6am and 11pm on weekdays.
These schedules are, by design, conservative, because the facilities manager does not want to
sacrifice occupants’ comfort when they are present in the building.

We use the apparent occupancy profile for each thermal zone computed in Section 6.2.2
to develop possible VAV operation schedules, and compute the aggregate energy savings that
can be obtained in a building. We report two metrics for each schedule in our experiments:
Percentage Energy Saved on Reheat, and Percentage Occupant Comfort Violations.

The Percentage Energy Saved on Reheat is the ratio, averaged over all zones in a building,
of the amount of reheat used during the operation of a VAV under a schedule to a baseline
when no schedule was in operation. When a schedule is not in operation, we assume the reheat
energy used is zero. If a computed schedule mis-estimates occupancy, we consider the period of
operation of the VAV to be the union of the apparent occupancy and schedule operation interval.
Note that we do not report the overall building energy savings because we do not model the
other aspects of HVAC energy consumption (such as AHU energy usage), and the buildings in
our testbed did not provide fine-grained energy measurements for the HVAC system.

The Percentage Occupant Comfort Violations quantifies the mismatch between a schedule
and actual occupancy, and is computed as the ratio, averaged over all zones, of the period of time
a schedule mis-estimated occupancy7 to the total duration of our study, i.e., 3 months. Note that
the schedule violations are only approximate since we do not consider the time that it takes to
bring the zone temperature back to its setpoint when a schedule starts and the time that it takes
for the zone temperature to deviate from the setpoint when a schedule ends.

These two metrics expose a trade-off space for a facilities manager. A schedule could be
overly aggressive and condition a zone only when there is a strong guarantee of occupancy. This

6In our testbed, only one building operated on a schedule where the VAVs maintained a zone’s environment
comfortable from 6am–11pm.

7That is if a schedule starts after or ends before a period of apparent occupancy.

76

(a) Weekdays Occupancy Profile

(b) Weekends Occupancy Profile

Figure 6.11: Occupancy profiles of Building 2 summarize the rough occupancy estimate of
every zone in this building. Each horizontal line depicts the apparent occupancy of a zone and
its 10th percentile and 90th percentile of start time and end time distributions, and vertical red
lines represent the average occupancy start and end times of all zones. The darker a point is,
the greater would be the number of days that the corresponding zone has been occupied at that
particular time over the observation period.

would lead to higher energy savings at the expense of increasing the number of times an occupant
arrives to find her zone unconditioned. On the other extreme, too conservative a schedule could
ensure that zones are always conditioned when occupants are even remotely likely to be present,
achieving much lower energy savings but resulting in much happier occupants.

As Figure 6.11 shows, occupancy of zones varies widely, and hence having a single building-

77

Reheat Energy Savings Violations
Building Learned Static Naive Learned Static Naive

1 57.2% 52.7% 1.9% 12.7%
2 57.0% 37.2% 2.8% 2.9%
3 47.9% 49.9% 2.4% 11.0%

Table 6.2: Energy saved on reheat and occupant comfort violations for two static schedules

wide schedule would lead to significant inefficiency. Hence, we investigate customized per-zone
schedules. In particular, we investigate static schedules, i.e., zone-specific schedules which
do not vary throughout our period of observation, and adaptive schedules, i.e., zone-specific
schedules which are continuously updated based on some window of observation.

Energy Savings of Static Schedules

Static schedules are easy to implement in a commercial building, requiring only a one-time effort
by a certified technician or domain expert to program the building BMS. In this subsection, we
explore two kinds of static schedules —

• Naive Schedule: This schedule ensures that a VAV is operated during normal business
hours, and only on weekdays. In our experiment, we evaluate the energy savings of a
building under a predefined naive schedule where HVAC zones would only be conditioned
from 6am-11pm on weekdays.

• Learned Static Schedule: This schedule is based on actual inferred zone occupancy data
over a short period of time. Most existing BMS solutions allow for limited storage/trend
capacity for HVAC sensor data, making such an analysis feasible. In our experiment, we
learn per-zone schedules from a randomly chosen two-week duration of data.

Table 6.2 shows the results of simulating these two schedules on the three buildings in our
testbed. Building 1 and Building 3 save roughly the same percentage of energy in reheat using
either schedule. However, the percentage of occupant comfort violations is an order of mag-
nitude higher under the Naive Schedule as compared to the Learned Static Schedule. This is
because a Naive Schedule applies the same schedule across all zones and hence cannot account
for the heterogeneity in occupancy periods across zones. Also a Naive Schedule assumes the
building is unoccupied during weekends, when that may not be the case. For Building 2, the
energy saved by the Learned Static Schedule is 20 percent higher than a Naive Schedule while
resulting in a nearly similar percentage of occupant comfort violations. Building 2’s occupancy
for all zones on weekdays are mostly centered around normal occupancy hours (refer to Fig-
ure 6.11a). However, most occupants come in later than 6am and leave much earlier than 11pm,
resulting in the Naive Schedule saving much lesser energy than a simple schedule that learned
this pattern over the period of two weeks, while achieving the same percentage of comfort vi-

78

olations. The building is sparsely occupied on weekends (as evident from the light shades in
Figure 6.11b), which does not lead to comfort violations under the Naive Schedules.

(a) Building 1 Reheat Energy
Savings

(b) Building 2 Reheat Energy
Savings

(c) Building 3 Reheat Energy
Savings

(d) Building 1 Occupant Com-
fort Violations

(e) Building 2 Occupant Com-
fort Violations

(f) Building 3 Occupant Com-
fort Violations

Figure 6.12: Energy Savings on Reheat and Occupant Comfort Violations for three different
levels of aggressiveness and different durations of training window (WND=1, 4, and 8 weeks)
for three adaptive schedules. In general, higher energy savings and lower violations are favored.

Energy Savings of Adaptive Schedules

A building occupancy profile may change over time resulting in static schedules that do not
provide optimal energy savings. In this subsection, we explore adaptive schedules which adjust
the schedule timings based on the apparent occupancy of each zone in a sliding window that
spans a fixed time interval in the past. Such schedules are capable of tracking the variable
occupancy pattern of a zone.

Given historical data and the time series analysis techniques introduced in the previous sec-
tion, we can obtain the empirical distribution function of the identified start and end times of
apparent occupancy of every zone. This data, together with two adjustable parameters (a) the
aggressiveness of the start and end times of the per-zone schedule, (b) the length of training

79

window used for learning the schedules, gives a more sophisticated way to model the potential
energy savings in a building. The aggressiveness metric would determine which percentile of
the start (end) times distribution would be used as the schedule’s start time (end time)8. This is a
parameter the facilities managers can adjust depending on the amount of energy savings they are
willing to achieve and their tolerance for occupant discomfort. The size of the sliding window
determines the amount of training data available for estimating the start and end time distribu-
tions of the apparent occupancy of a zone. The larger the window, the better the estimate of
schedule timings is expected to be, provided that the actual zone occupancy is stationary during
this window.

We explore three types of adaptive schedules —

• Weekly Schedule: A single schedule would be in operation for the entire week.

• Per-Day Schedule: A different schedule is calculated for each specific day of the week.
This helps capture day-specific occupancy patterns, e.g., in the case that the occupant
works from home on Fridays.

• Weekday-Weekend (WW) Schedule: A single schedule would be in operation on week-
days and a different one would be in operation on weekends. This schedule is expected to
result in more energy savings in zones that are mostly unoccupied on weekends.

Figure 6.12 shows the results of applying these three schedules on the buildings in our testbed
for different levels of aggressiveness and different duration of the training window. The follow-
ing observations can be made based on these results— First, the Weekday-Weekend schedules
offer a sweet-spot between the two other schedules. Applying a Weekday-Weekend schedule
saves more energy than a Weekly Schedule which does not take into account the inherent differ-
ence in occupancy over weekends, and saves less energy than a Per-Day Schedule; however, it
results in remarkably lower percentage of occupant comfort violations than Per-Day Schedules.
Second, while Weekly Schedules save less energy than Per-Day Schedules, they also result in
lower comfort violations. This is expected as Per-Day Schedules are computed over lesser train-
ing data as compared to the other schedules. Third, the increase in the duration of the training
window results in better occupancy estimates and hence lower occupant comfort violations and
lesser energy savings. Finally, increasing the aggressiveness of a schedule generally leads to
larger energy savings but larger occupant comfort violations as well.

Figure 6.13 shows the average occupancy profile of Building 1 along with its 95% confidence
interval represented by a shaded band around it, and the normalized aggregate energy consumed
to reheat all the zones over our period of observation, i.e., when no schedule was in effect. It can
be seen from the comparison of the shape of these two curves that a lot of energy is wasted to
reheat the building overnight when it is mostly unoccupied. If a Per-Day or Weekly schedule is
applied, the resultant reheat energy consumption profile almost resembles the occupancy profile.

8 If the xth percentile is used for determining the schedule start time, (100-x)th percentile is used for determin-
ing its end time.

