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Due to the aging of civil infrastructure and the associated economic impact, there is an 

increasing need to continuously monitor their structural and non-structural components for system 

life-cycle management, including maintenance prioritization. Many times, this monitoring process 

involves different types of data sources collected at different time scales and resolutions, such as 

abstracted rating data from human inspections, historical failure record data, uncertain cost data, 

high-fidelity physics-based simulation data, and online high-resolution structural health 

monitoring (SHM) data. The heterogeneity of the data sources poses challenges to the 

diagnostic/prognostic implementation of decision-making for maintenance. Using components of 
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a miter gate as the exemplary case study, this dissertation presents a condition-based maintenance 

framework to demonstrate how to integrate various data sources using Bayesian and Machine 

Learning (ML) methods for effective SHM, and Prognostics and Health Management (PHM). In 

particular, this thesis focuses on the different pieces of the proposed framework, which are (1) 

surrogate based model updating for damage diagnosis; (2) integration of abstracted data and SHM 

for damage prognosis; (3) diagnostics of multiple forms of damage in miter gates; and (4) 

validation of physics-based diagnostic models using hybrid structural testing. 
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Chapter 1 

INTRODUCTION 

 

Maintenance planning has been extensively studied for various engineering systems. 

Current approaches can be roughly classified into two categories, namely time-based maintenance 

(TBM) and condition-based maintenance (CBM). CBM is closely related to condition monitoring 

(CM), which is a damage detection implementation based on a condition monitoring process 

applied to rotating machinery (Mitchell 2007). When applied to civil engineering and aerospace 

systems, CM is referred to as structural health monitoring (SHM) with the important distinction 

that SHM is done more or less continuously and uses a permanently-installed system. When the 

diagnosis results of either CM or SHM are used to trigger maintenance decision, a condition-based 

maintenance (CBM) decision policy arises. 

 

1.1. Time-based maintenance (TBM) 

TBM (also known as periodic-based maintenance) assumes that the estimated failure 

behavior is statistically or experientially known (Yam et al. 2001). Statistical modelling, such as 

Weibull analysis (Weibull 1951), is widely used in TBM to identify failure characteristics of a 

component or system. The goal of TBM models is to find the optimal policy that minimize a cost 

function. TBM approaches have been developed for both repairable or nonrepairable systems 

(Barlow and Hunter 1960).  The complexity of a TBM model depends on the targeted system such 

as single-system, multi-systems, parallel and series structure. Applications for single components 

or multi-components systems are found in (Das and Acharya 2004; Castro and Sule Alfa 2004) 
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and (Nakagawa and Yasui 2005; Childress and Durango-Cohen 2005) respectively. A more 

extensive review of TBM applications can be found here (Ahmad and Kamaruddin 2012). Chapter 

3 will show an example of a TBM approach applied to inspection rating data of a single 

components of a hydraulic civil structure. 

 

1.2. Condition-based maintenance (CBM) 

CBM is the most modern and popular maintenance technique among researchers and 

industry. CBM has gained increasing attention recently as a preferred approach to TBM. CBM is 

a maintenance approach that combines data-driven reliability models and information from a 

condition monitoring process (e.g. continuous monitoring, periodic inspection or non-periodic 

inspection). Based on the underlying degradation model, CBM models can be categorized into two 

subgroups: 1) models that assume discrete-state deterioration and 2) models that assume 

continuous state deterioration. A most extensive list of CBM application  can be found in here (Y. 

Zhu et al. 2010; Tian et al. 2011; Tian and Liao 2011; Alaswad and Xiang 2017). Most of the CBM 

applications available in the literature are for mechanical systems, aerospace systems, or 

manufacturing systems. For large civil engineering infrastructure, most of the applications have 

been applied to bridge engineering (Petcherdchoo, Neves, and Frangopol 2008; Saydam and 

Frangopol 2015; Gong and Frangopol 2020). In CBM, maintenance schedules are predicted based 

on the results from diagnosis and prognosis. For diagnosis and prognosis, the approaches can be 

classified into physics-based approach (M. E. Orchard and Vachtsevanos 2007; Daigle and Goebel 

2011; An et al. 2011), data-driven approach (Zio and Di Maio 2010; Mohanty et al. 2009; Galar et 

al. 2012; Ye and Xie 2015), and hybrid approach (J. Xu and Xu 2011; Liao and Kottig 
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2014).  Hybrid approaches that combine the physics-based approach with data-driven approach to 

improve the CBM predictive capabilities is the focus of Chapter 3.  

1.2.1 Structural Health Monitoring (SHM) 

The term SHM generally refers to the implementation of a damage detection strategy for 

an engineering system. This implementation involves: i) periodically sampled response 

measurements, ii) extraction of damage-sensitive features from these measurements and ii) 

damage diagnosis using these features with either an inverse-problem approach or a data driven 

approach. Depending on the field of engineering, there are pros and cons for both approaches when 

applied to an engineering system.  

For civil engineering systems, the inverse problem approach is usually carried out by using 

a physics-based model (e.g. finite element (FE) model) of the civil structure. An “inverse” problem 

refers to problems where the system parameters are estimated from measured response quantities. 

Generally, a physics-based model is a “forward” problem where the system responses (e.g. FE 

output response) are predicted as a function of the (known) system parameters (e.g. FE inputs). 

This approach is more desirable when only limited SHM data that relates the input and output of 

the system is available. More details of this approach will be discussed in section 1.2.2. When 

sufficient SHM monitoring data is available, a data driven approach can be taken. It can also be an 

alternative when physics-based models do not explain sufficiently the physics of the system. More 

details of this approach will be discussed in section 1.2.3. 

As stated earlier, CBM can make use of the SHM diagnostic capabilities to have access to 

the current state (a.k.a. state estimation) or model parameters (a.k.a. parameter estimation) of the 

system of interest. However, SHM data may contain noise due to the sensor behavior and 

environmental and operational variability. Also, SHM data could be bias due to calibration error; 
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in other words, this bias reflects a deviation of the signals from the correct ones. In the next section, 

more discussion details of the SHM diagnostic capabilities using an inverse problem approach 

with a physical based model to is presented. 

1.2.2 Damage Diagnosis using Physics based Model Updating 

When measurement data from sensors is available, researchers rely on Finite Element (FE) 

model updating techniques to estimate the unknown parameters to infer the current state of the 

system. For hydraulic infrastructure systems (e.g. dams, miter gates), several researchers (M. A. 

Vega et al. 2021; Ramancha et al. 2019; Y. Yang, Madarshahian, and Todd 2019) have updated 

physics-based linear and nonlinear FE models using simulated measurement data. Also, FE models 

have been used to study crack propagation and fatigue of miter gates (Mahmoud, Chulahwat, and 

Riveros 2018). For other civil infrastructure systems, researchers have successfully performed 

model updating of mechanics-based linear FE models using real measurement data (Moaveni, 

Conte, and Hemez 2009; Jang, Li, and Spencer 2013). However, only recently are there efforts to 

perform model updating of mechanics-based nonlinear FE model of full-scale civil system using 

real measurement data (Ramancha et al. 2020). Other efforts have performed model updating of 

mechanics-based nonlinear FE model using simulated measurement data (Astroza et al. 2017; 

Jensen et al. 2017). Furthermore, researchers have used the predictions of updated mechanics-

based FE models for reliability assessments (Okasha, Frangopol, and Orcesi 2012). Recently, 

researchers have made use of surrogate models to serve as fast emulators of computationally 

expensive FE models, whose predictions are also used for reliability assessments (Bichon, 

McFarland, and Mahadevan 2011; Jensen et al. 2017; M. Vega, Madarshahian, and Todd 2019; Z. 

Wang and Shafieezadeh 2020). Chapter 3 and 4 will make use of a Gaussian process regression 

(GPR) model as a fast emulators of computationally expensive FE models.  
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Besides the faster diagnosis capabilities, it is important to note that these surrogate models 

cannot overperform the FE accuracy, and therefore they can perform as well as the FE that 

originally represented the structural system. However, a FE model will always contain model 

discrepancy between the FE model and the true system. Reducing or accounting for this model 

discrepancy during the model updating process can significantly improve SHM diagnostic 

capabilities. To reduce the model discrepancy, especially in systems with highly nonlinear 

behavior, researchers rely on structural testing to validate and improve specific FE models when 

limited SHM data is available. In the next section, an alternative structural testing method suitable 

for calibration and validation of a high nonlinear structural component is briefly discussed. 

1.2.2.1 Model Validation via Structural Testing 

There are several well-established methods to conduct structural testing for evaluating the 

behavior of structural systems and/or components thereof. In structural systems that behave 

observationally as a linear elastic system, experimental modal analysis has been used to determine 

the dynamic characteristics of the system in terms of the modal parameters. This type of analysis 

can be accomplished using traditional forced vibration testing (e.g. using hammer or shaker). 

However, damage may introduce nonlinearities into the system, which violates some or all the 

basic assumptions for experimental modal analysis (Farrar and Worden 2012). These assumptions 

require that the structure i) obeys the linearity principles of superposition and homogeneity, ii) is 

time invariant, and iii) exhibits reciprocity. 

Many times, for civil engineering infrastructure, SHM data in the damaged condition where 

nonlinearity is introduced is not readily available. This led researchers to rely on laboratory testing 

to evaluate nonlinear model of systems or components, whose FE model or model parameters 

generally are not as accurate as the FE models of systems that behave as a linear elastic system. In 
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civil engineering, there are several laboratories that allow structural systems to be exposed to 

dynamic loading conditions from seismic events, wind, blast, impact, waves, fire, and traffic. 

However, to make these tests as accurate as possible, large testing programs may be required, 

which may impose economic challenges and limitations depending on the laboratory load capacity. 

Hybrid simulation is currently a well-developed method to conduct laboratory testing that reduces 

partially the limitations mentioned earlier. In hybrid simulation, a conventional FE analysis is 

performed where physical models of some portions of the structure are embedded in the numerical 

model. These physical models are tested in the laboratory and coupled even in real time with the 

numerical model part of the analysis. Generally, the portion of the system of interest that is not 

well understood is to be physically modeled in the laboratory. The portion whose behavior is well 

captured by numerical models is maintained as a numerical model and coupled with the physical 

model. 

Structures subjected to seismic loading has been a very attractive system for hybrid 

simulation testing which includes systems such as building and bridges. Also, FE element model 

updating has been used in hybrid simulation to update the parameters of the nonlinear material 

models as the test progresses (Hashemi, Masroor, and Mosqueda 2014; Xiaoyun Shao, Mueller, 

and Mohammed 2016). Chapter 5 will show an example of model validation of a highly nonlinear 

components using a structural hybrid test, which includes two implementations denoted as hard 

real time hybrid simulation and soft real time hybrid simulation. The term hard refers to the fact 

that the FE numerical part is run in a true real-time hardware/software environment such as 

Simulink Real-Time (SimulinkRT, formerly known as xPC target) (Mathworks 2015), which is 

directly connected to run at the same clock time as the shake table controller, in other words the 

equation of motion of the numerical FE model is solved in real time and synchronized with the 
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controller. While the term soft refers to the fact that an external FE models is intended to run faster 

than real time to send signals at each time step to the controller so real time execution can still be 

achieved in the full hybrid model. 

1.2.3 Damage Diagnosis using Data Driven Models 

The data driven approach uses a mathematical model to learn the mapping function that 

transforms input variables (e.g. output response or extracted feature of the system) into the output 

variable (e.g. healthy and damage states of interest for the structure or SHM damage diagnosis). 

Supervised learning algorithms can be used when data is available from these input and output 

variables. On the other hand, unsupervised learning algorithms can be used when only data from 

the input variable (e.g. output response or extracted feature of the system) is available. Note that 

the data driven approach in this case is learning directly the inverse function of the system, i.e., 

the mapping from the output response or extracted feature of the system to assign to the relevant 

diagnostic label. If this diagnostic label is defined as a class, the supervised learning algorithm 

used is known as classification. Conversely, if the diagnosis label is defined in a continuous 

fashion, the supervised learning algorithm used is known as regression analysis. This approach is 

more desirable when large amount of SHM data that relates the input and output of the system is 

available. Various SHM damage diagnosis algorithms for civil engineering infrastructure, such as 

bridges (Mikami, Tanaka, and Hiwatashi 1998; H. Xu and Humar 2006; Shu et al. 2013) and 

buildings (Masri et al. 1996; Kim, Yoon, and Kim 2000; N. Wang et al. 2018), have been 

implemented based using data driven models.. Chapter 2 will show an example of a CBM approach 

using Bayesian Neural Network (BNN) data driven model. 
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1.2.4 Prognostics and Health Management (PHM)  

PHM is an engineering approach that in addition to diagnosis assessments of engineering 

system (from either CM or SHM), it includes predictions of the future state and reliability of the 

system based on degradation data. This degradation data encodes information about the 

degradation behavior of the system, and thus it may be used to build degradation models. As with 

diagnosis, prognosis may employ the use of physics-based approaches or data driven approaches 

to build a physical degradation model or a data driven degradation model. Additionally, PHM uses 

its prediction capabilities to inform life cycle management, which target to optimize a certain 

system performance criterion (e.g. cost, availability, reliability, etc.). In summary, PHM enables 

engineers to turn available data into information that enhance the current knowledge of the system 

and also provides a policy to maintain the system optimally. 

In some engineering applications, researchers have tried to model the 

evolution/degradation of damage using physical degradation models such as applications in fatigue 

crack growth (An, Choi, and Kim 2012; Li et al. 2017; Leung et al. 2019) and corrosion growth 

(Guedes Soares, Garbatov, and Zayed 2011; C. Wang and Elsayed 2020). These physical 

degradation models are developed based on the understanding of physical behavior and (usually) 

validated by experiments. On the other hand, data driven degradation models are used when the 

evolution/degradation of damage is not well understood either due to limited understanding of the 

physical phenomenon or when the damage cannot be measured continuously or measured directly. 

As before, the measured data used to parametrize a degradation model (i.e. physical or data driven) 

can be defined in a discrete or continuous state as it will be shown in the next subsections. 
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1.2.4.1 Discrete Degradation 

In some civil infrastructure, inspections are based on discrete rating systems such as 

bridges (Graybeal et al. 2002), offshore structures (Y. Zhang, Kim, and Tee 2017), pavements 

(Abaza 2017) and other structures (Mohseni et al. 2017).  

 
Figure 1.1: Idealized discrete degradation data (noise free) 

Figure 1.1 shows an example of discrete degradation data, where the degradation level is 

categorized into discrete states/rating (e.g. 0-7). Data driven approaches (e.g. a Markov transition 

matrix) are generally used to explain discrete degradation models as shown in several studies of 

deteriorating systems. However, few studies have studied CBM policies using this type of 

degradation models. Section 3.5 will show a CBM framework that uses discrete degradation 

model. 

1.2.4.2 Continuous Degradation 

For many systems, a continuous degradation model can be built when SHM data is 

available or using a physics-based approach when data is limited but whose predictions of the 

damage are in a continuous domain as shown in Figure 1.2.  Lately, CBM has been implemented 

for systems with continuous degradation models and available SHM data (Lu, Tu, and Lu 2007; 
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Arzaghi et al. 2017). Section 3.8 will show a CBM framework that uses continuous stochastic 

degradation model, which account for the uncertainty of the degradation model by assuming a 

family of continuous degradation models. 

 
Figure 1.2: Idealized continuous degradation data (noise free) 

1.2.4.3 Remaining Useful Life (RUL) 

Once the degradation model is defined, this model can be used to predict the remaining 

useful life (RUL). The RUL is the remaining time until the degradation grows to a threshold. For 

a stochastic degradation model, the RUL is a distribution that can be calculated by estimating the 

corresponding end of life (EOL) distribution and subtracting the current time. The EOL expected 

value is the corresponding predicted time to when the degradation reaches the critical damage 

threshold, which would trigger a maintenance action. The threshold of degradation usually would 

be based on engineering experience and/or knowledge. However, this threshold may also be 

computed when enough failure data is given Figure 1.3 shows a schematic of how to use the 

predictions to calculate the EOL and RUL distributions. 
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Figure 1.3: RUL calculation based on continuous degradation data 

1.3. Optimal Maintenance using (long-term) Life Cycle Cost 

For TBM and CBM application, several different cost functions can be used to optimize a 

specific criterion, e.g., cost minimization, availability maximization, or multi-objective functions 

including optimal threshold design. More details of different types of objective functions can be 

found in (Alaswad and Xiang 2017). In the work presented in this thesis, a cost minimization 

function will be presented and used for TBM and CBM purposes (see Chapter 3). 

 

1.4. Research Objectives, Organization of Thesis and Contributions:  

For large civil infrastructure, current approaches mainly use either data-driven methods 

(e.g. Markov transition matrix or other statistical method) or physics-based approach (e.g. FE 
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model updating). For the case of the miter gate and many other structures, a physics-based 

approach which employs high-fidelity FE model to predict the miter gate response is required by 

the decision maker, due to the lack of data required for data-driven approach. In order to use 

physics-based approaches for prognostics, a degradation state equation would be needed. The 

degradation of some critical components of the miter gate, however, is not fully well understood, 

which makes the physics-based prognostics challenging. Based on these challenges, the objectives 

of this work are the following: 

1) Overcome the physics-based prognostics challenge by integrating physics-based SHM 

with a statistical-based state transition matrix.  

2) Provide a CBM framework applicable to civil structures (demonstrated on horizontally-

framed miter gates) that have online health monitoring systems and are subject to 

condition rating (e.g. OCA) data.  

3) Extend and suggest recommendations to improve the current diagnosis capabilities of 

particular civil structures of interest. 

To realize these objectives, this thesis contains four chapters that will explain in detail the 

aforementioned objectives and also will expand on the different topics reviewed earlier.  

Chapter 2 will show a SHM diagnosis framework using the data driven approach to map SHM 

monitoring data to damage, and a discrete degradation model is introduced to suggest optimal 

maintenance based on the diagnosis results for a given damage threshold. Chapter 3 will show a 

TBM framework based on historical condition ratings. It will also show a CBM framework based 

on online health monitoring systems and condition ratings. Additionally, this chapter will explain 

how to overcome the challenge of integrating physics-based SHM with a statistical-based state 

transition matrix. Chapter 4 will show the diagnosis of multiple forms of damage of a 
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horizontally-framed miter gates and it will suggest further work steps to perform multi-component 

CBM. Finally, Chapter 5 will show explain in detail an alternative structural testing approach to 

perform model validation of a high nonlinear components whose FE models may not fully capture 

its behavior and therefore introduce significant model error. 

Figure 1.4 summarizes the different pieces that are needed to perform diagnosis, prognosis, 

and maintenance decisions under the work presented in this research work. The chapters of this 

thesis will cover the majority of these blocks shown in this Figure. 

 

Figure 1.4: Proposed framework for diagnosis, prognosis, and maintenance decision 
making for civil infrastructure 

The contributions presented on the different chapters of this dissertation can be 

summarized as:  

1) Development of a CBM approach based on a surrogate modeling method assuming 

sufficient monitoring data is available. 
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2) Development of a new hybrid CBM approach that integrates high-fidelity FE model-

based SHM with inspection data-based transition matrix for effective diagnosis, 

prognosis, and maintenance planning; 

3) Quantification of effects of uncertainty in OCA ratings on maintenance planning;  

4) Account for the effects of human errors in the OCA rating transition information in 

terms of diagnosis and prognosis;  

5) Development of surrogate modeling method to overcome the computational challenge 

in FE model-based SHM; and  

6) Diagnosis of different form of damage in miter gates is accomplished by performing 

Bayesian inference using a validated high-fidelity FE model.  

7) Implementation of the hybrid simulation method on the UCSD large high performance 

outdoor shake table, which includes a test for verification and validation of a highly 

nonlinear mid-story isolation model. 
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Chapter 2 

A VARIATIONAL BAYESIAN NEURAL NETWORK FOR 
STRUCTURAL HEALTH MONITORING AND COST-
INFORMED DECISION-MAKING IN MITER GATES 
 

2.1. Abstract 

Many physics-based and surrogate models used in structural health monitoring (SHM) are 

affected by different sources of uncertainty such as model approximations and simplified 

assumptions. Optimal SHM and prognostics are only possible with uncertainty quantification that 

leads to an informed course of action. In this chapter, a Bayesian Neural Network (BNN) using 

variational inference is applied to learn a damage feature from a high-fidelity finite element model. 

BNNs can learn from small and noisy datasets and are more robust to overfitting than Artificial 

Neural Networks (ANNs), which make it very suitable for applications such as SHM. Also, 

uncertainty estimates obtained from a trained BNN model are used to build a cost-informed 

decision-making process. To demonstrate the applicability of BNNs, an example of this approach 

applied to miter gates is presented. In this example, a degradation model based on real inspection 

data is used to simulate the damage evolution. 

 

2.2. Introduction 

An ANN is a machine learning algorithm widely used in many areas in science and 

engineering. They are attractive alternatives to physics-based modeling, particularly for complex 

structures with unknown failure modes or highly variable operational and environmental inputs 

(Stoffel, Bamer, and Markert 2018).  Most of the applications in civil engineering are in pattern 
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recognition problems. The first journal article on neural network application in civil/structural 

engineering was published by Adeli and Yeh (H. Adeli and Yeh 1989), which was an ANN 

algorithm trained to inform if a particular engineering design was acceptable or not. Hajela and 

Berke (Hajela and Berke 1991) applied ANN algorithms for structural optimization. Theocaris and 

Panagiotopoulos (Theocaris and Panagiotopoulos 1993) used ANN algorithms to learn the 

parameter identification problem in fracture mechanics. For SHM applications, Wu et al. (Wu, 

Ghaboussi, and Garrett 1992) and Feng and Bahng (Feng and Bahng 1999) trained an ANN 

algorithm to detect structural damage in the form of reduction in member stiffness on a multistory 

shear building and reinforced concrete bridge columns respectively. Other researchers used 

changes in modally-derived features such as mode shapes, eigenvectors and Ritz vectors, from 

numerical and experimental samples, to train an ANN to diagnose damage (Elkordy, Chang, and 

Lee 1994; Lam, Yuen, and Beck 2006).  

Various other SHM algorithms for civil engineering infrastructure, such as bridges 

(Mikami, Tanaka, and Hiwatashi 1998; H. Xu and Humar 2006; Shu et al. 2013) and buildings 

(Masri et al. 1996; Kim, Yoon, and Kim 2000; N. Wang et al. 2018), have been implemented based 

on ANN architectures. Waszczyszyn and Ziemianski (Waszczyszyn and Ziemiański 2005) and 

Adeli (Hojjat Adeli 2001) reviewed several more application in civil engineering including the use 

of neural networks in analysis and design of structures, system identification, structural control, 

finite element (FE) mesh generation and other disciplines in civil engineering. Some researchers 

have used ANNs as surrogate models, using validated FE models to generate data to train the 

network (Rocchetta et al. 2018; Tan et al. 2017; Shu et al. 2013; H. Xu and Humar 2006). Many 

of these researchers have used ANNs as emulators of computationally expensive high-fidelity 

finite element model runs.  
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In general, ANN algorithms are trained using optimization techniques such as gradient 

descent (Ruder 2016). Therefore, ANN models are generally used to build point prediction models. 

Recently, Bayesian prediction models have started to be more attractive for damage assessment, 

especially in civil engineering because the limited amount of data available to build a reliable 

deterministic point prediction model. Many researchers use Gaussian Process (GP) regression to 

build Bayesian prediction models for civil engineering structures (Parno, O’Connor, and Smith 

2018).  However, GP models are computationally challenging for high-dimensional spaces or 

otherwise “large” data sets. Due to the scalability limitations in GP models (H. Liu et al. 2018; 

Shi, Khan, and Zhu 2019; Flam-shepherd, Requeima, and Duvenaud 2017), BNN (Yin and Zhu 

2018; Chua and Goh 2005; Arangio and Bontempi 2015) models have started to be more practical 

model when dealing with high-dimensional space. In the case of SHM, this space depends on the 

number of spatially-distributed sensors and their collection (monitoring) frequency. BNNs are 

preferred over deterministic mathematical models such as neural networks because they account 

for uncertainty in their parameters (i.e., weights and biases) and propagate this into their 

predictions. Such uncertainty management is critical to support decision-making, which is the 

necessary outcome of an SHM process (Todd and Flynn 2011). BNNs are more robust against 

overfitting because a posterior distribution of the parameters is considered instead of using 

deterministic parameters that minimize the empirical risk during training. Also, BNN may be 

trained using limited and noisy data, while ANNs typically tend to require more and lower-noise 

training data for equivalent performance. 

In this chapter, a BNN is trained with a FE model due to such highly-limited data 

availability. Therefore, this probabilistic prediction models also serve as a surrogate model of a 

validated high-fidelity FE model, which sometimes are unable to be used efficiently to make fast 
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predictions. Specifically, the BNN model is trained to assess the condition of quoin blocks in miter 

gates, which are essential civil structures for navigation system in rivers. In this work, a 

degradation model based on real inspection data of miter gates is used to simulate the damage 

evolution. Additionally, a cost function is introduced to improve prioritization of maintenance 

events of components of miter gates. The added value of using SHM in miter gates is evaluated in 

term of maintenance cost savings. The ultimate goal of the authors is to set up a SHM workflow 

that allows further optimization in term of cost savings, and this chapter presents one realization 

of this goal within a civil structural monitoring application. 

