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A central question in genetics asks how genetic variation influences phenotypic variation. The

distribution of genetic variation in a population is reflective of the evolutionary forces that

shape and maintain genetic diversity such as mutation, natural selection, and genetic drift. In

turn, this genetic variation affects molecular phenotypes like gene expression and eventually

leads to variation in complex traits. In my dissertation, I develop statistical methods and

apply computational approaches to understand these dynamics in human populations. In the

first chapter, I describe a statistical model for detecting the presence of archaic haplotypes

in modern human populations without having access to a reference archaic genome. I apply

this method to the genomes of individuals from Europe and find that I can recover segments

of DNA inherited from Neanderthals as a result of archaic admixture. In the second chapter,

I apply this method to the genomes of individuals from several African populations and find

that approximately 7% of the genomes are inherited from an archaic species. Modeling of

the site frequency spectrum suggests that the presence of these haplotypes is best explained

by admixture with an unknown archaic hominin species. In the final chapter, I focus on the

more recent history of humans and the genetic architecture of complex traits. In particular, I

find that a substantial portion of the genetic architecture is population specific, which limits

our ability to transfer phenotype predictions across populations.
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Introduction

Substantial genetic variation is created every generation because of errors in the replication of

DNA by polymerase enzymes. Some of these mutations will affect the organism’s phenotype,

but most will be evolutionarily neutral [1]. That is, they will have no effect on a measurable

phenotype or on the organism’s fitness. Those mutations that have the strongest phenotypic

effect will tend to be removed by natural selection if they are deleterious or driven to fixation

if they are beneficial. Mutations that are not selected out of the population will leave a trace

in the genome as DNA is continually passed on from one generation to the next. A major

goal of population genetics is to learn about the history of a species or population by studying

these mutations.

On the other hand, those mutations that are not neutral will have a biological impact on

the organism. A major goal of statistical genetics is to predict the phenotype of an individual

given the genetic mutations that an individual has. This work has implications for plant and

animal breeding, where breeders can choose the individuals to cross after predicting the yield

or other economically valuable traits for their progeny[2]. This work also has implications for

human health, where susceptibility to disease can be predicted before the onset of the disease

and lifestyle or other interventions can be applied to prevent the disease from occurring [3].

In this dissertation, I develop statistical tools to study both of these topics with humans

as the focal species. As large genomic datasets have become available from individuals from

populations around the world, our evolutionary history has been revealed to be much more

complex than originally thought[4, 5]. In particular, admixture between archaic hominins

and modern humans has been pervasive throughout our history[6, 7, 8, 9]. Understanding

our evolutionary history requires the development of statistical methods that can robustly

infer evolutionary phenomena. In Chapter 1, I develop a statistical model that is concerned

with the problem of local ancestry inference. The goal of such a method is to find the

segments of modern human genomes that originate from archaic admixture. The method

I develop in Chapter 1, ArchIE, is able to do so without the use of an archaic reference
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genome. Rather, it relies on a demographic model relating the archaic and modern human

populations and takes a discriminative modeling approach to model the probability that a

segment in the modern human genome is archaic in origin. An application of ArchIE to

genomic data from European populations reveals segments that come from the Neanderthal

population, consistent with a model of archaic admixture from Neanderthals into modern

humans.

Given that archaic admixture has occurred between modern humans and two separate

archaic species (Neaderthals and Denisovans), an open question is whether archaic admixture

occurred between modern humans and other, as-yet-unsampled archaic populations[10, 11,

12, 13]. In Chapter 2, I develop a statistical framework that is able to answer this question

focusing on populations in sub-Saharan Africa. I find that there is indeed evidence for

archaic introgression from an unsampled ‘ghost’ population that diverged from the modern

human lineage prior to the Neanderthal divergence. Using ArchIE, I was able to discover

the segments of ancestry that come from this archaic population. Using this genomic map of

archaic introgression, I find that there are several regions where archaic ancestry is present

more frequently than expected under a model of strict neutral evolution, suggesting these

archaic segments may have been adaptive.

In Chapter 3, I turn my attention to predicting the phenotypes of individuals. In partic-

ular, evolutionary forces such as mutation, genetic drift, and natural selection can affect the

genetic architecture of complex traits[14, 15]. Given that human populations have split from

an ancestral population, it is possible that the genetic architecture of complex traits may

be different in different populations [16]. This has implications for predicting phenotypes,

which rely on an inferred genetic architecture. This impact is magnified in real data, where

most of the inference has occurred in populations of European ancestry. An open question is

to what extent understanding the genetics of complex traits in European populations tells us

about the genetics of complex traits in other, non-European populations[17, 18]. In Chapter

3, using population genetics models of complex traits, I show that natural selection will tend

2



to keep the frequency of the largest effect alleles low, decreasing the probability that these

alleles are shared between populations. Further, I show that this has implications for trans-

ferring models for genomic prediction of complex traits between populations. I conclude by

discussing the need for comprhensive studies of genomic variation in diverse populations.
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Abstract
Statistical analyses of genomic data from diverse human populations have demonstrated

that archaic hominins, such as Neanderthals and Denisovans, interbred or admixed with the

ancestors of present-day humans. Central to these analyses are methods for inferring

archaic ancestry along the genomes of present-day individuals (archaic local ancestry).

Methods for archaic local ancestry inference rely on the availability of reference genomes

from the ancestral archaic populations for accurate inference. However, several instances

of archaic admixture lack reference archaic genomes, making it difficult to characterize

these events. We present a statistical method that combines diverse population genetic

summary statistics to infer archaic local ancestry without access to an archaic reference

genome. We validate the accuracy and robustness of our method in simulations. When

applied to genomes of European individuals, our method recovers segments that are sub-

stantially enriched for Neanderthal ancestry, even though our method did not have access

to any Neanderthal reference genomes.

Author summary

Recent analyses of modern human genomes have shown that archaic hominins like

Neanderthals and Denisovans contribute a few percentage of ancestry to many popula-

tions. These analyses rely on having accurate reference genomes from these archaic

populations. Due to the difficulty in sequencing these genomes, we lack a complete col-

lection of reference genomes with which to identify archaic ancestry. Here, we develop

a method that identifies segments of archaic ancestry in modern human genomes with-

out the need for archaic reference genomes. We systematically evaluate the accuracy

and robustness of our method and apply it to modern European genomes to uncover

signals of introgression which we confirm to be from a population related to

Neanderthals.
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Introduction

Admixture, the exchange of genes among previously isolated populations, is increasingly being

recognized as an important force in shaping genetic variation in natural populations. Analyses

of large collections of genome sequences have shown that admixture events have been preva-

lent throughout human history [1]. These studies have shown that modern human populations

outside of Africa trace a small percentage of their ancestry to admixture events from popula-

tions related to archaic hominins like Neanderthals and Denisovans [1, 2, 3]. Further, studies

of the functional impact of archaic ancestry have suggested that Neanderthal DNA contributes

to phenotypic variation in modern humans [4, 5].

Central to these studies is the problem of archaic local ancestry inference—the pinpointing

of segments of an individual genome that trace their ancestry to archaic hominin populations.

Methods for archaic local ancestry inference leverage various summary statistics computed

from modern and ancient genomes. For example, at a given genomic locus, individuals with

archaic ancestry are expected to have low sequence divergence to an archaic genome [6]. A

number of summary statistics [7, 8, 9] as well as statistical models that combine these statistics

[2, 10, 11, 12] to infer archaic local ancestry have been proposed.

These methods are most effective in settings where reference genomes that represent

genetic variation in the archaic population are available. For example, the analyses of Neander-

thal [6, 10] and Denisovan admixture events [13] relied on the genome sequences from the

respective archaic populations. In a number of instances, however, the archaic population is

either unknown or lacks suitable reference genomes. Several recent studies have found evi-

dence for archaic introgression in present-day African populations from an unknown archaic

hominin [14, 15, 16] while analysis of the high-coverage Denisovan genome has suggested that

the sequenced individual traces a small proportion of its ancestry to a highly-diverged

unknown archaic hominin [10].

One of the most widely used statistics for identifying archaic ancestry is the S�-statistic [9],

which identifies highly diverged SNPs that are in high linkage disequilibrium (LD) with each

other in the present-day population as likely to be introgressed. The S�-statistic is attractive as

it can be applied even where no reference genome is available. However, the power of the S�-

statistic tends to be low in the reference-free setting [3] and its accuracy depends on a number

of parameters that need to be fixed in advance.

Here, we introduce a new statistical method, ARCHaic Introgression Explorer (ArchIE),

that combines several population genetic summary statistics to accurately infer archaic local

ancestry without the need for a reference genome. ArchIE is based on a logistic regression

model that predicts the probability of archaic ancestry for each window along an individual

genome. The parameters of ArchIE are estimated from training data generated using coales-

cent simulations. Our proposed method has several advantages. First, the model can incorpo-

rate a variety of statistics that are potentially informative of archaic ancestry. This flexibility

allows the model to be applied to the reference-free setting (the setting that is the focus in this

paper). However, the model can be extended to also incorporate reference genomes when

available, even when these reference genomes might be from distant representatives [10] or

from low-coverage samples [17, 18]. Second, our use of a statistical model allows us to effi-

ciently estimate model parameters that optimize desired objective functions such as the likeli-

hood. This property allows the model to be adapted to admixture events with different time

depths or admixture fractions as well as to infer other population genetic parameters of inter-

est. Indeed, recent studies have shown that statistical predictors that combine weakly-informa-

tive summary statistics can substantially improve a number of population genetic inference

problems [19, 20, 21].

Reference-free inference of archaic introgression
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We show that ArchIE obtains improved accuracy in simulations over the S�-statistic (as

well as the recently proposed S’ method [22]) while being robust to demographic model mis-

specifications that can cause the distribution of features and archaic ancestry labels in the

training data to differ from the test data. We apply ArchIE to Western European (CEU)

genomes from the 1000 Genomes project and show that the segments inferred to harbor

archaic ancestry have an increased likelihood of being introgressed from Neanderthals even

though no Neanderthal genome was used in the inference. These segments recover previously

observed features of introgressed Neanderthal ancestry: we observe a decreased frequency of

these segments in regions of the genome with stronger selective constraint [23] as well as ele-

vated frequency at the BNC2 and OAS loci that have previously been reported to harbor ele-

vated frequencies of Neanderthal ancestry [2, 3].

Results

Overview of statistical model to detect archaic local ancestry

Our method, ArchIE, aims to predict the archaic local ancestry state in a given window along

an individual haploid genome. This prediction is performed using a binary logistic regression

model given a set of features computed within this window. Estimating the parameters of this

model requires labeled training data i.e., a dataset containing pairs of features and the archaic

local ancestry state for a given window along an individual genome. To obtain labeled train-

ing data, we simulate data under a demographic model that includes archaic introgression,

label windows as archaic or not, compute features that are potentially informative of intro-

gression, and estimate the parameters of our predictor on the resulting training data (Fig 1A,

Methods). While our method is general enough to be applicable to non-human populations,

we describe the demographic model in terms of a modern human-archaic human demo-

graphic history.

We simulate training data using a modified version of the coalescent simulator, ms [24],

which allows us to track each individual’s ancestry. We use the demographic model from San-

kararaman et al. 2014 [2] (See Table 1). In this model, an ancestral population splits T0 genera-

tions before present (B.P.) forming two populations (archaic and modern human in the case of

the Neanderthal-human demography). The modern human population subsequently splits

into two populations Ts generations B.P., one of which then interbreeds with the archaic popu-

lation (referred to as the target population) while the other does not (the reference population).

We simulate one haploid genome (haplotype) in the archaic population, 100 haplotypes in the

target population and 100 haplotypes in the reference population (thus, a target population

consists of 50 diploid individuals). We sample the archaic haplotype at the same time as the

modern human haplotypes, but the statistics we calculate do not rely on features of the archaic

genome. We simulate 10,000 replicates of 50,000 base pairs each (bp), resulting in 1,000,000

training examples. We use a window of length 50 Kb because that is the mean length of the

introgressed archaic haplotype after Ta = 2, 000 generations based on the recombination rate

assumed in our simulations.

We summarize the training data using features that are likely to be informative of archaic

admixture. Since we are interested in the probability of archaic ancestry for a given focal hap-

lotype, we compute features that are specific for the focal haplotype. First, for the focal haplo-

type, we calculate an individual frequency spectrum (IFS), which is a vector of length n, the

haploid sample size of the target population. Each entry in the vector is the number of muta-

tions on the focal haplotype that are segregating in the target population with a specific count

of derived alleles. Due to the accumulation of private mutations in the archaic population, we

expect the IFS to capture the excess of alleles segregating at frequencies close to the admixture

Reference-free inference of archaic introgression
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fraction in the introgressed population. This statistic is closely related to the conditional site

frequency spectrum [25].

Next, we calculate the Euclidean distance between the focal haplotype and all other haplo-

types, resulting in a vector of length n. Under a scenario of archaic admixture, the distribution

Fig 1. Outline of the demographic model used for training ArchIE. We simulate a population starting at sizeN0 and

splitting into archaic and modern human (MH) populations at time T0. The MH population splits into a reference and

target population of sizeN1 and N2, respectively, at time Ts. Then, at time Ta, the archaic population admixes with the

target population with an associated admixture proportionm. We use data simulated from this model to train a logistic

regression classifier.

https://doi.org/10.1371/journal.pgen.1008175.g001

Table 1. Parameters used in training simulations.

Parameter Description Value

N1 Reference population size 10000

N2 Target population size 10000

Na Archaic population size 10000

N0 Ancestral population size 10000

m Admixture fraction 2%

T0 Archaic split time 12000

TS Target-Reference split time 2500

Ta Admixture time 2000

μ Per base pair mutation rate 1.25 x 10−8

r Per base pair recombination rate 1 x 10−8

https://doi.org/10.1371/journal.pgen.1008175.t001

Reference-free inference of archaic introgression
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of pairwise differences is expected to differ when we compare two haplotypes that are both

modern human or archaic versus when we compare an archaic haplotype to a modern human

haplotype. We also include the first four moments of this distribution, i.e., the mean, variance,

skew, and kurtosis. These summaries of haplotype distance are similar to the D1 statistic used

in Hammer et. al. [14].

The next set of features rely on a present-day reference human population that has a differ-

ent demographic history compared to the target population. The choice of the reference can

alter the specific admixture events that our method is sensitive to: we expect the method to be

sensitive to admixture events in the history of the target population since its divergence from

the reference. While our method can also be applied in the setting where no such reference

population exists, in the context of human populations where genomes from a diverse set of

populations is available [1], the use of the reference can improve the accuracy and the

interpretability of our predictions. Given a reference population, we compute the minimum

distance of the focal haplotype to all haplotypes in the reference population. A larger distance

is suggestive of admixture from a population that diverged from the ancestor of the target and

reference populations before the reference and target populations split. This feature shares

some similarities with the D2 statistic from Hammer et. al. [14].

