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The evolution of category systems within and between learners
Vanessa Ferdinand (vanferdi@gmail.com)

University of Melbourne School of Psychological Sciences

Amy Perfors (perfors@gmail.com)
University of Melbourne School of Psychological Sciences

Abstract

How do cumulative cultural evolution and individual learning
differ? In an abstract computational sense, both are optimisa-
tion processes that search a space of possible explanations and
previous work has identified deep parallels in the mathematical
models used to describe them (Suchow, Bourgin, & Griffiths,
2017). However, there are obvious differences as well: for
example, individual learning involves a single agent charac-
terised by one set of prior beliefs, representational capabilities,
and so forth, while cultural evolution involves multiple agents
who may vary along these factors. We argue that this differ-
ence implies that the process of cumulative cultural evolution
should involve searching a more restricted set of hypotheses
and converge on simpler ones. In two iterated category learn-
ing experiments, we test this prediction and find that transmis-
sion chains composed of single individuals, who learn based
on their previous performance, consider both a wider variety
and more complex categorisation schemas than do chains in-
volving multiple people. Keywords: cumulative cultural evo-
lution; learning; complexity, categorisation

Introduction
What is the root of human evolutionary success? Many have
argued that it can be found primarily in our individual cog-
nitive skills, ranging from domain-general representational
abilities to language (e.g., Lieberman, 1991; Premack, 2007;
Penn, Holyoak, & Povinelli, 2008). Others suggest that indi-
vidual cognition has a more indirect effect and that the true
“secret of our succcess” is cumulative cultural evolution – the
ability to pass on cultural traits and skills (technology, knowl-
edge, etc) across generations to create a cumulative ratchet
effect (Henrich, 2015; Mesoudi & Thornton, 2018). The
process of cumulative cultural evolution relies on individual-
level skills such as the capacity to imitate and reason about
other minds (Tomasello, Kruger, & Ratner, 2018) but its suc-
cess has been argued to derive at least in part from charac-
teristics of the system rather than individual learners. For
instance, cultural systems may allow for greater breadth of
innovation or higher overall information processing capacity
than any single learner can attain (e.g., Caldwell & Millen,
2008; Muthukrishna, Shulman, Vasilescu, & Henrich, 2014).

This seems quite sensible, but it has also been argued that
culture-level evolution and individual-level learning can be
characterised by the same abstract mathematical and com-
putational descriptions (Harper, 2009; Suchow et al., 2017).
On the individual level, changes in beliefs are in many cases
well-described as a process of Bayesian inference by which
learners integrate prior knowledge with data from the world

(Tenenbaum, Kemp, Griffiths, & Goodman, 2011). On the
cultural level, standard mathematical models of evolution in-
volve replicator dynamics in which agents produce offspring
in proportion to their fitness (Nowak, 2006). There are deep
mathematical parallels in the form of these two equations
(Harper, 2009; Suchow et al., 2017), reflecting the fact that
on an abstract level both individual learning and cultural evo-
lution are optimisation processes involving searching a set
of alternatives and identifying the best of those according to
some metric.

This parallel can be seen in the iterated learning frame-
work (Smith, Kirby, & Brighton, 2003), which investigates
how information changes when passed between people. The
behaviour of the resulting transmission chains can be experi-
mentally explored in the lab (Griffiths, Christian, & Kalish,
2008; Kirby, Cornish, & Smith, 2008; Claidière, Smith,
Kirby, & Fagot, 2014) as well as modelled mathematically
(Griffiths & Kalish, 2007; Suchow et al., 2017).

These chains are often modelled as a sequence of Bayesian
agents, where each agent observes some data d from the pre-
vious agent and forms a hypothesis h about what knowledge
the previous agent used to generate the data. As Bayesian
reasoners, each agent performs this computation according to
Bayes Rule, calculating the posterior probability of each hy-
pothesis given the data P(h|d) so that it is a function of their
prior belief in that hypothesis P(h) as well as the likelihood
of the data given that hypothesis P(d|h). This conceptualisa-
tion reduces the process of cultural transmission to a Markov
chain, which means that it is possible to derive the conver-
gence properties of the outcome of the process. In this simple
case, in fact, the stationary distribution of the chain is just the
prior distribution (Griffiths & Kalish, 2007).