 

2.3. Bayesian Neural Network 

2.3.1 Artificial Neural Network 

Two of the main problems in machine learning are classification (for discrete classes) and 

regression (for continuous processes). An ANN is a powerful supervised learning algorithm that 

can be used to solve classification and non-linear regression problems. In the context of an SHM 

problem, an ANN can be trained to learn the relationship between sensor values or features derived 

from sensor values and damage classes or parameters. Figure 2.1 shows the ANN architecture used 

in this chapter and the non-linear functions (i.e. sigmoid and softplus) that are used to learn the 

relationship between sensor information and structural damage targets. 
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Figure 2.1: ANN architecture and definitions 

Generally, gradient descent algorithms are used to train neural networks. These algorithms 

objective is to find the ANN parameters (i.e. weights and biases) that minimize an error or loss 

function that depends on the ANN outputs (y) and the true (training) output values. The training 

error is known in the machine learning community as the empirical risk. Commonly, regularization 

is used to avoid overfitting, i.e., substantially degrading network performance when it is presented 

any data set other than the training set. Another way to train an ANN to be robust against 

overfitting is to use a Bayesian approach to find the parameters of the network. The uncertainty in 

these weights and biases can be propagated into network predictions, which is useful in the context 

SHM problems that involves (cost-informed) decisions. 

2.3.2 Bayesian Neural Network 

BNNs are essentially neural networks with a prior distribution on their network parameters 

(Neal 1996). The joint posterior distribution of the network parameters -including the covariance 

matrix, Σ , of the assumed zero mean error-  after observing a set of training data   1
,

N

i i i
D x y  

may be expressed as:     



  20   

 

, ,

( , , , ) ( , , | )
( , , | , )

( )

( , , , ) ( , , )

( , , , ) ( , , )

p p
p

p

p p

p p d d d






w b Σ

Y | w b Σ X w b Σ X
w b Σ Y X

Y | X

Y | w b Σ X w b Σ

Y | w b Σ X w b Σ w b Σ

,  (2.1) 

where w  and b  represents the weights and biases of the BNN, respectively. Also, X and Y  are 
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The conditional distribution, ( , , | )p w b Σ X  is equivalent to ( , , )p w b Σ  due to conditional 

independence.  The marginal probability density function, ( )p Y | X , can be obtained by 

integrating 
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Y | w b Σ X w b Σ w b Σ , which it is generally mathematically 

intractable. Furthermore, the likelihood function ( , , , )p Y | w b Σ X  can be expressed as: 
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where iΣ  is the covariance of the measurement error between observation iy  and model prediction 

( ; ; )iNN x w b  with weights w , biases b , and input ix . Also    represent a normal distribution 

parametrized by its mean and variance, and dim( )ik  y . 

For the prior ( , , )p w b σ , it is assumed that w , b  and Σ  are statistically independent. The 

joint prior can be expressed as follows: 

    
1

( , , ) ( ),
N

ii
p p p p


  w b Σ w b Σ  (2.5) 

where ( ) ( , )p w 0 I  , ( ) ( , ),p b 0 I   and ( ) Lognormal(2 , )ip Σ I I  are the priors used in this 

chapter.  

The posterior predictive distribution of testY  for a set of observed points testX is then 

 
, ,

( | , , ) ( , , , ) ( , , | , ) ,p p p d d d test test train train test test train train

w b Σ
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where the joint posterior distribution, ( , , | , )p train trainw b Σ Y X , is estimated after observing a set of 

training data ( , ).train trainX Y  The covariance matrix ( Σ ) of the assumed zero mean error is also 

treated as an unknown parameter during training, and its uncertainty is also accounted in the BNN 

predictions. 

2.3.3 Variational Inference 

In order to obtain a trained BNN for predictions, the key part is to calculate the posterior 

distribution of the parameters after observing the (training) data. The posterior distribution of the 

parameters is typically mathematically intractable due to the normalization term (see Eq. (2.1)), 

which is a high-dimensional integral. The two most popular approximation methods to obtain the 

posterior distribution are Markov chain Monte Carlo (MCMC) and variational inference (VI). For 

BNNs, there many parameters to be inferred making this a high-dimensional problem. MCMC is 
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proven to approximate very well to the true posterior. MCMC algorithms involve sampling-based 

methods, and it is very challenging to sample a high-dimensional posterior (Morzfeld, Tong, and 

Marzouk 2017). The Gibbs sampler is one MCMC algorithm that can work on high-dimensional 

space; however, it still can be computationally expensive (Geman and Geman 1984). Therefore, 

VI is a more practical approach in this case, which is becoming popular in BNN designs (Sun et 

al. 2019). In this chapter, VI is employed to infer the high-dimensional space of the parameters of 

the BNN that serves as a mathematical model of a nonlinear mapping between inputs and targets.  

2.3.3.1 Variational Inference for a Bayesian Neural Network 

The idea of VI is to postulate a family of distributions, Q , and to find the closest member,  

*( , , )q w b Σ , from the family of distributions that approximates to the posterior distribution, 

( , , | , )p w b Σ Y X , using Kullback–Leibler (KL) divergence to maximize the evidence lower bound 

(ELBO). For simplification purposes the parameter, θ , would represent the parameters w , b , and 

Σ  as follow: 
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where the KL divergence between the variational distribution ( )q θ  and posterior distribution 

( | , )p θ Y X can be defined as: 
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The ( )[log ( )]q p θ Y | X  term is constant because the normalization term, ( )p Y | X , is a 

constant. Next, the ELBO is defined as 

 ( ) ( )ELBO( ( )) [log( ( , ) ( ))] log ( ) .q qq p p q     θ θθ Y | θ X θ θ  (2.9) 

Substituting Eq. (2.9) into Eq. (2.7) yields 

 KL( ( ) ( | , )) ELBO( ( )) [log ( )].q p q p  θ θ Y X θ Y | X  (2.10) 

Now, the closest member, *( )q θ , from the family of distributions that approximates to the 

posterior distribution can be found by maximizing the ELBO: 

 
( ) ( )

*( ) arg min KL( ( ) ( | , )) arg max ELBO( ( )).
q Q q Q

q q p q
 

 
θ θ

θ θ θ Y X θ   (2.11)  

So now, the inference of the posterior distribution can be seen as an optimization problem. 

For comparison purposes with loss functions used for training an ANN model, the following loss 

function, L , is defined: 
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Substituting Eq. (2.2) into Eq. (2.12), the following is equation is obtained: 
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  (2.13) 

Now, the simplified equation is obtained after substituting Eq. (2.4) into Eq. (2.13): 
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If the following covariance matrix is assumed: 
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assuming also that iΣ ’s are statistically independent between observation iy . Then the loss 

function can be expressed as: 
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The first term in Eq. (2.16) is known as the average likelihood, which can be minimized 

when the model prediction ( ; ; )iNN x w b  explains the observed data iy . This term is also 

minimized when the variational distribution ( , , )q w b  is optimally selected.  The second term is 

the KL divergence between the variational distribution ( , , )q w b  and the prior ( , , )p w b , which 

minimizes the loss when the variational distribution is close to the prior. Therefore, this loss 

function balances the variational distribution ( , , )q w b  with the likelihood 
1

( , , , )
N

i ii
p 

 y | w b x  

and the prior ( , , )p w b . For further details on how to compute these terms given different types 

of variational distributions and how to derive their respective gradients of the loss function can be 

found here (Blei, Kucukelbir, and McAuliffe 2017; Ostwald 2019). There are several gradient 
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based methods to calculate the optimal ( , , )q w b  that minimize this loss function (or maximize 

the ELBO). A stochastic gradient descent strategy has been used for this application using the 

Edward (Tran et al. 2017) probabilistic framework, which is based on Tensorflow (Abadi et al. 

2016), a widely used programming language for deep learning neural networks. This gradient 

descent method consists in calculating a noisy gradient from Monte Carlo samples of the ELBO 

distribution. 

 

2.4. Damage Detection using BNN Surrogate Model 

In structural health monitoring (SHM), damage classification (or regression) is generally 

an inverse problem, e.g., damage (input) causes change in an observable (output). Therefore, a 

Bayesian approach using a finite element model (or a surrogate model) is generally used to infer 

the inverse problem. In this chapter, a BNN surrogate model is used to directly learn the inverse 

problem, where the output data (e.g., strain measurements) and input data (i.e. the damage, to be 

defined below) of a validated FE model become the input data and output data, respectively, for 

the BNN surrogate model. Figure 2.2 illustrates the data used to validate the FE model, the data 

generated to train the BNN model, and introduces the need of a degradation model (i.e. damage 

evolution) to allow cost-informed decisions, which is explain in section 2.5. 
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Figure 2.2: Decision flow based on BNN model for damage detection 

2.4.1 High Fidelity Finite Element Model of Miter Gates 

It is imperative in the cargo ship navigation to avoid unexpected closures, which can cause 

considerable economical loss to the marine cargo and associated industries. In the United States, 

the U.S. Army Corps of Engineers (USACE) owns and operates 236 locks at 191 sites (U.S. Army 

Corps of Engineers Headquarters 2018). According to a report published by USACE in 2017, more 

than half of these assets are older than their economic design life of 50 years and need a prudent 
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structural health monitoring solution to ensure their safe and reliable operation (Foltz 2017). SHM 

of miter gates of navigation locks, as shown in Figure 2.3, are a good case study on which to 

demonstrate feasibility of using BNNs as a damage detection solution for a real-world problem. 

 
Figure 2.3: Navigation in Miter Gates 

Some lock operators and experienced engineers from USACE (Foltz 2017) have stated that 

the condition of the quoin and gaps between the lock wall and the quoin block is one of the primary 

concerns within the inspection, maintenance, and repair cycle. A “gap” is somewhat generically 

referred to as the loss of bearing contact between the quoin attached to the gate and the lock wall. 

Such a gap in the quoin block changes the load path in the miter gate, leading often to higher 

stresses at some places in the lock gate (e.g., the pintle), which in turn can lead to operational 

and/or structural failure. Some miter gates owned by USACE are currently instrumented with 

strain gauges for in-situ data acquisition (U.S. Army Corps of Engineers Headquarters 2007). The 

fundamental inference is made that changes in the gap contact state will lead to observable changes 

in the measured gate strain field. 

FE models could be used to map the strain gauges data to a specific gap condition (usually 

quantified by size) in an inverse analysis. However, these models are computationally expensive 

to run, and sometimes they are not feasible for real-time health monitoring or for monitoring 

fluctuating environmental effects. Consequently, a surrogate model with fast predictions of the 
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target damage (e.g., the gap) can be employed. Figure 2.4 shows the ABAQUS FE model for the 

Greenup miter gate located in the Ohio River in Kentucky, USA. The FE model has been 

previously validated (Eick et al. 2018) with the available strain gage readings from the Greenup 

miter gate. The Greenup gate is a brand-new gate where a negligible gap was assumed for 

validation purposes. All the element in the gate are 3D linear shells elements to reduce the 

computational cost of such a large model. 

 
Figure 2.4: Gap modeling (Left: No gap, Right: Schematic gap) 

A contact-type constraint is used between the lock wall (denoted in yellow) and the gate 

(denoted in gray), making this a nonlinear problem. To impose the contact constraint the Lagrange 

multiplier method was employed. The strain gauge locations are far from the contact area, mostly 

due to physical constraints in the miter gate, but this far-field location also mitigates errors due to 

the method employed to enforce the contact constraint. The opposite side of the lock wall uses 

fixed boundary conditions, and symmetry boundary conditions are used at the right end (i.e., miter) 

of the gate to simulate the right leaf.  
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Figure 2.5: Hydrostatic loading on miter gates 

Figure 2.5 shows the upstream and downstream hydrostatic loading that the miter gate 

experiences. Also, the environmental temperature, which will add thermal strain effects, is defined 

as the values recorded by thermometers located at the actual Greenup gate. 

2.4.2 BNN Architecture and Results 

The architecture used in this chapter contains 2 layers with 50 neurons in its hidden layer 

and biases at each hidden neuron. A parametric studied using a 2-layer network was carried using 

an ANN model with different numbers of neurons in its hidden layer. It was found that using 50 

neurons yielded a higher testing accuracy than the other architectures used. Ten different (10, 20, 

…., 90 and 100 neurons) architectures were considered to arrive to this architecture, which each 

architecture took from 2 to 5 minutes for training and testing using a single CPU processor. 

Regularization was considered to penalize architectures with more parameters (i.e. neurons). A 2-

layer architecture (i.e., 1 hidden layer) was selected because it can learn any continuous 

mathematical function (Csáji 2001). Further studies could be carried using a deeper neural network 

architecture, but the simplest universal approximator was considered most desirable. 
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Figure 2.6: BNN model to map strain field to gap length 

The hidden layers use activation functions (e.g. sigmoid) to make the BNN learn any 

nonlinearity between the strain values and the gap length. For the output layer, the softplus 

activation function was employed to impose physical constraints (e.g., the gap length cannot be 

negative) in the BNN. As expressed mathematically earlier, a BNN is a neural network with a prior 

in its weight and biases as shown in Figure 2.6. 

2.4.2.1 Training Data and Testing Results 

The gap length is assumed to be a random number between zero and 180 in. (Eick et al. 

2018) under random loading scenarios defined by two normal distributions for upstream (ℎ௨௣) and 

downstream (ℎௗ௢௪௡) hydrostatic pressure as shown in Table 2.1. For training and testing data, 

3000 data points were obtained using the ABAQUS FE model of the Greenup gate by varying the 

value of each random variable for training (2000 for training) and testing purposes. This data took 

one week using a 4-cpu desktop to be generated. Thermal effects are also considering. The 

temperature (𝑇௦௨௥௙ & 𝑇௨௪) are defined as a normal distributions with mean at a temperature, T, 
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which is defined as a random number based on the lowest (𝑇௠௜௡) and highest temperature (𝑇௠௔௫) 

value recorded by thermometers (underwater and surface) in an actual miter gate at different times 

of the year. Figure 2.7 shows how these distributions are propagated to 46 strain values, whose 

location are based on what is installed in the Greenup gate. 

Table 2.1: Random variables used to generate training/testing data 
Parameter Distribution Unit 
Gap length 𝐺𝑎𝑝~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,  180)  Inches 

ℎௗ௢௪௡ ℎௗ௢௪௡~𝛮𝑜𝑟𝑚𝑎𝑙(𝜇 = 168,  𝜎 = 20)  Inches 
ℎ௨௣ ℎ௨௣~𝛮𝑜𝑟𝑚𝑎𝑙(𝜇 = 552,  𝜎 = 10)  Inches 

𝑇 𝑇~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (𝑇௠௜௡ = 29.4, 𝑇௠௔௫ = 47.4)  Celsius 
𝑇௦௨௥௙ 𝑇௦௨௥௙~𝛮𝑜𝑟𝑚𝑎𝑙 (𝑇,  𝜎௦௨௥௙ = 10.3)  Celsius 
𝑇௨௪ 𝑇௨௪~𝛮𝑜𝑟𝑚𝑎𝑙(𝑇, 𝜎௨௪ = 5.37)  Celsius 

 

 
Figure 2.7: Training and testing data generation 

The posterior predictive distribution is calculated using Eq. (2.6), and 2000 samples from 

this distribution at each testing data point are shown in Figure 2.8. It takes around 20 minutes to 

train this BNN model. 
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Figure 2.8: Posterior Distribution of gap length using 1000+ testing samples  

The median value of the posterior distribution, as shown in Figure 2.9, may be used to 

calculate the mean square error (MSE) to compare the predicted gap length with the true gap length 

testing value as shown in Table 2.2, in order to evaluate a set of point predictions.  

 
Figure 2.9: Median values of prediction of gap length 



  33   

The median is a more useful metric to summarize central tendencies in cases where the 

distributions may potentially be highly skewed or asymmetric. Moreover, the median is more 

robust than the mean to outliers that can bias the central tendency. 

Table 2.2: Testing accuracy 
BNN Accuracy RMSE (in.) 

Median 8.34 
Mean 8.39 

One other advantage of using a BNN over an ANN is that the gap length using a given set 

of strain measurements, ix , may be expressed as a distribution rather than a single point estimate. 

Therefore, the probability of exceeding certain critical gap length may be calculated to facilitate 

the decision-making process for preventive maintenance actions.  Figure 2.10 shows a 

representative prediction distribution at 4 different testing points, which seem to follow a normal 

distribution for each of these cases. Not that in some other applications, the posterior predictive 

distribution, obtained from VI, can follow multimodal distributions. 

 
Figure 2.10: Posterior distribution of gap length using 4 different test samples 
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In general, a BNN surrogate, which is trained by data generated by computer simulation 

may not be able to capture the behavior of the real structure due to modelling error. To ensure that 

a trained BNN is reliable for SHM. The modelling error between the FE model and the real world 

should be accounted and modeled. In this chapter, modeling error was introduced to the computer 

simulations by varying the hydrostatic and temperature load and treating these loads as unknown 

quantities. Alternatively, two surrogate models can be used. One to learn the function that defines 

the FE simulations and one to learn the modeling error between the FE simulation and the real 

world. As new data comes from continuous monitoring, both surrogate models should be updated 

regularly. Particularly, the surrogate that fits the modelling error as modelling error extrapolation 

may be not be very accurate if it not updated regularly.  

 

2.5. Value of Implementing SHM using BNN Surrogate Model 

Recently, theoretical and applied approaches to quantify the value of deploying a structural 

health monitoring have been studied by researchers such as Konakli and Faber (Konakli and Faber 

2014) and Thons (Thöns 2018). These and related studies are among the first to tie decisions that 

SHM informs to decision costs; this is the critical step that connects SHM to the business case for 

investing in and deploying an SHM system. Within the context of using the uncertainty-quantified 

BNN SHM “system” developed in the first part of this chapter, the BNN outputs will be matched 

with functions representing the consequence costs of (good and bad) decisions. This framework 

will be used to compare the relative merits of the BNN SHM approach to current engineering 

inspection data to arrive at conclusions regarding the relative “value” of such an approach. 
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2.5.1 Optimal Decisions using Inspection Data only 

In the specific use case presented in this chapter, the USACE Asset Management team 

oversees the Operational Condition Assessment (OCA) process to assess structural component 

deficiencies by giving a category rating based on a condition and performance criteria. These 

ratings are performed by an inspector, who base the evaluation on engineering knowledge and 

information of preexisting inspections Figure 2.11 summarizes the OCA criteria currently used by 

USACE. 

 
Figure 2.11: Current OCA rating criteria (Allen, Foltz, and Werth 2018) 
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2.5.1.1 Transition Probability Derivation 

A transition matrix is defined as a square matrix with nonnegative values that represents 

how some process “transitions” from one state to the next. Based on an OCA database, the number 

of times that a component transitioned from one rating category (by engineering inspection expert 

judgment) to another in a given year was determined to generate a “condition” transition matrix. 

Thus, in this application, each value in the transition matrix represents a probability, and the sum 

of each row equals unity. Only the upper triangle components were considered to simulate 

component deterioration; the lower triangle would represent improvements or repairs, and for the 

purposes of this analysis, they were ignored. This “condition” transition matrix was found by 

normalizing the counts in each row as shown in Figure 2.12. 

Transition matrices, known also as stochastic matrices, have been broadly used in different 

fields such as probability theory, control, economics, and meteorology (Degroot 1974; Caldarelli 

et al. 2012; Schoof and Pryor 2008).  
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Figure 2.12: Deriving 1-step (1 year) transition matrix for quoin block components 

2.5.1.2 Failure Rate of Component and Cost Function 

A degradation model built from the transition matrix is used to generate a failure 

cumulative mass function, which can approximate the unreliability function, as described in detail 
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in (M. A. Vega et al. 2019). Figure 2.13 shows the unreliability function of the quoin block 

component with the component age in years as the random variable. 

 
Figure 2.13: Unreliability function of quoin block component 

Eq. (2.17) shows a cost function proposed by (Barlow and Hunter 1960) to find the cost 

per unit of time (CPUT) of performing preventive maintenance at a time t in years. 
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where ( )F t  is the unreliability function, PC  is the preventive action cost, and UC  is the unplanned 

action cost. The unreliability function presented in Figure 2.13 was used with Eq. (2.17) to find 

the CPUT for different values of t as shown in Figure 2.14. This plot suggests that the optimal time 

to perform preventive maintenance is every 48 years when only considering the deterioration of 

quoin blocks and the data available from OCA inspections and the cost ratio is equal to 5. In other 

words, the “model” of the engineering inspection via the OCA database proposes a cost-minimized 

optimal inspection time of 48 years. The corresponding cost ratio (i.e. UC / PC ) values depend on 

the structure and site. The values PC  and UC  can be defined as follow: 
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daily economicscheduled

maintenance *cost/loss due to
costs downtime

P PC t    (2.18) 

where Pt  is the downtime (in days) that takes to perform regular maintenance. The maintenance 

cost associated is definitely lower when this is planned ahead. 

 
daily economicmaintenance

cost due to *cost/loss due to,
failure downtime

U UC t    (2.19) 

where Ut  is the downtime (in days) that takes a component to be replace from the day that failed. 

For miter gates, the values of U Pt t . This is essentially due to two reasons: 1) availability to 

start maintenance in a short period of time after failure occurrence and 2) maintenance takes longer 

when a component fails because it can affect other components or systems. The maintenance cost 

associated is definitely higher when maintenance needs to starts as soon as possible. Therefore, 

the unplanned cost is higher than the preventive action cost (i.e. UC / PC >>1). 

 
Figure 2.14: Cost per unit of time as a function of component age. 
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2.5.2 Optimal Decisions using BNN Surrogate Model and Value of SHM Application 

Earlier, a cost function was defined, and the optimal maintenance time that corresponded 

to the minimum CPUT was calculated using the information provided by a model of the visual 

inspection process over time, presented in section 2.5.1 and reviewed in more detail in (M. A. 

Vega et al. 2019). Now, the BNN SHM approach will be used instead to build the unreliability 

function in order to compare the relative “value” of using the BNN SHM approach to the visual 

inspection approach for monitoring. To do that, the results shown in Figure 2.8 can be used to 

calculate the probability of exceedance of a certain gap length threshold as shown in Figure 2.15. 

This figure shows empirical cumulative mass functions for five different failure thresholds (i.e., 

gap lengths that correspond to criticality). Next, a mapping between the true gap length value and 

the component age can be used to find the corresponding unreliability functions. Eq. (2.11) can be 

applied to find the corresponding gap length value that minimizes the cost function as shown in 

Figure 2.16. Finally, the mapping from the true gap length value to the component age is used to 

find the optimal maintenance time as shown in Table 2.3. For these realizations, different cost 

ratios (i.e., values of PC  and UC ) and different failure threshold were used. It is important to note 

that specific results obviously depend on the choice of these values, but that the methodology 

shown in this section is independent of the actual values of the cost ratios and the failure threshold. 

After comparing different values of maintenance costs for miter gates at a specific site, the authors 

suggest that the corresponding cost ratio (i.e. UC / PC ) is close to 5 based on communications with 

USACE personnel (Schultz 2018). 
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Figure 2.15: Empirical (Failure) cumulative mass function with PC  = 1 and UC  = 5 

 
Figure 2.16: CPUT as a function of true testing gap length with PC  = 1 and UC  = 5 

 

Table 2.3: Optimal maintenance time using BNN model with PC  = 1 and UC  = 5 

Critical gap 
length (in.) 

Optimal time 
(years) 

 Cost reduction 
(%) 

130+ 54 11.1 
135+ 61 21.3 
140+ 62 22.6 
145+ 65 26.2 
150+ 74 35.1 
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Different miter gate sites may have different values for the cost ratio (i.e. UC / PC ); Figure 

2.17 shows the variation in CPUT when a different value of cost ratio is used. For the realizations 

in this figure, the critical gap length threshold is assumed to be equal to 140 in. This figure shows 

less sensitivity to the cost ratio than Figure 2.14. The main reason why it is so is because there is 

less uncertainty when using the BNN SHM model. Of course, in an absolute judgment sense, it is 

important to note that the BNN model assumes that the training data generated from the FEM 

model is ground truth. As with any such model, its representative predictive value is only as good 

as its validation with regard to the real structure that it is modeling. In this case, the FEM was 

previously validated to the Greenup miter gate in the undamaged condition, as mentioned earlier, 

but the modeling of the damage itself couldn’t be validated on actual data from the gate in a known 

damaged condition, so modeling bias error in the damage state could creep into the process. That 

doesn’t change the demonstration of the proposed approach or its utility but rather provides caution 

on interpreting the specific results for this case beyond demonstration of the approach. 

 
Figure 2.17: CPUT as a function of true testing gap length. 
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2.6. Conclusions and Discussion 

The added value of using SHM in miter gates is evaluated in term of maintenance cost 

savings. A cost function is presented to improve prioritization of maintenance events of 

components of miter gates by evaluating the performance of a trained BNN model. This model is 

trained to assess the condition of quoin blocks in miter gates with a FE model due to such highly-

limited data availability. In this work, a degradation model based on real inspection data of miter 

gates is used to simulate the damage evolution. A SHM workflow is set up to allows further 

optimization in term of cost savings within a civil structural monitoring application. As presented 

in this chapter, continuous monitoring via this BNN SHM “system” can lead to more economical 

decisions regarding maintenance policies than only using the data from visual inspection (e.g. 

OCA ratings). From the results shown in the previous sections, there is an 11.1% to 35.1% of 

maintenance cost reduction when the OCA ratings are used with a surrogate model based on a 

physical based model. 

It is important to know that the degradation modes presented in this chapter was built from 

real inspection data. However, this data can still be bias to human error or insufficient information 

due to the difficulty to assess OCA ratings when a component is underwater, and it is not visibly 

available. Other degradation models can be considered when a larger historical data set is available. 

This chapter only focuses on the degradation of a single component. Further analysis can be carried 

out by considering more critical components (e.g. cracks in pintle, corrosion in the gate, etc.). Also, 

there are sources of uncertainty that need to be further analyzed that will lead to changes in the 

optimal maintenance time, such as measurement uncertainties or model uncertainties from both 

the BNN and FE model; the latter of these could be quantified via a sensitivity analysis of all the 

parameters in the FE and BNN models. Another potentially fruitful avenue for improvement is 
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consideration of how many strain sensors are used and where they are placed. Different such sensor 

designs could lead to different SHM assessment statistical performance, which in turn affects 

decision costs, and the sensor design itself directly influences procurement, installation, and sensor 

maintenance costs. Both of these could compete in a cost-minimized formulation. 