We also calculate the number of SNPs private to the focal haplotype, removing SNPs shared

with the reference, as these SNPs are suggestive of an introgressed haplotype. Finally, we calcu-

late S� [9], a statistic designed for detecting archaic admixture by looking for long stretches of

derived alleles in high LD.

Using these features, we train a logistic regression classifier to distinguish between archaic

and non archaic segments. In our training data, we define archaic haplotypes as those for

which� 70% of bases are truly archaic in ancestry and non-archaic as those for which� 30%

are archaic in ancestry. We discard haplotypes that fall in-between those values in the training

data resulting in 988,372 training examples.

Accuracy of estimates of archaic local ancestry

We tested the accuracy of ArchIE by simulating data under a demography reflective of the his-

tory of Neanderthals and present-day humans [2]. We evaluated the ability of ArchIE to cor-

rectly predict the archaic ancestry at each SNP along an individual haplotype. Since ArchIE

predicts archaic ancestry within a window, we simulated a 1 Mb segment, applied ArchIE in a

50 Kb window that slides 10 Kb at a time, and predicted archaic ancestry at a SNP by averaging

predictions across all windows that overlap the SNP (Methods). We compute Receiver Opera-

tor Characteristic (ROC) and Precision Recall (PR) curves by varying the threshold at which

we call a SNP archaic and calculating the true positive rate (TPR), false positive rate (FPR), pre-

cision, and recall (Fig 2).

We compared ArchIE to an implementation of the S�-statistic from Vernot and Akey using

their hyper parameter choices [3] and to S’, a new method for reference-free inference of

archaic ancestry [22] (Methods). At a 2% admixture fraction, ArchIE outperforms the S� and

S’ statistics across all thresholds (Fig 2A and 2B). At a precision of 0.80, i.e., false discovery rate

of 20%, ArchIE obtains a recall of 0.21, S� obtains a recall of 0.04, and S’ obtains a recall of

0.09. The area under the ROC curve (AUROC) is 0.94 (±0.008) for S�, 0.84 (±0.01) for S’, and

0.97 (±0.005) for ArchIE and the area under the PR curve (AUPR) is 0.47 for S� (±0.031), 0.28

(±0.032) for S’, and 0.60 (±0.05) for ArchIE (All standard error were estimated using a block

jackknife [26] using 1 Mb blocks). We also note that while the ROC curves are similar, the PR

curves show a large difference, indicative of the utility of PR curves in problems where there is

an imbalance in the frequencies of the two classes.

Reference-free inference of archaic introgression
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We also evaluated the ability of ArchIE to call archaic haplotypes. Since haplotypes can

range from having none of their ancestry to being entirely from the archaic population, we

called haplotypes archaic if they contain� 70% archaic ancestry or not archaic if they

contain� 30%. We see that again, ArchIE has larger AUPR (0.53 for ArchIE, 0.38 for S�) and

AUROC (0.97 for ArchIE, 0.94 for S�) compared to S� (S4 Fig).

Population genetic features informative of archaic local ancestry

We examined the absolute value of the standardized weights learned by ArchIE to understand

the features that contribute substantially to its predictions. Examining single features, we find

that the minimum distance between the focal haplotype and each of the reference haplotypes,

as well as the skew of the distance vector have the largest weights (Fig 3B). Intuitively, a larger

distance to a reference population should indicate archaic ancestry. The next largest single sta-

tistic was the skew of the distance vector, which was negatively correlated with archaic ances-

try. Under a simple scenario of admixture, we expect a bi-modal distribution of pairwise

distances. However, when there is little archaic ancestry, the distribution will be unimodal

resulting in a negative relationship between skew and archaic ancestry. The IFS contains

mostly negative weights, suggesting that these features do not make a substantial contribution

to the model predictions (Fig 3A).

As a further check, we wanted to determine how the performance of the model changes

when trained on subsets of the features. First, since the “skew” feature has a large standardized

absolute weight, we trained a model based only on this feature (S5 Fig). We find that accuracy

greatly decreases, indicating that the model does best when it combines multiple features that

are informative of archaic introgression. However, when we train only on the number of pri-

vate SNPs or only on the minimum distance to the reference population, we see improved

accuracy indicating that these features are informative of archaic ancestry independent of

Fig 2. ArchIE obtains improved accuracy over related methods. (A) Precision-Recall (PR) and (B) Receiver Operator Characteristic (ROC) curves

for ArchIE (black circles), S� (red crosses), and S’ (purple triangles) in a 2% admixture scenario with a Human-Neanderthal demography. The dashed

line corresponds to a false discovery rate of 20%.

https://doi.org/10.1371/journal.pgen.1008175.g002
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other features. When we take a combination of three features (skew, number of private SNPs,

and minimum distance to the reference population), this model is still able to discern archaic

from non-archaic haplotypes with slight decreased accuracy relative to the full model (S5 Fig).

Finally, we tested the contribution of the reference population to the accuracy of ArchIE. We

trained the logistic regression without using any features that rely on the reference and found

that model still retains reasonable accuracy (AUPR = 0.36) to identify archaic ancestry (S5

Fig). This suggests that ArchIE is useful even in scenarios where a reference population is not

available.

Robustness of archaic local ancestry estimates

ArchIE relies on simulating data from a model with fixed demographic and population genetic

parameters. In practice, these parameters are unknown and are inferred from data with some

uncertainty. Thus, we wanted to determine the sensitivity of our method to demographic

uncertainty. An exhaustive exploration of demographic uncertainty is challenging given the

number of parameters associated with even the simplest models. As an alternative to an

exhaustive exploration, we systematically perturbed each parameter at a time, simulated data

using the perturbed model, and evaluated the performance of our classifier (trained on the

unperturbed parameters corresponding to the Neanderthal demographic history).

ArchIE remains accurate when many aspects of the demography are misspecified, but has

reduced precision or recall under some scenarios (Fig 4, S1 Fig). The most significant decrease

in accuracy (in terms of recall and precision at a fixed threshold) arises when the reference

population size is decreased or the split time of the reference and the target is increased. In this

setting, the reference genomes are more drifted and hence, less representative of the ancestral

Fig 3. Relative importance of the features used as input to ArchIE. We examined the log of the absolute value of the standardized weights associated

with each of the features included in the logistic regression model underlying ArchIE. Negative values indicate standardize weights with absolute values

less than 1. (A) The individual frequency spectrum mostly has small weights and lower frequency entries generally have larger weights associated with

them. (B) The first three entries indicate the moments of the distance vector. The minimum distance to the reference population, skew, and variance of the

distance vector have the largest weights associated with them.

https://doi.org/10.1371/journal.pgen.1008175.g003
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population. We also compared the accuracies of ArchIE to S� across these perturbations and

found that ArchIE remains relatively accurate across these settings (S1 Table).

We also tested the effect of variation in mutation rate (μ) and recombination rate (r) since

we trained our model using fixed values of these parameters (μ = 1.25 × 10−8, r = 1 × 10−8). To

evaluate how ArchIE performs on real data, we simulated test data randomly drawing pairs of

μ and r from a distribution chosen to match local recombination and mutation rates along the

Fig 4. ArchIE is robust to misspecification in the demographic model. We tested ArchIE on data simulated after perturbing single demographic

parameters lower (left, orange) and higher (right, blue) relative to their values in the training data. Values are reported as log10 fold changes compared

to the baseline model performance. We report (a, b) recall and (c,d) precision at the threshold that gives a precision of 0.8 on the unperturbed test data

(P(archaic) = 0.62).

https://doi.org/10.1371/journal.pgen.1008175.g004
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human genome (see Methods). The overall AUPR is reduced (0.31, S1i Fig), the log10 fold

changes in precision and recall are −0.30 and +0.19 suggesting that ArchIE is relatively robust

to variation in mutation and recombination rates.

In addition, we tested the impact of the window size and found that reasonable choices of

window size do not substantially impact the performance (S2 Fig). We also assessed the

impact of sample size by simulating 30 haplotypes (15 diploid individuals), representing a

modestly sized genomic dataset, and found a reduction in power as expected (AUPR = 0.45)

(S3 Fig).

We tested the sensitivity of ArchIE to recent and ancestral structure in the demographic

model. We simulated data under two scenarios of structure, one where 25% of the target popu-

lation separates immediately after the target and reference population split, 2499 generations

ago, and rejoins the generation prior to the archaic admixture, 2001 generations ago (S6A Fig).

We refer to this as the recent structure scenario. Additionally, we simulated data where 25% of

the population in N0 separates 12,000 generations ago and rejoins the ancestral population

right before the target and reference populations split (2600 generations ago, S6B Fig). We

refer to this as the ancestral structure scenario. We observe that for both scenarios, the fraction

of SNPs detected as archaic is 0, suggesting that ArchIE is robust to introgression due to either

recent or ancient structure at reasonable calling thresholds. We caution, however, that a more

detailed exploration of structured demographic models is necessary.

Reference-free detection of Neanderthal introgression in European

populations

To identify segments of archaic ancestry in modern human populations, we applied ArchIE to

genomes of European individuals in the 1000 Genomes Project [27]. We used all unrelated

individuals from a European (CEU) population as our target population (99 diploid individu-

als) and all unrelated individuals from an African (YRI) population as a reference (108 diploid

individuals) and calculated the summary statistics described above. We applied ArchIE in

non-overlapping 50 Kb windows. We evaluated the average percent of windows inferred as

archaic as a function of the calling threshold (Fig 5A). Applying a threshold corresponding to

a precision of 0.80 in simulations, we inferred 2.04% (block jackknife SE = 0.6% using 1 Mb

blocks) of the genome as confidently archaic. This proportion is in line with proportion of

Neanderthal ancestry from previous analyses [2, 6, 10] suggesting that the segments of archaic

ancestry inferred by ArchIE likely correspond to segments of Neanderthal ancestry.

To further investigate whether the haplotypes inferred as confidently archaic by our model

are enriched for introgressed Neanderthal variants, we computed a Neanderthal match statistic

(NMS) defined as the number of shared variants between an individual haplotype and the

Altai Neanderthal reference genome sequence [10] divided by the total number of segregating

sites in that window (see Methods). We see that the archaic regions confidently inferred by

ArchIE have a higher NMS suggesting that the archaic ancestry segments identified by our

method are likely to represent introgressed Neanderthal sequence (we reject the null hypothe-

sis that the difference in NMS is zero for archaic vs non-archaic haplotypes with a P value =

1.7 × 10−3 via 100 Kb block jackknife). Further, as we make the calling threshold more strict,

we see an increase in the mean NMS for the archaic haplotypes (Fig 5B).

We also compared the performance of ArchIE, S’, and S� on real data from CEU Europeans.

For each of these methods, we computed a matching rate with the Altai Neanderthal genome,

defined as the fraction of SNPs called archaic that match the Altai Neanderthal sequence

divided by the total number of SNPs called archaic. At a detection rate of� 1%, S’ has a match-

ing rate of 0.73 while ArchIE has a matching rate of 0.91 (S9 Fig; see S1 Text for details).

Reference-free inference of archaic introgression
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Comparing with the S� calls released from [28], we found a match rate of� 50% at a detection

rate of� 0.5%, consistent with results reported from the authors.

We then focused on two genomic regions that have been shown to harbor introgressed

Neanderthal haplotypes at elevated frequencies: the BNC2 gene (Chromosome 9:16,409,501-

Fig 5. Application of ArchIE to 1000 Genomes European population (CEU). (A) Percentage of genome called archaic as a function of the threshold on the

probability of archaic ancestry estimated by ArchIE. The dashed line refers to the threshold that yields a 20% FDR in simulations. (B) Mean Neanderthal match

statistic (higher implies more similar to the sequenced Altai Neanderthal genome) for haplotypes inferred as archaic vs non-archaic as a function of the probability

threshold. (C) Frequency of haplotypes confidently labeled as archaic near the BNC2 gene and (D) theOAS gene cluster. (E) Mean frequency of confidently archaic

segments increases with B-statistic (a measure of selective constraint). Low B-statistic denotes more selectively constrained regions (standard errors estimates are

obtained using a 1 Mb block jackknife).

https://doi.org/10.1371/journal.pgen.1008175.g005
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16,870,786) [2] and the OAS gene cluster (Chromosome 12:113,344,739-113,357,712) [7].

ArchIE detects substantially increased frequency of archaic ancestry in both these genes (Fig

5C and 5D).

Finally, we analyzed the correlation between a measure of selective constraint of a given

genomic region (B-value [23]) and frequency of confidently inferred archaic segments in the

CEU population in the same region. Sankararaman et al. 2014 [2] describe a relationship

where more constrained regions (lower B-value) have a lower frequency of archaic ancestry.

We observe the same trend where more neutral regions (B-value� 750) contain more archaic

ancestry than constrained regions (B-value� 250) consistent with selection against the archaic

ancestry (P value = 7.86 × 10−9 via block jackknife; Fig 5E).

These analyses suggest that ArchIE obtains results concordant with those from a previous

reference-aware method [2]. We caution, however, that the observed concordance can be

inflated due to any biases shared by the two methods.

Discussion

A key challenge in detecting the contribution of deeply-diverged populations (both deeply-

diverged modern as well as archaic hominin populations) to the ancestry of present-day

human populations arises from the lack of accurate representative genomes for these popula-

tions. Here, we present a statistical model (ArchIE) for detecting regions of archaic local ances-

try without the need for an archaic reference sequence. ArchIE combines weakly informative

signals computed from present-day human genomes using a logistic regression model. The

parameters of the model are estimated from data simulated under a specific demographic

model. Using simulations, we show that ArchIE obtains improved accuracy over other

approaches for reference-free local ancestry inference. While the accuracy of ArchIE will

depend on how similar the demographic model used for training is to the true demographic

model, our empirical results suggest that ArchIE is relatively robust even when the true demo-

graphic model differs from the assumed model. Applying ArchIE to genomes from the CEU

population in the 1000 Genomes project data, we detect 2.03 ± 0.6% archaic ancestry (at a

threshold that corresponds to a false discovery rate of 0.2). We find that segments confidently

labeled as archaic by ArchIE are enriched for Neanderthal ancestry.

One advantage of our approach is that the learning algorithm is general allowing it to be

applied broadly to diverse inference problems as well as input summary statistics while its sim-

plicity allows for a transparent interpretation of the features and the model.