Interestingly, at least under some assumptions, the math-
ematical analysis is identical whether each generation of the
chain is a different agent (as in cultural evolution) or repre-
sents the same agent learning from their own previous data
(Griffiths et al., 2008). One such assumption is that all agents
in the chain share the same prior; this is trivially the case
when the chain consists of a single learner, but is not necessar-
ily the case when each agent is a distinct individual. If these
individuals do not share a prior, then the information trans-
mission will be systematically distorted by those with more
extreme priors (Navarro, Perfors, Kary, Brown, & Donkin,
2018). A prior in this sense simply means the a priori distri-
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Figure 1: Schematic depiction of how individual learning and cul-
tural evolution might search the hypothesis space differently. Each
box represents the hypothesis spaces considered a priori by learners,
and the arrows indicate the search path of the chain through the hy-
potheses. (a) When there is a single learner or multiple learners with
the same prior, the chain searches the entire space and converges on
the prior distribution. (b) When there are multiple learners, the bot-
tleneck imposed by needing to transmit information amongst all of
them means that the space effectively searched by the chain is much
smaller and consists of the shared overlap between them all.

bution of weight amongst all hypotheses in the space, which
can be shaped by many factors that humans vary substantially
on (memory, attention, executive function, motivation, intel-
ligence, or previous experience). It thus seems likely that in-
formation transmission through a chain of distinct agents (as
in cumulative cultural evolution) might have different con-
vergence properties and dynamics compared to the process of
information transmission within a single learner over a chain
of distinct learning phases.

What differences might we expect to see, and where might
we expect to see them? One idea is to consider not just the
convergence properties of the chain, but also the space of hy-
potheses investigated and the dynamics of that investigation
over time. Consider the case illustrated schematically in Fig-
ure 1. When a single agent creates a transmission chain by
learning from their own input — or when multiple agents
with exactly the same priors do the same – the process of in-
formation transmission does not distort the search at all: any
information that is capable of being represented is passed on
in proportion to its prior probability and ease of representa-
tion. This is why such transmission chains converge to the
prior. However, when multiple agents with different priors
are in a transmission chain, the process of transmission itself
affects the search. Only the set of hypotheses shared between
all of the agents gets searched effectively, because only those
are capable of being transmitted veridically between every-
one. This is why agents with more “extreme” priors (i.e.,
less overlap with other agents) have a distorting effect on the
chain, as found by Navarro et al. (2018).

This analysis suggests that, as long as individuals differ in
their priors, transmission chains composed of distinct peo-
ple (cultural evolution) should generally search a smaller part
of the hypothesis space. Moreover, since simpler hypotheses
are more likely to be shared by more people, cultural evolu-
tion should favour simpler hypotheses in a way that individ-
ual learning does not. We test both of these predictions here.
Over the course of two experiments, we give people a cate-
gory learning task by putting them into transmission chains

where they either learn from another person’s data (the CUL-
TURAL condition) or where they learn from their own (the
INDIVIDUAL condition). We find that, as predicted, the space
of hypotheses explored by people in the cultural condition is
smaller and the hypotheses considered are less complex.

Experimental design
Experiment 1

Participants 297 participants were recruited on Mechani-
cal Turk and took our experiment online via Google App En-
gine. Location was restricted to the USA. Participants were
paid a base rate of 1.50 USD and bonused to ensure they made
10 USD per hour. There were 90 participants in the INDIVID-
UAL condition and 207 in the CULTURAL condition.

Stimuli & Method Participants were trained and tested on
a mapping between 2 labels and 10 stimuli for several rounds.
All stimuli had identical shape (a seashell), but each had a
different fill color, varying from dark gray, RGB(25,25,25), to
light grey, RBG(250,250,250), in increments of 25. One pair
of labels from the following list was randomly assigned to
each participant for the duration of the experiment: (buv,kal)
(dap,mig) (pon, fud) (vit,lem) (seb,nuk) (gos,tef).

Each round consisted of 30 training trials and 10 testing
trials. On each training trial, a shell and two possible labels
for it were displayed. The participant clicked on one of the
labels and received feedback with the correct label from an
alien biologist who was training the participant to identify the
shells on planet Zorg.1 During the testing phase, participants
received 10 trials (one per stimulus) and chose labels without
feedback. This set of 10 labels will be called the category
system that participants produced on round x.

Conditions The experiment consisted of two transmission
conditions: CULTURAL and INDIVIDUAL. In the CULTURAL
condition, each person participated in only one round of tri-
als, and they were organized into 45 transmission chains. The
first participant in each chain was trained on a random cate-
gory system in which five tokens of each label were randomly
assigned to the ten stimuli. Each subsequent participant in the
chain was trained on the category system that the previous
participant had produced on their test trials. Chains ran until
convergence (i.e. when two participants produced identical
category systems in a row).