 

2.7. Preview to Chapter 3 

As mentioned in section 1.2.3, a data driven approach uses a mathematical model to learn 

the mapping function that transforms input variables (e.g. output response or extracted feature of 

the system) into the output variables (e.g. healthy and damage states of interest for the structure or 

SHM damage diagnosis). However, mathematical models such as BNNs still require relatively 

large amounts of data to provide good prediction. For civil engineering applications, many times 

monitoring data of the complete life of a structure is very limited. In these cases, damage diagnosis 

relies on using a physics-based model updating approach as described in section 1.2.2. The next 

chapter will show a CBM framework whose damage diagnosis would be based on the physics-

based model updating approach, which it may be more suitable when such monitoring data is 

limited.  

 

2.8. Remarks 

Portions of this dissertation have been published or are currently being considered for 

publication. Chapter 2 is composed of a first authored publication: 

Vega, Manuel A., and Michael D. Todd. 2020. “A Variational Bayesian Neural Network for 
Structural Health Monitoring and Cost-Informed Decision-Making in Miter Gates.” Structural 
Health Monitoring, no. Special Issue. https://doi.org/10.1177/1475921720904543. 
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Chapter 3 

 

OPTIMAL MAINTENANCE DECISIONS FOR 
DETERIORATING QUOIN BLOCKS IN MITER GATES 
SUBJECT TO UNCERTAINTY IN THE CONDITION 
RATING PROTOCOL  
 

3.1. Abstract 

Condition assessments and rating systems are frequently used by field engineers to assess 

inland navigation assets and components. The goal of these assessments is to initiate effective 

risk-informed budget plans for maintenance and repair/replace. Ideally, a degradation model of 

every component failure mode in the gate would facilitate maintenance decision-making. 

However, sometimes there is no clear physical understanding how a damage progresses in time; 

for example, it isn’t clear how the bearing gaps change in time in the quoin blocks of a miter gate. 

Therefore, this is one motivation for the framework proposed in this chapter, which integrates 

Structural Health Monitoring with a Markov transition matrix built from historical condition 

assessment. To show the applicability of this framework, two examples are presented of how to 

find the optimal time to plan for maintenance of components in miter gates i) static maintenance 

planning based on operational condition assessment (OCA) ratings only and ii) dynamic 

maintenance planning based on integration of damage diagnostics based on monitoring data and 

failure prognosis based on OCA ratings. In addition, this chapter presents a new Bayesian 

approach to estimate the ratio of errors in the OCA ratings, which allows for improved accuracy 

in OCA rating-based prognosis.  
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3.2. Introduction 

The U.S. Army Corps of Engineers (USACE) maintains and operates 236 locks at 191 sites 

in the United States (U.S. Army Corps of Engineers Headquarters 2018). More than half of these 

structural assets have surpassed their 50-year economic design life (Foltz 2017). There are several 

types of lock gates such as miter, sector, tainter, and vertical lift, with miter gates being the most 

common type used in the United States (Alexander et al. 2018). Miter gates are steel structures 

that allow passage of boats, and watercraft through elevation changes of the water level in canals 

and rivers that would otherwise be non-navigable as shown in Figure 3.1.  

 

Figure 3.1: Navigation along miter gates 
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The USACE has developed the operational condition assessment (OCA) ratings to help 

prioritize repairs/replacements in their navigation assets. The OCA rating is an assessment 

obtained from an inspection process, which uses existing data from periodic and non-periodic 

inspections, including corrosion tests and dive reports. The objective of the OCA process is to 

obtain global consistent operational condition data to identify the current condition states of the 

USACE infrastructure  (Przybyla 2013). Visual inspections have been used to update the reliability 

of miter gate components and corrosion deterioration models (Estes, Frangopol, and Foltz 2004). 

In the United States, horizontally-framed miter gates are laterally supported by continuous quoin 

blocks rather by discontinuous quoin blocks (Eick, Smith, and Fillmore 2019a). The hydrostatic 

load imposed upon the miter gates is transmitted through the girders to the quoin blocks and into 

the walls that support the gate laterally. Any fabrication defect or deterioration in the quoin blocks, 

especially in continuous quoin blocks, will result in changes to the lateral support force system of 

a miter gate, making them unknown parameters (Commander et al. 1994). The deterioration of the 

quoin blocks is broadly manifested as a small gap because of the loss of contact between the quoin 

block attached to the gate and the quoin block attached to the wall that supports the gate laterally. 

The formation of this gap can be detected using sensor data or from features derived from this data 

(Eick et al. 2018).  

When measurement data from sensors is available, researchers rely on Finite Element (FE) 

model updating techniques to estimate the unknown parameters (e.g., gap detection in miter gates) 

to infer the current state of the system. For hydraulic infrastructure systems (e.g. dams, miter 

gates), several researchers (M. A. Vega et al. 2021; Ramancha et al. 2019; Y. Yang, Madarshahian, 

and Todd 2019) have updated physics-based linear and nonlinear FE models using simulated 

measurement data. Also, FE models have been used to study crack propagation and fatigue of 
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miter gates (Mahmoud, Chulahwat, and Riveros 2018). For other civil infrastructure systems, 

researchers have successfully performed model updating of mechanics-based linear FE models 

using real measurement data (Moaveni, Conte, and Hemez 2009; Jang, Li, and Spencer 2013). 

However, only recently, there are efforts to perform model updating of mechanics-based nonlinear 

FE model of full-scale civil system using real measurement data (Ramancha et al. 2020). Other 

efforts have performed model updating of mechanics-based nonlinear FE model using simulated 

measurement data (Astroza et al. 2017; Jensen et al. 2017). Furthermore, researchers have used 

the predictions of updated mechanics-based FE models for reliability assessments (Okasha, 

Frangopol, and Orcesi 2012). Recently, researchers have made use of surrogate models to serve as 

fast emulators of computationally expensive FE models, whose predictions are also used for 

reliability assessments (Bichon, McFarland, and Mahadevan 2011; Jensen et al. 2017; M. Vega, 

Madarshahian, and Todd 2019; Z. Wang and Shafieezadeh 2020). 

For miter gates, there has been some work in detecting small gaps near the pintle area, 

where the gate is supported vertically (M. Vega, Madarshahian, and Todd 2019; Eick et al. 2017). 

Additionally, gap detection analysis has also been performed on the presence of multiple gaps in 

the quoin block (Hoskere et al. 2019). Another way to understand the effect of these small gaps is 

to infer the changes in the lateral reaction forces (Parno, O’Connor, and Smith 2018). All these 

approaches can provide an idea of the current operational or damage state of the gate, which can 

give the engineers a notion of how reliable a miter gate is at any instant in time. However, for 

maintenance planning purposes, knowing the reliability at any point in time is desired, including 

the future. A degradation model of the state of the structure (or a component of it) is needed to 

estimate the reliability in this case. Degradation models (e.g., material degradation) have been used 

with reliability analysis for life cycle analysis in civil infrastructure such as bridges (Strauss et al. 
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2009; Morcous 2006) and hydraulic steel structures (Estes, Frangopol, and Foltz 2004).  Markov 

chain degradation models are widely used to predict future structural condition states in order to 

facilitate life cycle analysis (Riveros and Rosario-Pérez 2018; Bocchini, Saydam, and Frangopol 

2013; Chiachío et al. 2020). A degradation model can be enhanced by information obtained from 

structural health monitoring (SHM) systems, which may assist in establishing more efficient 

maintenance, repair, and replacement priorities for navigational locks. SMART Gate (U.S. Army 

Corps of Engineers Headquarters 2007) was implemented for some USACE miter gates to monitor 

the deteriorating conditions until extensive repairs and eventual replacement could be done. 

Based on (Daniel and Paulus 2019c), maintenance of hydraulic gate systems is the most 

vulnerable and least developed of all procedures that impact a lock gate’s performance. Other more 

developed procedures that affect a lock gate are design, construction, operation, and management 

(Eick, Smith, and Fillmore 2019a). Due to the aging of navigation assets in the US and the 

economical strains associated with lock closures, USACE has started to build a database that 

includes inspections, assessments, preventative maintenance, and essential maintenance events to 

track and prioritize maintenance of multiple dams and hydraulic gates. Currently, USACE uses an 

industry maintenance management software called Maximo (Al-Fedaghi and Al-Huwais 2018), 

which has been customized to meet USACE requirements and is called the FEM (facilities and 

equipment maintenance) system. In theory, this system should enable better informed maintenance 

and resourcing decisions based on historical maintenance data and trend analysis (Daniel and 

Paulus 2019b). However, while FEM is capable of collecting various sources of maintenance-

related information that can help in maintenance activities, it provides little or no programmed 

capability to analyze information or make probabilistic inferences (Foltz, Bislip-morales, and 

Hammack 2013). Furthermore, diagnosis and prognosis using data-driven models built from solely 
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inspection data (i.e. OCA ratings) may lead to large uncertainty in the failure prognosis as shown 

in previous studies (M. A. Vega, Hu, and Todd 2020) and in the case study section. 

Beyond these ratings, however, structural health monitoring (SHM) systems have been 

developed for the miter gates to measure its distributed point strain response during operation, 

providing continuous data streams which may be fined for damage-related information. The SHM 

measurement systems are coupled with validated high-fidelity physics-based finite element (FE) 

models (M. A. Vega, Hu, and Todd 2020; M. A. Vega et al. 2021; Ramancha et al. 2020; Y. Yang, 

Madarshahian, and Todd 2019; Gomez, Spencer, Jr., and Smith 2019), allowing for 

inference/estimation of the damage gap using the strain measurements. This approach provides 

more confident estimates of the damage gap state over time. While it is true that the SHM system 

increases gap inference capabilities, it cannot be used directly to predict the gap degradation over 

time, since the physics of the gap degradation is complex and not fully understood; SHM alone is 

not enough to inform decisions regarding prioritizing preventive maintenance. As described above, 

however, the historical OCA ratings contain information that can be used to understand the gap 

degradation over time, even though it is highly abstracted and may be contaminated by human 

observation errors or bias. Synthesizing, rather than separating, OCA rating transition information 

and SHM system information has the potential to improve an integrated state awareness (damage 

state) and state prediction (future damage state). 

This work proposes a new hybrid approach to overcome this challenge by integrating 

physics-based SHM with a statistical-based state transition matrix. According to the literature, 

hybrid approaches have not been studied as extensively as noted in (An, Kim, and Choi 2015) and 

even less for large civil infrastructure systems or miter gates. In this chapter, the focus will be on 
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horizontally-framed miter gates. However, the framework is applicable to other structures that 

have online health monitoring systems and that has condition ratings (e.g. OCA) data available.  

For the USACE portfolio, this framework can be applicable to the navigation structures 

that are under the SMART Gate program (U.S. Army Corps of Engineers Headquarters 2007), 

which consists of several lock sites including Dalles Navigation Lock, Lock 27, Greenup Lock 

(used in this work), and Meldahl Lock on the Mississippi River (Daniel and Paulus 2019b). In this 

work, the component chosen to monitor is the bearing gap in the quoin blocks. It is important to 

optimize the maintenance of quoin block components because they directly control the stress 

profile in horizontally-framed miter gates, where over-stresses exceeding a certain threshold can 

lead to structural failure. Currently, contact blocks are effectively a continuous single piece of 

steel, which during maintenance requires the entire piece to be replaced even if only part is 

damaged (Eick, Smith, and Fillmore 2019a). However, replace cost is relatively low compared 

with the downtime cost during maintenance or when failure occurs. Therefore, this motivates the 

authors to optimize the maintenance considering not only repair/replace costs but also the impact 

cost when a miter gate is not operational. 

The contributions of this chapter can be summarized as: (1) development of a new hybrid 

CBM approach that integrates high-fidelity FE model-based SHM with inspection data-based 

transition matrix for effective diagnosis, prognosis, and maintenance planning; (2) quantification 

of effects of uncertainty in OCA ratings on maintenance planning; (3) a new Bayesian scheme to 

update the error ratio in the OCA ratings; (4) account for the effects of human errors in the OCA 

rating transition information in terms of diagnosis and prognosis; (5) surrogate modeling method 

to overcome the computational challenge in FE model-based SHM; and (6) application of the 

proposed framework to a miter gate problem.  
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The remainder of this article is organized as follows. Sec. 3.3 gives an overview of the 

proposed framework for optimal maintenance decisions for deteriorating components in miter 

gates. Sec.3.4 explains how to approximate the unreliability function using a Markov chain 

approach using non-periodical inspection ratings from the quoin block in miter gates. With this 

unreliability function, Sec. 3.5 formulates a novel hybrid approach for condition-based 

maintenance where inspection ratings (e.g. OCA) are used to construct a degradation model along 

with a SHM system used for damage diagnostics. The proposed approach overcomes the 

challenges of no available degradation model and data heterogeneity (i.e. physics-based simulation 

data, OCA rating data, errors in the OCA rating data, and strain measurement data). Sec. 3.7 

demonstrates the proposed framework applied to a real-world application problem example. 

Finally, Sec 3.8 proposed a degradation model, built using the OCA rating data, to improve damage 

prognosis accounting for human error in OCA ratings. 

 

3.3. Overview of proposed framework 

Fig. 3.2 presents an overview of the proposed framework for optimal maintenance 

decisions for deteriorating components in miter gates. As shown in this figure, the proposed 

framework consists of four main modules, namely (1) failure prognosis based on OCA ratings, (2) 

maintenance planning, (3) damage diagnosis using physics-based simulation, and (4) integration 

of failure diagnosis and prognosis to achieve on-line planning and updating. These four modules 

are systematically integrated together to perform two types (static and dynamic) of optimal 

maintenance decisions for miter gates. 

The term static refers to the inability to update the current or future state based on the 

changes that a component of the system undergoes. The static maintenance planning is only based 
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on the field OCA ratings from a large population of miter gates. The obtained optimal maintenance 

decisions are therefore general to the population of miter gates of interest and are not specific for 

a specific gate. Thus, the obtained maintenance planning may not be truly optimal for a specific 

gate. For the static maintenance planning of a miter gate, there are several uncertainties to be 

addressed, such as how to justify a maintenance decision and how to deal with the uncertainty in 

the OCA rating due to both limited data and incorrect rating assignments, i.e., ratings due to 

protocols are sometimes given to components even when they are not inspected. 

 

Figure 3.2: Overview of proposed framework for optimal maintenance decisions for 
deteriorating components in miter gates  

Many miter gates are equipped with sensors which can collect strain measurement data in 

real time, e.g., the SMART Gate program mentioned earlier (U.S. Army Corps of Engineers 

Headquarters 2007). Based on the online monitoring data and the high-fidelity physics-based 

simulations, the damage condition is estimated using Bayesian methods. The real-time damage 

diagnosis provides damage information at individual gate level, which offers an opportunity to 

achieve optimal maintenance planning and dynamic maintenance decisions for a specific gate. The 

integration of failure diagnosis and prognosis (as shown in Fig. 3.2) faces several challenges. For 
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instance, the high-fidelity physics-based simulation model is computationally expensive, which 

makes Bayesian damage estimation challenging; the OCA ratings are highly abstracted and are 

assigned at a different time scale than the online monitoring system. The proposed framework 

tackles the above challenges by using the information from field OCA ratings, physics-based 

simulation, and online monitoring data.  

Each of the following sections explains in detail one the four modules mentioned earlier. 

Section 3.4 and 3.5 describe the static maintenance planning based only on the field OCA ratings 

from a large population of miter gates. Section 3.4 describes how to build a 1-step transition matrix 

based on the field OCA, then a n-step transition matrix is used to generate an unreliability (or 

failure) function corresponding to quoin block components in miter gates. Section 3.5 explains the 

static maintenance planning using the failure function obtained in Section 3.4. Section 3.6 and 3.7 

describe the formulation and application, respectively, of the dynamic maintenance planning based 

on the integration of prognosis models (i.e. physics-based FE model) and historical inspection data 

(i.e. field OCA ratings). Section 3.6 explains the damage diagnosis using physics-based model 

updating using two different degradation models (i.e. state equation) and formulates the integration 

of failure diagnosis, Bayesian updating of the error ratio of the OCA ratings based on damage 

diagnosis, and prognosis to achieve on-line planning and updating. Section 3.7 describes a real-

world application example of the framework described in section 3.6. 

 

3.4. Failure prognosis based on OCA ratings 

3.4.1 Deriving a transition matrix from OCA ratings 

The USACE Asset Management team oversees the OCA process to assess structural 

component deficiencies by giving a category rating based on a condition and performance criteria. 
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The ratings are classified as A (Excellent), B (Good), C (Fair), D (Poor), F (Failing) and CF 

(Completely Failed). More detailed definitions and discussion may be found in (Foltz 2017). A 

transition matrix P (see Eq. (1)) is defined as a square matrix with nonnegative values that 

represents how some process “transitions” from one state to the next. In this application, an 

inspected OCA rating at time t, ,i tI , (which represents the OCA rating is i at time t, with i=1…6, 

corresponding to the 6 letter ratings specified above), will transition to inspected state at time t+1, 

, 1, 1...6j tI j  , according to 

  
   
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P


   


  (3.1) 

Based on an OCA database, the number of times that a component transitioned from one 

rating category to another (as determined by engineering expert elicitation) over a given inspection 

time step was determined to generate the rating transition matrix. Each value in the transition 

matrix represents a conditional probability, and the sum of each row equals unity after normalizing 

the counts. Only the upper triangular components were considered to simulate component 

deterioration; the lower triangular components would represent improvements or repairs 

(transitions from a worse condition to a better condition), and for the purposes of this analysis, 

they were ignored. Fig. 3.3 shows the overall process for generating this one-step transition matrix 

P. The foundational data used to generate the counts were obtained from the OCA ratings database 

for navigation locks corresponding from January 2010 to June 2018, which was provided by 

USACE personnel. 

3.4.2 Unreliability (failure) function using transition matrix for component reliability 

A failure cumulative mass function, which can approximate the probability of failure 
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cumulative density function, can be obtained by calculating the transition probabilities after n time 

steps. In this case, failure is defined to be achieving the rating “CF”. The probability that a critical 

component goes from OCA rating 𝑖 to OCA rating 𝑗 after n inspection time steps is calculated by 

raising the transition matrix to the power of n, 

  , , , 1, , 6;n
j t n i tP I I i j i    P  . (3.2) 

 
Figure 3.3: 1-step (1 year) transition matrix for quoin block components 

The conditional probability n-step transition matrix Eq. (3.1) can then be used to transition 

some initial OCA rating probabilities for each rating to the state probabilities n time steps later, or 

            1, 2, 3, 4, 5, 6, 0( ) [ , , , , , ] ( ) n
n n n n n n nP P I P I P I P I P I P I P  I I P ,  (3.3) 

where  , , 1...6,i nP I i   is the predicted OCA rating at time nt , and 0( )P I  is the initial inspected 

OCA rating probability, i.e., 

            0 0 0 0 0 0 0( ) , , , , ,P P A P B P C P D P F P CF   I .  (3.4) 
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Fig. 3.4 shows the unreliability function, ( )F t , of the quoin block component with the 

component age in years with the initial state probability specified as 0( ) [1,0,...,0]P I , i.e., the 

gate begins its OCA rating fully in rating “A”. This is a reasonable assumption, but any initial OCA 

rating could be specified if other information is known, e.g., some initial degradation is possibly 

present at the initial time. 

3.5. Static Optimal Maintenance Decision of Miter Gates Based on OCA Ratings  

3.5.1 Maintenance decisions with uncertainty via Weibull analysis 

A common statistical formula used for life cycle analysis is the Weibull distribution 

(Weibull 1951). The predictions about the life (i.e. reliability) of any component over time t in a 

structure can be fit to a Weibull distribution. The reliability function, ( )R t , based on the Weibull 

distribution is:  

 ( ) ,
t

R t e




 

 
    (3.5) 

where ( )R t ,  , and  are the reliability, shape parameter, and characteristic life (scale 

parameter), respectively. The shape parameter   must be greater than 1.0 to justify preventive 

maintenance due to wear out failures (Jiang and Murthy 2011; Daniel and Paulus 2019b) . The 

characteristic life (or scale parameter)   represents the point in time when there is a 63.2% (when 

t   in Eq. (3.6)) chance of failure of the component. The next two subsections within Sec. 3.5.1 

will discuss uncertainty models from the two main sources described in Sec. 3.3, namely limited 

data and incorrect rating assignments. 


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Figure 3.4: Unreliability function of quoin block component (M. A. Vega et al. 2019) 

3.5.1.1 Uncertainty quantification of Weibull distribution due to limited data 

The unreliability ( )F t   based on the reliability function is given by 

 ( ) 1 ( ) 1
t

F t R t e




 

 
     . (3.6) 

This unreliability function must be calibrated to the transition matrix such that the 

parameters  and  are chosen to match Eq. (3.6) to the unreliability (failure) function obtained 

from the transition matrix. To accomplish this, a Bayesian calibration method is employed to 

obtain not only point estimates of the parameters but also the uncertainty in their estimation; here, 

this problem amounts to solving for the posterior probability of the parameters 

 ( , , | ) ( | , , ) ( , , ) ,
posterior likelihood prior

p y p y p           (3.7) 

where y is given by 

 
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,1
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Weibull CDF

t

y e



 
 
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 




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and  is the observation error in the state transition, assumed Gaussian-distributed with standard 

deviation , or 

  20,   .  (3.9) 

With this error assumption, the likelihood function ( | , , )p y     can be expressed as 
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For the prior distribution ( , , )p     in Eq. (3.7), it is assumed that all the parameters are 

statistically independent such that      ( , , )p p p p      , and the individual parameter 

priors are assumed to be 

   
   
   

Lognormal log(1.2), 0.2 ,

Lognormal log(50), 0.5 ,

0, 0.02 .

p

p

p










 

    (3.11) 

Thus, there are 3 parameters to be estimated: the shape parameter  

, the characteristic life , and the standard deviation  of the unbiased Gaussian-distributed 

observation error . Fig. 3.5 shows the prior and posterior distributions of these 3 parameters before 

and after performing Bayesian inference, using a Markov Chain Monte Carlo (MCMC) sampling 

approach to compute Eq. (7). Note that the input parameters of the prior distributions shown in Eq. 

(3.11) where chosen to have sufficient support, i.e., the range of possible values of a random 

variable is wide to account for all possibilities. Generally, the parameters of a prior distribution 

can be chosen from some previous knowledge based on data or previous studies.  
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Figure 3.5: Prior and posterior distribution of Weibull parameters 

The joint posterior probability obtained is shown in Figure 3.6. The mean value of the 

shape parameter  is equal to 1.42; since this value is greater than 1, preventive maintenance is 

justified. The mean value of the characteristic life  is equal to 96.2 years, implying that there is a 

63.2% chance of failure of the component after 96.2 years. 

 
Figure 3.6: Posterior probabilities of Weibull parameters 
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Fig. 3.7 shows how good a Weibull distribution describes the unreliability function 

obtained from the 1-step transition matrix. As shown in Fig. 3.6, the standard deviation of the 

assumed zero mean error has its mean around 1.36%, which confirms the goodness of the 

parameter calibration to the transition matrix unreliability data. 

 
Figure 3.7: Bayesian fitting using Weibull distribution 

3.5.1.2 Uncertainty of Weibull analysis due to condition rating protocol 

For the locks and dams comprising the USACE infrastructure portfolio, the typical Periodic 

Inspection (PI) of the lock and dam varies from every year to occurring to a maximum of every 5 

years (USACE 2019). However, the dewatering of a lock is much less frequent, often spanning 

multiple PI intervals. Therefore, unless there is evidence of degradation of a component that cannot 

be inspected, it is given a “B” rating. If a component was previously given something less than a 

“B” rating, and it is known that no work has been performed, the rating is carried over. Thus, many 
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of the given “B” ratings are not the result of an actual inspection; this is particularly true for any 

component that is submerged underwater. Based on direct communication with USACE personnel, 

this is true for all components that are “unable to be inspected at that time, which is essentially the 

innocent until proven guilty mindset” (A. Campbell 2019) . After analyzing the data, it was clear 

that the counts remaining at B after 1 year were very large (see counts of staying at B in  

Figure 3.3). Also, it was noted that many historical OCA ratings of quoin block components didn’t 

transition all the way from A to CF. Sometimes, the components were replaced/repaired before 

passing to C, D or F (or they just simply not recorded). Therefore, after discussing with USACE 

engineers, the main source of uncertainty was focused upon the B ratings. 

Fig. 3.8 shows how the unreliability function, F(t), changes when the transition matrix 

changes due to the uncertainty associated in the states remaining at “B” as explained before. 

 

Figure 3.8: Unreliability function considering uncertainty in the condition rating protocol 
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The variability in the unreliability function was obtained by considering that the counts of 

remaining in state “B” that corresponded to an actual inspection was some ratio of the total counts 

reported (i.e., Binspected/Btotal varies from 0 to 1). To understand better this variability in the 

unreliability function, a Bayesian fitting using a Weibull distribution (like Sec. 3.5.1.1) was 

performed for each sample of the unreliability function reported in this figure. Fig. 3.9 shows the 

variability of the shape and scale parameters due to the variation of the considered “actual” counts 

of staying at a “B” rating in a given year. As the Binspected/Btotal ratio decreases, the characteristic 

life  reduces. In other words, the time when there is a 63.2% chance of failure reduces. For the 

shape parameter , the values are always greater than 1 for any value of Binspected/Btotal, which 

always justifies preventive maintenance. If the value of the shape parameter is greater than 1 (i.e., 

the component is in the wear-out region), the variability on this parameter may not necessarily be 

a cause of concern (Reliasoft 2019), as much as the variability is in the scale parameter in this case.  