80

Figure 6.13: Weekday occupancy profile of Building 1 (y-axis on the right) and the normalized
energy consumption of the building due to reheat at the present time (no schedule), and under
Per-Day and Weekly schedules using 8 weeks of training data. The energy consumption profiles
are normalized by the maximum energy consumption that was recorded when the building does
not run a schedule. The potential energy saved on reheat for a given schedule is the area between
its curve and the baseline No-Schedule curve.

This indicates that (1) these schedules do reflect the occupancy of each zone and (2) most energy
savings come from closing the reheat valve during the night.

Trade-offs in Schedule Complexity

There is a three-way trade-off between complexity of schedules, their energy savings potential,
and their occupancy comfort violations. A hypothetical per-zone scheduler that relies on an
oracle that accurately predicts occupancy hours of the zones will attain maximum energy savings
and minimum violations. Since the prescribed schedules must be updated every day, this would
be the most difficult one to implement. On the other hand, static schedules are the easiest to
implement; however, they lead to a considerable number of violations unless the occupancy
pattern of the zones is highly predictable and time invariant. Adaptive schedules are expected to
be better in terms of occupant comfort violations and can also result in higher saved energy on
reheat, though they are more difficult to apply than the static schedules.

81

Interestingly, the Static Learned Schedules seem to be the sweet spot for our testbed. In par-
ticular, they achieve more than 48% reduction in reheat energy consumption across the buildings,
while resulting in less than 3% violations. This implies that the occupancy pattern of the zones
across the three buildings is stationary over these three months; hence, the random choice of
the training weeks does not cause significant violations. Sophisticated adaptive schedules could
achieve between 37%–76% energy savings, and between 1%–8% comfort violations across the
buildings.

6.2.4 Related Work
In recent years, substantial efforts have been devoted to reducing the demand of residential
and commercial buildings by adding intelligence to appliances, optimizing HVAC controls, and
detecting faults in buildings. The knowledge of occupancy, at different scales, is essential to
achieve the energy saving targets with imperceptible impact on building operations and human
comfort. This has given rise to many systems designed for sensing occupancy of the spaces
within a home or a commercial building.

The extensive body of literature on building occupancy monitoring can be classified into
two categories: methods that require deployment of additional sensors and those that leverage
existing infrastructure. The intrusive methods, which are the former category, aim at sensing
occupancy by fusing data from one or multiple types of sensors, including passive infrared
(PIR) motion sensors, carbon-dioxide (CO2) sensors, temperature sensors, cameras, magnetic
reed switches, acoustic sensors, differential pressure sensors, and plug-in electricity meters
[174, 171, 152, 13, 74, 129, 85, 145, 35, 126]. For instance, Dong et al. [74] deploy multiple
sensors (acoustic, CO2, light, and motion) to estimate the number of occupants and occupancy
duration using Hidden Markov Models. These methods require retrofitting buildings with ded-
icated hardware for occupancy detection, posing several challenges from sensor placement and
calibration to ensuring that the sensors have a reliable network connection and power supply.

To address these limitations, several methods have been proposed that leverage existing in-
frastructure to estimate occupancy. Specifically, WiFi access points, smart meters, HVAC sen-
sors, and calendar feeds are used to infer occupancy. These methods are scalable, more afford-
able, and less intrusive. For example, an occupancy based HVAC actuation system is developed
in [28] relying on inferred occupancy from WiFi network logs and building occupant metadata.
The system has a false negative detection rate of 6.2% in personal spaces and achieves savings
of 17.8% in HVAC energy consumption of a commercial building. However, the proposed occu-
pant inference algorithm assumes that smart phones are continuously connected to the wireless
network, requires information about all wireless capable devices used by an occupant, and does
not apply to shared spaces, e.g., meeting rooms and lobbies.

Coarse-grained electricity data produced by smart meters are used to infer home occupancy
in [51]. Using a simple threshold-based algorithm that detects changes in three statistical metrics
of smart grid data, namely average, standard deviation, and range, the authors generated a con-
tinuous track of daytime household occupancy. This approach does not require any training data
for occupancy and appliance loads. In a similar line of work, home occupancy is detected from

82

smart meter data using a supervised learning algorithm [136]. Using 35 features and various
classifiers, the authors reported a detection accuracy between 83%-94% in five households. The
major drawback of both approaches is that they cannot be readily applied to large commercial
buildings with many zones and a vast number of appliances.

In recent work, measurements of environmental signals, such as CO2 concentration, room
temperature, and ventilation actuation levels are used to estimate the occupancy levels [76].
Despite the novelty of this approach, it requires a burdensome initial training phase to relate
the number of occupants with the CO2 concentration level. Moreover, CO2 sensor readings
are often not available in HVAC systems. Existing computing and security infrastructure in
commercial buildings is also exploited in [103] to infer occupancy. In particular, the authors
use minutely data collected from area access badges, WiFi access points, calendars, and instant
messaging clients for occupancy estimation. In most commercial buildings, this information is
not available for all zones and therefore cannot be incorporated into the HVAC control. Finally,
a simple HVAC optimization application is implemented in [67] that uses only time of day and
calendar feed to estimate room occupancy and adjust the ventilation rate as a function of the
number of people in a room.

Aswani et al. [22] also employ semi-parametric regression to estimate the heat load from
occupancy, equipment, and solar radiation using measurements of the zone temperature and VAV
control signals. This approach cannot separate the effect of occupancy from heat-generating
equipment, solar heating, and noise, rendering it of limited practical value. Moreover, model
parameter estimation for every single zone is error prone.

6.2.5 Conclusions
We investigates the potential of unobtrusive occupancy detection techniques to produce a rough
estimate of occupancy at the level of individual zones from coarse-grained measurements of
the VAV system. Our experiments on three large commercial buildings over a period of three
months corroborate that the estimated occupancy patterns are sufficiently accurate to compute
customized per-zone schedules that can significantly reduce the energy consumption of the VAV
systems with only a small number of occupant comfort violations. The proposed approach
can be readily applied to any building with a BMS that archives data from HVAC sensors,
thereby enabling facilities managers to quantify and explore the complexity, comfort, and energy
savings trade-off. The plausibility of our results underlines that much value can be extracted
from existing building data streams through careful analytics and justifies the effort to collect
ground truth data on a reasonably large set of buildings where occupancy sensors are pervasive.
Such a data set could further validate and refine the proposed techniques.

83

Chapter 7

Conclusion

7.1 Contributions
The techniques developed in this thesis answered the question of how to deploy applications
scalably across diverse smart-buildings comprising large apriori deployed sensor networks, each
set up with deployment-specific, obscure metadata. We presented techniques to normalize the
existing metadata of such deployments into a common namespace, designed a common names-
pace schema which can capture all required sensors and relationships, and then demonstrated
the wide array of applications which could exploit the resulting normalized metadata schema
and run unmodified across smart-buildings.

Specifically, we make five major contributions in this thesis. First, we design an empir-
ical criteria to evaluate the effectiveness of existing smart-building metadata schemas. Prior
schemas, as well as newly proposed ones can now get a score on each of the metrics we laid
out, which are (1) completeness, (2) ability to capture relationships, and (3) flexibility and ease-
of-use. This contribution helps eliminate subjective comparisons of smart-building metadata
schemas, and provides a firm grounding to evaluate the efficacy of schemas going forward. We
show that all of the existing popular existing metadata schemas (Project Haystack, Industry
Foundation Classes, and Semantic Sensor Webs) fall well short of solving the metadata chal-
lenges in smart-buildings.

Second, we develop techniques to transform legacy metadata of building sensors to a nor-
malized schema. We showed how to circumvent the inherent challenges of parsing the inconsis-
tent and noisy structure of legacy metadata via an automated synthesis technique coupled with
data-driven clustering and classification. Our technique can transform legacy metadata into a
well-formed representation using a small number of examples from an expert, e.g., the build-
ing manager. The transformation to such a namespace yields semantic relationships between
sensors, which enables analytics applications to be deployed without a priori building-specific
knowledge. We demonstrated that our technique is robust and achieves full sensor qualifica-
tion for all sensors for 3 different buildings sensor systems, even when presented with obscure
and noisy metadata tags. Our technique takes very few examples to fully normalize the most

84

commonly occurring sensors (24, 15 and 43 examples for the three buildings in our testbed for
qualifying 70% of the tags).

Third, we presented a technique to capture missing sensor/subsystem relationships in a
smart-building using active perturbations of relevant subsystems and performing a voting-based
analysis on the resulting data. Our perturbation technique is totally transparent to building oc-
cupants and can correctly identify missing functional relationships in roughly 80% of the cases.