In the INDIVIDUAL condition, each person participated in
two to eight rounds of trials. In the first round, they were
trained on a random category system as defined above. In
subsequent rounds, they were trained on the most recent cate-
gory system they produced (although they did not know this),
constituting an iterated learning chain within one participant.
Chains ran until convergence (i.e. when the participant pro-
duced identical category systems on two consecutive rounds)
or until they completed eight rounds.

1This was the cover story told to participants, not the actual ex-
perimental setup...
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Figure 2: Example evolutionary trajectories in the INDIVID-
UAL condition (left) and the CULTURAL condition (right)
from Experiment 1. The ten stimuli are shown above and
their labels are shown by the cells below. Dark cells mean
label A was used for the stimulus and light cells mean label
B was used. Iteration 0 are the random initial systems. It-
eration x is the category system produced by the participant
on round x in the INDIVIDUAL condition or on generation
x in the CULTURAL condition. The trajectory from the IN-
DIVIDUAL condition begins with random mapping ABABB-
BABAA and explores 7 systems before converging on the
two-boundary system AAAAABBBBA, while the trajectory
from the CULTURAL condition begins with BAABAAABAA
and converges on the one-boundary system BBBBBBBBAA.

Experiment 2
In order to ensure that the results from Experiment 1 were
robust, we performed a pre-registered2 replication of it here.

Participants 313 participants were recruited under the
same conditions described in Experiment 1. There were 90
participants in the individual condition and 223 in the cultural
condition.

Stimuli & Method The method is identical to Experiment
1 with one exception: stimuli varied in color on a blue-purple
continuum, as in Levari et al. (2018). Color values for the 10
stimuli ranged from RGB(100,0,155) to RGB(1,0,254) in R
and B increments of 11.

Results
In this section, we analyze how the evolutionary trajecto-
ries produced in the CULTURAL and INDIVIDUAL conditions
differed. We ask two main questions. First, what was the
breadth of the space of category systems explored in each?
Did the chains composed of multiple people tend to consider
fewer hypotheses than the chains composed of a single indi-
vidual? Second, what was the complexity of the category sys-
tems explored? Did the chains with multiple people tend to
consider systems with fewer boundaries than the chains with
single individuals?

In order to address these questions we must first define the

2http://aspredicted.org/blind.php?x=ej9yg4
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Figure 3: Proportion of category systems produced in Experi-
ment 1 (left) and Experiment 2 (right), grouped by their num-
ber of category boundaries (x-axis), for generations 1-8 in
the CULTURAL condition (dark grey), rounds 1-8 in the INDI-
VIDUAL condition (light grey), and the theoretically-defined
baseline one would observe if the two category labels were
randomly assigned to stimuli (white).

space of all possible category systems. This experimental de-
sign implicitly defines 210 = 1024 possible category systems
since there are ten stimuli that can each take one of two la-
bels. These 1024 systems vary in complexity, ranging from
simple (AAAAABBBBB) to interesting (ABBBAABBBA)
to random-looking (ABABBAAAAB). In the following anal-
yses, we operationalize complexity as the number of cate-
gory boundaries a system has. This value ranges from zero
(ex: AAAAAAAAAA) to nine (ex: ABABABABAB). There
is an interesting debate about whether randomness should
be considered high or low complexity (e.g., Still & Crutch-
field, 2007) and this provisional operationalisation falls on
the side of calling both interesting and random-looking cate-
gories “complex.”

In addition to defining the space of systems and opera-
tionalising complexity, it is also useful to define a baseline
to compare behaviour in both conditions against. A natural
baseline to consider is what we would expect to see if par-
ticipants were randomly choosing labels during the test trials.
Figure 3 (baseline) shows the probability that random choice
would produce a category system with k boundaries. The total
number of category systems with k boundaries is 2

(n
k

)
where

n is the maximum number of boundaries possible.
All of the analyses that follow are restricted to the category

systems obtained in the first 8 iterations of their evolution-
ary history (i.e. rounds 1-8 in the INDIVIDUAL condition and
generations 1-8 in the CULTURAL condition). This ensures
that the features we’re comparing between conditions (like
the number of category boundaries) had equal time to evolve.