 
Figure 3.9: Variability of Weibull parameters 
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Fig. 3.10 shows the standard deviation of the assumed zero mean error. Interestingly, as 

the ratio Binspected/Btotal decreases, the fitting with a Weibull distribution improves.  

 
Figure 3.10: Standard deviation of the zero-mean error 

 

3.5.2.  Static optimal Maintenance Based on Failure Prognosis 

Based on the unreliability function F(t), the optimal maintenance time can be found by 

minimizing the cost function proposed by (Barlow and Hunter 1960) to find the cost per unit of 

time (CPUT) of performing preventive maintenance at time t (in years) as follows: 

 

0
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


  (3.12) 

where pC  is the preventative action cost, and uC  is the unplanned action cost. The denominator 

of Eq. (3.12) represent mean time between maintenance actions. Note that  

Eq. (3.12) has more meaning when the cost ratios, /u pC C , are considerably greater than 1, 



  65   

otherwise the numerator would behave as a constant function. Fig. 3.11 shows the CPUT computed 

for different cost ratios /u pC C , without considering the previously discussed uncertainty in the 

“B” ratings. For some miter gate, it was suggested by USACE personnel that the corresponding 

cost ratio is close to 5 based on cost data from lock 14 (located in the Arkansas river) (Schultz 

2018), which would result in a toptimal of about 48 years implied by Fig. 3.11 if that were the case. 

 
Figure 3.11: CPUT based on transition matrix with Binspected/Btotal = 1. 

To understand the advantage and cost savings, the CPUT value at the optimal value is 

compared with the CPUT at other repair/replacement times, which can represent the average time 

that USACE regularly performs maintenance on quoin blocks. Fig. 3.12 shows the percentage 

savings using the optimal maintenance as a function of the average actual maintence time cycle. 

Note that if the actual maintenance time is already at its optimum, the percentage of savings is 

equal to 0%. 
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Figure 3.12: % Savings based on actual maintenance time 

Fig. 3.13 shows the CPUT computed for different cost ratios when considering the 

uncertainty in the “B” rating in a given year. The results clearly show a lot of variability in the 

CPUT, and consequently in the optimal time to perform maintenance (i.e., the time when CPUT 

is minimized). For example, the minimum CPUT varies from 0.05 to 0.15 for / 5u pC C  , which 

is an increment of 200%. Note that the variability is larger as the cost ratio increases. 

 
Figure 3.13: CPUT with Binspected/Btotal from 0 (upper curves) to 1 (lower curves). 
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Fig. 3.14 shows the variability in the optimal maintenance time (between 16 and 48 years) 

when the cost ratio is equal to 5 (the USACE miter gate case). The variability is more pronounced 

when the cost ratio is small as shown in Fig. 3.15. The modal values at the ends represent the toptimal 

(at minimum CPUT) when Binspected/Btotal approaches to 0 and 1 in the left and right end 

respectively. The reason is because as the Binspected (due to Binspected/Btotal  = 1) approaches a large 

value,  the normalized value in the transition matrix is still a large value. In other words, the 

transition probability,  1t tP B B , is closer to 1 and larger relatively to the other transition 

probabilities from tB  (i.e.  1t tP A B ,  1t tP C B ,  1t tP D B ,  1t tP F B and  1t tP CF B ). 

Therefore, the normalized values in the transition matrix do not change as much, and consequently 

the toptimal does not change as much. Similar behavior is observed when Binspected (due to 

Binspected/Btotal = 0) approaches to 0. Except that,  1t tP B B , is closer to 0 and smaller relative to 

the other transition probabilities. 

 
Figure 3.14: Variability in optimal maintenance time for Cu/Cp = 5 
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Figure 3.15: Variability in optimal maintenance time for different cost ratios 

Table 3.1 summarizes the statistics of the time variability shown in Figures 3.14 and 3.15. 

Based on these statistics, the average optimal maintenance time considering only the reliability of 

quoin block in miter gates would be almost 31 years. As mentioned earlier, the cost ratio for lock 

14 is close to 5, so an interpolation can be made for the optimal maintenance between 4 and 5 if 

needed. Also, the reason why larger cost ratio values (e.g. 10, 20 and 50) were considered is 

because miter gates in the Mississippi river or other rivers would have higher traffic demands than 

lock 14. In other words, the downtime cost for these gates will logically be increased ( uC  would 

be larger).  
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Table 3.1: Optimal maintenance time (years) statistics 
Cp/Cu Mean SD Max Min 

50 8.82 2.59 13 2 
20 13.47 3.60 19 5 
10 19.27 4.99 27 10 
5 30.75 9.09 48 16 
4 38.52 13.48 69 20 

 

Up to this point the maintenance planning has been depending only on the historical 

inspection data (i.e. field OCA ratings). However, current state (or damage) estimation can enable 

dynamic decision making, which may lead to reduced lifecycle cost. To achieve this, Sec. 3.6 

proposes the integration of diagnostic models (i.e. physics-based FE modeling) and historical 

inspection data (i.e. field OCA ratings). As mentioned before, the following section formulates the 

integration of failure diagnosis and prognosis to achieve on-line planning and updating. 

 

3.6. Integration of Damage Diagnosis and Failure Prognosis for Dynamic Maintenance 

Planning of Miter Gates 

As demonstrated in Sec. 3.5, optimal maintenance highly depends on the evolution of the 

damage, e.g., how fast the probability of “CF” changes with time. Ideally, a degradation model of 

every damage level present in every component in the gate would facilitate the maintenance 

decision-making process. However, sometimes there is not a clear understanding of how the 

damage evolves with time. For example, such is the case with miter gates, where it is not 

understood how the bearing gaps change in time. This is one motivation for integrating SHM with 

the Markov transition matrix. Figure 3.16 shows more details of the proposed framework to 

integrate SHM with the Markov transition matrix. As shown in this figure, the proposed framework 

first estimates the damage sate (i.e. gap length) using online SHM data. The estimated gap length 
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is then used to update the error ratio in the “B” ratings. Based on that, the Markov transition matrix 

is updated, which will be used for failure prognosis and dynamical optimal maintenance planning. 

In what follows, each element of the proposed framework is explained in detail. 

 
Figure 3.16: Overview of the proposed framework 

3.6.1 Sequential damage estimation using physics-based simulation 

Let 1 2[ , , , ]
Si i i iNs s ss   be the strain measurement data at time step it , where SN  is the 

number of strain sensors, the posterior probability density function of the gap length nh  at time 

step nt  conditioned on strain measurements 1: 1 2{ , , , }n ns s s s   collected up to nt  is given by 

 1: 1
1: 1: 1

1: 1

( | ) ( | )
( | ) ( | ) ( | ),

( | ) ( | )
n n n n

n n n n n n

n n n n n

f h f h
f h f h f h

f h f h dh




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  (3.13) 

where 1: 1( | )n nf h s  is given by 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | ) ,n n n n n n nf h f h h f h dh     s s   (3.14) 
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with ( | )n nf hs  being the likelihood function (from the measurement equation) of observing ns  for 

given nh  at time step nt , and 1( | )n nf h h   is the PDF of nh  for a given 1nh   obtained from the state 

equation which describes the damage evolution over time. 

As illustrated in Fig. 3.16, the physics-based simulation model is employed as the 

measurement equation in this chapter. The likelihood function ( | )n nf hs , assuming that the 

observations  ns  are statistically independent, is computed by 

 
1
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( | ) ,
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nj sj n

n n
j

s h
f h








 
  

 
s   (3.15) 

where     is the PDF of the standard normal distribution,   is the standard deviation of the 

observation noise, and ( )sj nh  is the mean strain response prediction at the location of the j-th 

sensor obtained from the physics-based simulation. 

Since the physics-based computer simulation model is used to predict 

( ), 1, 2, ,sj n Sh j N     and the likelihood function ( | )n nf hs  needs to be evaluated numerous 

times during the sequential damage estimation, this is computationally burdensome. To address 

this challenge, a surrogate model is constructed for the strain response at SN  strain locations as .

( )(1) (2) ˆ[ , , , ] ( )SN
hs s s g s x ., where ( ) , 1, 2, ,j

Ss j N   is the strain response prediction at the 

j-th sensor location and [ , ]hx θ  including the gap length ( h ) and other model parameters ( θ ) 

such as hydrostatic and thermal loads applied to miter gates.   

To build such a surrogate model and tackle the challenge of the high-dimensional output 

during surrogate modelling, N training points are first generated for x  and are denoted as 
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1 2{ , , , }t Nx x x x  . From physics-based simulations, a data matrix of the strain responses for N 

training points is obtained as below 
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  (3.16) 

where 1( ) [ (1, ), (2, ), , ( , )]
S

T
i i i S i Nw w w N  w x x x x   is the strain response with inputs 

, 1, 2, ,i Si N x  , ( , )iw j x  is the strain response at the j-th sensor location, and SN  is the 

number of sensors as discussed before.  

The data matrix w  shown above is then compressed using singular value decomposition 

(SVD) as 

 ,Tw VMU   (3.17) 

where V  is a N N  orthogonal matrix, U  is a S SN N  orthogonal matrix and M  is a SN N  

rectangular diagonal matrix with non-negative real numbers 1 2[ , , , ]k  λ   on the diagonal, in 

which k  is minimum of N  and SN .  

Defining another matrix as γ VM , the original data matrix w  can be reconstructed  

 
1

( , ) ,
r

T
i ij j

j




 w x U   (3.18) 

where : 1 2[ , , , ]i i i ir  γ   is the i-th row of γ , ( , )T
iw x  is the i-th row of w , ij  is the element 

of γ  at i-th row and j-th column, jU  is the j-th important feature vector used to approximate w , 

and r is the number of features retained in the decomposition.  



  73   

Eq. (3.18) shows that the variation in the high-dimensional response across the design 

domain mainly comes from the variation in : 1 2[ ( ), ( ), , ( )]i i i r i  γ x x x , which denotes the 

value of   for i-th training point. With the training points of : 1 2[ ( ), ( ), , ( )]i i i r i  γ x x x  and 

ix , 1, 2, ,i N  , a surrogate models is constructed for 1 2, , ,   and r   as 

ˆ ˆ ( ), 1, 2, ,j jg j r   x   using the Kriging surrogate modelling method. In Kriging surrogate 

modelling, ˆ ˆ ( )j jg  x  is approximated as 

 ˆ ˆ ( ) ( ) ( ),T
j jg Z   x f x α x   (3.19) 

where α  are coefficients of the trend function ( )Tf x , and 
2( ) (0, ( , ))GPZ N  x     is a stationary 

Gaussian process with correlation function ( , )    between the responses at any two points given 

by  
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in which VN  is the number of variables, and 1( , , )
V

T
N    is a vector of roughness 

parameters.  

The hyper-parameters  2, ,GPυ α   can be estimated using the maximum likelihood 

estimation method (used in this chapter) or the least-squares method. After the estimation of the 

hyper-parameters υ, for any given inputs x , the GP prediction is a Gaussian random variable given 

by 

 2ˆ ˆ ( ) ~ ( ( ), ( )), 1, 2, , ,j j j jg N j r    x x x    (3.21) 
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where ( )j x  and 2( )j x  are respectively the mean and variance of the prediction of j  at input  

x . Combining Eqs. (3.18) and (3.21), the strain response in the original space (i.e.  strain at sN

locations) of the kriging surrogate model can be expressed as 
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For any given [ , ]hx θ , the prediction of the strain response in the original space is given 

by 

 
2ˆ( , ) ~ ( ( , ), ( , )), 1, 2, , ,w w Sw i N i i i N   x x x    (3.23) 
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For sensor locations i k , after considering uncorrelated and unbiased observation noise, 

the diagonal entries of the covariance matrix become 
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After substituting the original physics-based simulation with the surrogate model as 

discussed above, the likelihood function ( | )n nf hs  in the sequential damage estimation is 

computed by 

 
 1exp 0.5( ) ( )

( | ) ,
(2 ) S

T
n w n w

n n N
f h



  


s μ Σ s μ
s

Σ
  (3.26) 



  75   

where the mean and covariance terms are given by  [ (1, ), (2, ), , ( , )]w w w w SN  μ x x x  and 

{ , , 1, 2, , }ik Si k N   Σ  , computed by plugging nh  into Eqs. (3.21) and (3.22). 

From Eqs. (3.15) to (3.26), the computation of ( | )n nf hs  has been discussed in the 

sequential damage estimation using a physics-based simulation model. As indicated in Eqs. (3.13) 

and (3.14), an important step in the sequential damage estimation is the evaluation of  

1( | )n nf h h  , which is usually based on the state equation of the damage propagation. As mentioned 

previously, however, the degradation mechanism of the miter gate is complicated and not fully 

understood; there is no appropriate physics-based degradation model available that can adequately 

describe the growth of the gap. The only known information is that the gap will grow over time 

(no self-repair/replace). In this situation, the following minimally informed state equation is 

employed 

 1 ,n n hh h     (3.27) 

in which h  is a sufficiently large process noise term that imposes random gap growth over time, 

i.e., gap growth is a random walk. Since the gap can only grow over time, a Weibull process noise 

with a shape parameter of 0.5 and a scale parameter of 1.2 is used in this chapter which is able to 

cover a wide range (from 0 to 228 cm) of gap growth rate. 

By recursively implementing Eqs. (3.13) and (3.14), the miter gate gap length is estimated 

based on the online strain measurement data. In this chapter, the particle filtering (PF) method (M. 

Orchard et al. 2008) is employed to perform the sequential damage estimation through the online 

strain measurement and the physics-based simulation. Let the particles from the (n-1)-th time step 

after performing prediction using the state equation be 1 2[ , , , ]
pn n n nNh h hh  , where  is the 
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number of particles in particle filtering, the posterior distribution at the n-th time step is obtained 

by resampling the particles according to the following weights  
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where ( | )n nif hs  is obtained by plugging nih  into Eq. (3.26). 

As being shown in Sec. 3.7.2, the state equation given in Eq. (3.27) allows for effective 

damage estimation through sequential Bayesian inference. Let the distribution parameters of h  

be h  and h , where h  is the scale parameter of Weibull distribution and h  is the shape 

parameter of the distribution, if the state equation given in Eq. (3.27) is used for prognosis, the gap 

length mh  after m  months ( 30m  , prognosis over 30 months) can be approximated as a normal 

distribution as below according to the central limit theorem 

 
2~ ( , ),m nH N h m m     (3.29) 

where mH  stands for a random gap length, mh  is a specific realization of mH , nh  is the current 

gap length, (1 1/ )h h      and  22 2 (1 2/ ) (1 1/ )h h h            are respectively the 

mean and variance of h . 

The probability that the remaining useful life (RUL), RT , is less than a specific value q, is 

then given by 

   ( )
Pr Pr{ } 1 ,e n

R q e

h h q
T q h h

q







  
      

 
  (3.30) 

in which eh  is the gap failure threshold (i.e., 381 cm. this chapter). 
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Based on the above equation, the (1 )  confidence interval of the RUL conditioned on 

the current gap length nh  is derived as 

  
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where T  is given by 

 
21 2 2 2 22 ( ) ( ( / 2)) 4 ( ) .e n e nT h h h h                (3.32) 

The unconditional (1 )  confidence interval of the RUL can then be computed by  

  /2 1: /2( | ) | ,n n n nT f h T h dh   s   (3.33) 

in which 1:( | )n nf h s  is the posterior distribution of nh  obtained from the damage diagnosis. 

If the state equation given in Eq. (3.27) is accurate, the above equations allow to 

analytically estimate the RUL. Due to the large process noise h  and the discrepancy between the 

state equation and the underlying unknown degradation model, Eq. (3.27) could lead to large error 

in the remaining useful life (RUL) estimation when it is applied to the failure prognosis (see the 

result in Sec. 3.7.3). Therefore, the state equation Eq. (3.27) cannot be used for optimal 

maintenance planning. Motivated to overcome this limitation, the physics-based damage 

estimation is integrated with the Markov transition matrix in the subsequent sections for (1) 

updating of the error ratios in the “B” ratings, and (2) failure prognosis of the miter gate based on 

SHM and transition matrix. 

3.6.2 Updating of “B” ratings error ratio based on online damage estimation 

As been shown in Secs. 3.5.1 and 3.5.2, the uncertainty in Binspected/Btotal could significantly 

affect the failure prognosis results and maintenance planning. In order to reduce the uncertainty 
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using the damage estimation technique developed in Sec. 3.6.1, a mapping of the estimated gap 

length nh  on to an OCA rating is performed as follows: 
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where ( )n OCA nI I h  is a function that maps a gap length nh  to an OCA rating nI  at time step nt

, and , 0,1, , 5je j    are the gap length thresholds used to partition the gap domain into OCA 

ratings. 

In order to use the estimated OCA ratings to update the error ratio of the “B” ratings, the 

variable Binspected/Btotal is defined as inspected total/B B  .    is then updated using Bayesian method 

based on the damage estimation as follows 
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in which 1: 1 2[ , , , ]n nI I II    are the estimated OCA ratings of time steps 1t  to nt  from the SHM 

system by mapping the estimated gap lengths into OCA ratings using Eq. (3.34), ( )f   is the prior 

distribution of  , the non-informative uniform distribution ~ U (0, 1)  is used in this chapter (i.e. 

( ) 1f   ), and 1:( | )I nf I  is the likelihood function of observing 1:nI  for given  . 

Since the estimated 1: 1 2[ , , , ]n nI I II    are uncertain due to the uncertainty in 

, 1, 2, ,ih i n  ,  Eq. (3.35) is rewritten as follows by considering the uncertainty in 1:nI  
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 | 1: | 1:( | ) ( | ) { },
obs

I n I obs n obsf f P   
I

I I I I   (3.36) 

where obsI  is an observation realization of 1: 1 2[ , , , ]n nI I II    obtained from the physics-based 

damage estimation in Sec. 3.6.1, and | ( | )I obsf  I  is given by 

 | |( | ) ( | ) ( ).I obs I obsf f f    I I   (3.37) 

Defining the posterior samples of gap length from Sec. 3.6.1 as ,jkh

1, 2, , ; 1, 2, , ;pj n k N     (see Eq. (3.28) in Sec. 3.6.1), where pN  is the number of particles 

in particle filtering and jkh  is the k-th particle at time step jt . Using the posterior samples from 1t  

to nt , Eq. (3.36) is approximated as   

 
| 1: |

1

1
( | ) ( | ),

pN

I n I k
kp

f f
N  



 I h    (3.38) 

where 1 2[ , , , ]k k k nkh h hh    is the k-th realization of the gap length estimation, and | ( | )I kf  h  

is given by 

 | |( | ) ( | ) ( ),I k I kf f f    h h    (3.39) 

in which 

 | |
1

( | ) ( | ).
n

I k I jk
j

f f h  


h   (3.40) 

The | ( | )I jkf h   is computed based on the OCA rating transition matrix as  

 | ( | ) ( ( ), ), 1, 2, , ,I jk OCA jkf h P I h j n        (3.41) 

where ( ( ), )OCA jkP I h   is an element of ( )( )j P  with index of the element determined by ( )OCA jkI h  

given in Eq. (3.34).  
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( )( )j P  is obtained using a transition matrix conditioned on   (see Secs. 3.4.2 and 3.5.1.2) 

as follows   

 ( ) 1, 2, 6, 0( ) [ ( , ), ( , ), , ( , )] ( ) ( ),j
j j j j MP I P I P I P      P I P   (3.42) 

in which ( )j
M P  is a modified transition matrix to account for the difference in the time scales of 

the SHM system and the 1-year transition matrix obtained from inspection data. For instance, in 

this chapter the time scale of the SHM system is in months; therefore, 
1/12( ) ( ( ))j

M  P P  in which

( )P  is obtained by following the procedure depicted in Fig. 3.3 and setting inspected total/B B  . 

Using Eqs. (3.36) through (3.42), the error ratio of the “B” ratings can be updated over 

time based on the SHM damage estimations. Next, it is discussed how to perform failure 

prognostics and maintenance planning based on the updating.  

3.6.3 Failure prognosis and dynamic optimal maintenance planning 

As indicated in Fig. 3.16, the above sequential damage estimation (using physics-based 

simulation in Sec. 3.6.1) and the updating of the error ratio (Sec. 3.6.2) are integrated with the 

transition matrix to overcome the challenge that there is no degradation model available for failure 

prognosis. To achieve this purpose, the probability mass function (PMF) of a certain OCA rating 

is computed based on the posterior distribution of the gap length obtained from physics-based 

damage estimation (Sec. 3.6.1) and the mapping from gap length to OCA rating in Eq. (3.34). 

Taking the OCA rating “ ,i nI ” (i.e. the OCA rating is i at time step nt ) as an example, the PMF of 

“ ,i nI ” conditioned on the strain observations 1:ns  collected up to current time step nt , is given by 
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   1

1

1:

, 1: , 1:

1:

( | ) , if 5
( | ) Pr | , 1, ,6,

( | ) , otherwise

i

i

i

e

n n ne

i n n n i n n

n n ne

f h dh i
P I I I i

f h dh







     







s
s s

s
   (3.43) 

in which Pr   is the probability operator and 1:( | )n nf h s  is the posterior distribution obtained 

from damage estimation as discussed in Sec. 3.6.1. 

Since particle filtering method is employed, the PMF , 1:( | )i n nP I s  is approximated as 

   1
, 1: , 1:

( )
( | ) Pr | , 1, ,6,

pN

nk
k

i n n n i n n
p

h
P I I I i

N



    


s s    (3.44) 

where , 1, 2, ,nk ph k N   are the posterior samples at nt , ,( ) 1, if ( )nk OCA nk i nh I h I    and 

( ) 0nkh  , otherwise.  

Based on the above equation, the PMF of all COA ratings conditioned on 1:ns  can be 

expressed as 

 1: 1, 1: 2, 1: 6, 1:( | ) [ ( | ), ( | ),..., ( | )].n n n n n n n nP P I P I P II s s s s   (3.45) 

Combining Eqs. (3.45) and (3.3), the OCA rating after m time steps conditioned on current 

strain observations ( 1:ns ) and given value of the error ratio   is given by 

    1: 1:| , | ( ),m
n m n n nP P   I s I s P   (3.46) 

where ( )P  is the transition matrix given in Fig. 3.3 for given inspected total/B B  . 

The cumulative density function (CDF) of the remaining useful life is then computed as 

 

 
1:

1: 1: | 1:

| | 1:

1: 6, | 1:

Pr{ | } Pr{ | , } ( | ) ,

( , ) ( | ) ,

( | ) ( | ) ,

n

n n I n

t I n

n m n n m I n

RUL m RUL m f d

F m f d

P I I f d







  

  

  

  



 





s

s s I

I

s I

  (3.47) 
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where 
1:| ( , )

ntF m s  is the failure probability in the future m time steps conditioned on 1:ns  and  , and 

| 1:( | )I nf  I  is the posterior distribution of   obtained in Sec. 3.6.2.  

With strain observations collected through the sensors, the gap length and error ratio are 

updated over time through the damage estimation discussed in Sec. 3.6.1 and the error ratio 

updating scheme in Sec. 3.6.2. The RUL is then updated through Eqs. (3.43) and (3.47). The results 

of a miter gate application show that integrating physics-based damage estimation and the Markov 

transition matrix allows for effective RUL estimate even through there is no degradation model 

available. 

Based on the failure prognosis, the ( )C PU T t  in the future m time steps conditioned on the 

current strain observations and an error ratio   is given by 

 
1: 1:

1:

| |
1:

|

0

[1 ( , )] [ ( , )]
[ ( ) | , ] ,

[1 ( , )]

n n

n

P t U t
n m

t

C F m C F m
CPUT m

F d

 


  

 




s s

s

s   (3.48) 

where 
1:| ( , )

ntF  s  is the failure probability given in Eq. (3.47), which needs to be interpolated from 

discrete time steps to continuous time step to evaluate the ( )C PU T t  for any given future time.  

The expected optimal maintenance plan conditioned on current observations, 1:ns , is then 

identified as 

 1: 1: | 1:[ | ] argmin{ ( ) | , } ( | ) .opt n n I n
t

t CPUT t f d   s s I   (3.49) 

The above equation is the result of integrating SHM with the Markov transition matrix 

based on field OCA ratings, which allows updating the optimal maintenance plan over time. This 

enables for dynamic decision making and thus leads to reduced lifecycle cost. Next, a miter gate 
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application is used to demonstrate the effectiveness of the proposed framework and investigate 

effects of the mapping function on the decision-making process. 

 

3.7. Application to Miter Gate Failure Prognosis and Maintenance Optimization 

In this section, the proposed framework is applied to an in-service USACE miter gate to 

demonstrate the effectiveness of the proposed prognosis and maintenance optimization. 

3.7.1 Physics-based simulation model of miter gate 

A FE model of the Greenup miter gate (Kentucky, USA) is used to understand the physics 

of a real-world miter gate. This model has been previously validated in the undamaged condition 

(Eick et al. 2018) with the available strain gage readings from the Greenup miter gate. Due to the 

SHM network already mounted in the Greenup miter gate (U.S. Army Corps of Engineers 

Headquarters 2007), the effect of input parameters such as the gap length (and other parameters 

such as the hydrostatic and thermal loads on the gates) to the strain network is analyzed using this 

validated FEM model. 

