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Abstract

Purpose: To develop an automated vessel wall segmentation method on T1-weighted intracranial 

vessel wall magnetic resonance images, with a focus on modeling the inclusion relation between 

the inner and outer boundaries of the vessel wall.

Methods: We propose a novel method that estimates the inner and outer vessel wall boundaries 

simultaneously, using a network with a single output channel resembling the level-set function 

height. The network is driven by a unique tiered loss that accounts for data fidelity of the lumen 

and vessel wall classes and a length regularization to encourage boundary smoothness.

Results: Implemented with a 2.5D UNet with a ResNet backbone, the proposed method achieved 

Dice similarity coefficients (DSC) in 2D of 0.925 ± 0.048, 0.786 ± 0.084, Hausdorff distance of 

0.286 ± 0.436mm, 0.345 ± 0.419mm and mean surface distance (MSD) of 0.083 ± 0.037mm and 

0.103 ± 0.032mm for the lumen and vessel wall, respectively, on a test set; compared favorably to 

a baseline UNet model that achieved DSC 0.924 ± 0.047, 0.794 ± 0.082, HD 0.298 ± 0.477mm, 

0.394 ± 0.431mm, and MSD 0.087 ± 0.056mm, 0.119 ± 0.059mm. Our vessel wall segmentation 

method achieved substantial improvement in morphological integrity and accuracy compared to 

benchmark methods.

Conclusions: The proposed method provides a systematic approach to model the inclusion 

morphology and incorporate it into an optimization infrastructure. It can be applied to any 
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application where inclusion exists among a (sub)set of classes to be segmented. Improved 

feasibility in result morphology promises better support for clinical quantification and decision.

Keywords

Vessel wall segmentation; deep learning; morphological inclusion; boundary length regularization; 
level-set methods

INTRODUCTION

Stroke is a leading cause of morbidity and mortality in the US and worldwide1,2. 

Intracranial atherosclerosis disease (ICAD), characterized by lipid deposition, inflammation, 

and remodeling in the artery vessel wall, remains a major risk factor for stroke occurrence. 

Magnetic resonance (MR) vessel wall imaging (VWI) is an emerging non-invasive 

technology to assist in ICAD evaluation, thanks to its high spatial resolution and superior 

dark-blood contrast3. Quantitative assessment of atherosclerotic lesions based on MR-

VWI may provide valuable insights into the severity of ICAD4. Several morphological 

measurements, such as normalized wall index, arterial wall remodeling ratio, and plaque-to-

wall contrast ratio, have been shown to be useful imaging surrogates for plaque burden 

quantification5–9. These measurements rely on accurate contouring of the vessel wall in a 

cross-sectional view.

Vessel wall contouring is typically performed manually and is subject to high inter- and 

intra- observer variations. These variations can induce high uncertainty on subsequent 

quantitative analysis on the small intracranial arteries. Moreover, with the advent of 3D 

VWI with large spatial coverage10,11, the presence of multiple ICAD lesions in a patient 

may incur intensive labor cost and exacerbate human errors. These limitations and concerns 

call for an automated method to improve segmentation accuracy, consistency, and efficiency.

Conventional automated or semi-automated vessel wall segmentation methods applied to 

MR-VWI images are usually based on explicit model fitting. For example, the shape of 

a whole carotid vessel was approximated as elliptic, and was translated, deformed, and 

rotated iteratively to fit the outer vessel wall boundary12. In each iteration, the similarity 

of the ellipse to the outer wall boundary was evaluated with the average intensity gradient 

magnitude along the ellipse. The ellipse with the highest intensity gradient average was 

obtained as the final outer wall boundary. In addition to the 2D model, a 3D model has been 

investigated by deforming a 3D cylindrical non-uniform rational B-spline surface to fit the 

inner and the outer vessel wall boundary of a carotid artery13. A tube model was initialized 

by rings with pre-specified diameters and numbers of control points, and the control point 

locations were adjusted iteratively with signal intensities. The major disadvantages of these 

methods are the long computation time for iterative model fitting and the potential model 

misfit when the shape assumptions are violated.

