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ABSTRACT 

 

Phytoplankton community determinations and dynamics in the Santa Barbara Channel, 

California 

 

by 

 

Dylan Samuel Catlett 

 

Quantifying and determining the oceanographic and climate forcings of variability in 

phytoplankton community composition (PCC) represents a critical step in understanding and 

predicting marine ecosystem structure and function. In this dissertation, I analyzed samples 

and data from an extensive oceanographic time series from the highly productive Santa 

Barbara Channel, CA (SBC). The goals of this work were to (1) determine the “best-case 

scenario” for retrieving PCC from remotely sensible hyperspectral bio-optical observations; 

(2) characterize the dominant oceanographic and climate forcings of PCC variations in the 

SBC; and (3) integrate HPLC pigment and amplicon sequencing observations of PCC to 

assess the agreement between methods and the potential to gain novel insights into 

phytoplankton physiology and ecology and ecosystem function.  

In Chapter 2, we considered nearly a decade of concurrent HPLC phytoplankton 

pigment and spectrophotometric phytoplankton absorption coefficient observations. We 

implemented covariance-based analyses to identify 3-5 phytoplankton pigment communities 

from the HPLC pigment data, and spectral derivative analysis of phytoplankton absorption 



 

 
x 

to identify phytoplankton absorption features. We then developed a bio-optical modeling 

approach to retrieve phytoplankton pigment concentrations and PCC indices from 

phytoplankton absorption derivative spectra with high skill. Notably, we found that 

absorption features from across the visible spectrum are useful in modeling PCC. 

In Chapter 3, we applied the bio-optical models from Chapter 2 to the PnB archive of 

phytoplankton absorption observations to double the length of the PnB HPLC phytoplankton 

biomarker pigment time series to 20+ years of observations. We then characterized the 

dominant oceanographic and climate forcings of five phytoplankton groups resolved from 

HPLC pigment data. Despite the widely documented dominant response of diatoms to 

seasonal upwelling, our analysis revealed that prymnesiophytes and chlorophytes are the 

typical “first responders” to seasonal upwelling in the SBC. On multi-decadal time scales, 

we identified an association between anomalous SBC dinoflagellate blooms and surface 

ocean advection patterns likely forced by a dominant mode of decadal climate variability, 

the North Pacific Gyre Oscillation.  

Finally, Chapter 4 focused on integrating HPLC pigment and amplicon sequencing 

observations to assess PCC in the coastal ocean. High uncertainty in estimates of biomass 

contributions of specific phytoplankton groups was often introduced by inter- and intra-

group variability in biomarker pigment expression. However, we observed that distinct 

suites of biomarker pigments covary with unique communities of phytoplankton and other 

protistan groups. Integrating the two data sets thus provided novel insights into 

phytoplankton physiology and function, and suggested a path toward monitoring ecosystem 

structure and function on unprecedented spatiotemporal scales via ocean color remote 

sensing of phytoplankton biomarker pigment concentrations.  
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I. Introduction 

 Phytoplankton account for most of the primary production in the ocean and thus 

play an integral role in marine food webs and biogeochemical cycles (Field et al., 1998; 

Guidi et al., 2016). Coastal marine ecosystems contribute disproportionately to global 

phytoplankton productivity despite their limited spatial extent relative to the global ocean 

(Ryther, 1969). The composition of the phytoplankton community in both the coastal and 

open ocean influences the fate of phytoplankton primary production (Ryther, 1969; Guidi 

et al., 2016): will it be transferred up the food web to sustain diverse and economically 

important marine macrofauna, or will it escape to the deep ocean and contribute to the 

sequestration of carbon for decades to millenia? Quantifying and determining the 

dominant oceanographic and climate forcings of phytoplankton community composition 

(PCC) in the coastal ocean on large spatiotemporal scales represents a critical step in 

answering this question, and in turn, improving our capacity to understand and predict 

marine ecosystem structure and function. 

The high morphological, functional, and genetic diversity amongst marine 

phytoplankton makes quantifying PCC coherently across different scales of space, time, 

and diversity extremely difficult. Despite this, many methods with unique strengths and 

weaknesses are available to quantify PCC, including microscopic and/or image-based cell 

identification and enumeration, flow cytometry, amplicon sequencing of phylogenetically 

informative barcode genes, and High Performance Liquid Chromatography analysis of 

phytoplankton biomarker pigment concentrations (see Johnson and Martiny, 2015 for a 

review). PCC can also be monitored on larger spatiotemporal scales via satellite ocean 

color remote sensing, which relies on algorithms that take advantage of the linkages 
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between ocean bio-optical properties observed by ocean color satellites and in-water 

estimates of PCC (most often based on HPLC pigment analysis; IOCCG, 2014).  

HPLC phytoplankton pigment analysis measures the concentrations of ~25 

accessory pigments, some of which serve as biomarkers for specific phytoplankton 

groups (Van Heukelem and Thomas, 2001; Jeffrey et al., 2011). Phytoplankton pigment 

chemotaxonomy seeks to estimate the contributions of various phytoplankton groups to 

the phytoplankton community. Pigment chemotaxonomy is the most widely used method 

to validate ocean color and bio-optical PCC algorithms due to its rigorously validated and 

standardized sample analysis procedures and direct links to bio-optical properties 

(IOCCG, 2014). CHEMTAX and diagnostic pigment methods (Mackey et al., 1996; 

Vidussi et al., 2001) are the most widely used chemotaxonomic methods and provide 

estimates of the contributions of various phytoplankton types to the bulk chlorophyll a 

concentration. However, chemotaxonomy is associated with inherent uncertainty due to 

ambiguity in the representation of specific phytoplankton groups by various biomarker 

pigments (Jeffrey et al., 2011) and the complicated relationships between pigment 

concentrations and carbon biomass, primary productivity, and cell abundances that arise 

due to variability in phytoplankton physiological status and other factors (Goericke and 

Montoya 1998; Behrenfeld et al., 2005). These sources of uncertainty tend to limit the 

taxonomic resolution of pigment-based PCC assessments to approximately the class level 

(e.g., diatoms, dinoflagellates, etc.). More refined “pigment types” have been proposed 

(e.g., diatom type 1, diatom type 2, etc.) (Mackey et al., 1996; Higgins et al., 2011), but 

there is little evidence to suggest these refined pigment classes are genetically, 

functionally, or ecologically unique, and the ambiguity in pigment biomarkers generally 
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precludes accurate quantification of more than a few broadly-defined groups from HPLC 

pigment data.  

Many approaches have been proposed to retrieve the concentrations of HPLC 

phytoplankton pigments and/or derived indices of PCC from ocean bio-optical properties 

(see Mouw et al., 2017 for a review). Spectral-based approaches for retrieving PCC 

indices from bio-optical properties rely on direct links between PCC indices and spectral 

signatures, while abundance-based approaches attempt to model PCC as a function of 

bio-optically modeled phytoplankton biomass (Mouw et al., 2017). The upcoming launch 

of NASA’s Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission is expected 

to improve spectral-based retrievals of PCC from satellite ocean color estimates as it will 

offer improved resolution of phytoplankton optical signatures via the hyperspectral 

Ocean Color Instrument (Werdell et al., 2019), and thus offers a unique opportunity to 

observe PCC on unprecedented spatiotemporal scales. Promising spectral-based 

approaches for identifying and enhancing the signal arising from phytoplankton pigment 

absorption features in hyperspectral bio-optical observations include gaussian 

decomposition (Chase et al., 2017) and spectral derivative analysis (Bidigare, 1989), 

though further research is needed to assess the potential to quantitatively model PCC 

indices following isolation of phytoplankton absorption features. 

DNA meta-barcoding is now widely applied throughout the world’s oceans to 

characterize the composition of phytoplankton and other microbes (de Vargas et al., 

2015). DNA meta-barcoding estimates the relative sequence abundances of amplicon 

sequence variants (ASVs), a proxy for microbial species (Callahan et al., 2016), as the 

fraction of the total sequence reads recovered from each sample that matches the ASV 
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sequence (Balint et al., 2016). In general, analytical uncertainty in DNA meta-barcoding 

analysis is poorly constrained and difficult to evaluate (Wear et al., 2018; Yeh et al., 

2021). However, DNA meta-barcoding offers much finer taxonomic resolution of PCC 

than HPLC pigment analysis. Both DNA meta-barcoding and HPLC pigment analysis 

provide relatively holistic estimates of PCC across the complete range of phytoplankton 

size classes, and provide estimates of PCC that are more similar to one another than to 

PCC estimates from other methods (Gong et al., 2020). Thus, integrating HPLC pigment 

and DNA meta-barcoding observations is needed to ensure robust and coherent 

assessments of relationships between PCC and marine ecosystem structure and function. 

The Santa Barbara Channel, CA (SBC) is a particularly productive, biodiverse 

coastal ecosystem found at the northern boundary of the Southern California Bight (Beers, 

1986). The SBC lies in between the relatively cool, productive waters of the southern 

California Current System and the warmer, more oligotrophic waters of the Southern 

California Bight, and the confluence of these distinct water masses drives high 

spatiotemporal variability in physical, chemical, and biological oceanographic properties 

in the SBC (Henderikx-Freitas et al., 2017). Seasonal upwelling is the dominant 

oceanographic forcing of phytoplankton biomass and community dynamics in the SBC, 

though the persistent SBC eddy can act to further concentrate phytoplankton biomass and 

productivity in the SBC (Harms and Winant, 1998; Brzezinski and Washburn, 2011; 

Venrick, 2012; Henderikx-Freitas et al., 2017). Upwelling typically leads to substantial 

accumulation of diatom biomass in the SBC surface ocean, though blooms of other 

phytoplankton including dinoflagellates, prymnesiophytes, and chlorophytes have also 

been documented in or around the SBC (Countway and Caron, 2006; Venrick, 2012; 
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Taylor et al., 2015; Matson et al., 2019). On longer time scales, climate forcing by the 

major modes of North Pacific climate variability, the El Niño Southern Oscillation, 

Pacific Decadal Oscillation, and North Pacific Gyre Oscillation, are thought to drive 

interannual to decadal variability in phytoplankton biomass although the impacts of 

climate forcings on phytoplankton communities are under-explored (Mantua et al., 1997; 

Di Lorenzo et al., 2008; Venrick, 2012; Di Lorenzo et al., 2013; Jacox et al., 2016).  

In this dissertation, phytoplankton community composition and dynamics in the 

SBC are quantified using an extensive data set of HPLC pigment, bio-optical, and DNA 

meta-barcoding observations. Phytoplankton pigment community analyses indicate that 

3-5 unique phytoplankton community states are resolvable from HPLC pigment data. 

Strong statistical relationships between phytoplankton pigment communities and spectral 

derivatives of phytoplankton absorption coefficients are identified and provide the 

foundation for the development of a novel bio-optical modeling approach. The bio-

optical models reconstruct phytoplankton pigment community dynamics with high skill, 

and are subsequently applied to an archive of phytoplankton absorption observations to 

double the size of an approximately monthly HPLC biomarker pigment time series to 20+ 

years. The extended HPLC pigment time series is analyzed to determine the dominant 

oceanographic and climate forcings of seasonal to multi-decadal PCC dynamics in the 

SBC. We find that most phytoplankton groups respond positively to seasonal upwelling, 

and as a result, are impacted by interannual variability in seasonal upwelling forced by 

the El Niño Southern Oscillation. On multi-decadal time scales, results from a regional 

ocean circulation model provide motivation for a data-driven hypothesis that forcing by 

the North Pacific Gyre Oscillation drives anomalous decadal dinoflagellate blooms by 
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altering SBC source water advection patterns. Finally, integrating 3.5 years of DNA 

meta-barcoding observations of SBC protist communities with the HPLC pigment data 

shows that, despite error in PCC estimates introduced by inter- and intra-group variability 

in biomarker pigmentation, novel insights into phytoplankton group physiology and 

function can be gained by integrating PCC methods, and diverse communities of 

phytoplankton and other protists covary with phytoplankton pigment communities. 

Overall, this research advances our understanding of large scale forcings and dynamics of 

SBC phytoplankton communities, and demonstrates a potential path to monitor 

ecosystem structure and function on unprecedented spatiotemporal scales through ocean 

color remote sensing.  
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Abstract 

Understanding the roles of phytoplankton community composition in the 

functioning of marine ecosystems and ocean biogeochemical cycles is important for 

many ocean science problems of societal relevance. Remote sensing currently offers the 

only feasible method for continuously assessing phytoplankton community structure on 

regional to global scales. However, methods are presently hindered by the limited 

spectral resolution of most satellite sensors and by uncertainties associated with deriving 

quantitative indices of phytoplankton community structure from phytoplankton pigment 

concentrations. Here we analyze a data set of concurrent phytoplankton pigment 

concentrations and phytoplankton absorption coefficient spectra from the Santa Barbara 

Channel, California, to develop novel optical oceanographic models for retrieving metrics 

of phytoplankton community composition. Cluster and empirical orthogonal function 

analyses of phytoplankton pigment concentrations are used to define up to 5 

phytoplankton pigment communities as a representation of phytoplankton functional 

types. Unique statistical relationships are found between phytoplankton pigment 

communities and absorption features isolated using spectral derivative analysis and are 

the basis of predictive models. Model performance is substantially better for 

phytoplankton pigment community indices compared with determinations of the 

contributions of individual pigments or taxa to chlorophyll a. These results highlight the 

application of data-driven chemotaxonomic approaches for developing and validating 

bio-optical algorithms and illustrate the potential and limitations for retrieving 

phytoplankton community composition from hyperspectral satellite ocean color 

observations. 



 

 15 

Introduction  

Quantifying variations in phytoplankton biomass and community composition on 

large spatiotemporal scales is imperative due to their roles in regulating biogeochemical 

cycles and marine trophic interactions (e.g., Field et al., 1998; Landry, 2002). Several 

methods have been developed to monitor changes in phytoplankton community structure, 

including microscopic taxonomy and cell counts, flow cytometric sorting and 

enumeration, DNA meta-barcoding, and pigment chemotaxonomy via High Performance 

Liquid Chromatography (HPLC). Each of these methods has strengths and weaknesses 

(IOCCG, 2014; Johnson and Martiny, 2015), but all require the analysis of field samples 

limiting the spatial and temporal scales over which phytoplankton community dynamics 

can be studied. Given the success of ocean color remote sensing for monitoring 

phytoplankton biomass and net primary production on temporal and spatial scales 

unattainable with in situ methods, researchers have recently focused on developing 

methods to monitor changes in phytoplankton community composition (e.g., Moisan et 

al., 2013; Pan et al., 2011; Torrecilla et al., 2011). 

Nearly all remote sensing approaches for assessing phytoplankton community 

composition have relied on HPLC-derived chemotaxonomy for their validation because 

of its simple sampling protocol and standardized analysis procedures (e.g., IOCCG, 

2014). Chemotaxonomy has inherent uncertainty due to the widespread occurrence of 

most pigments across many different taxa (see Table 1 below; Jeffrey et al., 2011). 

Despite this uncertainty, methods have been developed to quantify phytoplankton 

community composition from measured phytoplankton pigment concentrations, typically 

in the form of contributions of one or a few groupings based on taxonomy, cell size, or 
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functional properties (“phytoplankton functional types,” or PFT’s) to the total 

concentration of chlorophyll a. The two most widely used PFT methods are CHEMTAX 

(Mackey et al., 1996) and diagnostic pigment (DP) analyses (Uitz et al., 2006). Both 

make assumptions about the underlying covariations of pigment concentrations, adding 

uncertainty to the resulting PFT determinations (Higgins et al., 2011). Recently, 

Empirical Orthogonal Function (EOF) analysis of suites of phytoplankton pigment 

concentrations has emerged as a promising tool to characterize phytoplankton 

communities (Anderson et al., 2008; Barrón et al., 2014). Unlike other chemotaxonomic 

methods, EOF analysis makes no a priori assumptions about the underlying covariance of 

pigments but this approach has not yet been widely compared to other methodologies.  

Many approaches have been developed to retrieve PFTs from multi- or 

hyperspectral optical measurements (e.g., Bricaud et al., 2007; Li et al., 2013), although 

multispectral approaches are hindered by their limited ability to resolve phytoplankton-

specific absorption features. Forthcoming hyperspectral ocean color remote sensors, such 

as NASA’s Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission 

(https://pace.gsfc.nasa.gov), will allow for resolution of phytoplankton optical signatures 

and the potential to develop robust relationships to phytoplankton pigments, taxa, and 

communities. A promising approach for isolating phytoplankton absorption signatures 

from hyperspectral ocean color observations is derivative analysis (e.g., Bidigare et al., 

1989; Isada et al., 2015). In principle, derivative analysis focuses on the spectral scales at 

which phytoplankton pigments absorb, thereby isolating phytoplankton-specific 

absorption signatures in environments where abiotic constituents may be significant (e.g., 

Craig et al., 2006; Dierssen et al., 2015; Isada et al., 2015; Lubac et al., 2008). However 
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because many phytoplankton biomarker pigments absorb light at similar wavelengths, it 

remains difficult to use the isolated absorption features to quantify specific phytoplankton 

taxa (e.g., Bricaud et al., 2004; Chase et al., 2013).  

Here we use an extensive data set of HPLC-derived phytoplankton pigment 

concentrations and corresponding phytoplankton-specific absorption coefficient 

derivative spectra from the dynamic coastal environment of the Santa Barbara Channel, 

California (SBC) to elucidate unique relationships between spectral absorption signatures 

and phytoplankton pigments. Using a linear modeling approach, we show that 

concentrations of important biomarker pigments, as well as phytoplankton communities 

represented by EOF modes, can be accurately modeled. Other widely used PFT metrics 

such as fractional contributions of individual pigments or taxa to chlorophyll a were 

retrieved with less fidelity. The mechanistic nature of our modeling approach shows that 

resolution of absorption features across the spectrum is needed to accurately model the 

concentrations of important biomarker pigments due to their covariance with one another, 

more ubiquitous pigments, and their corresponding absorption signatures.  

 

Methods 

Plumes and Blooms overview 

The analyses presented here use data collected as part of the Plumes and Blooms 

(PnB) program, a time series devoted to understanding ocean color variability in the 

optically complex Santa Barbara Channel (SBC). PnB has conducted approximately 

monthly cruises since 1996, sampling at 7 stations along a ~40 km transect crossing the 

SBC. Methodologies for PnB data products have been described in detail in previous 
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publications (Anderson et al., 2008; Barrón et al., 2014; Kostadinov et al., 2012; Toole 

and Siegel, 2001). A brief review of the data used in the present study is presented below. 

 

Discrete seawater samples 

Discrete seawater samples were collected from 5-liter Niskin bottles deployed on 

a rosette for analysis of dissolved inorganic nutrients (NO3+NO2, PO4, and SiO4, 

representing nitrate + nitrite, phosphate, and silicate, respectively), biogenic and 

lithogenic silica (BSi and LSi, respectively), particulate organic carbon (POC), 

phytoplankton pigment profiles, and determinations of particulate and chromophoric 

dissolved organic matter absorption coefficients (ap(λ) and ag(λ), respectively). Sea-

surface temperature (SST) and salinity were measured using a Seabird 9/11 conductivity-

temperature-depth system. The data used in this analysis were measured at or near the sea 

surface from November, 2005 to December, 2014. Although PnB has been conducting 

cruises since 1996, quality control problems with HPLC data prior to 2005 preclude its 

use in this analysis (Hooker et al., 2009). 

Nutrient samples were collected in 20-mL plastic scintillation vials and analyzed 

at UC-Santa Barbara using a Lachat QuikChem 8000 Flow Injection Analyzer 

(http://www.msi.ucsb.edu/services/analytical-lab/instruments/flow-injection-analyzer). 

Samples for BSi and LSi analysis were collected on 0.4 µm membrane filters and 

analyzed using a sodium hydroxide extraction procedure (Krause et al., 2013). POC 

samples were taken on GF/F filters, stored immediately after collection in liquid nitrogen, 

and analyzed using a CE440 Elemental Analyzer. 
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Samples for HPLC analysis of phytoplankton pigments were immediately filtered 

onto GF/F filters and stored frozen in liquid nitrogen until being analyzed at the Horn 

Point Laboratory or, later in the time series, at the NASA Goddard Space Flight Center. 

Both laboratories used the HPLC procedure of Van Heukelem and Thomas (2001). All 

pigments considered in this analysis are listed in Table 1 along with their respective 

abbreviations used in the present study, assumed taxonomic value, and known taxonomic 

distribution. Pigment concentrations below detection limits were assumed to be absent 

from the sample, and their concentrations were set to zero. The pigments gyroxanthin 

diester and divinyl chlorophyll b were discarded from all analyses because they were 

always or almost always (>90% of observations) at or below detection limits, 

respectively. We also disregarded all chlorophyll a degradation products (chlorophyllide 

a, pheophorbide a, and pheophytin a).  

Samples for ap(λ) were also filtered immediately onto GF/F filters and stored in 

liquid nitrogen until analysis. ap(λ) was measured using the quantitative filtration 

technique (Mitchell, 1990) with a Shimadzu 2401-PC spectrophotometer. Following 

analysis of ap(λ), the filters were extracted in methanol for 48 hours to remove 

phytoplankton pigments and other organic-soluble material. The detrital absorption 

coefficient (ad(λ)) was then measured using the extracted filter, and was subtracted from 

ap(λ) to yield the phytoplankton absorption coefficient (aph(λ)). The optical path-length 

amplification factor was determined using natural phytoplankton populations from the 

SBC (see Barrón et al., 2014 for details). Samples for ag(λ) were collected in glass amber 

bottles and stored at 4°C for less than 24 hours before filtration through a 0.2 µm filter 

and analysis on a Shimadzu 2401-PC spectrophotometer. All absorption coefficients were 
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measured at 1 nm resolution and are considered here across the spectral range 350-700 

nm. 

 

Derivative analysis of phytoplankton-specific absorption 

Derivative analysis was applied to aph(λ) to identify major absorption signatures 

and investigate links with phytoplankton pigments and community structure. First and 

second derivative spectra were computed using a second order finite difference 

approximation: 

(1)  aph
′ (λ) =  (aph(λ + ∆λ) − aph(λ − ∆λ))/(2 ∗ ∆λ)     

(2)  aph
′′ (λ) =  (aph(λ + ∆λ) + aph(λ − ∆λ) − 2 ∗ aph(λ))/∆λ2   

where ∆λ is the band separation, or 1 nm in the present study. 

A smoothing filter must be applied to the spectral data prior to derivative analysis 

to reduce the influence of measurement noise. However, the characteristics of the 

smoothing filter (e.g., type and size) can influence the results of the derivative analysis 

(Tsai and Philpot, 1998; Vaiphasa, 2006). We investigated four types of smoothing filters 

(moving average (Tsai and Philpot, 1998), Savitsky-Golay (Tsai and Philpot, 1998), 

Lowess (Cleveland, 1981), and Hamming window (Harris, 1978)) and selected a 

smoothing filter by optimizing the linear relationships between selected pigments or 

pigment sums with their corresponding absorption maxima as identified in the second 

derivative spectra. This procedure led to the selection of a 15 nm Hamming window filter 

(see Text S1, Figure S1, Table S1 for procedural details), meaning that aph’(λ) and 

aph’’(λ) are considered here across the spectral range of 358-692 nm. Note however that 

the optimal smoothing filter may vary between different data sets due to methodological 
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or instrument differences. Therefore, smoothing filters should be carefully selected when 

applied to derivative analyses of independent data sets (e.g., Tsai and Philpot, 1998; 

Vaiphasa, 2006). 

 

Results 

Relationships among pigments, community structure, and derivative spectra  

Cluster analysis of phytoplankton pigment concentrations 

We applied hierarchical cluster analysis using the correlation distance (1-R, where 

R is the Pearson’s correlation coefficient between pigments) and Ward’s linkage method 

to investigate common co-occurrences between phytoplankton pigments (e.g., Latasa and 

Bidigare, 1998). Preliminary cluster analysis (Figure S2) showed that MVChla, MVChlb, 

and TChlc co-varied closely with TChla, TChlb, and Chlc1c2, respectively. We therefore 

did not include MVChla, MVChlb, and TChlc in further analysis since TChla and TChlb 

have been more widely used in past analyses (e.g., Vidussi et al., 2001), and excluding 

TChlc appeared to give Chlc1c2 and Chlc3 taxonomic value (discussed below; Figure S2, 

Figure 1). 

Diagnostic pigment (DP) analyses often assume that specific biomarker pigments 

represent PFTs of different size classes (e.g., Hirata et al., 2011; Uitz et al., 2006). The 

cluster analysis revealed three phytoplankton pigment clusters separated by linkage 

distances larger than 1.5 corresponding to the three major phytoplankton size classes 

(micro-, nano-, and picoplankton) commonly used as a proxy for PFTs (Figure 1). 

However, there are limitations of using pigment concentrations to derive information on 

phytoplankton size classes. DP analyses either assume that each DP belongs to a specific 
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size class or attempt to partition contributions of individual DPs to multiple size classes 

based on the assumption that the relative abundances of each size class co-varies with 

TChla (e.g., Hirata et al., 2011; Uitz et al., 2006). For example, different studies have 

represented TChlb and HexFuco as either pico-, nano-, or both size classes (e.g., Brewin 

et al., 2010; Hirata et al., 2008; Vidussi et al., 2001). For this data set, TChlb and 

HexFuco appeared to represent the nanoplankton size class given the large linkage 

distance between these pigments and the pigments more specific to picoplankton such as 

Zea and DVChla. Similarly, while Pras can be representative of both the nano- and 

picoplankton size classes, its position in the cluster analysis suggests it primarily 

represents picoplankton in this data set.  

Within the three broad clusters assumed to represent phytoplankton size classes, 

five pigment clusters, or communities, were identified representing a diatom-like 

community, dinoflagellate-like community, mixed nanoplankton-like community, 

haptophyte-like community, and picoplankton-like community (Figure 1). For simplicity, 

these pigment clusters are henceforth referred to as diatoms, dinoflagellates, mixed 

nanoplankton, haptophytes, and mixed picoplankton. The diatom community included 

Fuco, Chlc1c2, ABCar, and Diadino. Although these pigments are found across many 

phytoplankton taxa such as bloom-forming dinoflagellates and raphidophytes (Table 1), 

we assume that this community is dominated by diatoms since they often dominate cell 

abundances in the SBC (e.g., Anderson et al., 2006; Goodman et al., 2012; Venrick, 

1998). TChla is also found within this cluster indicating that diatoms largely control 

variability in TChla in the SBC, in agreement with past work (Anderson et al., 2008; 

Venrick, 1998; Venrick, 2012). This also suggests that typical approaches for deriving 
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PFTs based on the relationships of TChla with DPs will perform poorly. Dinoflagellates, 

the other major bloom-forming taxa in the SBC (Anderson et al., 2008; Venrick, 1998; 

Venrick, 2012), are represented by the pigment Perid and also clustered closely to TChla.  

The mixed nanoplankton community (Figure 1) consists of TChlb, Neo, Lut, 

Viola, Allo, and Diato. TChlb, Neo, and Lut are found almost exclusively in green algae 

(Table 1), and the large linkage distance separating them from Zea, Pras, and DVChla 

suggests that these pigments primarily represent nano- size green algae in the SBC. The 

presence of Allo and Viola suggests that red algae in the nano- size class, specifically 

cryptophytes (via Allo; Table 1), are frequently found together with the green algae. 

Viola can occur in both red and green algal lineages, but is not known to occur in 

cryptophytes (Table 1). Given its distance from the green algae-specific pigments, this 

may suggest the presence of other less prevalent red algae within this community that 

lack unique biomarker pigments and do not account for a significant portion of the 

variability in pigments they share with other taxa (e.g., chrysophytes, dictyophytes). The 

haptophyte community clusters closely with the mixed nanoplankton and consists of 

HexFuco, ButFuco, and Chlc3. HexFuco occurs almost exclusively in haptophytes while 

ButFuco and Chlc3 are more widespread in red algae, most notably in the pelagophytes. 

We assume this pigment group typically represents a haptophyte community due to past 

observations of blooms of Phaeocystis spp. in the SBC (Goodman et al., 2012; discussed 

below). The final community identified in the cluster analysis is the mixed picoplankton 

community, which consists of DVChla, Zea, and Pras. These pigments show the weakest 

overall within-cluster relationships, as well as the weakest relationships with TChla.  
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The cluster analysis revealed several unexpected divergences in the associations 

of presumably closely related pigments including Diadino and Diato and Chlc1c2 and 

Chlc3 (Figure 1). Diato and Chlc3 cluster within the nanoplankton and haptophyte 

communities while Diadino and Chlc1c2 cluster more closely with the diatoms (Figure 1). 

The conversion of the light-harvesting Diadino to the photoprotective Diato under high 

light conditions is well-documented in many phytoplankton taxa (Lohr, 2011, and 

references therein). The divergence of Diadino and Diato could thus indicate ecological 

differences between the diatoms and the mixed nanoplankton. In the SBC diatoms 

proliferate in relatively well-mixed waters with increased macronutrients, chlorophyll 

concentrations, and light attenuation, while the nanoplankton are more likely to dominate 

during low-chlorophyll, high-light conditions leading to a greater need for 

photoprotection (e.g., Anderson et al., 2006; Venrick, 1998; Venrick, 2012). Chlc1c2 and 

Chlc3 also co-occur in many taxa, including diatoms and haptophytes. Their divergence 

in the clustering results suggests that the dominant diatom populations in the SBC may 

lack or have relatively low Chlc3 concentrations (e.g., Chaetoceros; Stauber and Jeffrey, 

1988), while the dominant haptophyte taxa in the SBC, although unlikely to completely 

lack Chlc1c2, may have high Chlc3 concentrations relative to Chlc1c2 (e.g., Phaeocystis; 

Zapata et al., 2004). Though we lack direct cell counts in the PnB data set to confirm 

these hypotheses, both Chaetoceros and Phaeocystis have been documented as dominant 

in genera in the SBC and surrounding areas (Goodman et al., 2012; Venrick, 1998; 

Venrick, 2009). 

 

EOF analysis of phytoplankton pigment concentrations  
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To further characterize the co-variation among the pigment concentrations, we 

performed an Empirical Orthogonal Function (EOF) analysis following Anderson et al. 

(2008). An EOF analysis decomposes the pigment data into a series of orthogonal 

functions or modes. Each mode is represented conceptually by a set of loadings 

(presented in Figure 2), which shows the relative contribution of each pigment to that 

mode, and in space and time by an Amplitude Function (AF; Figure S3) (Anderson et al., 

2008; Barrón et al., 2014). Each pigment was mean-centered and divided by its standard 

deviation prior to the analysis. We included nearly all pigments used in the cluster 

analysis in the EOF analysis. The exception was Viola, which has limited taxonomic 

value (Figure 1) and had a disproportionately large influence on the covariance structure 

of the pigment data. Here, we interpret each pigment EOF mode to represent a distinct 

phytoplankton community or PFT. Each PFT is thus associated with an AF that describes 

the relative intensity of that PFT at each point in the data set. Although a detailed analysis 

of pigment community dynamics is beyond the scope the present work, these PFTs can 

be correlated to concurrently measured optical (e.g., Figure 4 below) and biogeochemical 

(e.g., Table S2) parameters to investigate relationships with optical properties and aid in 

their ecological interpretation. 

The first four EOF modes explained 74.5% of the variability in the pigment data 

and will be discussed here. The five communities identified in the cluster analysis were 

all represented within these first four EOF modes. Correlations of EOF modes with 

several environmental parameters are presented in Table S2 and provide additional 

support for our interpretations of both the EOF modes and pigment clusters. The present 
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EOF results were in reasonable agreement with the analyses of Anderson et al. (2008) 

and Barrón et al. (2014) where differences were likely due to the extended pigment suite 

used here and the different time periods over which the EOF analyses were conducted.  

EOF mode 1 was interpreted as an early, mixed bloom community and accounted 

for 38.7% of the variability in the pigment data set (Figure 2a). The pigments 

representative of the diatom and mixed nanoplankton communities showed the strongest 

correlations with this mode, followed by the haptophyte and dinoflagellate communities. 

Given the significant correlations with cooler temperatures and elevated nutrients (Table 

S2), this mode is likely to dominate during an upwelling event and shows most taxa 

responding positively to the introduction of nutrients to the surface ocean. Pigments 

representative of mixed picoplankton showed weak relationships with this mode, though 

these relationships varied. Pras was uncorrelated with mode 1, while Zea was weakly but 

significantly correlated at positive AFs suggesting a role in the mixed bloom community. 

DVChla was the only pigment that was negatively, although weakly, correlated with 

mode 1. Although uncorrelated with the other modes by definition, this mode’s largest 

positive AFs occasionally co-occur with large AFs in modes 2, 3, or 4, signifying the 

emerging dominance of a specific pigment group within the bloom (Figure S3).  

Mode 2 is dominated by the mixed nanoplankton and haptophyte communities at 

positive amplitudes and the diatom community at negative amplitudes, and accounts for 

21.4% of the total variance (Figure 2b). The picoplankton also appear to be weakly 

associated with Mode 2 at positive amplitudes. Thus, mode 2 indicates the alternating 

dominance of the diatom bloom community and a mixed pico- and nanoplankton 

community. The diatom bloom community shows a strong correlation with BSi and weak 
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but significant negative correlations with nutrient concentrations and SST (Table S2), 

which suggests a well-developed diatom bloom with nutrients mostly drawn down 

following an upwelling event.  

Mode 3 explained 7.7% of the variability in the pigment data and represents the 

mixed picoplankton at positive AFs and the haptophytes at negative AFs (Figure 2c). 

This mode showed a weak positive correlation with temperature and weak negative 

correlations with nutrients, suggesting increased dominance of the picoplankton in warm, 

nutrient-poor conditions, as expected (e.g., Barrón et al., 2014). The mode 3 AF (Figure 

S3) occasionally shows pronounced haptophyte blooms in the SBC, with the largest 

occurring in the spring of 2008. Inner shelf microscopic observations near this time found 

a bloom of Phaeocystis spp. (Goodman et al., 2012), supporting our interpretation of this 

mode and the corresponding cluster as a haptophyte community.  

Mode 4 explained 6.7% of the variability in pigments and primarily represents the 

dinoflagellates at positive AFs and the diatoms and haptophytes at negative AFs (Figure 

2d). The covariance of Fuco with Chlc3 suggests a distinct diatom assemblage from the 

dominant diatom community identified in mode 2, though we lack sufficient evidence to 

confirm this and the weak but significant association of the haptophytes with this mode 

may partially explain the dominance of Chlc3. The significant correlation with BSi 

implies that this community is primarily composed of diatoms as opposed to other Fuco-

containing taxa, and highlights the dominance of diatoms in the SBC as they play 

significant roles in 3 of the 4 dominant modes of variability in phytoplankton pigments. 

Interpretation of the EOF results were roughly supported by results from the 

CHEMTAX method (Text S2, Figure S4), which aims to partition the contributions of 
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individual phytoplankton taxa to TChla (Higgins et al., 2011; Mackey et al., 1996). The 

overall performance of CHEMTAX was poor for this data set. This is likely due to 

CHEMTAX’s underlying assumption that phytoplankton pigment concentrations vary 

independently from one another. Further discussion regarding the application and results 

of the present CHEMTAX analysis are provided in Text S2.  

 

Correlations of phytoplankton pigments with derivative spectra 

Unique spectral relationships were observed between the concentrations of 

selected biomarker pigments and values of aph’(λ) and aph’’(λ) across specific wavelength 

ranges as shown in Figure 3. As expected, correlation coefficients were relatively high 

for spectral bands close to the assumed specific absorption features of individual 

pigments (Table S1). Biomarker pigments had relationships of varying strength with the 

absorption signatures of other pigments, and these relationships were generally stronger 

with the absorption features of the pigments that clustered closely to each respective 

biomarker pigment. For example, Fuco showed stronger correlations with the absorption 

signatures of the chlorophyll c pigments than all other biomarker pigments. Further, the 

shapes of the correlation spectra (Figure 3) of pigments found within the same pigment 

cluster (Figure 1) appeared qualitatively more similar than those of pigments found in 

different clusters.  

