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H U M A N  G E N E T I C S

The genetic architecture of human cortical folding
Dennis van der Meer1,2*, Tobias Kaufmann1,3, Alexey A. Shadrin1, Carolina Makowski4, 
Oleksandr Frei1,5, Daniel Roelfs1, Jennifer Monereo-Sánchez2, David E. J. Linden2,6, 
Jaroslav Rokicki1,7, Dag Alnæs1,8, Christiaan de Leeuw9, Wesley K. Thompson10, Robert Loughnan4, 
Chun Chieh Fan4, Lars T. Westlye1,7,11, Ole A. Andreassen1,11†, Anders M. Dale1,4†

The folding of the human cerebral cortex is a highly genetically regulated process that allows for a much larger 
surface area to fit into the cranial vault and optimizes functional organization. Sulcal depth is a robust yet under-
studied measure of localized folding, previously associated with multiple neurodevelopmental disorders. Here, 
we report the first genome-wide association study of sulcal depth. Through the multivariate omnibus statistical 
test (MOSTest) applied to vertex-wise measures from 33,748 U.K. Biobank participants (mean age, 64.3 years; 
52.0% female), we identified 856 genome-wide significant loci (P < 5 × 10−8). Comparisons with cortical thickness 
and surface area indicated that sulcal depth has higher locus yield, heritability, and effective sample size. There 
was a large amount of genetic overlap between these traits, with gene-based analyses indicating strong associa-
tions with neurodevelopmental processes. Our findings demonstrate sulcal depth is a promising neuroimaging 
phenotype that may enhance our understanding of cortical morphology.

INTRODUCTION
During early brain development, the cerebral cortical sheet folds 
into gyri and sulci in a highly regulated manner because of multiple 
intrinsic and extrinsic mechanical forces (1–3). This cortical folding 
not only allows for a much larger surface area to fit into the cranial 
vault but also reduces distance between neurons, leading to faster 
signal transmission (2). Accordingly, measures of sulcal morphology 
are associated with cognitive performance (4), and lack of cortical 
folding (lissencephaly) is accompanied by severe mental retardation 
(5). Atypical folding can result from defects in neuronal proliferation, 
migration, and differentiation, and has been associated with major 
neurodevelopmental (6–8) and neurodegenerative disorders (9).

Sulcal depth is a rather understudied measure of sulcal morphol-
ogy, reflecting the convexity or concavity of any given point on the 
cortical surface. This measure is therefore highly suited for quanti-
fication of the primary folding pattern of the cortical sheet, and it 
has been shown to be insensitive to noise in the form of small wrin-
kles and to be relatively stable across individuals (10). Sulcal depth 
is also known to have high test-retest reliability across the brain 
(11, 12). The few studies using this measure have provided evidence 
of regional differences between men and women (13) and have 
shown that sulci become more shallow with aging (14, 15), yet this 
remains to be fully characterized.

Several studies have indicated that there is a strong genetic compo-
nent to sulcal depth, which is mostly prenatally determined (11, 16, 17). 
Sulci are more similar in monozygotic than in dizygotic twins (18), 
and an estimated 56% of between-subject variance in average depth 
of the central sulcus is under genetic control (19). Furthermore, 
Williams syndrome, caused by deletion of a section of chromosome 
7, is associated with widespread reductions in sulcal depth (20), 
which mediate its behavioral symptoms (21, 22). Yet, there has been 
no large-scale molecular genetics study of this measure.

Here, we provide the first genome-wide association study (GWAS) 
of sulcal depth, comparing its genetic architecture to the more com-
monly studied brain morphological measures of cortical thickness 
and surface area. Given that gene variants are likely to have distrib-
uted effects across magnetic resonance imaging (MRI) phenotypes, 
we targeted a multivariate analysis of a vertex-wise representation 
of the cortical surface, preventing the need for a multiple-comparison 
correction or data reduction strategies (23). We therefore applied 
the multivariate omnibus statistical test (MOSTest) (24) to data 
from 1153 vertices, using a common template (fsaverage3) with the 
medial wall vertices excluded. Our primary sample consisted of 
33,748 unrelated White British participants of the UK Biobank (UKB), 
with a mean age of 64.3 years (SD, 7.5 years); 52.0% were female. See 
figs. S1 and S2 for vertex-wise brain maps showing the distribution 
of the sulcal depth metric in this sample as well as its Pearson’s cor-
relation with cortical thickness and surface area. We further carried 
out analyses in two additional samples consisting of (i) 5199 UKB 
participants (mean age, 62.8 years) that were excluded from the 
main analyses as they were not of White British descent, and (ii) 
8072 participants of the Adolescent Brain Cognitive Development 
(ABCD) study (mean age, 9.9 years). These samples differed sub-
stantially from the discovery sample in terms of ethnicity and age, 
providing a strong test of generalizability of the reported associations. 
Following surface reconstruction, we preresidualized all vertices for 
age, sex, scanner site, a proxy of image quality (25), and the first 
20 genetic principal components to control for population stratifi-
cation. After applying a rank-based inverse normal transformation, 
MOSTest was performed on the resulting residualized measures, 
yielding a multivariate association with each single-nucleotide 
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polymorphism (SNP). We additionally repeated the main GWAS 
analyses while covarying for the mean across all vertices to remove 
global effects; the findings from these analyses were highly similar 
to the main analyses, as reported in the Supplementary Materials.

RESULTS
In the discovery sample, MOSTest revealed 856 independent loci, 
reaching the genome-wide significance threshold of  = 5 × 10−8 for 
sulcal depth (see Fig. 1A). In comparison, for surface area and thick-
ness, we found 661 and 591 loci, respectively (see figs. S3 and S4). 
We found that the sets of discovered loci for sulcal depth had ac-
ceptable rates of generalization (see fig. S4 and table S2).

The effects of discovered top variants on sulcal depth followed 
gyral and sulcal patterns, and the spatial pattern of effects was high-
ly similar in the two additional samples, as shown in Fig. 1B for the 

most significant SNP at chromosome 15. Data files S1 to S3 contain 
information on all discovered loci per trait, including mapped 
genes, and list the significance of each lead SNP in each sample.

Next, using the MiXeR tool (26, 27), we fitted a Gaussian mix-
ture model of the null and non-null effects to the three GWAS sum-
mary statistics, estimating the polygenicity and effect size variance 
(“discoverability”). The results are summarized in Fig. 1C, depicting 
the estimated proportion of genetic variance explained by discov-
ered SNPs for each trait as a function of sample size. The horizontal 
shift of the curve across the different traits indicates that the effec-
tive sample size is the highest for sulcal depth and lowest for cortical 
thickness. Furthermore, the mean heritability of sulcal depth, calcu-
lated through linkage disequilibrium score regression (LDSC) (28) 
applied to each vertex, was significantly higher than for the two other 
traits (see Fig. 1D), i.e., the higher genetic signal in sulcal depth is 
also captured by univariate measures.

Fig. 1. Locus discovery. (A) Manhattan plot of the multivariate GWAS on sulcal depth, with the observed −log10(P value) of each SNP shown on the y axis. The x axis shows 
the relative genomic location, grouped by chromosome, and the red dashed line indicates the whole-genome significance threshold of 5 × 10−8. The y axis is clipped at 
−log10(P value) = 150. (B) Lateral view of the cortex, depicting the color-coded vertex-wise z values for the top hit rs4924345 at chromosome 15, across the discovery 
sample (top) and the two replication samples (middle and bottom). The left column corresponds to the left hemisphere, and the right column to the right hemisphere. 
(C) Power plot showing the relation between variance explained by genome-wide significant hits (y axis) and sample size (x axis). The number of hits discovered per modality 
and the percent explained genetic variance are indicated between brackets in the legend. (D) Bar plot of the mean SNP-based heritability (with 95% confidence interval) across 
vertices (on the y axis) per modality (x axis). In (C) and (D), sulcal depth is represented in green, surface area in orange, and cortical thickness in purple. ****P ≤ 0.0001.
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We additionally performed gene-based analyses through multi-
marker analysis of genomic annotation (MAGMA) (29). We identified 
2010 multiple comparison-corrected ( = 0.05/18,203) significant 
genes for sulcal depth (i.e., 11% of all 18,203 genes) versus 1486 for 
area and 1347 for thickness. The lists of all significant genes are pro-
vided in the Supplementary Materials.

Next, we analyzed the genetic overlap between the three traits 
at the locus level, gene level, and pathway level. At the locus level, 
we found that sulcal depth and surface area had 625 loci with over-
lapping start and end genomic positions (Dice coefficient of 0.82), 
509 loci overlapped between sulcal depth and cortical thickness 
(Dice  = 0.70), and 450 loci overlapped between surface area and 
thickness (Dice = 0.72). A total of 447 loci overlapped across all three 
traits (see Fig. 2A). We further found that a substantial number of the 
loci discovered for these cortical traits overlap with those previously 
identified for a set of brain disorders and cognitive performance 
(see table S3).