There are several limitations of our methodology, however. First, we require some knowl-

edge of the demographic history of the target, reference and archaic populations. We have

shown that ArchIE is robust to some demographic misspecification, but it is most powerful

when the simulated demography is close to the true one. Second, we rely on the data being

phased. Switch-errors in phasing will reduce the power of ArchIE, which can be a problem

when applying the method to less-well studied populations. In principle it is possible to use

ArchIE on unphased data, calculating features on the diploid individual level rather than the

haplotype level, though we do not explore that here. Third, the use of a fixed-size window

ignores long-range as well as variable-length dependence among the features. Models that

account for this dependency can be expected to yield improved accuracy. An example of such

an approach is a recently published method that uses a hidden Markov model (HMM) that

models the distribution of private variants [12]. Combining such models with the framework

outlined here has the potential to yield improved accuracies. Fourth, the use of a linear

model is likely to underfit the true function between features and outputs. It is possible to train

more expressive models like deep neural networks, which can learn and capture non-linear

Reference-free inference of archaic introgression
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relationships between features and tend not to suffer from the curse of dimensionality [19].

These methods have been used to great success in tasks such as image classification [29] and

we anticipate their use in population genetics could improve predictive power. Preliminary

results applying deep learning to this problem with the features used here are promising, moti-

vating future work (S1 Text, S7 and S8 Figs). ArchIE relies on a careful choice of features as

input. These hand crafted features are informed by population genetics theory, similar to other

methods that have been proposed in population genetics [19, 20, 30, 31, 14]. Automatically

learning features from genetic data is direction of high interest. Finally, while several methods

[9, 12, 22] have been proposed to infer aspects of archaic ancestry without access to reference

genomes, these methods are typically evaluated using simulations. Assessing the accuracy of

these methods on real data remains challenging. Extrapolating simulation results to accuracy

on real data depends on choices of the inference problem, population genetic models, parame-

ters used for training and testing, genomic features used as input, and accuracy metrics of

interest. A comprehensive comparison of these methods across a range of demographic histo-

ries and evolutionary forces is an important topic for future work.

In conclusion, our method improves on previous methods for reference-free inference of

archaic ancestry by combining informative summary statistics in a statistical learning frame-

work. We anticipate that this method will be informative not only in human populations

where questions about admixture with other hominins abound, but also in other species and

systems where pervasive admixture has shaped the distribution of genetic variation.

Methods

Simulating training data

We simulated training and test data sets using a modified version of ms [24] that tracks the

ancestry of each site in each individual genome. Using a previously proposed demographic

model relating modern humans and Neanderthals [2], we sampled 100 haplotypes from the

target, and 100 haplotypes from the reference over a region of length 50 Kb. We use a constant

mutation rate μ = 1.25 × 10−8 and a recombination rate r = 1 × 10−8.

The general demography is as follows: an archaic population of size Na splits from a popula-

tion of size N0, T0 generations before present (B.P.). Then, at TS, two populations split off from

the ancestral population that then have effective population sizes N1 (termed the reference)

and N2 (termed the target) respectively. Then, at time TA, the archaic population migrates into

the target with an admixture fraction m. See Fig 1 for a graphical outline.

Feature calculation

Each simulation at a given locus generates 100 haplotypes in the target. For each haplotype, we

calculate the following classes of summary statistics: individual frequency spectrum, distance

vector to all haplotypes within the test population as well as the first four moments of this vec-

tor, minimum distance to haplotypes in the reference population, the number of private SNPs,

and the S�-statistic.

The individual frequency spectrum is created as follows: given a sample of n haplotypes, for

each haplotype j, we construct a vector X of length n where entry Xi counts the number of

derived alleles carried on the focal haplotype j whose derived allele frequency is i. For example,

the first entry counts the number of singletons present in haplotype j, the second entry counts

the number of doubletons and so on until n.

The distance vector is a vector of length n where entry i is the Euclidean distance from hap-

lotype j to haplotype i over all sites, where j is the focal haplotype and i is the haplotype being

compared.

Reference-free inference of archaic introgression
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The minimum distance to haplotypes in the reference population is computed as the

minimum Euclidean distance from the focal haplotype to all haplotypes in the reference

population.

The number of private SNPs is calculated as the number of SNPs the focal haplotype con-

tains that are not present in the reference population.

This results in 208 features per example (a 50 Kb window for a single haploid genome),

with 100 examples per locus and 10,000 loci resulting in 1,000,000 examples for training before

filtering haplotypes with intermediate levels of admixture.

Learning algorithm

We used the “glm” function in R to construct a logistic regression model using the family =

binomial(“logit”) option. We used the predict function to obtain a prediction and converted it

to a probability using the “plogis” function.

Due to the process of recombination, the ancestry of a haplotype may vary along its length.

On the other hand, ArchIE predicts a single ancestry state for a haplotype across a specified

window. We evaluate the ability of ArchIE to predict the ancestry at each SNP along a haplo-

type by simulating sequences of length 1 Mb and applying ArchIE in 50 Kb windows, sliding

by 10 Kb at a time. We average the predictions that each SNP on a haplotype receives across all

windows that overlap the SNP to obtain the predicted archaic ancestry. We compare the pre-

dicted and the true ancestry state at each SNP along a haplotype.

We evaluated the performance using Precision-Recall (PR) curves as well as receiver opera-

tor characteristic (ROC) curves. We calculated precision (equivalently 1− the false discovery

rate), recall (equivalently sensitivity) and false positive rates as:

RecallðtÞ ¼
TPðtÞ

TPðtÞ þ FNðtÞ

SensitivityðtÞ ¼ PrecisionðtÞ ¼
TPðtÞ

TPðtÞ þ FPðtÞ

False positive rateðtÞ ¼
FPðtÞ

FPðtÞ þ TNðtÞ

Here TP(t) is the number of true positives at threshold t, FN(t) is the number of false nega-

tives at threshold t, FP(t) is the number of false positives at threshold t and TN(t) is the number

of true negatives at threshold t. We summarize these results by reporting the recall at a fixed

value of precision as well as by computing the area under the precision recall curve (AUPR)

and the area under the ROC curve (AUROC). We compute the AUPR using the method of

Davis and Goadrich [32]. We compute standard errors of the AUPR and AUROC using a

block jackknife [26] where we drop a single 1 Mb region and recompute the statistics.

Comparisons

We compared ArchIE to the S� [9] and S’ [22] statistics. We calculate S� in a cohort of 100 hap-

lotypes from the target population. Then, we convert the S� scores into a rank between [0-1]

using the empirical cumulative distribution. We use a 50 Kb sliding window (10 Kb stride)

across the 1 Mb region, averaging the score for a SNP.

We use a similar strategy for S’. However, since S’ predicts archaic ancestry in a sample of

individuals rather than on the haploid genome level, we use an algorithm to convert sample

Reference-free inference of archaic introgression

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008175 May 28, 2019 13 / 18

19



predictions to haploid genome predictions. We run S’ on the sample. Then, at some S’ score

threshold, we find the longest stretch of SNPs at that score or higher and interpolate the scores

across genotypes, building haplotypes when individuals have the archaic allele. Then, for each

SNP, we evaluate whether the SNP is archaic or not and calculate the number of true positives,

false positive, true negatives, and false negatives. We repeat this procedure across thresholds

and calculate the precision, recall, and false positive rates.

Robustness

We examined the robustness of ArchIE to a specified demographic model by systematically

perturbing one parameter at a time, simulating a dataset, and evaluating ArchIE’s perfor-

mance. We doubled and halved the parameters, except when doing so would produce a demo-

graphic model that is not sensible.

We evaluated the robustness of ArchIE to mutation and recombination rate variation by

calculating local rates at 50 Kb windows and then randomly drawing combinations of the rates

and simulating data. Mutation rates were calculated by estimating Watterson’s θ [33] from the

number of segregating sites within 50 Kb windows across 50 randomly sampled west African

Yoruba genomes from the 1000 Genomes Project Phase 3 release and calculating the mutation

rate: μ = θw/4NeL where we set Ne = 10, 000. Recombination rates were estimated from the

combined, sex-averaged HapMap recombination map [34].

Neanderthal introgression

We validated our method using the Neanderthal introgression scenario as a test case. We

downloaded phased CEU genomes from the 1000 Genomes Phase 3 dataset [27] and calculated

the features mentioned above in 50 Kb windows. For each individual haplotype, we inferred

the probability that the window is archaic. We then intersected our calls with the 1000

Genomes strict mask using BEDtools v2.26.0 [35], removing regions that are difficult to map

to, measured as having less than 90% of sites in the callability mask.

We calculated a Neanderthal match statistic (NMS) for focal haplotype i in a window as the

fraction of alleles at which the the focal haplotype matches the Altai Neanderthal [10] genome:

NMSi ¼
Si

Ni þ Hi

Here Si denotes the number of alleles that match between the focal haplotype and the Nean-

derthal genome within the window. Since the Neanderthal genome is not phased, we count

sites as matching if it contained at least one single matching allele or more. Ni denotes the

number of Neanderthal mutations, including both homozygous and heterozygous sites.Hi
denotes the number of human mutations within the window.

In order to test whether there is more Neanderthal matching in archaic haplotypes com-

pared to non-archaic haplotypes, we computed the difference in NMS between the two classes

of haplotypes at each window and test the hypothesis that the mean of this statistic averaged

across the genome is zero. Specifically:

DNMS;i ¼
NMSarch;i � NMSnon� arch;i

NMSi

For each window i, we compute ΔNMS,i, defined as the difference between the mean NMS

for archaic (NMSarch;i) and non-archaic (NMSnon� arch;i) haplotypes divided by the mean NMS of

all haplotypes (NMSi) to control for mutation rate heterogeneity. We require a minimum of
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90% callable sites within the window. We compute the mean of ΔNMS,i over all windows i as

the genome-wide estimate and test if this estimate is significantly different from zero. To com-

pute significance, we use a block jackknife and drop non-overlapping 100 Kb windows and

recalculate the genome wide difference in means.

Background selection

In order to assess the relationship between background selection and inferred archaic ancestry,

we use the B-values from McVicker et al. 2009 [23] and intersected them with our calls. For

visualization, we binned the B-values into 4 bins, [0-250], (250-500], (500-750], and (750-

1000].

We tested for significant differences in allele frequency between the lowest and highest bins

using a block jackknife using a 50 Kb block size.

Supporting information

S1 Fig. Precision-Recall curves when the distribution of the test data differs from the train-

ing data used for estimating the parameters of ArchIE. We perturbed a single parameter

associated with the simulations used for generating training data.m is the admixture fraction

from the archaic into the target population. N0 is the ancestral population size. N1 is the size of

the reference population and N2 is the size of the target population. T0 refers to the split time

of the archaic and modern human population. Ts is the split time of the reference and target

populations. Ta is the admixture time and mu rho refers to the experiment that uses realistic

recombination and mutation rates, estimated from the human genome (see Methods for more

details).

(PDF)

S2 Fig. Robustness to changing window size. ArchIE obtained similar accuracies when

applied with window sizes of 100 Kb and 25 Kb relative to the 50 Kb case (‘Unperturbed’).

(PDF)

S3 Fig. Robustness to smaller sample sizes. We evaluated how ArchIE performs with 30 hap-

lotypes (15 diploid individuals). We see that ArchIE loses power when the sample size is greatly

reduced.

(PDF)

S4 Fig. Precision-Recall and Receiver Operating Characteristic curves for haplotype-level

predictions. We evaluated ArchIE’s ability to predict entire haplotypes as archaic (as opposed

to archaic ancestry at each SNP in Fig 2). A haplotype is labeled as truly archaic if� 70% of its

bases are archaic in ancestry and not archaic if� 30 is labeled archaic. We ignore haplotypes

with intermediate values of archaic ancestry from our comparisons. We used haplotypes of

length 50 Kb.

(PDF)

S5 Fig. Precision-Recall curves for different sets of input features. In ‘No MH Ref’, we

removed the features that rely on the reference population. The resulting predictor has reason-

able albeit reduced accuracy relative to ArchIE (labeled “Full”). We evaluated the predictive

accuracy of a logistic regression model trained with only a single feature where we considered

the skew feature (“skew only”), the private SNPs feature (“P SNPs only”), and the minimum

distance to the reference (”Min. D only”). Accuracy is substantially decreased for “skew only”

while using only the private SNPs feature (‘P SNPs only’) or the minimum distance to the ref-

erence (‘Min. D only’) results in good performance, especially at the high precision regime. In
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‘3 feat.’, we use skew, minimum distance, and private SNPs as the only features. While this set

achieves good performance, adding the full set of features still outperforms this set of three fea-

tures. Area under the PR curve (AUPR) is shown in parenthesis.

(PDF)

S6 Fig. Demographic models for (A) recent structure and (B) ancient structure.

(PDF)

S7 Fig. Neural network architecture and training procedure.

(PDF)

S8 Fig. Neural network performance. Precision-recall curves for a 2% admixture scenario.

Performance of the neural network is shown in blue.

(PDF)

S9 Fig. Comparison of ArchIE, S’, and S� in 1000G CEU individuals.

(PDF)

S1 Table. Robustness to demographic misspecification. We simulated data under misspeci-

fied demographies, perturbing each parameter separately and evaluated the performance of S�

and ArchIE. We present precision and recall at a threshold that corresponds to a precision of

0.8 (20% FDR) in the unperturbed setting. Bold denotes settings where ArchIE is higher preci-

sion as well as recall over S�.

(XLSX)

S1 Text. Neural network model description and comparison of ArchIE with S’ and S� in

1000G data.

(PDF)
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Recovering signals of ghost archaic introgression in
African populations
Arun Durvasula1 and Sriram Sankararaman1,2,3,4*

While introgression from Neanderthals and Denisovans has been documented in modern humans outside Africa,
the contribution of archaic hominins to the genetic variation of present-day Africans remains poorly understood.
We provide complementary lines of evidence for archaic introgression into four West African populations. Our
analyses of site frequency spectra indicate that these populations derive 2 to 19% of their genetic ancestry from
an archaic population that diverged before the split of Neanderthals and modern humans. Using a method that
can identify segments of archaic ancestry without the need for reference archaic genomes, we built genome-wide
maps of archaic ancestry in the Yoruba and the Mende populations. Analyses of these maps reveal segments of
archaic ancestry at high frequency in these populations that represent potential targets of adaptive introgression.
Our results reveal the substantial contribution of archaic ancestry in shaping the gene pool of present-day West
African populations.