We also investigated the relationship between phytoplankton communities 

diagnosed via EOF analysis and aph’(λ) and aph’’(λ) spectra (Figure 4a and 4b, 

respectively). For each pigment mode, this was done by correlating the value of the AF at 

each point in the data set (e.g., AF(date, station)) with the value of aph’(λ) and aph’’(λ) at 

350400450500550600650700-1-0.8-0.6-0.4-0.200.20.40.60.81ButFucoHexFucoChlc3Diato



 

 29 

each point in the data set (e.g., aph’(λ, date, station)). The pigment EOF modes showed 

unique patterns of correlations with aph’(λ) and aph’’(λ). Taken together with the co-

varying patterns of correlation of specific groups of pigments with aph’(λ) and aph’’(λ) 

(Figure 3) and the cluster analysis (Figure 1), this indicates that absorption features are 

related to phytoplankton pigment communities rather than individual pigments or taxa. 

Modes 1, 2, and 4 exhibited significant correlations with aph’(λ) and aph’’(λ) across many 

spectral regions. Mode 1 showed the strongest correlations and is similar to the diatom-

associated pigments in its patterns of correlation (Figure 3), although there are clear 

differences likely due to the association of dinoflagellate and nanoplankton pigments 

with this mode. Modes 2 and 4 showed weaker correlations with aph’(λ) and aph’’(λ) than 

mode 1. This could be due to similarities in the patterns of correlation observed in the 

opposing communities that make up these modes. For example, changes in the mode 2 

AF signify that the diatom or nanoplankton community is becoming more prevalent at the 

expense of the other. When the two communities have similar relationships with a 

particular spectral region, the correlation of the AF with that region will likely be weaker 

than the correlations observed when each community is considered independently. Mode 

3 showed significant correlations in only a few spectral regions, likely due to the smaller 

roles that picoplankton have on variations in aph’(λ) and aph’’(λ) in the SBC (Figure 3). 

The contributions of the haptophyte and picoplankton communities, as diagnosed via 

EOF mode 3, to the total phytoplankton assemblage will likely be difficult to infer from 

aph’(λ) and aph’’(λ) from this data set. 

 

Quantitative comparisons of derivative and correlation spectra of pigment communities 
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Hierarchical cluster analysis was used to investigate the potential to separate 

pigment communities based on the unique relationships between aph’(λ) and aph’’(λ) and 

pigment concentrations (Figure 5). First, mean values of aph’(λ) and aph’’(λ) were 

computed from subsets of aph’(λ) and aph’’(λ) corresponding to observations of the 5% 

largest concentrations of each pigment considered in the analyses above (hereafter 

referred to as maximum pigment mean spectra). We then performed cluster analyses on 

the maximum pigment mean aph’(λ) and aph’’(λ) spectra simultaneously using the 

standardized Euclidean distance metric and the unweighted average distance as a linkage 

method (Figure 5a). The same aph’(λ) and aph’’(λ) spectra were sometimes included in 

several of the data subsets used to derive each first and second derivative maximum 

pigment mean spectrum due to the strong covariance amongst the pigments (Figures 1 

and 2), confounding this analysis to some extent. We also performed cluster analysis on 

the pigment-specific correlation spectra presented in Figure 3 using the Euclidean 

distance metric and the unweighted average distance linkage method (Figure 5b).  

The results of both spectral cluster analyses (Figure 5) were in good agreement 

with the cluster analysis of phytoplankton pigment concentrations (Figure 1). The 

assumed size-based associations observed in the cluster analysis of pigment 

concentrations (Figure 1) were similarly separated by the spectral cluster analyses, 

although the variable associations observed for the Perid maximum mean and correlation 

spectra resulted in a less clear microplankton cluster. Both spectral cluster analyses 

indicate that the diatom and dinoflagellate pigments have unique spectral characteristics 

and should be separable from one another and from the nano- and picoplankton. The 
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broad nanoplankton and picoplankton pigment clusters remained well-separated from one 

another and from the diatoms and dinoflagellates in the spectral cluster analyses. 

Minor differences were observed between the spectral and pigment cluster 

analyses (Figures 5 and 1, respectively) within the diatom and mixed picoplankton 

pigment communities. The spectral associations between Fuco and the more ubiquitous 

pigments of the diatom pigment community (Chlc1c2, Diadino, ABCar) were weaker 

than those observed in the pigment concentration cluster analysis (Figure 1). However, 

the proximity of Fuco to these pigments in the spectral cluster analyses relative to the 

other biomarker pigments suggests that the spectral absorption signatures of TChla, 

Chlc1c2, Diadino, and ABCar are strongly associated with diatoms rather than other 

taxonomic groups in the SBC. Within the mixed picoplankton community, Zea showed 

stronger spectral associations with Pras despite showing a stronger association with 

DVChla in the pigment data. Although the mixed picoplankton pigments appear well-

separated from the other pigment communities in the spectral cluster analyses, their weak, 

often insignificant correlative relationships with aph’(λ) and aph’’(λ) indicate they will be 

difficult to model bio-optically in the SBC.   

Within the broad pigment community assumed to represent the nano- size class, 

several differences were observed between the cluster analyses of pigment concentrations 

(Figure 1) and the corresponding pigment maximum mean and correlation spectra (Figure 

5). The correlation and pigment maximum mean spectra of TChlb and Lut were more 

closely associated with those of HexFuco and ButFuco than the correlation and pigment 

maximum mean spectra of the other pigments of the mixed nanoplankton community 

(Allo, Viola, Neo, Diato). The spectral characteristics of all pigments within the broad 
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nano- size class cluster were separated by linkage distances similar to the within-cluster 

distances observed for the diatom and mixed picoplankton communities. This suggests 

that bio-optically discriminating pigments from these two pigment communities will be 

difficult due to their strong covariance with one another and the resulting similarities in 

their relationships with spectral absorption signatures.  

 

Modeling phytoplankton pigment communities 

Model development with Principal Components Regression 

Our goal is to determine the possibilities and limitations of assessing 

phytoplankton community structure from optical data. Given the unique patterns of 

correlation between pigments and aph’(λ) and aph’’(λ) (Figures 3, 4, and 5b), we modeled 

phytoplankton pigment concentrations and community metrics as a linear sum of 

contributions from aph’(λ) and aph’’(λ): 

(3)  𝑝𝑚 =  ∑ 𝐴𝑚(𝜆𝑖) ∗𝑁
𝑖=1 𝑎𝑝ℎ

′ (𝜆𝑖) + 𝐵𝑚(𝜆𝑖) ∗ 𝑎𝑝ℎ
′′ (𝜆𝑖) + 𝐶𝑚  

where pm is the value of the mth modeled pigment concentration or pigment-derived index 

of phytoplankton community structure, Am(λi) and Bm(λi) are the coefficients of the first 

and second derivatives of aph(λ) at the ith wavelength λ for pigment concentration or 

community index m, and Cm is an intercept. The large number of predictor variables and 

the multicollinearity of the absorption signatures used to predict each pm necessitated the 

use of principle components regression to derive each set of Am(λ) and Bm(λ) (Massy, 

1965). Principal components regression solves the multicollinearity problem by 

performing principal components analysis (synonymous to EOF analysis) on the 

predictor variables, aph’(λ) and aph’’(λ). Values of aph’(λ) and aph’’(λ) were standardized 
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to have zero mean and unit variance prior to computing principal components. The AFs 

of each principal component were used as inputs in a multiple linear regression. Each 

spectral mode was thus assigned a linear regression coefficient from the multiple linear 

regression, which was then multiplied by that mode’s principal component loadings. 

These products are summed across all principal components used in the model to 

generate coefficients for aph’(λ) and aph’’(λ), Am(λ) and Bm(λ) (Massy, 1965; see Figure 6 

to follow for examples of Am(λ) and Bm(λ)). More information on the derivation of Am(λ) 

and Bm(λ) is provided in Supplemental Information (Text S3). 

 

Evaluation of significant absorption signatures 

Each set of coefficients of the principal components of aph’(λ) and aph’’(λ) can be 

transformed to coefficients of the original derivative spectra (e.g., standardized 

coefficients shown in Figure 6). The linear modeling approach thus allows for detailed 

investigations of the most important bands in modeling each pm. For example, significant 

bands can be evaluated by examining where the mean values of Am(λ) and Bm(λ) were 

significantly different from zero using their 95% confidence intervals (e.g., Figure 6). 

Some bands, such as aph’’(675) corresponding to an absorption maximum of chlorophyll 

a, were important in modeling most pigments due to the association of TChla with all 

phytoplankton taxa (Figure 6). Other bands, such as those near aph’’(585) and aph’’(640) 

corresponding to absorption maxima of chlorophyll c, are more important in modeling 

those pigments that cluster closely to chlorophyll c (e.g., Fuco and HexFuco). 

Interestingly, the absorption maximum near aph’’(540) was significant in modeling both 

Fuco and Perid (Figure 6) despite their relatively weak correlative relationships (Figure 
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3). These results indicate that “communities” of absorption features over the entire 

spectrum are required to adequately model phytoplankton pigment concentrations and 

community composition.  

 

Model cross-validation results 

The performance of our model was assessed by computing the mean and standard 

deviation of the mean and median percent errors and the percent bias (e.g., Bracher et al., 

2015) of modeled relative to observed pm, as well as the mean and standard deviation of 

R2 and RMSE of the linear relationship between modeled and observed pm, for each 500-

permutation model run (see Text S3). Selected modeling results are presented in Table 2 

(see Table S14 for all modeling results). The pigment-derived indices of phytoplankton 

community structure we attempted to model included pigment to TChla ratios, pigment 

mode AFs, and contributions to TChla derived from CHEMTAX and several DP analyses 

based on the methods introduced by Vidussi et al. (2001) and Uitz et al. (2006). A 

description of how the CHEMTAX and DP community indices were derived is provided 

in Supplemental Information (Text S4, Table S12). 

The linear model (Equation 3) performed well (R2 > 0.8) in retrieving the 

pigments that dominate the variability in aph’(λ) and aph’’(λ), including TChlb, Fuco, and 

Perid (Table 2). Reasonable retrievals (R2 ~0.7) were obtained for HexFuco and Allo, 

two relatively unambiguous biomarkers of haptophytes and cryptophytes, respectively. 

These pigments represent four of the five major pigment communities identified in the 

cluster (Figure 1) and EOF (Figure 2) analyses. Picoplankton pigments were retrieved 

poorly, with the best retrievals (R2 ~0.5) achieved for Zea likely due to its stronger 
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covariance with more readily retrievable pigments as demonstrated in EOF modes 1, 2, 

and 4 (Figure 2). We were also able to accurately model phytoplankton communities as 

represented by pigment EOFs (R2 > 0.8), with the exception of EOF mode 3 presumably 

due to the large influence of the picoplankton on this mode.  

The model explained less of the variability in retrievals (as determined by R2) of 

fractional contributions of individual taxa or pigments to TChla, including those derived 

from pigment to TChla ratios, the DP methods of Vidussi et al. (2001) and Uitz et al. 

(2006), and CHEMTAX (Tables 2 and S14). Retrievals of the CHEMTAX-derived 

contributions of diatoms and dinoflagellates were reasonably accurate (R2 ~0.75). 

However, retrievals of the nanoplankton and haptophytes were poor (R2 < 0.6). The 

accuracy of CHEMTAX retrievals using this modeling approach relies primarily on the 

relationships of each taxa with TChla, and demonstrates the limitations of retrieving 

CHEMTAX-derived community indices in regions where variability in TChla is 

dominated by one or two taxa. The retrievals of DP-based indices of community structure 

were also more biased as the mean percent bias was frequently greater than two standard 

deviations from zero. For example, the model tends to overestimate the fractional 

contributions of TChlb and Perid to TChla when the observed contributions are low, and 

underestimate these fractional contributions when they are high. Conversely, the mean 

percent biases of pigment concentrations and EOFs were generally within 1 or 2 standard  

deviations of zero, suggesting that bias in these retrievals is less significant. 

Our successes in modeling the concentrations of several important biomarker 

pigments were due to their covariance with other pigments (Figures 1 and 2), and their 

corresponding absorption signatures (Figures 3, 4, 5, and 6). By taking advantage of this 
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co-variability, we were also able to predict the relative intensities of several dominant 

phytoplankton communities as represented by ecologically relevant EOF modes and 

supported by cluster and CHEMTAX analyses. This again demonstrates the effectiveness 

of retrieving phytoplankton pigment-derived “communities” rather than individual 

pigment concentrations or the fractional contributions of individual taxa to TChla. 

    

Discussion 

Phytoplankton pigments as a proxy for community structure – benefits of data-driven 

community analyses 

Phytoplankton pigments have been widely used across the world’s oceans for 

assessing community composition and linking community dynamics to ocean optical 

properties. However, deriving information on community composition through pigment 

chemotaxonomy requires several assumptions to be made about the taxonomic 

distribution of the major biomarker pigments (Higgins et al., 2011 and references therein). 

In particular, the CHEMTAX (Mackey et al., 1996) and DP methods that rely on multiple 

linear regression (e.g., Uitz et al., 2006; henceforth referred to as “DP analyses”) require 

two additional, often invalid assumptions to derive fractional contributions of taxa to 

TChla, as discussed below. Further, given the poor correspondence of TChla with 

primary production, carbon biomass, and cell abundances (e.g., Behrenfeld et al., 2005; 

Pan et al., 2011; Venrick, 2012) and the strong covariance of the diatom biomarker 

pigment (Fuco) with TChla in the SBC (Figure 1), the relative contributions of individual 

taxa to TChla has limited value as an index of community structure. 
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First, both CHEMTAX and DP analyses assume that pigment to TChla ratios do 

not vary in time or space nor among species within the same pigment class (Higgins et al., 

2011; Mackey et al., 1996; Uitz et al., 2006). However, pigment to TChla ratios have 

been shown to vary significantly due to intra-specific differences in genetics and 

physiological responses to environmental variability, as well as between species or 

genera of the same pigment class (Higgins et al., 2011 and references therein). Although 

efforts can be made to reduce the uncertainties associated with violating this assumption 

by partitioning samples based on the environmental conditions in which they were 

collected when using the CHEMTAX program (e.g., Swan et al., 2016), this process does 

not account for inter- or intra-specific, genetic, or smaller-scale physiological variations.  

The second major assumption applied by both CHEMTAX and DP analyses is 

that abundances of distinct phytoplankton classes are uncorrelated. This assumption is 

invalid as concentrations of the major biomarker pigments are strongly and significantly 

correlated with each other as demonstrated here and by others (e.g., Latasa and Bidigare, 

1998; Moisan et al., 2013). Common associations of diverse phytoplankton taxa have 

also been demonstrated both globally and within the Southern California Bight using 

microscopic species identifications and counts (Estrada et al., 2016; Reid et al., 1978; 

Venrick et al., 2009). Additionally, recent global analyses of plankton diversity and 

community structure based on DNA meta-barcoding revealed unexpected co-variations in 

many seemingly unrelated microbial taxa and suggested that inter-specific biotic 

interactions play an important role in controlling community structure (Lima-Mendez et 

al., 2015). Thus, the pigment independence assumption complicates comparisons with 

other measures of community composition, degrades the ecological relevance of the 
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derived phytoplankton communities, and, as demonstrated here, results in less accurate 

retrievals of phytoplankton community composition from ocean optical properties. The 

use of data-driven cluster and EOF analyses to define phytoplankton communities relies 

on these correlations and co-variations among phytoplankton taxa and their respective 

biomarker pigments, and our modeling approach is successful because it takes advantage 

of these statistical properties. 

EOF analysis requires no assumptions to be made about the underlying pigment 

data, and has been widely used to characterize the dominant modes of variability of a 

diverse array of Earth system processes. For example, EOFs are commonly used to 

describe variability in and provide an index of the phase of several major climate 

oscillations on regional to global scales, such as the Pacific Decadal Oscillation (e.g., 

Deser et al., 2010, and references therein). EOF analysis has also been used for decades 

to characterize microscopic observations of phytoplankton community composition on 

regional to global scales (Reid et al., 1978; Estrada et al., 2016). In the SBC, Harms and 

Winant (1998) used EOF analysis to characterize and describe the dominant modes of 

variability in surface ocean circulation patterns in and around the channel, allowing for 

the investigation of seasonal and synoptic time-scale succession of these circulation 

patterns and their drivers. Other examples of EOF analysis applications in the SBC 

include investigations of the drivers of variability in remote sensing reflectance spectra 

and spatiotemporal patterns in suspended particle and chlorophyll concentration 

distributions (Henderikx Freitas et al., 2017; Toole and Siegel, 2001). Thus, data-driven 

quantitative approaches like EOF analyses provide robust tools to study phytoplankton 
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community dynamics and their interactions with optical, physical, and geochemical 

processes. 

Le Quéré et al. (2005) defined PFTs so that each PFT would be quantitatively 

significant on the scales of interest, have a distinct biogeochemical role, be controlled by 

a unique suite of known environmental parameters, and have an effect on the growth and 

productivity of other PFTs. These differences are captured to first order by the use of 

phytoplankton size classes as a proxy for PFTs (e.g., Kostadinov et al., 2010; Le Quéré et 

al., 2005; Li et al., 2013). The distinction of PFTs by their size is supported by the present 

work, though our results also highlight the importance of data-driven chemotaxonomic 

methods for determining typical associations of specific pigments with discrete size 

classes (Figure 1). Using standard assumptions regarding the associations of biomarker 

pigments with specific taxonomic groups (Table 1), more refined PFTs were also defined 

above in the cluster and EOF analyses (Figures 1 and 2), which by definition extract the 

most quantitatively significant PFTs and allow them to influence the success of other 

PFTs. Correlative analyses (Table S2) also suggest that the PFTs, or communities, 

represented by EOF modes are ecologically and biogeochemically relevant. Thus, PFTs 

defined using data-driven chemotaxonomic approaches may prove to be useful in Earth 

system models as envisioned by Le Quéré et al. (2005). 

We have demonstrated that the EOF analysis offers a viable chemotaxonomic 

alternative to existing methodologies which are limited due to the assumptions required 

for their implementation. Data-driven approaches offer a path for retrieving whole 

phytoplankton pigment communities as opposed to contributions of individual taxa to 

TChla. It should be noted however that the pigment communities identified in the present 
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analysis are specific to the SBC. Future work is thus needed to validate the EOF method 

and modeling approach used here for different regions and on global scales, and to 

develop and compare novel data-driven chemotaxonomic approaches for characterizing 

phytoplankton communities.  

 

Derivative analysis and its application to hyperspectral remote sensing observations: 

One of our goals is to assess the potential for future satellite missions to retrieve 

phytoplankton community composition from hyperspectral optical observations. 

Derivative analysis of hyperspectral observations of aph(λ), ap(λ), and remote sensing 

reflectance (Rrs(λ)) is an effective tool for isolating phytoplankton absorption features 

over a wide range of oceanic environments (Bidigare et al., 1989; Craig et al., 2006; 

Isada et al., 2015; Lubac et al., 2008; Torrecilla et al., 2011). Further, derivative analysis 

of remotely sensed Rrs(λ) has the advantage that it removes much of the variability due to 

the imperfect correction of atmospheric and illumination effects (e.g., Lubac et al., 2008; 

Philpot, 1991; Tsai and Philpot, 1998). Values of Rrs(λ) can be modeled as a function of 

the ratio of the total backscattering coefficient, bb(λ), to the total absorption coefficient, 

a(λ) (e.g., Morel and Prieur, 1977). In order to apply the present modeling approach to 

hyperspectral Rrs(λ) spectra, bb(λ) and the non-algal components that contribute to a(λ) 

must contain features that are either known, co-vary with changes in phytoplankton 

community composition, or are featureless on the spectral scales relevant for resolving 

phytoplankton absorption signatures. Seawater optical properties are known (e.g., Pope 

and Fry, 1997; Zhang et al., 2009) and their contribution in a derivative analysis can be 
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accounted for, leaving the contributions of particulate backscattering and non-algal 

absorption coefficients to be addressed.  

Hyperspectral measurements of the particulate backscattering coefficient (bbp(λ)) 

are very rare, particularly from field observation. Phytoplankton culture studies illustrate 

both inter- and intra-specific variability in the spectral shape of bbp(λ) and chlorophyll-

specific bb(λ) (Ahn et al., 1992; Bricaud et al., 1983; Bricaud et al., 1988; Stramski et al., 

2001; Whitmire et al., 2010). Normalization of bb(λ) to bb(400) accentuates these spectral 

differences (Stramski et al., 2001), which suggests that the derivative analysis used here 

would similarly highlight these differences. It is uncertain how much of these differences 

would be present when considering the broader taxonomic groupings accessible via 

phytoplankton pigment observations, making it difficult to speculate as to whether this 

variability in spectral shape would enhance or hinder the performance of the present 

modeling approach applied to Rrs(λ). In the SBC, multi-spectral observations of bbp(λ) 

show that these spectra are largely featureless (Barrón et al., 2014; Kostadinov et al., 

2012). Further, hyperspectral observations of bbp(λ) derived from Rrs(λ) inversion both in 

the SBC (Toole and Siegel, 2001) and in a similarly complex coastal environment (Lee 

and Carder, 2004) suggest that, with some exceptions, bbp(λ) is relatively featureless on 

the spectral scales of phytoplankton absorption. These results suggest that the 

contributions of bbp(λ) to Rrs(λ) derivative spectra may not significantly affect the 

applicability of the present approach to Rrs(λ) in complex coastal environments.  

Non-algal materials, such as chromophoric dissolved organic matter (CDOM) and 

non-algal particles (NAPs), may affect relationships between Rrs(λ) derivative spectra and 

phytoplankton pigment communities. The absorption spectra of CDOM and NAPs are 
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generally similar to one another and featureless as they decrease exponentially with 

wavelength (e.g., Nelson and Siegel, 2013; Sosik and Mitchell, 1995). However, CDOM 

absorption spectra from the SBC occasionally have spectral features consistent with 

absorption due to mycosporine-like amino acids that occur when dinoflagellates dominate 

the phytoplankton assemblage (Barrón et al., 2014). Further, the effects of CDOM and 

NAP absorption on the first derivative of Rrs(λ) could be significant.  

As a first order test of the effects of CDOM and NAP absorption on the present 

modeling approach, we repeated some of the above analysis using the total non-water 

absorption coefficient (ap(λ) + ag(λ)) instead of aph(λ). Identical smoothing filter and 

derivative computations were used to compute first and second derivatives of the non-

water absorption coefficient, and these derivative spectra were used in place of aph’(λ) 

and aph’’(λ) in an identical model cross-validation procedure. Results of these tests are 

presented in Table S15. Similar fidelity was achieved for retrievals of Perid and Fuco, 

with mean R2 values within 3% of those observed with aph(λ). However, the model using 

non-water absorption explained 8 and 10% less of the variability in TChlb and HexFuco 

concentrations, respectively, than the model using phytoplankton absorption. Similar 

results were observed when modeling the amplitudes of the first four pigment EOF 

modes (Table S15). These results were obtained with no empirical tuning of the modeling 

approach to non-water absorption coefficient derivative spectra, which may be expected 

to improve the cross-validation statistics somewhat. Regardless, these results demonstrate 

the potential to effectively distinguish several major PFTs using remotely sensed 

hyperspectral Rrs(λ) if the derivative analysis is able to reliably remove variability arising 

from atmospheric conditions, illumination intensity, and bbp(λ). 
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Modeling approaches similar to that presented here can also contribute to 

informing the design of future hyperspectral satellite ocean color sensors by allowing for 

the reconstruction of wavelength-specific coefficients that can be applied directly to 

spectral derivatives. Our reconstruction of the coefficients of the spectral derivatives of 

phytoplankton absorption (Figure 6) suggests that resolving “communities” of spectral 

absorption features is necessary to bio-optically model phytoplankton community 

composition. However, depending on the effectiveness of the derivative analysis in 

removing variability in Rrs(λ) arising from atmospheric conditions and illumination and 

bbp(λ) variations, the relative importance of individual bands may change when the 

present modeling approach is applied to hyperspectral Rrs(λ) observations. This, along 

with the minor differences in the fidelity of model retrievals when applied to total non-

water rather than phytoplankton absorption coefficients, highlights a major pitfall in 

empirical approaches for the remote sensing of PFTs. For optimal performance, empirical 

models including those presented here must be tuned for application to new optical 

properties, oceanic regions, and time periods. Empirical applications of the present and 

similar modeling approaches to hyperspectral Rrs(λ) observations are thus necessary to 

determine optimal spectral band sets for the remote sensing of phytoplankton community 

dynamics. Despite the limitations associated with empirical bio-optical models, our 

results indicate that resolving communities of spectral absorption features across the 

entire spectrum from 350-700 nm is necessary to accurately model phytoplankton 

pigment communities (Figure 6, Tables 2 and S14).  

Thus, derivative approaches applied to remotely-sensed hyperspectral Rrs(λ) 

observations hold much potential for assessing phytoplankton community composition on 
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regional to global scales. Taken together with the fact that derivative analyses may 

remove much of the variability in Rrs(λ) arising from poor characterization of 

atmospheric conditions, this approach may hold great promise for the assessment of 

phytoplankton community variability for complex coastal environments like the SBC. 

 

Conclusions 

We have demonstrated that unique relationships exist between several dominant 

suites, or communities, of phytoplankton pigments and absorption signatures identified 

via first and second derivative analysis, and that these relationships can be used to 

accurately model some metrics of phytoplankton community composition. Our modeling 

approach is successful because it takes advantage of the covariance of the major 

biomarker pigments with one another, more ubiquitous pigments, and their respective 

absorption signatures. This is in contrast to traditional approaches that require that 

abundances of unique taxa are uncorrelated and that pigment ratios do not vary within a 

data set. We show that these assumptions are invalid across various spatial and temporal 

scales and suggest a novel target for in situ validation in the remote sensing of 

phytoplankton community composition through the concept of phytoplankton pigment 

communities, which were defined through patterns of correlation with derivative spectra, 

hierarchical cluster analysis, and EOF analysis. These findings highlight the need for 

improved quantitative methods for in situ validation of retrievals of community 

composition from optical properties and the importance of resolving multiple associated 

phytoplankton absorption signatures to accurately model community composition. 

Although the present approach was developed using aph(λ), the derivative analysis 
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provides a promising path for applying this approach to Rrs(λ) across a wide range of 

oceanic environments. 
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Tables and Figure Captions 
 
Table 1. Pigments used in the present analysis and their corresponding abbreviations, 
assumed taxonomic value, and known taxonomic distribution 
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Table 2. Selected model cross-validation results (see Table S14 for complete cross-
validation results). 

aMethods used to derive community composition derived from CHEMTAX and DP 
analysis are presented in Text S4.  
b“DP, Uitz, local” indicates fractional contributions of the specified taxa to TChla derived 
from the locally tuned version of the DP analysis (Uitz et al., 2006). 
 

 
R2 Median % Error % Bias 

Pigments Mean (Std.) Mean (Std.) Mean (Std.) 
Fuco 0.856 (0.036) 32.6 (5.3) 12.9 (9.5) 
Perid 0.887 (0.044) 88.3 (12.7) 169.0 (121.2) 
TChlb 0.815 (0.083) 22.5 (2.8) 155.9 (199.2) 

HexFuco 0.733 (0.067) 29.9 (3.6) 17.0 (8.2) 
Allo 0.721 (0.049) 35.9 (4.4) 144.6 (129.6) 
Zea 0.541 (0.098) 37.7 (4.1) 72.6 (63.6) 

Community Indices    
EOF Mode 1 0.884 (0.026) 25.3 (3.4) 112.1 (160.5) 
EOF Mode 2 0.852 (0.047) 38.0 (4.5) 60.2 (176.6) 
EOF Mode 3 0.454 (0.083) 74.8 (7.6) -91.2 (45.7) 
EOF Mode 4 0.809 (0.045) 51.9 (6.7) -16.8 (52.5) 

CHEMTAX - diatomsa 0.750 (0.031) 25.5 (2.9) 874.7 (1104.7) 
CHEMTAX - dinoflagellates 0.761 (0.059) 56.8 (9.1) 6.8E+14 (1.1E+15) 
CHEMTAX - nanoplankton 0.586 (0.054) 25.2 (2.5) 1796.2 (1407.0) 
DP, Uitz, local - diatomsb 0.676 (0.047) 19.7 (1.9) 18.6 (6.2) 

DP, Uitz, local - dinoflagellates 0.695 (0.064) 57.8 (8.9) 141.8 (63.3) 
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Figure 1. Hierarchical cluster analysis of phytoplankton pigment concentrations using 
the correlation distance (1-R, where R is Pearson’s correlation coefficient) and Ward’s 
linkage method. The assumed size classes are indicated where they diverge in the tree, 
and the five major pigment communities are highlighted with brackets. Dino is an 
abbreviation for Dinoflagellates. 
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Figure 2. EOF loadings of pigment EOF modes (a) 1, (b) 2, (c) 3, and (d) 4. The mode 
number and percent variance explained by that mode are listed above each panel, and our 
interpretations of the taxonomic significance of both the positive and negative loadings of 
each mode are listed within each panel. Rotated numbers above each pigment represent 
the correlation coefficient of that pigment with the given mode multiplied by 100. Note 
that pigments are arranged and color-coded along the x-axis to match Figure 1. 
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Figure 3. Correlations of selected phytoplankton pigments with aph’(λ) (a, c, e, g) and 
aph’’(λ) (b, d, f, h). Pigments are separated according to the results of the cluster analysis 
(Figure 1) as (a, b) diatoms, (c, d) nanoplankton, (e, f) haptophytes, and (g, h) 
dinoflagellates and picoplankton. Note that Lut is not shown for readability, but shows 
similar patterns to the nanoplankton pigments (c, d), and Diato is included with the 
haptophytes for readability and because it clusters closely with both the mixed 
nanoplankton and haptophytes. This data set consists of 491 concurrent measurements of 
phytoplankton pigment concentrations and aph(λ). The dashed and dotted black lines 
denote the magnitude of significant correlation coefficients at 95 and 99% confidence, 
respectively. 
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Figure 4. Correlations of the first four pigment EOF modes with (a) a’ph(λ) and (b) 
a’’ph(λ). The dashed and dotted black lines denote the magnitude of significant 
correlation coefficients at 95 and 99% confidence, respectively. Line colors correspond to 
the colors of the bars in Figure 2. 
 
 

 
Figure 5. Hierarchical cluster analysis of (a) the mean aph’(λ) and aph’’(λ) spectra 
corresponding to the 5% largest concentrations of each pigment and (b) the correlation 
spectra (as presented in Figure 3) of each pigment with aph’(λ) and aph’’(λ). (a) uses the 
standardized Euclidean distance metric while (b) uses the Euclidean distance metric. Both 
analyses use the unweighted average distance as a linkage method. Pigment labels are 
color-coded to match those presented in Figure 1. 
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Figure 6. Examples of standardized mean and empirical 95% confidence intervals of the 
wavelength-specific coefficients of the (a, c, e) first and (b, d, f) second derivative spectra 
for retrievals of (a, b) Fuco, (c, d) Perid, and (e, f) HexFuco. Shaded areas correspond to 
spectral regions where the mean coefficients are significantly different from zero. 
Significant bands with a width of 1 nm are not shaded. 
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Abstract 

The Santa Barbara Channel, CA (SBC) is a biodiverse marine ecosystem fueled 

largely by phytoplankton productivity, and the composition of the phytoplankton 

community influences the magnitude and fates of this productivity. Here, we create a 22-

year monthly time series of phytoplankton biomarker pigment concentrations in the SBC 

by combining 12 years of high performance liquid chromatography phytoplankton 

pigment concentrations with bio-optical models and 10 additional years of bio-optical 

observations. The bio-optical models skillfully predict biomarker pigment concentrations 

representative of five distinct phytoplankton groups (PGs; diatoms, dinoflagellates, 

chlorophytes, prymnesiophytes, and picophytoplankton) and resolve seasonal responses 

to the annual upwelling-relaxation cycle for all PGs except the dinoflagellates. Our 

observations indicate that nanophytoplankton groups respond most rapidly to seasonal 

upwelling, followed by diatoms, and then by picophytoplankton as the water column 

stratifies in the summer. A Regional Ocean Modeling System (ROMS) solution is used to 

relate advection of different source waters to the observed PG dynamics. The ROMS 

simulation results suggest that, on seasonal time scales, pronounced cross-SBC 

differences in PG seasonality are related to cross-SBC differences in source waters. El 

Niño Southern Oscillation events drive interannual variability in the upwelling response 

of most PGs. On decadal time scales, dinoflagellate blooms are associated with the warm 

phase of the North Pacific Gyre Oscillation and anomalous advection of Southern 

California Bight source waters into the SBC. Taken together, our results provide a novel 

view of phytoplankton community succession in response to seasonal upwelling by 

considering the dynamics of pico- and nano-phytoplankton and suggest that regional 
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surface ocean advection plays a substantial role in driving phytoplankton composition in 

the SBC. 

 

Introduction 

  The Santa Barbara Channel, CA (SBC, Figure 1) is an exceptionally productive, 

biodiverse, and well-studied coastal marine ecosystem at the boundary of the relatively 

cool, productive California Current System (CCS) and the warmer, more oligotrophic 

Southern California Bight (SCBight) (Beers, 1986; Harms and Winant, 1998; Venrick, 

1998; Brzezinski and Washburn, 2011; Henderikx Freitas et al., 2017). Pronounced 

spatiotemporal gradients in oceanographic features are frequently observed in the SBC 

due to its location in the “transition zone” between the CCS and SCBight, and 

phytoplankton blooms are often more intense in the SBC relative to the surrounding 

region (Harms and Winant, 1998; Venrick, 1998; Brzezinski and Washburn, 2011; 

Henderikx Freitas et al., 2017). Variations in phytoplankton community composition in 

the SBC are also dynamic, though under-explored, and are known to impact pelagic food 

webs and elemental cycling throughout coastal California and the world’s oceans (Beers, 

1986; Field et al., 1998; Guidi et al., 2016; Lin et al., 2017).   

Large spatiotemporal variations in oceanographic properties are often observed in 

the SBC and result from regional atmospheric and oceanic circulation patterns associated 

with the annual upwelling-relaxation cycle in combination with the unique geometry of 

the SBC coastline (Harms and Winant, 1998; Winant et al., 2003; Brzezinski and 

Washburn, 2011). Point Conception roughly marks the northwest corner of the SBC. 