The large genetic overlap between the traits was also evident at 
the gene level, as illustrated in Fig. 2B. The top gene STH, thought to 
play a role in phosphorylation of tau (30), was highly significantly 
associated with all three traits. ROBO2, NAV2, and SEMA3A, key 
players in neuronal outgrowth guidance (31–33), were also associ-
ated with all three traits. The two histone genes, HIST1H4L and 
HIST1H2BL, both located in the large histone gene cluster at chro-
mosome 6, were relatively specifically associated with sulcal depth; 
among its many roles, histone activity is central in regulating gene 
expression patterns that determine neuronal proliferation and dif-
ferentiation processes that shape the cerebral cortex (34).

Figure 2C shows results from gene set analyses through MAGMA 
(29), listing the top 10 most significant gene ontology pathways for 
sulcal depth together with its P values for the two other traits. We 
found strong associations with neurogenesis and neuron differenti-
ation pathways, overlapping between all three traits. Associations 
with neuronal tangential migration were shared by sulcal depth and 
surface area but much less by cortical thickness, in line with the role 
of tangential migration of neurons in determining cortical folding 
(35). Notably, pathways related to chondrocyte differentiation and 
skeletal system development appeared more specific to sulcal depth, 
possibly pointing toward early life interactions between cortical fold-
ing and the shaping of the cranium (2). Full results from the path-
way analyses are provided in data files S7 to S9.

We further coupled the findings of our gene-based analyses to 
cortical gene expression patterns, derived from postmortem brain 
tissue of clinically unremarkable donors across the life span (36). As 
shown in Fig. 2D, the probes tagging genes associated with the three 
traits showed a distinct profile over the life span, characterized by 
high prenatal expression and low postnatal expression.

DISCUSSION
Here, we reported the results from the first large-scale molecular 
genetics study of sulcal depth. With 856 loci discovered, explaining 
an estimated 32% of its genetic variance, this study has found the 
highest number of loci for any brain trait considered so far. We fur-
ther provided evidence that our findings generalize to other popu-
lations and carry meaningful biological information.

The direct comparison with surface area and thickness indicated 
that sulcal depth is more heritable. This may reflect the evolutionary 
significance of cortical folding, the development of which enabled 

the advent of a larger brain and optimization of its functional organi-
zation (37). A synthesis of the literature suggests that human-specific 
folding follows from an interplay between mechanical forces and 
cellular mechanisms that have come about over the course of evolu-
tion through mutations of genes primarily coupled to cell cycling 
and neurogenesis (38). This is in accordance with the specific genes 
identified, known to play roles in the regulation of neuronal prolif-
eration and migration (31–34). Our findings therefore suggest that 
the sulcal depth metric is closely aligned with these genetic process-
es that shape important brain morphological characteristics.

As indicated by the brain maps, genetic effects have opposing 
directions of effects on some neighboring points in the brain. This 
is in line with strong differences in the morphology and arrange-
ment of neurons and fibers along cortical folds, varying widely from 
the gyral crown along the lateral wall down to the sulcal fundus 
(38, 39). Furthermore, the current findings indicate the presence of 
widespread genetic effects, illustrating this important characteristic 
of its genetic architecture; numerous variants are involved, each 
with a complex pattern of effects spread across the cortex. As shown 
by our estimates of generalization, these multivariate genetic effects 
on sulcal depth seem to be rather independent of ethnicity and age 
(40), emphasizing the fundamental neurobiological relevance for 
brain morphology.

We further found large genetic overlap between all three mor-
phological brain traits, extending our previous findings that surface 
area and thickness share the majority of their genetic determinants 
(24, 41). We found that the genetics of sulcal depth overlaps more 
with surface area than with cortical thickness, indicating a closer 
relation between the neurobiological mechanisms determining the 
degree of cortical folding and surface area. Patterns of tangential 
migration of neurons are thought to be important drivers of both 
folding of the cortical sheet and determination of its surface area 
(3), while its thickness is influenced more by radial migration (42). 
The results from the pathway analyses appear to confirm this dis-
tinction. However, the estimates of overlap, together with the ob-
served phenotypic correlations, also indicate that sulcal depth and 
surface area do partly capture distinct genetic processes. Mammalian 
species also vary in their degree of folding independent of surface 
area (2). Sulcal depth is therefore likely to provide additional infor-
mation on the molecular genetic influences on brain morphology, 
capturing variation in the mechanical processes that determine the 
folding of the cortical sheet, to complement what is found through 
studies of surface area and cortical thickness. The identified genetic 
overlap with brain disorders and cognitive ability additionally indi-
cates that the genetics of these brain measures carry clinically rele-
vant information.

In addition to the reported locus overlap, the specific identified 
genetic variants, genes, and pathways further inform our under-
standing of cortical morphology and associated disorders. The most 
significant pathways were particularly relevant for early brain de-
velopment, with neurogenesis and differentiation ranking highest. 
This fits very well with a large body of literature on the genetic reg-
ulation of the mechanical forces that drive cortical folding (38). It is 
also in accordance with our findings that the sets of identified genes 
showed highest expression in fetal cortical tissue. Furthermore, cor-
tical folding has been shown to take place almost entirely prenatally 
(17), with sulcal patterns at birth being predictive of neurobehav-
ioral outcomes (16). Follow-ups on our work with neuroimaging 
data across the life span, including infants, are needed to replicate 
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Fig. 2. Genetic overlap. (A) Venn diagram of the number of discovered loci overlapping between the three different traits. (B) Scatterplot of gene-based P values, with 
y axis indicating P values for sulcal depth and x axis for those for surface area, and the coloring indicating P values for cortical thickness. Note that −log10(P values) are 
clipped at 40. (C) Ten most significant gene pathways for sulcal depth, as listed on the y axis, with the −log10(P values) indicated on the x axis for each of the three traits. 
(D) Mean-normalized expression (y axis) of genes over time (x axis; log10 scale) per trait and over all available genes, as indicated by colors. Gray shading indicates 95% 
confidence bands.
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these findings and to further determine spatiotemporal patterns of 
genetic effects on sulcal depth. Given the reported associations of 
sulcal morphology with a range of neurodevelopmental and neuro-
degenerative disorders (6–9) as well as our exploratory findings of 
genetic overlap with brain disorders, it will also be of interest to in-
vestigate more thoroughly how sulcal depth genetics relates to the 
development of brain disorders over the life span.

We note as a limitation that we are currently lacking a strong 
mechanistic understanding of what the sulcal depth metric cap-
tures. Still, the evolutionary and ontogenetic importance of cortical 
folding appears to be reflected in the higher heritability compared 
to cortical thickness and surface area. Our exploration of multivar-
iate genetic associations with sulcal depth attests to this, providing 
novel insight into the complexity of the human cortex, warranting 
further investigation into this measure to enhance our understand-
ing of the brain and associated disorders.

MATERIALS AND METHODS
Participants
For the primary analyses, we made use of data from participants of 
the UKB population cohort, obtained from the data repository 
under accession number 27412. The composition, setup, and data 
gathering protocols of the UKB have been extensively described 
elsewhere (43). UKB has received ethics approval from the National 
Health Service National Research Ethics Service (reference: 11/NW/0382) 
and obtained informed consent from its participants. For this study, 
we selected White British individuals, as determined by self-report 
and confirmed by genetic principal components analysis (UKB Data-​
Field 22006), which had undergone the neuroimaging protocol. We 
made use of T1 MRI scan data released up to March 2020, excluding 
771 individuals with bad structural scan quality as indicated by an 
age- and sex-adjusted Euler number (44) more than 3 SDs lower 
than the scanner site mean. We further excluded one of each pair of 
related individuals, as determined through genome-wide complex trait 
analysis (GCTA), using a threshold of 0.0625 (n = 1138). Our sample 
size for this analysis was n = 33,748, with a mean age of 64.3 years 
(SD, 7.5). A total of 52.0% of the sample were female.

For the analyses of generalizability, we made use of the same UKB 
data and preprocessing steps but restricted our sample to those in-
dividuals who were not classified as White British. This left us with 
n = 5199 individuals, with a mean age of 62.8 years (SD, 7.7), of which 
54.1% were female.

We additionally included data from children participating in the 
ABCD neurodevelopmental study, with complete genetic data and 
baseline T1 MRI scans from data release 3.0 [NIMH Data Archive (NDA) 
DOI:10.151.54/​1519007] that passed the ABCD quality control procedures 
(n = 8072). These children had a mean age of 9.9 years (SD, 0.6), and 
46.9% were female. All procedures were approved by a central Institu-
tional Review Board (IRB) at the University of California, San Diego, 
and, in some cases, by individual site IRBs. Parents or guardians provided 
written informed consent, and children assented before participation.

Data preprocessing
UKB T1-weighted scans were collected from three scanning sites 
throughout the United Kingdom, all on identically configured Siemens 
Skyra 3T scanners, with a 32-channel receive head coils. The UKB 
core neuroimaging team has published extensive information on 
the applied scanning protocols and procedures, which we refer to 

for more details (45). ABCD data were collected from 21 acquisition 
sites using Siemens Prisma, GE 750, and Philips 3T scanners to col-
lect the T1-weighted scans. Scanning protocols were harmonized 
across sites. Full details of all imaging acquisition protocols used in 
ABCD are outlined by Casey et al. (46).