INTRODUCTION
Admixture has been a dominant force in shaping patterns of genetic
variation in human populations (1). Comparisons of genome sequences
from archaic hominins to those from present-day humans have doc-
umented multiple interbreeding events, including gene flow from
Neanderthals into the ancestors of all non-Africans (2), fromDenisovans
into Oceanians (3) and eastern non-Africans (4, 5), as well as from
early modern humans into the Neanderthals (6). However, the sparse
fossil record and the difficulty in obtaining ancient DNA have made it
challenging to dissect the contribution of archaic hominins to genetic
diversity within Africa. While several studies have revealed contribu-
tions from deep lineages to the ancestry of present-day Africans (7–12),
the nature of these contributions remains poorly understood.

RESULTS
We leveraged whole-genome sequence data from present-day West
African populations and archaic hominins to compute statistics that
are sensitive to introgression in the history of these populations. Spe-
cifically, we tabulated the distribution of the frequencies of derived
alleles (where a derived allele is determined relative to an inferred hu-
man ancestor) in the analyzed African populations at single-nucleotide
polymorphisms (SNPs) for which a randomly sampled allele from an
archaic individual was observed to also be derived. Theory predicts
that this conditional site frequency spectrum (CSFS) is expected to
be uniformly distributed when alleles are neutrally evolving under a
demographic model in which the ancestor of modern and archaic
humans, assumed to be at mutation-drift equilibrium, split with no
subsequent gene flow between the two groups (13, 14). This expec-
tation is robust to assumptions about changes in population sizes in
the history of modern human or archaic populations. Further, we
show that this expectation holds even when there is population

structure or gene flow in the history of the archaic population (see
Materials and Methods).

We computed CSFSYRI,N: the CSFS in the Yoruba from Ibadan
(YRI) while restricting to SNPs where a randomly sampled allele from
the high-coverage Vindija Neanderthal (N) genome was observed to be
derived (15). In contrast to the uniform spectrum expected from theory,
we observe that the CSFSYRI,N has a U-shape with an elevated propor-
tion of SNPs with low- and high-frequency–derived alleles relative to
those at intermediate frequencies (Fig. 1 and fig. S4). The CSFS is nearly
identical when we replace the Vindija Neanderthal genome with the
high-coverage Denisova genome (Fig. 1 and fig. S4) (4). We observed
a similar U-shaped CSFS in each of three additional West African
populations [Esan in Nigeria (ESN), Gambian in Western Divisions in
the Gambia (GWD), and Mende in Sierra Leone (MSL)] included in
the 1000 Genomes Phase 3 dataset (fig. S4).

Mutational biases, errors in determining either the ancestral or the
archaic allele, or recurrent mutation could produce the observed CSFS.
We confirmed that the shape of the CSFSYRI,N was robust to the in-
clusion of only transitionmutations, only transversionmutations, to the
exclusion of hypermutable CpG sites (fig. S7), as well as when we com-
puted the spectrumon the Yoruba genomes separately sequenced in the
1000 Genomes Phase 1 dataset (fig. S7).

We verified that this signal was robust to changes in recombination
rate and background selection by restricting to regions that are likely to
be evolving neutrally (by restricting to sites with estimates of
background selection, B statistic, >800). We also assessed the effect of
biased gene conversion by excluding weak-to-strong and strong-to-
weak polymorphisms. We found that the U-shaped signal is robust to
variation in recombination rate, background selection, and biased gene
conversion (fig. S10). Errors in determining the ancestral allele could
make low-frequency ancestral alleles appear to be high-frequency–
derived alleles and vice versa and thus could potentially lead to a
U-shaped CSFS. However, the shape of the CSFS remains qualitatively
unchanged when we used either the chimpanzee genome or the con-
sensus across the orangutan and chimpanzee genomes to determine
the ancestral allele (fig. S9).We simulated both ancestral allele misiden-
tification and errors in genotype calling in the high-coverage archaic
genome. A fit to the data required both a 15% ancestral misidentification
rate and a 3% genotyping error rate in the archaic genome, substantially
larger than previous estimates of these error rates [1% for ancestral
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misidentification rate in the Enredo-Pecan-Ortheus (EPO) ancestral
sequence (16) and 0.6% for the modern human contamination in
the Vindija Neanderthal (15)] (section S1.1 and fig. S11). To explore
the contribution of recurrent mutations, we used forward-in-time
simulations that allow for recurrent mutations: The simulated CSFS
does not resemble the U-shaped CSFS that we see in data (fig. S43).
Together, these results indicate that the U-shaped CSFS observed in
the African populations is not an artifact.

To determine whether realistic models of human history can ex-
plain theCSFS, we compared theCSFS estimated fromcoalescent sim-
ulations to the observed CSFSYRI,N using a goodness-of-fit test (see
Materials and Methods and section S2). We augmented a model of
the demographic history of present-day Africans (17) with a model of
the history of Neanderthals and Denisovans inferred by Prüfer et al.
(15) (Fig. 1 and figs. S1 and S16). This model includes key interbreed-
ing events between Neanderthals, Denisovans, and modern human
populations such as the introgression from Neanderthals into non-
Africans, from early modern humans into Neanderthals (6), and into
theDenisovans froman unknown archaic population (18). The result-

ing model fails to fit the observed CSFSYRI,N [P value of a Kolmogorov-
Smirnov (KS) test on the residuals being normally distributed
P < 2 × 10−16]. Extensions of this model to include realistic variation
inmutation and recombination rates along the genome (KSP<2×10−16;
fig. S12 and section S1) and low levels of Neanderthal DNA introduced
into African populations via migration between Europeans and Africans
do not provide an adequate fit (KS P < 2 × 10−16; Fig. 1 and section S1)
nor does amodel of gene flow betweenYRI and pygmypopulations that
has been proposed previously (KS P < 2 × 10−16; fig. S12 and section S1)
(19). The expectation that theCSFS is uniformly distributed across allele
frequencies relies on an assumption ofmutation-drift equilibrium in the
population ancestral to modern humans, Neanderthals, and Denisovans.
We confirmed that violations of this assumption (due to bottlenecks,
expansions, and population structure in the ancestral population) were
also unable to fit the data (KS P < 2 × 10−16 for all models; section S2,
table S3, and fig. S17).

Given that none of the current demographic models are able to fit
the observed CSFS, we explored models where present-day West
Africans trace part of their ancestry to (A) a population that split from
their ancestors after the split between Neanderthals and modern
humans, (B) a population that split from the ancestor of Neanderthals
after the split between Neanderthals and modern humans, or (C) a
population that diverged from the ancestors of modern humans and
Neanderthals before the ancestors of Neanderthals and modern
humans split from each other (fig. S2 and section S3). Each of these
models of admixture (which we refer to as models A, B, and C, respec-
tively) can yield a U-shaped CSFS. The increase in the counts of low
derived allele frequency SNPs is largely due to the introduction of the
derived allele from the introgressing population at sites that are fixed for
the ancestral allele. The increase in the counts of the high-frequency
SNPs is largely due to the introduction of the ancestral alleles at sites
that are fixed for the derived allele.

A search for the parameters for models A and B that produce the
best fit to the CSFS results in a trifurcation, i.e., models in which the
introgressing population splits off from the modern human population
at the same time as the modern human–Neanderthal. Models A and B
fail to fit the observed CSFS even at their most likely parameter esti-
mates (KS P = 3.3 × 10−15 and P = 5.6 × 10−6, respectively; section
S3) because of insufficient genetic drift in the African population since
the split from the introgressing population (section S4.2). In addition,
we show in appendix B that the spectrum for model A is expected to be
symmetric, which is not observed in the data (Fig. 1). Model C, on the
other hand, is consistent with the data (KS P = 0.09), suggesting that
part of the ancestry of present-day West Africans must derive from a
population that diverged before the split time of Neanderthals and
modern humans. In addition to the goodness-of-fit tests, we examined
the likelihood of the best-fit parameters for each of the models and
found that model C provides a significantly better fit than other models
(model C having a higher composite log likelihood than the next best
modelDLL=LLNextbestmodel−LLC=−6806whenwe condition on the
Vindija Neanderthal genome and DLL = −6240 when we condition on
the Denisovan genome; table S4 and Materials and Methods). Our
analyses provide support for a contribution to the genetic ancestry of
present-day West African populations from an archaic ghost popula-
tion whose divergence from the ancestors of modern humans predates
the split of Neanderthals and modern humans.

We applied approximate Bayesian computation (ABC) to the CSFS
to refine the parameters of our most likely demographic model (model
C) (sectionS5).Given the largenumberof parameters in thisdemographic

Fig. 1. Demography relating known and proposed archaic lineages to mod-
ern human populations. (A) Basic demographic model with CSFS fit. W Afr, West
Africans; Eur, European; N, Neanderthal; D, Denisovan; UA, unknown archaic [see
(18)]. Below, we show the CSFS in the West African YRI when restricting to SNPs
where a randomly sampled allele from the high-coverage Vindija Neanderthal
was observed to be derived [Neanderthal (data)], as well as where a randomly
sampled allele from the high-coverage Denisovan genome was observed to be
derived [Denisovan (data)]. We also show the CSFS under the proposed model
[Neanderthal (model) and Denisova (model)]. Migration between Europe and
West Africa introduces an excess of low-frequency variants but does not capture
the decrease in intermediate frequency variants and increase in high-frequency
variants. (B) Newly proposed model involving introgression into the modern hu-
man ancestor from an unknown hominin that separated from the human ances-
tor before the split of modern humans and the ancestors of Neanderthals and
Denisovans. Below, we show the CSFS fit from the proposed model, which
captures the U-shape observed in the data.
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model, we fixed parameters that had previously been estimated (15) and
jointly estimated the split time of the introgressing archaic population
from the ancestors of Neanderthals and modern humans, the time of
introgression, the fraction of ancestry contributed by the introgressing
population, and its effective population size. We determined the pos-
teriormean for the split time to be 625,000 years before the present (B.P.)
[95% highest posterior density interval (HPD): 360,000 to 975,000], the
admixture time to be 43,000 years B.P. (95% HPD: 6000 to 124,000),
and the admixture fraction to be 0.11 (95%HPD: 0.045 to 0.19). Analy-
ses of three other West African populations (ESN, GWD, and MSL)
yielded concordant estimates for these parameters (Fig. 2 and table S7).
Combining our results across theWest African populations, we estimate
that the archaic population split from the ancestor of Neanderthals and
modern humans 360 thousand years (ka) to 1.02 million years (Ma)
B.P. and subsequently introgressed into the ancestors of present-day
Africans 0 to 124 ka B.P. contributing 2 to 19% of their ancestry. We
caution that the true underlying demographic model is likely to be
more complex. To explore aspects of this complexity, we examined
the possibility that the archaic population diverged at the same time
as the split time ofmodern humans andNeanderthals and found that
this model can also produce a U-shaped CSFS with a likelihood that
is relatively high, although lower than that of our best-fit model
(DLL = −2713 for the Neanderthal CSFS and DLL = −2597 for
the Denisovan CSFS, KS P ≤ 2.9 × 10−6). Our estimates of a large

effective population size in the introgressing lineage (posterior mean
of 25,000; 95% HPD: 23,000 to 27,000) could indicate additional struc-
ture.We find that theNe of the introgressing lineage in YRI andMSL is
larger than that in the other African populations, possibly due to a dif-
ferential contribution from a basal West African branch (20).

While we have chosen to represent the genetic contribution of the
African ghost population as a single discrete interbreeding event, amore
realisticmodel could include low levels of gene flow in a structured pop-
ulation over an extended period of time. Previously proposedmodels
of ancestral structure in Africa do not fit the CSFS [KS P < 2 × 10−16

for the model described in (21) and KS P < 2 × 10−16 for the model
proposed in (14); fig. S18], although we observe that the model of
ancestral structure proposed by Yang et al. does produce a slight
U-shape. We explored additional models of population structure
in Africa (22) in which a lineage split from the ancestor of the modern
humans with split times ranging from 100 to 550 ka B.P. and continued
to exchange genes with themodern human population until the present
withmigration rates ranging from 2.5 × 10−5 to 2 × 10−2 migrants per
generation. While these models of continuous gene flow produce a
U-shaped CSFS for low migration rates and deep splits, they do not
provide an adequate fit to the empirical CSFS over the range of param-
eters considered (KS P ≤ 2.3 × 10−5; section S6 and figs. S14 and
S15). We used our ABC framework to explore a more detailed model
of continuous migration in which we varied split time, migration
rate, and effective population size of the introgressing lineage. Simula-
tions under the best fitting model produce a CSFS that does not ade-
quately fit the data (KS P = 1.83 × 10−6). A possible reason why the
continuous migration models that we have explored do not fit the data
is that these models can be considered as extensions of model A with
multiple admixture events. We have shown that these models can only
produce symmetric CSFS, unlike the CSFS that we observe in the data
(appendix B). Thus, deep population structure within Africa alone can-
not not explain the data (section S6).

Given the uncertainty in our estimates of the time of introgres-
sion, we wondered whether jointly analyzing the CSFS from both the
CEU (Utah residents with Northern and Western European ances-
try) and YRI genomes could provide additional resolution. Under
model C, we simulated introgression before and after the split between
African and non-African populations and observed qualitative differ-
ences between the twomodels in the high-frequency–derived allele bins
of the CSFS in African and non-African populations (fig. S40). Using
ABC to jointly fit the high-frequency–derived allele bins of the CSFS in
CEU and YRI (defined as greater than 50% frequency), we find that
the lower limit on the 95% credible interval of the introgression time
is older than the simulated split between CEU and YRI (2800 versus
2155 generations B.P.), indicating that at least part of the archaic
lineages seen in the YRI are also shared with the CEU (section S9.2).

We then attempted to understand the fine-scale distribution of
archaic ghost ancestry along the genomes of present-day Africans.
We used a recently developed statistical method (ArchIE) that com-
bines multiple population genetic statistics to identify segments of
diverged ancestry in 50 YRI and 50 MSL genomes without the need
for an archaic reference genome (section S7) (23). Briefly, the method
uses summary statistics computed from present-day genome sequences
as input to a logistic regression model to estimate the probability that a
haploid segment of an individual genome (defined as a contiguous
region of length 50 kilobases) is archaic. While the parameters of the
model are estimated by simulating data under amodel that closelymatches
the demographic history relating Neanderthals and non-Africans, we
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Fig. 2. ABC estimates of the demographic parameters of the archaic ghost
population across four West African populations (YRI, ESN, GWD, and MSL).
Posterior means are denoted by diamonds, and 95% credible intervals are de-
noted by lines. (A) The admixture time ta, (B) the admixture fraction a, (C) the
split time of the introgressing population ts, and (D) the effective population size
of the introgressing population Ne are shown. The parameter estimates are largely
consistent across the African populations: We estimate split times of 360 ka to
1.02 Ma B.P., admixture times of 0 to 124 ka B.P., admixture fractions that range
from 0.02 to 0.19, and effective population sizes that range from 22,000 to 28,000.
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found that ArchIE has 68% power to detect archaic segments at a false
discovery rate of about 7% under our best-fit demographic model,
confirming that its inferences are robust and sensitive to archaic intro-
gression in Africa.