Here, the orientation of the California coastline and coastal mountain ranges shifts from 
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north-south to east-west. This shift creates an upwelling shadow where upwelling winds 

are strongest on the west side of the SBC near Point Conception and progressively 

weaken towards the eastern SBC (Harms and Winant, 1998; Winant et al., 2003; Fewings 

et al., 2015). Over the course of an annual cycle, wind-driven upwelling is strongest 

during the spring and early summer and to the north and west of the SBC in the southern 

CCS. Upwelling introduces nutrients to the euphotic zone and allows for the 

accumulation of phytoplankton, most notably diatoms, in the surface ocean (McPhee-

Shaw et al., 2007; Brzezinski and Washburn, 2011; Krause et al., 2013). The persistent 

wind-driven equatorward flows of the CCS maintain a pressure gradient that drives the 

poleward flowing California Countercurrent in the nearshore waters off Southern 

California as well as larger-scale poleward flows at the onset of wind relaxations (Harms 

and Winant, 1998; Winant et al., 2003; Melton et al., 2009). These circulation patterns 

result in the entrainment of cold, productive, nutrient-rich waters into the southwestern 

SBC, and warmer, more oligotrophic waters into the northeastern SBC. While the relative 

strength of these two circulation patterns can vary on daily to seasonal or longer time 

scales, the combination of these flows leads to the persistence of a convergent, cyclonic 

eddy that can further concentrate particles and primary productivity in the central SBC 

(Harms and Winant, 1998; Brzezinski and Washburn, 2011; Simons et al., 2015). On 

smaller spatiotemporal scales and in particular on the inner continental shelf, a complex 

combination of local wind-driven upwelling, internal wave and tide dynamics, freshwater 

discharge events, and surface gravity waves can significantly influence primary 

productivity and particle loads in the SBC (Warrick et al., 2004; McPhee-Shaw et al., 

2007; Lucas et al., 2011; Henderikx Freitas et al., 2017).  
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Interannual variations in the physical and biological oceanography of the SBC 

and surrounding waters are primarily modulated by natural climate oscillations including 

the El Niño Southern Oscillation (ENSO) (Bograd and Lynn, 2001; Chavez et al., 2002; 

Venrick, 2012; Jacox et al., 2016), the Pacific Decadal Oscillation (PDO) (Mantua et al., 

1997; Chhak and Di Lorenzo, 2007; Di Lorenzo et al., 2013), and the North Pacific Gyre 

Oscillation (NPGO) (Di Lorenzo et al., 2008; Di Lorenzo et al., 2013). The ENSO 

exhibits a 3- to 5-year periodicity and has long been recognized as a prominent driver of 

interannual variations in biological responses to seasonal upwelling in the SBC and 

surrounding waters. During extreme El Niño events, upwelling winds are suppressed, the 

water column is anomalously stratified, and warm sea surface temperatures and low 

phytoplankton biomass are often observed (Bograd and Lynn, 2001; Shipe et al., 2002; 

Jacox et al., 2014; Jacox et al., 2016). Conversely, La Niña conditions signify an 

enhancement of seasonal upwelling and a relatively shallow nutricline (Venrick, 2012; 

Jacox et al., 2016). Several recent studies have demonstrated the role of two dominant 

modes of North Pacific decadal climate variability, the PDO and NPGO, in driving 

oceanographic variability in the CCS and SCBight. The PDO is thought to exert a 

stronger impact on the northern CCS above ~38° N (Di Lorenzo et al., 2008; Di Lorenzo 

et al., 2013), while the NPGO is associated with low-frequency oscillations in salinity, 

nutrient concentrations, and phytoplankton biomass in the southern CCS and SCBight (Di 

Lorenzo et al., 2008; Di Lorenzo et al., 2013). The cold phase of the NPGO (PDO), 

signified by positive (negative) values of the corresponding statistical index, indicates 

stronger wind-driven upwelling and enhanced equatorward flows in the southern 

(northern) CCS, while the warm phase of the NPGO (PDO) is associated with a 
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relaxation and postponement of seasonal upwelling and enhanced poleward flows in the 

CCS (Mantua et al., 1997; Di Lorenzo et al., 2008; Di Lorenzo et al., 2013).  

Like the physical forcings in the region, phytoplankton communities of the SBC 

and surrounding waters have been studied for many years and are highly variable across a 

range of temporal and spatial scales (Allen, 1942; Reid et al., 1978; Goodman et al., 

1984; Venrick, 2002; Anderson et al., 2008; Goodman et al., 2012; Venrick, 2012; Taylor 

et al., 2015; Needham and Fuhrman, 2016). Cell abundances of a given species can vary 

by orders of magnitude on time scales of days to weeks (Goodman et al., 1984; Bialonski 

et al., 2016; Barth et al., 2020) and on spatial scales less than one km (Reid et al., 1978; 

Goodman et al., 2012), and the dominant species within a bloom sampled at a fixed point 

in space can change daily (Needham and Fuhrman, 2016). Generally, dinoflagellates, 

prymnesiophytes, and picophytoplankton dominate the phytoplankton community under 

stratified, low biomass conditions, and in offshore waters of the SCBight and CCS 

regions (Venrick, 2002; Taylor et al., 2015). Diatoms have repeatedly been shown to 

dominate cell abundances, carbon biomass, and phytoplankton pigment distributions in 

the SBC and CCS to the north and west (Venrick, 2002; Anderson et al., 2006; Anderson 

et al., 2008; Venrick, 2012; Taylor et al., 2015). Along the continental shelf of the SBC 

and CCS, and more prominently in the SCBight, “red tide” dinoflagellate blooms are 

frequently observed (Allen, 1942; Gregorio and Pieper, 2000; Barth et al., 2020; Fischer 

et al., 2020), with longer periods of elevated dinoflagellate abundances observed about 

once every decade since the early 1900s (Gregorio and Pieper, 2000; Smayda and Trainer, 

2010; Fischer et al., 2020). Picoeukaryote blooms dominated by small (< 2 µm) 

chlorophytes such as Ostreococcus, in addition to blooms of the cyanobacterium 
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Synechococcus, have been documented in the nearshore waters of the SCBight, but have 

yet to be observed in the SBC (Palenik, 2000; Worden et al., 2004; Countway and Caron, 

2006). Finally, blooms of the prymnesiophytes Phaeocystis sp. and Emiliania huxleyi 

have been documented in the SBC (Goodman et al., 2012; Wear et al., 2015; Matson et 

al., 2019), although such observations are less common and, in the case of the recent E. 

huxleyi bloom documented in Matson et al. (2019), unprecedented.  

High performance liquid chromatography (HPLC) analysis of phytoplankton 

pigment concentrations is widely used to assess phytoplankton group (PG) variations 

(Vidussi et al., 2001; Uitz et al., 2006; Anderson et al., 2008; Kramer and Siegel, 2018). 

The HPLC method measures the concentrations of ~25 phytoplankton pigments, some of 

which can be used as “biomarkers” for particular PGs. The benefits of HPLC pigment 

analysis are the rigorously quality-controlled and standardized analytical procedures (Van 

Heukelem and Thomas, 2001; Hooker et al., 2010), and the direct links between 

biomarker pigment concentrations and bio-optical properties that allow for predictions of 

pigment concentrations from bio-optical observations (Chase et al., 2017; Catlett and 

Siegel, 2018). As with all methods currently used to quantify phytoplankton community 

composition, HPLC pigment analysis has limitations and uncertainties; these include 

ambiguity in the taxonomic identities of many commonly used biomarker pigments, and 

the complex and variable relationships between biomarker pigment concentrations and 

cell abundances, carbon biomass, and primary production (Higgins et al., 2011; Jeffrey et 

al., 2011). Nonetheless, recent work shows that the concentrations of several important 

biomarker pigments can be modeled from bio-optical observations with high fidelity in 

the SBC (Catlett and Siegel, 2018), providing an opportunity to create a multi-decadal 
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biomarker pigment data record for this site. Such large-scale investigations of PG 

dynamics are of utmost importance as the impacts of climate forcings on PG variations 

remain poorly understood. 

Here, we create an approximately monthly 22-year time series of phytoplankton 

biomarker pigment concentrations by merging recently developed bio-optical models and 

22 years of bio-optical observations with 12 years of HPLC phytoplankton pigment 

measurements. This time series is used to quantify seasonal to multi-decadal PG 

variations in the SBC and investigate associations of PGs with oceanographic and climate 

forcings. Our results demonstrate the dominance of the seasonal upwelling cycle in 

driving variations of most PGs in the SBC. Using a high-resolution Regional Ocean 

Modeling System (ROMS) solution, we present evidence that, on seasonal time scales, 

cross-SBC variability in source waters is linked to spatial variability in PG seasonal 

cycles. On interannual to decadal time scales, most PGs are impacted by El Niño 

Southern Oscillation events. Conversely, anomalous decadal dinoflagellate blooms are 

associated with the warm phase of the North Pacific Gyre Oscillation and anomalous 

advection of SCBight source waters. This study demonstrates the successful application 

of a bio-optical model to extend a PG biomarker pigment time series and furthers our 

understanding of the coupling amongst seasonal upwelling, natural climate oscillations, 

and advection in driving seasonal to multi-decadal PG variations in the SBC. 

 

Methods 

Plumes and Blooms overview 
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Plumes and Blooms (PnB) has sampled 7 stations approximately monthly on a 

South-to-North transect in the SBC (Figure 1) since August, 1996 (Otero and Siegel, 

2004). Station 7, usually the first station sampled on each PnB cruise, is the Southern-

most station and is located on the continental shelf of the Channel Islands in ~75 m of 

water, while Station 1 is the Northern-most station located on the mainland continental 

shelf with a water depth of ~45 m (Figure 1). All other PnB stations lie at water depths 

greater than 200 m. A graphical representation of the coverage of the biomarker pigment 

data set is shown in Supporting Figure S1. January and February are under-sampled by 

PnB due to annual ship maintenance, and Station 7 is under-sampled relative to the other 

PnB stations due to harsher conditions at sea. Multiple PnB cruises were occasionally 

conducted in the same month, particularly in the first half of the time series. Significant 

(> 2 months) gaps in the merged biomarker pigment time series (see Section 2.7) 

occurred from August-October, 2006, March-June, 2010, and July-September, 2018 

(Supp. Figure S1).  

Due to previously documented analytical issues (Hooker et al., 2010; Barrón et al., 

2014), PnB HPLC pigment observations are considered here from November, 2005 to 

November, 2018 (the same data set considered in Catlett and Siegel, 2018, with the 

addition of observations from 2015-2018). Bio-optically modeled pigment observations 

rely on the phytoplankton absorption coefficient (aph(λ)), available from April, 1997 to 

June, 2018. Other PnB data products including potential temperature, salinity, 

fluorometric chlorophyll a concentrations (CHL; see Table 1), and macronutrient 

concentrations are considered from April, 1997 to November, 2018. 
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Plumes and Blooms oceanographic observations 

 To determine associations of PGs with oceanographic processes, we consider 

potential temperature (henceforth referred to as temperature) and salinity profiles, as well 

as CHL and dissolved inorganic nutrient concentrations (nitrate, phosphate, and silicate) 

determined from discrete seawater samples. For most CTD profiles, a Sea-Bird 

Electronics 911E CTD was deployed on a SBE32C compact carousel. However, from 

December 2000 to March 2003, a Sea-Bird Electronics SeaCat Profiler CTD was used 

instead. CTD profiles are considered over the upper 100 m of the water column and are 

binned to 1 m depth intervals. To quality control the CTD profiles, spurious values of 

temperature and salinity (temperature > 25 ºC; salinity < 32 psu or > 34.5 psu) were 

removed and profiles were de-spiked as recommended by the United States Integrated 

Ocean Observing System (2013). Following de-spiking, 16 temperature and 32 salinity 

profiles with missing data for > 25% of the depths sampled were discarded.  

 Discrete seawater samples were collected from 5 L Niskin bottles for analysis of 

bulk chlorophyll a and dissolved inorganic nutrient concentrations. For analysis of 

chlorophyll a concentrations, particles were collected on Whatman GF/F filters via 

vacuum filtration and immediately frozen and stored in liquid nitrogen. Filters were 

extracted in 90% acetone overnight and analyzed on a Turner Designs 10AU fluorometer 

before and after the addition of 2 drops of 1.2 M HCl to determine chlorophyll a and 

phaeopigment concentrations. Samples for dissolved inorganic nutrient concentrations 

were collected in 20 mL plastic scintillation vials and frozen until analysis with flow 

injection techniques at the UCSB Marine Science Institute Analytical Lab (Johnson et al., 

1985). The detection limits are 0.1 PM for nitrite, 0.2 PM for nitrate plus nitrite, 0.05 PM 
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for ortho-phosphate, and 0.2 PM for silicate (http://msi.ucsb.edu/services/analytical-

lab/seawater-nutrients-fia). Nitrate concentrations are determined by subtracting nitrite 

concentrations from the total concentration of nitrite and nitrate. Values below detection 

for phosphate and silicate were set to 0 PM. Where nitrate plus nitrite concentrations 

were below detection, nitrate values were set to 0 PM. All curated PnB CTD and water 

sample data analyzed here are publicly available (Catlett et al., 2020a). In all analyses 

considered here, PnB oceanographic observations are considered from April, 1997 to 

November, 2018 to match the time period from which HPLC phytoplankton pigment 

observations are available (see section 2.7 below). 

 

HPLC methods and data-driven PG determinations  

Discrete seawater samples for HPLC analysis of phytoplankton pigment 

concentrations were collected from 5 L Niskin bottles deployed on a rosette and 

immediately concentrated on GF/F filters by vacuum filtration. Filters were flash-frozen 

in liquid nitrogen, and stored in liquid nitrogen or at -80°C until HPLC analysis using the 

method of Van Heukelem and Thomas, 2001. HPLC analysis was conducted at Horn 

Point Laboratory for all samples collected prior to March, 2011. After March 2011, 

HPLC analysis was carried out at the NASA Goddard Space Flight Center. Pigment 

concentrations below the limit of detection were assumed absent from the sample and 

their concentrations were set to zero. HPLC reporting practices varied over the course of 

the PnB record. Current practices report pigment concentrations to 0.001 µg L-1. Thus, 

for data that were reported to four places after the decimal, values were rounded to the 

nearest thousandth to maintain consistency throughout the HPLC record. The pigments 
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considered in the present analysis, along with their abbreviations and assumed taxonomic 

representation, are shown in Table 1. 

Although the same HPLC method has been used throughout the PnB record, the 

limits of quantitation of the method have changed over time due in part to the change in 

laboratories in 2011 along with changes made to the HPLC slit and step detector settings 

(which affected analysis of PnB samples collected from February, 2014 to the present). 

These changes only impact pigments with concentrations that are frequently at, near, or 

below the limits of detection and quantitation, and can impact assessments of their 

changes over time. In the PnB data, these pigments include DVChla, Pras, divinyl 

chlorophyll b, and gyroxanthin diester (see Table 1 for a list of pigment names, 

abbreviations, and assumed taxonomic significance). Divinyl chlorophyll b and 

gyroxanthin diester were not detected in 92.5% and 100% of the PnB samples considered 

here, respectively, and were not considered in subsequent analysis. Inspection of the 

dynamics of Pras and DVChla through time (Supp. Figure S2) suggested that 

measurements of DVChla were reasonably consistent across the two time periods with 

only minor variations observed that were likely driven by natural variability in the 

phytoplankton community. However, Pras was detected far more frequently and at higher 

concentrations after the change in laboratory (Supp. Figures S2 and S3), suggesting 

analytical artifacts potentially interfered with the measurement of Pras.   

 The change in HPLC slit and step detector settings for samples collected after 

February, 2014 improved the signal:noise ratio of the HPLC method by approximately 

40%, and therefore is expected to result in more frequent detection of pigments typically 

present in low concentrations (DVChla and Pras) over the course of the time series. We 
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directly investigated the effects that the change in HPLC detector settings might have on 

our interpretations of the dynamics of these two pigments by applying the same, higher 

limits of quantification measured prior to the change in detector settings, to all DVChla 

and Pras data collected from 2011 to the present. For each year in the PnB HPLC record 

(excluding 2005 and 2010 due to insufficient sampling frequency), we then calculated the 

fraction of PnB stations where Pras or DVChla were not detected (Supp. Figure S3). Very 

minor changes in the fraction of observations below detection were observed for DVChla 

with the modified limits of quantification, suggesting the detector change did not 

substantially impact detection of this pigment in the PnB HPLC data. However, applying 

the 2011 limits of quantification to all subsequent observations of Pras dramatically 

increased the fraction of observations where Pras was reported (Supp. Figure S3). Further, 

from 2009 to 2011 (coinciding with a change in laboratories), the fraction of observations 

where Pras was not reported decreased nearly two-fold from 76% in 2009 to 43% in 2011. 

Finally, including Pras in subsequent analyses used for determining PG indices 

significantly altered our results (Figure 2, Supp. Figure S4). Due to the potential for these 

results to be driven by analytical artifacts, we thus excluded Pras from further analysis.  

To determine the dominant PGs in the PnB HPLC record, we performed 

hierarchical cluster analysis on the phytoplankton pigment concentration data set using 

the correlation distance and Ward’s linkage method (Latasa and Bidigare, 1998; Catlett 

and Siegel, 2018; the latter citation is henceforth referred to as CS18). We considered a 

similar suite of pigments to that used in CS18, but excluded Pras, as well as TChla in 

order to derive PGs independently of chlorophyll biomass. Five distinct pigment clusters 

were identified, each of which represent unique PGs that were identical to those 
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identified in CS18 (Figure 2). Based on the associations of widely used biomarker 

pigments (Vidussi et al., 2001; Uitz et al., 2006; Jeffrey et al., 2011; Kramer and Siegel, 

2018) with each cluster, five representative pigments were selected for further analysis 

and assumed to represent diatoms (Fuco), dinoflagellates (Perid), chlorophytes (TChlb), 

prymnesiophytes (Hex), and picophytoplankton (Zea). The concentrations of these 

biomarker pigments are used as proxies for the pigment biomass of each of these 

phytoplankton groups (PGs) in the remainder of this paper.  

 

Determinations of spectrophotometric absorption coefficients 

Discrete seawater samples were collected on PnB cruises for spectrophotometric 

determinations of the particulate absorption coefficient (ap(λ)). These samples were 

filtered immediately using GF/Fs and stored in liquid nitrogen until analysis. ap(λ) was 

measured using the transmittance mode of the quantitative filter technique (Mitchell, 

1990; Roesler et al., 2018) on a Perkin-Elmer Lambda 2 spectrophotometer equipped 

with a Labsphere RSA-PE-20 integrating sphere prior to April, 2003, and on a Shimadzu 

2401-PC spectrophotometer equipped with an ISR-2200 integrating sphere from April, 

2003 to the present. Following measurement of ap(λ), filters were extracted in methanol 

for 48 hours and the detrital absorption coefficient, ad(λ), was measured using a 

procedure identical to that used for ap(λ) on the extracted filter. The beta correction factor 

was determined empirically using natural phytoplankton communities from the SBC 

(Guillocheau, 2003). Phytoplankton absorption coefficients (aph(λ)) were derived by 

subtracting ad(λ) from ap(λ) and are considered here from 400-700 nm.   
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The Perkin-Elmer spectrophotometer occasionally introduced significant noise in 

estimates of ap(λ) (and by extension, ad(λ) and aph(λ)), particularly at shorter wavelengths 

(< 420 nm). Therefore, additional quality assurance and pre-processing procedures were 

employed to quality-control estimates of aph(λ). First, the values of ad(400)/ap(400) 

measured on the Perkin-Elmer were compared to the distribution of ad(400)/ap(400) 

measured on the Shimadzu. Anomalously high values of ad(400)/ap(400) were 

occasionally observed in data obtained with the Perkin-Elmer. Therefore, all three 

component spectra were discarded (104 total observations) when the Perkin-Elmer values 

were outside three standard deviations of the mean Shimadzu value. An additional 98 

IOP determinations from both the Perkin-Elmer (77 observations) and Shimadzu (21 

observations) spectrophotometers were discarded for various other reasons (substantial 

baseline correction errors, highly aberrant spectral shapes, and signatures of incomplete 

pigment extractions in ad(λ)).  

 

Spectral derivative analysis and bio-optical modeling of biomarker pigments  

Our goal is to assess patterns and forcings of phytoplankton biomarker pigment 

dynamics over the course of the 22-year PnB record. However, analytical issues preclude 

the use of PnB HPLC observations prior to November, 2005 (Barrón et al., 2014), and the 

integrity of nearly all HPLC samples from 2010 was compromised due to a dewar 

malfunction. PnB spectrophotometric IOP determinations are available for these time 

periods, providing a means to extend the time series of the five representative biomarker 

pigments (Fuco, Perid, TChlb, Hex, and Zea; Figure 2) and TChla to April, 1997. We 

thus employed a recently developed bio-optical modeling approach to extend the HPLC 
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time series (CS18). The bio-optical modeling procedure utilizes the first and second 

derivatives of aph(λ) (a’ph(λ) and a’’ph(λ), respectively) to reliably model biomarker 

pigment concentrations (CS18). Following CS18, aph(λ) spectral derivatives were 

calculated using a second order finite difference approximation after the application of a 

15 nm Hamming window smoothing filter. Here, we considered values of aph(λ) from 

400-700 nm (and thus, spectral derivatives from 408-692 nm after application of the 

smoothing filter) due to inconsistent sampling of the 350-400 nm spectral range over the 

course of the PnB record. 

Each pigment concentration, pm, was then modeled as a linear sum of a’ph(λ) and 

a’’ph(λ): 

(1) 𝑝𝑚 = ∑ 𝐴𝑚(𝜆𝑖) ∗ 𝑎′𝑝ℎ
𝑁
𝑖=1 (𝜆𝑖) + 𝐵𝑚(𝜆𝑖) ∗ 𝑎′′

𝑝ℎ(𝜆𝑖) + 𝐶𝑚 

where a’ph(λ) and a’’ph(λ) are the first and second derivative, respectively, of smoothed 

aph(λ), Am(λ) and Bm(λ) are wavelength-specific coefficients, and Cm(λ) is an arbitrary 

intercept. The empirical derivation of the wavelength-specific coefficients, Am(λ) and 

Bm(λ), for each pm is described in detail in CS18. Briefly, 500-fold cross-validations of 

models for each pigment were performed using HPLC observations from November, 

2005 to December, 2014 as in CS18. Thus, 500 unique models were developed for each 

pigment and the average goodness-of-fit statistics for these models are shown in Table 2 

and Supporting Table S1. Overall, model performance was similar to that seen in CS18 

and the 5 dominant biomarker pigments and TChla were consistently modeled with high 

fidelity in the cross-validation exercise. The concentrations of each of the five biomarker 

pigments were thus modeled at all PnB stations where aph(λ) was available. Each pm was 

modeled according to equation 1 using the ensemble mean of the 500 models (consisting 
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of 500 Am(λ), Bm(λ), Cm(λ); see Supp. Figure S5 for mean +/- 95% confidence intervals of 

coefficients used for each pm) determined during the 500-fold cross-validation. In order to 

maintain consistency with the HPLC data set, modeled pigment concentrations less than 

0.0005 µg L-1 were replaced by 0 µg L-1, and modeled concentrations greater than or 

equal to 0.0005 µg L-1 but less than 0.001 µg L-1 were rounded to 0.001 µg L-1.  

 

Additional independent model validations      

The bio-optical models employed here may be particularly susceptible to two 

sources of uncertainty. First, the use of different spectrophotometers throughout the PnB 

record may bias the modeled pigment dynamics since different instruments introduce 

different degrees of noise into spectral IOP measurements, which can then be accentuated 

by spectral derivative analysis. Second, the bio-optical models used here are formulated 

empirically, and so may be susceptible to overfitting to the training data. This may result 

in high uncertainties when the models are extrapolated to new time periods and 

environments.  

To ensure pigment concentrations were modeled consistently across the different 

spectrophotometers, we compared fluorometric chlorophyll a concentrations (CHL) to 

TChla measured directly by HPLC (TChlaHPLC), modeled TChla derived from the 

Shimadzu 2401-PC aph(λ) (TChlaShim), and modeled TChla derived from the Perkin-

Elmer Lambda 2 aph(λ) (TChlaPE; Figure 3). CHL concentrations have been assessed 

using the same method throughout the PnB record. Monovinyl and divinyl chlorophyll b 

and chlorophyll c bias CHL determinations (Trees et al., 1985), so these comparisons are 

not expected to result in perfect agreement since the ratios  of chlorophylls b and c to 
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total chlorophyll a are not stable across samples. Nonetheless, comparing the three 

different indices of total chlorophyll a concentrations with CHL concentrations is 

expected to reveal any major biases in modeled pigment concentrations that may have 

been introduced by either spectrophotometer. As expected, all three chlorophyll a 

concentration metrics showed strong, statistically significant, linear relationships with 

CHL, with the strongest relationship observed for TChlaHPLC (Figure 3A). The TChla 

residuals for all regression analyses were normally distributed and generally low in 

magnitude, with no obvious bias in any of the regression analyses (Figure 3B-D). While 

the slopes of all three regressions were significantly different from one another, most 

values of TChlaShim and TChlaPE were within the 95% prediction intervals computed for 

the TChlaHPLC-CHL regression (Figure 3A). Taken together, these results suggest that the 

bio-optical models used here provide consistent estimates of chlorophyll a concentrations 

across the two spectrophotometers. We assume these results can be extrapolated to the 

modeled concentrations of the biomarker pigments considered here.  

Additional independent model validations were performed to verify that the bio-

optical models were not overfit to the training data used in the cross-validation exercise 

above. Since the cross-validations were performed with HPLC observations from 2005-

2014, for this test we validated modeled concentrations of TChla and each of the five 

biomarker pigments against concurrent PnB HPLC observations from 2015 to 2018 

(Figure 4). Model performance over this time period was excellent for the diatom and 

chlorophyte biomarkers (R2 > 0.8, slope ~1; Figure 4B and 4D), with reasonable 

retrievals found for the prymnesiophyte biomarker (R2 > 0.7, slope = 1.07; Figure 4E). 

While the model was able to reliably capture dinoflagellate “blooms” (Perid > ~0.5 µg L-
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1 was generally modeled as such; R2 = 0.91), it consistently underestimated Perid 

concentrations when HPLC measured concentrations were high (slope > 1.5), and 

performed poorly when they were low (< ~0.3 µg L-1; Figure 4C). Similar to the results 

of the cross-validation exercise, the model was able to explain ~50% of the variance in 

picoplankton pigment concentrations with minimal bias (slope = 1.04; Figure 4F). The 

reduced fidelity in modeled Zea concentrations is likely due to the low concentrations 

typically observed in the SBC relative to the other biomarker pigments, and its resulting 

small contributions to spectral absorption in this data set. Repeating this analysis with all 

available HPLC pigment observations from 2005-2018 (including the training data; Supp. 

Figure S6) and further inspection of the space-time distribution of residual errors over 

this time period (Supp. Figure S7) confirmed that the bio-optical models used here 

skillfully predict biomarker pigment concentrations across a wide range of oceanographic 

conditions and phytoplankton community states. 

 

The “merged” pigment data set 

All bio-optically modeled pigment concentrations lacking corresponding HPLC 

observations were merged with all HPLC observations to create a ~22-year, 

approximately monthly time series of TChla and the five major biomarker pigments at 

each of the seven PnB stations. Pigment concentrations from November, 2005 to 

November, 2018 were predominantly measured by HPLC. Pigment concentrations from 

April, 1997 to October, 2005, and from February to November of 2010 were estimated by 

the bio-optical models. The application of the bio-optical models extended the HPLC 

data set of 758 observations over 12 years to 1393 observations spanning roughly 22 
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years. This data set provides unprecedented spatiotemporal coverage of PG dynamics in 

the SBC. All phytoplankton pigment data presented here are publicly available (Catlett et 

al., 2020a). 

 

Ancillary data 

 We consider additional data beyond that available from PnB in the present 

analysis. These data include indices of the dominant modes of North Pacific climate 

variability, simulated surface ocean circulation patterns within and around the SBC, and 

microscopic counts of several species of diatoms and dinoflagellates at Stearns Wharf on 

the mainland shelf of the SBC. 

 

Climate oscillation indices  

Indices of climate oscillations used here include NOAA’s Multivariate ENSO 

Index (MEI; https://psl.noaa.gov/enso/mei/) (Wolter and Timlin, 1993), the Southern 

Oscillation Index (SOI; 

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/data.csv), the Pacific 

Decadal Oscillation index (PDO; 

https://www.ncdc.noaa.gov/teleconnections/pdo/data.csv) (Mantua et al., 1997), and the 

North Pacific Gyre Oscillation index (NPGO; http://www.o3d.org/npgo/npgo.php) (Di 

Lorenzo et al., 2008). El Niño conditions are indicated by positive (negative) values of 

the MEI (SOI), while the warm phase of the PDO (NPGO) is indicated by positive 

(negative) values. All climate indices are presented as provided by their maintainers and 
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all include monthly values except for the MEI, where bimonthly means considering the 

preceding month’s values are used (Wolter and Timlin, 1993).  

 

Identifying PnB source waters with ocean circulation and particle tracking models 

To determine the source waters of the PnB transect, a three-dimensional ocean 

circulation and Lagrangian particle tracking model was used. The ocean circulation 

model is a high-resolution Regional Ocean Modeling System (ROMS) solution for the 

SCBight region (Dong et al., 2009; Dong et al., 2017). The model domain is 674 km by 

514 km with 1 km horizontal resolution and 42 vertical levels, and covers the California 

coast from Point Sur to the southern border with Mexico (Supp. Figure S8). The 1-km 

grid was nested from a larger 4-km grid that covers the U.S. West Coast (Dong et al., 

2017). Our analyses are based on a 10-year ROMS hindcast solution for the years 2004 to 

2013, which is stored as hourly offline solutions. As detailed in Dong et al (2017), the 

ROMS surface boundary conditions came from hourly Weather Research and Forecasting 

(WRF) products, and lateral boundary conditions from daily HYbrid Coordinate Ocean 

Model (HYCOM) global oceanic reanalysis products. The ROMS has been shown to 

accurately reproduce long-term means and seasonal and interannual variability of 

SCBight circulation (Dong et al., 2009, 2017) and resolve mesoscale features, such as 

eddies and upwelling, in the SBC (Dong et al., 2011; Simons et al., 2015). 

The source waters of the PnB transect were identified using a Lagrangian particle 

tracking model driven by the ROMS-simulated flow fields (Carr et al., 2008; Simons et 

al., 2013) and has been used extensively in the SBC and SCBight (Mitarai et al., 2009; 

Simons et al., 2015). Modeled particle trajectories have also shown good correspondence 
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with surface drifter observations (Ohlmann and Mitarai, 2010). Using the offline ROMS 

flow fields, surface-following particles were projected backwards in time using the 

hourly ROMS output. In order to accurately capture the mesoscale circulation simulated 

by the ROMS, the PnB transect is represented by 34 particle release locations, 

approximately 1-km apart, that span PnB sample locations (Figure 1). Over the 10-year 

hindcast, particles were released daily from each of the 34 points along the PnB transect 

and tracked backwards in time along the water’s surface for 15 days, for a total of 

124,000 particles released and tracked over this time period.  

We estimate the relative influence of SBC (local), SCBight, and southern CCS 

source waters on the PnB transect by computing the number of particles that originated 

from each of four “origin boxes” (West, Center, East, and South; see Figures 1 and 13). 

The origin box boundaries were selected based on qualitative evaluation of previous 

observations of surface ocean circulation and satellite observations of long-term mean 

sea-surface temperature (SST) and chlorophyll a concentrations in and around the SBC 

(Harms and Winant, 1998; Henderikx Freitas et al., 2017). The location of the lines 

demarcating the West, Center and East origin boxes were chosen such that the dominant 

circulation patterns would result in the transport of SCBight waters into the eastern 

entrance of the SBC and of southern CCS waters into the western entrance of the SBC on 

the advection time scales considered here. Particles originated from the South origin box 

only rarely, and are largely ignored here. The boundaries of the West and East origin 

boxes were also placed such that these two origin boxes would largely avoid the steepest 

east-west gradients in long-term average SST and chlorophyll a concentrations shown in 

Henderikx Freitas et al. (2017).  
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Daily time series of the number of particles originating from each origin box for 

each release point were constructed for 5-, 10- and 15-day advection times. Each daily 

time series was then binned by month. Monthly time series for individual PnB stations 

(Figure 1) were determined by binning the monthly time series of the four (for PnB 

station 1) or five (for PnB stations 2-7) closest release points to each PnB station, and 

another time series was created for the PnB transect by binning the monthly time series of 

all 34 release points. We consider the proportion of particles originating from the West, 

East, and Center origin boxes as proxies for the relative magnitude of advection of CCS, 

SCBight, and SBC source waters in each month of these time series, respectively. The 

proportion of particles originating from the South origin box was small (see Section 4.3 

below), so these source waters are largely ignored in our discussion of these results. In 

section 4.3 we focus our discussion on results from 10-day hindcasts; qualitatively 

similar patterns (with expected differences in magnitudes of the proportion of particles 

from each origin box) were observed for 5- and 15-day advection times and those results 

are shown in Supporting Figures S9 and S10.    

 

Additional phytoplankton group observations 

To aid our discussion of seasonal succession in SBC PGs (see Section 4.4. and 

Supp. Figure S12 below), we consider observations of the abundances of several 

prominent diatom and dinoflagellate species at Stearns Wharf on the mainland shelf of 

the SBC. The Southern California Coastal Ocean Observing System (SCCOOS) Harmful 

Algal Bloom Monitoring Program provides observations of the abundances of several 

phytoplankton species (Akashiwo sanguinea, Alexandrium sp., Dinophysis sp., 
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Lingulodinium polyedra, Prorocentrum sp., Ceratium sp., and Cochlodinium sp, Pseudo-

nitzschia sp.) via the National Oceanic and Atmospheric Administration’s ERDDAP data 

portal (https://erddap.sccoos.org/erddap/tabledap/HABs-StearnsWharf.html). 

Phytoplankton species abundances are determined via microscopic identification and 

enumeration and are available approximately weekly. These data were retrieved on July 6, 

2020 and are considered here from June 30, 2008 to February 10, 2020. Seasonal cycles 

for total dinoflagellates and for Pseudo-nitzschia sp. were computed from monthly mean 

time series of log-transformed weekly species counts. One cell mL-1 was added to both 

Pseudo-nitzschia sp. and total dinoflagellate counts to prevent undefined log-transformed 

values. 

 

Results 

Overview of SBC PG dynamics 

Each of the five PG biomarker pigment concentrations displayed unique 

spatiotemporal dynamics over the course of the 22 year time series (Figure 5). The 

diatom biomarker pigment, Fuco, was found at higher overall concentrations than the 

other four biomarker pigments (Table 3), and largely mirrored the TChla patterns (Table 

3, Figure 5A and 5B). While Perid was most often found at much lower concentrations 

than the diatom biomarker pigment, and comparable concentrations to the 

prymnesiophyte and chlorophyte biomarker pigments, the dynamic range and variance in 

Perid was high (Table 3). Dinoflagellate biomarker pigment concentrations (Perid) 

showed the weakest correlations with other biomarker pigment concentrations (Table 3). 

The prymnesiophyte and chlorophyte biomarker pigment concentrations, Hex and TChlb, 
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were strongly correlated with one another, though Hex was found at significantly higher 

concentrations on average (Table 3; two-sample t-test, p < 0.001). The picophytoplankton 

biomarker pigment Zea was correlated with TChlb and Hex (Table 3), and was found at 

significantly lower concentrations (two-sample t-test, p < 0.001 in all comparisons) and 

displayed the smallest dynamic range of the five biomarker pigments (Table 3). 

 Fuco showed a clear seasonal cycle with blooms in the spring and annual minima 

in the fall (Figure 5B and 6B). The magnitude of spring diatom blooms increased later in 

the time  series, beginning in 2008. Spatial variations in diatom pigment concentrations 

were also apparent, with higher concentrations often observed at the southern PnB 

stations relative to those closer to the mainland coast. Large diatom bloom events were 

observed in the PnB record in 2002, 2008, 2010, 2016, and 2017, while relatively low 

Fuco concentrations were observed consistently from 1997-2001. Conversely, 

dinoflagellate concentrations periodically increased at PnB station 1, but were typically 

observed at low concentrations at all other stations (Figure 5C). Anomalous SBC-wide 

dinoflagellate blooms were observed in late 2003 and early 2006, and again in late 2017 

and early 2018. Years with pronounced dinoflagellate blooms typically coincided with an 

apparent suppression of diatom blooms. 

 Of the five PGs investigated, the biomarker pigments for prymnesiophytes and 

chlorophytes, Hex and TChlb, showed the most similar dynamics to one another (Figure 

5D and 5E, Table 3). These PGs were typically at their highest concentrations in the 

winter and early spring, but also sporadically increased at other times of year. 