As an alternative to the parametric approaches, level-set based methods can perform 

numerical computations of curves and surfaces on a fixed Cartesian grid and handle varying 

topology with ease14. Level-set based active contour approaches have been investigated 

to extract the lumen and outer wall boundaries by minimizing an energy function with 
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fidelity force to align boundary with high gradients, and regularization for smoothness on 

in-plane contour shape and consistency across adjacent slices15. Typical ordinary differential 

equation (ODE)-based level-set methods usually require long computation time.

Recent research has been utilizing deep neural networks to perform automated vessel wall 

segmentation, using either a multi-class or multi-label setting. The multi-class methods 

predict multiple mutually exclusive classes by the same number of output channels, usually 

with softmax activation in the last network layer. With this setting, Shi et al. proposed a 

2D UNet to segment the intracranial vessel and reported Dice similarity coefficients (DSC) 

of 0.89 and 0.77 for the lumen and vessel wall, respectively16. In contrast, the semantic 

segmentation to predict in a multi-label setting can be overlapped, and each pixel can have 

multiple class memberships. The multi-label setting usually has sigmoid activation in the 

last network layer, where binary prediction is performed for each class. With this setting, 

a 2.5D UNet was developed to segment the lumen, whole vessel, and background for 

the carotid arteries, and achieved DSC of 0.96 and 0.97 for the lumen and whole vessel, 

respectively17. We recently proposed a 2.5D UNet++ model in a multi-label setting where a 

distance-transform approximated Hausdorff distance (HD) along with soft Dice was used to 

further improve segmentation accuracy18.

While the reported DSC values were reasonably high, they only indicate a good overlap 

between the labeled and predicted class memberships, by treating the lumen and the whole 

vessel (or vessel wall) as separate classes without considering the intrinsic coupling that 

the lumen resides inside the entire vessel. In other words, the set of lumen pixels should 

be a proper subset of the whole vessel pixel set, and we use the word “inclusion” hereafter 

to indicate this concept. This is particularly a concern for deep learning methods as there 

is little control once the network is trained. In the intracranial arteries, the contrast of the 

outer vessel boundary may be low, and vessel shapes are more irregular due to tortuosity 

and frequent branching. As a result, existing networks have been observed to generate 

morphologically infeasible solutions, such as lumen pixels outside of the vessel, isolated 

pixel sets, and highly oscillatory pattern or peaky singularity on the boundary, as illustrated 

in Fig. 1.

Realizing the importance to account for inclusion morphology, Chen et al. proposed a 

carotid artery segmentation network in the polar coordinate system19. By converting MR-

VWI images into a polar coordinate system using an estimated lumen center as the reference 

origin, the segmentation problem became a regression task where the distances from the 

lumen center to the lumen boundary and the whole vessel boundary along each radial 

direction were predicted. The segmentation convolutional neural network (CNN) contained 

a fully connected (FCN) layer to predict the polar coordinates for the lumen boundary and 

whole vessel boundary in t sampled polar directions.

DSCs of 0.961 and 0.860 were reported for the lumen and the vessel wall, respectively, 

compared to 0.922 and 0.774 from the conventional Cartesian coordinate system. It was 

claimed that performing segmentation in the polar system has the advantages of: 1) ensuring 

contour continuity when enforcing the distance from the lumen center to the predicted whole 

vessel boundary to be larger than that of the lumen boundary, and 2) easily differentiating 
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adjacent arteries from the artery to be segmented. A prerequisite for segmenting in the polar 

coordinate is a reliable definition of the centerline. A tracklet refinement algorithm was 

proposed for lumen center localization and centerline tracking to meet this requirement19.

While this combination of centerline tracking and polar analysis for vessel wall may 

work well for the large carotid arteries, it is a lot more challenging to ensure a good 

automatic centerline for the much smaller intracranial vessels, whose signal and contrast 

strength could be low or disruptive even in angiography. In this study, we propose and 

develop a novel method to address the demand to account for topology inclusion with 

much relaxed requirement on “centerline” or origin definition. Our key contributions 

are: 1) inspired by the level-set methods idea we incorporate the inclusion relationship 

between the whole vessel and the lumen by level-set function heights; 2) we utilize a single-

channel-output UNet structure to incorporate the inclusion relationship into an optimization 

infrastructure; 3) we propose a novel loss function for effective optimization with the 

network infrastructure between the predicted class membership and ground truth while 

regularizing the smoothness of the segmentation boundaries.