On average, ≃6.6 and ≃7.0% of the genome sequences in YRI and
MSL were labeled as putatively archaic in ancestry. We sought to test
whether the putatively archaic segments identified in YRI and MSL
traced their primary ancestry to other African populations (8–10) or
to known archaic hominins such as the Neanderthals or Denisovans.
We computed the divergence of these segments to a genome sequence
from each of six populations: southern African KhoeSan, Jul‘hoan; two
Central African pygmy populations (Biaka andMbuti); and two archaic
hominin populations (Neanderthal and Denisovan). We expect seg-
ments introgressed from any of these populations to be less diverged
relative to nonarchaic segments. On the contrary, the putatively archaic
segments are more diverged, consistent with their source not being any
of these populations (Fig. 3C and section S7.1). Merging the putatively
archaic segments across individual genomes, we obtained a total of 482
and 502 Mb of archaic genome sequence in the YRI and MSL, respec-
tively.We estimated the distribution of the time to themost recent com-
mon ancestor (TMRCA) between segments labeled archaic and those

labeled nonarchaic using the pairwise mode of multiple sequentially
Markovian coalescent (MSMC) (Fig. 3B and section S7.2) (24) and
observed that the TMRCA is larger for the putatively archaic class of
segments. Specifically, we find that the median nonarchaic segment
coalescent time is 0.865 Ma ago for both populations, while the
median archaic segment coalescent time is 1.51 Ma ago for YRI and
1.15 Ma ago for MSL (1.69- and 1.23-fold increases in age for YRI
and MSL, respectively).

We examined the frequencies of archaic segments to investigate
whether natural selection could have shaped the distribution of archaic
alleles (fig. S40). We found 33 loci with an archaic segment frequency
of ≥50% in the YRI (a cutoff chosen to be larger than the 99.9th
percentile of introgressed archaic allele frequencies based on a neutral
simulation of archaic introgressionwith parameters related to the time
of introgression and admixture fraction chosen conservatively to max-
imize the drift since introgression; section S7.3 and fig. S40) and 37 loci
in the MSL. Some of these genes are at high frequency across both the
YRI and MSL, including NF1, a tumor suppressor gene (83% in YRI,
85% inMSL),MTFR2, a gene involved with mitochondrial aerobic res-
piration in the testis (67% in YRI, 78% in MSL), HSD17B2, a gene
involved with hormone regulation (74% in YRI, 68% inMSL),KCNIP4,
which is a gene involved with potassium channels (73% in YRI, 69% in
MSL), and TRPS1, a gene associated with trichorhinophalangeal syn-
drome (71% in YRI, 75% in MSL; Table 1). Three of these genes have
been found in previous scans for positive selection in the YRI: NF1
(25, 26), KCNIP4 (27), and TRPS1 (28). On the other hand, we do not
find elevated frequencies at MUC7, a gene previously found to harbor
signatures of archaic introgression (29).

DISCUSSION
Our analyses document introgression in four present-dayWest African
populations from an archaic population that likely diverged before
the split of modern humans and the ancestors of Neanderthals and
Denisovans. A number of previous studies have found evidence for

Fig. 3. Analysis of segments of archaic ghost ancestry found in the Yoruba
and Mende populations. (A) Inference of segments of archaic ancestry was per-
formed with ArchIE. ArchIE proceeds by simulating data under a model of archaic
introgression, calculating population genetic summary statistics, and training a
model to predict the probability that a 50-kb window in an individual comes from
an archaic population. We apply the resulting predictor to genome sequences
from the Yoruba and Mende populations. (B) Comparison of TMRCA between
inferred archaic and nonarchaic segments to the TMRCA of a pair of nonarchaic
segments in the Yoruba. On average, archaic segments are 1.69× older than non-
archaic segments. (C) Estimates of the divergence times of archaic segments
inferred in Yoruba from KhoeSan, Jul‘hoan, two modern human pygmy genomes
(Mbuti and Biaka), and Neanderthal and Denisovan genomes compared to
divergence times of nonarchaic segments. P values are computed via block
jackknife. Archaic segments are more diverged from all six genomes than non-
archaic segments.

Table 1. Genes harboring a high frequency of archaic segments in the
Yoruba and Mende populations. Genes were selected by ranking the
union of the set of putative archaic segments by frequency in either
the Mende or Yoruba population and selecting the top 10 genes. Genes in
bold denote frequencies greater than 50% in the respective population.

Chromosome Gene name
Frequency
(Yoruba)

Frequency
(Mende)

Gene type

chr1 RP11-286M16.1 0.84 0.81 lincRNA

chr4 KCNIP4 0.73 0.69 Protein coding

chr6 MTFR2 0.67 0.78 Protein coding

chr8 TRPS1 0.71 0.75 Protein coding

chr12 RP11-125N22.2 0.12 0.88 Pseudogene

chr16 HSD17B2 0.74 0.68 Protein coding

chr17 NF1 0.83 0.85 Protein coding

chr17 KRT18P61 0.84 0.36 Pseudogene

chr21 MIR125B2 0.76 0.64 MicroRNA
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deeply diverged lineages contributing genetic ancestry to the Pygmy
(8, 9) and Yoruba (7, 30) populations. Analyses of ancient African
genomes have revealed that stone-age hunter-gatherers from South
Africa diverged from other modern-day populations >260,000 years
(31) B.P. and that present-day West African populations trace part of
their ancestry to a basal lineage that diverged before the split of the
southernAfrican San (20) (although an alternativemodel consistent with
their data includes a complex pattern of isolation by distance between
western, eastern, and southernAfrican populations). Placing our results
within the context of the complex patterns of deep divergences in the
African populations will require the analysis of a diverse set of African
populations that include the southern African San populations, as well
as the inclusion of ancient African genomes that lack signals of recent
admixture that are present in the present-day San populations (32).

One interpretation of the recent time of introgression that we
document is that archaic forms persisted in Africa until fairly recently
(33). Alternately, the archaic population could have introgressed earlier
into a modern human population, which then subsequently interbred
with the ancestors of the populations that we have analyzed here. The
models that we have explored here are not mutually exclusive, and it is
plausible that the history of African populations includes genetic con-
tributions from multiple divergent populations, as evidenced by the
large effective population size associated with the introgressing archaic
population. Relatively, recent fossils with archaic features (or combina-
tions of archaic and modern human features) have been found in the
fossil record in Africa and theMiddle East.While anatomically modern
humans appear in the fossil record around200,000 years ago, fossilswith
a combination of archaic andmodern features can be found across sub-
Saharan Africa and theMiddle East until as recently as 35,000 years ago
(34). Examples of these fossils include a cranium from Iwo Eleru (33)
and human remains from Ishango (35) that have been interpreted as
being consistentwith deep structure and representing a complex history
of interaction between modern and archaic hominins in Africa.

The signals of introgression in the West African populations that
we have analyzed raise questions regarding the identity of the archaic
hominin and its interactions with the modern human populations in
Africa. Analysis of the CSFS in the Luhya from Webuye, Kenya
(LWK) also reveals signals of archaic introgression, although our inter-
pretation is complicated by recent admixture in the LWK that involves
populations related to western Africans and eastern African hunter-
gatherers (section S8) (20). Non-African populations (Han Chinese in
Beijing and Utah residents with northern and western European an-
cestry) also show analogous patterns in the CSFS, suggesting that a
component of archaic ancestry was shared before the split of African
and non-African populations. A detailed understanding of archaic in-
trogression and its role in adapting to diverse environmental conditions
will require analysis of genomes from extant and ancient genomes
across the geographic range of Africa.

MATERIALS AND METHODS
Conditional site frequency spectrum
We define the CSFS, CSFSYRI,N, as the histogram of the counts of
derived alleles in population pop1 conditional on observing a derived
allele in a related outgroup pop2 (13). We define ck as the number of
SNPs at which the derived allele is present on k chromosomes in a sam-
ple of n total chromosomes in pop1, while a single chromosome in the
outgroup pop2 carries a derived allele. CSFSYRI,N is the vector of counts
ck for k ∈ {1…n − 1}.

Chen et al. (13) showed that if the ancestor of populations pop1 and
pop2 is at mutation-drift equilibrium (i.e., the site frequency spectrum
in the ancestor isf ðxÞº 1

x , where 0 < x < 1 is the derived allele frequency
at a polymorphic SNP) and the two populations pop1 and pop2 split
with no subsequent admixture, then the CSFSYRI,N is expected to be
uniform, i.e., CSFSYRI,N (k) = constant. This result does not depend on
any additional aspects of the demographic history of either popula-
tions pop1 or pop2, except that they are randomly mating. We used
the CSFS to study introgression in present-day Africans where we
set pop1 to present-day Africans and pop2 to an archaic population,
i.e., Neanderthal or Denisovan.

One of the complications in applying the CSFS to learn about the
history of present-day Africans arises from known departures from a
simple model of isolation with no subsequent admixture. However,
we considered the possibility of structure in the archaic population.
This structure could have several forms that include the ancestral
Neanderthal population being structured or it could involve gene flow
from early modern humans into Neanderthals (6), or as in the case of
Denisovans, this could include gene flow from a highly diverged archaic
population (18). We performed extensive simulations to show that
structure in the archaic population continues and also leads to a
uniform CSFS (section S1). Further, in appendix A, we show that the
CSFS is uniform even if there is structure in the archaic population.
However, structure within population the African population (pop1)
since its split from the archaic population (pop2), e.g., due to admixture,
is expected to produce deviations from the uniform CSFS.

Data processing
For our primary analyses of the CSFS, we used the 1000 Genomes
Phase 3 dataset (release 20130502) (36), the high-coverage Vindija
Neanderthal genome (15), and the high-coverage Denisovan ge-
nome (4). We used the annotated ancestral alleles provided by the
1000Genomes consortiumand analyzed only autosomal SNPs.Archaic
genotypes (Vindija andDenisovan) come from the pipeline described in
(15), which used snpAD for SNP calling [see S3 in (15)], and required a
mapping quality of≥25 and a mappability filter of 100. We did not ap-
ply an additional genotype quality filter for the data presented in fig. S4.
However, we tested the sensitivity of the spectrum to the choice of geno-
type quality filters in the archaic when using a GQ (Genotype Quality)
filter of ≥30 and ≥50 and see very little difference in the shape of the
spectrum (fig. S8).

In addition, we also computed the CSFS using the chimpanzee
genome to polarize the ancestral alleles (fig. S9A) (37).We dropped sites
in cases where the chimpanzee allele did not match either human allele.
As a further check, we also repeated the analysis restricting only to
sites where the chimpanzee and orangutan genomes have matching
alleles (38). These results are reported in fig. S9B. Last, we repeated our
analysis filtering out CpG hypermutable sites using the CpG annota-
tions from (18).

CSFS from the 1000 Genomes data
We computed CSFSYRI,N where pop1 is a modern human population
and pop2 is an archaic population. Specifically, we chose pop1, in turn,
to be the Yoruba from Nigeria (YRI), MSL, ESN, and GWD, while we
chose pop2 to be either the high-coverage Vindija Neanderthal or the
high-coverage Denisovan genome (fig. S4).

We computed theCSFS from the 1000Genomes phase 3 data (36) for
each of the four African populationsmentioned above (fig. S4), as well as
for the CEPH CEU and Han Chinese from Beijing (CHB) (fig. S6).
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For all populations, we observed a U-shaped spectrum with an ex-
cess of derived alleles at low and high frequencies. In the African popu-
lations, we observed that the CSFS from conditioning on theDenisovan
is nearly identical to the Vindija Neanderthal except at the lowest-
frequency bins, where there is an excess of counts for the Neanderthal
CSFS. We interpreted this difference as suggestive of low levels of
Neanderthal-related ancestry in these populations consistent with pre-
vious studies (18). In CEU and CHB, we also observed a U-shaped
spectrum for both the Vindija Neanderthal and Denisovan, but with a
more pronounced difference between the Neanderthal and Denisovan
spectra, i.e., an excess of counts in the low-frequency–derived siteswhen
conditioned on the Vindija Neanderthal relative to the Denisovan. This
difference is likely reflective of the Neanderthal introgression event
experience by populations outside of Africa around 50,000 years ago
(21, 39). Section S8 explores the implication of observing a U-shaped
CSFS in African and non-African populations.

To determine the robustness of the shape of the CSFS, we recom-
puted the CSFS in YRI using only transitions, transversions, and after
removing CpG sites. We found very similar U-shaped CSFS across
thesemutation classes (fig. S7). In addition, we checkedwhether biased
gene conversion could cause this signal by removing weak-to-strong
and strong-to-weak polymorphisms. We found that the shape of the
CSFS remains without these mutations (fig. S10A). Last, we checked
whether the shape of the CSFS was driven by selection or low recom-
bination rates.We used B values from (40), which estimate howmuch
background selection has reduced diversity. We restricted to regions
of the genome in the top quintile of B values (that is, the top one-fifth
of neutral sites; B ≥ 800) and recomputed the spectrum using YRI
individuals. We found that the shape remains the same after this
filtering (fig. S10B).

Model comparison
We used coalescent simulations to assess whether a demographic
model produces a CSFS that matches the empirical CSFS. To assess
the fit of a given demographic model M to the data, we compared
the CSFS computed on the data simulated under M to that com-
puted on the empirical data. We considered a model in which the
empirical CSFS was obtained by sampling from the CSFS computed
on the simulated data. For these fits, we modeled the proportion of
SNPs that contain a given number k of derived alleles rather than
the number of SNPs. To assess the fit of the simulated CSFS under
M (SM) to the observed CSFS (O), we used a multinomial compos-
ite likelihood

LðMÞ ¼ PðO∣SMÞ ¼
Yn�1

k¼1

Sk

∑kSk

� �Ok

Here, k indexes the derived allele count, Sk denotes the number of
SNPs with k-derived alleles observed in the simulated CSFS, whileOk

denotes the number of SNPs with k-derived alleles observed in the
empirical CSFS. We caution that L is a composite likelihood that
ignores the dependence among SNPs so that comparisons of Lmust
be interpreted with caution. In the results presented here, we re-
ported the log likelihood (LL).