Picophytoplankton biomarker pigment concentrations (Zea) generally followed the 
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opposite pattern of that observed in Fuco, with relatively high concentrations observed in 

the summer and fall and at the northern PnB stations (Figure 5F).  

 

PG seasonal cycles  

Mean seasonal cycles for each PG were calculated by computing monthly mean 

pigment concentrations after averaging by cruise (spatially) and then, where multiple 

cruises occurred in the same month, by month (Figure 6). The strongest seasonality (> 4-

fold difference in annual maximum and minimum) was observed in Fuco, which 

exhibited annual maxima in April and May (monthly mean concentrations ~2 µg L-1) and 

minima in the fall and winter (mean concentrations < 0.5 µg L-1). On average, TChlb 

concentrations were relatively high from December to June (maximum of ~0.15 µg L-1 in 

March), and low from July to October (minimum of ~0.07 µg L-1 in September). 

Similarly, Hex concentrations were high in winter and spring (~0.2 µg L-1 maximum), 

and lowest in September (~0.1 µg L-1). Seasonality in Zea was less pronounced, though 

relatively high concentrations were observed from June to October (annual maximum 

~0.06 µg L-1, annual minimum ~0.04 µg L-1). Finally, any potential seasonality in Perid 

concentrations was not resolvable due to a combination of the predominantly decadal 

variations observed here (Figure 5C), the bio-optical model’s poor performance in 

reconstructing smaller-scale Perid variations (Figure 4; Table 2), and the coarse sampling 

resolution available in this data set (see Section 4.2 below for further discussion).  

We investigated cross-SBC variability in each PGs annual cycle by quantifying 

monthly climatologies for each pigment at each PnB station. Past observations of 

regional advection patterns and satellite sea-surface temperature and chlorophyll a 
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concentrations suggest that the southern PnB stations (PnB station 7 is the southern-most) 

are generally associated with relatively cool, recently upwelled waters, while the northern 

PnB stations (e.g., PnB station 1)  are associated with warmer surface waters and lower 

chlorophyll concentrations on average (Harms and Winant, 1998; Henderikx Freitas et al., 

2017). These cross-SBC differences are driven by a combination of the upwelling 

shadow downwind of the coastal Santa Ynez   mountains, the physical concentration of 

phytoplankton by the persistent, convergent eddy in the SBC, and differences in the 

relative advection of southern CCS and SCBight waters (Harms and Winant, 1998; 

Simons et al., 2015; Henderikx Freitas et al., 2017). Figure 7 shows the mean +/- 95% 

confidence intervals in the difference of monthly mean pigment concentrations between 

stations 1 and 4 (northern vs. central SBC), 1 and 7 (northern vs. southern SBC), and 4 

and 7 (central vs. southern SBC).  

Amongst the 5 PGs, the largest spatial variations in seasonality were observed for 

the diatom biomarker pigment, Fuco (Figure 7). Fuco concentrations at station 7 were 

significantly higher than those at station 1 from June through October, with monthly 

mean differences of nearly 2 µg L-1 at times (Figure 7H). Fuco concentrations were also 

significantly higher (> 1 µg L-1 in magnitude) at station 7 relative to station 4 in July, and 

on average were higher, though not always significantly higher, from April through 

December (Figure 7I). The opposite pattern was observed in the spatial variations in the 

annual Zea cycle (Figure 7M-O). Higher Zea concentrations were observed at station 1 

and 4 relative to station 7. These differences were most pronounced and often statistically 

significant from June to December, while differences in monthly mean Zea 

concentrations between stations 1 and 4 were generally small. Spatial  variations in 
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monthly mean concentrations of TChlb and Hex were relatively small and almost never 

statistically significant. However, the monthly mean concentrations of both of these 

pigments were typically lower at station 1 than at stations 4 and 7, except for during the 

winter and early spring (Figure 7A-F). Dinoflagellates exhibited the opposite pattern, 

with higher monthly mean Perid concentrations typically found at station 1 relative to 

stations 4 and 7. However, these differences were never statistically significant due likely 

to the large amount of variability in Perid on interannual time scales (Figure 7J-L).   

 

Climate forcings and interannual to multi-decadal PG variations 

Several notable shifts in the phases of the three major modes of North Pacific 

climate variability, the ENSO, NPGO, and PDO, occurred during the study period and 

were linked to interannual variability in some PGs (Figures 8 and 9). Due to their 

association with a suppression of upwelling winds and water column mixing, extreme El 

Niño events are expected to result in anomalously low concentrations of the upwelling-

responsive PGs (Bograd and Lynn, 2001; Chavez et al., 2002; Venrick, 2012). Such 

events occurred in 1997-1998 and again in 2015-2016. Mild El Niño events, associated 

with less severe oceanographic impacts, were also observed in the late fall and early 

winter of 2002 to 2003, 2004 to 2005, 2006 to 2007, and 2009 to 2010 (Figure 8A-B). 

Conversely, notable La Niña events, which are expected to enhance upwelling and result 

in positive anomalies for most PGs, occurred from 1999 to early 2001, 2007 to 2009, and 

2010 to 2011.  

Relative to the ENSO, both the NPGO and PDO vary on longer time scales. The 

oceanographic impacts of the NPGO and PDO are less well studied than those of the 
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ENSO, but  generally, the PDO is thought to alter the timing and reduce the amplitude of 

seasonal upwelling and to drive a relaxation of the California Current in the northern 

CCS (Mantua and Hare, 2002; Di Lorenzo et al., 2013), while the NPGO has the same 

impact on the southern CCS and SCBight (Di Lorenzo et al., 2008; Di Lorenzo et al., 

2013). The majority of the study period overlapped with the cold phases of both the 

NPGO and PDO (Figure 8C-D). However, the NPGO briefly shifted to its warm phase 

from 2005 to early 2007, and again returned to a warm phase for the last five years of the 

record (Figure 8C). Over the course of the study period, the longest sustained warm phase 

of the PDO was observed from 2015 to 2017. The PDO was also briefly in its warm 

phase at the start of the record, and apart from a neutral phase from 2003 to 2006, 

remained in its cold phase throughout the remainder of the study period (Figure 8D). 

Notably, both HPLC and bio-optically modeled pigment observations partially 

overlapped with both cold and warm phases of all three climate oscillations considered 

here (Supp. Figure S1). While the model training data were biased toward some phases of 

these climate oscillations (particularly cold phase of the PDO), the model validation 

results (Figure 4, Supp. Figures S6 and S7) indicate that this bias does not impact model 

fidelity. 

Interannual variations in the seasonal cycles of each PG and in TChla and CHL 

were investigated by computing anomalies in the concentrations of each biomarker 

pigment relative to its monthly climatology (Figure 9). After subtraction of each 

pigment’s monthly climatology, anomalies were normalized to monthly mean pigment 

concentrations so that the anomalies shown in Figure 9 represent a unitless fold-change 

relative to the monthly climatologies shown in Figure 6.  



 

 94 

In general, low anomalies in all five biomarker pigment concentrations were 

observed for the first five years of the time series (Figure 9). While this period of the time 

series considers pigment concentrations modeled using the Perkin-Elmer 

spectrophotometer (see Sections 2.4 and 2.6 above), anomalies in fluorometrically 

determined CHL concentrations mirror those in modeled TChla concentrations, 

suggesting these patterns are valid (Figure 9A). A notable commonality amongst the 

anomaly time series of all PGs except picophytoplankton was the persistence of negative 

anomalies from 1997-1998 and from 2014-2015. These observations coincided with the 

two largest El Niño events sampled during this time series (Figure 8), and the latter event 

was preceded by the extraordinary marine heat wave known as the “warm blob” (Bograd 

and Lynn, 2001; Bond et al., 2015; Jacox et al., 2016). However, some of the largest 

positive anomalies in the time series of all 5 biomarker pigments were observed in 2016 

while the second extreme El Niño persisted (Figures 8 and 9). More generally, high 

correlations amongst the anomaly time series of the prymnesiophyte, chlorophyte, and 

picophytoplankton biomarker pigments were found (Table 4). Conversely, the largest 

anomalies in diatom and dinoflagellate biomarker concentrations generally did not co-

occur. Further, the diatom and dinoflagellate anomaly time series were only weakly 

correlated with one another and with the other PGs (Table 4).  

The largest positive diatom biomarker pigment anomalies were observed in 2008, 

2010, 2011, 2016, and 2017 (Figure 9B). Relatively large La Niña events were observed 

in conjunction with the cold phases of the NPGO and PDO in 2008, 2010, and 2011, 

which may partially account for these anomalous events (Figure 8). However, a similar 

alignment of the ENSO, PDO, and NPGO also occurred from 1999-2001 with no 



 

 95 

concurrent observations of anomalous diatom blooms (Figures 8 and 9B), suggesting that 

a complex combination of local and climate forcings are responsible for driving 

anomalous diatom blooms in the SBC. The highest dinoflagellate anomalies were 

observed in 2003, 2006, and 2018 (Figure 9C). Taking into account the lack of a 

resolvable annual cycle in dinoflagellates (Figure 6C), this indicates a roughly decadal 

pattern in dinoflagellate biomarker pigment concentrations corroborated by previous 

studies in the SCBight and CCS (Gregorio and Pieper, 2000; Smayda and Trainer, 2010; 

Fischer et al., 2020). Notably, positive dinoflagellate anomalies were observed during 

most cruises from 2003 to late 2006, in 2010, and from late 2017 to early 2018; these 

time periods mostly co-occurred with a negative NPGO index (Figure 8C). The largest 

positive anomalies in prymnesiophyte pigment concentrations occurred in 2003 and 2012, 

while the largest chlorophyte pigment anomalies were observed in 2002-2003, 2007, 

2009, and 2016 (Figure 9D and 9E). Finally, the largest anomalies in picophytoplankton 

pigment concentrations were observed from 2007-2009 and in 2016 (Figure 9F). The 

prymnesiophyte, chlorophyte, and picophytoplankton biomarker pigment anomalies did 

not demonstrate noticeable event-scale responses to climate forcings other than the 

previously described suppression of prymnesiophyte and chlorophyte biomarker pigment 

concentrations during El Niño events (Figures 8 and 9). 

We assessed long-term trends in total chlorophyll a (Figure 9A) and biomarker 

pigment concentration anomaly time series (Figure 9B-F), and for monthly anomalies 

computed separately for each PnB station, using the modified Mann-Kendall trend test 

for autocorrelated time series outlined in Hamed and Rao (1998) (Supp. Table S2). With 

the exception of decreasing long-term trends in Hex at PnB stations 2, 3, and 6, no 
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statistically significant (p < 0.05) trends were found for any of the pigments considered 

(Supp. Table S2). The spatial incoherence of the significant long-term trends in Hex 

makes them difficult to interpret and suggests they may be due to stochastic variability 

rather than any oceanographic or climate forcing considered here. 

 

Associations of PGs with oceanographic forcings 

  We performed empirical orthogonal function (EOF) analysis to determine the 

dominant modes of association amongst the five biomarker pigments and other 

oceanographic parameters (Temp, Sal, NO3, PO4, and Si(OH)4, representing temperature, 

salinity, nitrate, phosphate, and silicate, respectively; Figure 10). EOF analysis as applied 

here is synonymous with principal components analysis and decomposes the data set into 

a series of orthogonal modes. Each mode is characterized by a set of loadings, or weights, 

describing the contribution of each variable to the mode (Figure 10A-D), and an 

amplitude function describing the variability of that mode through time (Figures 10E-H 

and 11) and, though not considered here, space (Thomson and Emery, 2014). Each mode 

explains a known fraction of the variance in the original data set, with the first mode 

accounting for the largest proportion of the total variance and higher order modes 

accounting for sequentially less variance. For the EOF analysis shown here, all variables 

were averaged by cruise (spatially) and, where multiple cruises occurred in the same 

month, by month, to create a monthly time series of each variable as above. Monthly time 

series of each variable were then standardized to zero mean and unit variance prior to 

computing EOFs. The first four EOF modes cumulatively explained 82% of the variance 

in the data set, partitioned across modes 1, 2, 3, and 4 as follows: 40.6%, 19.4%, 11.5%, 
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10.5%. Modes 5 and 6 explained 6.5 and 5.3% of the variance in the data set, respectively, 

and all higher order modes explained < 3% of the variance. Modes 5 and 6 are thus not 

considered here.  

 The results of the EOF analysis demonstrate the importance of seasonal upwelling 

responses in driving the variations of the five PGs. The loadings of EOF Mode 1 were 

positive in the 3 macronutrient concentrations, salinity, TChlb, and Hex, negative in 

temperature, and only weakly positive for diatom, dinoflagellate, and picophytoplankton 

pigment concentrations (Figure 10A). This demonstrates a relatively strong covariance 

amongst chlorophyte and prymnesiophyte pigment concentrations and cold, saline, 

nutrient-rich waters, indicating rapid positive responses of these PGs to recent upwelling. 

The mean seasonal cycle of EOF Mode 1 amplitudes confirmed that this mode represents 

an early upwelling oceanographic state, with the highest monthly mean values observed 

from March through May and annual minima observed in the late summer and early fall 

(Figure 10E).  

The loadings of EOF Mode 2 were positive in temperature and in all PG 

biomarker pigment concentrations except for diatoms, and negative in diatom pigment 

concentrations, salinity, nitrate and phosphate (Figure 10B). This loading pattern 

indicates contrasting ecosystem states with negative amplitudes corresponding to an 

upwelling-driven diatom bloom, and positive amplitudes indicating a stratified water 

column favoring a mixed assemblage dominated by pico- and nano-phytoplankton. 

Inspection of the mean seasonal cycle of Mode 2 amplitudes again confirmed this 

interpretation, with annual minima (indicating a diatom bloom) observed in April and 

May and maxima observed in October and November (Figure 10F). Taken together, EOF 
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Modes 1 and 2 demonstrate that ~60% of the variance in the combined PG and 

oceanographic data set is explained by the progressive response of the environment and 

phytoplankton community to upwelling.  

 EOF Mode 3 also exhibited some seasonality, but did not appear strongly linked 

to upwelling dynamics. The loadings of EOF Mode 3 were strongly positive for Perid and 

to a lesser extent Fuco, while negative loadings were found for both temperature and 

salinity (Figure 10C). The loadings for the other variables were small indicating 

relatively weak associations of this mode with the other PGs, as well as with 

macronutrient concentrations. The mean seasonal cycle of EOF Mode 3 showed positive 

monthly mean amplitudes during the winter and early spring and negative amplitudes 

from spring through fall (Figure 10G). This observation in conjunction with the 

covariance of temperature and salinity loadings in opposition to dinoflagellate pigment 

concentrations suggests that this mode is associated with winter-time precipitation and 

freshwater discharge events. Such events are thought to provide favorable conditions for 

inner-shelf dinoflagellate blooms across the broader California coast (Gregorio and 

Pieper, 2000; Fischer et al., 2020).  

 EOF Mode 4 showed positive loadings for diatom and picophytoplankton 

biomarker pigment concentrations and salinity, in opposition to weak negative loadings 

in the three macronutrient concentrations (Figure 10D). The mean annual cycle in EOF 

Mode 4 amplitudes was positive from May to August with an annual maximum in June, 

and negative throughout late fall, winter, and early spring (Figure 10H). Interpretation of 

this mode is complicated by the unexpected covariance of diatom and picophytoplankton 

pigment concentrations with high salinities, but not the other oceanographic properties, 
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and the potential for the orthogonality constraint of EOF analysis to obscure true 

oceanographic signals with noise in higher order modes. However, the combination of the 

observed loading pattern and mean seasonal cycle suggests that this mode may represent 

a transitional state from a senescing spring diatom bloom to a stratified, 

picophytoplankton-dominated system. Such a transitional state may be driven by 

unusually late seasonal upwelling, enhanced entrainment by the persistent cyclonic eddy 

in the SBC, or some combination of these and other forcings. Inspection of the amplitude 

time series shows that the highest positive amplitudes of this mode often do not co-occur 

with the largest negative amplitudes of EOF Mode 2 (which indicates a well-developed 

diatom bloom), but do co-occur with some of the most anomalous Fuco concentrations 

observed on PnB (Figures 9B and 11D). Examples of this pattern are most prominent in 

2002, 2010, and 2016. Taken together, these results suggest this mode represents a 

unique diatom bloom state associated with potentially different forcings than the diatom 

bloom state depicted in EOF Mode 2. 

 

Impacts of climate forcings on PGs and oceanographic modes 

 Previous work has demonstrated significant impacts of the El Niño Southern 

Oscillation (ENSO) and the two major modes of Pacific decadal climate variability, the 

Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO), on 

coastal California oceanography and marine ecosystems (Mantua et al., 1997; Bograd and 

Lynn, 2001; Chavez et al., 2002; Di Lorenzo et al., 2008; Venrick, 2012; Di Lorenzo et 

al., 2013; Jacox et al., 2016; Fischer et al., 2020). Less is known about the impacts of 

these climate oscillations on PG dynamics in the SBC (Anderson et al., 2008; Venrick, 
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2012; Barth et al., 2020; Fischer et al., 2020), though the qualitative associations with the 

PG biomarker pigment concentrations described above indicate non-negligible impacts 

(Figures 8 and 9). To further investigate the roles of these climate oscillations in driving 

event-scale PG variations in the SBC, conditional averages of the seasonal anomalies of 

each biomarker pigment and EOF mode amplitude function (Figure 12) were computed 

for the 15% largest positive and negative values of each of the four climate indices (the 

Southern Oscillation Index, or SOI, and Multivariate ENSO Index, or MEI, provide two 

independent indices of ENSO) overlapping with the biomarker pigment (Figure 12A-E) 

and pigment-oceanographic time series used to compute EOFs (Figure 12F-I). 

Statistically significant differences between conditionally averaged pigment 

concentrations or EOF mode amplitudes were assessed using two-sample t-tests.  

 The impacts of ENSO events on the dynamics of specific PGs and PG-

oceanographic EOF modes were evident in the conditional averaging of PG biomarker 

pigment and EOF mode amplitude anomalies (Figure 12). As expected, diatom pigment 

concentrations showed positive anomalies during La Niña events and negative anomalies 

coincident with El Niño events. These impacts were consistent in both pattern and 

magnitude for both the SOI and MEI (Figure 12C), and corroborated by significant 

correlations between Fuco and both the SOI and MEI (Table 5). The impacts of the 

ENSO on the other biomarker pigments was less clear. Conditionally averaged 

prymnesiophyte pigment concentration anomalies showed contrasting patterns across the 

two ENSO indices and neither difference was statistically significant, indicating no 

observable impact (Figure 12B). The patterns of conditionally averaged dinoflagellate 

pigment concentration anomalies across the SOI and MEI were similar, with La Niña 



 

 101 

events favoring higher concentrations, though the differences were not statistically 

significant (Figure 12D). Significantly higher (lower) anomalies were observed during La 

Niña events for the chlorophyte (picophytoplankton) biomarker pigment concentrations 

when considering the SOI (MEI), but no observable effects on these biomarker pigments 

were found according to the MEI (SOI) (Figure 12A and 12E). No significant 

correlations were found between TChlb or Zea with either the MEI or SOI (Table 5). 

The decadal modes of North Pacific Climate variability, the PDO and NPGO, also 

had variable impacts on the interannual dynamics of each PG. Significant differences 

were observed in conditionally averaged dinoflagellate pigment concentration anomalies 

for both the NPGO and PDO (Figure 12D). The magnitude of differences was greater for 

the NPGO and Perid was significantly correlated with the NPGO (Table 5) but was not 

significantly correlated with the PDO, SOI, or MEI. Interestingly, high dinoflagellate 

anomalies were favored by the warm phase of the NPGO, but suppressed by the warm 

phase of the PDO. Conversely, the cold phase of the PDO significantly favored 

anomalously high diatom pigment concentrations, while the NPGO did not have an 

obvious impact on interannual Fuco variations (Figure 12C, Table 5). We observed no 

significant differences in conditionally averaged prymnesiophyte, chlorophyte, or 

picophytoplankton pigment concentration anomalies, and no significant correlations 

between these pigment concentration anomalies and the NPGO or PDO (Figure 12A, 12B, 

12E, Table 5). However, higher anomalies in prymnesiophyte and chlorophyte pigment 

concentrations were observed during the cold phase of the PDO and NPGO relative to 

their respective warm phases. 
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Conditional averaging of the four EOF mode amplitude anomalies according to 

the 15% largest positive and negative values of the four climate oscillations that 

overlapped with the relevant pigment and oceanographic observations largely 

corroborated the results of the conditional averaging of the anomalies of each biomarker 

pigment (Figure 12F-I). EOF Mode 1, corresponding to an early-upwelling state with 

cold temperatures and high TChlb, Hex, and macronutrient concentrations, was 

significantly impacted by all three climate oscillations (Figure 12F, Table 5). The cold 

phase of all 3 climate oscillations favored anomalously strong upwelling and high 

chlorophyte and prymnesiophyte pigment concentrations. Similarly, the cold phases of 

the PDO, NPGO, and ENSO all favored negative amplitudes of EOF Mode 2, a proxy for 

diatom blooms, although the conditional averages were only significantly different for the 

MEI (Figure 12G). Correlations between EOF Mode 2 anomalies and the MEI, NPGO, 

and PDO were also significant (Table 5). Conditionally averaged values of EOF Mode 3 

amplitude anomalies, interpreted as a dinoflagellate bloom mode associated with winter-

time discharge events, showed significant impacts of both the NPGO and PDO, with the 

warm (cold) phase of the NPGO (PDO) favoring anomalous dinoflagellate blooms 

(Figure 12H). Both indices of the ENSO suggested an enhancement of dinoflagellate 

blooms during La Niña events. These results were corroborated in part by significant 

correlations between EOF Mode 3 anomalies and the SOI and NPGO (Table 5). Finally, 

the transition state from a well-developed diatom bloom to a picophytoplankton 

dominated assemblage associated with high salinity surface waters, indicated by positive 

amplitudes of EOF Mode 4, was favored by cold phases of the ENSO, PDO, and NPGO, 

although significant differences in the conditionally averaged amplitudes of Mode 4, 
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along with a significant correlation coefficient, were only observed for the NPGO (Figure 

12I, Table 5). 

 

Discussion 

Summary of results 

 We quantified seasonal to multi-decadal PG dynamics in the SBC based on an 

approximately monthly time series of HPLC and bio-optically modeled biomarker 

pigment concentrations spanning more than 20 years. The dominant SBC PGs resolvable 

from these HPLC pigment concentration data were identified using hierarchical cluster 

analysis and included diatoms, dinoflagellates, chlorophytes, prymnesiophytes, and 

picophytoplankton (Figure 2). The concentrations of five biomarker pigments, each 

assumed to represent the pigment biomass of one of the above PGs, were modeled with 

high fidelity using a previously developed bio-optical modeling approach (Table 2, 

Figures 3 and 4, Supp. Figures S6 and S7). Seasonal variations were resolvable for all PG 

biomarker pigments except Perid (representing dinoflagellates). On average, seasonal 

variations ranged from ~1.5-fold for the picophytoplankton, to ~2-fold for the 

prymnesiophytes and chlorophytes, to >4-fold for diatoms (Figure 6). The magnitude and 

patterns of each PG’s annual cycle showed significant cross-SBC differences (Figure 7). 

Relative to monthly mean biomarker pigment concentrations, interannual variations were 

as high as 2-3-fold for picophytoplankton, prymnesiophytes, and chlorophytes, and 

occasionally larger than 5-fold for both the diatoms and dinoflagellates (Figure 9). To the 

extent that PG dynamics were associated with oceanographic forcings, upwelling exerted 

the strongest control on PG dynamics (Figures 10 and 11). Natural climate oscillations 
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including the ENSO, PDO, and NPGO exhibited unique associations with each PG at the 

event scale (Figures 8, 9, 11, 12).  

In the following, we discuss the limitations of the present study for assessing 

long-term PG dynamics. We then explore the role of regional surface advection patterns 

in driving some of our observations of seasonal to multi-decadal PG dynamics. Finally, 

we place our observations of the associations of the dominant SBC PGs with 

oceanographic and climate forcings in the context of broader knowledge of large-scale 

PG dynamics in the California Current System (CCS), Southern California Bight 

(SCBight), and more generally in upwelling systems.  

 

Limitations of the present study – what are we missing? 

 The assessments of seasonal to multi-decadal PG dynamics presented above rely 

on a synthesis of HPLC and bio-optically modeled phytoplankton pigment concentrations 

to create a 22-year, approximately monthly record of PG biomarker pigment 

concentrations. We have shown in Section 2.6 that the methods used to synthesize these 

two data sets are robust and well-validated with independent data. However, several 

major limitations remain to be addressed in order to use these data to assess seasonal to 

multi-decadal PG dynamics. Here, we discuss these limitations and how they may impact 

our interpretations of the results presented above.  

Like all methods for assessing PG dynamics, HPLC pigment analysis has 

strengths and weaknesses (Lombard et al., 2019). The prominent strengths of the HPLC 

method are demonstrated in our analysis: rigorously evaluated and standardized 

analytical procedures (Van Heukelem and Thomas, 2001; Hooker et al., 2010) enable 
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precise and accurate PG observations with high spatiotemporal coverage; unique 

absorption signatures of biomarker pigments found in in situ and remotely sensed bio-

optical properties allow biomarker pigment concentrations to be modeled with high skill, 

expanding the spatiotemporal coverage of observations (Chase et al., 2017; Catlett and 

Siegel, 2018); and the PGs resolved by pigment methods span a more holistic range of 

phytoplankton size classes than possible for many other methods.  

However, HPLC (and bio-optically modeled) pigment concentrations also have 

widely-documented limitations and uncertainties (Higgins et al., 2011; Jeffrey et al., 

2011). First, investigators must assume that biomarker pigment concentrations reasonably 

approximate the biomass of PGs. This assumption is applied explicitly here, and 

implicitly (often with additional assumptions) in studies employing more complicated 

pigment chemotaxonomy methods (Mackey et al., 1996; Uitz et al., 2006; Hirata et al., 

2011). However, variability in pigment concentrations can arise due to a combination of 

changes in PG biomass, physiological responses to environmental conditions, and genetic 

or other sources of intra-PG variability (Higgins et al., 2011; Kramer and Siegel, 2019). 

In particular, the 1.5- to 2-fold seasonal variations observed in TChlb, Hex, and Zea 

above (Figure 6) fall within a range that could be explained by physiological variability 

in pigmentation (see Higgins et al., 2011, and references therein). Further, comparisons 

of PG dynamics inferred from photoprotective (Zea in the present analysis) and 

photosynthetic (including TChlb, Hex, Fuco, and Perid) pigments may be susceptible to 

biased interpretations given that these pigments vary differently in response to changing 

irradiance (Higgins et al., 2011). However, the cluster analysis (Figure 2) shows that to 

first order, Zea covaries more strongly with DVChla (a photosynthetic pigment) than 
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other photoprotective pigments, while photosynthetic biomarker pigments representative 

of other PGs covary with distinct suites of photoprotective pigments. These results 

suggest that variability in PG biomass is the first order determinant of the variations in 

biomarker pigment concentrations observed here.   

Another limitation of biomarker pigment assessments is the ambiguity in the 

representation of a single PG by a particular biomarker pigment (Jeffrey et al., 2011; 

Kramer and Siegel, 2019). For example, the diatom biomarker pigment Fuco is also 

found in many other PGs, including the oft-abundant dinoflagellates, prymnesiophytes, 

and pelagophytes (Jeffrey et al., 2011). Bloom-forming dinoflagellates occasionally 

obscure the Fuco-diatom relationship in the SBC (Catlett et al., 2020b). This may 

partially explain certain anomalous Fuco observations in the present analysis, such as the 

~2-fold anomaly in the fall of 2003 (Figure 9) and the covariation of Fuco with the 

dinoflagellate biomarker pigment Perid in EOF Mode 3 (Figure 10). Conversely, Perid is 

not found in some lineages of photosynthetic dinoflagellates and so is not representative 

of this entire PG (Jeffrey et al., 2011), which may partially explain the lack of a 

resolvable annual cycle in our results above (Figure 6). Finally, the underlying genetic, 

taxonomic, and functional diversity represented by each PG and biomarker pigment is 

highly variable. For example, the prymnesiophytes include a diverse array of functional 

groups including calcifiers like Emiliania huxleyi, DMS producers like Phaeocystis sp., 

and mixotrophs like Prymnesium parvum (Nygaard and Tobiesen, 1993; Van Boekel and 

Stefels, 1993; de Vargas et al., 2007). Given their diverse functional roles and ecological 

niches, each of these prymnesiophyte species may be expected to respond differently to 

oceanographic and climate forcings. Thus, the lack of clear associations of some PGs 
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with oceanographic and climate forcings above may be explained in part by intra-PG 

variability in responses to these forcings.  

The other primary limitation of the present study is that the monthly, unevenly 

sampled time series presented here does not capture short-term PG dynamics and failed 

to resolve some anomalous events. One known example of this is the unprecedented E. 

huxleyi bloom that occurred in the SBC in the first week of June, 2015 (Matson et al., 

2019). After initial detection of the bloom in satellite imagery on May 31, 2015 (17 days 

after the PnB cruise in May, 2015), Matson et al. (2019) observed E. huxleyi cell 

concentrations on June 4, 2015 that were an order of magnitude greater than had ever 

been previously observed in the SCBight. Satellite imagery showed the bloom began 

decaying shortly after June 4 and had largely dissipated by the time PnB observed Hex 

concentrations similar to climatological mean values on June 18, 2015 (Matson et al., 

2019; Figures 5D and 9E). There were likely additional anomalous blooms of specific 

PGs that were not sampled by PnB over the course of the 20+ year record presented here. 

The chronic under-sampling of January and February in this time series due to ship 

availability also leads to greater uncertainty surrounding typical winter-time PG 

concentrations in the SBC. Nonetheless, the broad seasonal and interannual patterns 

highlighted in the above analyses are likely robust to the imperfect sampling of the PnB 

time series and largely corroborate and complement existing observations of large-scale 

PG dynamics in the CCS and SCBight (see Section 4.4 below).  

Finally, the 22-year biomarker pigment time series provides a rare glimpse into 

the climate forcings of interannual to multi-decadal PG dynamics. However, assessing 

the roles of the ENSO, PDO, and NPGO in driving interannual to decadal PG dynamics 
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in the SBC remains difficult given the paucity of climate phase transitions and extreme 

events observed over the 22-year biomarker pigment record. Only two strong El Niño 

events were sampled over the course of the time series, both of which coincided with 

warm phases of the NPGO and PDO (Figure 8). Similarly, both the NPGO and PDO 

remained in the cold phase for the majority of the 22-year time series, with only two 

significant, though relatively brief warm events sampled for each climate index. Further, 

the two warm PDO events coincided with extreme El Niño events, and the latter also 

coincided with the anomalous “warm blob” event in 2014-15 (Bond et al., 2015). Given 

these small sample sizes (despite the inclusion of 1393 stations sampled on 238 PnB 

cruises conducted over 22 years) and the potential for interactions amongst these climate 

oscillations, robust assessments of the impacts of the ENSO, PDO, and NPGO, as well as 

their interactions with one another and with anthropogenic climate forcing, on PG 

dynamics will require substantially longer time series than the 22-year record presented 

here. Nonetheless, the analyses above (Figures 8, 9, 12) provide an important step 

towards determining the roles North Pacific climate variability and anthropogenic climate 

forcing will play in determining SBC PG dynamics in the future. 

 

Potential roles of advection in driving PG dynamics 

The SBC’s location in the transition zone between the  upwelling-impacted, 

nutrient-rich waters of the CCS and the warmer, more oligotrophic waters of the SCBight, 

and the prevailing circulation patterns in and around the SBC (Harms and Winant, 1998; 

Winant et al., 2003; Dong et al., 2009; Brzezinski and Washburn, 2011), suggest that 

advection of source waters from these adjacent environments may impact observations of 
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SBC PG dynamics. In general, upwelling winds intensify equatorward flows in the CCS 

and result in the advection of southern CCS waters into the western entrance of the SBC 

(Harms and Winant, 1998; Brzezinski and Washburn, 2011). The relaxation of upwelling 

winds allows for a return flow of SCBight waters poleward along the mainland coast and 

into the eastern entrance of the SBC (Harms and Winant, 1998; Melton et al., 2009). On 

longer time scales, the NPGO appears related to variations in the balance of these two 

flows in the southern CCS and SCBight (Di Lorenzo et al., 2008; Di Lorenzo et al., 2013).  

While there is high variability in surface ocean circulation patterns in and around 

the SBC, direct observations of surface currents and spatial patterns of satellite sea 

surface temperature and chlorophyll a concentrations apparently confirm that the 

southern and western portions of the SBC tend to be more heavily impacted by CCS 

waters, while the northern and eastern SBC are more frequently impacted by SCBight 

waters (Harms and Winant, 1998; Henderikx Freitas et al., 2017). In conjunction with 

past studies showing more frequent dominance by diatoms (dinoflagellates) in CCS 

(SCBight) waters (Venrick, 2002; Venrick, 2012; Taylor et al., 2015), our observations of 

the prominent spatial variations in PG seasonality (Figure 7), as well as the decadal 

dinoflagellate anomalies associated with the NPGO (Figures 8, 9, 11, and 12), suggest an 

important role of advection in driving seasonal to multi-decadal PG dynamics in the SBC.  

Here we employ a Lagrangian particle tracking model within a high resolution 

ROMS solution for a 10-year subset (2004-2013) of the PG time series to investigate 

whether variations in source water origin alters phytoplankton community composition in 

the SBC (see Section 2.8.2). Particles were tracked backwards in time from 34 release 

points along the PnB transect on each day of the 10-year time series. Figure 13 shows 
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examples of particle trajectories projected backwards in time for two different days of the 

time series where a majority of particles originated from the West origin box (Figure 

13A) or the East origin box (Figure 13B). These examples provide a synoptic view of 

advection patterns over a short-term (~2 week) upwelling-relaxation cycle, and support 

the assumption that on 10-day advection time scales, the proportion of particles advected 

from the West (East) origin box provides a reasonable approximation for the relative 

influence of southern CCS (SCBight) source waters on SBC PG dynamics. In order to 

align further analyses of the simulated particle trajectories with the approximately 

monthly sampling of PnB, monthly time series of the proportion of particles derived from 

each origin box for the PnB transect and for each PnB station were computed from the 

daily time series and are discussed here (see Section 2.8.2). All results considered here 

are for 10-day advection times; results from 5- and 15-day advection times are presented 

in Supporting Figures S9 and S10, and qualitatively agree with those shown here. 

 First, we used the simulated source water assessments to test the hypothesis that 

on seasonal time scales, cross-SBC variability in climatological mean diatom, 

dinoflagellate, and picophytoplankton pigment concentrations (Figure 7) are driven by 

variations in source water origin. Increased advection of CCS (SCBight) source waters is 

expected to lead to seasonally elevated diatom (dinoflagellate and picophytoplankton) 

concentrations. Figure 14A shows the mean annual cycle in the proportion of particles 

originating from each origin box for the PnB transect. The seasonal cycle in SBC source 

waters appeared to be tightly coupled to seasonal upwelling. Across the PnB transect, the 

proportion of particles from the West origin box (Figures 1 and 13), a proxy for the 

magnitude of advection of CCS sources waters, was highest in March and elevated 
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(>20%) from February through May (Figure 14A). Conversely, advection of SCBight 

waters into the SBC as indicated by the proportion of particles originating from the East 

origin box was lowest in March and April and subsequently increased until reaching an 

annual maximum in September (Figure 14A), as expected (Harms and Winant, 1998). 

Relatively few particles reached the PnB transect from the South origin box. 