MATERIALS

Under IRB approval Pro00055925 on 05/30/2019, T1-weighted MR VWI from 80 patients 

diagnosed with ICAD were obtained for this study. The images were acquired with a 

whole-brain MR VWI protocol11,20, using a 3-Tesla whole-body system (MAGNETOM 

Prisma; Siemens Healthcare, Erlangen, Germany) and a 64-channel head/neck coil (Siemens 

Healthcare). The images were acquired at an isotropic spatial resolution of 0.55 mm. The 

following four arterial segments including the one that involved the identified plaque were 

used for segmentation sample preparation: the intracranial internal carotid artery, the middle 

cerebral artery, the intracranial vertebral artery, and the basilar artery. 3D Slicer (version 

4.11.0) was used to generate 30 contiguous 2D cross-sectional slices with 0.55 mm slice 

thickness and 0.1 mm in-plane resolution from each segment21. The “ground truth” lumen 

and vessel wall were labeled by an experienced radiologist using ITK-SNAP (version 

3.8.0)22. For quality assurance purpose intra-observer labeling consistency was verified. The 

variability of vessel wall DSC was assessed to be 0.82±0.07 between two rounds of labeling 

by the same radiologist performed two weeks apart.

METHODS

We propose to account for the inclusion morphology with coupled level-set functions and 

using a deep neural network approach as the overall structure. In particular, we develop 

a network with a single output channel to infer the soft “tiered” memberships of the 

lumen, whole vessel, and background simultaneously, in sharp contrast to the typical 

multi-channel predictions in multi-class or multi-label settings. Fidelity is defined based 

on class agreement between the “ground truth” labels and the prediction derived from the 

level-set as in Eq. (6). The training cost is further regularized with penalty Eq. (7) and 

Eq. (9) to encourage smoothness of the network predicted value function and the vessel 

wall boundaries, respectively. Fig. 2. illustrates the general schema of the proposed method. 

We deploy a 2.5D UNet structure with ResNet backbone in our implementation. The 2.5D 
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structure takes three consecutive VWI slices with image size 128 × 128 as input, and outputs 

the class prediction for the middle slice. Vessel centerlines are as external input, and the 

VWI image slices are centered by the centerline with a field of view 12.8 × 12.8 mm2.

Level-set Formulation

To encode inclusion, we consider the ordinal relations among various level-sets with respect 

to a single level-set function. Under a 2D setting, let ϕ(x) : R2 → R be a level-set function, 

the lumen and the whole vessel pixels are associated with:

Ωlumen x:ϕ(x) < η1 ,
Ωwhole_vessel x:ϕ(x) < η2 . (1)

We take advantage of the simple relation that for η1 < η2, Ωlumen ⊂ Ωwhole_vessel reflects 

the inclusion relationship. In this specific application, we may define the background as the 

complement of the larger set Ωbackground = D − Ωwhole_vessel, where D ∈ R2 denotes the 

entire segmentation domain. Without loss of generality, we may set η1 = 1
3 , η2 = 2

3 . Fig. 3. 

illustrates the level-set idea.

The membership of a pixel x ∈ R2 is obtained by taking the level-set function through a 

Heaviside function H:

H η1 − ϕ(x) = 1, x ∈ Ωlumen
H η2 − ϕ(x) ⋅ H ϕ(x) − η1 = 1, x ∈ Ωvessel_wall
H ϕ(x) − η2 = 1, x ∈ Ωbackground,

(2)

where

H(x) = 1, x ≥ 0
0, x < 0; (3)

which is then relaxed to a continuous differential sigmoid function S(x) = 1
1 + e−x  to 

generate a “soft membership” for each class given in Eq. (4).