Goodness of fit
We defined a goodness-of-fit statistic that we used to assess whether
the CSFS computed under a demographic model explains the major

patterns of the empirical CSFS. The goodness-of-fit statistic was
defined from the residuals obtained by trying to fit the simulated
CSFS to the empirical CSFS. We assumed that the counts of SNPs
in each derived allele frequency bin of the empirical CSFS follow a
binomial distribution with a mean given by the proportion of SNPs
that have the same derived allele frequency in the simulated CSFS.
One complication is that the counts across bins of derived allele fre-
quencies are not independent because of linkage disequilibrium. To
account for this complication, we attempted to estimate the effective
number of independent observations in the observed CSFS (rather
than assume that each SNP is an independent observation). We de-
fine the residual for bin k as

rk ¼ ffiffiffiffiffiffiffiffi
meff

p ok � skffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
skð1� skÞ

p

Here,meff is the effective number of independent SNPs, ok repre-
sents the proportion of SNPs with derived allele count k in the em-
pirical CSFS, sk is the proportion of SNPs with derived allele count k
in the simulated CSFS, and k indexes the count of derived allele.
These residuals are expected to be approximately normally distrib-
uted when the number of observations is large (as is the case with the
CSFS where each bin has >1000 observations).meff is a scaling factor
to ensure that the residuals are standardized.

To calculate meff, we used two replicate whole-genome simulations
(3 GB) under the same demographicmodel and set one as the observed
data and one as the simulation.We divided the number of bins n by the
sum of the squared residuals

meff ¼ n

∑n

k¼1

ok�skffiffiffiffiffiffiffiffiffiffiffiffi
skð1�skÞ

p� �2

A good fit will result in approximately normally distributed resi-
duals, while poor fits will deviate significantly from a normal
distribution. To obtain a formal test of fit, we used a KS test comparing
the distribution of the residuals to a normal distribution. P values that
reject the null hypothesis suggest that the model is a poor fit to the data.
We used bins of allele counts ranging from 11 to 90, excluding the
lowest- and highest-frequency bins as the counts from these bins are
more likely to be affected by unmodeled genotyping errors, leading to
false rejections of the null hypothesis. To assess the fit of a class of
models (e.g., models A, B, and C), we report the P value of the model
with parameter estimates obtained via ABC (sections S3.1 to S3.6).

Last, we expanded the range of derived allele counts in our
goodness-of-fit computation from [11, 90] to [6, 95] (table S8). While
none of the models fit adequately, model C has substantially higher
P values than the othermodels, indicating that it continues to explain
the CSFS better across this range of allele counts. The lack of fit across
the expanded range of derived allele counts is likely due to unmodeled
complexities in the underlying demographic history, as well as error
processes that affect the low- and high-frequency SNPs.

Model fitting
We used ABC to fit a demographic model to the CSFS of each African
population using the R package abc (41). Using amodel relatingAfrican
and non-African populations with the Neanderthal and Denisovan
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lineages as a base, we fit the split time, admixture time, admixture frac-
tion, and effective population size of an introgressing lineage (section
S5.2).We drew values for each of the parameters from a previous dis-
tribution, simulated 300 Mb using ms (42), and computed the CSFS
for the resulting simulation. We repeated this procedure 75,000 times.
We used the “neuralnet” setting in the R package abc to compute
posterior distributions over each of the four parameters with a tolerance
of 0.005. For the admixture time and split time, we report the posterior
distributions in units of years by convolving the posterior generation
timewith a uniform distribution over [25, 33] to incorporate uncertain-
ty in the generation time.

Local ancestry inference
We used ArchIE (23) to infer the segments of the genomes in 50 YRI
and 50 MSL individuals who likely trace their ancestry to an archaic
population.We trainedArchIE on amodelwhere an archaic population
splits 12,000 generations B.P. and introgressed 2000 generations B.P.
at a 2% admixture fraction (section S7). We computed the coalescent
time for segments we classified as archaic and segments we classified as
nonarchaic using the posterior decoding fromMSMCusing a represent-
ative individual from both YRI and MSL (24). We also computed the
scaled divergence time between archaic and nonarchaic segments with
test genomes fromhunter-gatherer populations, Central African Pygmy
populations, and archaic populations. This scaled divergence was com-
puted as the number of mutations specific to the segment subtracted
from the number ofmutations shared between the segment and the test
genome. We divided this number by the number of segregating sites in
the segment to normalize by the local mutation rate.
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ARTICLE

Negative selection on complex traits limits
phenotype prediction accuracy between populations

Arun Durvasula1 and Kirk E. Lohmueller1,2,3,*

Summary

Phenotype prediction is a key goal for medical genetics. Unfortunately, most genome-wide association studies are done in European pop-

ulations, which reduces the accuracy of predictions via polygenic scores in non-European populations. Here, we use population genetic

models to show that human demographic history and negative selection on complex traits can result in population-specific genetic ar-

chitectures. For traits where alleles with the largest effect on the trait are under the strongest negative selection, approximately half of the

heritability can be accounted for by variants in Europe that are absent from Africa, leading to poor performance in phenotype prediction

across these populations. Further, under such a model, individuals in the tails of the genetic risk distribution may not be identified via

polygenic scores generated in another population. We empirically test these predictions by building a model to stratify heritability be-

tween European-specific and shared variants and applied it to 37 traits and diseases in the UK Biobank. Across these phenotypes, �30%

of the heritability comes from European-specific variants. We conclude that genetic association studies need to include more diverse

populations to enable the utility of phenotype prediction in all populations.

Introduction

The past decade of genome wide association studies

(GWASs) has uncovered a plethora of trait-associated loci

scattered across the genome.1–4 Geneticists have devoted

many resources to turning these associations into pheno-

type prediction models that aggregate variants across the

genome into a polygenic score. Such scores can be used

to guide healthcare decisions for a variety of traits and dis-

eases,5 and recent work has suggested these polygenic

scores may be ready for clinical use.6,7 While individuals

with high polygenic risk for diseases have been found via

these scores, for example in atherosclerosis8 and breast

cancer,9 challenges remain in applying these polygenic

scores uniformly across populations. Recent analyses

have suggested that because many of the largest studies

are concentrated on European populations, polygenic

scores may be biased and less informative in non-European

populations.10–15 There are several reasons why polygenic

scores may not transfer well across populations. One possi-

bility is that alleles have different effect sizes in different

populations, owing to differences in interactions with

the environment.16 Another possibility is that differences

in linkage disequilibrium (LD) between variants across

populations means that causal variants may be tagged

differently in non-European populations, leading to differ-

ences in effect sizes.11,17 Finally, the original polygenic

score performance in Europeans may be inflated because

of population stratification.18,19

Here, we propose that an additional reason for the lack of

transferability of polygenic scores is that each population

has its own genetic architecture, owing to the evolutionary

processes that give rise to traits. Under this reasoning, a

population’s demographic history influences the number

of causal variants and their frequencies, resulting in some

phenotypic variance coming from causal variants that

are population specific. For example, work on the genetic

architecture of skin color in African populations has un-

covered distinct loci affecting the trait in each population,

suggesting that populations with independent demo-

graphic histories can end up with different genetic archi-

tectures and causal variants for the same traits.20 Indeed,

modeling work suggests that genetic architecture is an

outcome of the evolutionary process rather than a trait-

specific property.21

Recent exponential growth in human populations has

created an excess of new variants that tend to be low fre-

quency and population specific (private variation22–24).

Population genetic models of genetic architecture that

include negative selection suggest that, in aggregate, low-

frequency variants could contribute substantially to

traits.25–27 Application of these models to large-scale ge-

netic datasets has discovered that many traits are under

apparent negative selection, ranging from anthropometric

traits to molecular phenotypes.28–33 Depending on the

interplay between allele frequency and effect size, these

variants could make up a large portion of the heritability

for many traits, as demonstrated by a recent GWAS on

height and BMI using whole-genome sequencing data.34,

35 Because narrow-sense heritability is the proportion of

variance explained by additive genetic factors, it is directly

related to the accuracy of phenotypic prediction as the

variance explained by the polygenic score.36 If these pri-

vate variants contribute substantially to heritability, it
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follows that the variants will not be useful for phenotype

prediction between populations because they are not pre-

sent in other populations. The proportion of narrow-sense

heritability that private variants explain places an upper

bound on the accuracy of polygenic scores between

populations.

In this study, we use simulations under demographic sce-

narios of recent explosive population growth with varying

amounts of negative selection as well as analyses of empir-

ical data to test the role of private variants in complex traits.

Material and methods

Population genetic modeling and simulations
We performed forward simulations by using SLiM v.3.37 We simu-

lated a demographic history for a European and an African popula-

tion according to the demographic model fit by Gravel et al.38

(including migration). The African population size expanded to

14,474 individuals and the European population began at a size

of 1,032 individuals after splitting from Africa and grew exponen-

tially at a rate of 0.38% per generation for 920 generations. We

simulated a mutational target size of 5 Mb with a mutation

rate of 1.2 3 10�8 per base pair (bp) and a recombination rate of

1 3 10�8 per bp. To simulate selection across the entire region,

we drew selection coefficients for newmutations from a gamma dis-

tribution with parameters fit by Kim et al.39 (mean¼�0.01026, a¼
0.186).We sampled 10,000haploid genomes fromeach population.

To simulate a quantitative trait, we followed themodel described by

Eyre-Walker25 and the framework set by Lohmueller21 where a

SNP’s effect on a trait, b, is given by

b¼ dstð1þ εÞC;

where d˛f�1; 1g with equal probability, ε � Nð0; 0:5Þ, and s is the

selection coefficient of a variant segregating in the population at

the endof the simulation.C is a scaling factor for effect sizes and con-

trols the heritability for a given mutational target size. In these sim-

ulations, C was set to obtain a heritability of �0.4 (see Table S1).

Finally, t reflects the relationship between a SNP’s effect on fitness

and the trait. t ¼ 0 indicates no relationship between fitness and

the trait, while t > 0 indicates that mutations that are more evolu-

tionarily deleterious are those that have larger effects on the trait. In

thismodel,when t > 0, the trait itselfmay be under direct selection

or it may be correlated with a trait under selection. We call variants

private and shared on the basis of their allele frequency in a sample

of 10,000 chromosomes from both populations (see below).

To compare our simulation results to the empirical data from the

Exome Aggregation Consortium (ExAC), which includes African

American individuals, we computed the expected allele frequency

for SNP i in simulated admixed African American individuals

ðpAA; iÞ as

pAA;i ¼aipEUR;i þ ð1�aiÞpAFR;i
where pEUR; i and pAFR; i denote the allele frequencies in Europe and

Africa, respectively. For each SNP, we drew an admixture propor-

tion ai � Betað2; 8Þ in order to incorporate variance in the admix-

ture proportion along the genome. The parameters of the beta

distribution were chosen to match the observed variation in

admixture proportion in African American individuals40 and

result in a mean proportion of African ancestry of 80%.

Defining the proportion of heritability from private

variants: h2private
Webegin by describing amodel in which an individual, i; in a pop-

ulation, f; has a phenotype, yi; that is a linear combination of ge-

notypes (xi, xij˛fxi1;.;xiMg), effect sizes b; bj˛ b1;.;bMf g� �
, and

a normally distributed term describing the effect of the environ-

ment, ei � Nð0; VEÞ:

yi ¼xT
i bþ ei:

The narrow-sense heritability, h2, of the phenotype, y; in the

population is given by

h2 ¼ VA

VarðyÞ

where the variance of the phenotype can be decomposed into ad-

ditive, dominance, interacting, and environmental terms:

VarðyÞ ¼ VA þ VD þ VI þ VE. The additive genetic variance is

VA ¼ 2
PM
j¼1

pjð1�pjÞb2j when there are M variants, where pj is the

allele frequency for variant j and bj is the effect size of variant j.

Wewishtoexamine theproportionofheritability thatcomes from

a particular class of variants. Consider a sister population, j; that

diverged from thepopulation described above ðfÞ. Variants in popu-

lation f can be partitioned into those that appear only in f (private

variants) or those that appear in both populations (shared variants).

The total number of variants is the sumof the number of shared and

number of private variants, M ¼ Mp þMs. We wish to partition the

heritability into these twoclasses,h2
p andh

2
s ,whichmakeupthe total

heritability: h2 ¼ h2
p þ h2

s . Define h2
private to be the proportion of the

heritability accounted for by the private variants.

The quantity of interest, then, is

h2
private ¼

h2
p

h2
¼ VA;p

VA

:

The additive genetic variance from private variants is

VA;p ¼ 2
PM
j¼1

pjð1 � pjÞb2j zj, where zj is an indicator function that is 1

when the variant j is private (with probability PðujÞ) to the popula-

tion and 0 otherwise. We describe how zj is estimated below when

analyzing empirical data (see model to identify private variants).

Polygenic score calculation
We compute three sets of polygenic scores on the simulated individ-

uals: (1) using all variants, (2) using variants private to the simulated

population of interest, and (3) using variants shared between the

simulated European and African populations. For each haploid

genome,wesumtheeffect sizes,b; for eachclassofvariants, resulting

in three scores for each genome. We standardize the scores by sub-

tracting the mean of the true polygenic score (class 1) and dividing

by the standard deviation of the true polygenic score (class 1). We

compute the Pearson correlation between classes 1 and 2 as well as

classes 1 and 3 and report the r2 value as a percentage.

Model to identify private variants
When analyzing the empirical UK Biobank data, it is challenging

to assess whether a particular variant is private or shared. If a

variant is seen only in one population, it is possible that it is truly

private to that population, or instead, it is shared but at too low a

frequency to have been discovered with the number of individuals

2 The American Journal of Human Genetics 108, 1–12, April 1, 2021
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samples from the other population. To address this issue, we built

a probabilistic model to evaluate the probability that a variant is

private to a population given the number of copies of the allele

in that population (that is, the allele frequency).

We begin with the intuition that rare alleles tend to be private

and common alleles tend to be shared between populations,

even in the presence of migration. Migration can be thought of

as sampling alleles from one population and placing them in the

other population. Under this model, rare alleles will tend to stay

within a population and not transfer between populations. This

suggests that allele frequency is informative in determining

whether an allele is private or not.

Wakeley and Hey41 use coalescent theory to determine the fre-

quency spectrum of private variants. An application of Bayes’

rule allows us to calculate the following probability:

Pðu
����iÞ¼

PðijuÞPðuÞ
PðiÞ ;

where i˛f1;.;ng is the number of copies of the allele in the sam-

ple ðnÞ and u˛f0;1g is 1 if the allele is private and 0 if not.

Pðiju¼ 1Þ is the site frequency spectrum of private variants, and

PðiÞ is given by the full site frequency spectrum. For example, in

a constant-sized equilibrium population, PðiÞ ¼ ðq =iÞ=ðPn
i

q =iÞ.
PðuÞ is the probability of a variant’s being private to a population.