Seasonal cycles in the source waters of the northern- and southern-most portions 

of the SBC deviated substantially from that observed for the PnB transect as a whole 

(Figure 14C-D). From March through June, the proportion of particles originating from 

the CCS at the southern-most release points (closest to PnB station 7) was >10% higher 

than observed for the transect, and was >5% higher throughout the remainder of the year 

(Figure 14D). The opposite pattern was observed at the release points closest to PnB 

station 1 in the northern SBC (Figure 14C). This cumulatively represents a ~20-40% 

difference in CCS source water advection between PnB stations 1 and 7 from March 

through June (Figure 14). These differences are associated with 1-2 µg L-1 higher 

monthly mean diatom biomarker pigment concentrations at PnB station 7 relative to 

station 1 from March through September, and smaller but significantly different 

picophytoplankton concentrations at station 7 relative to station 1 (Figure 7). Shorter-

term studies have previously documented advection of harmful diatom blooms associated 

with elevated domoic acid concentrations from the southern CCS into the southwestern 

SBC during the late summer and fall (Anderson et al., 2009). Our results suggest this 

phenomenon may be a consistent source of elevated phytoplankton concentrations in the 

SBC during the late summer and fall. Consistently higher dinoflagellate concentrations in 

the northern SBC (station 1) relative to the southern SBC (Figure 7) are also linked to 
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consistently higher advection of SCBight source waters (Figure 14). Overall, these 

findings support our hypothesis that the relative magnitude of advection of CCS and 

SCBight source waters into the SBC plays a substantial role in driving spatial variations 

in SBC PG dynamics on seasonal and interannual time scales.  

 On interannual to decadal time scales, we hypothesized that NPGO-driven 

variations in the advection of SCBight source waters into the SBC (Di Lorenzo et al., 

2008; Di Lorenzo et al., 2013) provide favorable conditions and/or seed dinoflagellate 

populations enabling the anomalous decadal dinoflagellate blooms observed above to 

develop (Figures 5, 8, 9, 11, and 12). We test this hypothesis using the simulated source 

water determinations for the entire PnB transect by comparing monthly anomalies in the 

proportion of particles advected from each origin box with the observed NPGO and 

dinoflagellate biomarker pigment dynamics (Figure 15). Anomalously high advection of 

SCBight source waters was found almost every month from 2004 to late 2007 (Figure 

15A), coupled with a warm phase of the NPGO (Figure 15B) and consistently high 

dinoflagellate concentrations (Figure 15C). Conversely, from late 2007 through 2013, the 

cold phase of the NPGO was coupled with only sporadic observations of anomalously 

high advection of SCBight source waters and dinoflagellate concentrations.  

Consideration of the monthly dynamics leading to the dinoflagellate bloom in 

early 2006 further supports this hypothesis. An anomalously large red tide dominated by 

the Perid-containing Lingulodinium polyedrum (Zapata et al., 2012) was observed over a 

large extent of the nearshore SCBight from March through September in 2005 (Santoro et 

al., 2010). Monthly mean Perid concentrations in the SBC rose from 0.22 µg L-1 in 

August 2005 to ~0.7 µg L-1 in October and November 2005, coinciding with anomalously 
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high advection of SCBight source waters from July to October 2005 (Figure 15C). This 

pattern was interrupted by a highly anomalous intrusion of CCS source waters from 

November 2005 to January 2006 (Figure 15A), interpreted here as an introduction of 

nutrient-rich waters to the SBC that enabled growth and accumulation of dinoflagellates 

(monthly mean Perid concentration of 2.39 µg L-1 in January, 2006; see Figure 15C). 

While other factors must align to allow for the accumulation of dinoflagellates in SBC 

surface waters, these results highlight the importance of advection in driving the 

anomalous decadal dinoflagellate blooms observed above (Figure 5). 

Altogether, the ROMS backwards particle tracking simulations provide strong 

evidence that our Eulerian observations of seasonal to multi-decadal PG dynamics in the 

SBC are impacted by variability in the advection of different source waters into the SBC. 

Seasonally elevated diatom biomarker pigment concentrations in the southwestern SBC 

were associated with seasonally elevated advection of CCS source waters, while decadal 

dinoflagellate blooms were associated with anomalously high advection of SCBight 

source waters linked to the warm phase of the NPGO. However, it remains unknown 

whether these contrasting source waters harbor “seed” populations of PGs that are primed 

for or in the midst of blooming, or if local SBC PG populations are favored by the 

oceanographic properties of the source waters. Further targeted studies focusing on 

synoptic perspectives of PG bloom events in addition to genetic studies of SBC PG 

populations relative to those found in the CCS and SCBight may resolve this question. 

Regardless, seasonal to interannual variability in source water origins should be 

accounted for in studies of long-term PG dynamics, particularly in oceanographic 

transition zones like the SBC. 
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Oceanographic and climate forcing of PG dynamics in the SBC 

Wind-driven upwelling has long been recognized as the dominant forcing of 

seasonal to interannual variations in phytoplankton biomass, productivity, and 

community composition in the SBC, CCS, and SCBight (Goodman et al., 1984; Venrick, 

2002; Anderson et al., 2008; Barth et al., 2020; Fischer et al., 2020). The focus of most 

studies to date has been on the seasonal “succession” (though this is not equivalent to 

succession as traditionally defined by ecologists; see Barber and Hiscock, 2006) of the 

phytoplankton community from a diatom-dominated community during periods of 

significant spring upwelling to a dinoflagellate-dominated community as the water 

column becomes more stratified following the relaxation of upwelling in summer and fall 

(Margalef, 1978; Goodman et al., 1984; Anderson et al., 2008; Barth et al., 2020; Fischer 

et al., 2020). Due to limitations of methods relying on visual identification of PGs, the 

seasonal dynamics of nano- and pico-phytoplankton groups are often not considered, 

although long-term epifluorescence microscopy observations have documented some 

seasonal and interannual variations in pico- and nano-phytoplankton groups (Taylor et al., 

2015; Caron et al., 2017). Here we discuss the complimentary view of the responses of 

the phytoplankton community, particularly pico- and nano-phytoplankton groups, to 

seasonal upwelling and climate forcings provided by the biomarker pigment time series 

presented above in the context of past studies reliant on microscopic PG observations in 

upwelling systems.  

 The EOF analysis of biomarker pigments and oceanographic observations above 

(Figures 10 and 11) shows the progressive responses of different PGs to seasonal 
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upwelling. While the diatoms tend to reach the highest overall cell densities (Anderson et 

al., 2006; Venrick, 2012; Taylor et al., 2015; Caron et al., 2017) and pigment biomass 

(Anderson et al., 2008; Figure 6) in response to upwelling, the loading pattern and 

monthly mean amplitudes of EOF Mode 1 show that the typical “first responders” to 

seasonal upwelling in the SBC are the chlorophytes and prymnesiophytes (Figures 6 and 

10). On average, the annual peak in diatom pigment biomass occurs in April or May, 

after the initial peak in chlorophyte and prymnesiophyte pigment biomass in March 

(Figures 6 and 10). These results are consistent with previous observations in the SBC 

and SCBight showing high winter-time abundances of nano-phytoplankton and annual 

maxima in prymnesiophyte abundances in the early spring (Taylor et al., 2015; Caron et 

al., 2017). Similarly, some pico- and nano-phytoplankton respond positively to elevated 

nutrient concentrations in the broader CCS as well as in the equatorial Pacific upwelling 

zone (Barber and Hiscock, 2006; Taylor and Landry, 2018). Reduced top-down 

regulation of diatoms relative to smaller-sized PGs likely explains the tendency for 

diatoms to accumulate more biomass than smaller PGs in response to favorable growth 

conditions (see Taylor and Landry, 2018 for a detailed discussion), though further study 

is needed to confirm this hypothesis in the SBC. Regardless, these observations suggest 

that assumptions of a neutral or negative response of all pico- and/or nano-phytoplankton 

to elevated nutrient concentrations often employed in marine ecosystem models should 

be revisited, as suggested previously (Barber and Hiscock, 2006; Taylor and Landry, 

2018).  

Interestingly, we did not find an obvious pattern of phytoplankton community 

“succession” from a diatom bloom in spring/summer to a period of elevated 
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dinoflagellate concentrations in summer/fall as might be predicted in some interpretations 

of Margalef’s mandala (Margalef, 1978; Figures 6 and 10). The large multi-decadal 

variations in Perid concentrations combined with the poor performance of the bio-optical 

model when predicting low Perid concentrations (Figure 4; Supp. Figures S6 and S7) 

may have obscured underlying seasonal dinoflagellate variations. However, the mean 

annual cycles of Fuco and Perid at PnB station 1 on the mainland shelf showed signs of 

the dynamics predicted by Margalef’s mandala (Supp. Figure S11), and publicly 

available microscopy observations at the nearby Stearns Wharf, Santa Barbara, CA often 

show a seasonal increase in cell abundances of some dinoflagellates beginning in the late 

spring and early summer and extending into the early fall (Supp. Figure S12). These 

findings support previous suggestions of a decoupling of PG dynamics on the inner 

continental shelf (water depths < ~30 to 40 m) from those observed further offshore in 

the SBC, SCBight, and central CCS (Lucas et al., 2011; Goodman et al., 2012; Schulien 

et al., 2017), and more broadly demonstrate the importance of pairing near-shore marine 

ecosystem monitoring programs (e.g., SCCOOS) with offshore observations. In 

agreement with previous studies (Gregorio and Pieper, 2000; Fischer et al., 2020), the 

covariance of temperature and salinity loadings in opposition to the Perid loading in EOF 

Mode 3 (Figures 10 and 11) suggest that sporadic winter-time precipitation and 

freshwater discharge events are likely a more prominent forcing of dinoflagellate blooms 

in the broader SBC region than seasonal relaxations of upwelling winds.  

 Interannual variations in the oceanographic manifestations of seasonal upwelling 

are largely dictated by climate forcings, most notably the ENSO (Bograd and Lynn, 

2001; Venrick, 2012; Jacox et al., 2016), PDO (Mantua et al., 1997; Jacox et al., 2014), 



 

 117 

and NPGO (Di Lorenzo et al., 2008; Di Lorenzo et al., 2013; Jacox et al., 2014). El Niño 

events drive an anomalously stratified water column and deepening of the nutricline in 

the SCBight and CCS, which generally leads to anomalously low phytoplankton biomass 

(Bograd and Lynn, 2001; Venrick, 2012). The impacts of the ENSO on SBC PG 

dynamics are demonstrated above (Figures 8, 9, 11, 12). The two strongest El Niño 

events (1997-98 and 2015-16) over our 22 years of observations were accompanied by 

anomalously low pigment biomass for 4 of the 5 PGs investigated (all except 

picophytoplankton; Figures 8 and 9). The conditional averaging of EOF amplitudes by 

the two indices of the ENSO confirm that La Niña events favor enhanced upwelling and 

the associated responses of the chlorophytes, prymnesiophytes, and diatoms in EOF 

Modes 1, 2 and 4, while El Niño events favor higher picophytoplankton concentrations 

(Figure 12). Dinoflagellate concentrations as indicated by Perid and EOF Mode 3 also 

appear higher during La Niña events despite a lack of clear associations with the 

oceanographic signatures of upwelling (Figure 12). 

 Although a 22-year time series only offers a limited view of decadal processes, 

our observations provide a glimpse into low-frequency PG variations governed by the 

NPGO and PDO. The dominant decadal pattern observed in the PG data set was the 

anomalous dinoflagellate blooms associated with the warm phase of the NPGO and the 

cold phase of the PDO (Figures 8, 9, 11, and 12). Anomalously high dinoflagellate 

abundances have been recently observed in association with the warm phase of the 

NPGO on the inner shelf of Central California (Barth et al., 2020; Fischer et al., 2020), 

suggesting this association may hold for a significant portion of the CCS and SCBight. In 

conjunction with the remote forcing of the NPGO, these studies have proposed a 
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combination of increased freshwater discharge events (also corroborated by our analysis; 

Figures 10 and 12) and increased water column stratification in driving these 

dinoflagellate anomalies (Barth et al., 2020; Fischer et al., 2020). Figures 14 and 15 

above suggest that enhanced advection of SCBight source waters plays an important role 

in driving these blooms in the SBC, though it is unclear if this phenomenon would extend 

north of Point Conception.  

The NPGO and PDO are also expected to impact PG responses to seasonal 

upwelling (Mantua et al., 1997; Di Lorenzo et al., 2008; Chenillat et al., 2012; Di 

Lorenzo et al., 2013). The cold phases of the NPGO and PDO apparently favored the 

upwelling responsive PGs identified above (diatoms, prymnesiophytes, and chlorophytes; 

see Figure 12). Interestingly, EOF Modes 2 and 4 resolved two independent (by 

definition of the EOF analysis) diatom bloom states. While both were favored by the cold 

phases of the ENSO, NPGO, and PDO, EOF Mode 2 showed an annual maximum in 

May and was significantly impacted by the ENSO (Figure 12; r = 0.19, p = 0.008), but 

EOF Mode 4 showed an annual maximum in June and was significantly impacted by the 

NPGO (Figure 12; r = 0.16, p = 0.03). The mechanisms driving these differences are not 

clear and require further exploration, though both the ENSO and NPGO are thought to 

impact the timing of seasonal upwelling in the broader CCS and this may partially 

explain these results (Bograd et al., 2009; Chenillat et al., 2012). These results suggest 

that extreme NPGO and ENSO events, along with the associated impacts on 

oceanographic and other forcings, may lead to unique realizations of seasonal diatom 

bloom dynamics. 
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Taken together, our results reveal the seasonal to multi-decadal oceanographic 

and climate forcings of the dominant PGs in and around the SBC. In addition to diatoms, 

several smaller-sized PGs accumulate pigment biomass in response to seasonal upwelling 

in the SBC. All PGs that exhibit seasonal variability associated with upwelling are 

impacted by interannual variations in seasonal upwelling linked to forcing by the ENSO, 

NPGO, and PDO. Seasonal variability in source water advection drives pronounced 

cross-SBC variability in annual PG cycles, particularly in the magnitude of diatom 

blooms, while decadal dinoflagellate blooms in the SBC are linked to the NPGO, 

freshwater discharge, and multi-decadal variations in regional advection patterns. Future 

research is required to determine the roles of top-down forcings in shaping the dynamics 

of phytoplankton communities in the SBC, as well as to clarify the underlying 

mechanisms linking decadal dinoflagellate blooms to anomalous regional advection 

patterns.  
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Figures and Tables 

Table 1. Pigment abbreviations and biomarker assumptions used in the present study. 
The five representative biomarker pigments and their taxonomic representation were 
inferred from the results of the cluster analysis presented in Figure 2 and the literature 
(Vidussi et al., 2001; Uitz et al., 2006; Jeffrey et al., 2011). The color-coding of each 
biomarker pigment corresponds to that used in subsequent figures. 

Pigment Abbreviation Assumed Taxonomic Significance 
Total chlorophyll a TChla1 All phytoplankton 
Total chlorophyll b TChlb Chlorophytes 
Alpha-beta-carotene ABCar - 

19’-butanoyloxyfucoxanthin But - 
19’-hexanoyloxyfucoxanthin Hex Prymnesiophytes 

Alloxanthin Allo - 
Diadinoxanthin Diadino - 
Diatoxanthin Diato - 
Fucoxanthin Fuco Diatoms 

Peridinin Perid Dinoflagellates 
Zeaxanthin Zea Picophytoplankton 

Divinyl chlorophyll a DVChla - 
Chlorophyll c1 + c2 Chlc1c2 - 

Chlorophyll c3 Chlc3 - 
Lutein Lut - 

Neoxanthin Neo - 
Violaxanthin Viola - 

Prasinoxanthin Pras - 
1TChla is used to indicate total chlorophyll a concentrations determined by HPLC. 
Because the bio-optical models are trained on HPLC data, TChla also includes bio-
optically modeled concentrations of total chlorophyll a. CHL is used to denote 
chlorophyll a concentrations determined by fluorometric methods (see Section 2.2). 
 
 
Table 2. Selected mean (standard deviation) goodness of fit statistics from the 500-fold 
model cross-validation procedure. See Supporting Table S1 for a more complete listing 
of goodness of fit statistics. 
Pigment R2 Median % error 
TChla 0.87 (0.07) 17.2 (2.18) 
TChlb 0.86 (0.04) 21.7 (2.51) 
Hex 0.72 (0.06) 29.8 (3.69) 
Fuco 0.87 (0.07) 35.0 (4.93) 
Perid 0.88 (0.05) 98.8 (3.68) 
Zea 0.54 (0.09) 38.3 (3.72) 
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Table 3. Summary statistics of the merged biomarker pigment data set. All stations are 
considered independently. Max, maximum; CV, coefficient of variation (standard 
deviation divided by the mean); r, Pearson’s correlation coefficient. Insignificant 
correlations at 95% confidence are not shown. 
Pigment Mean 

µg L-1 
Median 
µg L-1 

Max 
µg L-1 

CV 
(%) 

r, 
TChlb 

r, 
Hex 

r, 
Fuco 

r, 
Perid 

r, 
Zea 

TChla 2.57 1.53 35.0 122 0.27 0.09 0.95 0.28 
 

TChlb 0.11 0.08 0.65 84.9 
 

0.65 0.12 0.19 0.51 
Hex 0.15 0.12 1.13 80.4 

   
0.10 0.36 

Fuco 0.95 0.41 19.2 172 
    

-0.07 
Perid 0.16 0.05 7.13 264 

    
0.10 

Zea 0.05 0.04 0.28 71.4 
     

 

Table 4. Pearson’s correlation coefficients amongst normalized pigment anomaly time 
series (see Figure 9). Insignificant correlations (p > 0.05) are not shown. 
Pigment TChlb Hex Fuco Perid Zea 
TChla 0.29 

 
0.94 0.43 

 

TChlb 
 

0.71 
 

0.17 0.65 
Hex 

  
-0.14 0.17 0.45 

Fuco 
   

0.19 
 

Perid 
    

0.17 
 
 
Table 5. Correlation coefficients of pigment concentration and pigment-oceanographic 
EOF mode amplitude anomalies with climate forcings. Pigment concentration anomalies 
are normalized to climatological mean values as in Figures 9 and 12. Insignificant 
correlation coefficients (p < 0.05) are not shown. 

 SOI MEI NPGO PDO 
TChla 0.31 -0.27  -0.19 
TChlb     
Hex     
Fuco 0.30 -0.26  -0.20 
Perid   -0.22  
Zea     

Mode 1 0.20 -0.23 0.24 -0.25 
Mode 2  0.19 -0.16 0.19 
Mode 3 0.19  -0.26  
Mode 4   0.16  
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Figure 1. Map of the Santa Barbara Channel, CA. Plumes and Blooms stations are 
marked with black stars and labeled with station numbers. Bold black lines indicate 
coastline. Gray bathymetry contours are shown at 50, 200, 300, 400, 1000, 2000, 3000, 
and 4000 m water depth. Black bathymetry contours are the 100 and 500 m isobaths. 
Particle release points used in the ROMS particle tracking model are shown with green 
circles, and the four “origin boxes” (West, Center, East, South) used to define Santa 
Barbara Channel source waters are outlined with bold green lines (see Sections 2.8.2 and 
4.3). The red square indicates Stearns Wharf (SW) where weekly microscopic counts of 
several phytoplankton species are performed (see Section 2.8.3). Point Conception (PC) 
is noted in red.  
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Figure 2. Hierarchical cluster analysis of HPLC phytoplankton pigment concentrations 
using the correlation distance and Ward’s linkage method. Representative biomarker 
pigments and phytoplankton groups are color-coded here and in all subsequent analysis to 
aid interpretation. 
 

 

Figure 3. Regression (A) and residual (B, C, D) analysis of HPLC TChla concentrations 
(blue), TChla concentrations modeled from the Shimadzu 2401-PC aph(λ) (black), and 
modeled TChla concentrations derived from the Perkin-Elmer Lambda 2 aph(λ) (red) 
against fluorometric chlorophyll a concentrations (CHL). Blue and black lines in the 
scatterplot are 95% prediction intervals for the HPLC and Shimadzu TChla regressions, 
respectively. All residuals are log-transformed. 10-2 µg L-1 was added to all values to 
prevent undefined values in the log-transformed data. 
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Figure 4. Validation of bio-optical models for (A) TChla, (B) Fuco, (C) Perid, (D) TChlb, 
(E) Hex, and (F) Zea extrapolated to HPLC observations not included in the model cross-
validation exercise. Panel titles are color-coded as in Figure 2.  
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Figure 5. Spatiotemporal dynamics of (A) TChla, (B) Fuco, (C) Perid, (D) Hex, (E) 
TChlb, and (F) Zea. The top of each panel corresponds to PnB station 1 on the mainland 
shelf. White dots show modeled pigment concentrations, while black dots show pigment 
concentrations measured by HPLC. Ordinary kriging with an exponential-Bessel fitting 
model (GLOBEC Kriging Software Package v3.0) was used to smooth the data for this 
figure. Interpolation length scales are 30 days and 5 km in the cross-shelf direction. Panel 
titles are color-coded as in Figure 2.  
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Figure 6. Mean +/- 95% confidence intervals (black) and median (red) annual cycles of 
(A) TChla, (B) Fuco, (C) Perid, (D) TChlb, (E) Hex, and (F) Zea. Annual cycles were 
computed based on each pigments monthly mean time series determined by averaging 
each pigments’ concentrations by sampling event and when more than one sampling 
event occurred in the same month, by month. Y-axis labels are color-coded as in Figure 2.  
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Figure 7. Spatial differences in mean annual cycles across PnB stations (A, D, G, J, M) 1 
and 4, (B, E, H, K, N) 1 and 7, and (C, F, I, L, O) 4 and 7, for the five major biomarker 
pigment concentrations. The shaded region around each line corresponds to the 95% 
confidence interval computed for the difference of monthly mean pigment concentrations. 
Significant differences in monthly mean pigment concentrations at 95% confidence thus 
occur where the shaded region does not overlap the dashed zero line. Y-axis labels and 
lines are color-coded as in Figure 2.  
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Figure 8. Indices of the dominant modes of North Pacific climate variability, including 
the (A, B) El Niño Southern Oscillation represented by the (A) Southern Oscillation 
Index (SOI) and the (B) Multivariate ENSO Index (MEI), (C) the North Pacific Gyre 
Oscillation (NPGO), and (D) the Pacific Decadal Oscillation (PDO). Blue and red bars 
indicate “cold” and “warm” phases, respectively.  
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Figure 9. Normalized seasonal anomaly time series for (A) TChla (black) and 
fluorometric CHL (red), (B) Fuco, (C) Perid, (D) TChlb, (E) Hex, (F) Zea. Anomalies are 
computed by subtracting the climatological mean pigment concentrations shown in 
Figure 6 from each pigment concentration’s monthly mean time series, and then 
normalizing to the climatological mean pigment concentration. Anomalies are thus 
unitless and represent a fold-change from the annual cycles shown in Figure 6. Y-axis 
labels are color-coded as in Figure 2.  
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Figure 10. (A, B, C, D) Loadings and (E, F, G, H) mean +/- 95% confidence intervals 
(black) and median (red) annual cycles of the amplitude functions of the first four EOF 
modes of the pigment-oceanographic data set. The variance explained by each mode is 
indicated in the title of each panel. Numbers above each x-tick are the correlation 
coefficient between a particular EOF mode amplitude function and variable multiplied by 
100. All variables were averaged by sampling event (spatially) and, where multiple 
cruises occurred in the same month, by month, to create a monthly time series of each 
variable. Monthly time series were then z-scored prior to computing EOFs.  
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Figure 11. Amplitude time series of the first four pigment-oceanographic EOF modes. 
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Figure 12. Conditional mean +/- 95% confidence intervals of biomarker pigment 
concentration and EOF amplitude anomalies according to the 15% largest positive and 
negative values of the Southern Oscillation Index (SOI), Multivariate ENSO Index (MEI), 
North Pacific Gyre Oscillation index (NPGO), and the Pacific Decadal Oscillation index 
(PDO). Red and blue bars indicate the “warm” and “cold” phases of each climate 
oscillation. Pigment concentration anomalies are normalized to climatological mean 
values, while EOF mode amplitude anomalies are not as all variables were standardized 
prior to the EOF analysis. Stars above each bar group indicate statistically significant (p < 
0.05) differences across the warm and cold phase of the climate oscillation index 
according to a two-sample t-test. Panel titles are color-coded as in Figure 2.  
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Figure 13. Example 10-day reverse-tracking particle trajectories simulated by the ROMS 
particle tracking model on (A) April 3, and (B) April 23, 2005. (A) shows typical particle 
trajectories during an upwelling event, with most particles originating from the West 
origin box, while (B) shows an upwelling-wind relaxation event driving higher advection 
of particles from the East origin box. 
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Figure 14. Mean annual cycles in the proportion of particles originating from each of the 
four origin boxes (see Figures 1 and 13) for (A) all release points on the PnB transect, 
and for the four to five release points closest to PnB stations (B) 4, (C) 1, and (D) 7 
minus the transect mean annual cycle. The station-specific mean annual cycles are 
presented as differences relative to the entire transects mean annual cycle. The proportion 
of particles originating from the west (east) origin box serves as a proxy for the 
magnitude of advection of CCS (SCBight) source waters.  
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Figure 15. Time series of (A) anomalies in the proportion of particles advected from 
each of the four origin boxes determined by the ROMS particle tracking model (see 
Figures 1, 13, and 14) for the entire PnB transect, (B) the North Pacific Gyre Oscillation 
index, and (C) monthly mean Perid concentrations and EOF Mode 3 amplitudes.  
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Abstract 

Quantifying phytoplankton community composition (PCC) is critical to 

understanding and predicting marine ecosystem structure and function. DNA meta-

barcoding and high performance liquid chromatography (HPLC) pigment analysis are 

two of the most widely applied methods for assessing PCC. While both of these methods 

are now applied on local to global scales, integrating these methods to assess PCC is 

rarely performed despite the need to coherently quantify PCC and the potential to gain 

novel insights into phytoplankton ecology. Here we integrate DNA meta-barcoding and 

HPLC pigment observations to assess phytoplankton composition in the Santa Barbara 

Channel, California, a highly productive coastal site. We find that both methods identify 

the same four dominant phytoplankton groups (diatoms, dinoflagellates, chlorophytes, 

and prymnesiophytes), but inter- and intra-lineage variability in biomarker pigment 

expression drives substantial disagreement between the two methods. Covariation 

network analysis circumvents uncertainty introduced by inter- and intra-lineage 

variability in pigment expression and reveals that diverse communities of phytoplankton 

and other protists covary with distinct suites of phytoplankton biomarker pigment 

concentrations. Our results highlight the strengths and weaknesses of each method in 

characterizing PCC, and reveal novel insights into phytoplankton physiology and ecology 

that could only be gained by integrating the two methods. Finally, we suggest a path to 

monitor marine ecosystem structure and function on unprecedented spatiotemporal scales 

based on the covariation of unique phytoplankton and protistan communities and food 

web interactions with remotely sensible phytoplankton pigment concentrations. 
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Introduction 

Phytoplankton production fuels most marine food webs and the transport of 

carbon from the atmosphere to the ocean interior via the biological carbon pump (Ryther 

1969; Guidi et al. 2016). The composition of the phytoplankton community determines 

the efficiency of the biological carbon pump and of the transfer of phytoplankton 

production to higher trophic levels, and thus dictates marine ecosystem structure and 

function (Ryther 1969; Trudnowska et al., 2021). Quantifying phytoplankton community 

composition (PCC) and/or stocks of particular phytoplankton groups (PGs) on regional to 

global scales thus represents a critical step in efforts to understand and predict marine 

ecosystem structure and function. 

Quantifying PCC is immensely difficult due to the high genetic, morphological, 

taxonomic, and functional diversity of phytoplankton in the world’s oceans (De Vargas et 

al. 2015). Various methods with unique strengths and weaknesses are available to 

quantify PCC and/or particular PGs including high performance liquid chromatography 

(HPLC) pigment analysis, high-throughput amplicon sequencing of phylogenetically 

informative DNA “barcode” genes (DNA meta-barcoding), various other “meta-omics” 

techniques (meta-genomics, transcriptomics, etc.), flow cytometry, and microscopic 

and/or image-based cell identification and enumeration (Lombard et al. 2019). Bio-

optical and ocean color remote sensing approaches for estimating PCC have also been 

proposed but rely on other PCC methods (typically HPLC pigment analysis) for 

formulation and validation (Uitz et al., 2015; Chase et al., 2017; Catlett and Siegel 2018). 

Both HPLC pigment and DNA meta-barcoding methods entail relatively efficient sample 

analysis procedures, and are now widely applied to assess PCC on regional to global 



 154 

scales (Lima-Mendez et al. 2015; Kramer and Siegel 2018). Recent work suggests that 

HPLC and DNA meta-barcoding analyses tend to provide estimates of PCC that are more 

comparable to one another than to other PCC methods, in part because they both provide 

relatively holistic characterizations of PCC spanning a broad range of size classes (Gong 

et al. 2020).  

DNA meta-barcoding analysis results in a collection of operational taxonomic 

units or amplicon sequence variants (ASVs), both of which are typically assumed to 

represent “species” in microbial ecology applications (Callahan et al., 2016). Sequence 

counts for each ASV are quantified as the frequency of detection of the ASV sequence in 

each sample, although the total sequence counts recovered is arbitrarily constrained by 

sample preparation and/or analysis procedures (Gloor et al., 2017). Most DNA meta-

barcoding data are thus compositional with ASV relative sequence abundances (RSAs) 

often estimated by normalizing each ASV’s sequence counts to the total sequence counts 

recovered from each sample (e.g., De Vargas et al. 2015; Needham and Fuhrman, 2016). 

Standard Pearson and Spearman correlation analyses (and analyses reliant on these 

statistics) of compositional data can lead to spurious interpretations of ecological 

dynamics because variability in a single ASV’s RSA can be driven either by changes in 

the abundance of other ASVs in the composition, or by a change in the abundance of the 

ASV in question (Aitchison, 1982; Gloor et al., 2017). While approaches that estimate 

ASV concentrations in situ are becoming popular (Lin et al., 2019), the compositionality 

constraint inherent in most DNA meta-barcoding data is a major obstacle in determining 

the links between oceanographic, geochemical, and PCC variability.  
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Wet lab and bioinformatic procedures for DNA meta-barcoding analysis vary 

widely across investigators, and in general analytical uncertainty in DNA meta-barcoding 

estimates of PCC is poorly constrained and difficult to evaluate (Wear et al., 2018; Catlett 

et al., 2020a). The choice of barcode gene and/or hypervariable region, PCR primers, and 

many other factors can alter DNA meta-barcoding estimates of PCC (Bradley et al., 

2016; Wear et al., 2018). However, recent work suggests rigorously evaluated amplicon 

sequencing workflows provide reasonably accurate and precise estimates of PCC (Catlett 

et al., 2020a; Yeh et al., 2021). Further, current bioinformatic methods perform well in 

determining ASV sequences (Callahan et al. 2016) and in assigning taxonomy to ASV 

sequences (Murali et al., 2018). Despite their limitations, these data offer relatively high 

taxonomic resolution of PCC and are increasingly used to quantitatively assess the roles 

of phytoplankton communities in marine ecosystems and biogeochemical cycles (Guidi et 

al. 2016; Lin et al., 2017; Caputi et al. 2018). However, DNA meta-barcoding estimates 

of PCC have been conducted largely independently of other methods and evaluations of 

the relationships between DNA meta-barcoding and other methods’ PCC estimates are 

urgently needed. 

HPLC pigment analysis is also widely applied to estimate PCC in the world’s 

oceans and is used almost exclusively to validate satellite ocean color PCC algorithms 

(Bracher et al., 2015; Chase et al. 2017; Kramer and Siegel 2018). HPLC analysis 

quantifies the concentrations of a suite of phytoplankton accessory pigments, some of 

which serve as biomarkers for particular PGs (Jeffrey et al. 2011). The primary 

weaknesses in assessing PCC with HPLC pigment analysis are (1) limited taxonomic 

resolution provided by accessory pigment data (to approximately the class level; e.g., 
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Mackey et al. 1996; Kramer and Siegel 2018); (2) variability in pigment concentrations 

due to differences in physiological status and other factors in addition to changes in 

phytoplankton biomass (Goericke and Montoya, 1998; Schlüter et al., 2000); and (3) lack 

of specificity of commonly used biomarker pigments (Jeffrey et al. 2011). Widely used 

pigment chemotaxonomy methods include CHEMTAX (Mackey et al. 1996) and 

diagnostic pigment analysis (Vidussi et al. 2001; Uitz et al. 2006). However, no method 

is capable of accounting for the impacts of physiological variability or biomarker 

ambiguity on PCC estimates where only HPLC pigment data are available (Goericke and 

Montoya, 1998; Irigoien et al., 2004). Most chemotaxonomic methods impose 

compositionality on HPLC data by normalizing diagnostic pigment concentrations to the 

total chlorophyll a (TChla) concentration or the total concentration of all diagnostic 

pigments (Mackey et al. 1996; Vidussi et al. 2001; Uitz et al. 2006). Similar to 

compositional DNA meta-barcoding data, analysis of compositional pigment biomass 

proportions complicates interpretations of analyses that rely on Pearson or Spearman 

correlation (Aitchison, 1982; Catlett and Seigel, 2018). Despite these drawbacks, HPLC 

sample analysis methods are the most rigorously evaluated and standardized of any 

available PCC method (Van Heukelem and Thomas 2001), and the direct links between 

phytoplankton pigments and bio-optical properties provide a path to observe PCC quasi-

continuously on global scales via satellite ocean color (Bracher et al., 2015; Chase et al., 

2017; Catlett and Siegel, 2018). 

Recent work suggests phytoplankton pigment “communities” can be identified 

from HPLC pigment data on regional to global scales based on the covariation of PGs 

and the concentrations of their accessory pigments with one another (Latasa and Bidigare, 
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1998; Catlett and Siegel, 2018; Kramer and Siegel, 2019). Specific biomarker pigments 

can then be selected as representatives of different phytoplankton communities, bio-

optically modeled with relatively high accuracy, and subject to further analyses to 

determine oceanographic forcings of PGs on large spatiotemporal scales (Catlett et al., 

2021a). The underlying principles of phytoplankton pigment community analysis are 

similar to those employed in recent studies that take a systems-level approach to 

characterize covariation amongst microbial ASVs using ecological networks, which can 

then be analyzed further to elucidate relationships between microbial communities and 

ecosystem structure and function (Lima-Mendez et al. 2015; Berdjeb et al. 2018). Given 

the numerous approaches for assessing PCC from HPLC pigment, DNA meta-barcoding, 

and other methods, research devoted to integrating PCC methods is needed to determine 

coherent approaches for characterizing PCC across scales of space, time, and diversity.  

Here we assess the similarities and differences in HPLC pigment and DNA meta-

barcoding PCC and PG determinations using a large data set of concurrent observations 

from a productive coastal ocean ecosystem, the Santa Barbara Channel (SBC), CA. 

Throughout this manuscript, we use PCC to refer to estimates of biomass proportions of 

various phytoplankton types, while PG is used to denote phytoplankton group biomass 

estimates in concentration units. Parallel analyses of PGs and PCC determined with each 

method are performed after imposing compositionality on HPLC pigment concentrations 

and transforming protistan ASV RSAs to estimate the concentration of particulate 

organic carbon associated with each ASV. Our results highlight the strengths, weaknesses, 

and assumptions inherent in determining PGs and PCC with DNA meta-barcoding and 

HPLC pigment analysis, and demonstrate that integrating HPLC and DNA meta-
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barcoding observations can provide novel insights into the physiology and ecology of 

phytoplankton and other protists. Based on the results of covariation network analyses, 

we suggest that characterizing the microbial communities that covary with remotely 

sensible phytoplankton pigment communities offers a path to monitor ecosystem 

structure and function on regional to global scales via satellite ocean color observations. 