Fourth, we developed and defined a schema, Brick, that we believe is a strong candidate to
solving uniform metadata standards problem. Brick builds upon prior work and introduces a
number of novel concepts that we believe adresses this open problem. Brick has an underlying
graphical data model, and defines nodes and edges to capture all possible sensor information
and relationships in smart-buildings. Brick uses clear tags and tagsets to specify sensors and
subsystems in a building. It defines an ontology and a class hierarchy for this list of tags and
tagsets. Relationships are represented as triples, which allows us to leverage existing tools to
build and query the resulting building representations. Brick proposes Functional Blocks to
abstract out complexity but also aid in system composition and hierarchies. Finally, Brick uses
the notion of synonyms to equate sensors and subsystems similar in function. Brick is complete,
capturing an average of 98% of BMS data points across five diverse buildings comprising almost
15,700 data points and 615,000 sq-ft of floor space. Brick is expressive, successfully running
eight canonical applications on these buildings. Four applications ran on all five buildings, while
the remaining applications ran on buildings whose BMS exposed the requisite points.

Finally, we showed a diverse set of applications, ranging from simple diagnostics, e.g find-
ing errant rogue zones, finding stuck dampers and identifying inefficient air handling units, to
complex occupancy modeling which can now be run at scale, thanks to normalized metadata
of sensors across smart-buildings. We demonstrate the results of each of the applications on
multiple diverse buildings, each comprising 1000s of sensors.

7.2 Future Work
There are several avenues of research which were not addressed in this thesis. Although we
proposed a normalized metadata Brick schema which satisfies certain empirical objectives and
techniques to augment transform legacy existing sensor metadata in millions of buildings, mak-
ing this process efficient still requires additional work. There is a need to perform usability
studies with human experts, to devise intuitive ways to enable them navigate through the large
building datasets (related research efforts include [37, 155]) and come up with techniques to
help the expert and make our system robust to errors in the expert’s input. Brick also needs an
equivalent of a model-checker to ensure the correctness of the generated metadata. Manually
debugging why certain applications were not running on certain buildings in our case study re-
quired quite a bit of effort, and the answer was invariably some error in translating existing labels
to tags/tagsets, misuse of tags when they should not have been used, or expressing semantically
wrong relationships.

85

Even though our testbed comprised of 10s of buildings comprising different vendors, sub-
systems and geographic locations, scaling these techniques to even larger scale will probably
require modifications to the schema, and additional techniques to normalize their existing meta-
data. How to choose the right metadata constructs and the right set of techniques to normalize
legacy metadata in each particular setting is still an open question.

Third, our metadata schema proposal is mostly aimed at providing a uniform namespace for
applications that do not require detailed simulation of a building. Building simulators require
more information than simply sensors and their inter-relationships and this information needs
to be scraped from other information sources, such as blueprints and user manuals. Devising a
way to feed the data obtained through our model back into the detailed simulation tools will not
only lead to better adoption our proposed schemas, but also mitigate a lot of the data modeling
concerns in the simulation tools.

Finally, on the systems side we need to enable transparent deployment of applications on
both existing BMS systems and novel sensor network deployments. Often commercial build-
ings have a mix of both, and effectively and seamlessly navigating this heterogeneity in sensor
interaction and data collection requires further research. Also, this thesis does not deal with
provenance, versioning and data integrity issues that arise out of changes in metadata that arise
in a building’s lifecycle. Additionally, we need to address data associated with occupants and
their interaction with building sensors as a first-class citizen in the building information plane,
something that was not addressed in this work.

86

Bibliography

[1] Brick Schema. https://github.com/BuildSysUniformMetadata/
GroundTruth.

[2] List of building applications. https://ibm.biz/UCB-IBM-Apps.

[3] OWL Namespace. http://www.w3.org/2002/07/owl#.

[4] Project haystack. http://project-haystack.org/.

[5] RDF Concepts Namespace. http://www.w3.org/1999/02/
22-rdf-syntax-ns#.

[6] RDF Schema Namespace. https://www.w3.org/2000/01/rdf-schema#.

[7] SPARQL Query Language. https://www.w3.org/TR/rdf-sparql-query/.

[8] The Internet Engineering Task Force (IETF). https://www.ietf.org/.

[9] Turtle. https://www.w3.org/TR/turtle/.

[10] Used building metadata. https://ibm.biz/UCB-IBM-Data.

[11] ENERGY INFORMATION ADMINISTRATION. Commercial buildings energy con-
sumption survey,. Technical report, 1999.

[12] U.S. Energy Information Administration. User’s guide to the 2012 cbecs public use mi-
crodata file. Commercial Buildings Energy Consumption Survey (CBECS), page 33, May
2016.

[13] Y. Agarwal, B. Balaji, S. Dutta, R. K. Gupta, and T. Weng. Duty-cycling buildings ag-
gressively: The next frontier in HVAC control. In IPSN, pages 246–257, April 2011.

[14] Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, Michael Wei, and Thomas
Weng. Occupancy-driven energy management for smart building automation. In
BuildSys, pages 1–6. ACM, 2010.

https://github.com/BuildSysUniformMetadata/GroundTruth
https://github.com/BuildSysUniformMetadata/GroundTruth
https://ibm.biz/UCB-IBM-Apps
http://www.w3.org/2002/07/owl#
http://project-haystack.org/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/2000/01/rdf-schema#
https://www.w3.org/TR/rdf-sparql-query/
https://www.ietf.org/
https://www.w3.org/TR/turtle/
https://ibm.biz/UCB-IBM-Data

87

[15] Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, Michael Wei, and Thomas
Weng. Occupancy-driven energy management for smart building automation. In
BuildSys, pages 1–6. ACM, 2010.

[16] ALC. Automated logic corporation. http://www.automatedlogic.com/.

[17] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE
Standard 135-1995: BACnet. ASHRAE, Inc., 1995.

[18] N. Arana, A. Noguero, T. Padilla, and MJ. Mtz. de Lizarduy. D2.2 - a ontology for device
awareness, 2009.

[19] Omid Ardakanian, Arka Bhattacharya, and David Culler. Non-intrusive techniques for
establishing occupancy related energy savings in commercial buildings. In Proceedings
of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environ-
ments, pages 21–30. ACM, 2016.

[20] Pandarasamy Arjunan, Nipun Batra, Haksoo Choi, Amarjeet Singh, Pushpendra Singh,
and Mani B Srivastava. Sensoract: a privacy and security aware federated middleware
for building management. In Proceedings of the Fourth ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings, pages 80–87. ACM, 2012.

[21] ASHRAE. Standard 90.1-2013. https://www.ashrae.org/
resources--publications/bookstore/standard-90-1.

[22] A. Aswani, N. Master, J. Taneja, V. Smith, A. Krioukov, D. Culler, and C. Tomlin. Iden-
tifying models of HVAC systems using semiparametric regression. In American Control
Conference (ACC), pages 3675–3680, June 2012.

[23] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck, Dezhi
Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, et al. Brick: To-
wards a unified metadata schema for buildings. In Proceedings of the ACM International
Conference on Embedded Systems for Energy-Efficient Built Environments (BuildSys).
ACM, 2016.

[24] Bharathan Balaji, Hidetoshi Teraoka, Rajesh Gupta, and Yuvraj Agarwal. Zonepac: Zonal
power estimation and control via hvac metering and occupant feedback. In BuildSys.
ACM, 2013.

[25] Bharathan Balaji, Hidetoshi Teraoka, Rajesh Gupta, and Yuvraj Agarwal. Zonepac: Zonal
power estimation and control via hvac metering and occupant feedback. In Proceedings
of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, pages
1–8. ACM, 2013.

http://www.automatedlogic.com/
https://www.ashrae.org/resources--publications/bookstore/standard-90-1
https://www.ashrae.org/resources--publications/bookstore/standard-90-1

88

[26] Bharathan Balaji, Chetan Verma, Balakrishnan Narayanaswamy, and Yuvraj Agarwal.
Zodiac: Organizing large deployment of sensors to create reusable applications for build-
ings. In Proceedings of the 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments, pages 13–22. ACM, 2015.

[27] Bharathan Balaji, Chetan Verma, Balakrishnan Narayanaswamy, and Yuvraj Agarwal.
Zodiac: Organizing large deployment of sensors to create reusable applications for build-
ings. In BuildSys, pages 13–22. ACM, 2015.

[28] Bharathan Balaji, Jian Xu, Anthony Nwokafor, Rajesh Gupta, and Yuvraj Agarwal. Sen-
tinel: Occupancy based HVAC actuation using existing wifi infrastructure within com-
mercial buildings. In SenSys, pages 17:1–17:14. ACM, 2013.

[29] Bharathan Balaji, Jian Xu, Anthony Nwokafor, Rajesh Gupta, and Yuvraj Agarwal. Sen-
tinel: occupancy based hvac actuation using existing wifi infrastructure within commer-
cial buildings. In Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems, page 17. ACM, 2013.

[30] Nipun Batra, Manoj Gulati, Amarjeet Singh, and Mani B Srivastava. It’s different: In-
sights into home energy consumption in india. In BuildSys. ACM, 2013.

[31] Vladimir Bazjanac and DB Crawley. Industry foundation classes and interoperable com-
mercial software in support of design of energy-efficient buildings. In Proceedings of
Building SimulationâĂŹ99, volume 2, pages 661–667, 1999.