The corresponding continuous probability-like relaxation of the network predicted value 

function y to y′is given by

ylumen′ = S η1 − y ,
yvessel_wall′ = S η2 − y ⋅ S y − η1 ,
ybackground′ = S y − η2 .

(4)

UNet with ResNet Backbone Structure

A 2.5D UNet model with ResNet backbone is used for level-set inference23,24, as 

demonstrated in Fig. 4. The convolution blocks in the UNet model each consists of one 
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convolution layer followed by batch normalization, and another convolution layer. With a 

ResNet backbone, a skip-connection is inserted after the input of each convolution block and 

is passed through a 1 × 1 convolution to add the feature of the previous layer to the last layer 

of a convolution block. The network has a single channel output via a 1 × 1 convolution 

layer with sigmoid activation. This single-channel prediction maps each pixel’s value to its 

corresponding class membership.

Training Objective

The deep neural network is trained to minimize an objective function consisting of three 

terms: a fidelity term to match the derived level-sets with the training labels and two 

regularization terms to encourage smoothness for the network predicted value function and 

the class boundaries, respectively.

The overall loss function is a summation of the three terms weighted by regularization 

hyperparameters λ and γ:

ℒ = ℒFidelity + λℒSmooth + γℒLength (5)

The fidelity term defines the agreement between the predicted and the given labels using soft 

Dice criterion for the lumen, vessel wall, and background classes.

ℒFidelity = ∑
c

(1 − 1
N ∑

n = 1, …, N

2pn, cyn, c′
pn, c2 + yn, c′2 ), (6)

where yn, c′  and pn,c are the soft prediction from Eq. (4) and the “ground truth” labels for the 

nth pixel of class c = lumen, vessel wall, background, respectively. N is the total number of 

pixels in a batch.

To encourage clear and robust differentiation between the adjacent classes, i.e., lumen vs. 

vessel wall, and vessel wall vs. background, we introduce an l2 norm to the gradient of 

the network output y to prevent oscillation and promote stable region-wise homogeneous 

membership.

ℒSmooth = 1
N ∑ ∇y 2, (7)

where ∇ is the spatial differential operator:

∇y = yi + 1, j − yi, j, yi, j + 1 − yi, j , (8)

with i and j indexing over the horizontal and vertical axes in 2D images.

Penalizing the magnitude of the gradient encourages smooth transitions in y, and has two 

important consequences (1) it leads to congruent connected labeled regions upon inference, 

and (2) for any ray starting from the lumen, smooth membership transition ensures a good 

chance of encountering a decent-sized vessel wall class before entering the background 

class, as illustrated by the example profile view in Fig. 3 (a).
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As in active contour approaches, we further impose a length penalty based on total variation 

(TV) on the vessel wall class to reduce the roughness of the inner and outer boundaries of 

the vessel wall25,26:

ℒLength = 1
N ∑ ∇yvessel_wall′ . (9)

Assessment Criteria

Conventional measure—The primary goal of segmentation is label agreement and it 

is typical to measure segmentation performance by calculating DSC, 95 percentile HD 

(HD 95), and mean surface distance (MSD) from the prediction to the ground truth. DSC 

measures the globally overlapping degree, while HD and MSD measure the biggest and 

the averaged point-wise matching discrepancy, between the prediction and the ground truth, 

respectively.

Clinical measure—The clinically relevant quantification feature - the lumen and vessel 

wall area as well as normalized wall index (NWI) are also adopted as measures to match 

a common clinical practice. NWI is defined as 
Avessel_wall

Avesgel_wall ∪ Alumen
, where A denotes area. 

NWI ranges from 0 to 1, and with a higher value indicating a heavier plaque burden. We 

report the mean absolute error (MAE) of the NWI, lumen area (Alumen), and vessel wall area 

(Avessel_wall), where area is measured in pixels.