 

Methods 

Overview 

All analyses presented here rely on HPLC and DNA meta-barcoding data 

collected from the SBC as part of the Plumes and Blooms (PnB) project. The SBC is a 

dynamic marine ecosystem at the boundary of the southern California Current System 

and Southern California Bight. Variability in physical, chemical, and biological 

oceanographic properties in the SBC is primarily modulated by the annual wind-driven 

upwelling cycle (Brzezinski and Washburn 2011; Henderikx Freitas et al. 2017). Diatoms 

dominate the accumulation of phytoplankton biomass associated with spring-time 

upwelling in the SBC, though most phytoplankton groups also respond positively to 

upwelling-induced nutrient enrichment of the surface ocean (Taylor et al., 2015; Catlett et 

al., 2021a). In addition to the annual diatom bloom, high concentrations of other 

phytoplankton, including dinoflagellates (Catlett et al., 2021a), prymnesiophytes 

(Goodman et al., 2012; Matson et al. 2019), and chlorophytes (Countway and Caron 

2006), have been documented in and around the SBC.  

PnB has conducted approximately monthly cruises on a north-to-south transect in 

the SBC and has done so since August, 1996. In the present analysis, we consider data 
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obtained from PnB cruises conducted between March, 2011 and September, 2014 and 

focus primarily on PnB observations of HPLC pigment concentrations and protistan 

DNA barcode sequences derived from amplicon sequencing of the V9 hypervariable 

region of the 18S rRNA gene (henceforth, 18S rDNA). We supplement our analysis with 

PnB oceanographic observations including mixed layer depth and particulate organic 

carbon concentrations. All PnB pigment and oceanographic data are publicly available 

(Catlett et al., 2020b). Raw sequence data are available in the National Center for 

Biotechnology Information’s Sequence Read Archive (accession number PRJNA532583).  

Ancillary observations of daily satellite ocean color estimates of 

photosynthetically available radiation (PAR) are also considered to assess the role of 

photophysiological variability (e.g., Goericke and Montoya, 1998) in contributing to 

uncertainty in PG and PCC determinations. Level 3, 4-km, daily PAR data were retrieved 

from the NASA Ocean Biology Distributed Active Archive Center 

(https://oceancolor.gsfc.nasa.gov/atbd/par/; Frouin and Pinker, 1995; Frouin et al., 2002). 

We constructed daily time series of PAR for each PnB station by computing mean PAR 

values from all 4-km pixels whose center was within 5 km of each PnB station. For most 

daily PnB station PAR values, 4-5 pixels were considered using this approach. In the 

analyses presented here, we consider the mean daily PAR values for each PnB station 

over the 14 days prior to each PnB sampling event. Median mixed layer light levels 

(Behrenfeld et al., 2005) were initially considered but PnB observations of the diffuse 

attenuation coefficient were not available for 23.3% of the 215 concurrent HPLC and 

DNA meta-barcoding observations considered here.  
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HPLC pigment and other oceanographic observations 

Methods used for sampling and analysis of the oceanographic data considered 

here are available elsewhere (Catlett et al., 2020a; Catlett et al., 2021a). Briefly, potential 

temperature and salinity were measured with a Sea-Bird Electronics 911E CTD. Potential 

density was calculated using the Gibbs-SeaWater MATLAB toolbox (McDougall and 

Barker, 2011). Mixed layer depth (MLD) was calculated as the depth at which potential 

density was at least 0.2 kg m-3 higher than the mean potential density over the upper 10 

m of the water column, and quality-controlled as described in Catlett et al. (2020b). 

Discrete seawater samples were collected near the sea surface (1 m nominal depth) in 5 L 

Niskin bottles. For analysis of particulate organic carbon (POC) concentrations, samples 

were filtered onto combusted Whatman GF/F filters (nominal pore size 0.7 µm) and 

frozen in liquid nitrogen until analysis at the UCSB Marine Science Institute Analytical 

Laboratory. Samples for analysis of phytoplankton pigment concentrations were collected 

on GF/F filters, frozen in liquid nitrogen, and analyzed with a standard HPLC method 

(Van Heukelem and Thomas 2001) at the NASA Goddard Space Flight Center. HPLC 

data pre-processing procedures are described in Catlett et al. (2021a). 

 

Amplicon sequencing of 18S-V9 rDNA 

Amplicon sequencing analysis of the V9 hypervariable region of the 18S rDNA 

follows methods outlined previously (Catlett et al., 2020a). Discrete seawater samples for 

amplicon sequencing analysis were collected in polycarbonate bottles which were stored 

and transported to the laboratory in a cooler until sampling particulate DNA within ~10 

hr of collection. Approximately 1 L samples were vacuum-filtered through a 47 mm 1.2 
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μm mixed cellulose esters membrane filter. Filters were stored frozen in 5 mL cryovials 

in 1.8 mL sucrose lysis buffer (750 mmol L-1 sucrose, 20 mmol L-1 EDTA, 400 mmol L-1 

NaCl, 50 mmol L-1 Tris-HCl; pH 8.0) at -80 ºC.  

Genomic DNA was extracted following the phenol-chloroform method described 

in Catlett et al. (2020a). Briefly, lysis included mechanical (bead-beating and water bath 

incubations) and chemical (sodium dodecyl sulfate and proteinase K) methods. Genomic 

DNA was extracted with phenol-chloroform-isoamyl alcohol, followed immediately by 

two extractions with chloroform-isoamyl alcohol. DNA was precipitated, washed, and 

resuspended in Tris buffer before storage at -20 ºC. The V9 hypervariable region of the 

18S rDNA was amplified with a one-step PCR using custom dual-indexed primers 

(Kozich et al. 2013) designed from the 1391F and EukB primers (Stoeck et al. 2010) 

following the “Standard” method evaluated in Catlett et al. (2020a). Following 

purification, normalization, and pooling of PCR products, sequencing was performed on 

a MiSeq PE150 v2 kit (Illumina) at the DNA Technologies Core of the UC Davis 

Genome Center. Each sequencing run included technical PCR/sequencing triplicates of a 

mock community consisting of 22 evenly represented full-length protistan 18S amplicons, 

at least one no-template control PCR, and multiple DNA extraction blanks. Controls were 

analyzed thoroughly in Catlett et al. (2020a). Data from samples amplified with certain 

index primers that were found to reduce precision in our DNA meta-barcoding workflow, 

and data from one sequencing run where one negative control showed signs of 

contamination, were discarded (Catlett et al., 2020a). 

 

ASV determinations 
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We used the DADA2 method (Callahan et al. 2016; v1.14.1) to determine 

amplicon sequence variants (ASVs) from raw MiSeq data. Demultiplexed sequence reads 

were obtained from the UC Davis Genome Center, and forward and reverse reads were 

trimmed to 140 nt and 120 nt, respectively, filtered (maxEE = 2, truncQ = 2, maxN = 0), 

and denoised using the DADA algorithm. The DADA error model was parameterized for 

each MiSeq run using at least 108 bases. Paired reads were then merged, overhanging 

sequences were trimmed, and chimeras were removed using the “consensus” method 

(Callahan et al. 2016). ASVs less than 90 nt or greater than 180 nt in length (target 

amplicon is 120–130 nt) were discarded. 

 

Ensemble taxonomic assignments and data pre-processing 

Standard taxonomic assignment methods result in many ASVs with low 

confidence or unknown taxonomic annotations at ecologically meaningful taxonomic 

ranks (division, class, and lower; see Catlett et al., 2020a and Supp. Fig. S1 below). Due 

to difficulties in relying on a single taxonomic assignment method to classify ASVs as 

protists and/or phytoplankton, we implemented an ensemble taxonomic assignment 

approach with the goal of increasing the proportion of ASVs in our data set with 

taxonomy assigned at lower ranks (Catlett et al., 2021b). Initial taxonomic assignments 

were predicted with the RDP Bayesian classifier (Wang et al. 2007; henceforth, bayes), 

the DECIPHER idtaxa algorithm (Murali et al., 2018), and the Lowest Common Ancestor 

(LCA) algorithm implemented in MEGAN6 (Huson et al. 2007) that analyzes BLASTN 

(Altschul et al. 1990) results. The bayes and idtaxa algorithms used a bootstrap cutoff of 

60% and 50%, respectively, and the LCA algorithm was implemented with default 
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parameters. All three algorithms were implemented against both the Protistan Ribosomal 

Reference (pr2; Guillou et al. 2012) database (v4.12.0) and the Silva SSU reference 

database (v138; Quast et al. 2012) available for the DADA2 pipeline 

(https://benjjneb.github.io/dada2/training.html). We thus generated six independent 

taxonomic assignments for each ASV, and refer to each collection of taxonomic 

assignments as idtax-pr2, idtax-silva, bayes-pr2, bayes-silva, LCA-pr2, and LCA-silva. 

The ensembleTax R package (v1.1.1; Catlett et al., 2021b) was used to determine 

ensemble taxonomic assignments based on the six individual taxonomic assignment 

methods. Because assignments with the Silva, pr2, and LCA (MEGAN6 uses the NCBI 

taxonomy) methods employ different taxonomic naming and ranking conventions, we 

first mapped the idtax-silva, bayes-silva, LCA-pr2, and LCA-silva taxonomic 

assignments onto the pr2 taxonomic nomenclature. During mapping we retained 

prokaryotic assignments determined using the Silva reference database as the primers 

used here are not eukaryote-specific and pr2 does not include prokaryotic reference 

sequences. We considered the default collection of taxonomic synonyms included with 

the ensembleTax package for taxonomic names that were not initially mapped. All 

analyses presented here thus use the pr2 nomenclature.  

Following mapping, we computed two sets of ensemble taxonomic assignments: 

the first was used to identify prokaryotic ASVs, while the second was used for the 

remainder of our analyses. All ensemble taxonomic assignments were determined by 

finding the highest frequency assignment across the (mapped, if necessary) individual 

taxonomic assignment methods, excluding non-assignments. In the event that conflicting 

taxonomic assignments were found at equivalent maximum frequencies across the six 
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individual methods, assignments predicted by the idtaxa algorithm, and (if the highest 

frequency assignment was not predicted by the idtaxa method) the bayes algorithm were 

prioritized. To identify prokaryotic ASVs, the bayes-pr2 taxonomic assignments (which 

by definition are always assigned kingdom Eukaryota) were omitted from ensemble 

determinations, and taxonomic assignments predicted with the Silva reference database 

were prioritized in the event multiple assignments were found at equivalent maximum 

frequencies. After discarding prokaryotic ASVs, a second set of ensemble taxonomic 

assignments was computed following the same procedure but considering all taxonomy 

predictions from all six individual methods and prioritizing those determined with pr2 

over those determined with Silva. Overall, our approach for determining ensemble 

taxonomic assignments results in a higher proportion of ASVs with predicted taxonomy 

at lower ranks (particularly at the class rank; Supp. Fig. S1).  

ASVs of non-protistan origin (those assigned as Metazoa, Fungi, Streptophyta, 

Rhodophyta, Ulvophyceae, or Phaeophyceae) and those that could not be identified as 

protists (not assigned to a kingdom or supergroup, or assigned as Eukaryota_XX, 

Opisthokonta_X, Opisthokonta, or Archaeplastida with unknown taxonomy at lower 

ranks) were discarded. Cumulative relative sequence abundances of ASVs with 

ambiguous identities were less than 16% in each sample, and less than 5% in 314 out of 

345 total samples.  

All analyses presented here rely on a data set comprising 13,308 protistan ASVs 

derived from 345 discrete seawater samples. Sequencing depth ranged from 11804 to 

225911 protistan sequence reads per sample. Sequence counts of each protistan ASV 

were normalized to the total protistan sequence counts within each sample to determine 



 165 

protistan ASV relative sequence abundances (RSAs) in each sample. Where duplicate or 

triplicate samples were available, mean RSA values were computed for each protistan 

ASV. Most analyses consider a subset of 215 samples collected near the sea surface, in 

which 6,568 total protistan ASVs were detected. 

 

Classification of phytoplankton ASVs 

Because DNA meta-barcoding data are compositional, failure to coherently 

identify phytoplankton ASVs will bias estimates of PCC. However, the growing 

recognition of mixotrophy as an important and widespread trophic strategy across diverse 

marine protists creates ambiguity in delineating phytoplankton from other protists (Mitra 

et al. 2016). Mitra et al. (2016) define four broad protistan functional groups based on 

modes of energy and nutrient acquisition: photoautotrophs, constitutive and non-

constitutive mixotrophs, and heterotrophs. Photoautotrophs are photosynthetic carbon-

fixers that do not ingest prey by phagocytosis, constitutive mixotrophs have an inherent 

capacity for photosynthesis but can also consume prey, non-constitutive mixotrophs must 

obtain their capacity for photoautotrophy through symbioses or the horizontal transfer of 

chloroplasts, and heterotrophs have no capacity for photosynthesis and rely on ingesting 

primary producers or their products to meet their energy demands (Mitra et al. 2016). 

Here we define phytoplankton as those taxonomic groups that are only thought to include 

photoautotrophic and/or constitutive mixotrophic representatives.  

In order to identify phytoplankton ASVs in our data set we compiled a collection 

of taxonomic names with corresponding trophic modes following the definitions of Mitra 

et al. (2016) based on the information available in Adl et al. (2019). Where a trophic 
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mode was not clearly defined for a particular lineage in Adl et al. (2019), we considered 

additional published compilations of protistan trophic modes and traits (Schneider et al., 

2020; Ramond et al., 2019; Dumack et al., 2019). After preliminary assignment of trophic 

modes, we conducted additional searches of both refereed (Burki et al., 2009; Okamoto 

and Inouye, 2005; Glucksman, 2011; Riisberg et al., 2009; Skovgaard et al., 2012; 

Chomerat and Bilien, 2014) and non-refereed (UC Santa Cruz Ocean Data Center, 

http://oceandatacenter.ucsc.edu/PhytoGallery/phytolist.html; AlgaeBase, Guiry and Guiry, 

2021; and Wikipedia) sources that resulted in an additional 29 lineages in our data set 

assigned to trophic functional groups. Our collection of taxonomic names and 

corresponding trophic modes is found in Supporting File S1.  

ASVs were assigned as phytoplankton, non-phytoplankton, or unknown based on 

their ensemble taxonomic assignments. ASVs assigned to lineages that only include 

photoautotrophs, constitutive mixotrophs, or both, were assigned as phytoplankton, while 

ASVs assigned to lineages comprised of heterotrophs and/or non-constitutive mixotrophs 

were assigned as non-phytoplankton. Where lineages are thought to contain 

representatives of both phytoplankton and non-phytoplankton, the ASV was assigned 

“unknown”. Following this phytoplankton classification procedure, a majority (~60% or 

more) of sequence reads were unambiguously assigned as phytoplankton (or not) in all 

surface samples considered here (Supp. Fig. S2A).  

Upon further inspection of the ASVs with unknown origins, the vast majority 

were annotated as unknown Dinophyceae, and to a lesser extent, unknown Cryptophyta 

or Haptophyta. All three of these lineages encompass a diverse group of organisms 

including photoautotrophs, constitutive and non-constitutive mixotrophs, and 



 167 

heterotrophs. Discarding samples where these unidentified ASVs are found at high RSAs 

may bias the analysis to exclude samples in which these lineages are abundant. Instead, 

we assumed all remaining unknown Dinophyceae, Cryptophyta, and Haptophyta ASVs in 

our data were phytoplankton. With this assumption > 95% of sequence reads were 

classified as phytoplankton or not in the surface samples considered here (Supp. Fig. 

S2B). Inspection of the RSAs of phytoplankton ASVs across depth horizons (Supp. Figs. 

S3-4) showed that phytoplankton ASVs comprised a high proportion of the protist 

community in the upper 30 m of the water column that decreased with depth, providing 

qualitative validation of our phytoplankton classification approach.  

 

Parallel analyses of concentrations and compositions 

Since DNA meta-barcoding data are compositional and HPLC measures the 

concentrations of phytoplankton pigments, we performed parallel analyses of PCC and 

PG concentration estimates by transforming our DNA meta-barcoding data to 

concentrations and constraining our HPLC data to compositions. DNA meta-barcoding 

data were transformed to concentrations by scaling the RSAs of all protistan ASVs to 

concurrently determined particulate organic carbon (POC) concentrations, providing 

estimates of the POC associated with each protistan ASV in each sample. Estimates of 

POC associated with individual taxonomic groups are not impacted by the phytoplankton 

classification scheme employed here (with the exception of Dinophyceae, Cryptophyta, 

and Haptophyta ASVs; see above), though changes to the phytoplankton classification 

procedure will change estimates of phytoplankton RSAs. Considering both PCC 
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(composition) and PG (concentration) estimates thus provides two quasi-independent 

analyses that broadly corroborate one another. 

We focus our analyses on the seven traditionally defined “diagnostic pigments,” 

fucoxanthin (Fuco; biomarker for diatoms), peridinin (Perid; dinoflagellates), monovinyl 

chlorophyll b (MVChlb; chlorophytes), 19’-hexanoyloxyfucoxanthin (Hexfuco; 

prymnesiophytes), 19’-butanoyloxyfucoxanthin (Butfuco; pelagophytes), and zeaxanthin 

(Zea; cyanobacteria) (Vidussi et al. 2001; Uitz et al. 2006). Five of these pigments (Fuco, 

Perid, Hexfuco, MVChlb, and Zea) represent the five SBC PGs resolvable from HPLC 

pigment data alone, while Allo and Butfuco tend to covary strongly with MVChlb and 

Hexfuco, respectively, in the SBC (Catlett and Siegel, 2018). While ratios of biomarker 

pigments to TChla are commonly used and interpreted as PCC estimates, they are not 

truly compositional as the sum of the individual components is not constrained to a fixed 

value (e.g., ratios of biomarker pigments to TChla can be > 1). One approach for 

imposing compositionality on HPLC pigment data that requires relatively few 

assumptions about the underlying pigment data is that proposed by Vidussi et al. (2001). 

This approach normalizes the concentrations of seven diagnostic pigments to their 

summed concentration to derive PCC estimates. The sum of the seven diagnostic 

pigments is highly correlated with TChla in our data set, and so the biomass proportions 

derived from this approach are highly correlated with those computed using simple ratios 

of biomarker pigment concentrations to TChla (Supp. Fig. S5). A similar pattern was 

noted in Vidussi et al. (2001). These results show that ratios to TChla behave 

quantitatively as compositions here and likely in most other studies where they are 
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employed. We thus use biomarker pigment ratios to TChla to estimate PCC from HPLC 

pigment data.  

Below we present parallel analyses of PCC (RSAs and ratios of biomarker 

pigments to TChla concentrations) and PGs (concentrations of biomarker pigments and 

POC associated with ASVs or taxonomic groups) determined by HPLC pigment and 

DNA meta-barcoding analysis. Neither HPLC pigment nor DNA meta-barcoding analysis 

measure the biomass of protistan or phytoplankton species or groups; however, for 

simplicity we use the terms “biomass” to refer to estimates of PG pigment or POC 

concentrations, “biomass proportion” to refer to PCC estimates, and “biomass 

contributions” to refer to both of the above.  

 

Results 

Quantification of dominant SBC PGs 

Both HPLC and DNA meta-barcoding analysis indicated that the dominant 

eukaryotic SBC PGs are diatoms, dinoflagellates, prymnesiophytes, and chlorophytes 

(Fig. 1), in agreement with previous studies of HPLC pigment dynamics (Catlett et al., 

2021a) and other studies (Countway and Caron, 2006; Goodman et al. 2012; Taylor et al. 

2015) in and around the SBC. The highest median pigment concentrations and ratios to 

TChla were observed for Fuco, Hexfuco, and MVChlb, respectively. The dinoflagellate 

biomarker pigment, Perid, had the fourth highest median concentration amongst the 

biomarker pigments, and the fifth highest median ratio to TChla behind the putative 

cyanobacteria biomarker pigment, Zea. In the DNA meta-barcoding data, dinoflagellates 

had the highest median PCC and PG concentrations, followed closely by diatoms, and 
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then prymnesiophytes and Mamiellophyceae (a class of Chlorophyta). While Chlorophyta 

ASVs cumulatively had higher median PCC and PG (7.89% and 9.38 µg L-1) than 

Prymnesiophyceae ASVs (4.30% and 5.75 µg L-1), the prymnesiophytes comprised a 

higher proportion of the community than any single class within Chlorophyta.  

 Direct comparisons of biomass contributions determined with each method 

showed that estimates of PGs and PCC were broadly similar for two of the four dominant 

SBC PGs (Fig. 2). Strong correlations (R2 > 0.3, p < 0.001) were observed across 

estimates of diatom and chlorophyte biomass contributions despite a few outlier 

observations in each relationship. Weak correlations were observed for prymnesiophyte 

biomass contributions determined by the two methods (R2 = 0.11 and 0.26), though R2 

values increased ~2-fold when two outliers were ignored (note these outliers are 

considered in all further analyses). Weak correlation (R2 ≤ 0.11) was also observed 

between pigment- and amplicon-based estimates of dinoflagellate biomass contributions. 

Two distinct trends emerged in comparisons of dinoflagellate biomass contributions: a 

subset of stations showed dinoflagellate RSAs and POC were linearly related to Perid 

ratios to TChla and Perid concentrations, respectively, while another subset of stations 

showed increases in dinoflagellate RSA and POC with no concomitant increases in 

pigment-based estimates of dinoflagellate biomass contributions. 

 

Sources of disagreement in PG biomass contribution estimates 

Known sources of error in HPLC pigment assessments of PGs and PCC include 

physiological and inter- and intra-lineage variability in biomarker pigmentation (Higgins 

et al. 2011). We sought to evaluate the roles of these sources of error in the disagreements 
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in PCC and PG estimates noted above (Fig. 2), with any unexplained variability between 

the two methods likely explained by myriad sources of analytical uncertainty introduced 

by DNA meta-barcoding analysis. We performed multiple linear regression analysis on 

each phytoplankton type’s PG and PCC residuals relative to the line of best fit 

determined by type II linear regression (Table 1; Supp. Table S2; Supp. Figs. S6-10; lines 

of best fit are shown in Fig. 2). Type II regression was used to define residuals in order to 

prevent biasing the line of best fit to favor one method over the other. Negative residual 

values represent overestimation of biomass contributions by pigment-based methods, 

while positive residual values indicate overestimation biomass contributions by DNA 

meta-barcoding (Fig. 2). All predictor and response variables were z-scored prior to 

regression analyses so that the magnitudes of regression coefficients can be directly 

compared across both predictor and response variables to assess the relative importance 

of each predictor in explaining variability in a particular set of residuals (Table 1; Supp. 

Table S2). 

To assess the contribution of physiological variability in pigmentation to 

disagreements in PG and PCC estimates across the two methods, we considered mixed 

layer depth (MLD) as a correlate for phytoplankton physiological status since it is 

typically correlated with other drivers of phytoplankton physiological variability 

(temperature, recent light and nutrient availability). Satellite observations of 

photosynthetically available radiation (PAR) were also considered as a covariate of 

seasonal variations in phytoplankton photophysiological variability, but were not 

significant in predicting most phytoplankton type’s residuals (see below). PAR and MLD 

were significantly, though weakly correlated in this data set (r = -0.32, p < 0.001), but in 
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most regression models this weak collinearity did not substantially impact the values of 

regression coefficients (Table 1; Supp. Table S2).  

Selection of predictors to estimate the contribution of inter- and intra-lineage 

variability in biomarker pigment expression was based on known ambiguities in 

biomarker pigmentation (Jeffrey et al. 2011) and exploratory analyses (Supp. Figs. S6-9). 

Several Dinophyceae species express the diatom biomarker pigment, Fuco, rather than 

the typical dinoflagellate biomarker pigment Perid (Zapata et al. 2012). Diatom PCC and 

PG residuals were correlated with the cumulative PCC and PG residuals of Dinophyceae 

ASVs (r = -0.58 and -0.31, respectively; p < 0.001), with most of the variability 

explained by three Dinophyceae ASVs with PCCs that were correlated (r < -0.4, p < 

0.001 for each ASV) with diatom PCC residuals. BLASTN searches of these putative 

Fuco-containing dinoflagellate ASV sequences against the NCBI nt database showed that 

they were perfect matches to 18S rDNA sequences derived from known Fuco-containing 

dinoflagellate genera (though there is intra-genus variability in biomarker pigmentation; 

Supp. Table S1). The PCC and PG concentrations of the putative Fuco-containing 

dinoflagellate ASVs were significantly correlated with Dinophyceae PCC and PG 

residuals (r = 0.64 and 0.69, respectively; p < 0.001). Similarly, two putative Perid-

containing Dinophyceae ASVs were identified as those with PCC most strongly 

correlated (r < -0.4, p < 0.001) with Dinophyceae PCC residuals. Again, BLASTN 

searches of these ASV sequences against the NCBI nt database suggested these ASVs 

were derived from a Perid-containing genus (Tripos; Supp. Table S1).  

Investigations of the potential for intra-lineage variability in biomarker 

pigmentation to contribute to error in pigment-based estimates of PGs and PCC showed 
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that Chlorophyta PCC and PG residuals varied systematically with the dominant 

Chlorophyta class within each sample (Supp. Fig. S7). We grouped chlorophyte classes 

into three “ecotypes” based on these systematic differences to use as predictors in 

multiple linear regression analysis. Ecotype 1 consisted of Chlorophyceae, 

Chlorodendrophyceae, Chloropicophyceae, and Trebouxiophyceae (classes whose 

dominance was associated with positive residual values), ecotype 2 included 

Mammiellophyceae, Prasino-Clade-9, and unknown Chlorophyta (classes whose 

dominance was associated with residuals with a distribution centered approximately 

around 0), and ecotype 3 included Pyramimonadales (associated with negative residual 

values). Further analysis showed the summed POC concentration and RSA of ecotype 1 

exhibited a strong linear relationship with Chlorophyta PG and PCC residuals, while 

summed POC concentrations and RSAs of ecotypes 2 and 3 showed weaker systematic 

variations with Chlorophyta PG and PCC residuals (Supp. Fig. S8).  

Systematic variation of prymnesiophyte PG and PCC residual values with the 

dominant Prymnesiophyceae order was not observed (Supp. Fig. S7). However, two 

outliers were identified in comparisons of Prymnesiophyceae biomass contributions 

across the two methods (shown in red in Fig. 2D, 2H). Further inspection revealed that 

these outlier observations were sampled from adjacent stations on a single cruise in April, 

2011, and were dominated by a single Prymnesiophyceae ASV assigned as Phaeocystis 

globosa that was highly correlated with prymnesiophyte PCC and PG residuals (Supp. 

Fig. S9; r = 0.72 and 0.73 for PCC and PG correlations, respectively; p < 0.001). 

BLASTN searches against the NCBI nt database showed this putative P. globosa ASV 
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sequence was a perfect match to 18S rDNA sequences from several strains of P. globosa, 

corroborating the ensemble taxonomic assignment. 

Table 1 shows multiple linear regression analysis statistics determined for 

predictions of PG and PCC residuals based on linear combinations of the presumed 

physiological correlates (MLD and PAR) and the various sources of inter- and intra-

lineage variability in biomarker pigmentation identified above. Additional multiple linear 

regression results are included in Supporting Table S2 to further support the conclusions 

drawn here. MLD was a significant predictor of the PG residuals of all four dominant 

SBC phytoplankton types (Table 1). Negative MLD coefficient values in all PG residual 

regression models indicated that a deeper mixed layer was associated with relatively high 

pigment:POC ratios. MLD was insignificant in predicting the PCC residuals of diatoms 

and dinoflagellates. Conversely, MLD was significant in predicting the PCC residuals of 

chlorophytes and prymnesiophytes, though R2 values decreased 2% when MLD was 

excluded from these models (Supp. Table S2). PAR was a significant predictor of 

prymnesiophyte PG and PCC residuals, with positive coefficient values indicating a 

decrease in the ratio of Hexfuco to Prymnesiophyceae POC with increasing irradiance. 

PAR was also a significant predictor of diatom PCC residuals, though removing PAR 

from these regression models again resulted in a minor (3%) decrease in R2 values (Supp. 

Table S2). 

Multiple linear regression models that included MLD and the summed POC 

concentrations of the three putative Fuco-containing dinoflagellate ASVs (Supp. Table 

S1) explained 34% of the variability in diatom PG residuals (Table 1). Standardized 

regression coefficients for the summed PG concentrations of the putative Fuco-containing 
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dinoflagellate ASVs were > 2-fold higher in magnitude than those determined for MLD. 

An R2 value of 0.36 was found when predicting diatom PCC residuals with only the PCC 

of the three putative Fuco-containing dinoflagellate ASVs. For Dinophyceae PG residuals, 

75% of the variability was explained by a regression model including MLD and the PG 

concentrations of both putative Fuco- and Perid-containing dinoflagellates (Table 1). 

Similar to diatom PG residuals, putative Fuco- and Perid-containing dinoflagellate 

concentrations had substantially larger standardized regression coefficient values than 

MLD. Regression models also fit dinoflagellate PCC residuals well, with 56% of the 

variability explained by models including the PCC of putative Fuco- and Perid-

containing dinoflagellates (Table 1; Supp. Fig. S10).  

Regression models that included the cumulative PG concentrations and PCC of 

each of the three Chlorophyta ecotypes accounted for 55% and 52% of the variability in 

Chlorophyta PG and PCC residuals, respectively (models used for PG residuals also 

included MLD; Table 1). Further, the PCC and PG concentrations of each Chlorophyta 

ecotype was significant in predicting Chlorophyta PCC and PG residuals, with 

coefficients following the trends expected based on Supp. Figs. S7-8. As observed for 

diatom and dinoflagellate PG residual analysis, the magnitude of standardized regression 

coefficients for the cumulative PG concentrations of each of the three Chlorophyta 

ecotypes were > 2-fold larger than that found for MLD, with regression coefficients for 

ecotype 1 having the highest magnitude. Both MLD and satellite PAR were also 

significant predictors of Prymnesiophyceae PG and PCC residuals (Table 1). Linear 

models including these two physiological correlates along with the PCC or PG 
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concentration of the putative P. globosa ASV as predictors explained 72 and 62% of the 

variability in prymnesiophyte PG and PCC residuals, respectively.  

 

Covariation of phytoplankton classes and ASVs with biomarker pigment 

concentrations 

Recent research demonstrates that specific communities of covarying microbes 

respond to oceanographic forcing and drive variability in carbon export to the deep ocean 

(Guidi et al. 2016; Lin et al., 2017; Caputi et al. 2018). Similarly, “communities” of 

biomarker pigments can be accurately reconstructed with bio-optical models and studies 

of their dynamics reveal the responses of phytoplankton communities to oceanographic 

and climate forcings (Catlett and Siegel, 2018; Catlett et al., 2021a). We suggest that 

community-oriented analyses may circumvent the uncertainty introduced by 

physiological and inter- and intra-lineage variability in biomarker pigmentation identified 

above and provide a path to coherently characterize phytoplankton communities across 

both HPLC pigment and DNA meta-barcoding analysis. Therefore, we performed 

network analysis to determine the dominant patterns of covariation amongst biomarker 

pigments and both phytoplankton and other protistan classes and ASVs observed via 

DNA meta-barcoding (Fig. 3 and Fig. 4 below).  

Covariation networks were constructed and analyzed using the NetCoMi (Peschel 

et al., 2021; v1.0.2), igraph (Csardi and Nepusz, 2006; v1.2.6), and SPRING (Yoon et al., 

2019; v1.0.4) R packages. We constructed four different covariation networks using the 

Semi-Parametric Rank-based approach for INference in Graphical models (SPRING) 

method (Yoon et al. 2019). The SPRING method relies on a novel estimate of pairwise 
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partial correlations amongst microbial ASVs or groups that accounts for the skewed, 

zero-inflated nature of these data. Network inference with the SPRING method relies on 

a data-driven optimization of a neighborhood selection approach (Meinshausen and 

Bühlmann, 2006; Yoon et al., 2019). Notably, this approach for inferring graphs assumes 

a sparse network, meaning the results shown here provide a conservative depiction of the 

communities of covarying biomarker pigments and ASVs or classes relative to standard 

Pearson correlation-based approaches (Yoon et al. 2019).  

Two networks were constructed considering either class-aggregated or ASV POC 

concentrations alongside biomarker pigment concentrations, and two compositional 

networks were constructed considering either class-aggregated or ASV PCC and pigment 

ratios to TChla. Both phytoplankton and other protistan ASVs and classes were included 

in all networks in order to simultaneously determine the phytoplankton communities 

covarying with each biomarker pigment, as well as to assess the potential to draw 

inferences on ecosystem structure and function from biomarker pigment observations 

(see below). To maintain consistency with the analyses presented above, phytoplankton 

and other protists were treated as independent compositions, and classes that included 

both phytoplankton and other protists were separated (the prefix “phyto-” is used to 

denote phytoplankton where necessary to prevent ambiguity). Only those classes or 

ASVs that were found at > 1% PCC in at least one sample in their respective 

compositions were considered in network analyses. In total, 21 phytoplankton classes, 

313 phytoplankton ASVs, 44 other protistan classes, and 511 other protistan ASVs were 

included in the network analysis. Pigment ratios to TChla and PCC of both phytoplankton 

and other protists were independently transformed (following Tipton et al. 2018) using 
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the modified centered log-ratio transformation described in Yoon et al. (2019) prior to 

compositional network construction. We focus our discussion here on networks 

constructed from class-aggregated and ASV POC concentrations given the difficulties 

associated with robust inference of covariation using compositional data (Yoon et al., 

2019). Compositional networks are included in supporting information (Supp. Figs. S11-

12) and broadly support the strongest associations observed in concentration-based 

networks.  

To focus our discussion on positive covariation, all analyses presented here 

consider subsets of covariation networks with negative edges removed. We first consider 

phytoplankton subnetworks including only the seven diagnostic pigment and 

phytoplankton class (Fig. 3A) or ASV (Fig. 3B) concentrations, and expand our 

discussion to consider networks including both phytoplankton and other protistan classes 

and ASVs below (Figs. 4-7). Prior to removal of negative edges, 94.5% and 74.4% of 

edges represented positive associations in subnetworks including phytoplankton classes 

or ASVs, respectively, alongside biomarker pigment concentrations. Following removal 

of negative edges, both phytoplankton class and ASV subnetworks remained fully 

connected as all biomarker pigments and phytoplankton classes or ASVs were either 

linked directly by positive edges shared with one another, or linked indirectly through 

positive edges shared with common nodes.  

Figure 3A shows the phytoplankton class and biomarker pigment concentration 

subnetwork. Nodes (individual phytoplankton pigments or classes) are colored according 

to community membership determined by a community detection algorithm that 

identifies communities from a network by maximizing within-community interactions 
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and minimizing inter-community interactions (Clauset et al., 2004), and the thickness of 

edges indicates the relative strength of association between nodes. Clauset et al. (2004) 

suggest modularity scores > 0.3 indicate “significant” community structure is resolvable 

from a network. A modularity score of 0.44 was found for the phytoplankton pigment and 

class subnetwork. In general, Figure 3A shows that phytoplankton biomarker pigment 

concentrations covary with diverse phytoplankton classes. As expected, phytoplankton 

classes tended to share a positive edge and community membership with their 

corresponding biomarker pigments (Pelagophyceae with Butfuco, Mamiellophyceae and 

Pyramimonadales with MVChlb, Bacillariophyta with Fuco, Cryptophyceae with Allo, 

and Dinophyceae with Perid). The exception to this pattern was Prymnesiophyceae, 

which were found in the same community as, but did not share a positive edge with, the 

prymnesiophyte biomarker pigment. Dinophyceae shared positive edges with both Fuco 

and Perid, but shared community membership only with Fuco. Interestingly, Zea, rather 

than the typical chlorophyte biomarker pigment MVChlb, shared a positive edge with the 

Chlorophyta classes Trebouxiophyceae and Chloropicophyceae, and was found in the 

same community as Chlorodendrophyceae and Chlorophyceae. These classes comprised 

Chlorophyta ecotype 1 defined in multiple linear regression analysis above, which was 

associated with consistent under-estimation of Chlorophyta biomass contributions from 

HPLC pigment data (Fig. 3; Table 1; Supp. Figs. S7-8).  