All scans were stored locally at the secure computing cluster of the 
University of Oslo. We applied the standard “recon-all -all” process-
ing pipeline of FreeSurfer v5.3, followed by extracting vertex-​wise 
data for sulcal depth, surface area, and thickness, at ico3 (1284 ver-
tices) and ico4 (5124) resolutions, without applying smoothing. We 
included both the left and right hemisphere measures and excluded 
noncortical vertices belonging to the medial wall.

Note that we have chosen sulcal depth as a metric of cortical 
folding, as it captures vertex-wise localized folding, providing the 
signed distance from the inflated surface.

We subsequently regressed out age, sex, scanner site, Euler num-
ber, and the first 20 genetic principal components from each vertex 
measure. Following this, we applied rank-based inverse normal trans-
formation (47) to the residuals of each measure, leading to normally 
distributed measures as input for the GWAS.

We reran the MOSTest analyses as described above on the pri-
mary UKB sample, additionally regressing out the mean across all 
vertices for each of the three traits. The resulting number of loci is 
shown in table S1.

MOSTest procedure
The MOSTest software is freely available at https://github.com/pre-
cimed/mostest, and details about the procedure and its extensive 
validation have been described previously (24). In brief, consider 
N variants and M (preresidualized) phenotypes. Let zij be a z score 
from the univariate association test between ith variant and jth (re-
sidualized) phenotype, and zi = (zi1, …, ziM) be the vector of z scores 
of the ith variant across M phenotypes. Let Z = {zij} be the matrix of 
z scores, with variants in rows and phenotypes in columns. For each 
variant, consider a random permutation of its genotypes and let ​​ ~ Z ​ = 
{​​ ~ z ​​ ij​​}​ be the matrix of z scores from the univariate association testing 
between variants with permuted genotypes and phenotypes. A ran-
dom permutation of genotypes is done once for each variant, and 
the resulting permuted genotype is tested for association with all 
phenotypes, therefore preserving correlation structure between 
phenotypes.

Let ​​ ~ R ​​ be the correlation matrix of ​​ ~ Z ​​, and ​​ ~ R ​  =  US ​V​​ T​​ is its sin-
gular valued decomposition (U and V are the orthogonal matrixes, 
and S is the diagonal matrix, with singular values of ​​ ~ R ​​ on the diagonal). 
Consider the regularized version of the correlation matrix ​​​ ~ R ​​ r​​ = U ​S​ r​​ ​V​​ T​​, 
where Sr is obtained from S by keeping r largest singular values and 
replacing the remaining with rth largest. The MOSTest statistic for 
the ith variant (scalar) is then estimated as ​​x​ i​​  = ​ z​ i​​ ​​ 

~ R ​​r​ 
−1​ ​z​i​ 

T​​, where reg-
ularization parameter r is selected separately for cortical area and 
thickness to maximize the yield of genome-wide significant loci. In 
this study, we observed the largest yield for cortical surface area 
with r = 10; the optimal choice for cortical thickness was r = 20 and 
for sulcal depth r = 30. The distribution of the test statistics under 
null (​​CDF​null​ 

most​​) is approximated from the observed distribution of 
the test statistics with permuted genotypes, using the empirical dis-
tribution in the 99.99th percentile and gamma distribution in the 
upper tail, where shape and scale parameters of gamma distribution 
are fitted to the observed data. The P value of the MOSTest test 
statistic for the ith variant is then obtained as ​​p​ MOST​​  = ​ CDF​null​ 

most​(​x​ i​​)​.

https://github.com/precimed/mostest
https://github.com/precimed/mostest
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Univariate GWAS procedure
We made use of the UKB v3 imputed data, which have undergone 
extensive quality control procedures as described by the UKB ge-
netics team (48). After converting the BGEN format to PLINK binary 
format, we additionally carried out standard quality check proce-
dures, including filtering out individuals with more than 10% miss-
ingness, SNPs with more than 5% missingness, and SNPs failing the 
Hardy-Weinberg equilibrium test at P = 1 × 10−9. We further set a 
minor allele frequency threshold of 0.005, leaving 9,061,022 SNPs.

For ABCD, we took the genetic data that were part of the third 
data release, imputed through Trans-Omics for Precision Medicine 
(TOPMED), and mapped this back from genome build hg38 to hg19. 
We subsequently applied identical postimputation quality check pro-
cedures and filters for the UKB genetic data, leaving 13,131,314 SNPs.

We have previously calculated that the number of features provided 
by fsaverage3, 1153 vertices following exclusion of the medial wall, 
leads to the maximum number of loci identified through MOSTest, 
compared to other resolutions (49). We therefore used the fsaverage3 
resolution data for the input to MOSTest and for calculating herita-
bility of the univariate vertex-wise data (described below). For visual-
ization of the regionalization of the results, in the form of brain maps, 
we additionally carried out univariate GWAS on the 5124 vertices that 
make up fsaverage4, i.e., one level of resolution above fsaverage3. This 
was done only to improve the resolution of the visualizations. The uni-
variate GWAS on each of the preresidualized and normalized mea-
sures were carried out using the standard additive model of linear 
association between genotype vector, gj, and phenotype vector, y.

Heritability
We calculated the SNP-based heritability for each vertex at fsaverage3 
resolution by applying LDSC to the univariate GWAS summary sta-
tistics with default settings (28).

Locus definitions
Independent significant SNPs and genomic loci were identified from 
the MOSTest summary statistics in accordance with the psychiatric 
genomics consortium (PGC) locus definition, as also used in Func-
tional Mapping and Annotation of GWAS (FUMA) SNP2GENE (50). 
First, we select a subset of SNPs that pass the genome-wide significance 
threshold of 5 × 10−8 and use PLINK to perform a clumping procedure 
at linkage disequilibrium (LD) r2 = 0.6 to identify the list of indepen-
dent significant SNPs. Second, we clump the list of independent signif-
icant SNPs at LD r2 = 0.1 threshold to identify lead SNPs. Third, we 
query the reference panel for all candidate SNPs in LD r2 of 0.1 or higher 
with any lead SNPs. Furthermore, for each lead SNP, its corresponding 
genomic loci is defined as a contiguous region of the lead SNPs’ chro-
mosome, containing all candidate SNPs in r2 = 0.1 or higher LD with 
the lead SNP. Last, adjacent genomic loci are merged together if they 
are separated by less than 250 kb. Allele LD correlations are computed 
from the European (EUR) population of the 1000 Genomes phase 3 
data. We additionally performed clumping according to the definition 
used by the Enhancing Neuroimaging Genetics through Meta-analysis 
Consortium to allow for comparison with previous imaging GWAS 
studies. According to this definition, loci were formed through PLINK 
using a P value threshold of 5 × 10−8 (--clump-p1) and LD cutoffs of 
1 Mb (--clump-kb) and r2 < 0.2 (--clump-r2). Please see table S1 for 
the number of lead SNPs and loci according to both definitions. We 
made use of the FUMA online platform (https://fuma.ctglab.nl/) to 
map significant SNPs from the MOSTest analyses to genes.

Genetic overlap
Genetic overlap between the different MOSTest feature sets was op-
erationalized as the number of significant loci that were physically 
overlapping between each pair of summary statistics. Loci from the 
pair are considered physically overlapping if their boundaries, their 
start and end genomic positions as determined through clumping, 
overlap. Contrary to metrics of global genetic correlation, this ap-
proach can be applied to MOSTest summary statistics and is insen-
sitive to mixed directions of effects that would lower estimates of 
genetic correlation.

The Dice coefficient for each pair of traits was calculated as the 
number of overlapping loci divided by the sum of the total number 
of discovered loci for both traits.

MiXeR analysis
We applied a causal mixture model (26, 27) to estimate the percent-
age of variance explained by genome-wide significant SNPs as a 
function of sample size. For each SNP, i, MiXeR models its additive 
genetic effect of allele substitution, i, as a point normal mixture, ​​​ i​​ = 
(1 − ​​ 1​​ ) N(0, 0 ) + ​​ 1​​ N(0, ​​​ 

2 ​)​, where 1 represents the proportion of 
non-null SNPs (“polygenicity”) and ​​​​ 

2 ​​ represents variance of effect 
sizes of non-null SNPs (discoverability). Then, for each SNP, j, 
MiXeR incorporates LD information and allele frequencies for 
9,997,231 SNPs extracted from 1000 Genomes phase 3 data to esti-
mate the expected probability distribution of the signed test statis-
tic; ​​z​ j​​  = ​ ​ j​​ + ​ϵ​ j​​ = N ​∑ i​ ​​ ​√ 

_
 ​H​ i​​ ​ ​r​ ij​​ ​​ i​​ + ​ϵ​ j​​​, where N is sample size, Hi 

indicates heterozygosity of ith SNP, rij indicates allelic correlation 
between ith and jth SNPs, and ​​ϵ​ j​​ ∼ N(0, ​​0​ 2​)​ is the residual variance. 
Furthermore, the three parameters, ​​​ 1​​, ​​​ 2 ​, and ​​0​ 2​​, are fitted by di-
rect maximization of the likelihood function. Fitting the univariate 
MiXeR model does not depend on the sign of zj, allowing us to cal-
culate ∣zj∣ from MOSTest P values. Last, given the estimated pa-
rameters of the model, the power curve S(N) is then calculated from 
the posterior distribution p(j∣zj, N).