[32] J. Beetz, J. Van Leeuwen, and B. De Vries. IfcOWL: A case of transforming EXPRESS
schemas into ontologies. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 23(01):89–101, 2009.

[33] Gowtham Bellala, Manish Marwah, Martin Arlitt, Geoff Lyon, and Cullen E Bash. To-
wards an understanding of campus-scale power consumption. In BuildSys, pages 73–78.
ACM, 2011.

[34] Gowtham Bellala, Manish Marwah, Martin Arlitt, Geoff Lyon, and Cullen E Bash. To-
wards an understanding of campus-scale power consumption. In BuildSys, pages 73–78.
ACM, 2011.

[35] Alex Beltran, Varick L. Erickson, and Alberto E. Cerpa. Thermosense: Occupancy ther-
mal based sensing for HVAC control. In BuildSys, pages 11:1–11:8. ACM, 2013.

[36] Alex Beltran, Varick L Erickson, and Alberto E Cerpa. Thermosense: Occupancy thermal
based sensing for hvac control. In BuildSys. ACM, 2013.

[37] Arka Bhattacharya, David Culler, Dezhi Hong, Kamin Whitehouse, and Jorge Ortiz.
Writing scalable building efficiency applications using normalized metadata: demo ab-
stract. In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-
Efficient Buildings, pages 196–197. ACM, 2014.

89

[38] Arka Bhattacharya, David E. Culler, Jorge Ortiz, Dezhi Hong, and Kamin Whitehouse.
Enabling portable building applications through automated metadata transformation.
Technical Report UCB/EECS-2014-159, EECS Department, University of California,
Berkeley, Aug 2014.

[39] Arka Bhattacharya, Joern Ploennigs, and David Culler. Short paper: Analyzing metadata
schemas for buildings: The good, the bad, and the ugly. In Proceedings of the 2nd ACM
International Conference on Embedded Systems for Energy-Efficient Built Environments,
pages 33–34. ACM, 2015.

[40] Arka A Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, Kamin Whitehouse, and
Eugene Wu. Automated metadata construction to support portable building applica-
tions. In Proceedings of the 2nd ACM International Conference on Embedded Systems
for Energy-Efficient Built Environments, pages 3–12. ACM, 2015.

[41] Dario Bonino and Fulvio Corno. DogOnt – ontology modeling for intelligent domotic
environments. In ISWC - Int. Semantic Web Conf., volume 5318, pages 790–803. 2008.

[42] M. Botts and A. Robin. OpenGIS sensor model language (SensorML) implementation
specification, 2007. OpenGIS Implementation Specification OGC.

[43] Mic Bowman, Saumya K. Debray, and Larry L. Peterson. Reasoning about naming sys-
tems. ACM Trans. Program. Lang. Syst., 15(5), November 1993.

[44] Johannes Braams. Babel, a multilingual style-option system for use with latex’s standard
document styles. TUGboat, 12(2):291–301, June 1991.

[45] Brown and Caldwell. Scada analysis. http://sswd.org/modules/
showdocument.aspx?documentid=966.

[46] J Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell., 8(6):679–698, June 1986.

[47] Tomo Cerovsek. A review and outlook for a âĂŸbuilding information modelâĂŹ(bim):
A multi-standpoint framework for technological development. Advanced engineering
informatics, 25(2):224–244, 2011.

[48] K. Charatsis, A.P. Kalogeras, M. Georgoudakis, J. Gialelis, and G. Papadopoulos. Home
/ building automation environment architecture enabling interoperability, flexibility and
reusability. In ISIE - IEEE Int. Symp. on Ind. Electronics, volume 4, pages 1441–1446,
2005.

[49] Victor Charpenay, Sebastian Kabisch, Darko Anicic, and Harald Kosch. An ontology
design pattern for iot device tagging systems. In Internet of Things (IOT), 2015 5th
International Conference on the, pages 138–145. IEEE, 2015.

http://sswd.org/modules/showdocument.aspx?documentid=966
http://sswd.org/modules/showdocument.aspx?documentid=966

90

[50] Tanushyam Chattopadhyay and Sangheeta Roy. Human localization at home using kinect.
In 2013 ACM Conf. on Pervasive and ubiquitous computing adjunct publication, pages
821–828. ACM, 2013.

[51] Dong Chen, Sean Barker, Adarsh Subbaswamy, David Irwin, and Prashant Shenoy. Non-
intrusive occupancy monitoring using smart meters. In BuildSys, pages 9:1–9:8. ACM,
2013.

[52] Dong Chen, Sean Barker, Adarsh Subbaswamy, David Irwin, and Prashant Shenoy. Non-
intrusive occupancy monitoring using smart meters. In BuildSys. ACM, 2013.

[53] Krishna Chintalapudi, Anand Padmanabha Iyer, and Venkata N. Padmanabhan. Indoor
localization without the pain. In Proceedings of the Sixteenth Annual International Con-
ference on Mobile Computing and Networking, MobiCom ’10, pages 173–184. ACM,
2010.

[54] CitectSCADA. Tagging tutorial. http://www.citect.com.tw/download/
files/1hr_Quickstart_Tutorial.pdf.

[55] Malcolm Clark. Post congress tristesse. In TeX90 Conference Proceedings, pages 84–89.
TeX Users Group, March 1991.

[56] Industry Foundation Classes. Industry foundation classes. http://www.ifcwiki.
org/index.php/Main_Page.

[57] M. Compton, C. Henson, L. Lefort, H. Neuhaus, and A. Sheth. A survey of the semantic
specification of sensors. In SSN - Semantic Sensor Networks, pages 17–32, 2009.

[58] Michael Compton, Payam Barnaghi, Luis Bermudez, RaúL GarcíA-Castro, Oscar Cor-
cho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, et al.
The ssn ontology of the w3c semantic sensor network incubator group. Web Semantics:
Science, Services and Agents on the World Wide Web, 17:25–32, 2012.

[59] Michael Compton, Payam Barnaghi, Luis Bermudezc, and et al. The SSN ontology of
the W3C semantic sensor network incubator group. Web Semantics: Science, Services
and Agents on the World Wide Web, 2012.

[60] Drury B. Crawley, Curtis O. Pedersen, Linda K. Lawrie, and Frederick C. Winkelmann.
EnergyPlus: Energy simulation program. ASHRAE Journal, 42:49–56, 2000.

[61] CUErgo. Ambient environment: Thermal conditions. http://ergo.
human.cornell.edu/studentdownloads/DEA3500notes/Thermal/
thcondnotes.html, 2016, retrieved.

[62] Laura Daniele, Frank den Hartog, and Jasper Roes. Study on semantic assets for smart
appliances interoperability, March 2015.

http://www.citect.com.tw/download/files/1hr_Quickstart_Tutorial.pdf
http://www.citect.com.tw/download/files/1hr_Quickstart_Tutorial.pdf
http://www.ifcwiki.org/index.php/Main_Page
http://www.ifcwiki.org/index.php/Main_Page
http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcondnotes.html
http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcondnotes.html
http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcondnotes.html

91

[63] LM Daniele, FTH den Hartog, and JBM Roes. Study on semantic assets for smart appli-
ances interoperability: D-s4: Final report. Technical report, European Union, 2015.

[64] Anish Das Sarma, Aditya Parameswaran, Hector Garcia-Molina, and Jennifer Widom.
Synthesizing view definitions from data. In Proceedings of the 13th International Con-
ference on Database Theory, pages 89–103. ACM, 2010.

[65] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David Culler.
smap: a simple measurement and actuation profile for physical information. In Proceed-
ings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys ’10,
pages 197–210, New York, NY, USA, 2010. ACM.

[66] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David Culler.
smap: A simple measurement and actuation profile for physical information. In SenSys,
pages 197–210. ACM, 2010.

[67] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe
Fierro, Nikita Kitaev, and David Culler. Boss: Building operating system services. In
NSDI, pages 443–458. USENIX Association, 2013.

[68] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe
Fierro, Nikita Kitaev, and David E Culler. Boss: Building operating system services.
In NSDI, volume 13, pages 443–458, 2013.

[69] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe
Fierro, Nikita Kitaev, and David E Culler. Boss: Building operating system services.
In NSDI, volume 13, pages 443–458, 2013.

[70] Hong Dezhi. Sensor type classification in buildings. http://www.abc.com/.

[71] Luigi Di Caro, K Selçuk Candan, and Maria Luisa Sapino. Using tagflake for condensing
navigable tag hierarchies from tag clouds. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1069–1072.
ACM, 2008.

[72] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R Guha, Anant Jhingran, Tapas
Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A Tomlin, et al. Semtag and
seeker: Bootstrapping the semantic web via automated semantic annotation. In Proceed-
ings of the 12th international conference on World Wide Web, pages 178–186. ACM,
2003.

[73] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A.J. Brush, Bongshin Lee, Stefan Saroiu,
and Paramvir Bahl. An operating system for the home. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), pages
337–352, San Jose, CA, 2012. USENIX.

http://www.abc.com/

92

[74] Bing Dong and Khee Poh Lam. Building energy and comfort management through oc-
cupant behaviour pattern detection based on a large-scale environmental sensor network.
Building Performance Simulation, 4(4):359–369, 2011.