Question 1: Exploratory breadth
Does the set of category systems explored in the INDIVID-
UAL and CULTURAL transmission conditions differ from the
baseline and differ from one another? Figure 3 shows the dis-
tributions of category systems from each condition and each
experiment, in terms of the number of category boundaries.
The set of attested systems under each transmission condi-
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Table 1: Percent of the 1024 possible category systems ex-
plored within each condition.

INDIVIDUAL CULTURAL

Experiment 1 19.2% 8.8%
Experiment 2 18.6% 8.3%

tion seem to exhibit less diversity than the random baseline,
suggesting that there were constraints on the evolution of cat-
egory systems in each of these conditions. The two condi-
tions appear to differ from one another as well: evolutionary
search in the CULTURAL condition is more focused around
one-boundary systems than the INDIVIDUAL condition is.

One way to measure exploratory breadth is simply to count
up the number of possible 1024 category systems that were
explored in each condition. This is somewhat crude because
it does not naturally compare performance to a sensible base-
line (which we do below). However, it is useful to give an
intuition of what is going on. As Table 1 shows, in both exper-
iments, people in the CULTURAL condition considered fewer
category systems overall than the INDIVIDUAL condition.

As a more principled measure, we also computed the ratio
of explored to unexplored evolutionary space by estimating
the Shannon entropy of the experimental and baseline dis-
tributions.3 The estimates are 2.63 bits for the baseline, 2.47
bits for the INDIVIDUAL condition, and 2.17 bits for the CUL-
TURAL condition. This means that for the INDIVIDUAL con-
dition, 94% of the space was explored and 6% was not, while
for the CULTURAL condition, 83% was explored and 17%
was not. Figure 4 shows the bootstrap 95% confidence inter-
vals around these estimates. In Experiment 1, these intervals
do not overlap, providing strong evidence that all three distri-
butions come from different generative processes. In Experi-
ment 2, confidence intervals do not overlap with the baseline,
showing that both search processes were significantly more
constrained than random generation of category systems, but
the two transmission conditions overlap very slightly.

Overall, it appears that the cultural transmission regime im-
poses more constraints on evolutionary search than the indi-
vidual transmission regime does for this particular categoriza-
tion task. As we address in the discussion, the next interesting
step will be identifying what these constraints are.

Question 2: Category system complexity
The previous analysis suggests that individuals and cultures
explore different proportions of the space of all possible hy-

3We used the R entropy library’s minimax estimator for the ex-
perimental data and the plug-in estimate for the known baseline. Be-
cause finite data sets exhibit lower entropy than the generative pro-
cess they are sampled from, entropy estimation procedures correct
for this by raising the estimate more for smaller N. Our experiment
had N = 90 INDIVIDUAL chains and N = 45 CULTURAL chains. It
is possible that the values in Table 1 are higher for the INDIVIDUAL
condition because it was sampled more. However, even after the en-
tropy corrections were made, the CULTURAL condition still exhibits
less diversity than the INDIVIDUAL condition.
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Figure 4: Differences in search space coverage between conditions
in Experiment 1 (left) and Experiment 2 (right). The solid line is
the maximum entropy of the search space, according to the random
baseline. Diamonds are the estimated Shannon entropy of each dis-
tribution in Figure 3. Dashed lines denote the 95% confidence inter-
vals around the INDIVIDUAL estimate and dotted lines denote those
around the CULTURAL estimate. The violin plot shows the density of
100,000 bootstrap resamples of the experimental data used to com-
pute the 95% confidence intervals.

potheses in this categorisation task. Do they also differ with
respect to the complexity of the category systems they found?

To address this question we compared the number of cate-
gory boundaries within the INDIVIDUAL and CULTURAL con-
ditions in a linear mixed effects regression analysis. Num-
ber of category boundaries was the dependent variable while
condition and iteration were the independent variables. Tra-
jectory is included as a random effect because category sys-
tems within a chain are not independent from one another,
since they share a common evolutionary history. The best-
fit model was determined by systematically comparing a full
model with all variables and interactions to reduced models
omitting each effect, as outlined in Winter (2013).

In Experiment 1, the best-fit model incorporated con-
dition (β = 0.527,SE = 0.223, t(5) = 2.37) and iteration
(β = −0.222,SE = 0.023, t(5) = −9.65) but no interac-
tion. In Experiment 2, the best-fit model contained condi-
tion (β = −0.358,SE = 0.247, t(6) = −1.45) and iteration
(β = −0.377,SE = 0.047, t(6) = −8.10) as well as their in-
teraction (β = 0.186,SE = 0.055, t(6) = 3.41). Thus, in both
experiments, category complexity (as measured by the num-
ber of category boundaries) was significantly affected by both
transmission condition and time (i.e., iteration). Complexity
decreased over time in both conditions and was significantly
lower in the CULTURAL condition.