Gene set analyses
We carried out gene-based analyses using MAGMA v1.08 with de-
fault settings, which entail the application of an SNP-wide mean 
model and use of the 1000 Genomes phase 3 EUR reference panel to 
the three MOSTest summary statistics. Gene set analyses were car-
ried out by applying MAGMA to the gene-level output, restricting 
the sets under investigation to those that are part of the Gene Ontol-
ogy biological processes subset (n = 7522), as listed in the Molecular 
Signatures Database (c5.bp.v7.1).

Regarding the results from the gene-based analyses, in Fig. 2, we 
note that there is a horizontal line visible at –P = 5 × 10−10, caused 
by many genes having this exact P value. This is due to MAGMA 
switching to permutation when its numerical integration approach 
fails. MAGMA uses 1 × 10−9 permutations, so when the observed is 
more extreme than this, this is the resulting P value.

Gene expression analyses
We made use of gene expression data derived from brain tissue from 
56 clinically unremarkable donors, ranging in age from 5 weeks post 
conception to 82 years (36). We took the data as preprocessed in 
(36), selecting for each gene the probe with the highest differential 
stability, n = 16,660. Given the relatively high homogeneity of ex-
pression patterns across cortical brain samples (51), we subsequently 
averaged over 13 cortical regions, within donor, and normalized the 

https://fuma.ctglab.nl/
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expression values, within probe, across donors, to a range between 0 
(lowest observed value) and 100 (highest observed value). As a check, 
we reran these analyses while restricting to samples from the indi-
vidual cortical lobes. For each of the lobes, we observed expression 
patterns that were highly similar to those reported in the main anal-
yses, with the gene sets showing high prenatal expression that dropped 
off at birth. Plotting of the mean expression over time per gene set was 
done with ggplot2 in R v4.0.3., with geom_smooth(method=”gam”) 
using default settings.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abj9446

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
	 1.	 D. C. Van Essen, A tension-based theory of morphogenesis and compact wiring 

in the central nervous system. Nature 385, 313–318 (1997).
	 2.	 G. F. Striedter, S. Srinivasan, E. S. Monuki, Cortical folding: When, where, how, and why? 

Annu. Rev. Neurosci. 38, 291–307 (2015).
	 3.	 L. Ronan, N. Voets, C. Rua, A. Alexander-Bloch, M. Hough, C. Mackay, T. J. Crow, A. James, 

J. N. Giedd, P. C. Fletcher, Differential tangential expansion as a mechanism for cortical 
gyrification. Cereb. Cortex 24, 2219–2228 (2014).

	 4.	 P. Gautam, K. J. Anstey, W. Wen, P. S. Sachdev, N. Cherbuin, Cortical gyrification and its 
relationships with cortical volume, cortical thickness, and cognitive performance 
in healthy mid-life adults. Behav. Brain Res. 287, 331–339 (2015).

	 5.	 M. E. Ross, C. A. Walsh, Human brain malformations and their lessons for neuronal 
migration. Annu. Rev. Neurosci. 24, 1041–1070 (2001).

	 6.	 J. Penttilä, M.-L. Paillère-Martinot, J.-L. Martinot, D. Ringuenet, M. Wessa, J. Houenou, 
T. Gallarda, F. Bellivier, A. Galinowski, P. Bruguière, F. Pinabel, M. Leboyer, J.-P. Olié, 
E. Duchesnay, E. Artiges, J.-F. Mangin, A. Cachia, Cortical folding in patients with bipolar 
disorder or unipolar depression. J. Psychiat. Neurosci. JPN 34, 127–135 (2009).

	 7.	 A. Cachia, M.-L. Paillère-Martinot, A. Galinowski, D. Januel, R. de Beaurepaire, F. Bellivier, 
E. Artiges, J. Andoh, D. Bartrés-Faz, E. Duchesnay, D. Rivière, M. Plaze, J.-F. Mangin, 
J.-L. Martinot, Cortical folding abnormalities in schizophrenia patients with resistant 
auditory hallucinations. NeuroImage 39, 927–935 (2008).

	 8.	 C. W. Nordahl, D. Dierker, I. Mostafavi, C. M. Schumann, S. M. Rivera, D. G. Amaral, 
D. C. Van Essen, Cortical folding abnormalities in autism revealed by surface-based 
morphometry. J. Neurosci. 27, 11725–11735 (2007).

	 9.	 J. B. Pereira, N. Ibarretxe-Bilbao, M. Marti, Y. Compta, C. Junqué, N. Bargallo, E. Tolosa, 
Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based 
morphometry, cortical folding, and cortical thickness. Hum. Brain Mapp. 33, 2521–2534 
(2012).

	 10.	 B. Fischl, M. I. Sereno, A. M. Dale, Cortical surface-based analysis: II: Inflation, flattening, 
and a surface-based coordinate system. NeuroImage 9, 195–207 (1999).

	 11.	 F. Pizzagalli, G. Auzias, Q. Yang, S. R. Mathias, J. Faskowitz, J. D. Boyd, A. Amini, D. Rivière, 
K. L. McMahon, G. I. de Zubicaray, N. G. Martin, J.-F. Mangin, D. C. Glahn, J. Blangero, 
M. J. Wright, P. M. Thompson, P. Kochunov, N. Jahanshad, The reliability and heritability 
of cortical folds and their genetic correlations across hemispheres. Commun. Biol. 3, 510 
(2020).

	 12.	 C. R. Madan, Robust estimation of sulcal morphology. Brain Informatics 6, 5 (2019).
	 13.	 G. Yang, J. Bozek, M. Han, J. Gao, Constructing and evaluating a cortical surface atlas 

and analyzing cortical sex differences in young Chinese adults. Hum. Brain Mapp. 41, 
2495–2513 (2020).

	 14.	 K. Jin, T. Zhang, M. Shaw, P. Sachdev, N. Cherbuin, Relationship between sulcal 
characteristics and brain aging. Front. Aging Neurosci. 10, 339 (2018).

	 15.	 C. M. Díaz-Caneja, C. Alloza, P. M. Gordaliza, A. Fernández-Pena, L. de Hoyos, J. Santonja, 
E. E. L. Buimer, N. E. M. van Haren, W. Cahn, C. Arango, R. S. Kahn, H. E. Hulshoff Pol, 
H. G. Schnack, J. Janssen, Sex differences in lifespan trajectories and variability of human 
sulcal and gyral morphology. Cereb. Cortex 31, 5107–5120 (2021).

	 16.	 J. Dubois, M. Benders, C. Borradori-Tolsa, A. Cachia, F. Lazeyras, R. Ha-Vinh Leuchter, 
S. V. Sizonenko, S. K. Warfield, J. F. Mangin, P. S. Hüppi, Primary cortical folding 
in the human newborn: An early marker of later functional development. Brain 131, 
2028–2041 (2008).

	 17.	 C. Garel, E. Chantrel, H. Brisse, M. Elmaleh, D. Luton, J.-F. Oury, G. Sebag, M. Hassan,  
Fetal cerebral cortex: Normal gestational landmarks identified using prenatal MR 
imaging. Am. J. Neuroradiol. 22, 184–189 (2001).

	 18.	 G. Lohmann, D. Y. Von Cramon, H. Steinmetz, Sulcal variability of twins. Cereb. Cortex 9, 
754–763 (1999).

	 19.	 D. R. McKay, P. Kochunov, M. D. Cykowski, J. W. Kent, A. R. Laird, J. L. Lancaster, 
J. Blangero, D. C. Glahn, P. T. Fox, Sulcal depth-position profile is a genetically mediated 
neuroscientific trait: Description and characterization in the central sulcus. J. Neurosci. 33, 
15618–15625 (2013).

	 20.	 J. S. Kippenhan, R. K. Olsen, C. B. Mervis, C. A. Morris, P. Kohn, A. Meyer-Lindenberg, 
K. F. Berman, Genetic contributions to human gyrification: Sulcal morphometry 
in williams syndrome. J. Neurosci. 25, 840–7846 (2005).

	 21.	 C. C. Fan, A. J. Schork, T. T. Brown, B. E. Spencer, N. Akshoomoff, C.-H. Chen, 
J. M. Kuperman, D. J. J. Hagler, V. M. Steen, S. Le Hellard, A. K. Håberg, T. Espeseth, 
O. A. Andreassen, A. M. Dale, T. L. Jernigan, E. Halgren; Pediatric Imaging, Neurocognition 
and Genetics Study, Alzheimer’s Disease Neuroimaging Initiative, Williams syndrome 
neuroanatomical score associates with GTF2IRD1 in large-scale magnetic resonance 
imaging cohorts: A proof of concept for multivariate endophenotypes. Transl. Psychiatry 
8, 114 (2018).

	 22.	 C. C. Fan, T. T. Brown, H. Bartsch, J. M. Kuperman, D. J. J. Hagler, A. Schork, Y. Searcy, 
U. Bellugi, E. Halgren, A. M. Dale, Williams syndrome-specific neuroanatomical profile 
and its associations with behavioral features. NeuroImage Clin. 15, 343–347 (2017).

	 23.	 S. Van Der Sluis, M. Verhage, D. Posthuma, C. V. Dolan, Phenotypic complexity, 
measurement bias, and poor phenotypic resolution contribute to the missing heritability 
problem in genetic association studies. PLOS ONE 5, e13929 (2010).