Geometric measure—To assess segmentation quality, the MAE of the inner and outer 

boundary length (L) of the vessel wall, as well as the mean error (ME) of the lumen area 

and vessel wall area are reported in pixels. We further propose two metrics to measure the 

geometric integrity. To quantify the existence of isolated pixels as in Fig. 1.(b), connected 

component analysis is applied and the summed area of small islands (denoted as NIso) is 

reported in pixels. The numbers of violation of inclusion as in Fig. 1.(a) is measured using 

membership gradient:

NV = ∑ I ∇yd > 1 , (10)

where I denotes the indicator function, and yd is the categorized membership which has the 

value of 2 for lumen pixels, 1 for vessel wall, and 0 for background. NV counts the amount 

of lumen pixels that directly connect to the background pixels.

The mean and the standard deviation of each measure above are reported for a test set. 

One-sided paired t-tests with p < 0.05 are applied between the measure achieved by each 

method in comparison and the best measure, for each class, where applicable.

EXPERIMENTS

We randomly split the recorded 80 patients into 74 : 3 : 3 for training, validation, and testing, 

respectively. Again, each patient was associated with four segments, and each segment 

had 30 2D cross-sectional image slices. Metrics and statistics were calculated slice-wise. 
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In our implementation of UNet with ResNet backbone, the depth of the UNet model was 

four, and the base number of channels was 32. The learning rate for all segmentation 

models was 10−4 for a total of 50 epochs, with Adam optimizer and a batch size of 64. 

The regularization hyperparameter λ was 0.1 and γ was 0.5, all tuned with respect to the 

validation performance.

The proposed method was compared with the conventional multi-label segmentation17, and 

the polar-coordinated segmentation methods26, both qualitatively and quantitatively.

The benchmark multi-label method utilized the same 2.5D UNet structure with ResNet 

backbone as the proposed method, with three output channels representing the prediction of 

the lumen, whole vessel, and background, respectively. The training objective was the sum 

of soft Dice across these three independent classes, regularized with length penalty for the 

lumen and the whole vessel classes, as in Eq. (9).

To compare with segmentation in polar coordination system26, the images were first 

resampled to 256 × 256 from 128 × 128 with nearest neighbor interpolation before polar 

conversion, and the model predictions were eventually converted back to the Cartesian 

coordinates. The same segmentation network structure as the proposed method with 128 × 

128 × 3 input size was used, and an FCN with 2t = 256 nodes was attached to the last layer 

of the UNet. Specifically, the prediction of the multi-label and the proposed tiered models 

was upsampled to 256 × 256 to maintain the same dimension as the results by the polar 

method and also to achieve a smoother segmentation.

The polar intersection over union (IoU) loss function was used for network training for 

the polar method as in Eq. (11)27. Manually extracted centerlines were used as the polar 

origin instead of the iteratively refined centerline as in19 to alleviate the challenge of fully 

automated centerline tracking for small intracranial vessels. The samples whose labels 

cannot be polar converted were removed from the training set, and two examples of such 

samples are illustrated in the Results Section Fig. 6.

Polar IoU Loss = log
∑i = 1

t min d, d′
∑i = 1

t max d, d′
, (11)

where d and d′ are the ground truth and the predicted coordinates in the polar system, 

respectively, along each of the t directions.

Ablation study was performed to assess the contribution of each component in the overall 

loss function of the proposed tiered method, where the weighting hyperparameters were the 

same as the proposed method.

RESULTS

Method Comparisons

Fig. 5. illustrates the qualitative results of the conventional multi-label method, the 

polar segmentation method, and the proposed tiered method. It can be observed that 
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the proposed tiered method achieved smoother boundaries and better resemblance to the 

ground truth manual segmentation, compared to other methods. The method helped to 

alleviate the overestimation of the vessel wall area compared to the conventional multi-label 

segmentation method, and achieved a better preservation of morphology than the polar 

method when the segmented shapes deviated further from regular circles, shown from 

the column (d) where the segmentation resembled a union of two circles, despite an over-

regulated vessel wall shaping compared to the conventional multi-label method.

Table I reports the quantitative performance of the above methods for comparison. The 

tiered method generally achieved the best measure across metrics among all the methods. 

The substantial reduction in the MAE of the NWI and areas indicates that the morphological 

improvement offered by the tiered approach has manifested favorably into quantitative 

clinical endpoints.