[75] E William East. Construction operations building information exchange (Cobie). Tech-
nical report, DTIC Document, 2007.

[76] A. Ebadat, G. Bottegal, D. Varagnolo, B. Wahlberg, and K. H. Johansson. Regularized
deconvolution-based approaches for estimating room occupancies. IEEE Transactions on
Automation Science and Engineering, 12(4):1157–1168, Oct 2015.

[77] Afrooz Ebadat, Giulio Bottegal, Damiano Varagnolo, Bo Wahlberg, and Karl H Johans-
son. Estimation of building occupancy levels through environmental signals deconvolu-
tion. In BuildSys. ACM, 2013.

[78] Afrooz Ebadat, Giulio Bottegal, Damiano Varagnolo, Bo Wahlberg, and Karl H. Johans-
son. Estimation of building occupancy levels through environmental signals deconvolu-
tion. In BuildSys, pages 8:1–8:8. ACM, 2013.

[79] Echelon Corporation. LonTalk Protocol Specification. Echelon Corp. 1994.

[80] Energy Efficiency. Buildings energy data book. US Department of Energy.
http://buildingsdatabook. eere. energy. gov/, 2009.

[81] M. Eisenhauer, P. Rosengren, and P. Antolin. A development platform for integrating
wireless devices and sensors into ambient intelligence systems. In SECON - 6th An. IEEE
Com. Soc. Conf. on Sensor, Mesh and Ad Hoc Com. and Networks Workshops, pages 1–3,
2009.

[82] DLT & V Sytems Engineering. Arapahoe county water and wastewater author-
ity electrical, instrumentation and scada system design standards. http://www.
arapahoewater.org/documents/SCADA_Standards.pdf.

[83] Flatirons Engineering. Scada tagging standards, wastewater treatment division, cincinati.
http://bit.ly/1LvfJQn.

[84] V. L. Erickson, M. Á. Carreira-Perpi nán, and A. E. Cerpa. OBSERVE: Occupancy-based
system for efficient reduction of HVAC energy. In IPSN, pages 258–269, April 2011.

[85] Varick L. Erickson, Stefan Achleitner, and Alberto E. Cerpa. POEM: Power-efficient
occupancy-based energy management system. In IPSN, pages 203–216. ACM, 2013.

[86] Varick L Erickson and Alberto E Cerpa. Occupancy based demand response hvac control
strategy. In BuildSys, pages 7–12. ACM, 2010.

[87] Varick L Erickson and Alberto E Cerpa. Thermovote: participatory sensing for efficient
building hvac conditioning. In BuildSys, pages 9–16. ACM, 2012.

http://www.arapahoewater.org/documents/SCADA_Standards.pdf
http://www.arapahoewater.org/documents/SCADA_Standards.pdf
http://bit.ly/1LvfJQn

93

[88] Varick L Erickson, Yiqing Lin, Ankur Kamthe, Rohini Brahme, Amit Surana, Alberto E
Cerpa, Michael D Sohn, and Satish Narayanan. Energy efficient building environment
control strategies using real-time occupancy measurements. In BuildSys, pages 19–24.
ACM, 2009.

[89] Varick L. Erickson, Yiqing Lin, Ankur Kamthe, Rohini Brahme, Amit Surana, Alberto E.
Cerpa, Michael D. Sohn, and Satish Narayanan. Energy efficient building environment
control strategies using real-time occupancy measurements. In BuildSys, pages 19–24.
ACM, 2009.

[90] Katja Filippova and Keith B. Hall. Improved video categorization from text metadata
and user comments. In Proceedings of the 34th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’11, pages 835–842, New
York, NY, USA, 2011. ACM.

[91] Romain Fontugne, Jorge Ortiz, and David Culler. Empirical mode decomposition for
intrinsic-relationship extraction in large sensor deployments.

[92] Romain Fontugne, Jorge Ortiz, Nicolas Tremblay, Pierre Borgnat, Patrick Flandrin, Ken-
suke Fukuda, David Culler, and Hiroshi Esaki. Strip, bind, and search: A method for
identifying abnormal energy consumption in buildings. In IPSN, pages 129–140. ACM,
2013.

[93] Ge Gao and Kamin Whitehouse. The self-programming thermostat: optimizing setback
schedules based on home occupancy patterns. In BuildSys, pages 67–72. ACM, 2009.

[94] Ge Gao and Kamin Whitehouse. The self-programming thermostat: Optimizing setback
schedules based on home occupancy patterns. In BuildSys, pages 67–72. ACM, 2009.

[95] Jingkun Gao, Joern Ploennigs, and Mario Berges. A data-driven meta-data inference
framework for building automation systems. In Proceedings of the 2nd ACM Interna-
tional Conference on Embedded Systems for Energy-Efficient Built Environments, pages
23–32. ACM, 2015.

[96] Peter Xiang Gao and S Keshav. Optimal personal comfort management using spot+. In
BuildSys. ACM, 2013.

[97] Peter Xiang Gao and S. Keshav. Optimal personal comfort management using spot+. In
BuildSys, pages 22:1–22:8. ACM, 2013.

[98] Daniel Garnier-Moiroux, Fernando Silveira, and Anmol Sheth. Towards user identifica-
tion in the home from appliance usage patterns. In 2013 ACM Conf. on Pervasive and
ubiquitous computing adjunct publication, pages 861–868. ACM, 2013.

94

[99] Daniel Garnier-Moiroux, Fernando Silveira, and Anmol Sheth. Towards user identifica-
tion in the home from appliance usage patterns. In UbiComp Adjunct, pages 861–868.
ACM, 2013.

[100] GBXML. Green building xml. http://www.gbxml.org/.

[101] NIST GCR. Cost analysis of inadequate interoperability in the US capital facilities in-
dustry. National Institute of Standards and Technology (NIST), 2004.

[102] N. Georgantas, S.B. Mokhtar, Y. Bromberg, V. Issarny, J. Kalaoja, J. Kantarovitch,
A. Gerodolle, and R. Mevissen. The Amigo service architecture for the open networked
home environment. In WICSA - 5th Working IEEE/FIP Conf. on Softw. Archit., pages
295–296, 2005.

[103] S. K. Ghai, L. V. Thanayankizil, D. P. Seetharam, and D. Chakraborty. Occupancy detec-
tion in commercial buildings using opportunistic context sources. In Pervasive Comput-
ing and Communications Workshops, IEEE International Conference on, pages 463–466,
March 2012.

[104] Google. Google earth 3d buildings. http://www.google.com/earth/
explore/showcase/3dbuildings.html.

[105] Jessica Granderson, Mary Ann Piette, Ben Rosenblum, and Lily Hu. Energy information
handbook: Applications for energy-efficient building operations. 2013.

[106] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented middleware for build-
ing context-aware services. Journal of Network and Computer Applications, 28(1):1–18,
2005.

[107] Sumit Gulwani. Automating string processing in spreadsheets using input-output exam-
ples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’11, pages 317–330, New York, NY, USA, 2011.
ACM.

[108] Sumit Gulwani. Synthesis from examples. WAMBSE (Workshop on Advances in Model-
Based Software Engineering) Special Issue, Infosys Labs Briefings, 10(2), 2012. Invited
talk paper.

[109] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation
using examples. In In Communications of the ACM, 2012.

[110] Lam Abraham Hang-yat and Dan Wang. Carrying my environment with me: A
participatory-sensing approach to enhance thermal comfort. In BuildSys. ACM, 2013.

[111] William R. Harris and Sumit Gulwani. Spreadsheet table transformations from examples.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’11, pages 317–328, New York, NY, USA, 2011. ACM.

http://www.gbxml.org/
http://www.google.com/earth/explore/showcase/3dbuildings.html
http://www.google.com/earth/explore/showcase/3dbuildings.html

95

[112] Simon Hay and Andrew Rice. The case for apportionment. In BuildSys, pages 13–18.
ACM, 2009.

[113] Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst., 15(5):745–770, November 1993.

[114] A. Herzog, D. Jacobi, and A. Buchmann. A3ME - an agent-based middleware approach
for mixed mode environments. In UBICOMM - 2nd Int. Conf. on Mobile Ubiq. Comp.,
Syst., Serv. and Techn., pages 191–196, 2008.

[115] Dezhi Hong, Jorge Ortiz, Arka Bhattacharya, and Kamin Whitehouse. Sensor-type clas-
sification in buildings. arXiv preprint arXiv:1509.00498, 2015.

[116] Dezhi Hong, Jorge Ortiz, Kamin Whitehouse, and David Culler. Towards automatic spa-
tial verification of sensor placement in buildings. In Proceedings of the 5th ACM Work-
shop on Embedded Systems For Energy-Efficient Buildings, BuildSys’13, pages 13:1–
13:8, New York, NY, USA, 2013. ACM.