	 24.	 D. van der Meer, O. Frei, T. Kaufmann, A. A. Shadrin, A. Devor, O. B. Smeland, 
W. K. Thompson, C. C. Fan, D. Holland, L. T. Westlye, O. A. Andreassen, A. M. Dale, 
Understanding the genetic determinants of the brain with MOSTest. Nat. Commun. 11, 
3512 (2020).

	 25.	 J. M. Sánchez, J. J. A. de Jong, G. S. Drenthen, M. Beran, W. H. Backes, C. D. A. Stehouwer, 
M. T. Schram, D. E. J. Linden, J. F. A. Jansen, J. Monereo-Sánchez, J. J. A. de Jong, 
G. S. Drenthen, M. Beran, W. H. Backes, C. D. A. Stehouwer, M. T. Schram, D. E. J. Linden, 
J. F. A. Jansen, Quality control strategies for brain MRI segmentation and parcellation: 
Practical approaches and recommendations-insights from The Maastricht Study. 
NeuroImage 237, 118174 (2021).

	 26.	 D. Holland, O. Frei, R. Desikan, C.-C. Fan, A. A. Shadrin, O. B. Smeland, V. S. Sundar, 
P. Thompson, O. A. Andreassen, A. M. Dale, Beyond SNP heritability: Polygenicity 
and discoverability of phenotypes estimated with a univariate Gaussian mixture model. 
PLOS Genet. 16, e1008612 (2020).

	 27.	 O. Frei, D. Holland, O. B. Smeland, A. A. Shadrin, C. C. Fan, S. Maeland, K. S. O’Connell, 
Y. Wang, S. Djurovic, W. K. Thompson, O. A. Andreassen, A. M. Dale, Bivariate causal 
mixture model quantifies polygenic overlap between complex traits beyond genetic 
correlation. Nat. Commun. 10, 2417 (2019).

	 28.	 B. K. Bulik-Sullivan, P.-R. Loh, H. K. Finucane, S. Ripke, J. Yang, N. Patterson, M. J. Daly, 
A. L. Price, B. M. Neale, LD score regression distinguishes confounding from polygenicity 
in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

	 29.	 C. A. de Leeuw, J. M. Mooij, T. Heskes, D. Posthuma, MAGMA: Generalized gene-set 
analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

	 30.	 C. Conrad, C. Vianna, M. Freeman, P. Davies, A polymorphic gene nested within an intron 
of the tau gene: Implications for Alzheimer’s disease. Proc. Natl. Acad. Sci. 99, 7751–7756 
(2002).

	 31.	 G. López-Bendito, N. Flames, L. Ma, C. Fouquet, T. Di Meglio, A. Chedotal, M. Tessier-Lavigne, 
O. Marín, Robo1 and Robo2 cooperate to control the guidance of major axonal tracts 
in the mammalian forebrain. J. Neurosci. 27, 3395–3407 (2007).

	 32.	 T. Maes, A. Barceló, C. Buesa, Neuron navigator: A human gene family with homology 
to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics 80, 21–30 (2002).

	 33.	 N. K. Hanchate, P. Giacobini, P. Lhuillier, J. Parkash, C. Espy, C. Fouveaut, C. Leroy, S. Baron, 
C. Campagne, C. Vanacker, F. Collier, C. Cruaud, V. Meyer, A. García-Piñero, D. Dewailly, 
C. Cortet-Rudelli, K. Gersak, C. Metz, G. Chabrier, M. Pugeat, J. Young, J.-P. Hardelin, 
V. Prevot, C. Dodé, SEMA3A, a gene involved in axonal pathfinding, is mutated in patients 
with Kallmann syndrome. PLOS Genet. 8, e1002896 (2012).

	 34.	 T. Lilja, N. Heldring, O. Hermanson, Like a rolling histone: Epigenetic regulation of neural 
stem cells and brain development by factors controlling histone acetylation 
and methylation. Biochim. Biophys. Acta, Gen. Subj. 1830, 2354–2360 (2013).

	 35.	 I. Reillo, C. de Juan Romero, M. Á. García-Cabezas, V. Borrell, A role for intermediate radial 
glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 
1674–1694 (2011).

	 36.	 H. J. Kang, Y. I. Kawasawa, F. Cheng, Y. Zhu, X. Xu, M. Li, A. M. M. Sousa, M. Pletikos, 
K. A. Meyer, G. Sedmak, T. Guennel, Y. Shin, M. B. Johnson, Ž. Krsnik, S. Mayer, 
S. Fertuzinhos, S. Umlauf, S. N. Lisgo, A. Vortmeyer, D. R. Weinberger, S. Mane, T. M. Hyde, 
A. Huttner, M. Reimers, J. E. Kleinman, N. Šestan, Spatio-temporal transcriptome 
of the human brain. Nature 478, 483–489 (2011).

	 37.	 V. Fernández, C. Llinares-Benadero, V. Borrell, Cerebral cortex expansion and folding: 
What have we learned? EMBO J. 35, 1021–1044 (2016).

https://science.org/doi/10.1126/sciadv.abj9446
https://science.org/doi/10.1126/sciadv.abj9446
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.abj9446


van der Meer et al., Sci. Adv. 7, eabj9446 (2021)     15 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 9

	 38.	 C. Llinares-Benadero, V. Borrell, Deconstructing cortical folding: Genetic, cellular 
and mechanical determinants. Nat. Rev. Neurosci. 20, 161–176 (2019).

	 39.	 I. H. Smart, G. M. McSherry, Gyrus formation in the cerebral cortex of the ferret. 
II. Description of the internal histological changes. J. Anat. 147, 27 (1986).

	 40.	 R. J. Loughnan, A. A. Shadrin, O. Frei, D. van der Meer, W. Zhao, C. E. Palmer, 
W. E. Thompson, C. Makowski, T. Jernigan, O. Andreassen, C. C. Fan, A. Dale, 
Generalization of cortical MOSTest genome-wide associations within and across  
samples. bioRxiv, 2021.04.23.441215 (2021).

	 41.	 D. van der Meer, O. Frei, T. Kaufmann, C.-H. Chen, W. K. Thompson, K. S. O’Connell, 
J. Monereo Sánchez, D. E. J. Linden, L. T. Westlye, A. M. Dale, O. A. Andreassen, 
Quantifying the polygenic architecture of the human cerebral cortex: Extensive genetic 
overlap between cortical thickness and surface area. Cereb. Cortex 30, 5597–5603 (2020).

	 42.	 J. H. Lui, D. V. Hansen, A. R. Kriegstein, Development and evolution of the human 
neocortex. Cell 146, 18–36 (2011).

	 43.	 C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, 
J. Green, M. Landray, UK Biobank: An open access resource for identifying the causes 
of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 
(2015).

	 44.	 A. F. G. Rosen, D. R. Roalf, K. Ruparel, J. Blake, K. Seelaus, L. P. Villa, R. Ciric, P. A. Cook, 
C. Davatzikos, M. A. Elliott, A. G. de La Garza, E. D. Gennatas, M. Quarmley, J. E. Schmitt, 
R. T. Shinohara, M. D. Tisdall, R. C. Craddock, R. E. Gur, R. C. Gur, T. D. Satterthwaite, 
Quantitative assessment of structural image quality. NeuroImage 169, 407–418 (2018).

	 45.	 K. L. Miller, F. Alfaro-Almagro, N. K. Bangerter, D. L. Thomas, E. Yacoub, J. Xu, A. J. Bartsch, 
S. Jbabdi, S. N. Sotiropoulos, J. L. R. Andersson, L. Griffanti, G. Douaud, T. W. Okell, 
P. Weale, I. Dragonu, S. Garratt, S. Hudson, R. Collins, M. Jenkinson, P. M. Matthews, 
S. M. Smith, Multimodal population brain imaging in the UK Biobank prospective 
epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

	 46.	 B. J. Casey, T. Cannonier, M. I. Conley, A. O. Cohen, D. M. Barch, M. M. Heitzeg, M. E. Soules, 
T. Teslovich, D. V. Dellarco, H. Garavan, C. A. Orr, T. D. Wager, M. T. Banich, N. K. Speer, 
M. T. Sutherland, M. C. Riedel, A. S. Dick, J. M. Bjork, K. M. Thomas, B. Chaarani, M. H. Mejia, 
D. J. J. Hagler, M. D. Cornejo, C. S. Sicat, M. P. Harms, N. U. F. Dosenbach, M. Rosenberg, 
E. Earl, H. Bartsch, R. Watts, J. R. Polimeni, J. M. Kuperman, D. A. Fair, A. M. Dale; ABCD 
Imaging Acquisition Workgroup, The Adolescent Brain Cognitive Development (ABCD) 
study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

	 47.	 T. M. Beasley, S. Erickson, D. B. Allison, Rank-based inverse normal transformations are 
increasingly used, but are they merited? Behav. Genet. 39, 580–595 (2009).

	 48.	 C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D. Vukcevic, 
O. Delaneau, J. O’Connell, A. Cortes, S. Welsh, A. Young, M. Effingham, G. McVean, 
S. Leslie, N. Allen, P. Donnelly, J. Marchini, The UK Biobank resource with deep 
phenotyping and genomic data. Nature 562, 203–209 (2018).