Table II reports the geometric integrity across the testing set. The results show that none 

of the method had the problem of lumen pixels directly connecting to the background as 

a violation of inclusion for our specific randomly selected test-set. However, the proposed 

tiered method achieved substantially less isolated pixels of vessel wall compared to the 

conventional multi-label method. The proposed method also achieved the smallest MAE of 

boundary lengths and alleviated the under-estimation of lumen area and the over-estimation 

of vessel wall area of the other two methods.

Fig. 6. shows two examples where the polar conversion encountered problems. These 

types of samples were removed from the training set, and their inference results were 

illustrated. Despite maintaining a good geometric integrity, the results were not very close 

in morphology to the “ground truth” segmentation and image cues, as the relatively complex 

morphology with tortuous boundaries was not seen during training.

Ablation Studies

We compared the results obtained by using the loss function of 1) only the soft Dice loss 

ℒFidelity, 2) soft Dice as the fidelity and the smooth loss term ℒSmooth, 3) soft Dice and the 

length penalty term ℒLength, and 4) the proposed soft Dice together with the smooth loss and 

length penalty. Fig. 7. illustrates the qualitative results of the ablation studies. The results 

show that the ℒSmooth was essential for reducing holes in the segmentation and regularizing 

morphology. The ℒLength term further regulated the morphology, and helped smooth out the 

segmentation boundaries and reduce small isolated pixel sets occur in the background. The 

quantitative results in Table III show that the proposed method generally achieved the best 

performance, and each term was critical for the method formulation.

DISCUSSIONS

DSC, HD, and MSD are adopted as metrics for the purpose of performing comparison with 

benchmark methods in literature. They do not fully reveal the intended accuracy for clinical 

endpoints in vessel segmentation in failing to capture morphological feasibility.
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With two regularization terms to encourage the smoothness of the membership transition 

and segmentation boundaries, the proposed tiered method achieved substantially better 

morphological feasibility than the conventional multi-label method without much 

compromising typical segmentation performance in DSC, HD, and MSD. The clinically 

relevant plaque assessment - NWI, Alumen, and Avessel_wall also enjoyed substantial 

improvements, promising advantages in downstream clinical tasks.

In comparison, compromised segmentation performance was observed with the polar-system 

method19, possibly caused by replacing the soft Dice loss with the polar IoU as the objective 

to maintain geometric integrity. Originally proposed to segment carotid arteries with larger 

sizes and more regular and circular/elliptical vessel shapes, the polar method was challenged 

with the finer and more torturous intracranial cases, which was the focus in our study. A 

related observation was that the finer structure in intracranial vessels also demanded more 

numerical stability during coordinate conversions: the polar method required meticulous 

definition of centerline or image center to maintain ray-wise convexity. While the training 

samples with out-of-lumen center or non-convex vessel shapes may be removed with 

additional adjudication and manual examination, it is impractical to remove such samples 

at inference time, which eventually gives rise to system breakdown or erroneous results. 

A derived benefit of our method’s robustness in being compatible with all cases is the 

avoidance of selective removal so that the network can receive a broad exposure without 

artificial bias.

Correlation exists between adjacent slices and strictly speaking the covariance needs 

to adjusted, and correspondingly the threshold for p-value. In this work, the statistical 

comparisons are intended to elucidate that the proposed method achieved improved 

morphological fidelity without compromising the performance w.r.t the commonly used 

metrics such as DSC and MSD.

It is worth noting that the geometric inclusion is not a consequence of the native level-set 

representation, where a multi-phase one uses either n − 1 or log2(n) level-set functions to 

represent n phases and allows each region to evolve28. When applied to vessel segmentation 

problems, these methods handle the inner and outer vessel wall boundaries separately 

without accounting for their relative placement15,29. The logic addition and subtraction used 

in the composite multiphase may provide some adjacency constraint but is insufficient to 

reflect the enclosing vessel “ring” on lumen28, unlike the proposed tiered level-set derived 

from a single value function. In addition to the morphological benefits with tiered level-

sets, the proposed method inherits efficiency advantage from the deep learning with fast 

inference, compared to typical level-set methods solved with iterations.