Five communities of phytoplankton biomarker pigments and classes were 

identified by the community detection algorithm (Fig. 3A), all of which included at least 

one biomarker pigment. Associations amongst the biomarker pigments largely mirrored 

patterns of covariation in the SBC identified previously (Catlett and Siegel, 2018), with 
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Fuco and Zea each found in distinct communities from all other biomarker pigments, and 

strong covariation and shared community membership found between the chlorophyte 

and cryptophyte biomarker pigments (MVChlb and Allo), and between the 

prymnesiophyte and pelagophyte biomarker pigments (Hexfuco and Butfuco; Fig. 3A). 

Unexpectedly, Perid was found in the same community as MVChlb and Allo. Only four 

phytoplankton classes (Chlorarachniophyceae, Prasino-Clade-9, Dictyochophyceae, 

Chrysophyceae) neither shared an edge nor community membership with any biomarker 

pigment.  

Figure 3B shows a chord diagram (Gu et al., 2014) illustrating the direct 

associations (positive edges) between phytoplankton biomarker pigments and ASVs. A 

diverse collection of phytoplankton ASVs co-varied with each biomarker pigment. 

Amongst the ASVs that were directly associated with each biomarker pigment, the 

largest proportion often belonged to the phytoplankton class for which the pigment is the 

corresponding biomarker. For example, Fuco shared positive edges with 7 

Bacillariophyta ASVs, 2 Dinophyceae ASVs, and 1 Prymnesiophyceae ASV, while Perid 

shared positive edges with 8 Dinophyceae ASVs, 3 Bacillariophyta ASVs, and 1 

Pyramimonadales ASV. Similarly, MVChlb shared positive edges with 5 Chlorophyta 

ASVs (4 of class Mamiellophyceae and 1 of Pyramimonadales), and 2 ASVs 

representative of Dinophyceae and Dictyochophyceae. Unexpectedly, Butfuco and 

Hexfuco shared positive edges with 1-3 ASVs from a diverse array of phytoplankton 

classes including Bacillariophyta, Dinophyceae, Prymnesiophyceae, Pelagophyceae, 

Chloropicophyceae, and Cryptophyceae. Nearly half (6/13) of the positive edges between 
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Allo and phytoplankton ASVs were associated with Bacillariophyceae ASVs rather than 

Cryptophyceae (for which Allo is a biomarker) ASVs.  

 

Covariation of other protists with phytoplankton biomarker pigments 

Phytoplankton communities tend to covary with distinct communities of microbes, 

including protistan micrograzers and parasites, which control the flow of phytoplankton 

production through marine ecosystems (Lima-Mendez et al. 2015; Berdjeb et al. 2018). 

Thus, in addition to characterizing the phytoplankton classes and ASVs that covary with 

phytoplankton pigment communities, we sought to assess covariation amongst 

phytoplankton pigment concentrations and non-phytoplanktonic classes and ASVs. Here, 

we expand the network analysis above to consider networks including both 

phytoplankton and other protistan classes or ASVs. Figure 4 shows subsets of these 

networks including only positive interactions amongst phytoplankton biomarker pigments 

and non-phytoplanktonic classes (Fig. 4A) or ASVs (Fig. 4B) that were not classified as 

phytoplankton. Whether or not phytoplankton classes or ASVs were removed from these 

networks, both class and ASV networks were fully connected, meaning all phytoplankton 

and other protistan ASVs and classes were linked to the concentrations of biomarker 

pigments either directly or indirectly.  

Overall, phytoplankton biomarker pigments covaried with diverse protistan 

classes and ASVs (Fig. 4). Inspection of direct associations between biomarker pigments 

and protistan classes and ASVs revealed differences in the communities of protists that 

covaried most strongly with each biomarker pigment. In the network considering 

protistan class concentrations (Fig. 4A), Fuco shared edges with Filosa-Thecofilosea (a 
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class comprised primarily of nanoflagellates) and a class of radiolarians (Polycystinea). 

Perid, MVChlb, Zea, and Allo were all directly associated with (putatively non-

phytoplanktonic) chrysophytes. While this was the only direct association found between 

non-phytoplankton classes and MVChlb, Zea also shared a positive edge with Syndiniales, 

and Perid and Allo were directly associated with several other non-phytoplanktonic 

classes (Dinophyceae and Nassophorea ciliates, and two Ciliophora clades, MAST-2, 

and Polycystinea, respectively). Hexfuco was also directly associated with Polycystinea, 

and along with Butfuco was linked to an unknown clade of Telonemia. Butfuco was also 

associated with a clade of radiolarians (RAD-B) and Nassophorea. 

Application of the community detection algorithm (Clausnet et al., 2004) to 

networks including both phytoplankton and other protistan classes (modularity score of 

0.42) revealed distinct community membership patterns relative to the communities 

identified when considering subnetworks that consisted only of phytoplankton classes. 

Five total communities were identified from the protistan class and phytoplankton 

biomarker pigment network, with three including at least one biomarker pigment (Fig. 

4A). Fuco and Allo were the sole biomarker pigments found in two of the communities, 

both of which included a large number of non-phytoplanktonic classes. Fuco shared 

community membership with three classes of phytoplankton (Bacillariophyta, 

Dinophyceae, Chlorophyceae) and 14 classes of other protists, while Allo clustered with 

two phytoplankton classes (Euglenozoa and Raphidophyceae) in addition to nine other 

protistan classes, eight of which belonged to the division Ciliophora. Perid, Zea, MVChlb, 

Butfuco, and Hexfuco were all found in the same community with five phytoplankton 

classes and just four classes of other protists. In the other two communities that did not 



 183 

include a biomarker pigment, 17 non-phytoplanktonic classes covaried with 11 

phytoplankton classes, several of which (Pelagophyceae, Chloropicophyceae, MOCH-5, 

Trebouxiophyceae) shared a positive edge with at least one biomarker pigment.  

Analysis of the network considering phytoplankton and other protistan ASV 

concentrations showed that each biomarker pigment was directly associated with distinct 

communities of non-phytoplanktonic ASVs derived from a diverse array of protistan 

classes (Fig. 4B). Fuco and Perid shared edges with ASVs from a similar distribution of 

classes, including non-phytoplanktonic Dinophyceae, Filosa-Thecofilosea, Spirotrich 

ciliates, and Syndiniales. Fuco also shared positive edges with several Gregarinomorphea 

ASVs. Both MVChlb and Butfuco covaried with relatively few (5-6) non-

phytoplanktonic ASVs including putative nanoflagellate grazers (Chrysophyceae, 

MAST-3, and MAST-12), ciliate and dinoflagellate micrograzers (Spirotrichea and 

Dinophyceae), and putative parasites (Gregarinomorphea and Syndiniales). Both Zea and 

Hexfuco covaried with many non-phytoplanktonic ASVs, particularly those derived from 

Syndiniales. Finally, Allo covaried with 10 non-phytoplanktonic ASVs, including 

radiolarians, ciliates, and putative nanoflagellates.  

When applied to the network including both phytoplankton and other protistan 

ASVs (modularity score of 0.26), the community detection algorithm identified four 

communities. Two communities included at least one biomarker pigment: one included 

Fuco along with 162 ASVs, and the other included the remaining six biomarker pigments 

and 284 ASVs. Thus, in total 446 of 824 ASVs included in the network analysis shared 

community membership with at least one biomarker pigment. About half of the ASVs 

that shared community membership with Fuco were not classified as phytoplankton 
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(84/162), while a higher fraction of non-phytoplankton ASVs covaried with the other six 

biomarker pigments (186/284). 

Figure 5 shows the mean composition of phytoplankton and other protistan ASVs 

in the 215 surface ocean samples considered here for each of the four communities 

identified by the community detection algorithm. Unexpectedly, Dinophyceae ASVs 

comprised > 40% of mean PCC in three of the four communities. The Fuco community 

was the only community in which Dinophyceae was not the dominant phytoplankton 

class, and was instead dominated by diatom ASVs as expected. In the community that 

included the other biomarker pigments, larger contributions of ASVs derived from 

Prymnesiophyceae, Chlorophyta, and other phytoplankton lineages (including mostly 

putative pico- and nano-phytoplankton) were observed relative to the other three 

communities. One of the communities that lacked a biomarker pigment (Community 2) 

had similar mean composition to the community including six biomarker pigments, while 

the other (Community 1) had an unusual mean composition that included no Chlorophyta 

ASVs.  

The mean composition of other protists also varied across the four communities 

(Fig. 5). In the community including Fuco, mean community composition was dominated 

by Syndiniales and Gregarinomorphea parasites, with notable contributions also 

observed for non-phytoplanktonic Dinophyceae and stramenopiles. Conversely, mean 

PCC of Gregarinomorphea ASVs was small in the community containing six biomarker 

pigments. Instead, the mean composition of non-phytoplanktonic ASVs in this 

community was relatively evenly distributed across diverse groups including ciliates, 

cercozoans, stramenopiles, non-phytoplanktonic dinoflagellates, and Syndiniales. Similar 
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to the patterns observed in mean phytoplankton composition, the mean composition of 

other protists in Community 2 was very similar to that observed for the community 

including most biomarker pigments, while the mean composition of other protists in 

Community 1 was dominated by non-phytoplanktonic dinoflagellates, ciliates, and 

Syndiniales. While high spatiotemporal variability in community composition is expected, 

the unique patterns in mean composition across the four communities defined here 

suggest unique protistan communities covary with distinct biomarker pigments. 

 

Discussion 

We compared HPLC pigment and DNA meta-barcoding estimates of PGs and 

PCC and identified inter- and intra-lineage variability in biomarker pigment expression 

(Figs. 1-2, Table 1, Supp. Table S2, Supp. Figs. S6-10) as the dominant source of 

disagreement across the two methods. Covariation network analyses confirmed the 

patterns of inter- and intra-lineage variability in pigment expression, and demonstrated 

that diverse communities of phytoplankton and other protists covary with biomarker 

pigment concentrations (Figs. 3-5). Below, we discuss the assumptions and limitations 

that must be accounted for when estimating PCC with HPLC pigment and DNA meta-

barcoding analysis. We consider the biological mechanisms that lead to uncertainty in PG 

and PCC estimates, which in turn demonstrates that novel insights into phytoplankton 

physiological status can be gained by integrating HPLC pigment and DNA meta-

barcoding observations. Finally, we suggest that the results of the network analyses above 

reveal a possible path toward monitoring ecosystem structure and function on 
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unprecedented spatiotemporal scales via satellite ocean color retrievals of phytoplankton 

pigment concentrations. 

 

Limitations and assumptions involved in DNA meta-barcoding and HPLC pigment 

analysis of phytoplankton composition 

Both DNA meta-barcoding and HPLC pigment analysis rely on critical 

assumptions to estimate PCC. The two major assumptions required to assess PCC with 

HPLC pigment data, as well as their impacts on the fidelity of HPLC PCC and PG 

estimates, were evident in our results. We identified inter- and intra-lineage variability in 

biomarker pigmentation as the largest source of uncertainty in HPLC pigment estimates 

of the four dominant phytoplankton types in the SBC (Fig. 2; Table 1; Supp. Figs. S6-10). 

Similar observations in other systems suggest this may be a consistent issue in the coastal 

ocean (Georicke and Montoya, 1998; Irigoien et al., 2004). Phytoplankton physiological 

status was also a significant contributing factor to disagreement between HPLC pigment 

and DNA meta-barcoding estimates of PGs and PCC, though our results indicate it is a 

less important source of uncertainty in the SBC (Fig. 2; Table 1). Phytoplankton 

physiology is a significant driver of variability in phytoplankton pigment concentrations 

in large portions of the open ocean (Behrenfeld et al., 2005; Siegel et al., 2013), though in 

conjunction with prior research our results suggest that in productive coastal areas inter- 

and intra-lineage variability in biomarker pigment expression is a more important source 

of variability in HPLC pigment PG and PCC estimates.  

Many assumptions are also required to estimate PCC and PGs with DNA meta-

barcoding. DNA meta-barcoding is often implicitly assumed to provide precise and 
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accurate estimates of PCC, though evaluations of analytical uncertainty in DNA meta-

barcoding workflows are exceedingly difficult and rarely performed. Nonetheless, recent 

attempts to validate these methods suggest that DNA meta-barcoding workflows 

(including the workflow employed here) achieve comparable precision to HPLC pigment 

analysis and reasonable accuracy (Catlett et al. 2020a; Yeh et al., 2021). Our finding that 

inter- and intra-lineage variability in biomarker pigmentation is the dominant source of 

disagreement in HPLC pigment and DNA meta-barcoding estimates of PGs and PCC 

(Figs. 1-2; Table 1; Supp. Figs. S6-10) provides further support for the use of DNA meta-

barcoding as a method with comparable accuracy and precision to other widely accepted 

methods for quantifying PCC. 

This study highlighted an additional obstacle in DNA meta-barcoding analysis 

where assumptions are required to estimate PCC: defining and identifying phytoplankton. 

Several factors contribute to this issue. First, in light of the widespread occurrence of 

various forms of mixotrophy in marine protist communities (Mitra et al., 2016), a clear 

definition of what constitutes phytoplankton is lacking. A coherent definition of 

phytoplankton is particularly important when considering PCC estimates since the 

decision to classify an ASV as phytoplankton (or not) alters the PCC of all other 

phytoplankton ASVs. Here, we defined phytoplankton as protists (cyanobacteria are not 

detected with the DNA meta-barcoding method used here) with an inherent capacity to 

perform photosynthesis. However, some protists acquire the capacity to perform 

photosynthesis from other organisms (Mitra et al., 2016). Further, the nutritional modes 

of most marine microbes have not been directly observed, and many of the putative 

trophic functional group assignments compiled here rely on the assumption that 
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phylogenetic and/or taxonomic groups share common phenotypes in this respect (as 

noted in Adl et al. (2019)). One known example where this assumption is not satisfied is 

amongst the Dinophyceae, which include several genera with representatives spanning 

diverse nutritional modes (Adl et al., 2019). Difficulties assigning Dinophyceae ASVs to 

trophic functional groups necessitated the use of a crude assumption to classify unknown 

Dinophyceae ASVs as phytoplankton in the present analysis. Further analysis suggested 

that this assumption was valid (Supp. Table 1; Supp. Figs. S3-4; Fig. 2), but similar 

assumptions are likely to be required for years to come given the difficulties inherent in 

directly observing the vast diversity of protistan phenotypes. 

Another factor that impacts the identification of phytoplankton in DNA meta-

barcoding data is ASV taxonomy prediction. We implemented recently proposed 

ensemble taxonomic assignment methods (Catlett et al., 2021b) that increase the number 

of ASVs with taxonomy assigned at lower ranks to address this problem (Supp. Fig. S1). 

This approach was required here to distinguish phytoplankton from other protists, but 

likely comes at the expense of increased false positive annotations (Murali et al., 2018; 

Catlett et al., 2021b). While more detailed analyses generally supported the ensemble 

taxonomy predictions obtained here, there were also instances where ambiguities in ASV 

identification remained. For example, one of the putative Fuco-containing dinoflagellate 

ASVs identified here (sv8) was classified as unknown Dinophyceae with the ensemble 

methods used here, and upon further inspection it was found to be a perfect match to 

representatives from several dinoflagellate genera, only some of which are known to 

express Fuco (Supp. Table S1). This problem is partially attributable to the limited 

phylogenetic resolution of shorter amplicons like the 18S-V9 amplicon considered here, 
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though some studies suggest analysis of longer amplicons with enhanced phylogenetic 

resolution result in less accurate estimates of PCC (Bradley et al. 2016). Clearly, further 

research is needed to determine the optimal gene, hypervariable region(s), and taxonomic 

assignment procedures for assessing PCC.  

Another major limitation of DNA meta-barcoding is the compositionality 

constraint inherent in these data, which can propagate analytical uncertainty and create 

difficulties in analyzing and interpreting variations in PCC (Aitchison, 1982; Gloor et al., 

2017). However, “quantitative meta-barcoding” approaches reliant on scaling RSAs to 

that of a genetic internal standard (Lin et al., 2019) or to concurrent estimates of 

community abundance or biomass (e.g., Needham and Fuhrman 2016) allow analysts to 

estimate the absolute abundance or concentration of ASVs in situ. Here, we scaled 

estimates of protistan RSAs to concurrent observations of POC concentrations to estimate 

protistan ASV and group biomass. This scaling approach primarily relies on two key 

assumptions: that variability in POC concentrations is either driven by or directly 

proportional to variability in protist community biomass, and that variability in protistan 

18S rDNA copy numbers scales with cell biovolume and biomass. The former is likely 

valid for our study site as the SBC is a highly productive coastal ecosystem dominated by 

larger-sized eukaryotic phytoplankton (Taylor et al., 2015; Catlett et al., 2021a), and 

previous observations in the SBC have shown that the range in bacterial biomass is 

generally d 10% of the range in POC concentrations on seasonal to interannual time 

scales (Halewood et al., 2012). However, the unknown significance of detrital 

contributions to POC variability, as well as variability in the proportion of DNA-

containing detritus of protistan origin, remains uncertain in most marine systems, and 
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differences in filter pore sizes used here for DNA meta-barcoding (1.2 μm) and POC 

analysis (0.7 μm nominal pore size) introduce further complications. Nonetheless, the 

magnitudes of mean POC concentrations associated with protistan groups observed here 

are similar to those observed in studies of nearby waters that rely on epifluorescence 

microscopy and carbon conversion factors to estimate biomass (Taylor et al. 2015; Caron 

et al. 2017). Similarly, the latter assumption is supported by several studies that document 

strong correlations between 18S rDNA copy number and cell size and biovolume (Zhu et 

al. 2005; Godhe et al. 2008; De Vargas et al. 2015), and between cell biovolume and 

carbon biomass (Menden-Deuer and Lassard, 2000), across diverse marine protist 

lineages. While further study should be devoted to validating this scaling approach 

against internal standard methods for estimating the concentrations of protistan groups 

and ASVs in situ, the agreement observed with HPLC pigment methods (after accounting 

for known sources of error in HPLC pigment methods) indicates that the POC-scaling of 

protistan RSAs provides reasonable estimates of protistan ASV and group biomass 

contributions in this data set and may be applicable to similarly productive coastal 

regions. 

Finally, in addition to the assumptions discussed above, assessing differences in 

rank-order median biomass contributions observed here (Fig. 1) highlights the impacts of 

widely-documented weaknesses in each method. Dinoflagellate biomass proportions are 

severely under-estimated with HPLC pigment analysis in this data set due to the presence 

and quantitative significance of several putative Fuco-containing dinoflagellate species 

(Figs. 1-2; Table 1; Supp. Table S1; Zapata et al. 2012). Dinoflagellate biomass 

contributions may also be over-estimated by DNA meta-barcoding analysis due to their 
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anomalously high 18S rDNA copy number, although 18S rDNA copy number tends to 

scale with cell size and biovolume as noted above (Zhu et al., 2005; Godhe et al., 2008). 

We observed smaller differences in the rank-order of median Prymnesiophyceae and 

Chlorophyta biomass contributions across the two methods (Fig. 1), likely explained by 

systematic biases in estimates of Prymnesiophyceae PCC obtained with standard DNA 

meta-barcoding workflows that arises due to their anomalously high genome and 18S 

rDNA GC content (Liu et al., 2009, Catlett et al., 2020a). Despite the assumptions 

required and known weaknesses of both DNA meta-barcoding and HPLC pigment 

methods in estimating PGs and PCC, our ability to resolve and identify systematic errors 

in HPLC pigment methods (Table 1) clearly demonstrates the benefits of integrating PCC 

methods. Overall, our analyses highlight both widely acknowledged and more nuanced 

assumptions, strengths, and weaknesses in DNA meta-barcoding and HPLC pigment PG 

and PCC assessments.  

 

Integrating HPLC pigment and DNA meta-barcoding analysis provides novel insights 

into phytoplankton physiology and ecology 

We observed that both inter- and intra-lineage variability in biomarker pigment 

expression, and to a lesser extent, variability in phytoplankton physiological status, are 

significant sources of error in HPLC estimates of PGs and PCC in the SBC (Fig. 2; Table 

1; Supp. Figs. S6-10). Our ability to resolve intra-lineage variability in pigment 

expression in smaller sized phytoplankton including prymnesiophytes and chlorophytes 

was particularly interesting since this has not been observed in most other studies that 

diagnose sources of variability by integrating HPLC and microscopic observations of 
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PGs and PCC (e.g., Irigoien et al., 2004). Here, we contextualize our observations of 

physiological and inter- and intra-lineage variability in biomarker pigmentation, and in 

turn, demonstrate that integrating HPLC pigment and DNA meta-barcoding observations 

provides novel insights into phytoplankton ecology and physiological status. 

Unexpected inter-lineage variability in biomarker pigmentation was the primary 

source of uncertainty in diatom biomass estimates from HPLC pigment analyses, while 

intra-lineage variability contributed substantial uncertainty to the estimated biomass 

contributions of dinoflagellates, chlorophytes, and prymnesiophytes (Fig. 2; Table 1). 

Our results suggest that in the SBC, putative Fuco-containing dinoflagellates (Supp. 

Table S1) often lead to an over-estimation of diatom biomass contributions and an under-

estimation of dinoflagellate biomass contributions with pigment-based methods (Fig. 2; 

Table 1; Supp. Fig. S6). Some of the putative Fuco-containing genera identified here (e.g., 

Karenia; Supp. Table S1) have not been observed previously in the SBC, although 

observations of adjacent waters have noted the presence and occasionally high 

concentrations of some Gymnodinium species (Cullen et al., 1982).  

Intra-lineage variability in biomarker pigmentation was the dominant source of 

uncertainty in HPLC pigment estimates of chlorophyte and prymnesiophyte biomass 

contributions. Dominance by one of four classes within Chlorophyta (Trebouxiophyceae, 

Chlorodendrophyceae, Chlorophyceae, Chloropicophyceae, comprising ecotype 1 above) 

was associated with consistent underestimation of Chlorophyta biomass contributions 

with pigment methods (Fig. 2; Table 1; Supp. Figs. S7-8). While representatives of 

Chlorophyceae and Chlorodendrophyceae can be associated with low MVChlb 

expression relative to other Chlorophyta lineages (Higgins et al., 2011), recent studies 
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suggest that Chloropicophyceae species tend to exhibit MVChlb:TChla ratios comparable 

to the dominant classes included in ecotypes 2 and 3 defined above (Higgins et al., 2011; 

Lopes dos Santos et al., 2016; Lopes dos Santos et al., 2017). Interestingly, inspection of 

the PCC and PG distributions of each ecotype according to the month sampled (Supp. Fig. 

S13) showed that ecotype 1 tended to exhibit the highest PCC and PG concentrations 

during the summer (July and August), a time of year that is likely associated with a 

reduction in pigment:carbon ratios in many phytoplankton groups due to the relatively 

high surface irradiance, stratified water column, and low surface nutrient concentrations 

in the SBC (Behrenfeld et al., 2005; Henderikx-Freitas et al., 2017; Catlett et al., 2021a). 

Thus, the intra-Chlorophyta variability in MVChlb expression is likely due to a 

combination of biological (genetic) and physiological variability.  

Investigation of the sources of error in prymnesiophyte determinations showed a 

single putative Phaeocystis globosa ASV (sv15) consistently contributed to an under-

estimation of Prymnesiophyceae biomass contributions with HPLC pigment methods 

(Table 1; Supp. Fig. S10). P. globosa is a cosmopolitan, bloom-forming species that 

forms large colonies with cells that tend to be more carbon-rich than other Phaeocystis 

species (Schoemann et al., 2005). P. globosa is also known to express little to no 

Hexfuco when exposed to high irradiance and/or during the colonial phase of its life 

cycle, which supports the dependence of Prymnesiophyceae residuals on PAR (Fig. 2; 

Table 1; Schoemann et al., 2005). Altogether, our analyses in conjunction with the 

literature provide further support for our identification of P. globosa as an important 

bloom-forming prymnesiophyte in the SBC that is consistently unaccounted for by 

pigment-based PCC methods. This analysis also highlights the likely tendency of this 
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species to periodically form large aggregates in the SBC, which is supported by previous 

microscopy observations in the SBC (Goodman et al., 2012).  

In addition to inter- and intra-lineage variability in biomarker pigmentation, MLD, 

an oceanographic correlate of temperature and recent light and nutrient availability (and 

presumably, of phytoplankton physiological status), was a significant predictor of the PG 

residuals of all four of the dominant SBC phytoplankton types (Table 1). The negative 

coefficient values determined for MLD in all PG residual analyses indicate deeper mixed 

layers were associated with increased pigment:POC concentration ratios in this data set. 

Increases in cellular pigment:carbon ratios in response to reduced irradiance and 

increased nutrient availability, both of which are typically associated with a deepening of 

the mixed layer, have been documented throughout the world’s oceans (Behrenfeld et al., 

2005 and references therein). Interestingly, MLD was either an insignificant predictor of 

(diatoms and dinoflagellates), or was only associated with marginal increases (< 0.025) in 

R2 values for (prymnesiophytes and chlorophytes), PCC residual multiple linear 

regression models (Supp. Table S2). Similarly, satellite PAR was a significant predictor 

of prymnesiophyte PCC and PG residuals but was mostly insignificant in predicting most 

of the other PG and PCC residuals considered here (Supp. Table S2), possibly due to the 

heightened sensitivity of P. globosa Hexfuco expression to irradiance (Schoemann et al., 

2005). Altogether, these results suggest that integrating DNA meta-barcoding and HPLC 

pigment data can provide novel insights into the physiological responses of dominant 

phytoplankton types to environmental stimuli.  

Covariation network analysis confirmed the patterns of association amongst 

phytoplankton groups, ASVs, and biomarker pigments identified in multiple linear 
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regression analysis, and offered additional insights into the covariance of specific 

phytoplankton and other protists with different biomarker pigments (Figs. 3-5). The 

putative Fuco- and Perid-containing dinoflagellate ASVs identified above (Supp. Table 

S1) were either directly associated, or shared community membership, with their putative 

biomarker pigments. Additional phytoplanktonic dinoflagellate ASVs were directly 

associated with Perid, including ASVs assigned to genera known to express Perid (e.g., 

Alexandrium, Heterocapsa; Zapata et al., 2012). Interestingly, one putative Perid-

containing ASV (assigned to the Perid-containing genus Paragymnodinium; Kang et al., 

2010) was directly linked to both Fuco and Perid, pointing to the difficulties in 

identifying the biomarker pigments of different phytoplankton species in situ. Network 

analysis also confirmed that both Mamiellophyceae and Pyramimonadales (Chlorophyta 

ecotypes 2 and 3) covary with MVChlb while Chlorophyta classes included in ecotype 1 

covary more strongly with Zea (Fig. 3A). Notably, the single Prymnesiophyceae ASV 

that was directly associated with Fuco (Fig. 3B) was the same P. globosa ASV (sv15) 

that was identified as the primary source of variability in Prymnesiophyceae biomarker 

pigmentation. P. globosa often continues to express Fuco as Hexfuco expression is 

reduced, providing support for this association (Schoemann et al., 2005).  

Finally, one particularly interesting example of a novel perspective of the 

microbial dynamics contributing to biomarker pigment variations was found upon closer 

inspection of the protistan ASVs that shared positive edges with the crypophyte 

biomarker pigment, Allo, in network analyses (Fig. 4B). Allo was associated with two 

ASVs classified as the ciliate, Mesodinium sp., and three cryptophyte ASVs classified as 

Teleaulax. Figure 6 shows this network motif alongside the spatiotemporal dynamics of 
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Allo and associated Mesodinium and Teleaulax ASVs. Mesodinium includes species with 

diverse nutritional strategies (Garcia-Cuetos et al., 2012). Representatives of the M. 

rubrum species complex can acquire the capacity for photoautotrophy via ingestion of 

Teleaulax and subsequently preserve and maintain transcriptionally active Teleaulax 

chloroplasts and nuclei (Qiu et al., 2016). The covariation amongst Mesodinium and 

Teleaulax ASVs and Allo suggests that these two Mesodinium ASVs are derived from M. 

rubrum, and that this organism regularly relies on Teleaulax prey and acquired 

photoautotrophy to meet its nutritional requirements in the SBC. Further, the 

spatiotemporal dynamics of all of the above demonstrates that the putative M. rubrum 

ASVs are associated with the highest concentrations of Allo observed in this data set. 

Periods with relatively high concentrations of particular Teleaulax ASVs in conjunction 

with low concentrations of Mesodinium, and vice-versa, may indicate periods where 

Teleaulax escaped predation, or where Mesodinium was reliant on other nutritional 

strategies (Fig. 6). While detailed analyses of these population dynamics are beyond the 

scope of this work, this example in conjunction with the analysis of physiological and 

inter- and intra-lineage variability in biomarker pigment expression above provides 

strong evidence that integrating HPLC pigment and DNA meta-barcoding data provides 

novel insights into the physiological status and ecology of phytoplankton and other 

protists. 

 

Implications for satellite remote sensing: toward assessing ecosystem structure and 

function from ocean color? 
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Perhaps the greatest strength in HPLC pigment assessments of PCC is that 

pigments are bio-optically active and have unique spectral absorption properties (Bricaud 

et al., 2004; Catlett and Siegel, 2018). These relationships provide the motivation for 

recent attempts to retrieve phytoplankton biomarker pigment concentrations and/or 

derived PCC indices from remotely sensible bio-optical properties (Uitz et al., 2015; 

Chase et al., 2017). The imminent launch of the NASA Plankton, Aerosols, Clouds, and 

ocean Ecosystems (PACE) mission (Werdell et al., 2019) is expected to improve 

retrievals of biomarker pigment concentrations from satellite ocean color observations by 

improving resolution of small-scale phytoplankton absorption features (Uitz et al., 2015; 

Catlett and Siegel, 2018), thus offering a path to observe PCC on unprecedented 

spatiotemporal scales.  

Recent work has identified “communities” of phytoplankton pigments that covary 

with one another on both regional (Latasa and Bidigare, 1998; Catlett and Siegel, 2018; 

Kramer et al., 2020) and global (Kramer and Siegel, 2018) scales. The covariation 

network analysis applied here confirms previously documented patterns of covariation 

amongst phytoplankton biomarker pigment concentrations in the SBC, and demonstrates 

that diverse communities of both phytoplankton and other protistan classes and ASVs are 

associated with these phytoplankton pigment communities (Figs. 3-6; Supp. Figs. S11-

12). It follows that unique suites of food web interactions amongst phytoplankton and 

other protists covary with distinct (suites of) biomarker pigments. As a preliminary test of 

this hypothesis, we inspected the interactions between phytoplankton and other protistan 

ASVs found within each of the four communities identified by the community detection 

algorithm (Clauset et al., 2004) when applied to the protistan ASV POC and biomarker 
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pigment concentration covariation network constructed above (see Fig. 5 for mean 

composition of these communities).  

Figure 7 shows the fraction of positive interactions (edges) between 

phytoplankton and other protistan ASVs (interpreted here as putative food web 

interactions) found in each of the four communities. Each community displayed unique 

collections of putative food web interactions. For example, in the community that 

included Fuco, diatoms accounted for ~60% of putative food web interactions, while 

chlorophytes, prymnesiophytes, and other phytoplankton cumulatively comprised < 10% 

of food web interactions. Surprisingly, approximately half of the interactions between 

diatoms and non-phytoplankton in the community containing Fuco were with putative 

nanoflagellate grazers, parasites, and parasitoids (Syndiniales, Gregarinomorphea, 

Cercozoa, Stramenopiles), suggesting more detailed analyses may help refine and 

improve size-structured food web models, which in turn will allow for more robust 

predictions of marine ecosystem function (e.g., Ward et al., 2012; Siegel et al., 2014). 

Conversely, in the community containing the other six biomarker pigments, 

phytoplanktonic dinoflagellates and ciliates accounted for a larger proportion of putative 

food web interactions. While a complete analysis of these interactions is beyond the 

scope of the present analysis, these broad differences suggest that phytoplankton pigment 

communities are representative of distinct food web dynamics.  

Despite the potential to remotely sense marine ecosystem structure and function 

from satellite ocean color demonstrated by our analyses, several major limitations and 

questions remain. First, identifying (partial) correlation is not equivalent to directly 

verifying and identifying the type, frequency, and efficiency of interactions amongst 
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organisms (Fuhrman et al., 2015). Further, network analysis and other methods for 

assessing interaction and covariation amongst microbial communities are developing 

rapidly (Gloor et al., 2017; Yoon et al., 2019), and the optimal methods for characterizing 

microbial covariability in pelagic ecosystems remain largely unknown. Covariation-based 

analyses are inherently empirical, and patterns of covariation and microbial association 

may vary across the relevant spatiotemporal scales for understanding and predicting 

marine ecosystem function (Fuhrman et al., 2015). Our analysis clearly illustrates the 

empirical nature of these approaches, as community membership determined by the 

community detection algorithm employed here depends on network topology (Clauset et 

al., 2004; note the variability in biomarker pigment community membership in Figs. 3A 

and 4A), which in turn depends on the features (ASVs, classes, and/or biomarker 

pigments) included in network analysis. Further, the predictability of interactions that 

covary indirectly with biomarker pigments, which comprise the majority of putative food 

web interactions observed here, remains largely unknown. Employing these approaches 

to inform large scale data-driven food web models will thus require more detailed study 

of the spatiotemporal variability in and predictive relationships amongst biomass 

contributions and the frequencies and efficiencies of interactions amongst microbial 

species and groups, in addition to broadly characterizing the identities and mean 

composition of interacting microbes as done here (Figs. 5, 7).  