	 49.	 A. A. Shadrin, T. Kaufmann, D. van der Meer, C. E. Palmer, C. Makowski, R. Loughnan, 
T. L. Jernigan, T. M. Seibert, D. J. Hagler, O. B. Smeland, Y. Chu, A. Lin, W. Cheng, 
G. Hindley, W. K. Thompson, C. C. Fan, D. Holland, L. T. Westlye, O. Frei, O. A. Andreassen, 
A. M. Dale, Multivariate genome-wide association study identifies 780 unique genetic 
loci associated with cortical morphology. bioRxiv, 2020.10.22.350298 (2021).

	 50.	 K. Watanabe, E. Taskesen, A. Bochoven, D. Posthuma, Functional mapping 
and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

	 51.	 M. Hawrylycz, J. A. Miller, V. Menon, D. Feng, T. Dolbeare, A. L. Guillozet-Bongaarts, 
A. G. Jegga, B. J. Aronow, C.-K. Lee, A. Bernard, M. F. Glasser, D. L. Dierker, J. Menche, 
A. Szafer, F. Collman, P. Grange, K. A. Berman, S. Mihalas, Z. Yao, L. Stewart, A.-L. Barabási, 
J. Schulkin, J. Phillips, L. Ng, C. Dang, D. R. Haynor, A. Jones, D. C. Van Essen, C. Koch, 
E. Lein, Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 
1832–1844 (2015).

	 52.	 Y. Alemán-Gómez, J. Janssen, H. Schnack, E. Balaban, L. Pina-Camacho, F. Alfaro-Almagro, 
J. Castro-Fornieles, S. Otero, I. Baeza, D. Moreno, N. Bargalló, M. Parellada, C. Arango, 
M. Desco, The human cerebral cortex flattens during adolescence. J. Neurosci. 33, 
15004–15010 (2013).

	 53.	 P. F. O’Reilly, C. J. Hoggart, Y. Pomyen, F. C. F. Calboli, P. Elliott, M.-R. Jarvelin, L. J. M. Coin, 
MultiPhen: Joint model of multiple phenotypes can increase discovery in GWAS.  
PLOS ONE 7, e34861 (2012).

	 54.	 S. Van der Sluis, D. Posthuma, C. V. Dolan, TATES: Efficient multivariate genotype-
phenotype analysis for genome-wide association studies. PLOS Genet. 9, e1003235 
(2013).

	 55.	 C. J. Willer, Y. Li, G. R. Abecasis, METAL: Fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics 26, 2190–2191 (2010).

	 56.	 D. P. Wightman, I. E. Jansen, J. E. Savage, A. A. Shadrin, S. Bahrami, A. Rongve, S. Børte, 
B. S. Winsvold, O. K. Drange, A. E. Martinsen, A. H. Skogholt, C. Willer, G. Bråthen, I. Bosnes, 
J. B. Nielsen, L. Fritsche, L. F. Thomas, L. M. Pedersen, M. E. Gabrielsen, M. B. Johnsen, 
T. W. Meisingset, W. Zhou, P. Proitsi, A. Hodges, R. Dobson, L. Velayudhan; 23andMe 
Research Team, J. M. Sealock, L. K. Davis, N. L. Pedersen, C. A. Reynolds, I. K. Karlsson, 
S. Magnusson, H. Stefansson, S. Thordardottir, P. V. Jonsson, J. Snaedal, A. Zettergren, 

I. Skoog, S. Kern, M. Waern, H. Zetterberg, K. Blennow, E. Stordal, K. Hveem, J.-A. Zwart, 
L. Athanasiu, I. Saltvedt, S. B. Sando, I. Ulstein, S. Djurovic, T. Fladby, D. Aarsland, 
G. Selbæk, S. Ripke, K. Stefansson, O. A. Andreassen, D. Posthuma, Largest GWAS 
(N=1,126,563) of Alzheimer’s disease implicates microglia and immune cells.  
medRxiv, 2020.11.20.20235275 (2020).

	 57.	 N. Mullins, A. J. Forstner, K. S. O’Connell, B. Coombes, J. R. I. Coleman, Z. Qiao, T. D. Als, 
T. B. Bigdeli, S. Børte, J. Bryois, A. W. Charney, O. K. Drange, M. J. Gandal, S. P. Hagenaars, 
M. Ikeda, N. Kamitaki, M. Kim, K. Krebs, G. Panagiotaropoulou, B. M. Schilder, 
L. G. Sloofman, S. Steinberg, V. Trubetskoy, B. S. Winsvold, H.-H. Won, L. Abramova, 
K. Adorjan, E. Agerbo, M. A. Eissa, D. Albani, N. Alliey-Rodriguez, A. Anjorin, V. Antilla, 
A. Antoniou, S. Awasthi, J. H. Baek, M. Bækvad-Hansen, N. Bass, M. Bauer, E. C. Beins, 
S. E. Bergen, A. Birner, C. B. Pedersen, E. Bøen, M. P. Boks, R. Bosch, M. Brum, 
B. M. Brumpton, N. Brunkhorst-Kanaan, M. Budde, J. Bybjerg-Grauholm, W. Byerley, 
M. Cairns, M. Casas, P. Cervantes, T.-K. Clarke, C. Cruceanu, A. Cuellar-Barboza, 
J. Cunningham, D. Curtis, P. M. Czerski, A. M. Dale, N. Dalkner, F. S. David, F. Degenhardt, 
S. Djurovic, A. L. Dobbyn, A. Douzenis, T. Elvsåshagen, V. Escott-Price, I. N. Ferrier, 
A. Fiorentino, T. M. Foroud, L. Forty, J. Frank, O. Frei, N. B. Freimer, L. Frisén, K. Gade, 
J. Garnham, J. Gelernter, M. G. Pedersen, I. R. Gizer, S. D. Gordon, K. Gordon-Smith, 
T. A. Greenwood, J. Grove, J. Guzman-Parra, K. Ha, M. Haraldsson, M. Hautzinger, 
U. Heilbronner, D. Hellgren, S. Herms, P. Hoffmann, P. A. Holmans, L. Huckins, S. Jamain, 
J. S. Johnson, J. L. Kalman, Y. Kamatani, J. L. Kennedy, S. Kittel-Schneider, J. A. Knowles, 
M. Kogevinas, M. Koromina, T. M. Kranz, H. R. Kranzler, M. Kubo, R. Kupka, S. A. Kushner, 
C. Lavebratt, J. Lawrence, M. Leber, H.-J. Lee, P. H. Lee, S. E. Levy, C. Lewis, C. Liao, 
S. Lucae, M. Lundberg, D. J. Mac Intyre, S. H. Magnusson, W. Maier, A. Maihofer, 
D. Malaspina, E. Maratou, L. Martinsson, M. Mattheisen, S. A. McCarroll, N. W. McGregor, 
P. M. Guffin, J. D. McKay, H. Medeiros, S. E. Medland, V. Millischer, G. W. Montgomery, 
J. L. Moran, D. W. Morris, T. W. Mühleisen, N. O’Brien, C. O’Donovan, L. M. Olde Loohuis, 
L. Oruc, S. Papiol, A. F. Pardiñas, A. Perry, A. Pfennig, E. Porichi, J. B. Potash, D. Quested, 
T. Raj, M. H. Rapaport, J. R. De Paulo, E. J. Regeer, J. P. Rice, F. Rivas, M. Rivera, J. Roth, 
P. Roussos, D. M. Ruderfer, C. Sánchez-Mora, E. C. Schulte, F. Senner, S. Sharp, 
P. D. Shilling, E. Sigurdsson, L. Sirignano, C. Slaney, O. B. Smeland, D. J. Smith, J. L. Sobell, 
C. S. Hansen, M. S. Artigas, A. T. Spijker, D. J. Stein, J. S. Strauss, B. Świątkowska, C. Terao, 
T. E. Thorgeirsson, C. Toma, P. Tooney, E.-E. Tsermpini, M. P. Vawter, H. Vedder, 
J. T. R. Walters, S. H. Witt, S. Xi, W. Xu, J. M. K. Yang, A. H. Young, H. Young, P. P. Zandi, 
H. Zhou, L. Zillich; HUNT All-In Psychiatry, R. Adolfsson, I. Agartz, M. Alda, L. Alfredsson, 
G. Babadjanova, L. Backlund, B. T. Baune, F. Bellivier, S. Bengesser, W. H. Berrettini, 
D. H. R. Blackwood, M. Boehnke, A. D. Børglum, G. Breen, V. J. Carr, S. Catts, A. Corvin, 
N. Craddock, U. Dannlowski, D. Dikeos, T. Esko, B. Etain, P. Ferentinos, M. Frye, 
J. M. Fullerton, M. Gawlik, E. S. Gershon, F. S. Goes, M. J. Green, M. Grigoroiu-Serbanescu, 
J. Hauser, F. Henskens, J. Hillert, K. S. Hong, D. M. Hougaard, C. M. Hultman, K. Hveem, 
N. Iwata, A. V. Jablensky, I. Jones, L. A. Jones, R. S. Kahn, J. R. Kelsoe, G. Kirov, M. Landén, 
M. Leboyer, C. M. Lewis, Q. S. Li, J. Lissowska, C. Lochner, C. Loughland, N. G. Martin, 
C. A. Mathews, F. Mayoral, S. L. McElroy, A. M. McIntosh, F. J. McMahon, I. Melle, P. Michie, 
L. Milani, P. B. Mitchell, G. Morken, O. Mors, P. B. Mortensen, B. Mowry, B. Müller-Myhsok, 
R. M. Myers, B. M. Neale, C. M. Nievergelt, M. Nordentoft, M. M. Nöthen, M. C. O’Donovan, 
K. J. Oedegaard, T. Olsson, M. J. Owen, S. A. Paciga, C. Pantelis, C. Pato, M. T. Pato, 
G. P. Patrinos, R. H. Perlis, D. Posthuma, J. A. Ramos-Quiroga, A. Reif, E. Z. Reininghaus, 
M. Ribasés, M. Rietschel, S. Ripke, G. A. Rouleau, T. Saito, U. Schall, M. Schalling, 
P. R. Schofield, T. G. Schulze, L. J. Scott, R. J. Scott, A. Serretti, C. S. Weickert, J. W. Smoller, 
H. Stefansson, K. Stefansson, E. Stordal, F. Streit, P. F. Sullivan, G. Turecki, A. E. Vaaler, 
E. Vieta, J. B. Vincent, I. D. Waldman, T. W. Weickert, T. Werge, N. R. Wray, J.-A. Zwart, 
J. M. Biernacka, J. I. Nurnberger, S. Cichon, H. J. Edenberg, E. A. Stahl, A. M. Quillin, 
A. D. Florio, R. A. Ophoff, O. A. Andreassen, Genome-wide association study of more than 
40,000 bipolar disorder cases provides new insights into the underlying biology.  
Nat. Genet. 53, 817–829 (2021).