Our general method with morphological regularization is compatible with segmentation 

model of any dimensionality, including 2D and 3D. One needs to be mindful in 

modifying the level-set functional formulation to reflect the inclusion relation in the 

cross-sectional with a possible reasonably controlled tilting angle. The current method 

requires tuning two hyperparameters for balancing regularization weights. We are actively 

investigating alternative regularization schemes to either simplify the design or learn the 

hyperparameters30. Furthermore, we are working on extending the proposed method to 
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segment the entire vessel structure within the brain to further take advantage of the level-

set’s flexibility in handing topology transitions and coping with bifurcations.

While we have demonstrated the efficacy of our method with controlled data and expect the 

methodology of morphology regularization to generalize, it is also important to realize that 

its efficacy and the level of potential improvement could have a strong dependency on the 

use cases, including but not limited to the anatomy structure site of study, imaging platform, 

imaging and contouring protocols.

CONCLUSIONS

We have proposed a novel and effective segmentation method based on deep neural 

networks that particularly preserves the inclusion relationship between the lumen and 

the whole vessel. Our proposed method relates the classes intrinsically with a function 

whose value provides an ordinal indication for the tiered class membership. The proposed 

method have achieved better segmentation accuracy and morphology both qualitatively and 

quantitatively compared to benchmark methods. The proposed method can be adopted to any 

applications that have similar inclusive settings between classes to generate morphological 

feasible segmentation solutions, and the improved morphology promises better evaluation 

support.
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FIG. 1: 
Morphologically infeasible examples of vessel wall segmentation generated by a naїve 

multi-label 2.5D UNet model: (a) lumen pixels outside of the vessel, (b) isolated pixel sets, 

and (c) highly oscillatory boundary.
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FIG. 2: 
Schema of the proposed method: the training objective is the weighted sum of three loss 

terms: the fidelity on soft Dice ℒFidelity as Eq. (6), the l2-norm of the network predicted 

value function gradient ℒSmooth as Eq. (7), and the total variation-based length penalty 

ℒLength as Eq. (9) on the inner and outer vessel wall boundaries; the inference process 

simply maps the network output y into the predicted classes according to its values in the tier 

system.
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FIG. 3: 
Illustration of level-set scheme: (a) is the output level-set map from the segmentation neural 

network: Ω1 denotes the lumen, Ω2 is the vessel wall, and D − (Ω1 ∪ Ω2) is the background. 

The dashed blue line illustrates the change of level-set function height with a ray starts from 

the background and encounters the vessel wall and lumen subsequently and goes back to the 

background. (b) is the illustration of the level-set function of the whole vessel and the lumen.
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FIG. 4: 
Illustration of the segmentation neural network: a skip-connection is inserted in each 

convolution block. Consecutive VWI slices are input to the network and a single-channel 

prediction of the background (black), lumen (gray), and the vessel wall (white) is output via 

sigmoid activation for the middle slice.
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FIG. 5: 
Qualitative visualization: each column is an example slice, and each row on the top panel 

corresponds to a different segmentation method corresponding to the cross-sectional vessel 

wall image on the bottom. The colors gray, white, and black indicate the lumen, vessel wall, 

and background, respectively.
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FIG. 6: 
Two example slices in two rows where polar conversion is not applicable. (a),(b),(c): 

three consecutive VWI slices; (d): polar conversion of the middle slice (b); (e): ground 

truth lumen (yellow) and vessel wall (white) of (b), the red crossing shows the location 

of the image center (or polar origin); (f): the predicted labels by the polar method; (g): 

polar-converted ground truth lumen segmentation of (b); (h): polar-converted ground truth 

whole vessel segmentation of (b). The first example shows that when the lumen area is too 

small and the pre-detected lumen center (image center) is outside of the lumen area, the 

polar method encounters multiple intersections with the vertical axis. The second example 

shows that a non-convex shape leads to problems in polar conversion, as a line radiates from 

a detected lumen center can encounter multiple points on the segmentation boundary.
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FIG. 7: 
Ablation studies: each column is an example slice, and each of the first four rows is 

a different loss function. The proposed method achieves the best and smoothest shaping 

compared to with other objective alternatives, and thus each term is critical to the proposed 

loss function. Gray is the lumen, white the vessel wall, and black the background.
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TABLE I:

Model Comparison in Conventional and Clinical Measures

Input/Class/Metric DSC HD_95 (mm) MSD (mm) A_MAE NWI_MAE

Conventional multi-label 
segmentation

Lumen 0.924 ± 0.047 0.298 ± 0.477 0.087 ± 0.056 273.0 ± 357.5
0.065 ± 0.028*

Vessel Wall 0.794 ± 0.082 0.394 ± 0.431* 0.119 ± 0.059* 600.5 ± 476.5*

Polar-system segmentation
Lumen 0.893 ± 0.053* 0.643 ± 0.703* 0.233 ± 0.103* 466.8 ± 400.9*

0.077 ± 0.035*
Vessel Wall 0.781 ± 0.079* 0.698 ± 0.609* 0.233 ± 0.070* 554.7 ± 460.7*

Proposed tiered segmentation
Lumen 0.925 ± 0.048 0.286 ± 0.436 0.083 ± 0.037 257.6 ± 325.9

0.050 ± 0.015
Vessel Wall 0.786 ± 0.084* 0.345 ± 0.419 0.103 ± 0.032 490.6 ± 387.5

*
one-sided t-test with p < 0.05, and bold numbers denote the best measure for each class across methods. The image size is 256 × 256.
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TABLE II:

Model Comparison in Geometric Measures

Input/Class/Metric A A_ME L L_MAE N Iso N V

Conventional multi-label 
segmentation

Lumen 2810 ± 1357 −138.2 ± 428.0 227.4 ± 55.13 13.15 ± 23.83*
4.015 ± 40.82* 0

Vessel Wall 3361 ± 1098 454.5 ± 617.3 335.4 ± 59.99 18.96 ± 22.44

Polar-system segmentation
Lumen 2490 ± 1263 −458.1 ± 410.8 233.8 ± 60.67 13.34 ±18.61*

0 0
Vessel Wall 3274 ± 1169 367.5 ± 620.4 350.1 ± 67.37 29.18 ± 20.69*

Proposed tiered segmentation
Lumen 2933 ± 1397 −15.45 ± 415.1 231.5 ± 55.17 12.37 ± 23.26

0.050 ± 0.873 0
Vessel Wall 2627 ± 1035 −279.1 ± 559.4 318.8 ± 62.34 15.32 ± 22.54

*
one-sided t-test with p < 0.05, and bold numbers denote the best measure for each class across methods. For the length measure L, lumen denotes 

the inner boundary, and vessel wall denotes the outer boundary for simplicity. The image size is 256 × 256.
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TABLE III:

Ablation Studies

Input/Class/Metric DSC HD_95 (mm) MSD (mm) NWI_MAE

Soft Dice only
Lumen 0.924 ± 0.048 0.332 ± 0.539* 0.091 ± 0.062*

0.0651 ± 0.0260*
Vessel Wall 0.791 ± 0.085 0.402 ± 0.454* 0.123 ± 0.062*

Soft Dice + smooth loss
Lumen 0.925 ± 0.046 0.289 ± 0.440 0.085 ± 0.040

0.0504 ± 0.0163
Vessel Wall 0.795 ± 0.080 0.359 ± 0.429* 0.106 ± 0.038*

Soft Dice + length loss
Lumen 0.925 ± 0.047 0.327 ± 0.506* 0.096 ± 0.090*

0.0503 ± 0.0148
Vessel Wall 0.793 ± 0.078 0.370 ± 0.426 0.109 ± 0.054*

Soft Dice + smooth loss + length loss
Lumen 0.925 ± 0.048 0.286 ± 0.436 0.083 ± 0.037

0.0498 ± 0.0146
Vessel Wall 0.786 ± 0.084* 0.345 ± 0.419 0.103 ± 0.032

*
one-sided t-test with p < 0.05, and bold numbers denote the best measure for each class across all methods.
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