The Greenup gate is a relatively new gate where negligible damage (gap length) was 

assumed for validation purposes. Most elements in the gate are 3D linear shells elements to reduce 

the computational cost of such a large model. A contact-type constraint is used between the quoin 

block attached lock wall (denoted in orange) and the gate (denoted in gray), making this a nonlinear 

problem. The Lagrange multiplier method was employed to impose the contact constraint. The 

strain gauge locations are far from the contact area, mostly due to physical constraints in the miter 

gate, but this far-field location also mitigates errors due to the method employed to enforce the 

contact constraint. The opposite side of the lock wall uses fixed boundary conditions, and 

symmetry boundary conditions are used at the right end (i.e., the miter) of the gate to simulate the 
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right leaf.  Figure 3.17 shows the FE model of the Greenup gate and the modeling of bearing gap 

(enclosed area). The bearing gap (loss of contact) is modelled by removing the part of the quoin 

block attached to the lock wall (denoted in orange). Note that the size of the bearing gap in  

Figure 3.17 is just representative, as this will be a varying input variable to the FE model to 

generate “damage” data extracted from sensor locations in the gate. For more details on the quoin 

block mechanism, refer to Figure 8.37b in (Daniel and Paulus 2019a).  

        
Figure 3.17: Miter Gate and physical-based FE model 

In the next section, the generated data from multiple (i.e. 46 sensors) strain gauges will be 

used to develop diagnostics and prognostics capabilities for bearing gaps in miter gates. 

3.7.2 Sequential damage detection using physics-based simulation 

As discussed earlier, if continuous monitoring is introduced with the Markov transition 

matrix then the optimal maintenance plan over time can be updated based on the information 

gained by the sensor information using sequential damage estimation. 

As discussed in Sec. 3.6.1, the likelihood function ( | )n nf as  needs to be evaluated 

numerous times during the sequential damage estimation, which is computationally expensive 

especially because of the number of DOF in a FE model of a miter gate. A surrogate model is 
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constructed to map the relation from gap length (and other model parameters such as hydrostatic 

and thermal loads applied to miter gates) to the strain response at the strain gauges locations as 

shown in Figure 3.18. This figure shows the locations where the strain information is extracted 

from the physical based model to train the Kriging surrogate model. The sensor location matches 

with SHM strain network installed at the Greenup miter gate. 

 
Figure 3.18: Sensor locations, and data generated to train surrogate model 

Figure 3.19 shows the Kriging model testing accuracy at one strain SVD important feature 

(left) for different input values (i.e. gap length and other model inputs such as hydrostatic and 

thermal loads applied to miter gates) and the strain accuracy (in the original strain space) at 

different strain gauges locations for the same input value.  

 
Figure 3.19: Surrogate modelling accuracy validation 



  86   

Synthetic input parameters are generated using an autoregressive–moving-average 

(ARMA) model. These inputs are evaluated with the validated kriging model to generate strain 

time series measurements at every strain gauge location of the miter gate as shown in Figure 3.20. 

 
Figure 3.20: Strain observations from sensors 

Following the method discussed in Sec. 3.6.1, the posterior 1:( | )n nf h s  distribution of the 

gap length may be updated dynamically as strain measurements are available from the SHM 

network system.  Figure 3.21 shows the updated predictions of the gap length against the true 

damage. 
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Figure 3.21: Damage detection over time using the state equation given in Eq. (3.27) 

The result in Figure 3.21 shows that the proposed sequential damage estimation method is 

able to accurately estimate the damaged gap length based on the strain measurement data from the 

46 sensors as indicated in Figure 3.18. 

3.7.3 Estimation of “B” ratings error ratio based on online damage estimation 

As described in Sec. 3.6.2 and indicated in Figure 3.16, the variable, inspected total/B B  , 

can be recursively updated using the observations obtained from the physics-based damage 

estimation. To achieve this, firstly, a mapping between gap length to the OCA condition rating is 

needing following Eq. (3.34). In this application, a uniform mapping consisting on gap length 

increments of 30 in. (76.2 cm.) was used as shown in Table 3.2. 
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Table 3.2: State mapping from discrete to continuous 
OCA  
rating 

Gap  
length (cm) 

IA 0 76.2nh    

IB 76.2 152.4nh   

IC 152.4 228.6nh   

ID 228.6 304.8nh   

IF 304.8 381nh   

ICF 381nh   

Following that, the “B” rating error ratio is updated based on the damage estimation.  

Figure 3.22 shows the mean prediction and the 95% confidence intervals obtained for  . As the 

information is acquired from the physics-based diagnosis, the variance of   reduces significantly. 

Also, it is noted that as the quoin block has already surpassed the B condition, the value of   

approaches the true value (an assumed ground truth value in Sec. 3.7.2 that is used to generated 

the synthetic strain measurement data based on a gap growth model). This demonstrates the 

effectiveness of the proposed Bayesian updating scheme in estimating the “B” ratings error ratio. 

It worth mentioning that the error ratio updating is mainly affected by the gap length profile as 

given in Figure 3.21. The gap length profile is just one realization of the underlying degradation 

model. Since it is just one realization of many possible gap growth profiles, it leads to a small bias 

between the estimated error ratio and the “true” error ratio used in Sec. 3.7.2.   
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Figure 3.22: "B" ratings error ratio () estimation  

3.7.4 Failure prognosis and optimal maintenance planning for the miter gate 

To demonstrate the improvement on the gap length prognosis, the updated over time RUL 

can be evaluated, and compared against its true value. Figure 3.23 shows that the RUL estimation 

using the state equation given in Eq. (3.27). It shows that the random-walk state equation could 

lead to large errors in RUL estimate even if it can effectively perform damage detection. As been 

discussed in Sec. 3.6.3, the information from the OCA rating can be used to improve the prognosis 

capabilities and overcome the limitations of the state equation in Eq. (3.27). Figure 3.24 shows 

that the proposed hybrid prognosis method can improve the accuracy RUL estimation while 

effectively performing damage detection. The jumps in Figure 3.24 are attributed to the discrete 

nature of the OCA ratings. 
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Figure 3.23: RUL estimate using the state equation given in Eq. (3.27) 

 
Figure 3.24: RUL estimate using the proposed method 

Figure 3.25 and 3.26 show how the minimum CPUT and the optimal maintenance time are 

updated from the strain measurements over time. These figures were generated using a uniform 

mapping between the gap length to the OCA ratings as given in Table 3.2. The vertical line in 

these figures represent the true end of life. In other words, the true end of life is when the gap 

length reaches the value of 150 inch (381 cm.), which corresponds to the “CF” condition. As noted, 

the minimum CPUT mainly increase with time, indicating that the denominator in Eq. (3.48) is 

approaching to zero as the term 
1:| ( )
ntF s  is approaching to 1. Similarly, in contrast to the static 
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maintenance planning in Sec. 3.5, the optimal maintenance time (relative to the current time) can 

be updated dynamically as time passes based on the information collected from the SHM system. 

 
Figure 3.25: Minimum CPUT corresponding to different values of Cp and Cu 

 
Figure 3.26: a) Optimal maintenance time corresponding to different Cp and Cu,  

b) optimal maintenance time approaching end of life, c) alternative optimal maintenance 
time corresponding to different Cp and Cu , and d) alternative optimal maintenance time 

approaching end of life 
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One of the main reasons why the optimal time (see Figure 3.26a), especially for low cost 

ratios, increases so dramatically at around 175 month is due to the nature of Eq. (3.48) and (3.12). 

In these cases, the CPUT curve obtained from Eq. (3.48) tends to be very flat. In other words, 

many different maintenance times may have basically the same CPUT value. For Figure 3.26c, a 

conservative selection for the optimal maintenance is carried out, and it is assumed that the updated 

optimal maintenance tends to decrease with time and holds practically the same CPUT value. Thus, 

with this conservative selection, the minimum CPUT corresponding to different values of Cp and 

Cu would show basically the same results as Figure 3.25. The next section will introduce an 

approach to improve the prognosis capabilities (e.g. RUL estimate) shown in Figure 3.24 by 

introducing a stochastic continuous degradation model, and also accounting for human error 

introduced in the reported OCA ratings. 

 

3.8. Alternative Degradation Model to Improve Damage Prognosis accounting for Human 

Error in OCA ratings. 

Let ( , )ta g t θ  be the underlying degradation model of the miter gate damage gap, where 

ta  is the gap length at time t  and θ is a vector of model parameters. Fig. 3.27 shows the 

relationship among the degradation model, OCA ratings, and the reported OCA ratings by the field 

engineers. As shown in Fig. 3.27, the OCA protocol maps the gap length, ta , (i.e., the output of 

the unknown degradation model) into OCA ratings as if the protocol were strictly and accurately 

followed by the field engineers. Due to human observation error and variability, however, the OCA 

ratings reported by the field engineers as indicated in Fig. 3.27 may not be the same as the “true” 

rating that better represents the condition; this is proven true for inspectors in many application 

domains (L. E. Campbell et al. 2020). 
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Figure 3.27: Relationship among the gap degradation, OCA ratings, and the reported OCA 
ratings 

One of the objectives of the proposed method is to infer the unknown degradation model, 

( , )ta g t  , using the reported OCA ratings, which include the human variability or errors in the 

rating reporting process. The inferred degradation model will then be used for integrated damage 

diagnostics and prognostics of the miter gate. As shown in Fig. 3.27, the inference of the unknown 

degradation model in the proposed framework is accomplished through two steps: 

 Step 1: Mapping of the reported OCA ratings to the underlying true OCA ratings for a 

given OCA protocol, by considering the human observation errors of field engineers in 

reporting.  

 Step 2: Estimation of the degradation model parameters ( θ) based on the obtained true 

OCA ratings (i.e. true OCA transition matrix).  

In the next section, these two steps will be explained in detail. 

3.8.1 Mapping of the reported OCA rating transition matrix to the true transition matrix 

In order to map the reported OCA rating transition matrix to the underlying true OCA 

transition matrix, the underlying true OCA rating is defined at time t as 
tr
tI  and that at t+1 as  
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1
tr
tI  , the reported OCA rating from field engineers at time t as 

obs
tI  and that at time t+1 as 1

obs
tI  . 

Based on these definitions, the true OCA transition matrix OCAP  (i.e. OCA “ideal” protocol is 

strictly followed) is denoted as  
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  (3.50) 

where 1 , 1 ,Pr{ | } ( ), 1, 2, , 6; , , 6OCA tr tr tr tr
ij t t j t i tP I j I i P I I i j i          represents the 

probability of transiting from OCA rating i at time t to OCA rating j at t+1. 

Similarly, the reported transition matrix, built from the OCA ratings reported by field 

engineers, is denoted as  
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22 26
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R R R

R R

R
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  (3.51) 

where 1Pr{ | }, 1, 2, , 6; , , 6R obs obs
kq t tP I q I k k q k        is the probability of transitioning 

from OCA rating k at time t to OCA rating q at t+1, based on the reported OCA ratings. In addition, 

from the reported OCA ratings, the state probabilities Pr{ }, 1, 2, , 6obs
tI k k     and 

1Pr{ }, 1, 2, , 6obs
tI q q     may also be obtained. 

The goal of Step 1 of the proposed method (see Fig. 3.27) is to map ReportP  to OCAP . To 

achieve this goal, the human observation error matrix is defined as 
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  (3.52) 

in which Pr{ | }h obs tr
ik t tP I k I i    is the probability that the reported OCA rating is k given that 

the true OCA rating is i. Based on the above definitions of OCAP , ReportP , and humanP , the reported 

and true OCA ratings are connected using a Bayesian network as shown in Fig. 3.28. 

 
Figure 3.28: A Bayesian network connecting the observed and the true OCA ratings 

From the above Bayesian network, the following conditional probability tables (CPTs) are 

obtained: 
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  (3.53) 

and 
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  (3.54) 

Since the lower triangular components of ReportP  are all zero, the following marginal 

probability is written 
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With the above CPTs, the task is to obtain the true OCA transition matrix by solving 

1Pr{ | }, 1, 2, , 6; , , 6tr tr
t tI j I i i j i        in the Bayesian network shown in Fig. 3.28.  Using 

1Pr{ }, 1, 2, , 6obs
tI q q    , the following marginal probability is written 
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Writing the above equation in matrix form yields 
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obs h h h tr
t t
obs h h h tr
t t

obs h h h tr
t t

I P P P I

I P P P I

I P P P I

 

 

 

      
           
     
     

           




     


  (3.57) 

Based on Eq. (3.57), 1Pr{ }, 1, 2, , 6tr
tI j j      can be solved using humanP  and 

1Pr{ }, 1, 2, , 6obs
tI q q    . In this chapter, a constrained least-squares method is employed to 

solve Eq. (3.57) to ensure that the obtained probability estimates are in the range of [0, 1]. In order 

to estimate 1Pr{ | }, 1, 2, , 6; , , 6tr tr
t tI j I i i j i       , the marginalization of 

1 1Pr{ , } Pr{ | }Pr{ }obs obs obs obs obs
t t t t tI q I k I q I k I k        is shown as follows 

 

6 6

1 1 1
1

6 6

1 1 1
1

Pr{ , } Pr{ , , , },

Pr{( , ) | ( , )}Pr{ , }.

obs obs obs obs tr tr
t t t t t t

i j i

obs obs tr tr tr tr
t t t t t t

i j i

I q I k I q I k I j I i

I q I k I j I i I j I i

  
 

  
 

      

      




  (3.58) 

According to the Bayesian network given in Fig. 3.28, it follows that 
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1 1

1 1

1 1
6

1 1

Pr{( , ) | ( , )}

Pr{ | , }Pr{ | },

Pr{ , , }
.

Pr{ , , }

obs obs tr tr
t t t t

obs tr obs obs tr
t t t t t

obs tr obs
ht t t

ik
obs tr obs
t t t

w k

I q I k I j I i

I q I j I k I k I i

I q I j I k
P

I w I j I k

 

 

 

 


   

     

  


  

  (3.59) 

Substituting Eq. (3.59) into Eq. (3.58) yields 

 

1

6 6
1 1

16
1

1 1

Pr{ , }

Pr{ , , }
Pr{ , }.

Pr{ , , }

obs obs
t t

obs tr obs
h tr trt t t

ik t t
obs tr obsi j i
t t t

w k

I q I k

I q I j I k
P I j I i

I w I j I k



 


 
 



 

 
      
    
 




  (3.60) 

The following is obtained from the numerator of Eq. (3.54) 

 
1 1

1 1 1

Pr{ , , }

Pr{ | , } Pr{ },

obs tr obs
t t t

obs obs tr h tr
t t t jq t

I q I j I k

I k I q I j P I j

 

  

  

    
  (3.61) 

where 1Pr{ }tr
tI j   is solved in Eq. (3.57).  

Combining Eqs. (3.60) and (3.61) yields 

 6 6
1 1 1

16
1

1 1 1

Pr{ }

Pr{ | , } Pr{ }
Pr{ , }.

Pr{ | , } Pr{ }

R obs
kq t

obs obs tr h tr
t t t jq t h tr tr

ik t t
obs obs tr h tri j i
t t t jw t

w k

P I k

I k I q I j P I j
P I j I i

I k I w I j P I j

  


 
  





 
    
   
     
 




  (3.62) 

In order to make 1Pr{ | }, 1, 2, , 6; , , 6tr tr
t tI j I i i j i        solvable given the current 

available information ( ReportP and humanP ), it is assumed conditional independence for 

1 1 1Pr{ | , } Pr{ | }obs obs tr obs obs
t t t t tI k I q I j I k I q        . This is a reasonable assumption for the 

Bayesian network structure given in Fig. 3.28, since the resulting joint probability mass function 
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1 1Pr{ , , }obs tr obs
t t tI q I j I k     satisfies the constraints of all the current given information in ReportP  

and humanP . Based on this assumption, the conditional probability and Bayes rule are exploited 

 
1 1

1
1 1

1

Pr{ , , }

Pr{ } Pr{ }
Pr{ | } Pr{ } , .

Pr{ }

obs tr obs
t t t

R obs h tr
kq t jq tobs obs h tr

t t jq t obs
t

I q I j I k

P I k P I j
I k I q P I j q k

I q

 


 



  

 
      



  (3.63) 

Substituting Eq. (3.63) into Eq. (3.62) as follows 

 
1

6 6
1

16
1 1

1

Pr{ }

Pr{ } Pr{ }

Pr{ }
Pr{ , }.

Pr{ } Pr{ }

Pr{ }

R obs
kq t

R obs h tr
kq t jq t

obs
h tr trt

ik t tR obs h tr
i j i kw t jw t

obs
w k t

P I k

P I k P I j

I q
P I j I i

P I k P I j

I w






  

 



  
 

            




  (3.64) 

Defining 

1

1

6
1

1

Pr{ } Pr{ }

Pr{ }

Pr{ } Pr{ }

Pr{ }

R obs h tr
kq t jq t

obs
ht

ijkq ikR obs h tr
kw t jw t

obs
w k t

P I k P I j

I q
P P

P I k P I j

I w







 

 


  
   


 , it follows that 

 
6 6

1
1

Pr{ } Pr{ , },R obs tr tr
kq t ijkq t t

i j i

P I k P I j I i
 

      (3.65) 

which again elucidated in matrix form is 

 

,1 ,1,1 ,1,2 ,1,20 ,1,21

,2 ,2,1 ,2,2 ,2,20 ,2,21

,20 ,20,1 ,20,2 ,20,20 ,20,21

,21,1 ,21,2 ,21,20 ,21,21,21 21 2121 1

h h h h
JJ J J J J

h h h h
J J J J J

h h h h
J J J J J

h h h h
J J J JJ

PP P P P P
P P P P P

P P P P P

P P P PP


   
   
   
   
   
   
   

  




     



,1

,2

,20

,21 21 1

,

OCA

OCA
J

OCA
J

OCA
J

P

P

P


 
 
 
 
 
 
 
  

   (3.66) 

where , Pr{ }R obs
J x kq tP P I k  , , 1Pr{ , }OCA tr tr

J y t tP I j I i   , , ,
h

J x y ijkqP P , in which the indices are 

related to each other by 
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 1

1

, if 1

, ,
( 1) (6 1), otherwise

k

s

q k

x q k
q k s






       

   (3.67) 

and 

 1

1

, if 1

, .
( 1) (6 1), otherwise

i

s

j i

y j i
j i s






       

   (3.68) 

Using Eq. (3.66), , 1Pr{ , }, 1, 2, , 6; , , 6OCA tr tr
J y t tP I j I i i j i        can be solved 

similarly as in Eq. (3.57) using the constrained least-squares method. Using the above equations 

(Eq. (3.53) through (3.68)), the reported OCA rating transition matrix ReportP  is mapped into the 

underlying true OCA rating transition matrix OCAP  considering the human observation errors humanP

. The next section will discuss how to estimate the degradation model parameters θ of ( , )ta g t θ  

using the transition matrix OCAP . 

3.8.2 Estimation of the degradation model parameters 

As noted in Step 2 in Fig. 3.27, in order to establish a connection between the degradation 

model ( , )ta g t θ  and the OCA transition matrix OCAP , a mapping function is defined for the OCA 

protocol as below 

 

1

1 2

2 3

3 4

4 5

5

, [0, ]

, [ , ]

, [ , ]
( , ) ,

, [ , ]

, [ , ]

, [ , )

t

t
OCA t

t

t

t

A a

B a

C a
R h a

D a

F a

CF a


 
 
 
 



 
    
 


 

   (3.69) 
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where R  is the OCA rating, ta  is the gap length, and 1 2 3 4 5[ , , , , ]      is a vector of 

parameters of the mapping function related to the OCA protocol. 

In the proposed method, the unknown parameters  are estimated for given set of 

parameters  which defines the mapping function (i.e. Eq. (3.69)). Also, given the degradation 

model ( , )ta g t  , and the true OCA transition matrix, OCAP , shown in Sec.3.8.1.  After that, 

diagnostics and prognostics are performed based on the estimated .  

The task of estimating  is to solve the following optimization problem 

 
*

OCAarg min{ ( ; , )},

. . ,

optg

s t





P


  


  (3.70) 

where ( ; , )optg R   is a cost function of the optimization model, and   is the domain of . In 

the above optimization model, the cost function ( ; , )optg R   is defined as 

 
OCA OCA

2

6 6
2

, 1 , , 1 ,
1

ˆ( ; , ) ( ) ,

ˆ( ( | ; ) ( | )) ,

opt

s s tr tr
j t i t j t i t

i j i

g

P I I P I I 
 

 

 

P P P  


  (3.71) 

in which , 1 ,
ˆ ˆ( ) { ( | ; ), 1, 2, , 6; , , 6}s s

j t i tP I I i j i  P      is the simulated transition probabilities 

of the OCA ratings from the degradation model simulation for given , OCAP  is the true OCA 

transition matrix (i.e. Eq. (3.50)) obtained from Sec. 3.8.1 based on the reported OCA transition 

matrix and human observation error matrix.  

It should be noted that, theoretically speaking, the optimization model Eq. (3.71) can also 

be formulated directly from the reported OCA transition matrix ReportP  perspective by coupling the 

approach developed in this section with the forward uncertainty propagation of the OCA ratings 

based on the human error observation matrices. That kind of formulation can be considered as an 
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alternative approach of the proposed method and will be investigated in future work. The benefit 

of using OCAP  in Eq. (3.71) is two-fold:  first, the identification of OCAP  in Sec. 3.8.1 allows us to 

perform failure prognostics with OCAP  instead of ReportP  using the approach developed in Ref. (M. 

A. Vega, Hu, and Todd 2020) and reviewed in Sec. 3.6. Using OCAP  to replace ReportP  in transition 

matrix-based prognostics will improve the accuracy of failure prognostics since OCAP  mitigates the 

effects of human observation errors. Second, the formulation given in Eq. (3.71) eliminates process 

of uncertainty propagation step from OCAP  to ReportP  in estimating  which reduces the complexity 

of the optimization process.  

As shown in Eq. (3.71), the estimation of ˆ ( )P   for a given  is the key for the 

optimization-based method to minimize the L2 error norm between the underlying true OCA 

transition matrix, OCAP , and the estimated transition matrix, ˆ ( )P  obtained from the estimated 

multi-stage continuous degradation model. The next section will discuss in detail on how to 

estimate ˆ ( )P   for given . After that, an explanation will be given of how to solve Eq. (3.71) 

based on the estimation of multi-stage continuous degradation model.  

3.8.2.1 Prediction of OCA rating transition matrix ˆ ( )P   for given  

As mentioned earlier, there is a need of a degradation model whose OCA transition matrix 

prediction, ˆ ( )P  , resembles the true OCA transition matrix, OCAP . However, different criteria on 

selecting a degradation models are present depending on the data available and the understanding 

of the physics of the damage evolution. 
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(a) Selection of gap degradation model 

i. Paris’ law:  

A Paris’ law is a crack growth equation that gives the rate of growth of a fatigue crack. It 

is widely used in many engineering applications. The Paris equation is shown as follows: 

 ( )
,mda t

C K
dt

    (3.72) 

where C  and m  are the material-related parameters and K  is the stress intensity function given 

by 

 01.2 ,K F S a     (3.73) 

in which 1.2F  is the crack shape factor, S  is the stress range, and 0a  is the initial crack length. 

Note that, the parameters in this degradation model have a physical meaning, which may be not 

suitable in the case of a degradation model of bearing gaps in miter gates due to the lack of physical 

understanding on the evolution of this type of damage. Another alternative, is to explore 

degradation models whose tuning parameters are very flexible and do not have a physical meaning  

ii. Failure forecasting method (FFM): 

The FFM is a method that has been used for capturing the characteristic form of fatigue 

crack growth “rate” behavior. The advantage of the FFM is that “it does not rely on assumptions 

of material properties, geometry, or operating conditions, but rather the observed response of the 

component” (Leung et al. 2019). This leads to a reduction of sources of uncertainty and may 

provide more confident life predictions. The rate dependant behaviour can be obtained by solving 

the following differential equation: 

 
2

2

( ) ( )
,

b
d a t da t

A
dt dt

   
 

  (3.74) 
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in which A  and b are arbitrary constants and ( )a t  is the observable metric of damage. It is 

observed that b ≈ 2 for many cases including fatigue crack growth. More details can be found in 

(Corcoran 2017). Note that, the rate of the observable metric of damage may not be directly 

available from the measurements obtained specially in the case of bearing gaps in miter gates. 

iii. Yang and Manning model: 

A simple second order approximation for stochastic crack growth model was proposed by 

(J. N. Yang and Manning 1996), given by 

 ( )
( ) ( ( )) ,wda t

X t Q a t
dt

  (3.75) 

where Q  and w  are parameters that need to be estimated, and ( )X t  is modelled as a stationary 

lognormal stochastic process with a unit mean and an auto-covariance function (J. N. Yang and 

Manning 1996) 

 2
1 2 2 1( ( ), ( )) exp( ),x xcov X t X t t t      (3.76) 

in which x  is the standard deviation of ( )X t , and x  controls the correlation of ( )X t  over time. 

If 
1

x


 approaches to zero, ( )X t  is a stationary lognormal white noise random process and the 

degradation model can be considered as the most non-conservative stochastic modelling. On the 

other hand, If 
1

x


 approaches infinity, ( )X t  is a lognormal random variable and the model 

becomes to be the most conservative. 

In this chapter, a model that is similar to the Yang and Manning model is selected since it 

does not require a good understanding of the physics and maintains some growth-law features at 

the same time. The model is given by 

 ( )
exp( ( )) ( ( )) ,w

t

da t
U t Q a t

dt
   (3.77) 
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in which 0t   is a degradation stage-dependent variable and ( )U t  is a stationary standard 

Gaussian process with auto-correlation function given by 

 1 2 2 1( ( ), ( )) exp( ),cov U t U t t t     (3.78) 

where   is a correlation related parameter similar to Eq. (3.76). In addition, it assumes that the 

degradation model ( , )ta g t θ  consists of dN  degradation stages (e.g. 5dN   in the studied case) 

and thus the multi-stage gap growth model is defined as  

 ( )
exp( ( )) ( ( )) , 1, 2, ,iw

i i d

da t
U t Q a t i N

dt
   ,  (3.79) 

where ( )a t  is the gap length at time t, i  is a standard deviation variable of degradation stage i, 

and iQ  and iw  are degradation stage-dependent constants. 