	 58.	 D. M. Howard, M. J. Adams, M. Shirali, T.-K. Clarke, R. E. Marioni, G. Davies, J. R. I. Coleman, 
C. Alloza, X. Shen, M. C. Barbu, E. M. Wigmore, J. Gibson; 23andMe Research Team, 
S. P. Hagenaars, C. M. Lewis, J. Ward, D. J. Smith, P. F. Sullivan, C. S. Haley, G. Breen, 
I. J. Deary, A. M. McIntosh, Genome-wide association study of depression phenotypes 
in UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1–10 
(2018).

	 59.	 Schizophrenia Working Group of the Psychiatric Genomics Consortium, Biological 
insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

	 60.	 J. E. Savage, P. R. Jansen, S. Stringer, K. Watanabe, J. Bryois, C. A. de Leeuw, M. Nagel, 
S. Awasthi, P. B. Barr, J. R. I. Coleman, K. L. Grasby, A. R. Hammerschlag, J. A. Kaminski, 
R. Karlsson, E. Krapohl, M. Lam, M. Nygaard, C. A. Reynolds, J. W. Trampush, H. Young, 
D. Zabaneh, S. Hägg, N. K. Hansell, I. K. Karlsson, S. Linnarsson, G. W. Montgomery, 
A. B. Muñoz-Manchado, E. B. Quinlan, G. Schumann, N. G. Skene, B. T. Webb, T. White, 
D. E. Arking, D. Avramopoulos, R. M. Bilder, P. Bitsios, K. E. Burdick, T. D. Cannon, 
O. Chiba-Falek, A. Christoforou, E. T. Cirulli, E. Congdon, A. Corvin, G. Davies, I. J. Deary, 
P. DeRosse, D. Dickinson, S. Djurovic, G. Donohoe, E. D. Conley, J. G. Eriksson, T. Espeseth, 



van der Meer et al., Sci. Adv. 7, eabj9446 (2021)     15 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 9

N. A. Freimer, S. Giakoumaki, I. Giegling, M. Gill, D. C. Glahn, A. R. Hariri, A. Hatzimanolis, 
M. C. Keller, E. Knowles, D. Koltai, B. Konte, J. Lahti, S. Le Hellard, T. Lencz, D. C. Liewald, 
E. London, A. J. Lundervold, A. K. Malhotra, I. Melle, D. Morris, A. C. Need, W. Ollier, 
A. Palotie, A. Payton, N. Pendleton, R. A. Poldrack, K. Räikkönen, I. Reinvang, P. Roussos, 
D. Rujescu, F. W. Sabb, M. A. Scult, O. B. Smeland, N. Smyrnis, J. M. Starr, V. M. Steen, 
N. C. Stefanis, R. E. Straub, K. Sundet, H. Tiemeier, A. N. Voineskos, D. R. Weinberger, 
E. Widen, J. Yu, G. Abecasis, O. A. Andreassen, G. Breen, L. Christiansen, B. Debrabant, 
D. M. Dick, A. Heinz, J. Hjerling-Leffler, M. A. Ikram, K. S. Kendler, N. G. Martin, 
S. E. Medland, N. L. Pedersen, R. Plomin, T. J. C. Polderman, S. Ripke, S. van der Sluis, 
P. F. Sullivan, S. I. Vrieze, M. J. Wright, D. Posthuma, Genome-wide association 
meta-analysis in 269,867 individuals identifies new genetic and functional links 
to intelligence. Nat. Genet. 50, 912–919 (2018).