[117] Dezhi Hong, Jorge Ortiz, Kamin Whitehouse, and David Culler. Towards automatic
spatial verification of sensor placement in buildings. In Proceedings of the 5th ACM
Workshop on Embedded Systems For Energy-Efficient Buildings, pages 1–8. ACM, 2013.

[118] Dezhi Hong, Hongning Wang, Jorge Ortiz, and Kamin Whitehouse. The building adapter:
Towards quickly applying building analytics at scale. In Proceedings of the 2nd ACM
International Conference on Embedded Systems for Energy-Efficient Built Environments,
pages 123–132. ACM, 2015.

[119] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C.
Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences, 1998.

[120] Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan
Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. The empirical mode decom-
position and the Hilbert spectrum for nonlinear and non-stationary time series analysis.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 454(1971):903–995, 1998.

[121] ISO 16739:2005 - Industry Foundation Classes, Release 2x, Platform Specification
(IFC2x Platform), 2005.

[122] Marco Jahn, Tobias Schwartz, Jonathan Simon, and Marc Jentsch. Energypulse: track-
ing sustainable behavior in office environments. In 2nd Int. Conf. on Energy-Efficient
Computing and Networking, pages 87–96. ACM, 2011.

96

[123] Marco Jahn, Tobias Schwartz, Jonathan Simon, and Marc Jentsch. Energypulse: tracking
sustainable behavior in office environments. In Proceedings of the 2nd International
Conference on Energy-Efficient Computing and Networking, pages 87–96. ACM, 2011.

[124] Farrokh Jazizadeh and Burcin Becerik-Gerber. Toward adaptive comfort management in
office buildings using participatory sensing for end user driven control. In BuildSys, 2012.

[125] JCI. Johnson controls building management. http://www.automatedlogic.
com/.

[126] Ming Jin, Nikolaos Bekiaris-Liberis, Kevin Weekly, Costas Spanos, and Alexandre
Bayen. Sensing by proxy: Occupancy detection based on indoor CO2 concentration.
In Proceedings of the 9th International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, pages 1–10, 2015.

[127] Deokwoo Jung, Varun Badrinath Krishna, Ngo Quang Minh Khiem, Hoang Hai Nguyen,
and David KY Yau. Energytrack: Sensor-driven energy use analysis system. In BuildSys.
ACM, 2013.

[128] Deokwoo Jung, Varun Badrinath Krishna, Ngo Quang Minh Khiem, Hoang Hai Nguyen,
and David KY Yau. Energytrack: Sensor-driven energy use analysis system. In Proceed-
ings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings,
pages 1–8. ACM, 2013.

[129] Ankur Kamthe, Varick Erickson, Miguel Á. Carreira-Perpiñán, and Alberto Cerpa. En-
abling building energy auditing using adapted occupancy models. In BuildSys, pages
31–36. ACM, 2011.

[130] Ankur Kamthe, Varick Erickson, Miguel Á Carreira-Perpiñán, and Alberto Cerpa. En-
abling building energy auditing using adapted occupancy models. In BuildSys, pages
31–36. ACM, 2011.

[131] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: Inter-
active visual specification of data transformation scripts. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 3363–3372. ACM, 2011.

[132] Hyungsul Kim, Manish Marwah, Martin Arlitt, Geoff Lyon, and Jiawei Han. Unsu-
pervised disaggregation of low frequency power measurements. In SIAM International
Conference on Data Mining, pages 747–758, 2011.

[133] Younghun Kim, Rahul Balani, Han Zhao, and Mani B Srivastava. Granger causality
analysis on ip traffic and circuit-level energy monitoring. In BuildSys, pages 43–48. ACM,
2010.

[134] Younghun Kim, Thomas Schmid, Mani B Srivastava, and Yan Wang. Challenges in
resource monitoring for residential spaces. In BuildSys, pages 1–6. ACM, 2009.

http://www.automatedlogic.com/
http://www.automatedlogic.com/

97

[135] Wilhelm Kleiminger, Christian Beckel, Anind Dey, and Silvia Santini. Using unlabeled
wi-fi scan data to discover occupancy patterns of private households. In SenSys, pages
47:1–47:2. ACM, 2013.

[136] Wilhelm Kleiminger, Christian Beckel, and Silvia Santini. Household occupancy moni-
toring using electricity meters. In UbiComp, pages 975–986. ACM, 2015.

[137] Wilhelm Kleiminger, Christian Beckel, Thorsten Staake, and Silvia Santini. Occupancy
detection from electricity consumption data. In BuildSys. ACM, 2013.

[138] Wilhelm Kleiminger, Christian Beckel, Thorsten Staake, and Silvia Santini. Occupancy
detection from electricity consumption data. In BuildSys, pages 10:1–10:8. ACM, 2013.

[139] Wilhelm Kleiminger, Silvia Santini, and Friedemann Mattern. Smart heating control with
occupancy prediction: How much can one save? In ACM Int. Joint Conf. on Pervasive
and Ubiquitous Computing, pages 947–954. ACM, 2014.

[140] Wilhelm Kleiminger, Silvia Santini, and Friedemann Mattern. Smart heating control with
occupancy prediction: How much can one save? In UbiComp Adjunct, pages 947–954.
ACM, 2014.

[141] Merthan Koc, Burcu Akinci, and Mario Bergés. Comparison of linear correlation and
a statistical dependency measure for inferring spatial relation of temperature sensors in
buildings. In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-
Efficient Buildings, pages 152–155. ACM, 2014.

[142] Mario J Kofler, Christian Reinisch, and Wolfgang Kastner. A semantic representation of
energy-related information in future smart homes. Energy and Buildings, 47:169–179,
2012.

[143] Andrew Krioukov, Stephen Dawson-Haggerty, Linda Lee, Omar Rehmane, and David
Culler. A living laboratory study in personalized automated lighting controls. In Pro-
ceedings of the third ACM workshop on embedded sensing systems for energy-efficiency
in buildings, pages 1–6. ACM, 2011.

[144] Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler. Building application
stack (bas). In Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Buildings, pages 72–79. ACM, 2012.

[145] Varun Badrinath Krishna, Deokwoo Jung, Ngo Quang Minh Khiem, Hoang Hai Nguyen,
and David K. Y. Yau. Energytrack: Sensor-driven energy use analysis system. In
BuildSys, pages 38:1–38:2. ACM, 2013.

[146] Kurtalj Ltd. Brightcore products, 2012.

98

[147] Leslie Lamport. LaTeX User’s Guide and Document Reference Manual. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1986.

[148] Ora Lassila and Ralph R Swick. Resource description framework (rdf) model and syntax
specification. 1999.

[149] C. Legat, C. Seitz, and B. Vogel-Heuser. Unified sensor data provisioning with semantic
technologies. In IEEE ETFA - Int. Conf. on Emerging Technol. and Factory Autom., 2011.

[150] Ting Liu, Yulin Che, Yuqi Liu, Zhanbo Xu, Yufei Duan, and Siyun Chen. A user demand
and preference profiling method for residential energy management. In ACM Int. Joint
Conf. on Pervasive and Ubiquitous Computing, pages 911–918. ACM, 2014.

[151] Lennart Ljung. System identification: Theory for the user. PTR Prentice Hall Information
and System Sciences Series, 198, 1987.

[152] Jiakang Lu, Tamim Sookoor, Vijay Srinivasan, Ge Gao, Brian Holben, John Stankovic,
Eric Field, and Kamin Whitehouse. The smart thermostat: Using occupancy sensors to
save energy in homes. In SenSys, pages 211–224. ACM, 2010.

[153] Alan Marchiori and Qi Han. Using circuit-level power measurements in household energy
management systems. In Proceedings of the First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, pages 7–12. ACM, 2009.

[154] Alan Marchiori and Qi Han. Using circuit-level power measurements in household energy
management systems. In BuildSys, pages 7–12. ACM, 2009.

[155] Mikal Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr Polo-
zov, R Singh, B Zorn, and S Gulwani. User interaction models for disambiguation in
programming by example. UIST, 2015.

[156] George A Miller, Claudia Leacock, Randee Tengi, and Ross T Bunker. A semantic con-
cordance. In Proceedings of the workshop on Human Language Technology, pages 303–
308. Association for Computational Linguistics, 1993.

[157] Archan Misra and Henning Schulzrinne. Policy-driven distributed and collaborative
demand response in multi-domain commercial buildings. In 1st Int. Conf. on Energy-
Efficient Computing and Networking, pages 119–122. ACM, 2010.

[158] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and David
Irwin. Private memoirs of a smart meter. In BuildSys, pages 61–66. ACM, 2010.

[159] Srinarayana Nagarathinam, Shiva R. Iyer, Arunchandar Vasan, Venkata Ramakrishna P.,
Venkatesh Sarangan, and Anand Sivasubramaniam. On the utility of occupancy sensing
for managing HVAC energy in large zones. In Proceedings of the 2015 ACM Sixth In-
ternational Conference on Future Energy Systems, e-Energy ’15, pages 219–220. ACM,
2015.