To account for the effect of degradation stages over time, a generalized Yang and Manning 

model is further defined as below 

 ( )( )
exp( ( ) ( )) ( )( ( )) ,w tda t

t U t Q t a t
dt

   (3.80) 

where ( )t , ( )Q t , and ( )w t  are determined through gap length ( )a t  as follows 

 

( )

( ) , where ( ( )),

( )

j

j s

j

t

Q t Q j h a t

w t w

  


 
 

  (3.81) 

in which ( ( ))sj h a t is a function that maps gap length ( )a t  into degradation stage and is given 

by 

 

1

1 2

1

1, if ( ) [0, ],

2, if ( ) [ , ],
( ( )) ,

, if ( ) [ , ),
d

s

d N

a t e

a t e e
j h a t

N a t e 


   

  

   (3.82) 
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where 1, 1, 2, , 2i i de e i N     are the threshold gap lengths that determine the transition of 

degradation stages. Note that the mapping function (i.e. ( ( ))sj h a t ) for the gap growth model is 

different from the mapping function (i.e. ( , )OCA tR h a β ) defined by the OCA protocol. The 

mapping function ( ( ))sj h a t  is governed by the underlying degradation physics while 

( , )OCA tR h a β  is defined by the engineers using OCA protocols. 

Moreover, in order to account for the randomness of the threshold gap lengths that govern 

the transition of degradation stages, , 1, 2, , 1i de i N    are described as Gaussian random 

variables as follows 

 
2~ ( , ), 1, 2, , 1,i i e de N i N       (3.83) 

where 
2( , ), 1, 2, , 1i e dN i N     stands for normal distribution with mean i  and standard 

deviation e . 

In discrete-time space, the above degradation model given in Eqs. (3.80) through (3.83) is 

rewritten as 

 1( )
1 1 1 1( ) ( ) exp( ( ) ( )) ( )( ( )) , 1, 2, , ,kw t

k k k k k k ta t a t t U t Q t a t k N 
          (3.84) 

 

1

1

1

( )

( ) , where ( ( )),

( )

k j

k j s k

k j

t

Q t Q j h a t

w t w

 





 


 
 

  (3.85) 

where tN  is the number of analysis time steps in the time duration of interest.  

To summarize, in the selected degradation model, the parameters  of the degradation 

model include the following parameters 

  1 1 2 1, , , , , , , , , ,
d dN N e    2        (3.86) 
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where { , , , = 1, 2, , }.j j j j dQ w j N   

The next section will discuss the prediction of ˆ ( )P   for a given . 

(b) Prediction of ˆ ( )P   using the degradation model 

As mentioned previously, , 1 ,
ˆ ˆ( ) { ( | ; ), 1, 2, , 6; , , 6}s s

j t i tP I I i j i  P     , for a given 

1 2 1{ , , , }
dNe e e e  , , 1 ,

ˆ ( | ; , )s s
j t i tP I I e  is given by 

 , 1 ,
, 1 ,

,

( ; , )ˆ ( | ; , ) ,
( ; , )

s s
j t i ts s

j t i t s
i t

P I I
P I I

P I







e
e

e





  (3.87) 

where  

 , 1

1

Pr{0 ( ) }, if 1,

( ; , ) Pr{ ( ) }, if 1 6, 1, 2, , 6

Pr{ ( ) }, if 6,

i

s
i t i i

i

a t i

P I a t i i

a t i


 






  
      
    

e    (3.88) 

 , 1 , 1 1( ; , ) Pr{ ( ) ( 12) },

1, 2, , 6; , , 6,

s s
j t i t i i j jP I I a t a t

i j i

            

  

e

 


  (3.89) 

in which 0 0  , ( )a t  and ( 12)a t   are obtained through the degradation model given in  

Sec. 3.8.2.1 conditioned on given  and e, and i  or j   if i=6 or j=6. The two time steps 

used in Eq. (3.89) are t  and 12t   since the inspection interval is one year, and the unit of the time 

step of the discrete time degradation model (i.e. Eqs. (3.84) and (3.85)) is one month. 

Since the inspection time t can be any time in the lifetime of the gate, Eqs. (3.87) through 

(3.89) are rewritten as follows 
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where lt  and ut  are respectively the lower and upper bounds of the time duration of interest. 

In general, Eqs. (3.90) is analytically intractable due to the complicated transition between 

stages, even though several analytical expressions have been developed for degradation model 

with only one stage based on assumptions and simplifications (Y. Liu et al. 2016). In this chapter, 

the simulation-based method is employed. For a given  and e, the degradation of the gap is first 

simulated using the discrete-time model given in Eqs. (3.84) and (3.85). From the simulation, the 

samples obtained of the gap length are denoted as  ( , ) , 1, 2, , ; 1, 2, ,s ij MCS ta i n j N a e    , 

where ija  is the i-th realization of the gap growth curve at time step jt , MCSn  is the number of 

samples at each time step and  is the total number of simulation time steps. Based on the simulated 

samples of the gap growth, Eq. (3.90) is approximated as 
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  (3.92) 

where ( )E  is an indicator function, ( ) 1E   if event E  is true; ( ) 0E   if event E  is false. 

In the above equation, event E  represents 1 , 1 , 12( ) ( )i q k i j q k ja a           and 

, 1i q k ia    . 
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Combining Eqs. (3.91) and (3.92), the following is obtained 
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 The above probability estimate is conditioned on  and e. After considering the 

uncertainty in threshold gap lengths, 1 2 1[ , , , ]
dNe e e e  , that determines the transition of 

degradation stages, the marginalization of , 1 ,
ˆ( | ; )s s

j t i tP I I   can be written as 
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where ( | )fe e   is the joint PDF of 1, and , 1, 2, , 2i i i de e e i N    , and     is the PDF of a 

standard normal distribution. 

In this chapter, a sampling-based approach is employed to estimate Eq. (3.94). Using Eqs. 

(3.87) through (3.94), , 1 ,
ˆ ˆ( ) { ( | ; ), 1, 2, , 6; , , 6}s s

j t i tP I I i j i  P      can be estimated for 

given . The estimated ˆ ( )P   can then be used in Eq. (3.71) to estimate the parameters  of the 

degradation model. Table 3.3 provides a pseudocode for this process. 

Table 3.3: Estimation of ˆ ( )P   for given  1 1 2 1, , , , , , , , ,
d dN N e    2       

Step Description 
1 Initialization: Generate samples of 1( ), , ( )

tNU t U t  for a given correlation 

length  , samples of 1, 1, 2, , 2i i de e i N     based on 

1 2 1, , , ,
dN e    , and initial samples of 0( )a t  

2 Sort the samples of 1, 1, 2, , 1i i de e i N     

3 For 1, 2, , tk N  : 
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4  Map gap length 1( )ka t   into degradation stage using Eq. (3.82) 

5  Obtain samples of ( )ka t  using Eqs. (3.84) and (3.85) 

 End 
6 Obtain samples of ( )ka t , 1, 2, , tk N   

7 Reshape the data and obtain samples of ( )ka t  and ( 12)ka t   

8 Compute ˆ ( )P   using Eqs. (3.93) and (3.94) for a given  defined in Eq. (3.69) 

The next section discusses how to estimate  by solving the optimization model given in  

Eq. (3.71). 

3.8.2.2 Estimation of degradation model parameters  

In this chapter, the Generalized Simulated Annealing (GSA) method is used to solve the 

optimization problem. This method is a stochastic approach for approximating the global optimum 

of the cost function shown in Eq. (3.71). The GSA method is mainly used when processing 

complicated non-linear objective functions with a large number of local minima. The Cauchy-

Lorentz visiting distribution is used to generate a trial jump distance ( )tθ  of the variable ( )t , 
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   (3.95) 

where D is the dimension of the variable space, ( )
vqT t  is the artificial temperature, which is a global 

time-varying parameter, and vq  is a time-invariant parameter that controls the rate of cooling. To 

avoid local minima, the trial jump uses an acceptance probability using a Metropolis algorithm. In 

other words, the proposed trial jump is always accepted if it is downhill and it is accepted with a 

probability if the jump is uphill, which allows to explore the space outside the local minima. For 
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more details on this method, the reader is referred to (Yang Xiang et al. 2013; Y. Xiang and Gong 

2000). 

After the parameters  of the degradation model ( , )ta g t   are estimated, the degradation 

model can be used for damage diagnostics and prognostics, which is briefly discussed in the next 

section. 

3.8.3 Diagnostics and prognostics of using the degradation model 

Let 1 2[ , , , ]
Si i i iNs s ss   be the strain measurement data at time step it , where SN  is the 

number of strain sensors providing data. The posterior probability density function of the gap 

length ( )k ka a t  at time step kt  conditioned on strain measurements 1: 1 2{ , , , }k ks s s s   

collected up to kt  is then given by 

 1: 1
1: 1: 1
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f a f a da
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

s s
s s s

s s
  (3.96) 

where ( | )k kf as  is the likelihood function (from the measurement equation) of observing ks  for 

given ka  at time step kt , and 1: 1( | )k kf a s  is given by 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | ) ,k k k k k k kf a f a a f a da     s s   (3.97) 

where 1( | )k kf a a   is the PDF of ka  for a given 1ka   obtained from the state equation, e.g., the 

degradation model ( , )ta g t   obtained in Sec. 3.8.2. The following state and measurement 

equations are thus considered, 
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where 1ka  , ka , 1k  , 1kU  , 1kQ  , and 1kw   are respectively 1( )ka t  , ( )ka t , 1( )kt  , 1( )kU t  , 

1( )kQ t  ,  and 1( )kw t   given in Eq. (3.84), and  is the measurement noise given by 

 
2~ ( , ),obsN 0 I   (3.99) 

in which obs  is the standard deviation of the measurement noise and 1 1ˆ( , )k kg a  x  is a model for 

the prediction of strain response for given gap state 1ka   and other input variables 1kx  such as 

water levels and temperature.  

Since the original FE model 1 1ˆ( , )k kg a  x , is usually used to replace the original FE model. 

The equations above can then be solved recursively in a timely manner. A Kriging surrogate model 

is constructed in this paper to map the relation from gap length (and other model parameters such 

as hydrostatic and thermal loads applied to miter gates) to the strain response at the strain gauges 

locations. Based on the above degradation model, the remaining useful life of a miter gate can be 

estimated at every time step kt  as  

 1:
1

1
Pr{ | } { ( , ) , 1, 2, , },

PFN

RUL m k e
iPF

T t a i j k a j m
N 

      s    (3.100) 

in which RULT  stands for the remaining useful life, PFN  is the number of samples used in the state 

estimation using Eq. (3.98), ea  is the gap failure threshold, and ( , )a i j k  is the i-th realization 

of the gap length at the ( )j k -th time step. In the next section, a miter gate case study is used to 

demonstrate the effectiveness of the proposed framework. 

3.8.4 Case Study: Miter Gate 

The term,  , 1 ,
ˆ ,j t i tP I I  , is the derived transition matrix obtained from the stochastic 

degradation model. To calculate this matrix, it is necessary to map the gap length value from its 
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continuous form to the discrete OCA ratings using  defined in Eq. (3.69).  is also needed in the 

evaluation of gap length using OCA ratings by the field engineers. Table 3.2 shows the mapping 

between gap length, ( )nh a t , to its corresponding OCA rating. For the values on this table, the 

mapping is assumed to be known and would be treated as the inspection policy.  

For the OCA ratings given in the aforementioned table, an example of the report OCA 

transition matrix ReportP  is given as  

 Report

7.76 1 2.13 1 5.25 3 2.16 3 1.85 3 2.47 3

9.28 1 4.40 2 1.74 2 7.94 3 2.60 3
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As discussed in Sec. 3.8.1, the reported OCA transition matrix may have errors due to the 

human observation errors of the field engineers. Next, a demonstration is presented of how to 

obtain the underlying true transition matrix based on the human error matrix using the proposed 

method. After that, a discussion is presented on how to obtain a gap degradation model and how 

to use it to perform diagnostics and prognostics. 

3.8.4.1 Mapping the reported OCA transition matrix to the true OCA transition matrix for different 

human error scenarios 

As indicated by (L. E. Campbell et al. 2020), this human error/performance may be 

evaluated to quantify the reliability or accuracy of these inspections. For demonstration purposes, 

four different cases as shown in Eqs. (3.102) to (3.105) will be evaluated to see the effect of human 

error on the OCA transition matrix and the degradation model. Case 1 assumes that the inspection 

is performed without any human observation errors, in other words, humanP  would be the identity 
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matrix. Case 2 represents the behavior of an inspector that regularly tends to assess a structural 

component to be in a better condition than reality. For example, as shown in Eq. (3.103), there is 

a 20% probability that an inspector reports a rating A to a structural component when in reality the 

true state of the component belongs to rating B. Contrarily, Case 3 represents an inspector that 

tends to be very conservative. For example, as shown in Eq. (3.104), there is a 12% probability 

that an inspector reports a rating F to a structural component when in reality the true state of the 

component belongs to rating D. Case 4 represents a case in between case 2 and case 3. 
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As shown in Eq. (3.58), the true OCA transition matrix ( OCAP ) can be obtained after 

knowing the reported OCA transition matrix ( ReportP , Eq. (3.101)) and the human observation errors 

( humanP , Eqs. (3.102) through (3.105)). Using the different cases of human observation errors 

mentioned earlier, the true OCA transition matrix for each case is shown in Eqs. (3.106) to (3.109) 

respectively. 
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and 
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 case4
OCA
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The human observation error has a significant effect on the true OCA transition matrix.  

For Case 1, the true OCA transition matrix (
case1
OCAP , Eq. (3.106)) is equal to the reported OCA 

transition matrix ( ReportP , Eq. (3.101)) and consistent when human observation error is not present. 

For Case 2, the true OCA transition matrix (
case2
OCAP , Eq. (3.107)) shows a decrease on the majority 

of the transition probabilities located in the diagonal when Cases 1 and 2 are compared. In other 

words, the degradation model should tend to deteriorate faster at the beginning. Contrarily, the true 

OCA transition matrix (
case3
OCAP , Eq. (3.108)) for Case 3 shows that the majority of the transition 

probabilities located in the diagonal shows an increase when Cases 1 and 3 are compared. Note 

that not all the diagonal elements show a decrease due to the error cancellations in first and second 

assessments of the OCA ratings. But in general, the degradation model of Case 3 degrades slower 

than that of Case 1 (as shown in the results in Sec. 5.2). As expected, Case 4 (i.e. Eq. (3.109)) 

shows some of the diagonal entries increase while the other diagonals entries decrease when Cases 

1 and 4 are compared. Even though effects of the human observation errors on the transition matrix 

is very complicated due to the “error cancellation” in the OCA ratings, the proposed approach can 

account for the complicated effects by mapping the reported OCA transition matrix to the true 

OCA transition matrix. 

In the next subsection, the underlying degradation models will be identified based on the 

OCA transition matrices of different level of human observations errors. 
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3.8.4.2 Gap growth modeling based on OCA transition matrix 

Figure 3.29 shows a flowchart of how to obtain the transition matrix from the stochastic 

degradation model, which is used to estimate the gap growth model parameters based on the OCA 

transition matrices obtained above. 

 
Figure 3.29: Flowchart to obtain simulated transition matrix from a gap degradation 

model 

Figure 3.30 shows the cumulative minimum error after each iteration of the stochastic 

degradation model after tuning 21 parameters for four different cases (i.e. Eq. (3.102) through 

(3.105)). The GSA optimization algorithm successfully achieves a very small error for each case.   
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Figure 3.30: Cumulative minimum error after each iteration 

Figure 3.31 presents the simulated gap growth curves corresponding to the four scenarios 

after identifying the optimal parameters of the gap growth model using GSA. 

 
Figure 3.31: Gap growth model comparison for different human error cases 
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Comparing the gap growth curves of Case 2 to 4 with Case 1, similar conclusions can be 

obtained as that from comparing the OCA transition matrices (i.e. Eq. (3.106) to (3.109)). For Case 

2, the degradation model should tend to deteriorate faster at the beginning as shown in Figure 3.31, 

which can also be seen in Figure 10 when comparing  Case 1 and 2. Contrarily, for Case 3, the 

degradation model should tend to deteriorate slower as shown in Figure 3.31, when Cases 1 and 3 

are compared.  

Figure 3.32 shows the time distribution when the curves shown in Figure 3.31 exceed four 

different thresholds. As expected, the time distribution for Case 2 shifts to earlier time region (i.e. 

left) compared to its counterpart of Case 1. Conversely, the time distribution for Case 3 shifts 

towards later time region (i.e. right) if compared to Case 1. Consistently, the result for Case 4 in 

general shows time distributions between that of Case 2 and 3. 

 

Figure 3.32:Time distribution when gap length, a, exceeds 381 cm. (CF) for different 
human error cases 
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The above results show that the proposed method is able to effectively investigate the 

effects of human errors on the OCA transition matrix and the gap growth of the gate over time.  

3.8.4.3 Bearing gap diagnosis and prognosis using SHM and gap growth modeling 

Data is extracted from the Greenup FE model (see Figure 3.18) to train a Kriging surrogate 

model. Two different surrogate models are built, one that would be used to generate the synthetic 

data (representing the true physics) and the other to be calibrated during the estimation process. 

Figure 3.33(a) shows the updated predictions of the gap length against the true damage using the 

proposed gap growth model in the estimation process. 

 
Figure 3.33: (a) Damage detection over time, and (b) RUL using the proposed method 

(where “TM” stands for the transition matrix-based approach as reviewed in Sec. 3.7.4) 

As shown in Figure 3.33(b), the proposed method can accurately capture remaining useful 

life (RUL) while effectively performing damage detection (i.e. Fig. 3.33(a)). In addition, the results 

show that the uncertainty in the RUL estimate can be reduced significantly by mapping the OCA 

transition matrix into a higher-precision gap growth model, compared to that of the transition 

matrix-based method as reviewed in Sec. 3.6. The jumps in Figure 3.33(b) are attributed to the 

discrete nature of the OCA ratings, which are more pronounced in the predictions using the TM 
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based approach. More details of the TM approach can be found in (M. A. Vega, Hu, and Todd 

2020). Results of this case study demonstrate the efficacy of the proposed method. 

 

3.9. Conclusions 

This paper presents a novel framework for failure diagnostics and prognostics for bearing 

damaged gaps in quoin block components of a miter gate. This framework is based on integrating 

abstracted inspection data and structural health monitoring data. This work is especially useful 

when the evolution of the damage mechanism is not well known or understood either due to the 

lack of enough data that relates damage to sensor information or the lack of a physics-based model 

that describes the evolution of the damage. It is assumed that the only available data that describes 

the damage evolution are based on abstracted rating assessments such as the OCA ratings. An 

approach is first proposed to map the reported OCA transition matrix into the underlying true OCA 

transition matrix. Based on that, the proposed framework successfully integrates a stochastic 

degradation model built from the OCA Markov transition matrix and shows how this model is 

suitable for integration with continuous monitoring. The damage diagnosis via physics-based FE 

model updating using the degradation model proposed provides satisfactory results. Also, to 

demonstrate the improvement on the gap length prognosis, the updated over time RUL was 

compared against its true value. Results of a case study show that (1) the proposed framework can 

effectively address the issue of human reporting errors in the OCA ratings in the prognostics of 

miter gate, and (2) the uncertainty in the RUL estimate can be reduced significantly using the 

proposed framework. Note that, this approach can be applicable to different components in miter 

gates, which may have different transition matrices values. However, further work needs to be done to 

extend this methodology from miter gate components to the miter gate system level (e.g. including all 

critical miter gate components); that work would need to focus on how failure mode probabilities from 
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multiple causes/sources are correlated and propagate towards a more global limit state failure 

definition. In this paper, optimization-based methods are employed to identify the underlying true 

OCA transition matrices as well as the gap growth model parameters. These procedures can be 

integrated together in a full-Bayesian framework. The development of the full-Bayesian 

framework and the investigation of other alternative approaches will be studied in our future work.  

 

3.10. Preview to Chapter 4 

As mentioned in section 3.9, more components in miter gates need to be considered to 

implement a CBM framework applicable to the system level. For these reason, other forms of 

damage in miter gates needs to be investigated. The next chapter presents a damage diagnosis 

framework considering two more forms of damage in miter gates beyond the degradation of 

bearing gaps.  

 

3.11. Remarks 

Portions of this dissertation have been published or are currently being considered for 

publication. Chapter 3 is composed by two articles that have been submitted and currently under 

review for publication: 

Vega, Manuel A., Zhen Hu, and Michael D. Todd. 2020. “Optimal Maintenance Decisions for 
Deteriorating Quoin Blocks in Miter Gates Subject to Uncertainty in the Condition Rating 
Protocol.” Reliability Engineering & System Safety 204. 
https://doi.org/10.1016/j.ress.2020.107147. 

Vega, Manuel A., Zhen Hu, Travis B. Fillmore, Matthew D. Smith, and Michael D. Todd. 2020. 
“Integration of Abstracted Inspection Data and Structural Health Monitoring for Damage 
Prognosis of Miter Gates (under review).” Reliability Engineering & System Safety. 
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Chapter 4 

 

EFFICIENT BAYESIAN INFERENCE OF MITER GATES 
USING HIGH-FIDELITY MODELS   
 

4.1. Abstract 

Continuous monitoring of miter gates used in navigation locks is desirable in order to 

prioritize maintenance and avoid unexpected failures. Substantial economic losses to the marine 

cargo and associated industries are caused by the closure of these inland waterway structures. 

Strain gauges are often installed in many of these miter gates for data collection, and various 

inverse finite element techniques are used to convert the strain gauges data to damage-sensitive 

features. Arguably, a refined finite element model of such structure can be very computationally 

expensive even when using linear models. An efficient way to solve an inverse problem with time-

consuming model evaluations is making use of parallel model evaluations using a Sequential 

Monte Carlo (SMC) algorithm and parallel solution of the finite element (FE) equations using a 

commercial FE software. A significant advantage of SMC algorithms is that model evaluations are 

independent and are able to be run in parallel. In this chapter, an expensive high-fidelity model of 

a miter gate is used to infer damage-sensitive features given a noisy set of strain measurements. 

 

4.2. Introduction  

Navigation locks form a crucial part of inland waterways infrastructure network. Miter 

gates are the most common type of navigation locks in the United States (US) with other types of 

lock gates being sector, tainter, and vertical lift (Alexander et al. 2018). Miter gates are steel 
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structures that allow passage of ships, boats, and watercrafts across stretches of different water 

levels in canals and rivers. In the US, more than half of these structural assets have surpassed their 

50-year economic design life (Foltz 2017). Damage to miter gates may lead to closure of a lock 

chamber. Two types of maintenance events (i.e., scheduled and unscheduled) apply to miter gates. 

Scheduled maintenance allows navigation users to adjust their activities to avoid unexpected 

delays and minimize their economic loss. However, unscheduled closures resulting from 

unexpected events such as undetected deterioration reaching a critical limit state or extreme events 

(e.g., barge impact) more substantially affect navigation users’ economic bottom line and induce 

a higher cost of maintenance (Kress et al. 2016). Estimating the condition of a miter gate and its 

components can help to reduce the risk in unscheduled maintenance events and prioritizing better 

schedule maintenance events. The U.S. Army Corps of Engineers (USACE) have established a 

discrete rating system to allow inspectors to rate the components of a miter gate based on condition 

and performance (M. A. Vega et al. 2019), which are used by decision-makers for maintenance 

and operations planning. However, inspections based on this rating system can vary for different 

inspectors because it is based on engineer judgement. Continuous structural health monitoring 

(SHM) of these infrastructure assets may help to reduce the uncertainty and ensure better-informed 

decisions that lead to safer and more reliable operations (Eick et al. 2018). 

One of the consequences of deterioration in miter gates is the formation of a bearing gap 

that occurs between the contact blocks that interface the lock walls and the miter gate (Eick, Smith, 

and Fillmore 2019b). The bearing gap governs the lateral boundary conditions on the gate, and its 

degradation from loading, wear, corrosion, and other sources leads to changes in the stress-strain 

profile of the entire miter gate (Mahmoud, Chulahwat, and Riveros 2018). Experienced inspectors 

and lock operators have indicated the importance of knowing the condition of contact block and 
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its role in identifying load transfer issues in the gate (Foltz 2017; Eick et al. 2017). Other analyses 

would have to be conducted to determine the critical gap parameters (size, location, etc.) that lead 

to some failure in the gate or in one of its components. Alternatively, the boundary conditions may 

also be obtained by inferring directly the forces that support the gate laterally (Parno, O’Connor, 

and Smith 2018). Other forms of damage in miter gates includes material losses due to corrosion 

(Estes, Frangopol, and Foltz 2004). There is also interest of maintaining optimal prestressing in 

the diagonal components of miter gates (Riveros, Ayala-Burgos, and Dixon 2017). 

Many of the miter gates owned by USACE are instrumented with strain gauges for data 

acquisition (U.S. Army Corps of Engineers Headquarters 2007). The relationship between the 

formation of the bearing gap and the stress-strain profile in the entire gate can be better understood 

by using a finite element (FE) model. For a SHM system, the inverse relation between the input 

and outputs of the FE model are desired. This inverse relation can be estimated by performing 

Bayesian inference that uses FE model evaluations. A Bayesian approach is desirable because it is 

able to quantify the risk on making decisions such as corrective maintenance of components. Many 

powerful algorithms that perform Bayesian inference can be used to solve this problem (Y. Yang, 

Madarshahian, and Todd 2019). However, many of these algorithms are not feasible for real-time 

health monitoring.  