Wakeley and Hey41 provide expressions to obtain these quanti-

ties in a constant-sized equilibrium population without natural se-

lection. However, here we are concerned with populations that are

not in equilibrium and with variants under negative selection, so

we obtain these probabilities via simulation under a particular de-

mographic model and distribution of fitness effects.

In the results presented here, we use the demographic model

fromGravel et al.38 that relates European and African populations.

We use a distribution of fitness effects from Kim et al.,39 assuming

that mutations are additive (that is, h ¼ 0.5) and that selection co-

efficients, s, are drawn from a gamma distribution with mean ¼
�0.01026 and shape¼ 0.186. Using these parameters, we simulate

data for 10,000 European chromosomes by using SLiM37 and

compute (1) the proportional site frequency spectrum for private

variants ðPðijuÞÞ, (2) the proportional site frequency spectrum for

all variants ðPðiÞÞ, and (3) the proportion of private variants

ðPðuÞÞ. We defined private variants in the simulation as those

that appear in the simulated European population but not the

simulated African population.

Next, we store these quantities in a lookup table and use them to

compute the probability that a variant is private given the number

of copies of the allele in the empirical data. In the UK

Biobank dataset, alleles are present at frequency 1 3 10�6 and

higher. However, in simulations, the lowest allele frequency is

1 3 10�4. For alleles below this frequency, we set the probability

equal to the probability for alleles at a frequency of 1 in 10,000.

Testing our probabilistic model to infer private variants
We evaluated the ability of our model to distinguish between pri-

vate and shared variants by simulating new data and performing

binary classification, calling a variant private if the PðujiÞ exceeded
some threshold, t. We varied this threshold and computed the

number of true positive (private variants that are truly private),

false positives (private variants that are truly shared), false nega-

tives (shared variants that are truly private), and true negatives

(shared variants that are truly shared). We summarized this by us-

ing receiver operator characteristic and precision recall curves

(Figure S1; Tables S2 and S3).

We also validated our model by using data from ExAC.42 For

each variant in ExAC, we used ourmodel to compute the probabil-

ity that the variant is private to the non-Finnish European popu-

lation on the basis of the allele frequency in that population.

Then, we checked whether variants were observed in a sample of

10,406 African and African American samples.

Partitioning heritability
We applied our Bayesian model to predict which variants are pri-

vate to GWAS summary statistics from 37 traits in the UK Biobank

released by the Neale lab (see web resources). We computed the ad-

ditive genetic variance for variants with a high posterior probabil-

ity of being private to the British cohort and divided that by the

total amount of additive genetic variance explained by SNPs to

obtain our estimate of h2private (Note S1). We also performed the

inference by using a randomized algorithm to correct for the ef-

fects of LD and misestimated effect sizes as well as population

stratification (Notes S2, S3, S4, and S5; Figures S3, S4, S5, S6, S7,

S8, and S9). Finally, we also independently replicated the results

on BMI by using data from the GIANT consortium43 (Note S1).

Importantly, this partitioning of the heritability into shared and

private components does not make use of the t-model25 that re-

lates a mutation’s effect on fitness to its effect on the trait.

Results

The distribution of European-specific variants in data

and models

We begin by precisely defining private variants in the data-

sets and models that we consider. Studies of genomic vari-

ation point to the out-of-Africa bottleneck and subsequent

explosive growth in population size as a key driver of the

distribution of genomic variation.We focus on a simplified

model of this history (Figure 1A; Gravel et al.38). We define

private variants as those that are found in Europe but are

absent from Africa and shared variants as those that are

found in both populations. Note that by our definition,

private variants may be shared between other out-of-Africa

populations (e.g., between Europe and East Asia) because

of shared recent history.

One potential concern with this definition of whether a

variant is private to Europe is that it may depend on the

sample size of the African population used in the compar-

ison. We examined this possibility by computing the prob-

ability of not observing an allele present in a sample of

African individuals across a range of minor allele fre-

quencies (MAFs) with a sample size of 10,000 chromo-

somes. This sample size is approximately similar to the

sample size of the ExAC dataset (Lek et al.42). We find

that variants with a frequency as low as 10�3 in the African

population have a nearly 100% probability of being

sampled in ExAC (Figure S2). Thus, we would correctly

classify variants segregating at low frequency in Africa as

being shared.

Next, we examined the number of private variants in Eu-

ropean populations compared to African populations in
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two datasets: the 1000 Genomes (1KG) data and the ExAC

data. In order to meaningfully compare the two datasets,

we focused on variants contained in the exome. For both

datasets, there are many more private variants in the

European population compared to shared variants

(Figure 1B). This is expected undermodels of humanhistory

wheremany shared alleles were lost during the out-of-Africa

bottleneck and newmutations accumulated independently

in the out-of-Africa population. Because of the small popu-

lation size, some of these mutations could drift to a higher

frequency than they would have in a larger population.

We next conducted simulations under this model of hu-

man evolution, where an ancestral population splits into a

group that underwent a genetic bottleneck out of Africa

(representing a European population) and a group that

stayed within Africa without a bottleneck (representing

an African population; Figure 1A 38), coupled with varying

levels of negative selection on traits (including no negative

selection). We include negative selection by modifying the

relationship between amutation’s effect on the trait and its

effect on reproductive fitness by using the model put forth

by Eyre-Walker in 201025 (see material and methods). This

model includes a parameter, t, which ties the selection co-

efficient of a mutation to its effect on a trait.25 Larger

values of t imply that more evolutionarily deleterious mu-

tations have larger effects on the trait. Importantly, our

model includes exponential growth in the out-of-Africa

population, which creates an excess of private variants,

as well as low levels of migration between the European

and African populations, which can turn some private var-

iants into shared variants. We compared our simulations to

data from ExAC and found that our simulations predicted

more higher-frequency private alleles than are observed in

the data (Figure 1C). However, the ExAC data contains ad-

mixed African American individuals. Admixture can intro-

duce variants that are private to Europe into the sample

labeled ‘‘African.’’ We simulated this admixture process

(see material and methods) and found that the resulting

simulation matches the data closely, suggesting that our

model is a reasonable approximation of human demog-

raphy and selection (Figure 1C).

Population genetic models predict population-specific

variants account for heritability and impact polygenic

scores

We reasoned that since there are many private causal vari-

ants in our simulations, they may account for a substantial

proportion of the heritability in aggregate. We examined

the contribution of private variants to heritability and

found that when traits are not tied to fitness ðt¼ 0Þ, pri-
vate variants account for �30% of the heritability

(Figure 2A). However, when the coupling between trait ef-

fects and fitness effects is moderate ðt¼ 0:25Þ or strong

ðt¼ 0:5Þ, private variants account for over half of the her-

itability, and there is a maximum of �79% under strong

coupling (Figures 2B and 2C). These results suggest that

many causal variants, which jointly explain much of the

heritability, tend to be population specific. This effect is a

consequence of how the trait relates to fitness as well as

the demographic history of the population.

The fact that many of the variants that affect the trait are

not shared across populations may limit the applicability

of polygenic scores derived from European populations

to other populations. This effect would be distinct from

Figure 1. Human population history generates population-specific variants
(A) Model for variants that are shared (common to Europe [EUR] and Africa [AFR]) and private (occurring only in EUR and absent from
AFR). Bottom, examples of private and shared variants from ExAC.42

(B) The number of non-synonymous variants that are private to European populations and absent from African populations (blue bars)
and the number of non-synonymous variants that are shared between the two populations in the 1KG exome dataset and the ExAC
dataset (orange bars).
(C) The proportion of non-synonymous alleles above a given frequency that are private to Europe and absent from Africa in the ExAC
dataset and in simulations based on human history. Note that because the ExAC dataset contains admixed African American individuals,
the proportion of private variants is reduced compared with the original simulation (black dots). Modeling this admixture (red dots)
shows a better fit to this dataset. Error bars denote standard deviation across simulation replicates.
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imperfect tagging of causal variants due to differences in

LD patterns between populations. To test for this effect

in simulated data, we calculated true polygenic scores for

individuals in the simulated European and African popula-

tions and asked how well polygenic scores derived from

only private variants and only shared variants correlated

with the true polygenic scores. Polygenic scores derived

from only shared variants represent the case where a poly-

genic score can be transferred from Europe to another pop-

ulation. If shared variant effect sizes correlate well between

populations, despite not contributing to amajority of addi-

tive genetic variance, polygenic scores may still be accurate

across populations.We note that these simulations include

identification of the true causal SNPs and, as such, are

much higher than polygenic score accuracies reported else-

where.13 These simulations represent the best-case sce-

nario for polygenic scores. We found that when traits are

independent of fitness, the shared polygenic score has a

91% correlation in Europe and 96% correlation in Africa

with the true polygenic score, suggesting that polygenic

scores can be applied between populations (Figure 3A).

However, we found that when trait effects are tied to

fitness effects, the correlation between shared polygenic

scores and the true polygenic scores decreases (Figures 3B

and 3C) and the correlation between private polygenic

scores and true polygenic scores increases (Figures 3D,

3E, and 3F). Note that in the analysis with private poly-

genic scores, each population uses variants private to

that population but not from the other population. That

is, the African private polygenic score uses variants private

to Africa. This suggests that the reduction in accuracy does

not depend on the population’s specific demography, as

the same pattern is present in European and African popu-

lations. For traits with strong coupling between trait effects

and fitness effects (t ¼ 0.5), the correlation between the

true polygenic scores and the polygenic scores derived

from shared variants drops to 62% in Europe and 57% in

Africa (Table S4). These findings suggest that polygenic

scores based solely on shared variants may be substantially

less accurate than polygenic scores using all variants and

may not transfer between populations well when the vari-

ants with the greatest effects on the trait are those under

the most negative selection.

While shared variants do not capture the full distribu-

tion of polygenic scores, we asked whether individuals in

the tail of the true polygenic score distribution remained

in the tail when examining shared variants only. When

there is no coupling between fitness and trait effects

(t ¼ 0), shared variants capture 35% of the tail correctly

in Europe and 28% of the tail correctly in Africa (Table

1). However, when there is moderate coupling (t ¼ 0.25),

this number drops to 11% in Europe and 7% in Africa.

When there is strong coupling, the polygenic score based

on shared variants identifies none of the individuals in

the tails of the distribution. If the trait under consideration

is a disease, this analysis suggests that a polygenic score

based on shared variation cannot identify individuals at

the highest risk for that disease. In contrast, when consid-

ering only private variants, the polygenic score correctly

identifies 44%–46% of individuals who are at the extremes

of the distribution. These results suggest that when using

scores derived from European populations, individuals

who are truly in the tails of the polygenic score distribution

will not be identified via shared variants alone, corre-

sponding to a high false-negative error rate. In addition,

the low recall for both of these polygenic scores suggests

many individuals that are in the tails of the distribution

will be missed.

While our simulations suggest private variants may be

an important component of the heritability and may limit

Figure 2. The effect of natural selection on the relationship between heritability and allele frequency
(A–C) Cumulative fraction of heritability explained by private and shared variants under (A) no relation between a mutation’s effect on
fitness and the trait ðt¼ 0Þ, (B) moderate coupling between amutation’s effect on fitness and the trait ðt¼ 0:25Þ, and (C) strong coupling
between a mutation’s effect on fitness and the traitðt¼ 0:5Þ. Note that the x axis is on a log scale. As t increases, a greater fraction of
heritability comes from variation that is found only within Europe.
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phenotype prediction across populations, their precise role

depends on the extent of negative selection acting on traits

(either directly or through pleiotropy), which remains an

open question.28–30,32,33 Thus, we next tested how much

of the heritability private variants account for in real

GWAS data in European populations, where GWAS data

is abundant.

A model for private variation

Webuilt a Bayesianmodel to classify variants segregating in

the UK Biobank as private or shared by using the allele fre-

quency conditional on a demographic model and distribu-

tion of fitness effects inferred for a European population

(seematerial andmethods). To validate ourmodel,we simu-

lated a new dataset under the same European demographic

model and recorded whether each allele was observed in

both populations. Then, we calculated the probability of

each allele’s being private to the European population. We

classified variants as private if the probability PðujiÞR t,

u˛f0;1g is 1 if the allele is private and 0 if not, i˛
f1;.;ng is the number of copies of the allele in the sample,

and t is some probability cutoff. For each cutoff, we calcu-

lated (1) the number of variants that we predict are private

and are truly private (true positives), (2) the number of var-

iants that we predict are private and are truly not private

(false positives), (3) the number of variants that we predict

are not private and are truly private (false negatives), and

(4) the number of variants that we predict are not private

and are truly not private (true negatives).

We summarize these numbers by using two curves: a pre-

cision-recall curve (Figure S1A) and a receiver operator char-

acteristic (ROC) curve (Figure S1B). We find that at a preci-

sion of 94%, we have a recall of 99% and that the area

under the ROC curve is 0.80, suggesting that our model is

able to distinguish between private and shared variants on

the basis of allele frequency alone (Table S3).We also tested

themodel on a simulated dataset including five timesmore

individuals than the 10,000 individuals used in the initial

simulation. Importantly, for this comparison, we used the

same lookup table, based on 10,000 individuals, as before.

This allows us to test how sample size affects our inferences.

We find that the precision-recall curve is largely the same,

but there is a decrease in the ROC curve (AUROC ¼ 0.70).

In addition, examining PðujiÞ versus the allele frequency
in the simulated independent dataset (Figure S1C), we

find that alleles higher than �10% frequency have a negli-

gible probability of being private. This is consistent with

the intuition that common alleles are unlikely to be

private.

We also examined several posterior probability thresh-

olds in detail (t˛f0:1; 0:23; 0:4g; Table S3). Across these

thresholds, we find that the false discovery rate (FDR)

from simulations is �5%, suggesting that the model is

relatively robust to the threshold used.

Figure 3. The relationship between polygenic scores and natural selection
(A–F) Polygenic score accuracy for shared variants only (top row) and private variants only (bottom row) in Europe and Africa on simu-
lated data with different degrees of negative selection. In the bottom row, each score uses private variants from within the population
being considered (e.g., for Africa, we use variants private to Africa) but not from the other population. The black line shows the 1:1 line.
(A and D) No relationship between a mutation’s effect on fitness and its effect on the trait ðt¼ 0Þ: (B and E) Moderate coupling between
fitness and trait effects ðt¼ 0:25Þ: ðC and FÞ Strong coupling ðt¼ 0:5Þ. As the strength of coupling increases, polygenic scores computed
from shared variation become less correlated with the true polygenic score. However, at the same time, polygenic scores computed from
private variation become more correlated with the true polygenic scores.
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Next, we empirically validated the performance of our

model to infer whether variants are private. Using data

from ExAC,42 we use our framework described above to

calculate the probability that each variant is private by

using the allele frequency in the non-Finnish Europeans

(NFE). In Figure S1D, we plot this probability for a random

subset of 10,000 variants. We see that variants above 10%

frequency have a very low probability of being private and

that variants below that frequency increase in probability

of being private as their frequency decreases.