99

[160] Srinarayana Nagarathinam, Arunchandar Vasan, Venkata Ramakrishna P, Shiva R. Iyer,
Venkatesh Sarangan, and Anand Sivasubramaniam. Centralized management of HVAC
energy in large multi-AHU zones. In BuildSys, pages 157–166. ACM, 2015.

[161] Balakrishnan Narayanaswamy, Bharathan Balaji, Rajesh Gupta, and Yuvraj Agarwal.
Data driven investigation of faults in hvac systems with model, cluster and compare
(mcc). In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-
Efficient Buildings, pages 50–59. ACM, 2014.

[162] Balakrishnan Narayanaswamy, Bharathan Balaji, Rajesh Gupta, and Yuvraj Agarwal.
Data driven investigation of faults in HVAC systems with model, cluster and compare
(mcc). In BuildSys, pages 50–59. ACM, 2014.

[163] NEST. Nest labs. http://www.nest.com.

[164] Guy R Newsham and Benjamin J Birt. Building-level occupancy data to improve arima-
based electricity use forecasts. In BuildSys, pages 13–18. ACM, 2010.

[165] Guy R. Newsham and Benjamin J. Birt. Building-level occupancy data to improve
ARIMA-based electricity use forecasts. In BuildSys, pages 13–18. ACM, 2010.

[166] Next10. Untapped Potential of Commericial Buildings: Energy Use and Emissions, 2010.

[167] H. Ochiai, M. Ishiyama, T. Momose, N. Fujiwara, K. Ito, H. Inagaki, A. Nakagawa, and
H. Esaki. Fiap: Facility information access protocol for data-centric building automation
systems. In Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE
Conference on, pages 229–234, 2011.

[168] Christopher Olston and Marc Najork. Web crawling. Foundations and Trends in Infor-
mation Retrieval, 4(3):175–246, 2010.

[169] Jorge Ortiz. A Platform Architecture for Sensor Data Processing and Verification in
Buildings. PhD thesis, EECS Department, University of California, Berkeley, Dec 2013.

[170] OSIsoft. Pi system. http://www.osisoft.com/.

[171] Kumar Padmanabh, Adi Malikarjuna, V, Sougata Sen, Siva Prasad Katru, Amrit Kumar,
Sai Pawankumar C, Sunil Kumar Vuppala, and Sanjoy Paul. isense: A wireless sensor
network based conference room management system. In BuildSys, pages 37–42. ACM,
2009.

[172] Kumar Padmanabh, Adi Malikarjuna V, Sougata Sen, Siva Prasad Katru, Amrit Kumar,
Sunil Kumar Vuppala, Sanjoy Paul, et al. isense: a wireless sensor network based conf.
room management system. In BuildSys, pages 37–42. ACM, 2009.

http://www.nest.com
http://www.osisoft.com/

100

[173] Alessandra Parisio, Damiano Varagnolo, Daniel Risberg, Giorgio Pattarello, Marco Moli-
nari, and Karl H Johansson. Randomized model predictive control for HVAC systems. In
BuildSys, 2013.

[174] Shwetak Patel, Matthew Reynolds, and Gregory Abowd. Detecting human movement by
differential air pressure sensing in HVAC system ductwork: An exploration in infrastruc-
ture mediated sensing. In Pervasive, pages 1–18. Springer-Verlag, 2008.

[175] Shwetak N. Patel, Thomas Robertson, Julie A. Kientz, Matthew S. Reynolds, and Gre-
gory D. Abowd. At the flick of a switch: Detecting and classifying unique electrical
events on the residential power line. In UbiComp, pages 271–288. Springer-Verlag, 2007.

[176] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed com-
pletion of partial expressions. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, pages 275–286, New
York, NY, USA, 2012. ACM.

[177] D. Pfisterer, K. Romer, D. Bimschas, and et al. SPITFIRE: toward a semantic web of
things. IEEE Commun. Mag., 49(11):40–48, 2011.

[178] J. Ploennigs, B. Hensel, H. Dibowski, and K. Kabitzsch. BASont - a modular, adaptive
building automation system ontology. In IEEE IECON, pages 4827–4833, 2012.

[179] Joern Ploennigs, Bei Chen, Anika Schumann, and Niall Brady. Exploiting generalized
additive models for diagnosing abnormal energy use in buildings. In BuildSys. ACM,
2013.

[180] Joern Ploennigs, Bernard Gorman, Niall Brady, and Anika Schumann. Bead-building
energy asset discovery tool for automating smart building analytics: demo abstract. In
Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Build-
ings, pages 194–195. ACM, 2014.

[181] Joern Ploennigs, Burkhard Hensel, Henrik Dibowski, and Klaus Kabitzsch. Basont-a
modular, adaptive building automation system ontology. In IECON 2012-38th Annual
Conference on IEEE Industrial Electronics Society, pages 4827–4833. IEEE, 2012.

[182] Joern Ploennigs, Anika Schumann, and Freddy Lecue. Adapting semantic sensor net-
works for smart building diagnosis. In ISWC - Int. Semantic Web Conf., 2014.

[183] Joern Ploennigs, Anika Schumann, and Freddy Lecue. Extending semantic sensor net-
works for automatically tackling smart building problems. In ECAI/PAIS - Eu. Conf. on
Artificial Intelligence - Prestigious Applications of Intelligent Systems, 2014.

[184] Marco Pritoni, Arka A. Bhattacharya, David Culler, and Mark Modera. A method for
discovering functional relationships between air handling units and variable-air-volume
boxes from sensor data. In BuildSys, pages 133–136. ACM, 2015.

101

[185] Marco Pritoni, Arka A Bhattacharya, David Culler, and Mark Modera. Short paper: A
method for discovering functional relationships between air handling units and variable-
air-volume boxes from sensor data. In Proceedings of the 2nd ACM International Con-
ference on Embedded Systems for Energy-Efficient Built Environments, pages 133–136.
ACM, 2015.

[186] Chuan Qin, Xuan Bao, Romit Roy Choudhury, and Srihari Nelakuditi. Tagsense: A
smartphone-based approach to automatic image tagging. In Proceedings of the 9th Inter-
national Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages
1–14, New York, NY, USA, 2011. ACM.

[187] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic schema match-
ing. the VLDB Journal, 10(4):334–350, 2001.

[188] Niranjini Rajagopal, Patrick Lazik, and Anthony Rowe. Visual light landmarks for mobile
devices. In Proceedings of the 13th international symposium on Information processing
in sensor networks, pages 249–260. IEEE Press, 2014.

[189] Christian Reinisch, MarioJ Kofler, Felix Iglesias, and Wolfgang Kastner. ThinkHome en-
ergy efficiency in future smart homes. EURASIP Journal on Embedded Systems, 2011(1),
2011. Article ID 104617.

[190] Daniel Retkowitz and Monika Pienkos. Ontology-based configuration of adaptive smart
homes. In ARM - 7th Workshop on Reflective and Adaptive Middleware, pages 11–16,
2008.

[191] Alejandro Gomez Rivera, Burcu Akinci, and Mario Berges. Exploratory Study Towards
Streamlining the Identification of Sensor Locations Within a Facility, chapter 226, pages
1820–1827.

[192] Kurt W Roth, Detlef Westphalen, Patricia Llana, and Michael Feng. The energy im-
pact of faults in U.S. commercial buildings. In Int’l Refrigeration and Air Conditioning
Conference, 2004.

[193] S Roth. Open green building xml schema: A building information modeling solution for
our green world, gbxml schema (5.12). 2014.

[194] Anthony Rowe, Mario Berges, and Raj Rajkumar. Contactless sensing of appliance state
transitions through variations in electromagnetic fields. In BuildSys, pages 19–24. ACM,
2010.

[195] D.J. Russomanno, C. Kothari, and O. Thomas. Sensor ontologies: from shallow to deep
models. In SSST Southeastern Symp. on System Theory, pages 107–112, 2005.

[196] S.L. Salas and Einar Hille. Calculus: One and Several Variable. John Wiley and Sons,
New York, 1978.

102

[197] Jeffrey Schein, Steven T. Bushby, Natascha S. Castro, and John M. House. A rule-based
fault detection method for air handling units. Energy and Buildings, 38(12):1485–1492,
dec 2006.

[198] Jeffrey Schein, Steven T Bushby, Natascha S Castro, and John M House. A rule-based
fault detection method for air handling units. Energy and Buildings, 38(12):1485–1492,
2006.

[199] Anthony Schoofs, Declan T Delaney, Gregory MP O’Hare, and Antonio G Ruzzelli.
COPOLAN: non-invasive occupancy profiling for preliminary assessment of hvac fixed
timing strategies. In BuildSys, pages 25–30. ACM, 2011.

[200] Anthony Schoofs, Alex Sintoni, Antonio G Ruzzelli, and Greg MP O’Hare. Netbem:
business equipment energy monitoring through network auditing. In BuildSys, pages 49–
54. ACM, 2010.