All of the analyses so far have suggested that the search
process differed between conditions, but do the end products
differ as well? For instance, it might be the case that all trajec-
tories in both conditions could have ended with one-boundary
systems, but gotten there via very different search dynamics.
To address this question, we looked at the subset of category
systems that converged within the first eight iterations. Table
2 gives the percentage of systems that converged within the
first 8 iterations and Table 3 breaks them down by the number
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Table 2: Number of category systems that converged within
the first eight iterations. A similar proportion of systems con-
verged in both conditions.

Experiment 1
INDIVIDUAL 79/90 88%
CULTURAL 40/45 89%
total 119/135 88%
Experiment 2
INDIVIDUAL 74/90 82%
CULTURAL 42/45 93%
total 116/135 85%

of category boundaries in the final system in the chain.
The distribution of converged category systems differ by

condition in Experiment 1 (χ2(12) = 30, p = .003) and Exper-
iment 2 (χ2(12) = 30, p = .003). This suggests that individ-
ual transmission supports evolutionary endpoints with more
diversity in number of category boundaries, whereas cultural
transmission largely converges to one-boundary systems.

Discussion
This work compared the dynamics of evolutionary search
within and between individuals, in the domain of category
learning. In two iterated learning experiments, we presented
participants with a novel one-dimensional category and inves-
tigated how that category changed over time. Participants in
the INDIVIDUAL transmission condition, who learned based
on their own previous data, ended up searching a larger part
of the overall hypothesis space in the aggregate and tended
to consider more complex hypotheses with more category
boundaries. In contrast, participants in CULTURAL transmis-
sion chains, who learned based on data produced by the pre-
vious participant, searched a smaller portion of the hypothe-
sis space in the aggregate and considered simpler hypotheses
with fewer category boundaries.

These findings might appear surprising in light of previous
work that argues that transmission-chain models of cumula-
tive cultural evolution and this kind of individual learning are
identical (Griffiths et al., 2008; Suchow et al., 2017). How-
ever, although they are identical in the case where all agents in
the population have the same prior, transmission plays a dif-
ferent role when they do not: in effect, it creates a filter which
means that the system effectively searches only the space of
hypotheses and priors that are shared by everyone.

How can we square this with experimental work that ap-
pears to show similar individual and cultural learning? For
instance, Griffiths et al. (2008) presented both individuals
and chains of learners with a category-learning task based
on the six category types of Shepard, Hovland, and Jenkins
(1961). They found that both individuals and chains showed
similar behaviour for all six category types. However, unlike
in our experiment (and most experiments with iterated learn-
ing chains), instead of passing on the labelled data from the

Table 3: Number of category boundaries in the converged
category systems (from Table 2). INDIVIDUAL chains tended
to converge to more complex systems with more category
boundaries than CULTURAL chains did.

boundaries 0 1 2 3 4 5 6 7 8 9
Experiment 1
INDIVIDUAL 0 44 22 11 1 1 0 0 0 0
CULTURAL 0 34 5 1 0 0 0 0 0 0
Experiment 2
INDIVIDUAL 8 49 16 1 0 0 0 0 0 0
CULTURAL 5 36 1 0 0 0 0 0 0 0

previous agent, they had each agent select which of the six
category types they believed was correct and generated the
data from that. This subtle difference may have had two ef-
fects. First, it meant that the space of hypotheses was much
smaller than ours (effectively only six) and all participants
were shown all six hypotheses explicitly. To the extent that
individual differences in priors or hypothesis spaces might
stem from individual differences in the ease of conceptual-
ising or thinking of them, making them explicit would have
removed this source of differences. Second, having partic-
ipants select hypotheses rather than pass on their data may
have meant that there was little pressure toward data simpli-
fication of the sort that occurs when people’s errors during
learning and labelling occur asymmetrically in one direction
(towards simplicity). Taken together, it is possible that there
was little scope within their experiment to notice system-level
differences in the complexity of the hypotheses favoured or
the extent of the space searched.