In this chapter, a Bayesian inversion of high-fidelity FE model is accomplished by using 

sequential Monte Carlo (SMC), a class of batch Bayesian inference methods. SMC was selected 

due to its applicability in general settings (e.g.: non gaussian probability density functions) and its 

inherent parallelizable capabilities to perform computationally-expensive FE model evaluations 

(Lee et al. 2010). The chapter first explains the FE model of the testbed miter gate and then 

describes the different forms of damage in miter gates considered. Then, the estimation/updating 
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of model parameters directly related to damage is conducted using SMC. A three-stage approach 

to consistently and systematically handle various sources of real-world uncertainties is proposed. 

The formulated updating strategy is applied to the testbed structure pertaining to the first and 

second stage of the three-staged approach. Finally, a conclusion and further work section discusses 

the additional steps to be taken before deploying a SHM system in miter gates and the issues of 

dealing with model discrepancy (second and third stage). 

 

4.3. Testbed Structure and Finite Element Modeling  

In this research, the Greenup miter gate/lock located on the Ohio river is used as the testbed 

structure. A physics-based FE model of the gate was developed in ABAQUS, shown in  

Figure 4.1a. This FE model has been validated using the measured strain gauge readings (Eick et 

al. 2018). The Greenup gate is a brand-new gate therefore a negligible gap (“undamaged” 

condition), unaffected by corrosion, and with fully prestressed diagonals were assumed for the 

validation purposes. 3D linear shells elements instead of 3D solid elements were used to reduce 

the computational cost of such full-scale model. Figure 4.1b shows the side view of a one leaf 

miter gate that is subjected to upstream and downstream hydrostatic forces.  
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Figure 4.1: a) FE model of Greenup Gate with sensor locations and b) loading conditions 

4.3.1 Modeling Options for Gap Formation 

The gap formation between the contact (quoin) blocks control how the gate is supported 

laterally and consequently introduces a change in the stress/strain distribution of the entire gate, 

especially in the pintle area where the gate is supported by a pintle ball. For modeling purposes, 

the pintle ball is idealized as a pin support. In this chapter damage is introduced by controlling the 

extent of the gap. In order to model the gap itself, two different modeling approaches are presented 

in this work: 

Option 1: A contact-type constraint is used between the contact blocks as shown in Figure 

4.2a, making this a computationally expensive nonlinear problem. To impose the contact 

constraint, the Lagrange multiplier method was employed. The strain gauge locations are far from 

the contact area, mostly due to physical constraints in the miter gate, but this far-field location also 

mitigates errors due to the method employed to enforce the contact constraint. The opposite side 

of the wall quoin block uses fixed boundary conditions, and symmetry boundary conditions are 

used at the right end (i.e., miter) of the gate to simulate the other leaf. The variables lg  and wg

denote the gap length and depth (see Figure 4.2), respectively. 
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Figure 4.2: a) Option 1: Using contact between wall quoin block and gate quoin block, and 

b) Option 2: Pin boundary conditions along the gate quoin block (restrained in x and y 
directions) except at gap location 

Option 2: Pin boundary conditions are used directly to support the gate quoin block instead 

of modeling the wall quoin block and using a contact algorithm to support the gate laterally. To 

model the effect of the gap formation a length ( lg ) of the gate quoin block is left unrestrained as 

shown in Figure 4.2b. This representation may not be as accurate as Option 1, but it is a more 

attractive option computationally, since it is a linear FE model.  

The main difference in the physics between Option 1 and 2 is that Option 1 captures the 

effect of partial gap closure after the gate is subjected to hydrostatic loads. However, since the 

portion of the gap that closes is small under most loading scenarios, Option 2 is a reasonable 

choice. 

4.3.2 Modeling Corrosion in Miter Gates 

Based on (Estes, Frangopol, and Foltz 2004; Evans et al. 2019), a miter gate can be divided 

into three environmental zones defined by the upstream/downstream water elevations, namely (1) 

the atmospheric zone, (2) the splash zone, and (3) the submerged zone, as shown in Figure 4.3(a). 

The atmospheric zone is the region in the gate that is generally not in contact with water even when 
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the water elevation changes. From the three zones, the atmospheric zone is where least damage 

due to corrosion occurs and where monitoring is more accessible to visually inspect by inspector 

or drones (Spencer, Hoskere, and Narazaki 2019). The splash zone is the region in the gate that is 

in contact with air and water mainly due to the water elevation changes that allows passage of 

marine transportation. The splash zone is where corrosion damage is the greatest, which is 

attributed by the rate that water changes (Melchers 2004) in the chamber that allows ships to 

transition to different water elevations.  Lastly, the submerged zone is the region of the gate that 

is always underwater. Monitoring in the splash and submerged areas is not straightforward because 

is generally not visually available while a miter gate is in operation. Generally, dewatering a lock 

chamber for inspections or sending a diver is costly and make the continuous operation of a lock 

to stop. 

 
Figure 4.3: a) Environmental zones, b) Example of corrosion on steel plates in miter gates, 

and c) FE model highlighting plates (denoted in yellow) where thickness loss due to 
corrosion is modelled 



  129   

Figure 4.3(b) shows an example of corrosion deterioration in the vertical girder webs and 

skin plates, which are components in miter gates. For modelling purposes, the corrosion is assumed 

to occur at every web and skin plate in the Greenup miter gate, which is observed in Figure 4.3.(c) 

and denoted in yellow. Corrosion can be modelled as material loss as a function of time. In the 

case of the of the steel plates (e.g. girder webs and skin plates) in miter gates, corrosion is modelled 

as thickness loss in these steel plates (Estes, Frangopol, and Foltz 2004). Now, the same thickness 

loss is assumed for every girder web (vertical and horizontal) and skin plate at each of the 

environmental zones. Furthermore, due to the fact that corrosion damage is the least and is visually 

accessible, the thickness loss at the atmospheric zone will be assumed as a known input parameter 

while solving this inverse problem.  

4.3.3 Modeling Prestressing Diagonals in Miter Gates 

Diagonals in each miter gate leaf, as shown in Figure 4.4, are pre-tensioned to provide two 

primary functions:  

a) The positive diagonal is tensioned in order to remove the self-weight sag and deflection. 

b) The negative diagonal is tensioned to plumb the gate leaf and to resist the hydrostatic 

loads as well as balance the load and deflection induced by the positive diagonal.  

Based on the literature (Daniel and Paulus 2019a), prestressing the diagonals is an iterative 

process considering all modes of operation. Therefore, the prestressing forces at each of these 

diagonals ( posP and negP ) will be assumed different and be assumed to be initially known based on 

design documents. However, the loss of prestressed in the diagonals in time is unknown and it is 

of interest to estimate at any particular point in time. 
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Figure 4.4: FE Model highlighting prestressed diagonals 

The next section covers the process of estimating the model parameters (e.g. lg , posP ,  

negP , splashTL , subTL ) mentioned just mentioned in detailed from sections 4.3.1 to 4.3.3. 

 

4.4. Estimating Damage Model Parameters in Miter Gates using Bayesian Inference 

For given hydrostatic inputs (i.e. uph  and downh ) and model parameters of interest (e.g. lg , 

posP , negP , splashTL , subTL ), the FE model could be evaluated as a “forward model” to yield the 

resulting strain field resulting in the gate; consequently, solving an inverse problem is necessary 

to obtain the model parameters of interest given a set of strain measurements obtained at different 

locations on the miter gate. There are two general ways often used to solve an inverse problem: 1) 
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a Bayesian approach, which computes a posterior distribution of the model parameters given prior 

knowledge and the data, or 2) a regularized data fitting approach, which chooses an optimal model 

(M. Vega, Madarshahian, and Todd 2019) by minimizing an objective function that minimize the 

empirical risk (i.e. training error). In SHM, estimates of gap length (or other damage parameters) 

are meaningful to the decision-making process of operators and stakeholders. However, a Bayesian 

approach is preferred because it can provide confidence regions associated with the estimates of 

the gap length ( lg ), prestressed force in the diagonals ( posP and negP ), and thickness loss in the 

two of the three environmental zones ( splashTL  and subTL ). Confidence regions associated with the 

parameter estimates supports rigorous decision-making. In the Bayesian approach, the posterior 

distribution of the model parameters (e.g. lg , posP , negP , splashTL , subTL ) can be obtained from 

      , | | , , ,strain strain strain

posterior likelihood prior

p p p  θ y y θ θ    (4.1) 

where 

    
error/measured response FE predicted response noise

, y h θ u w   (4.2) 

and where y represents the strain measurement at 46 gauge location, u represents the hydrostatic 

loading conditions (i.e. uph  and downh ) and known thickness loss in the atmospheric zone, and w is 

assumed to be a zero-mean uncorrelated Gaussian distribution as follows: 

  2

46 4646 1

, strain


 
 
 

w 0 I    (4.3) 

 5,  ,  ,  ,  .
T

l pos neg splash subg P P TL TL   θ    (4.4) 

Computing the joint posterior distribution of the parameters is a mathematically intractable 

problem. In this work, the computation of the posterior is accomplished by using the SMC 
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algorithm to perform Bayesian inference. This algorithm was selected due to its applicability in 

general settings (e.g.: non gaussian prior and posterior) and its inherent parallelizable capabilities 

to perform computationally-expensive FE model evaluations. Note for the following sections, the 

parameters contained in θ will include the standard deviation of the (noise) error strain . 

4.4.1 Batch Inference using SMC  

Sequential Monte Carlo (SMC) or Transitional Markov chain Monte Carlo (TMCMC) 

methods are a class of simulation-based Bayesian inference techniques which sample from the 

complete joint posterior distribution of the unknown parameter vector θ. SMC methods do not 

impose any assumptions on the probability structure prior and the posterior; hence, these methods 

are applicable in very general settings. SMC methods are inherently parallelizable, therefore ideal 

for solving the inverse problem involving computationally-expensive FE model evaluations.  

The idea of SMC is to avoid directly sampling the target posterior probability density 

function (PDF) but rather sample an easier-to-sample PDF and then weigh, resample, and perturb 

the samples to describe the target PDF. The achieve this, SMC constructs a series of intermediate 

PDFs, known as tempered posteriors, that start from prior distribution (easy to sample) and 

converge to the posterior distribution (hard to sample) as follows: 

  0 1( | ) ( | ) ( ) 0,1,..., 0 ... 1j

j m

priortempered posterior

p p p j m          θ θ θ    (4.5) 

where j  is the tempering parameter at stage j . When 0j  at the initial stage ( 0j  ), the 

tempered posterior 0( | )p θ   is just the prior  p θ ,  and when 1j   at the final stage ( j m ) the 

tempered posterior ( | )mp θ   is the target posterior ( | )p θ  . SMC represents the tempered 

posterior distribution at every stage by a set of weighted samples (also called particles). SMC 
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approximates 
thj  stage tempered posterior ( | ) jp θ   by weighing, resampling, and perturbing 

(using Markov chain Monte Carlo) the particles of 1thj  stage tempered posterior 1( | ) jp θ  . The 

SMC algorithm for sampling the target posterior is shown in Table 4.1. 

Table 4.1: SMC Algorithm 

Let N  be the number of particle (or weighted samples) at every stage, and jESS  be the effective 

sample size at stage j  

Initialize N , 0j  , 0 pESS N , 0 0   

Generate N  samples  0 ; 1,...,i
j i N θ  from the prior distribution  p θ  

while tempering parameter 1j   

 increase stage number 1j j    

 choose j  such that 10.95j jESS ESS   ,  min ,1j j    

 weighting:   1

1|
j ji i

j jw p
  

 θ  for 1, ...,i N   

 resampling: 1
i l
j jθ θ  with probability l

jw  for 1, ...,i N  

 perturbation: start an MCMC chain at i
jθ  and take MCMCN  steps with target distribution 

( | ) jp θ   for each 1, ...,i N . Gather last sample of each MCMC chain to obtain 

 ; 1,...,i
j i Nθ  

end  

 ; 1,...,i
j i Nθ are the samples of the target posterior ( | )p θ   

Using the above algorithm, Eq. (4.1) can be solved to obtain estimates of the model 

parameters of interest (e.g. lg , posP , negP , splashTL , subTL ) including the standard deviation of the 

(noise) error ( strain ) as shown in Figure 4.5. The prior distributions assumed are constrained by 

physical knowledge of these parameters. As expected, the use of a physical based model can help 

to reduce the parameter estimate given by the prior distribution, which is observed by the posterior 

distribution of each parameter. Also, the true value lays very close to the mean of the posterior 

distribution. As mentioned earlier, confidence regions associated with the parameter estimates 
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supports rigorous decision-making. And the diagnosis of these multiple form of damage in miter 

gates can help with maintenance decision making. 

 
Figure 4.5: Distributions of parameters of interest 

From all the model parameters estimates, probably the one with more uncertainty on the 

modelling would be inserting damage in the form of the bearing gap (e.g. Option 1 and 2). For the 

next section, model discrepancy in the form of modelling bearing gaps only would be considered. 

  

4.5. Three-stage approach 

Implementing a real SHM monitoring system will, arguably, involve several types of 

uncertainties that will affect the estimation process shown previously. One of the main sources of 

discrepancy between the estimation and the true model parameter values is due to model form 

uncertainty (a.k.a. model discrepancy), i.e., how the forward model (e.g. FE model) used in the 

inference process differs from the true physical model. A 3-staged approach (see Figure 4.3) is 

proposed to systematically tackle model discrepancy along with other real-world uncertainties. 
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Figure 4.6: Three-staged approach to systematically and progressively approach to handle 
various sources of uncertainties. 

4.5.1 Stage 1: same FE model 

Stage 1 uses the same FE models for generating the data and for estimation purposes. 

Clearly, the model discrepancy is not considered in this stage. As described earlier, there are two 

competing gap models. Option 2 is used as the FE model in this case due to its fast model 

evaluations. The estimation of the gap length for a specific response measurement is shown in 

Figure 4.4. The parameter   is the estimated coefficient of variation, and r  is the Pearson 

correlation coefficient.  
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Figure 4.7: a) Joint posterior distribution using 100 particles, and b) prior and posterior 

distributions vs true value 

As intended the posterior distribution covers the true value of the gap length and also the 

standard deviation of the (noise) error. The gap length prior distribution used for the inference 

follows a uniform distribution between 0 in and 180 in. These values are based on inputs from 

experienced lock operators. 

4.5.2 Stage 2: different FE models 

Stage 2 uses different FE models for generating the data (option 1) and for estimation 

purposes (option 2). Model discrepancy is considered in this case, as the way that the gap between 

contacts blocks is modelled is very different between options 1 and 2. The gap depth is assumed 

to be 0.25 in for modeling option 1, which is used to generate the measurement strain data. 
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Figure 4.8: a) Joint posterior distributions using 100 particles, and b) prior and posterior 
distributions vs true value 

The posterior distribution of the gap length is very confident at a gap length around 124 in, 

while the true simulated gap length is equal to 144 in. Therefore, for this case the posterior 

estimation is biased by ~20 in. These results are consistent with the values obtained by 

Brynjarsdottir and O’Hagan (Brynjarsdóttir and OʼHagan 2014) when two different models are 

used for simulating data and estimation purposes. 

4.5.3 Stage 3: data from the actual structure in the field 

Stage 3 uses “real world” data as the measurement data. For this stage, a FE model should 

be validated at different damage levels, which in practice it is challenging to obtain. Also, 

additional parameters (e.g. critical crack, corrosion, uncertainty in the material, amount of prestress 

in the diagonals, etc.) that are strain-sensitive should be identified to improve the predictive 

capabilities of this problem.  

 

4.6. Conclusions and Further Work 

Diagnosis of different form of damage in miter gates is accomplished by performing 

Bayesian inference using a validated high-fidelity FE model. Two different modeling techniques 
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are presented to simulate certain type of damage (i.e., formation of gap). This study shows that, 

not accounting for model discrepancy in the Bayesian inference leads to overconfident biased 

parameter estimates. This can seriously hamper the predictive capabilities (extrapolation) of the 

FE model. To improve the predictive capabilities, a bias function can be trained to learn the model 

discrepancy between two models as described in detail in (Kennedy and O’Hagan 2001; 

Brynjarsdóttir and OʼHagan 2014; Ling, Mullins, and Mahadevan 2012, 2014). This bias function 

should be carefully studied/interpreted when using them for interpolation or extrapolation. 

Physics-based models when combined with machine learning models (for modeling discrepancy) 

may be a better option for extrapolation, however, especially when limited damage data is 

available. The use of the SMC algorithm in large FE models is encouraging due to its parallelizable 

capabilities. Often, a (surrogate) data-driven model is created to replace an expensive FE model, 

but this was not needed in this work. Additional steps need to be taken before deploying a SHM 

system in miter gates specially when dealing with model discrepancy.  Additionally, a sensitivity 

analysis should be studied to understand the sensitivity of the strain gages to different model 

parameters, as this may also lead to improved predictive capabilities.  

 

4.7. Preview to Chapter 5 

As mentioned in section 1.2.2.1, the biggest limitation of damage diagnosis using a 

physics-based model updating approach is that diagnosis will be affected by how well the model 

describes the actual, as-built structure. Undoubtably, model uncertainty needs to be accounted to 

improve damage diagnosis (Kennedy and O’Hagan 2001; Brynjarsdóttir and OʼHagan 2014; Ling, 

Mullins, and Mahadevan 2012, 2014). Alternatively, model validation can also help to reduce 

model uncertainty and therefore improve damage diagnosis estimates. In the next chapter, an 
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alternative structural testing method suitable for calibration and validation of numerical models 

that behaves in a highly nonlinear manner. 

 

4.8. Remarks 

Portions of this dissertation have been published or are currently being considered for 

publication. Chapter 4 is currently in preparation for publication as an extension of: 

Vega, Manuel A., Mukesh K. Ramancha, Joel P. Conte, and Michael D. Todd. 2021. “Efficient 
Bayesian Inference of Miter Gates Using High-Fidelity Models.” In 38th International Modal 
Analysis Conference. Houston, Texas: Springer. 
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Chapter 5 

 

IMPLEMENTATION OF REAL-TIME HYBRID SHAKE 
TABLE TESTING USING THE UCSD LARGE HIGH-
PERFORMANCE OUTDOOR SHAKE TABLE (LHPOST)   
  

5.1. Abstract 

Large shake tables can provide extended capabilities to conduct large- and full-scale tests 

examining the seismic behavior of structural systems that cannot be readily obtained from reduced 

scale or quasi-static testing conditions. Assessing the behavior of large or complex structural 

systems introduces challenges such as high cost of full-scale specimens or capacity limitations of 

currently available shake tables. Some of these limitations may be overcome by employing the 

real-time hybrid shake table test method that requires only key subassemblies to be evaluated 

experimentally on the shake table while the remainder of the structure is modeled numerically. As 

a demonstration of the applicability of this testing method using a large shake table, a series of 

hybrid shake table tests were conducted on the University of California, UC San Diego Large 

High-Performance Outdoor Shake Table (LHPOST) with capabilities to test full scale structural 

models. A physical specimen was coupled with a numerical model using hybrid simulation 

techniques and shown to reproduce reliable results with adequate mitigation of experimental 

errors. 
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5.2. Introduction 

Real-time hybrid simulation (RTHS) is a cost-effective and efficient method to evaluate 

the response of structural systems under earthquake and other extreme loading conditions. A 

hybrid model consists of numerical and experimental subassemblies with the complete system 

response being simulated for a given natural hazard. Generally, the experimental subassembly 

represents parts of the domain of the structure that are difficult to model analytically. Real-time 

simulations make it possible to test rate-dependent devices (i.e. viscous dampers, or base isolation 

bearings) as part of the experimental subassembly of the hybrid model. Recent applications of real-

time hybrid simulation have been extended to use shake tables to dynamically test physical 

subassemblies. In one of the earliest studies, Igarashi et al. (Igarashi, Iemura, and Suwa 2000) 

proposed a hybrid simulation technique using a shake table with an experimental specimen 

consisting of a mass damper supported on a roller bearings attached to four springs. The 

experiment interacted with a numerical SDOF system via an A/D control system. Several 

researchers (Ou et al. 2015; Reinhorn et al. 2003; A. Schellenberg, Shao, and Mahin 2017; R. 

Zhang et al. 2017) have studied this technique using different integration algorithms and 

compensators to control the stability of uniaxial hybrid shake tables, including applications of mid-

story isolation. Nakata (Nakata and Stehman 2012) proposed a different approach, where a 

controlled mass, built on top of the experimental subassembly, was used to generate the restoring 

forces from the numerical subassembly. Schellenberg (A. Schellenberg, Shao, and Mahin 2017) 

applied the methodology proposed by Igarashi to conduct a hybrid test on a 6-DOF shake table at 

the University of California, Berkeley using a large-scale experimental subassembly. Additionally, 

researchers have studied RTHS using shake tables combined with dynamic actuators (X Shao, 
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Reinhorn, and Sivaselvan 2011). The majority of this previous work has been primarily 

developmental using reduced-scale shake tables and experimental subassemblies.  

More recently, a moderate scale hybrid simulation was conducted by researchers at Tongji 

University (C. Yang et al. 2015), which consisted of real-time hybrid simulations of a girder bridge 

on a medium size shake table. In the test, the bridge piers were modeled numerically, while the 

bridge girders supported on top of four rubber bearings were installed on the shake table to 

represent the experimental subassembly. Consequently, the displacement response history at the 

top of the bridge pier (modeled numerically) served as the input signal to the shake table. While 

real-time hybrid shake table testing has been studied quite extensively over the last decade by 

various researchers (Reinhorn et al. 2003; R. Zhang et al. 2017; Nakata and Stehman 2012; A. H. 

Schellenberg, Becker, and Mahin 2016), most of these tests have used reduced-scale experimental 

subassemblies tested on small shake tables. An issue with scaling down the physical domain is that 

test results are less meaningful and more difficult to interpret as the size scale decreases. The work 

presented in this chapter describes the implementation of a framework for RTHS using one of the 

largest shake tables in the world. The use of the Large High-Performance Outdoor Shake Table 

(LHPOST) at the University of California San Diego would allow expanding potential applications 

of the hybrid test method with large scale experimental substructures (e.g. soil structure 

interaction). 

The RTHS with LHPOST was implemented using two different configurations: i) hard 

real-time computation with the integration algorithm coded in Simulink Real-Time (SimulinkRT) 

(Mathworks 2015), and ii) the numerical model coded in OpenSees (OPS) (McKenna, Fenves, and 

Scott 2000) running on a separate non-real-time high performance computing (HPC) machine to 

take advantage of structural analysis software with advanced finite element modeling capabilities. 
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In both cases, the compensation and generation of commands to the shake table were implemented 

in real-time using Simulink. The hybrid models consisted of a shear building structure, where the 

upper story (or un-tuned mass damper) was experimentally tested on the shake table and the lower 

stories were modeled numerically in Simulink or OPS. The experimental setup consisted of a rigid 

mass supported on four triple pendulum friction bearings. Two and six degree-of-freedom 

buildings were examined to verify the stability of the system in the presence of high frequency 

modes. Multiple tests were performed by varying the structural periods of the analytical 

subassemblies and using different levels of intensity for the input ground motion. 

 

5.3. Hybrid shake table formulation 

The hybrid test formulation consists of decomposing the equations of motion into an 

analytical (numerical) and experimental (physical) domain. 

 

Figure 5.1: Substructuring of a 2-DOF shear frame using a shake table 

The equations of motion of the two degrees of freedom (DOF) shear structure (see Figure 

5.1) subjected to an input ground motion, 𝑥̈௚, can be written as: 
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where 1m , 1c  and 1k  are the mass, damping and stiffness of the first story. Similarly, 2m , 2c  and 

2k  represent the structural properties for the second story. The displacements relative to the ground 

at each DOF are represented by 1x  and 2x . The acceleration relative to the ground at each DOF 

are denoted by 1x  and 2x .  

The decomposed equation of motion for the first story analytical subassembly can be 

expressed as follows: 

 1 1 1 1 1 1 1 ,g sm x c x k x m x V         (5.2) 

where sV  is the base shear force at the boundary of the experimental subassembly. The base shear 

( sV ) can be expressed as: 

 2 2( ).s gV m x x      (5.3) 

Similarly, the decomposed equation of motion for the experimental subassembly can be 

expressed as: 

 2 2 1 2 2 1 2 2 1 2 1( ) ( ) ( ) ( ).gm x x c x x k x x m x x               (5.4) 

The interaction between Eq. (5.2) and Eq. (5.4) comes from solving simultaneously for the 

base shear force of the experimental subassembly ( sV ) and the absolute acceleration at the top of 

the analytical subassembly ( 1x ). Numerical integration is used to solve Eq. (5.2) in a hybrid test. 

In an actual hybrid test, the base shear force ( sV ) is measured from the experimental subassembly. 

Note that in Eq. (5.4) 2 1x x  , 2 1x x   and 2 1x x  represent the relative acceleration, velocity and 

displacement at the top of the experimental subassembly relative to the shake table.  
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For a real-time hybrid simulation, the integration algorithm should be capable of solving 

the equation of motion for the analytical subassembly in a fast and accurate manner. Several 

researchers (Del Carpio R., Hashemi, and Mosqueda 2017; Liu et al. 2016) have extensively 

investigated the use of different algorithms in hybrid simulation. Most recently, the use of different 

explicit integration algorithms (F. Zhu et al. 2016) with improved stability have been used in 

hybrid simulation because of their computational efficiency. 

 

5.4. Computational drivers  

Two computational drivers were employed to solve the equations of motion of the 

analytical subassembly. First, the analytical subassembly was modeled entirely in a Simulink 

environment including the integration algorithm used to solve the equations of motion. This 

implementation was fully executed in hard real-time, that is, the time of execution of each task is 

governed by a clock and expected to complete within the allotted time step. In the second approach, 

the analytical subassembly was modeled using OPS in a soft real-time environment, where the 

computational driver is running with a nondeterministic execution time. However, in this 

approach, it was ensured that the computational time per step was well below the allowable time 

to avoid a step overrun, though this cannot be guaranteed as in the hard real-time implementation. 