[201] Anika Schumann, Joern Ploennigs, and Bernard Gorman. Towards automating the de-
ployment of energy saving approaches in buildings. In Proceedings of the 1st ACM
Conference on Embedded Systems for Energy-Efficient Buildings, pages 164–167. ACM,
2014.

[202] Siemens. Siemens building management system. http:
//www.buildingtechnologies.siemens.com/bt/
global/en/market-specific-solutions/airports/
hvac-plant-room/building-management-system/pages/
building-management-system.aspx.

[203] Rishabh Singh and Sumit Gulwani. Learning semantic string transformations from ex-
amples. Proc. VLDB Endow., 5(8):740–751, April 2012.

[204] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-
output examples. In Proceedings of the 24th International Conference on Computer Aided
Verification, CAV’12, pages 634–651, Berlin, Heidelberg, 2012. Springer-Verlag.

[205] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-
output examples. In 24th Int. Conf. on Computer Aided Verification, CAV’12, pages
634–651, Berlin, Heidelberg, 2012. Springer-Verlag.

[206] Deke Smith. An introduction to building information modeling. Journal of Building
Information Modeling, pages 12–14, November 2007.

[207] David Sturzenegger, Dimitrios Gyalistras, Manfred Morari, and Roy S Smith. Semi-
automated modular modeling of buildings for model predictive control. In BuildSys,
pages 99–106. ACM, 2012.

http://www.buildingtechnologies.siemens.com/bt/global/en/market-specific-solutions/airports/hvac-plant-room/building-management-system/pages/building-management-system.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/market-specific-solutions/airports/hvac-plant-room/building-management-system/pages/building-management-system.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/market-specific-solutions/airports/hvac-plant-room/building-management-system/pages/building-management-system.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/market-specific-solutions/airports/hvac-plant-room/building-management-system/pages/building-management-system.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/market-specific-solutions/airports/hvac-plant-room/building-management-system/pages/building-management-system.aspx

103

[208] David Sturzenegger, Dimitrios Gyalistras, Manfred Morari, and Roy S Smith. Semi-
automated modular modeling of buildings for model predictive control. In Proceedings
of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in
Buildings, pages 99–106. ACM, 2012.

[209] Z Cihan Taysi, M Amac Guvensan, and Tommaso Melodia. Tinyears: spying on house
appliances with audio sensor nodes. In BuildSys, pages 31–36. ACM, 2010.

[210] Brian L. Thomas and Diane J. Cook. Carl: Activity-aware automation for energy effi-
ciency. In UbiComp Adjunct, pages 939–946. ACM, 2014.

[211] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[212] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin. A complete ensem-
ble empirical mode decomposition with adaptive noise. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4144–4147. IEEE, May 2011.

[213] US Department of Energy. 2011 Buildings Energy Book, 2012.

[214] U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Build-
ings energy data book, 2011.

[215] U.S. Environmental Protection Agency. Buildings Energy Data Book, 2010.

[216] Pablo Valiente-Rocha and Adolfo Lozano-Tello. Ontology-based expert system for home
automation controlling. In Trends in Applied Intelligent Systems, volume 6096 of Lecture
Notes in Computer Science, pages 661–670. 2010.

[217] Chen Wang and Martin De Groot. Managing end-user preferences in the smart grid. In 1st
Int. Conf. on Energy-Efficient Computing and Networking, pages 105–114. ACM, 2010.

[218] He Wang, Dimitrios Lymberopoulos, and Jie Liu. Local business ambience characteriza-
tion through mobile audio sensing. In Proceedings of the 23rd International Conference
on World Wide Web, WWW ’14, pages 293–304, New York, NY, USA, 2014. ACM.

[219] Jingjing Wang, Changsung Kang, Yi Chang, and Jiawei Han. A hierarchical dirichlet
model for taxonomy expansion for search engines. In Proceedings of the 23rd Interna-
tional Conference on World Wide Web, WWW ’14, pages 961–970, New York, NY, USA,
2014. ACM.

[220] James Weimer, Seyed Alireza Ahmadi, José Araujo, Francesca Madia Mele, Dario Pa-
pale, Iman Shames, Henrik Sandberg, and Karl Henrik Johansson. Active actuator fault
detection and diagnostics in HVAC systems. In BuildSys, pages 107–114. ACM, 2012.

104

[221] James Weimer, Seyed Alireza Ahmadi, José Araujo, Francesca Madia Mele, Dario Pa-
pale, Iman Shames, Henrik Sandberg, and Karl Henrik Johansson. Active actuator fault
detection and diagnostics in HVAC systems. In BuildSys, pages 107–114. ACM, 2012.

[222] Thomas Weng, Bharathan Balaji, Seemanta Dutta, Rajesh Gupta, and Yuvraj Agarwal.
Managing plug-loads for demand response within buildings. In BuildSys, pages 13–18.
ACM, 2011.

[223] Thomas Weng, Bharathan Balaji, Seemanta Dutta, Rajesh Gupta, and Yuvraj Agarwal.
Managing plug-loads for demand response within buildings. In Proceedings of the Third
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pages
13–18. ACM, 2011.

[224] Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. Buildingdepot 2.0: An in-
tegrated management system for building analysis and control. In Proceedings of the
5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, BuildSys’13,
pages 7:1–7:8, New York, NY, USA, 2013. ACM.

[225] Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. Buildingdepot 2.0: An inte-
grated management system for building analysis and control. In Proceedings of the 5th
ACM Workshop on Embedded Systems For Energy-Efficient Buildings, pages 1–8. ACM,
2013.

[226] Donald J Wheeler, David S Chambers, et al. Understanding statistical process control.
SPC press, 1992.

[227] Ian Wiese. The integration of scada and corporate it. http://www.iinet.net.au/
~ianw/integration.doc.

[228] Ian Wiese. The integration of scada and corporate it. http://
isawwsymposium.com/wp-content/uploads/2013/08/WWAC2013_
Loncar_CodeGeneratorBenefits-for-Standards_slides_1up.pdf.

[229] Rizhen Zhang, Bharathan Balaji, Yan Zhang, Balakrishnan Narayanaswamy, and Yuvraj
Agarwal. Buildingsherlock: Fault management framework for HVAC systems: Demo
abstract. In BuildSys, pages 202–203. ACM, 2014.

http://www.iinet.net.au/~ianw/integration.doc
http://www.iinet.net.au/~ianw/integration.doc
http://isawwsymposium.com/wp-content/uploads/2013/08/WWAC2013_Loncar_CodeGeneratorBenefits-for-Standards_slides_1up.pdf
http://isawwsymposium.com/wp-content/uploads/2013/08/WWAC2013_Loncar_CodeGeneratorBenefits-for-Standards_slides_1up.pdf
http://isawwsymposium.com/wp-content/uploads/2013/08/WWAC2013_Loncar_CodeGeneratorBenefits-for-Standards_slides_1up.pdf

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Trends In Building Intelligence
	Problem Statement
	Thesis Roadmap

	Background
	Legacy Building Metadata
	Building Applications and Required Semantic Relationships
	Shortcomings of Prior Normalized Smart-Building Metadata Schema Proposals
	Empirical Evaluation of Existing Schemas
	Project Haystack
	Building Information Models (IFC)
	Semantic Sensor Web

	Related Work on Normalizing Legacy Metadata Tags Into a Uniform Smart-Building Metadata Schema
	Extracting Information From Legacy Metadata Schemas
	Challenges in Normalizing Legacy Metadata

	Technical Problem Statement

	Normalizing Legacy Smart-Building Metadata
	Brief Overview of Technique
	Automated Metadata Construction Techniques
	Syntactic Clustering
	Rule Synthesis and Rule Application
	Syntactic Example Selection
	Data-driven Example Selection
	Running Portable Building Applications

	Evaluation
	Clustering
	Syntactic Example Selection
	Application-Oriented Qualification with Syntactic Example Selection
	Application-Oriented Qualification with Data-Driven Example Selection
	Results of Applications

	Conclusion

	Capturing Underspecified Legacy Metadata Through Active System Perturbation
	Overview Of Technique
	Problem Instance
	Prior Techniques
	Mechanism of Perturbation
	Results
	Conclusion

	Designing BRICK- A Combined, Unified Metadata Schema
	An Example Building - Sensors and relationships
	Schema Design
	Design Principles
	Tags and Tagsets
	Class Hierarchies
	Fundamental Relationships
	Function Blocks

	RDF and SPARQL
	Representing Knowledge in RDF
	Querying Knowledge with SPARQL

	Applications
	Designing Relationships
	Results
	Example Application: ZonePAC

	Case Studies
	Gates Hillman Center at CMU
	Rice Hall at UVA
	Engineering Building Unit 3B at UCSD
	Soda Hall at UC Berkeley
	Green Tech House

	Discussion

	Enabling Non-Trivial Scalable Building Applications
	Simple Diagnostics Applications
	Applying Applications on One Building
	Porting Application to Other Buildings

	Occupancy Detection
	Background and Feasibility
	Methodology
	Energy Savings Potential
	Related Work
	Conclusions

	Conclusion
	Contributions
	Future Work

	Bibliography