To our knowledge, there is little additional experimen-
tal work beyond the present experiment that directly com-
pares between-subject transmission chains involving multi-
ple people (cumulative cultural evolution) to within-subject
transmission chains involving a single learner. Every trans-
mission event is an opportunity for a culturally-evolving ar-
tifact to be restructured by selection pressures (such as a
learner’s prior bias) or to acquire information about the en-
vironment in which it is evolving (across a network of agents
vs within a single mind). Most iterated learning research
focuses on understanding the behaviour of between-subject,
multi-generational chains on their own (Kalish, Griffiths, &
Lewandowsky, 2007; Kirby et al., 2008) or compared to a
baseline involving individuals learning in what are effectively
single-generation chains (e.g., Reindl & Tennie, 2018; Silvey,
Kirby, & Smith, 2019). However, if we want to know ex-
actly how cultural evolution creates cumulative changes that
“no single individual could invent on their own” (Boyd &
Richerson, 1996), it seems fair to compare artifacts of similar
evolutionary age. The only other work we are aware of that
compares the two directly is Sasaki and Biro (2017), which
finds cumulatively more efficient flight paths in homing pi-
geons compared to individual controls matched for number

652



of flight iterations, and Claidière et al. (2014), which found
that between-subject chains of baboons created more struc-
tured patterns (tetrominos) in a pattern copying task over
time than did within-subject chains (which produced more
non-tetrominos). Although they did not analyse complexity
explicitly, if tetrominos are of lower complexity than non-
tetrominos, their results are in line with ours.

Recent work by Carr, Smith, Culbertson, and Kirby (2018)
and Silvey et al. (2019) provides thorough experimental in-
vestigation of the cultural evolution of category systems.
Both studies find that category system complexity4 goes
down over time when transmitted in between-subject iterated
learning chains. Our CULTURAL condition replicates these
findings. Silvey et al. (2019) also investigated category sys-
tems created from scratch by single individuals and found
that their complexity was low and did not significantly dif-
fer from the final generation of the between-subject transmis-
sion chain. However, their individual condition wasn’t de-
signed to be directly compared to their cultural condition, as
their research question was, instead, aimed at the role of com-
munication in cultural transmission. Our experiment was de-
signed to make this absolute comparison possible by 1) using
the same initial starting conditions for all chains, 2) imple-
menting transmission identically in the two conditions, and 3)
controlling for artifact age, such that we’re comparing com-
plexity between sets of artifacts that all had the opportunity
to evolve for 8 iterations. By doing this, we have shown that
the process of transmission leads to a decrease in complexity
over time in both conditions, but that cultural transmission
chains arrive at simpler systems, and discover fewer systems
overall, than individual transmission chains do.

Although our work suggests that the dynamics and nature
of the information search between people (cultural evolution)
may differ in important ways from the dynamics and infor-
mation search within people (individual learning), this con-
clusion is still preliminary. Even if we view evolution and
learning entirely through the simplifying lens of transmission
chains, we have not considered more complex kinds of in-
formation transfer like verbal instruction or posterior passing
(Beppu & Griffiths, 2009). These and other techniques may
permit cultures to avoid the kind of simplifying bottleneck
that drove our results. It is also possible that these dynamics
would be affected by horizontal transfer within generations
(e.g., Fay et al., 2018), bidirectional communication within
generations (e.g., Silvey et al., 2019), and imposing external
pressures for expressivity, and thus the maintenance of com-
plexity in communication systems (e.g., Carr, Smith, Cornish,
& Kirby, 2017).

In future work, we plan to focus in on the specific, cog-
nitive differences that exist between individual and cultural
transmission chains. In addition to differing in diversity of

4Complexity is operationalised similarly in their studies and
ours, in terms of contiguity, convexity, and number of category sys-
tem boundaries. Also, all studies initialized chains with category
systems near the maximum complexity in their particular search
spaces.

priors, as mentioned in the introduction, individual chains
have memory of previous iterations, get more practice with
the task at hand, and may have decreased attention or in-
creased fatigue toward the end of the chain. Does eliminating
one of these factors unleash the cumulative power of cultural
transmission? For example, when individuals do not have
memory of an artifact’s evolutionary past, does this free them
up to innovate more? Or to re-analyse a linguistic construc-
tion? For example, people with direct memory of Watergate
in 1972, may be less likely to invent x-gate as a suffix mean-
ing “scandal of type x”, such as in Ubergate.5 In addition
to exploring the cognitive differences across conditions, we
would also like to know how properties of the search pro-
cess differ between conditions. Currently, we are develop-
ing formal models of our intuition that simple hypotheses are
over-represented in the intersection of a group of learners’ hy-
potheses, and that the process of cultural transmission over-
explores this intersection.
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