In addition, we classified variants in ExAC as private to

‘‘EUR’’ by using the simulation-based FDR of 5%

ðPðujiÞ R0:23Þ and checked whether those variants were

present in the ‘‘AFR’’ subset of samples (Table S2). We see

that 83% of the variants we call private are not observed

in ‘‘AFR’’ in a sample of 10,406 chromosomes. This sug-

gests that our empirical-based FDR is 17% and is higher

than the simulation-based FDR. However, the ‘‘AFR’’

sample in ExAC is a mixture of African American and

African samples. Importantly, African American samples

are admixed between European and African popula-

tions.42 This has the effect of introducing European vari-

ants into the ‘‘AFR’’ samples, making variants we expect

to be private to ‘‘EUR’’ appear shared. Therefore, this

estimate of the accuracy is most likely an underestimate.

Nonetheless, these simulations and empirical evalua-

tions suggest that our model is able to distinguish between

private and shared variants on the basis of allele frequency

alone. Additionally, out of an abundance of caution, we

utilize two different empirically based FDRs of 17% in

downstream inferences as described below. Importantly,

our determination of whether a variant is private or shared

is expected to hold regardless of the sample size taken from

either population (Table S2).

Inference of heritability accounted for by private

variants: h2private
We used summary statistics for 37 different traits and dis-

eases from the UK Biobank relating to anthropometric

and blood-related traits as well as cancer-related and non-

cancer related diseases (see web resources) to infer the

proportion of the SNP-based heritability attributable to pri-

vate variants, h2private. Using these data and our probabilistic

method to determine whether a variant is private or not, we

find that the average h2private¼ 31%, and there is substantial

variation across traits (standard deviation: 11%; Figure 4).

Examining categories of diseases, we find that cancer-

related diseases have h2private ¼ 12%, while non-cancer-

related diseases have h2private ¼ 32%. Similarly, private vari-

ants account for �30% of the heritability in blood-related

and anthropometric traits. We observe substantial vari-

ability across different traits within a category. Two blood

pressure-related traits have h2private of nearly 50%, while

other blood-related traits have a lower proportion.

The effect of falsely identified private variants on our

inference of h2private
To ensure that our results from the UK Biobank data

described above were not driven by shared SNPs that we

mistakenly classified as private, we adjusted for an empiri-

cally based FDR. At the threshold used for classifying vari-

ants as being private ðPðujiÞ¼ 0:23Þ, validation in the

empirical data suggest the FDR is �17% (see above). In

other words, approximately 17% of SNPs that we identify

as private may actually be shared. Thus, we adjusted our es-

timates of h2private by randomly reclassifying 17% of the

private SNPs as shared and re-computed h2private (‘‘17%

FDR correction’’ in Figure 4). Despite the extremely conser-

vative nature of this correction (because the empirical FDR

is based on an admixed sample), we find that a sizeable

proportion of the heritability (about 22%) still comes

from private variants (Figure 4).

In addition to this conservative correction, we also per-

formed an even more stringent correction where we sorted

the SNPs we call private by their heritability and removed

17% of the SNPs that explain the most heritability. As ex-

pected, the amount of heritability from private variants

goes down, but for most traits, the heritability explained

by private variants is still greater than 10% (‘‘Max FDR

correction’’ in Figure 4). This suggests that our central

claim, that private variants contribute to heritability, re-

mains true even if our classification method is imperfect.

The effect of population stratification

Recent studies have highlighted the effects of stratification

on polygenic scores.18,19 We considered whether stratifica-

tion could have an effect on our analyses. To test this, we

repeated our analyses by using only those SNPs showing

stronger associations with the trait. Specifically, we em-

ployed p value cutoffs, using only SNPs with a p value

lower than the cutoff (Figure S3). Broadly, for quantitative

traits, we observe that as the p value threshold becomes

stricter, the proportion of the heritability attributable to

private variants decreases. This is due to the power to

detect associations for private variants. The power to detect

an association will be lower for private variants than

shared variants because private variants tend to have lower

allele frequencies. Therefore, as the p value cutoff

Table 1. The effect of natural selection on identifying high-risk
individuals

t
Shared
(Europe)

Private
(Europe)

Shared
(Africa)

Private
(Africa)

0 35% 22% 28% 11%

0.25 11% 20% 7% 18%

0.5 0% 46% 0% 44%

Percentage of individuals in the extreme 5% tail of the true polygenic score dis-
tribution that are recovered when using only private variants and shared vari-
ants in simulated European and African populations. Overall, the percentage of
individuals correctly classified is low, suggesting that there will be many false
negatives when using polygenic scores to identify individuals in the tails of
the risk distribution. Further, as the degree of coupling between fitness effects
and trait effects increases, shared variants correctly classify fewer individuals,
while private variants classify more individuals correctly.
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decreases, we expect a lower proportion of heritability to

come from private variants. We found that the total vari-

ance explained by SNPs for dichotomous traits was much

lower than for quantitative traits. This effect produced a

statistical artifact where the heritability from private vari-

ants tended to be very high for dichotomous traits

(Figure S4).

In addition to this analysis, we were also concerned

with the effect of differential population structure from

rare variants.35,44 Therefore, we checked the robustness

of our results to allele frequency filters. We computed

h2private for atrial fibrillation, BMI, standing height,

diastolic blood pressure, and type 2 diabetes with MAF

cutoffs from 10�5, 10�4, 10�3, and 10�2 (Figure 5). We

find that although h2private decreases, it still remains

substantial up to a cutoff of 10�2. Although this analysis

removes both real and spurious signals, it suggests that

private variants do indeed explain a non-negligible

proportion of heritability.

Across different p value thresholds, a non-negligible pro-

portion of heritability comes from private variants. How-

ever, this analysis does not alleviate all concerns about

population stratification, as at a large enough sample

size, an association due to stratification can be arbitrarily

strong. Similarly, stratification could still occur when using

variants at different MAF cutoffs. While these analyses pro-

vide evidence that our results are not primarily driven by

stratification, they cannot completely rule it out. Further

advances in controlling for stratification of rare variants

Figure 4. Estimates of the amount of
heritability from private variants
The expected reduction in accuracy when
transferring a polygenic score from Europe
to Africa (expressed as the percentage of
heritability explained by private variants)
across 37 traits and diseases in the UK
Biobank. We only include SNPs with an
MAF > 10�3. The mean reduction is
26.7% (SD across traits is 14.7%). ‘‘17%
FDR correction’’ refers to randomly setting
17% of the SNPs that we call private to
shared. ‘‘Max 17% FDR correction’’ refers
to setting the 17% of the SNPs that explain
the most heritability from private to
shared. Lines indicate standard errors ob-
tained via a 1 Mb block jackknife.

will be crucial to understand the full

contribution of private variants to

heritability.

The effect of unmodeled LD on our

inferences

Our inferences of h2private make the

assumption that the estimated effect

sizes for the GWAS SNPs were the

true effect sizes of the causal variants.

Further, we assumed that the variants

were all independent of each other. In truth, these assump-

tions are violated for a variety of reasons. First, because of

LD, SNPs may be correlated with one another. Second,

some of the non-zero effect sizes of GWAS SNPs may be

due to the fact that the GWAS SNP is tagging (in LD

with) an untyped causal variant and is itself not causal.

Third, even if the GWAS variants analyzed in our study

are the true causal variants, their effect sizes may be mises-

timated by the effects at nearby SNPs in LD with them.

Thus, given these challenges, we carefully considered the

effect that unmodeled LD may have on our inferences

(see Note S2).

First, we developed an estimator of the SNP-based herita-

bility that downsamples the number of SNPs to be inde-

pendent of each other. We checked the robustness of our

results to this effect by randomly selecting a single SNP

in a window and computing the proportion of heritability

from private variants by using these randomly selected

SNPs. We select only one SNP per window to avoid count-

ing SNPs located nearby each other that are in LD with

each other. We randomly selected SNPs to avoid biases

due to the fact that more sophisticated methods for fine-

mapping SNPs by using LD patterns may have different

performance for different allele frequencies. We find

similar results via our LD-pruned estimator compared

with the full data (Note S3; Figures S5, S6, and S7). We

also ensure that our estimates are sensible by estimating

the proportion of additive genetic variance from variants

we infer to be shared (Figure S8). If the inference procedure
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works correctly, this number should be 1� dh2
private . In

Figure S8, we see that this is indeed the case.

Second, based on first principles, our estimates of h2private
most likely underestimate the true proportion due to LD be-

tween tagging and causal variants (see Note S2). Because

shared variants tend to be more common, they will tend

to be in LD with more (and therefore tag more) variants.

Because of this effect, shared variants could have inflated

marginal effect sizes compared to private variants. This

would lead to overestimating the heritability from shared

variants compared to private variants, making our infer-

ences conservative. We tested for this effect in real data

by testing the correlation between marginal effect sizes

and recombination rate for variants we predict to be private

and variants we predict to be shared (Note S4). We found

that variants we predict to be private have lower correlation

than variants we predict to be shared, consistent with the

idea that shared variants tagmore variants than private var-

iants (we also note that this reasoning is the motivation for

LD score regression45). In addition, coalescent simulations

show that our estimator of h2private is indeed slightly down-

wardly biased (Note S5; Figure S9).

Discussion

In this work, we have shown that recent population

growth and negative selection create population-specific
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Figure 5. The effect of MAF cutoffs on
heritability from private variants
‘‘Filter’’ refers to a quality and allele fre-
quency filter that removes variants with a
frequency below 10�3, a Hardy Weinberg
equilibrium p value < 10�10, or SNP infor-
mation score < 0.8. We show results for
five commonly studied traits. For BMI, dia-
stolic blood pressure, and standing height,
the ‘‘filter yes’’ lines are behind the ‘‘filter
no’’ lines. This suggests that the variant fil-
ter has no effect on the estimated heritabil-
ity. Lines indicate standard errors obtained
via a 1 Mb block jackknife.

genetic architectures for phenotypes,

which has the direct effect of

reducing the accuracy of polygenic

scores when applied between popula-

tions. The reduction in accuracy will

depend on how differentiated popu-

lations are and accuracy decreases as

populations become more differenti-

ated. Another case to consider is

admixed populations where some

causal variants could be introduced

and thus become shared variants. In

these cases, we expect the utility of

polygenic scores to be higher, but

this will depend on how recent the

admixture was and how many causal

variants are transferred between populations, which can

vary between individuals.

In our simulation results, we found that when there was

no coupling between trait effects and fitness, approxi-

mately 30% of the heritability comes from private variants

and that this proportion increases as the coupling in-

creases. Although we expect this general pattern to hold,

the specific values will depend on the distribution of

fitness effect for causal alleles, the mutation target size,

and the demographic history of the populations under

study. We have used a distribution of fitness effects that

was fit to non-synonymous variants39 and note that the es-

timates of selection on causal alleles could be revised in

future studies. In addition, our model with admixture fits

the observed data better than a model without admixture

(Figure 1C), but we may still be underestimating the num-

ber of private alleles, which would cause our estimates to

be a lower bound. Nevertheless, our results suggest that a

non-negligible proportion of the heritability comes from

private alleles.

We find that phenotypes with a majority of heritability

explained by private variants are not likely to be predicted

well in non-European populations, even if effect sizes

are accurately inferred. Our analysis of the UK Biobank

data suggests that most traits examined here have at

least 20% of the heritability explained by private variants

(h2private > 20%), indicating that cross-population

polygenic scores are limited in accuracy and many
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population-specific causal variants remain to be discov-

ered. We note that our inferences on the empirical data

do not make use of the Eyre-Walker t model.25 As such,

our inferences from empirical data do not make any

assumptions about the relationship between a mutation’s

effect on fitness and the trait.

At first glance, our result that many traits have a popula-

tion-specific genetic component seems at odds with

recently reported results suggesting that the genetic corre-

lation between traits in European and East Asian popula-

tions is very high.46,47 However, we note that both of these

studies examined common variants (MAF > 5%), which

are more likely to be shared. Our study explicitly considers

a larger range of allele frequencies, which is more likely to

include population-specific variants.

Our results have several implications for users of poly-

genic scores. First, we show that the transferability of poly-

genic scores depends on the particular trait being examined.

For traits with larger values of h2private (such as diastolic and

systolic blood pressure), the transferability would be lower

because we find these traits derive more of their heritability

from variants that are more likely to be private (h2private:

z48% for both). In contrast, we find that traits with lower

values of h2private, such as white blood cell count, can be

more easily transferred because the heritability is spread

more evenly across the spectrum of MAFs (h2private: 28%).

Although we include standard errors estimated via a jack-

knife, this procedure may not account for all the uncer-

tainty. Therefore, specific differences across traits should

be interpreted cautiously. In addition, our inferences, like

those in Lam et al.46 and Liu et al.,47 focus on the SNP her-

itability rather than the total heritability of particular traits.

Several recent reviews and commentaries have pointed

out the potential for misuse of polygenic scores to justify

racism and white supremacy, especially when comparing

polygenic scores across populations.16,48–51 Importantly,

although our study indicates that population-specific vari-

ants play a role in complex traits, it is incorrect to conclude

that population-specific variants lead to differences in

traits between populations. Previous simulation studies

have suggested that the interplay between demography

and negative selection will not lead to large differences in

trait heritability between populations.21,27 Instead, these

evolutionary forces can change how the heritability is ac-

counted for. For example, as we show here, population

growth and negative selection can lead to heritability’s

being accounted for by lower-frequency variants that are

population specific instead of common variants shared

across populations. Further, non-genetic factors most

likely play an important role in differences in phenotype

between populations.52

We also highlight a crucial issue in identifying individ-

uals in the tails of the phenotype distribution. If polygenic

scores are to be used more commonly in the clinic, false-

negative rates must be more closely examined across pop-

ulations and phenotypes. Our work suggests that many

causal variants may not be shared between populations,

indicating that variants ascertained in European popula-

tions may not be informative in other populations. This

could occur because, on average, more European-specific

variants have been either directly included in GWASs or

imputedmore often than variants specific to other non-Eu-

ropean populations. To ensure equal predictive power of

polygenic scores across populations, whole-genome

sequencing-based association studies must be undertaken

in non-European populations. Such studies would allow

for unbiased discovery of private variants accounting for

much of the heritability, resulting in improved polygenic

prediction in non-European populations. Finally, large

imputation panels from the relevant population of interest

are necessary to include variation that is not present in

Europe.
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