	 61.	 K. L. Grasby, N. Jahanshad, J. N. Painter, L. Colodro-Conde, J. Bralten, D. P. Hibar, P. A. Lind, 
F. Pizzagalli, C. R. K. Ching, M. A. B. McMahon, N. Shatokhina, L. C. P. Zsembik, 
S. I. Thomopoulos, A. H. Zhu, L. T. Strike, I. Agartz, S. Alhusaini, M. A. A. Almeida, D. Alnæs, 
I. K. Amlien, M. Andersson, T. Ard, N. J. Armstrong, A. Ashley-Koch, J. R. Atkins, M. Bernard, 
R. M. Brouwer, E. E. L. Buimer, R. Bülow, C. Bürger, D. M. Cannon, M. Chakravarty, Q. Chen, 
J. W. Cheung, B. Couvy-Duchesne, A. M. Dale, S. Dalvie, T. K. de Araujo, G. I. de Zubicaray, 
S. M. C. de Zwarte, A. den Braber, N. T. Doan, K. Dohm, S. Ehrlich, H.-R. Engelbrecht, S. Erk, 
C. C. Fan, I. O. Fedko, S. F. Foley, J. M. Ford, M. Fukunaga, M. E. Garrett, T. Ge, S. Giddaluru, 
A. L. Goldman, M. J. Green, N. A. Groenewold, D. Grotegerd, T. P. Gurholt, B. A. Gutman, 
N. K. Hansell, M. A. Harris, M. B. Harrison, C. C. Haswell, M. Hauser, S. Herms, D. J. Heslenfeld, 
N. F. Ho, D. Hoehn, P. Hoffmann, L. Holleran, M. Hoogman, J.-J. Hottenga, M. Ikeda, 
D. Janowitz, I. E. Jansen, T. Jia, C. Jockwitz, R. Kanai, S. Karama, D. Kasperaviciute, 
T. Kaufmann, S. Kelly, M. Kikuchi, M. Klein, M. Knapp, A. R. Knodt, B. Krämer, M. Lam, 
T. M. Lancaster, P. H. Lee, T. A. Lett, L. B. Lewis, I. Lopes-Cendes, M. Luciano, F. Macciardi, 
A. F. Marquand, S. R. Mathias, T. R. Melzer, Y. Milaneschi, N. Mirza-Schreiber, J. C. V. Moreira, 
T. W. Mühleisen, B. Müller-Myhsok, P. Najt, S. Nakahara, K. Nho, L. M. O. Loohuis, 
D. P. Orfanos, J. F. Pearson, T. L. Pitcher, B. Pütz, Y. Quidé, A. Ragothaman, F. M. Rashid, 
W. R. Reay, R. Redlich, C. S. Reinbold, J. Repple, G. Richard, B. C. Riedel, S. L. Risacher, 
C. S. Rocha, N. R. Mota, L. Salminen, A. Saremi, A. J. Saykin, F. Schlag, L. Schmaal, 
P. R. Schofield, R. Secolin, C. Y. Shapland, L. Shen, J. Shin, E. Shumskaya, I. E. Sønderby, 
E. Sprooten, K. E. Tansey, A. Teumer, A. Thalamuthu, D. Tordesillas-Gutiérrez, J. A. Turner, 
A. Uhlmann, C. L. Vallerga, D. van der Meer, M. M. J. van Donkelaar, L. van Eijk, 
T. G. M. van Erp, N. E. M. van Haren, D. van Rooij, M.-J. van Tol, J. H. Veldink, E. Verhoef, 
E. Walton, M. Wang, Y. Wang, J. M. Wardlaw, W. Wen, L. T. Westlye, C. D. Whelan, 
S. H. Witt, K. Wittfeld, C. Wolf, T. Wolfers, J. Q. Wu, C. L. Yasuda, D. Zaremba, Z. Zhang, 
M. P. Zwiers, E. Artiges, A. A. Assareh, R. Ayesa-Arriola, A. Belger, C. L. Brandt, G. G. Brown, 
S. Cichon, J. E. Curran, G. E. Davies, F. Degenhardt, M. F. Dennis, B. Dietsche, S. Djurovic, 
C. P. Doherty, R. Espiritu, D. Garijo, Y. Gil, P. A. Gowland, R. C. Green, A. N. Häusler, 
W. Heindel, B.-C. Ho, W. U. Hoffmann, F. Holsboer, G. Homuth, N. Hosten, C. R. Jack, 
M. Jang, A. Jansen, N. A. Kimbrel, K. Kolskår, S. Koops, A. Krug, K. O. Lim, J. J. Luykx, 
D. H. Mathalon, K. A. Mather, V. S. Mattay, S. Matthews, J. M. Van Son, S. C. McEwen, 
I. Melle, D. W. Morris, B. A. Mueller, M. Nauck, J. E. Nordvik, M. M. Nöthen, D. S. O’Leary, 
N. Opel, M.-L. P. Martinot, G. B. Pike, A. Preda, E. B. Quinlan, P. E. Rasser, V. Ratnakar, 
S. Reppermund, V. M. Steen, P. A. Tooney, F. R. Torres, D. J. Veltman, J. T. Voyvodic, 
R. Whelan, T. White, H. Yamamori, H. H. H. Adams, J. C. Bis, S. Debette, C. Decarli, 
M. Fornage, V. Gudnason, E. Hofer, M. A. Ikram, L. Launer, W. T. Longstreth, O. L. Lopez, 
B. Mazoyer, T. H. Mosley, G. V. Roshchupkin, C. L. Satizabal, R. Schmidt, S. Seshadri, 
Q. Yang, M. K. M. Alvim, D. Ames, T. J. Anderson, O. A. Andreassen, A. Arias-Vasquez, 
M. E. Bastin, B. T. Baune, J. C. Beckham, J. Blangero, D. I. Boomsma, H. Brodaty, 
H. G. Brunner, R. L. Buckner, J. K. Buitelaar, J. R. Bustillo, W. Cahn, M. J. Cairns, V. Calhoun, 
V. J. Carr, X. Caseras, S. Caspers, G. L. Cavalleri, F. Cendes, A. Corvin, B. Crespo-Facorro, 
J. C. Dalrymple-Alford, U. Dannlowski, E. J. C. de Geus, I. J. Deary, N. Delanty, C. Depondt, 
S. Desrivières, G. Donohoe, T. Espeseth, G. Fernández, S. E. Fisher, H. Flor, A. J. Forstner, 
C. Francks, B. Franke, D. C. Glahn, R. L. Gollub, H. J. Grabe, O. Gruber, A. K. Håberg, 
A. R. Hariri, C. A. Hartman, R. Hashimoto, A. Heinz, F. A. Henskens, M. H. J. Hillegers, 
P. J. Hoekstra, A. J. Holmes, L. E. Hong, W. D. Hopkins, H. E. H. Pol, T. L. Jernigan, 
E. G. Jönsson, R. S. Kahn, M. A. Kennedy, T. T. J. Kircher, P. Kochunov, J. B. J. Kwok, 
S. Le Hellard, C. M. Loughland, N. G. Martin, J.-L. Martinot, C. McDonald, K. L. McMahon, 
A. Meyer-Lindenberg, P. T. Michie, R. A. Morey, B. Mowry, L. Nyberg, J. Oosterlaan, 
R. A. Ophoff, C. Pantelis, T. Paus, Z. Pausova, B. W. J. H. Penninx, T. J. C. Polderman, 
D. Posthuma, M. Rietschel, J. L. Roffman, L. M. Rowland, P. S. Sachdev, P. G. Sämann, 
U. Schall, G. Schumann, R. J. Scott, K. Sim, S. M. Sisodiya, J. W. Smoller, I. E. Sommer, 
B. S. Pourcain, D. J. Stein, A. W. Toga, J. N. Trollor, N. J. A. Van der Wee, D. van’t Ent, 

H. Völzke, H. Walter, B. Weber, D. R. Weinberger, M. J. Wright, J. Zhou, J. L. Stein, 
P. M. Thompson, S. E. Medland; Enhancing NeuroImaging Genetics through Meta-
Analysis Consortium (ENIGMA)—Genetics working group, The genetic architecture 
of the human cerebral cortex. Science 367, eaay6690 (2020).

	 62.	 W. Cheng, O. Frei, D. van der Meer, Y. Wang, K. S. O’Connell, Y. Chu, S. Bahrami, A. A. Shadrin, 
D. Alnæs, G. F. L. Hindley, A. Lin, N. Karadag, C.-C. Fan, L. T. Westlye, T. Kaufmann, 
E. Molden, A. M. Dale, S. Djurovic, O. B. Smeland, O. A. Andreassen, Genetic association 
between schizophrenia and cortical brain surface area and thickness. JAMA Psychiat. 78, 
1020–1030 (2021).

	 63.	 D. van der Meer, A. A. Shadrin, K. O’Connell, F. Bettella, S. Djurovic, T. Wolfers, D. Alnæs, 
I. Agartz, O. B. Smeland, I. Melle, J. M. Sánchez, D. E. J. Linden, A. M. Dale, L. T. Westlye, 
O. A. Andreassen, O. Frei, T. Kaufmann, Improved prediction of schizophrenia by 
leveraging genetic overlap with brain morphology. medRxiv, 2020.08.03.20167510 
(2020).

Acknowledgments: This work was partly performed on the TSD (Tjenester for Sensitive Data) 
facilities, owned by the University of Oslo, operated and developed by the TSD service group 
at the University of Oslo, IT Department (USIT) (tsd-drift@usit.uio.no). Computations were  
also performed on resources provided by UNINETT Sigma2, the National Infrastructure for 
High-Performance Computing and Data Storage in Norway. Data used in the preparation of 
this article were obtained from the ABCD Study (https://abcdstudy.org), held in the NIMH  
Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than  
10,000 children aged 9 to 10 and follow them over 10 years into early adulthood. The ABCD 
Study is supported by the National Institutes of Health and additional federal partners  
under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, 
U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, 
U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, 
U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, 
and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-
partners.html. A listing of participating sites and a complete listing of the study investigators 
can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators 
designed and implemented the study and/or provided data but did not necessarily participate 
in the analysis or writing of this report. This manuscript reflects the views of the authors and 
may not reflect the opinions or views of the NIH or ABCD consortium investigators. The ABCD 
data repository grows and changes over time. The ABCD data used in this report came from 
http://dx.doi.org/10.15154/1519007. Funding: The authors were funded by the Research 
Council of Norway (276082, 213837, 223273, 204966/F20, 229129, 249795/F20, 225989, 
248778, 249795, 298646, and 300767), the South-Eastern Norway Regional Health Authority 
(2013-123, 2014-097, 2015-073, 2016-064, 2017-004, and 2019-101), Stiftelsen Kristian Gerhard 
Jebsen (SKGJ-Med-008), the European Research Council (ERC) under the European Union’s 
Horizon 2020 research and innovation programme (ERC Starting Grant, grant agreement no. 
802998), ERA-Net Cofund through the ERA PerMed project “Implement,” and the National 
Institutes of Health (R01MH100351, R01GM104400, U24DA055330, R01MH111359, and 
U24DA041123; principal investigator: A.M.D.). Author contributions: Conceptualizations: 
D.v.d.M., O.A.A., and A.M.D. Data preprocessing: D.v.d.M., A.A.S., and T.K. Analyses: D.v.d.M. and 
A.A.S., with conceptual input from A.M.D., D.R., J.R., C.d.L., O.A.A., L.T.W., and T.K. Results 
interpretation: All authors. Writing: D.v.d.M. Review and editing: All authors. Competing 
interests: C.d.L. is funded by Hoffmann-La Roche. O.A.A. has received speaker’s honorarium 
from Lundbeck and is a consultant to HealthLytix. A.M.D. is the founder of and holds equity in 
CorTechs Labs Inc. and serves on its Scientific Advisory Board. A.M.D. is also a member of  
the Scientific Advisory Board of Human Longevity Inc. and receives funding through research 
agreements with General Electric Healthcare and Medtronic Inc. The terms of these 
arrangements have been reviewed and approved by UCSD in accordance with its conflict of 
interest policies. A.M.D. is an inventor on a patent related to this work, filed by CorTechs  
Labs Inc. (9 US-7324842B2, filed 22 January 2002, published 29-01-2008). The other authors 
declare that they have no competing interests. Data and materials availability: All data 
needed to evaluate the conclusions in the paper are present in the paper and/or the 
Supplementary Materials. The data incorporated in this work were gathered from the UKB 
under accession number 27412. The code used for the analyses is available via https://github.
com/precimed/mostest (GPLv3 license) and at 10.5281/zenodo.5266328.

Submitted 11 June 2021
Accepted 27 October 2021
Published 15 December 2021
10.1126/sciadv.abj9446

mailto:tsd-drift@usit.uio.no
https://abcdstudy.org
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/consortium_members/
http://dx.doi.org/10.15154/1519007
https://github.com/precimed/most
https://github.com/precimed/most
http://dx.doi.org/10.5281/zenodo.5266328