Before the actual implementation on the LHPOST, a virtual hybrid simulation was conducted as a 

preliminary verification of the accuracy and performance of the hybrid model. In this case, the 

experimental subassembly was numerically modeled separately and coupled to the analytical 

substructure model. The initial verification of the hybrid model consisted of a 2-DOF system, 

similar to the model in Figure . The analytical sub-structure consisted of a 1-DOF shear frame 

coupled with an experimental super-structure represented by a rigid mass damper supported on 
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four isolators. For the virtual simulation, the mass of the damper and the four isolators were 

numerically modeled as a 1-DOF nonlinear element and analyzed in a second instance of OPS. 

Figure 5.2 shows one of the hybrid model configurations used in the investigation. 

 

Figure 5.2: Hybrid Model configuration using 1-DOF numerical substructure 

Two different integration algorithms were used for the hybrid shake table tests described 

in this chapter. The first algorithm is the explicit KR-α method proposed by Kolay and Ricles 

(Kolay et al. 2015). The second is the Generalized Alpha-OS method, which is a combination of 

the implicit-explicit “operator splitting” (OS) method (Hughes, Pister, and Taylor 1979) and the 

implicit generalized-α method (Chung and Hulbert 1993). Details on the derivation of the KR-α 

and Generalized Alpha-OS methods as implemented can be found in (Kolay and Ricles 2014) and 

(A. H. Schellenberg, Mahin, and Fenves 2009) respectively. The sampling rate of the shake table 

control system used in these experiments was 2048 Hz. Therefore, an integration time step or 

substep of 1/2048 seconds was selected to ensure real-time execution with an update rate identical 

to the controller and to provide for stability and accuracy of the integration algorithms. 

5.4.1 Hard real-time implementation 

A real-time digital signal processor (Simulink Real-Time) was used to run compiled real-

time code from the Simulink model on a dedicated target computer hardware connected via a 
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shared memory network (SCRAMNet+) to the shake table controller. Figure 5.3 shows a schematic 

of the coupling between the analytical and experimental subassemblies. 

 
Figure 5.3: Block diagram of RTHS implementation using Simulink RT 

SCRAMNet+ is a shared-memory product for high-speed transfer of data between the target 

computer (Simulink RT) and the control system (MTS 469D and MTS STS). The MTS 469D 

Controller is a digital control system for the shake table whose software includes control and 

compensation algorithms to command each actuator of the shake table to track a desired command. 

The MTS STS Controller is a digital control system for external actuators that can be added for 

other testing configurations. Here, it was used to acquire data from external load cells that were 

installed beneath the four isolators and that were used as feedback for the numerical model built 

in Simulink RT. 

Figure 5.4 shows a schematic of the hard real-time implementation of hybrid simulation in 

Simulink. This figure includes the blocks that send and receive inputs from the control system (i.e. 

LHP). Also, a block that contains the Adaptive Time Series (ATS) compensator (Chae, 

Kazemibidokhti, and Ricles 2013) to reduce system delays is employed. The measured shear force 

was filtered (using a 7-step moving average), and this delay was also accounted for in the ATS 

compensator. 
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The numerical subassembly block contains the implementation of the KR-α integration 

algorithm. Code verification was performed by comparing results of other integration algorithms 

with smaller time steps. Numerical simulations were performed to ensure that this implementation 

was stable in the presence of system delay and noise. Numerical damping was not needed to 

achieve stability in the pretest simulations and in the actual hybrid tests performed. Additionally, 

blocks that included moving average filters to store the data for post-processing were used along 

with blocks that limit the displacement sent to the shake table to prevent instability during testing. 

The Simulink model includes additional blocks (e.g. ‘force_fbk%’ and ‘1-force_fbk%’) that are 

used during development to gradually increase the measured force feedback from a numerical 

representation of the experimental substructure to the actual experimental substructure. In this 

manner, the risk of unstable or undesired responses are reduced. 

 
Figure 5.4: Hard real-time implementation built in Simulink RT 

 

5.4.2 Soft real-time implementation 

The implementation of the soft real-time hybrid simulations using OPS involves an 

additional computer known as the host computer, a middleware software OpenFresco (A. H. 

Schellenberg, Mahin, and Fenves 2013), and a predictor-corrector algorithm running on the hard 
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real-time target computer. Figure 5.5 illustrates the hardware layout deployed to use OPS for 

hybrid shake table testing. 

 

Figure 5.5: Block diagram of RTHS implementation using OpenSees-OpenFresco 
 

OpenFresco (OPF) is a middleware that facilitates the communication between the OPS 

finite element (FE) model and the control system and data acquisition systems in the laboratory. It 

also includes several libraries that can be added to OPS to represent the experimental portion as 

experimental elements in this FE software. The Predictor-Corrector algorithm provides the 

synchronization of the soft real-time FE execution with the hard real-time control system sampling 

rate. The predictor-corrector algorithm runs on the Target PC digital signal processor. 

5.5. Experimental setup 

The experimental super-structure consisted of a 249.1 kN concrete weight supported on 

four triple friction pendulum (TFP) isolators as shown in Figure 5.6. Note that this payload is small 

relative to the 20 MN payload capacity of the shake table. In this configuration, external load cells 
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were installed beneath the bearings to measure the shear force experienced by the isolation system. 

This shear force is recorded by a data acquisition system (STS) and used as feedback to the 

numerical subassembly as shown in Equation 5.2. Solving this equation will give the table 

displacement at the next time step. Also, displacement transducers were installed to track the 

position of the isolators and the super-structure mass. 

 

Figure 5.6: Experimental subassembly on shake table 

A schematic of the triple pendulum friction bearing used in the experiments is shown in 

Figure 5.7 with the dimensions given in Table 5.. The friction coefficients were calibrated after 

performing tests and fitted to numerical models. The surface number in Table 5.1 is the same as 

the subscript shown for R in Figure 5.7.  
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Figure 5.7: Triple pendulum friction bearing cross section 

Table 5.1: Triple pendulum friction bearing properties 
Parameter Surfaces 1, 2 Surfaces 3, 4 

R 76 mm 473 mm 
Din 44 mm 76 mm 
Dout 66 mm 229 mm 

μ 0.07 (0.055) 0.125 (0.13) 
 

5.5.1 Acceleration vs displacement control 

The LHPOST control system can be configured for displacement control, acceleration 

control and the three-variable control (TVC: displacement, velocity, and acceleration). The 

acceleration input generated by the hybrid simulation algorithm tended to be noisy, which was 

problematic for the shake table. Therefore, a displacement control approach was used to minimize 

the effect of the noise since the displacement command provided a smoother signal to the table. 

Note that the three-variable control capability of the MTS 469D system was not used for this 

implementation since the acceleration command generated from displacement derivatives was also 

contaminated with noise. 
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5.5.2 Test protocol 

Table 5.2 shows the hybrid tests performed on LHPOST. In cases 1 to 6, the 2-DOF hybrid 

model (Figure 5.2) was tested by varying the fundamental period of vibration in the numerical 

subassembly and by varying the intensity of the ground motion. It is important to note that, for 

validation purposes, both hard and soft real-time approaches were implemented in these 6 cases.  

In cases 7 and 8, the 1-DOF numerical sub-structure was replaced by a 5-DOF shear 

building. The numerical response was simulated in OPS, and the test was performed with the soft 

real-time approach.  

Table 5.2: Cases used in LHPOST 
Case # Tnum Scale 𝒙̈𝒈 DOFs SimulinkRT OPS-OPF 

1 1 s. 100% 1 X X 
2 1 s. 200% 1 X X 
3 0.5 s. 100% 1 X X 
4 0.5 s. 200% 1 X X 
5 0.25 s. 100% 1 X X 
6 0.25 s 150% 1 X X 
7 1 s. 100% 5 - X 
8 1 s. 150% 5 - X 

The test protocol is intended to evaluate test-to-test variability in the results and 

demonstrate the benefits of hybrid simulation in studying multiple model cases with the same 

experimental subassembly. 

5.5.3 System delay compensation 

The system response delay of the actuators in the shake table introduces an effect 

equivalent to negative damping (Mosqueda, Yang, and Stojadinovic 2008), meaning that more 

energy is added to the structural system. To control the effect of negative damping due to an 

average system delay of 34 milliseconds, an adaptive time series compensator was implemented 

in this setup. The ATS compensator continuously updates the coefficients of the system transfer 

function during a RTHS to try to reduce the system delay and amplitude changes that are caused 
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by the dynamics of the shake table control combined with the experimental subassembly. The 

compensated displacement (𝑢௖) used in the ATS compensator is based on a second-order 

compensator expressed as follows: 

 0 1 2 ,c t t tu a x a x a x      (5.5) 

where tx , tx  and tx  are the target displacement, velocity and acceleration respectively. The 

coefficients 𝑎଴, 𝑎ଵ and 𝑎ଶ are constantly updated using the measured table displacement.  

Table 5.3 shows the parameter values (initial, lower and upper limits) and the maximum rate of 

change used to achieve stable compensation. The values of each of these coefficients were 

monitored to avoid clipping by its maximum values. For implementation details, see Figure 5.3 in 

(Chae, Kazemibidokhti, and Ricles 2013). Additionally, the Simulink model used and data 

generated from the experiments is available in DesignSafe (Rathje et al. 2017) as published data 

(M. Vega et al. 2018a, 2018b, 2018c). 

Table 5.3: Limit values for the coefficients of the ATS compensator. 

Coefficient 
Initial 
Value 

Range  
(minimum, maximum) 

Maximum rate of change, 

ja

t




 

a0 1 (0.90, 1.10) 0.2/s 
a1 0.020 s (0.0, 0.04) s 0.005 s/s 
a2 0.0002 s2 (0, 0.0008) s2 0.0001 s2/s 

Figure 5.8 shows the displacement history at the shake table level for case 3 (see  

Table 5.2). In this case, there was 35.2 milliseconds of system delay, shown as the time shift 

between the compensated displacement sent to the MTS 469D (LHP) and the measured table 

displacement. The line labeled as ‘Compensated Disp. to LHP’ represents the displacement 

predicted by the ATS compensator and sent to the MTS 469D controller.  
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Figure 5.8: Displacement history at table level (case 3) 

The line labeled as ‘Disp. target’ represents the target displacement that the compensator 

is expected to achieve. The line labeled as ‘Measured Disp. from STS’ represents the measured 

displacements of the shake table platen. These signals were obtained using Simulink as the 

computational driver. These results show that the ATS compensator under-predicts the target 

displacements. Overall, the performance of the ATS compensator is favorable for this hybrid setup. 

The line labeled as ‘Measured Disp. from STS (OPS-OPF test)’ represents the measured 

displacement, after repeating the same test, but this time using OPS as the computational driver. 

Considering test to test variability expected in hybrid shake table simulations, it can be concluded 

that the solution obtained by OPS-OPF is nearly identical to the solution obtained by Simulink. 

Table 5.4 shows the average system delay in the response of the shake table (between 

dotted and dash-dot lines) for the first 6 cases. The actual delay after compensation is also included. 

Additionally, the normalized root mean square of the error (NRMSE), defined as the difference 
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between the measured displacement (labeled as ‘Measured Disp. from STS’) and the target 

displacement (labeled as ‘Disp. target’), is included. 
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where t
kx  and m

kx  are the target and measured displacement respectively at the k time step. 

Table 5.4: System delay and error at the table level 
Case 

# 
Avg. System 
delay (ms.) 

Avg. delay after 
ATS comp (ms.) 

NRMSE 
(%) 

1 33.2 0.98 2.49 
2 29.8 0.49 1.27 
3 35.2 0.49 3.14 
4 33.2 0.49 1.84 
5 38.1 0.49 3.39 
6 37.1 0.00 2.55 

As shown in the table above, the average system delay varies from case to case. Therefore, 

an adaptive time series compensator is desired. And based on the RMSE results, the performance 

of the compensator is satisfactory. An interesting trend is that for the larger amplitude tests, cases 

2, 4 and 6, the average system delay and NRMSE decrease.  

 

5.6. Analysis of results 

Multiple sub-structures and software configurations were used to examine and compare the 

performance of the real-time hybrid shake table tests. A comparison and analysis of the results is 

provided here. 

5.6.1 Comparison of SimulinkRT and OpenSees 

Figure 5.9 shows a comparison of the measured and numerically predicted hysteresis loops 

of the isolation system for the first 6 cases shown in Table 5.2. These simulations included 

variations in the amplitude of the ground motion and the numerical sub-structure period. The full 
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numerical simulation (labeled as Full OS) consists of the same hybrid simulation software utilizing 

a numerical model of the experimental setup for feedback of restoring forces. This numerical 

model of the TFP is based on a OPS element, which is explained in detail in (Dao et al. 2013). The 

peak drift magnitudes compare well for both experimental cases but show significant deviations 

with the predicted numerical model. Figure 5.10 and Figure 5.11 more clearly show the hysteresis 

comparison for cases 3 and 5, respectively, which have the smallest and largest difference in drift. 

Given that the measured experimental errors are small, it is concluded that the main source of this 

difference is due to the idealizations in the numerical model of the super-structure.  

 
Figure 5.9: TPF bearing hysteresis loops for Full OS Model vs Hybrid Models (cases 1-6) 
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Figure 5.10: TPF bearing hysteresis loops for Full OS Model vs Hybrid Models (case 3) 

 
Figure 5.11: TPF bearing hysteresis loops for Full OS Model vs Hybrid Models (case 5) 

Figure 5.12 shows the relative displacement error magnitude for case 3 and 5. The 

calculated relative displacement error consists of the difference between the relative displacement 

obtained from the full numerical model and the OPS-OPF hybrid implementation. These figures 

show clearly how the error oscillates due to loading and unloading behavior. The relative 

displacement error does not accumulate as much for case 3 as for case 5. This observation is likely 
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because the cumulative error is reduced when the errors change signs for certain cases more than 

for others. This behavior can be attributed to the sensitivity of non-smooth hysteretic models on 

residual drifts as explained in (Ruiz-García and Miranda 2006). 

 
Figure 5.12: Relative displacement error magnitude 

It is also important to mention that the numerical TPF element used for the full numerical 

model had some limitations. For example, the axial force is assumed to be constant even though 

in a dynamic test the actual axial force varies with time due to overturning forces. In addition, the 

change of stiffness transition between regimes is not smooth in the numerical model. 

5.6.2 MDOF case 

A more challenging hybrid model is implemented by increasing the number of degrees of 

freedom in the numerical sub-structure from 1 to 5 for cases 7 and 8. These tests can further 

evaluate the performance of the shake table in the presence of higher modes in the numerical model 

that can be more sensitive to experimental errors. Table 5.2 shows the test protocol for this MDOF 

hybrid model. The five frequencies of the 5-DOF numerical subassembly are calculated as 1 Hz., 

2.90 Hz, 4.52 Hz, 5.70 Hz. and 6.31 Hz. 



  159   

Figure 5.13 and Figure 5.14 show the TPF isolator hysteresis loops of the full numerical 

simulation and an OPS-OPF hybrid implementation for cases 7 and 8, respectively.  

 
Figure 5.13: TPF bearing hysteresis for Full OS Model vs Hybrid Model (case 7) 

 
Figure 5.14: TPF bearing hysteresis for Full OS Model vs Hybrid Model (case 8) 

Similar to the SDOF cases, there are slight differences in residual displacements, but 

overall, the numerical simulation agrees reasonably well with the hybrid experiment. This 

comparison further verifies that the LHPOST can be effectively used for hybrid simulations and 
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that the compensation and control algorithms implemented, adequately minimize errors in the 

experiments. 

While it was also evident in the previous comparison of SDOF models, Figure 5.14 shows 

higher frequency oscillations in the hysteresis loop corresponding to the higher amplitude motion. 

This is investigated further given that the structural model of case 7 and 8 is the same. Therefore, 

a time frequency analysis of this data is conducted. Figure 5.15 and Figure 5.16 (left side) show 

the Short-Time Fourier Transform (STFT) of the shear force history experienced by the isolation 

system for case 7 and 8, respectively. The STFT plot shows clearly the fundamental structural 

period of the entire model (around 1 Hz), and other frequencies (around 7 and 17 Hz) that 

correspond to higher modes in the structural model. Figure 5.14 shows how these high frequencies 

affect the response of the isolation system. The STFT for case 7 shows an amplification of the 

frequency around 12 Hz. The six frequencies of the entire model are calculated as 0.90 Hz., 2.69 

Hz, 4.36 Hz, 5.73 Hz., 6.64 Hz and 12.7 Hz. The 12.7 Hz frequency is estimated to be the highest 

6th mode frequency of the combined hybrid model when considering the measured stiffness of the 

bearing from experimental data in the first regime of the friction pendulum (corresponding to the 

unloading stiffness). 
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Figure 5.15: Time-frequency analysis of isolator shear forces (case 7) 

One significant difference in the STFT plots is that in Figure 5.15 the high frequencies 

between 7-17 Hz. vanish between 7 and 10 s. This range of time corresponds to the large 

displacement cycles of the isolation system. Therefore, this could explain why the hysteresis in 

Figure 5.13 does not have the higher frequency oscillations. And, it clearly shows some high 

frequency content after 40 seconds, which explains the amplification of the frequency around 12 

Hz in the STFT plot. Figure 5.16 shows that the high frequencies remain in case 8 even during the 

7 to 10 second window with the large displacement cycles. This explains why the hysteresis loop 

in Figure 5.14 exhibits oscillations during large displacement cycles. Almost no high frequency 

content after 40 second is exhibited in this case. 
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Figure 5.16: Time-frequency analysis of isolator shear forces (case 8) 

To further examine the source of the high frequencies present in case 8 between the 7 to 

10 second window, the contribution of the ATS compensator and interaction between the shake 

table and the experimental subassembly is examined. Figure 5.17 shows the time-frequency 

analysis of the isolator shear forces for case 6, which is also a case that has a lager amplitude 

ground motion and that exhibits non-smooth hysteresis. Additionally, Figure 5.18 shows the 

frequency content of the compensated displacement, measured displacement and target 

displacement. From this figure, it is noted that the compensated and measured displacements 

experience higher magnitudes at the higher frequency levels. Further, the high frequencies 

amplified in cases 6 and 8 when comparing the target and compensated displacements indicate that 

the ATS compensator could be adding higher frequency content to the signals. 
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Figure 5.17: Time-frequency analysis of isolator shear forces (case 6) 

 
Figure 5.18: Frequency content of displacement at table level (case 6) 
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5.6.3 Midlevel isolation as an un-tuned mass damper 

Midlevel isolation has recently been implemented as a means to retrofit buildings. The 185 

Berry Street Building in San Francisco is a good example of such practice (Dutta et al. 2009). The 

response of the sub-structure improved after adding additional stories on top of a midlevel isolation 

layer. Similar behavior is found in the numerical sub-structure of this MDOF model that was 

examined. Figure 5.19 shows the effect of adding an isolated mass above the numerical sub-

structure on the peak inter-story drift (PIDR) at each story. The added isolated mass behaves as an 

un-tuned mass damper (TMD) for the entire structure. 

 
Figure 5.19: Peak inter-story drifts comparison (case 7) 

The roof PIDR is reduced by an average of 30% when the isolated mass is added. If the 

hybrid result is used, a greater reduction would be obtained because the full numerical model tends 

to overestimate the drift responses. Interestingly, this approach presented here can be used to 

economically test competing mass damper devices. 
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5.7. Lessons learned/future work 

With the first application of hybrid simulation on a large-scale shake table, there are several 

challenges encountered that are worth noting. In terms of shake table control, the LHPOST is 

typically commanded with a target acceleration record, and operates in a three-variable control 

mode (displacement, velocity and acceleration). Due to high levels of noise in the generated 

acceleration command from a hybrid simulation, it is recommended that displacement only control 

is used. Limited feedforward control was used to minimize the delay in the shake table. For this 

particular setup, SCRAMNet shared memory networks provide fast communication between the 

controllers and the Target PC. However, in this case one of the cards was found to be faulty 

(SCRAMNet) and resulted in synchronization problems of the shake table control command. The 

command error was amplified in taking the derivative of the signal and in some instances resulted 

in unstable behavior of the shake table. 

For the application shown, the feedback from the experiment consisted of the specimen 

base shear measured directly with load cells below the isolators. For larger specimens, shear load 

cells may not be available and would require the use of load cells on the shake table actuators. 

These load cells include inertia and friction effects of the platen. To recover the specimen base 

shear, a force correction model should be implemented to remove these additional forces (Alireza 

Sarebanha et al. 2019).  

To extend this hybrid technique to larger and more complex structures, further work on the 

hybrid simulation framework must be performed to combine more complex subassemblies. Larger 

nonlinear numerical models, with larger computational requirements may necessitate the use of 

reduce order models that can run in real time (A. Sarebanha et al. 2018) or use data driven models 
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(Cesmelioglu, Song, and Drignei 2017). Further, the LHOPOST is currently undergoing an 

upgrade to 6-DOF and will require the extension of this method to multi-DOF. 

There are many uncertainties involved in a hybrid test, such as the interaction between the 

numerical integrators, compensators, shake table control system, and nonlinear response of the 

experiment. These components are not fully understood in practice and thus a gradual step-by step 

implementation of a hybrid simulation is recommended. Additionally, constraints were imposed 

on variable parameters such as a rate limiter and bounding value (see Figure 5.4) especially for 

adaptive control and compensation algorithms.  

 

5.8. Conclusions 

Hybrid simulation provides a cost-efficient framework for testing of structural systems at 

large or full scale. It was verified that RTHS can be conducted using LHPOST with a soft real-

time implementation allowing advanced modeling capabilities or in hard real-time for simpler 

configurations. This framework can allow parametric studies using the same experimental 

subassembly while varying the analytical subassembly structural properties. The equipment used 

here had large delays and the use of the ATS compensator was able to effectively mitigate control 

errors. However, the compensation signal can add higher frequencies into the control signal of the 

shake table that manifested itself as high frequency oscillations observed in the hysteresis response 

of the specimen.  

The tests demonstrate new capabilities that can expand the complexity of large-scale 

geotechnical and structural systems tested on LHPOST. The demonstrated capabilities will enable 

researchers to investigate different configurations and take advantage of the large capacity of 

LHPOST including the available soil boxes to include geotechnical elements. 
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5.9. Remarks 

Portions of this dissertation have been published or are currently being considered for 

publication. Chapter 5 is composed of a first authored publication: 

Vega, Manuel A., Andreas H. Schellenberg, Humberto Caudana, and Gilberto Mosqueda. 2020. 
“Implementation of Real-Time Hybrid Shake Table Testing Using the UCSD Large High-
Performance Outdoor Shake Table.” International Journal of Lifecycle Performance Engineering 
Volume 4 (Special Issue on Hybrid Simulation for Multi-Hazard Engineering): 80–102. 
https://doi.org/10.1504/IJLCPE.2020.108939. 
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Chapter 6 

 

CONCLUSIONS AND FUTURE RESEARCH  

  

Maintenance planning has been studied for several decades. Two maintenance 

approaches—time-based maintenance (TBM) and condition-based maintenance (CBM)—have 

been reviewed and studied. An emphasis has been made on the implementation of a CBM 

framework applicable to miter gates structures. The different pieces needed for this CBM 

framework have been addressed which includes diagnosis, prognosis, and maintenance decisions.  

As discussed in Chapter 2, 3 and 4, diagnosis heavily depends on the availability of 

sufficient monitoring data through the life cycle of the structure of interest. On the other hand, 

when historical monitoring data is limited, diagnosis has to rely heavily on physics-based models. 

In this scenario, accurate diagnosis will depend on how well the physics-based model represent 

the true behavior of the structure. In this dissertation, it is assumed that the physics-based model 

does well-represent the true physics. However, further studies need to be made to account for 

model discrepancy and its impact to diagnosis, prognosis, and maintenance decisions. Physics-

informed surrogate models have been used to tackle the challenge of evaluating computational 

expensive FE models. Model discrepancy correction and model validation should be explored 

before deploying this framework to a real structure. Model validation can be achieved through 

structural testing such as hybrid simulation. Real time hybrid simulation however has been limited 

by the run time of the numerical portion of the model. Chapter 5 uses a somewhat simple model 

to allow real time simulation. However, further studies using surrogate models should be carried 

out to allow more complex structures in the numerical portion of the hybrid model.  
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As discussed in Chapter 3, prognosis heavily depends on the availability of degradation 

data through the life cycle of the structure or on the availability of physics-based degradation 

models (e.g. Paris law). Human error on inspection data heavily influences prognosis and therefore 

directly impacts maintenance planning. Further studies need to be made account for degradation 

models built from many sources of inspection data (e.g. OCA rating, inspection data from Maximo, 

etc.). 

Finally, as discussed in Chapter 2 and 3, the proposed CBM approach allowed to obtain 

the optimal maintenance plan (based on cost minimization) over time based on the information 

gained by the sensor information using a physics-informed surrogate model. This approach can be 

applicable to different nonrepairable components in miter gates, which may have different 

transition matrices values. However, further work needs to be done to extend this methodology to 

other components in miter gates and then from miter gate components to whole miter gate system 

level (e.g. including all critical miter gate components). Additionally, further work needs be done 

to the optimization target criterion to accommodate multi-objective system performance criteria  

(e.g. cost, availability, reliability, etc.). In this work the damage threshold used for RUL 

computation is assumed to be known, but further studies should determine impact of different 

damage thresholds. Many times, variability in damage thresholds depends on the judgement of 

engineers, inspectors, and decision-making personnel.  
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