Nonetheless, characterizing the microbial communities and interactions that 

covary with biomarker pigment concentrations has several benefits relative to other 

approaches to assess PCC from satellite ocean color. First, this approach requires 

minimal a priori assumptions and circumvents the two major obstacles in quantifying 
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PCC from HPLC pigment observations: inter- and intra-lineage variability in biomarker 

pigment expression and phytoplankton physiology. Second, covariation-based 

approaches can be applied to estimate PCC at any temporal and/or spatial scale, as well 

as across any “scale” of microbial diversity. The latter point is clearly demonstrated in 

our analyses, which show that diverse protistan assemblages at both the class and ASV 

levels covary with distinct suites of phytoplankton biomarker pigments (Figs. 3-7). Given 

the potential importance of microdiversity in determining the roles of microbes in marine 

ecosystems (e.g., Needham et al., 2017; Treguer et al., 2018), the potential to gain insight 

into microbial interactions across scales of plankton diversity may be particularly 

important in improving our ability to predict large-scale ecosystem dynamics. The 

potential to consistently characterize PCC across various spatiotemporal scales contrasts 

with other approaches for estimating PCC from HPLC pigments that require assumptions 

of fixed biomarker pigment ratios to TChla and/or negligible covariation amongst 

phytoplankton groups across all scales of space and time, and that derive biomass 

contributions of phytoplankton “pigment types” whose phylogenetic, ecological and 

geochemical relevance remains unclear (Higgins et al., 2011). Although the optimal 

observational scales of time, space, and plankton diversity for relating PCC to ecosystem 

structure and function remain to be determined, community-oriented analyses offer a path 

to address these questions. Overall, our analysis shows that characterizing the microbial 

communities and interactions that covary with biomarker pigment concentrations 

provides a potential path to monitor marine ecosystem structure and function from ocean 

color remote sensing.  
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Figure 1. Distributions of (A) phytoplankton biomarker pigment concentrations, (B) 
phytoplankton class POC concentrations, (C) biomarker pigment ratios to total 
chlorophyll a, and (D) phytoplankton class relative sequence abundances observed by (A, 
C) HPLC pigment and (B, D) DNA meta-barcoding analysis. (B, D) only consider 
phytoplankton classes that comprise > 1% relative sequence abundance in at least one 
sample. Phytoplankton classes and biomarker pigments are sorted according to the rank 
order of their median relative sequence abundances and ratios to total chlorophyll a, 
respectively.  
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Figure 2. Comparisons of HPLC pigment and DNA meta-barcoding (A, C, E, G) 
biomass and (B, D, F, H) biomass proportion determinations for (A, B) diatoms, (C, D) 
dinoflagellates, (E, F) chlorophytes, and (G, H) prymnesiophytes. Values of squared 
Pearson correlation coefficients for each relationship are included in each panel. Lines of 
best fit are shown in black and were determined by type II linear regression analysis. In 
(G, H), red points show two outlier observations (see main text); these points were 
omitted for a second correlation analysis indicated with red text.  
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Figure 3. Associations amongst phytoplankton biomarker pigment concentrations and 
phytoplanktonic classes and ASVs determined from the covariation network including 
both phytoplankton and other protists. (A) shows the phytoplankton class POC and 
biomarker pigment concentration subnetwork. Nodes correspond to individual 
phytoplankton classes or biomarker pigment concentrations and are colored according to 
their community membership determined by an agglomerative community detection 
algorithm (Clauset et al., 2004). Edge thickness indicates the relative strength of 
association between nodes. All edges show positive associations. (B) shows positive 
associations between the seven diagnostic pigment concentrations and phytoplankton 
ASV POC concentrations. 
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Figure 4. Associations amongst phytoplankton biomarker pigment concentrations and 
non-phytoplanktonic classes and ASVs determined from the covariation network 
including both phytoplankton and other protists. As in Figure 3, (A) shows the class POC 
and biomarker pigment concentration covariation subnetwork. Nodes correspond to 
individual classes or biomarker pigment concentrations and are colored according to their 
community membership determined by an agglomerative community detection algorithm 
(Clauset et al., 2004). Edge thickness indicates the relative strength of association 
between nodes. All edges represent positive associations. (B) shows positive associations 
between the seven diagnostic pigment concentrations and non-phytoplanktonic ASV 
POC concentrations. 
 

 
Figure 5. Mean relative sequence abundances of (A-D) phytoplankton and (E-H) other 
protistan ASVs found within the four communities identified by the community detection 
algorithm (Clauset et al., 2004). Communities 1 and 2 do not include any of the seven 
diagnostic pigments considered in network analysis. “Other Phytoplankton” includes 
ASVs representative of Euglenozoa, Chrysophyceae, Dictyophyceae, Cryptophyceae, 
Raphidophyceae, Chlorarachniophyceae, Pelagophyceae, and MOCH, while “Other 
Protists” includes Lobosa, Discoba, Katablepharidophyta, Picozoa, Mesomycetozoa, 
Telonemia, Chrysophyceae, unknown Alveolata, and Choanoflagellatea.  
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Figure 6. Example of a novel perspective of phytoplankton and protistan ecology 
provided by integrating HPLC pigment and DNA meta-barcoding analyses. (A) shows a 
network motif including the cryptophyte biomarker pigment Allo and several associated 
protistan ASVs, including putative Mesodinium ciliates and their putative cryptophyte 
prey/symbiont, Teleaulax, from which they can acquire the capacity for photoautotrophy. 
(B) shows the spatiotemporal dynamics of Allo in addition to each of the ASVs included 
in the network motif in (A).  
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Figure 7. Composition of interactions amongst each of the four communities identified 
by the community detection algorithm (Clauset et al., 2004) applied to the protistan ASV 
and biomarker pigment concentration network. “Other Phytoplankton” includes ASVs 
representative of Euglenozoa, Chrysophyceae, Dictyophyceae, Cryptophyceae, 
Raphidophyceae, Chlorarachniophyceae, Pelagophyceae, and MOCH, while “Other 
Protists” includes Lobosa, Discoba, Katablepharidophyta, Picozoa, Mesomycetozoa, 
Telonemia, Chrysophyceae, unknown Alveolata, and Choanoflagellatea. 
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V. Appendices 

 
Appendix 1. Supplemental Information for Chapter II 

Introduction  

The Supplemental Information contains additional text to clarify the procedures used to 
select a smoothing filter for use in the derivative analysis of phytoplankton absorption 
coefficients (Text S1), in the CHEMTAX analysis of phytoplankton pigment 
concentrations (Text S2), in the derivation of the coefficients used in the modeling 
exercise (Text S3), and in the derivation of the indices of community composition based 
on CHEMTAX and diagnostic pigment (DP) analyses that we attempted to model (Text 
S4). We include results of the smoothing filter optimization procedure employed for the 
derivative analysis of the phytoplankton absorption coefficient (Table S1, Figure S1), 
results of preliminary cluster analyses (Figure S2), and the amplitude functions (AFs) of 
the first four pigment empirical orthogonal function (EOF) modes and their correlations 
with several environmental parameters to aid in their ecological interpretation (Table S2, 
Figure S3; see Figure 2 in main text for loadings) of the phytoplankton pigment data set 
to support our interpretations of these results in the main text. Finally, we include the 
results (Figure S4) and final optimized pigment ratio matrices (Tables S3-11) from the 
CHEMTAX calculations to demonstrate that our results have been quality controlled 
according to the guidelines presented in Higgins et al. (2011), the multiple linear 
regression (MLR) coefficients used in the DP analyses based on the approach of Uitz et 
al. (2006) (Table S12), the results of an evaluation of the sensitivity of the modeling 
approach to assumptions used in its formulation (Table S13; see Text S3 for more 
information), all goodness of fit statistics for 500-permutation cross-validations of all 
pigments and indices of community composition we attempted to model with the 
phytoplankton absorption coefficient derivative spectra (Table S14), and all goodness of 
fit statistics for 500-permutation model cross-validations of selected pigment indices 
when the modeling approach is applied to the total non-water absorption coefficient 
(Table S15).  

Text S1. Derivative analysis smoothing filter optimization 
We investigated four different smoothing filter types including the moving average, 
Savitsky-Golay, Lowess, and Hamming window filters. The moving average and 
Savitsky-Golay filters have been described in detail previously (Tsai and Philpot, 1998; 
Vaiphasa, 2006). The Lowess filter uses weighted linear least squares to fit a first order 
polynomial to consecutive subsets of the data as identified by the length of the filter 
(Cleveland, 1981). The Hamming window filter, which is used as a form of Fourier 
filtering, was applied by convolving each spectrum with the Hamming window function 
represented by: 

(1)  !(#) = 	0.54 − 0.46 ∗ cos	(1∗2∗34 )  
where N is the length of the filter and n corresponds to the nth point of the filter (i.e. 0 ≤ n 
≤ N - 1; Harris, 1978).  
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Past work shows that there is variability in the positions of specific pigment absorption 
maxima between studies, even when similar analytical methods are employed (Bidigare 
et al., 1989; Bricaud et al., 2004; Chase et al., 2013; Lohrenz et al., 2003). Additionally, 
some pigments have absorption maxima very close to one another meaning that 
instrument noise and the application of smoothing filters makes it very difficult to resolve 
these peaks independently from one another using a derivative analysis. Therefore, for 
each absorption signature considered, a spectral filter width optimization procedure was 
constructed. First, the minimum in the second derivative spectra over a pre-determined 
wavelength range containing only the absorption peak or peaks of interest was identified. 
Then, the pigment or sum of all pigments with a maximum in absorption within this 
wavelength range was regressed against the value of the second derivative at this 
position. This procedure was repeated for six pairs of pigments and absorption maxima 
(Table S1) to identify candidate smoothing filter types and sizes with a focus on selecting 
the smallest filter size that yielded strong linear relationships with pigments (e.g., Figure 
S1). We then applied each candidate filter to independent derivative analyses, examined 
the strength of linear relationships of all pigments with the derivative spectra at each 
wavelength (see Figure 3 in main text), and qualitatively evaluated the resulting 
derivative spectra. 

Text S2. CHEMTAX analysis details 
The CHEMTAX program is a widely-used method for assessing the contributions of 
phytoplankton taxa to TChla (Higgins et al., 2011; Mackey et al., 1996). CHEMTAX 
decomposes a suite of pigment concentrations into a matrix of the relative contributions 
of a pre-selected set of phytoplankton taxa to TChla by optimizing an initial guess of the 
taxon-specific pigment ratios (Mackey et al., 1996). Because pigment ratios can vary 
dramatically, it is necessary to partition large data sets into subsets assumed to have 
similar pigment ratios to reduce uncertainties introduced by the CHEMTAX calculation 
(Higgins et al., 2011 and references therein; Swan et al., 2016).  
 
We performed separate CHEMTAX analyses on the 10% most extreme positive and 
negative AFs of each of the first four pigment EOF modes, and an analysis on all 
remaining data not found in the 10% negative or positive bounds of any mode, to help 
reduce uncertainty due to changing pigment ratios throughout the time series (similar to 
Anderson et al., 2008). If separate fractional contributions were computed for the same 
data point (i.e. a data point was found in more than one data subset), the outputs were 
averaged. All calculations used the pigment ratio optimization procedure outlined in 
Swan et al. (2016). The pigment groups, or taxa, used in all initial CHEMTAX 
calculations were DIATOM-1, HAPTO-6, HAPTO-8, DINO-1, CRYPTO-1, PELAGO-1, 
CHLORO-1, and PRASINO-1 (Higgins et al., 2011). All pigments used in the EOF 
analysis except for DVChla and Pras were initially included in all analyses. We included 
Pras and PRASINO-3, and CYANO-4, when Pras and DVChla, respectively, appeared to 
play a significant role in the data subset of interest. Initial pigment ratio matrices were 
constructed using mean literature values from field data according to Higgins et al. 
(2011). If field data were unavailable or sparse, laboratory data was used. Pigments with 
mean RMSE’s larger than 50% and phytoplankton classes with final pigment ratios 
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outside of realistic bounds in the initial analyses were discarded and the calculation was 
repeated until all pigments included had mean RMSE’s less than 50% and the final ratios 
prescribed to each phytoplankton class were within the bounds presented in Higgins et al. 
(2011). Tables detailing the pigments, phytoplankton classes, and final optimized 
pigment ratios used in the CHEMTAX calculations for each data subset are presented in 
Tables S3-S11, and the results of these analyses are presented in Figure S4. 
 
The CHEMTAX results (Figure S4) were in rough agreement with the results of the EOF 
analysis. For each EOF mode-specific subset of pigment data, the taxon with the largest 
average contribution to TChla derived from CHEMTAX agreed with the taxonomic 
interpretation of the EOF mode. However, within each data subset there was often a large 
range of fractional contributions to TChla meaning a taxon thought to be insignificant for 
a given EOF mode dominated at a few extreme occurrences of that mode. Direct 
comparisons of these results are complicated since the EOF modes frequently capture the 
covariance of two or more taxa (e.g., mode 2 at positive AFs corresponds to mixed 
nanoplankton, picoplankton, and haptophytes), while CHEMTAX assumes that 
abundances of specific taxonomic groups are uncorrelated (Higgins et al., 2011). 
Phytoplankton pigments are clearly not independent from each other based upon the 
results of the EOF and cluster analyses above, which undermines the validity of 
CHEMTAX analysis when applied to this data set. 

Text S3. Details on the formulation and validation of the linear model 
Principal components regression (PC-R) is sensitive to the number of components used as 
inputs to the multiple linear regression. Bracher et al. (2015), who used a PC-R-based 
approach with remote sensing reflectance observations, started with a model using a large 
number of principal components and used a stepwise regression procedure based on 
minimizing the Aikake Information Criterion (AIC) to reduce the number of components 
used in their model. We found that automated stepwise regression procedures using the 
AIC or other criteria to select components for use in the multiple linear regression did not 
perform well, possibly because these approaches often resulted in removal of components 
that explained a relatively large proportion of the variability in aph’(λ) and aph’’(λ). 
Therefore we assumed that principal components explaining a larger proportion of the 
variability than the component that explained the minimum variability, but was included 
in the model, were essential, and that the first 100 principal components of aph’(λ) and 
aph’’(λ) contained all of the information relevant to modeling all pigments.  
 
To test the sensitivity of the model’s performance to the assumption that the first 100 
principal components of aph’(λ) and aph’’(λ) contained all of the information relevant to 
modeling all pigments, we cross-validated the model while allowing a maximum of 25, 
50, 100, 150, and 200 principal components to be used in it’s formulation. This 
sensitivity test was conducted using two unique biomarker pigments: one which was 
retrieved extremely well (Fuco; R2 > 0.8 for all cross-validations), and one which was 
retrieved with intermediate levels of success (HexFuco; 0.75 > R2 > 0.64 across all cross-
validations). The results from these sensitivity tests are shown in Table S13. Marginal 
improvements in R2 were observed as the maximum number of components allowed in 
the model increased. However, percent error statistics showed variable responses to these 
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changes, and the model coefficients became obscured by noise so that very few, if any, 
bands were significant (e.g., Figure 6) when the maximum number of components 
allowed in the model was too large, likely because higher order principal components are 
generally dominated by noise. We found that allowing a maximum of 100 principal 
components in the model offered the best balance in limiting the noise in the model 
coefficients while accurately and precisely retrieving each pm. 
 
Under these assumptions, we used a 5-fold cross-validation procedure to derive each set 
of Am(λ) and Bm(λ). The cross-validation procedure consisted of: 1. Randomly dividing 
the training data set into five subsets; 2. Training a model using the first principal 
component of four of the training data subsets; 3. Validating the model from step 2 using 
the fifth subset; 4. Sequentially adding principal components and repeating steps 2 and 3 
for models containing 1 to 100 principal components; 5. Selecting the best model of those 
evaluated in step 4 as determined by maximizing R2; and 6. Repeating steps 2-5 five 
times so that each data subset was used as the validation subset once. This procedure 
resulted in five subsets of Am(λ), Bm(λ), and Cm, which were averaged to derive the final 
coefficients of the model. To assess the performance of our modeling approach, we used 
a validation procedure similar to that of Bracher et al., (2015) where the data were 
randomly divided into a training (75%) and a validation (25%) set 500 times and a new 
model was produced and validated each time.  
 
It should be noted that all goodness of fit statistics for validating modeled fractional 
contributions to TChla were computed after constraining modeled observations to lie 
between 0 and 1, while modeled pigment concentrations were only constrained to be 
larger than 0 and modeled pigment mode amplitude functions were not constrained. Prior 
to computing percent error statistics for validation of the model, we added 0.0001 to all 
observed pigment concentrations of 0 to prevent undefined solutions. 

Text S4. Derivation of modeled indices of community composition via CHEMTAX 
and Diagnostic Pigment (DP) analyses 
To facilitate comparisons with pigment EOF modes, relative contributions to TChla 
derived from CHEMTAX were summed to broader taxonomic groupings as follows: 
diatoms = DIATOM-1; haptophytes = HAPTO-6 + HAPTO-8; dinoflagellates = DINO-1; 
nanoplankton = CRYPTO-1 + PELAGO-1 + CHLORO-1 + PRASINO-1; picoplankton = 
PRASINO-3 + CYANO-4. We also conducted several DP analyses following the 
approaches of Vidussi et al. (2001) and Uitz et al. (2006), and attempted to model the 
fractional contributions of each taxon and size class to TChla as derived from these 
analyses. The Vidussi et al. (2001) approach uses unweighted ratios of seven DP’s to 
derive the “biomass proportion” of each taxon assumed to be represented by each of the 
seven DP’s. The biomass proportion of three size classes, defined as sums of the biomass 
proportions of individual DP’s, can also be derived with this method. The approach of 
Uitz et al. (2006) weighted each of the seven DP’s defined by Vidussi et al. (2001) based 
on their regression coefficients in a multiple linear regression (MLR) of the DP’s against 
TChla. Uitz et al. (2006) used this approach on a global data set; we therefore evaluated 
our model’s ability to retrieve the DP contributions to TChla derived via the global MLR 
coefficients presented by Uitz et al. (2006), as well as a “locally tuned” set of 
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coefficients. To derive the locally tuned set of coefficients, we carried out an MLR of the 
seven DP’s against TChla and found that the coefficient of Zea was less than 10-4 for this 
dataset. We therefore excluded Zea in a second MLR analysis, and used the fractional 
contributions derived using the second MLR analysis to derive “locally-tuned” fractional 
contributions to TChla. The coefficients used in both MLR analyses are listed in Table 
S12.  
 

 
Figure S1. Example of derivative analysis smoothing filter optimization procedure. 
Statistics for the Hamming window filter are shown, with solid lines showing R2 and 
dashed lines showing RMSE. The numbers in the legend correspond to the wavelength of 
maximum absorption on average of the pigment or pigment group specified in Table S1. 
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Figure S2. Results of the two preliminary analyses using the correlation distance and 
Ward’s linkage method. (a) includes TChlc, MVChlb, and MVChla, (b) includes 
MVChlb and MVChla, and the final analysis (Figure 1 in main text) excludes all three of 
these pigments. Note the change in position of Chlc3 when TChlc is removed from the 
analysis.  
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Figure S3. Amplitude functions corresponding to the first four phytoplankton pigment 
EOF modes (see Figure 2 in main text for EOF loadings).  
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Figure S4. Fractional contributions of each major taxonomic group to TChla derived 
from CHEMTAX for each data subset partitioned by pigment EOF mode (see Text S2 for 
details on data partitioning). Bars show average contributions and error bars indicate the 
minimum and maximum contributions in each data subset. Contributions of zero result 
from no representatives of that taxon being included in the CHEMTAX calculation due to 
their removal according to the quality control procedure (described in Text S2). 
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Table S1. Pigments and corresponding absorption signatures used in the smoothing filter 
optimization procedure. All wavelengths are in nm. 
aReferences: Bidigare et al. (1990), Lohrenz et al. (2003), Bricaud et al. (2004), Chase et 
al. (2013).  
bSome literature suggests the photosynthetic carotenoids (Fuco, Perid, HexFuco, 
ButFuco) should all contribute to absorption features near 490 and 530 nm. However, we 
found that including only the listed pigments in the regression produced stronger linear 
relationships. 

Table S2. Taxonomic interpretations of the first four pigment EOF modes and the 
correlation coefficients of each mode with environmental parameters. Insignificant 
correlations at 95% confidence are noted as N.S. and the number of observations used in 
each calculation is noted next to each environmental parameter.     

Table S3. Final optimized pigment ratios for the CHEMTAX calculation on the data 
subset corresponding to the 10% largest positive amplitude functions of pigment EOF 
mode 1.    

Table S4. Final optimized pigment ratios for the CHEMTAX calculation on the data 
subset corresponding to the 10% largest negative amplitude functions of pigment EOF 
mode 1. 

Table S5. Final optimized pigment ratios for the CHEMTAX calculation on the data 
subset corresponding to the 10% largest positive amplitude functions of pigment EOF 
mode 2.    

Table S6. Final optimized pigment ratios for the CHEMTAX calculation on the data 
subset corresponding to the 10% largest negative amplitude functions of pigment EOF 
mode 2. 

Target 
Peak 

Wavelength 
Range in 

Literaturea 

Allowed 
Wavelength 

Range 

Contributing Pigments 

440 435-440 430-448 TChla 
465 460-470 455-475 TChlb + TChlc + Zea + Diadino + Diato 

+ Allo + ABCar 
490 490-492 480-500 Zea + Diadino + Diato + Allo + ABCarb 
530 521-539 515-545 Fuco + Peridb 
585 585-586 580-600 TChlc 
675 675 670-680 TChla 
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Table S7. Final optimized pigment ratios for the CHEMTAX calculation on the data 
subset corresponding to the 10% largest positive amplitude functions of pigment EOF 
mode 3.    

Table S8. Final optimized pigment ratios for the CHEMTAX calculation on the data 
subset corresponding to the 10% largest negative amplitude functions of pigment EOF 
mode 3. 

Table S9. Final optimized pigment ratios for the CHEMTAX calculation on the data 
subset corresponding to the 10% largest positive amplitude functions of pigment EOF 
mode 4.    

Table S10. Final optimized pigment ratios for the CHEMTAX calculation on the data 
subset corresponding to the 10% largest negative amplitude functions of pigment EOF 
mode 4. 

Table S11. Final optimized pigment ratios for the CHEMTAX calculation on the 
remaining data that was not found in the 10% largest positive or negative amplitude 
functions of the first four pigment EOF modes. 

 
Biomarker Pigment Global Local, with 

Zea 
Local, 

without Zea 
Fuco 1.41 1.688 1.688 
Perid 1.41 1.740 1.741 
Allo 0.60 2.663 2.659 

ButFuco 0.35 2.885 3.058 
HexFuco 1.27 0.722 0.694 

TChlb 1.01 3.185 3.172 
Zea 0.86 4.49E-05 NA 
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Table S12. Coefficients from the multiple linear regression of the seven diagnostic 
pigments on TChla following Uitz et al. (2006). Global coefficients are taken directly 
from Uitz et al. (2006). “Local, without Zea” was used to derive the indices of 
community composition we attempted to model as the “locally tuned” indices of 
community composition. 

Table S13. Results demonstrating the sensitivity of the model to the assumption that the 
first 100 principal components of the first and second derivative spectra contain all 
information relevant for modeling all phytoplankton pigment concentrations and indices 
of community composition.  

Table S14. All goodness of fit statistics for the 500-fold cross-validations of all pigments 
and pigment-derived indices of community composition that we attempted to model 
using the phytoplankton absorption coefficient.  

Table S15. All goodness of fit statistics for the 500-fold cross-validations of the pigments 
and pigment EOF modes that we attempted to model using the total non-water absorption 
coefficient. 
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Appendix 2. Supplemental Information for Chapter III 

 
Figure S1. Merged biomarker pigment data set coverage. White tiles indicate no 
available observations in a particular month of the Plumes and Blooms time series for a 
particular data product (High Performance Liquid Chromatography pigment 
concentrations, HPLC; spectrophotometric phytoplankton absorption coefficient 
determinations, aph(λ); the sum of independent HPLC and aph(λ) observations, Merged). 
 

 
Figure S2. Time series of (A, B) DVChla and (C, D) Pras, (A, C) with and (B, D) 
without detection limit corrections to account for the change in detector settings 
implemented in 2014 that impacted all subsequent samples analyzed. Note that the 
laboratory where samples were analyzed changed for all samples collected from 2011 to 
the end of the record, but this change is not accounted for in these data.   
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Figure S3. The fraction of total Plumes and Blooms stations with HPLC pigment 
samples available where (A, B) DVChla and (C, D) Pras were not detected (A, C) with 
and (B, D) without detection limit corrections to account for the change in detector 
settings implemented in 2014 that impacted all subsequent samples analyzed. 2005 and 
2010 were omitted due to a small number of samples available in those years. 
 

 
Figure S4. Hierarchical cluster analysis using correlation distance and Ward’s linkage 
method of HPLC pigment data (A) with and (B) without detection limit corrections 
implemented on DVChla and Pras. As noted in the main text, the variable positioning of 
Pras led to its exclusion from consideration of the cluster analysis presented in the main 
text (Figure 2). 
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Figure S5. Mean (bold line color-coded to match the convention used in the main text) 
+/- empirical 95% confidence intervals (thin black lines) of optimized model coefficients 
for (A, C, E, G, I, K) first and (B, D, F, H, J, L) second spectral derivatives of 
phytoplankton absorption coefficients as determined in the 500-fold cross-validation 
exercise. Bands significantly different from zero with width >1 nm are shaded. The mean 
coefficients shown here were used to model each pigment according to equation 1 in the 
main text.  
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Figure S6. Model validations using all available HPLC observations from 2005-2018, 
including the model training data.  
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Figure S7. Spatiotemporal variations in residual error (%) in bio-optically modeled 
pigment concentrations with corresponding HPLC observations. The top of each panel 
corresponds to PnB station 1 on the mainland shelf. Positive values were never larger 
than 100%, and were 100% when the bio-optical models incorrectly predicted that a 
pigment concentration was below detection. We found 7, 19, and 4 occurrences where 
modeled TChlb, Perid, and Zea concentrations, respectively, had residual errors < -
1000%. These large errors occur where HPLC pigment concentrations are low or below 
detection. The maximum absolute error where residual errors were < -1000% was 0.141, 
0.271, and 0.092 µg L-1 for TChlb, Perid, and Zea concentrations, respectively, 
suggesting these large errors have minimal impact on the primary conclusions of this 
study. Ordinary kriging with an exponential-Bessel fitting model (GLOBEC Kriging 
Software Package v3.0) was used to smooth the data for this figure. Interpolation length 
scales are 30 days and 5 km in the cross-shelf direction. Black dots show where both 
HPLC and modeled pigment concentrations are available. White stars show residual 
errors < -1000%; these values are not considered in the kriging procedure. 
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Figure S8. Domain of the Regional Ocean Modeling System used in the particle tracking 
models to determine SBC source waters. The boxed region roughly demarcates the Santa 
Barbara Channel. 
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Figure S9. Mean annual cycle of the proportion of particles released from (A) all 34 
release points on the PnB transect that originated from each of the four “origin boxes” 
shown in Figure 1 for 5-day advection times as determined by the Regional Ocean 
Modeling System particle tracking model. Panels B, C, and D show the difference in 
mean annual cycles from the four or five closest release points to PnB stations (B) 4, (C) 
1, and (D) 7, from the transect mean annual cycle shown in (A). For results from 5- and 
10-day advection times, see Figure 14 in the main text and Supporting Figure S8 below.  

 
Figure S10. Same as Supporting Figure S7 for 15-day advection times. 
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Figure S11. Mean +/- 95% confidence intervals (black) and median (red) annual cycles 
of the five marker pigment concentrations at Plumes and Blooms stations 1 (on the 
mainland continental shelf), 4 (in the central SBC), and 7 (on the Channel Islands 
continental shelf).  
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Figure S12. Mean +/- 95% confidence intervals (black) and median (red) annual cycles 
of (A) total dinoflagellates and (B) Pseudonitzschia sp. at Stearn’s Wharf located on the 
mainland continental shelf in Santa Barbara, CA, as reported by the Southern California 
Coastal Ocean Observing System Harmful Algal Bloom monitoring project. The 
dinoflagellate species with available count data are Akashiwo sanguinea, Alexandrium sp., 
Dinophysis sp., Lingulodinium polyedra, Prorocentrum sp., Ceratium sp., and 
Cochlodinium sp. Pseudonitzschia sp. is the only reported diatom species. One cell mL-1 
was added to counts of total dinoflagellates and total diatoms prior to log-transformation 
to prevent undefined values. Climatologies were computed from monthly mean time 
series determined from the weekly log-transformed values.   
 
 
 
 

 
Figure S13. Spatial differences in mean annual cycles of nitrate concentrations across 
PnB stations (A) 1 and 4, (B) 1 and 7, and (C) 4 and 7. The shaded region around each 
line corresponds to 95% confidence intervals in the difference of each months mean 
nitrate concentration. 
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Table S1. Mean (standard deviation) goodness of fit statistics from the 500-fold model 
cross-validation procedure.  
Pigment R2 RMSE Median % error Mean % error 
TChla 0.87 (0.07) 1.03 (0.38) 17.2 (2.18) 26.3 (2.93)  
TChlb 0.86 (0.04) 0.04 (0.004) 21.7 (2.51) 951 (968) 
Hex 0.72 (0.06) 0.07 (0.01) 29.8 (3.69) 51.6 (6.26)  
Fuco 0.87 (0.07) 0.54 (0.19) 35.0 (4.93) 62.7 (9.27)  
Perid 0.88 (0.05) 0.13 (0.02) 98.8 (3.68) 2.05 x 103 

(1.56 x 103) 
Zea 0.54 (0.09) 0.03 (0.004) 38.3 (3.72) 461 (488) 

 
 
Table S2. Long-term trend statistics for each pigment concentration monthly anomaly 
time series normalized to monthly means (see Figure 9 in the main text). Slopes were 
calculated according to the non-parametric Theil-Sen estimator, or as the median of all 
slopes calculated between all pairs of sequential observations. A Mann-Kendall test 
adjusted for autocorrelated time series following Hamed and Rao (1998) was used to 
calculate p-values. Statistically significant (p < 0.05) trends are in bold. 

Pigment Station Slope (% yr-1) p-value N 

Fluorometric 
chlorophyll a 

concentrations 

1 -1.14 0.19 203 
2 -0.57 0.58 209 
3 -0.28 0.75 205 
4 0.54 0.51 208 
5 0.33 0.71 197 
6 0.50 0.61 190 
7 1.36 0.21 170 

Mean 0.36 0.71 212 

TChla  1 -0.80 0.34 180 
2 -0.25 0.82 188 
3 -0.32 0.67 187 
4 0.81 0.29 191 
5 0.66 0.42 181 
6 0.88 0.35 172 
7 1.47 0.08 151 

Mean 1.33 0.18 206 

Fuco  1 -1.70 0.08 180 
2 -1.12 0.11 188 
3 -0.83 0.22 187 
4 0.33 0.57 191 
5 0.04 0.95 181 
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6 0.24 0.78 172 
7 1.00 0.25 151 

Mean 0.67 0.39 206 

Perid 1 0.05 0.94 180 
2 0.11 0.84 188 
3 0.04 0.90 187 
4 0.46 0.58 191 
5 0.67 0.35 181 
6 0.45 0.56 172 
7 0.62 0.55 151 

Mean 0.93 0.51 206 

Hex  1 -1.22 0.18 180 
2 -1.75 0.03 188 
3 -2.08 0.01 187 
4 -0.78 0.35 191 
5 -0.88 0.19 181 
6 -1.53 0.03 172 
7 -0.83 0.36 151 

Mean -0.76 0.35 206 

TChlb 1 -0.15 0.83 180 
2 -1.16 0.29 188 
3 -1.40 0.18 187 
4 -0.15 0.87 191 
5 -0.59 0.58 181 
6 -0.57 0.53 172 
7 0.46 0.66 151 

Mean -0.16 0.86 206 

Zea  1 0.09 0.88 180 
2 -0.34 0.52 188 
3 -0.16 0.80 187 
4 -0.60 0.39 191 
5 -0.38 0.55 181 
6 -0.96 0.14 172 
7 -1.03 0.16 151 

Mean -0.09 0.88 206 
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Appendix 3. Supplemental Information for Chapter IV 

Supporting File S1. Compilation of protistan lineages and corresponding trophic modes 
based on several refereed and non-refereed sources (see Chapter IV).  
 
Supporting Figures and Tables 
 
Table S1. Ensemble taxonomic assignments and BLASTN statistics of putative Fuco- 
and Perid-containing dinoflagellate ASVs.  

ASV 
ID 

Putative 
biomarker 

ASV 
taxonomic 
annotationa 

Genus of closest hitb Query 
cover 
(%) 

Identity 
(%) 

Referencesc 

sv8 Fuco 

 
 

Dinophyceae 

Karenia, Ensiculifera, 
Pentapharsodinium, 

Shimiella, 
Gymnodinium 100 100 

1, 2, 3 

sv327 Fuco Gymnodinium Gymnodinium 100 100 2, 4 
sv404 Fuco Protodinium Protodinium 100 100 2, 4 
sv113 Perid Tripos Tripos 100 96.8 1, 5 
sv2442 Perid Tripos Tripos 100 96.03 1, 5 

aGenus assignments determined with the ensemble taxonomic assignment procedure (see 
main text) are provided where available, otherwise the taxonomy assigned at the lowest 
annotated rank 
bWhere multiple best hits were found for an ASV, all genera are listed. BLAST searches 
excluded sequences from uncultured organisms and environmental samples.  
cReferences: (1) Zapata et al. 2012; (2) Carreto et al. 2001; (3) Ok et al. 2020; (4) Guiry 
and Guiry, 2021; (5) Gomez et al., 2013. 
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Figure S1. Comparison of the proportion of protistan ASVs that were left unassigned at 
each taxonomic rank by ensemble and individual taxonomic assignment methods.  
 

 
Figure S2. Distributions of protistan relative sequence abundances of ASVs that were 
unambiguously assigned as phytoplankton or non-phytoplankton in surface ocean 
samples (A) following the initial phytoplankton classification procedure described in the 
main text and (B) subsequently assigning the remaining Dinophyceae, Cryptophyta, and 
Haptophyta ASVs with an unknown phytoplankton classification as phytoplankton. 
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Figure S3. Vertical profiles of the relative sequence abundances of protistan ASVs that 
were classified as phytoplankton (green), non-phytoplankton (red), or unknown (blue) 
following the initial phytoplankton classification procedure described in the main text. 
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Figure S4. Vertical profiles of the relative sequence abundances of protistan ASVs that 
were classified as phytoplankton (green), not phytoplankton (red), or unknown (blue) 
following the initial phytoplankton classification procedure described in the main text 
and subsequently assigning the remaining Dinophyceae, Cryptophyta, and Haptophyta 
ASVs with an unknown phytoplankton classification as phytoplankton. 
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Figure S5. Relationships between (A) total pigment biomass (total chlorophyll a and the 
sum of the seven diagnostic pigment concentrations as in Vidussi et al., 2001) and (B-G) 
phytoplankton pigment biomass contributions (biomarker pigment ratios to total 
chlorophyll a or the sum of the seven diagnostic pigment concentrations as in Vidussi et 
al., 2001).  
 
 

 
Figure S6. Inter- and intra-lineage predictors of uncertainty in diatom and dinoflagellate 
biomass contribution estimates. (A, E) show relationships between total Dinophyceae 
POC or RSA and diatom POC or RSA residuals, (B, C, F, G) show relationships between 
the total POC or RSA of three putative Fuco-containing dinoflagellate ASVs (see main 
text and Supporting Table 1) and (B, F) diatom or (C, G) dinoflagellate POC or RSA 
residuals, and (D, H) show relationships between the total POC or RSA of two putative 
Perid-containing dinoflagellate ASVs (see main text and Supporting Table 1) and 
dinoflagellate POC or RSA residuals.  
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Figure S7. Assessment of potential intra-group variations in (A-D) POC and (E-H) RSA 
residual value distributions for each of the four dominant phytoplankton groups. Shown 
are the distributions of residual values across groups of samples that are dominated by a 
particular class (for Chlorophyta) or order (for Bacillariophyta, Dinophyceae, and 
Prymnesiophyceae). Single horizontal lines indicate the given taxonomic group was only 
dominant in one sample.  
 

 
Figure S8. Relationships between the total (A-C) POC concentrations and (D-F) relative 
sequence abundances of each of the three Chlorophyta ecotypes and Chlorophyta POC 
and relative sequence abundance residuals. 
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Figure S9. Relationships between the putative Phaeocystis globosa ASV’s (sv15) (A) 
relative sequence abundance and (B) POC concentration and Prymnesiophyceae relative 
sequence abundance and POC residuals.  
 
 

 
Figure S10. Multiple linear regression model fits for each of the four phytoplankton 
group’s (A-D) POC and (E-H) relative sequence abundance residuals. All variables were 
z-scored prior to multiple linear regression analysis. Therefore all values have standard 
deviation units. 
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Figure S11. Same as Figure 3, but for compositional subnetworks including only (A) 
classes or (B) ASVs that were assigned as phytoplankton alongside biomarker pigment 
ratios to total chlorophyll a. 
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Figure S12. Same as Figure 4, but for compositional networks including both 
phytoplankton and other protistan (A) classes or (B) ASVs with biomarker pigment ratios 
to total chlorophyll a. 
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Figure S13. Distributions of (A-C) POC concentrations and (D-F) relative sequence 
abundances of the three Chlorophyta ecotypes across samples separated according to the 
month sampled. 
 


