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Abstract: 

A parameter free version of the recently developed driven Liouville-von Neumann equation [J. Chem. Theo. Comp. 

10, 2927-2941 (2014)] for electronic transport calculations in molecular junctions is presented. A single driving rate, 

appearing as a fitting parameter in the original methodology, is replaced by a set of state-dependent broadening factors 

applied to the different single-particle lead levels. These broadening factors are extracted explicitly from the self-energy 

of the corresponding electronic reservoir and are fully transferable to any junction incorporating the same lead model. 

The performance of the method is demonstrated via tight-binding and extended Hückel calculations of simple junction 

models. Our analytic considerations and numerical results indicate that the developed methodology constitutes a 

rigorous framework for the design of "black-box" algorithms to simulate electron dynamics in open quantum systems 

out of equilibrium.  
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Introduction 

Over the past decade, the study of electron dynamics in open quantum systems out of equilibrium has gained 

growing attention within the molecular electronics community[1][2][3][4][5][6][7][8][9]. Many important aspects of 

molecular junctions have been addressed including the characterization of transient current dynamics,[10][11][12] 

dynamical response to time-dependent bias voltages,[13][14] optically induced current 

variations[15][16][17][18][19][20][21][22][23][24] and non-equilibrium thermodynamics in externally driven systems. 

[25][26][27][28] Despite the many developments made in the field, understanding dynamical effects in molecular 

junctions remains a major theoretical, computational, and experimental challenge. This challenge needs to be addressed 

at a fundamental level to enable the future design of molecular-based electronic components with fast response times.  

In recent work we presented the driven Liouville-von Neumann (DLvN) equation of motion (EOM) for simulating 

time-dependent electron transport in molecular junctions. [29][30][31][32][3][33] Within this approach the molecular 

junction is represented by a fully atomistic finite model system consisting of two sufficiently large lead sections bridged 

by an (extended-)molecule. Open boundary conditions are enforced by augmenting the Liouville-von Neumann EOM 

with an appropriate non-unitary source/sink term. The latter continuously drives the leads state occupations toward the 

equilibrium Fermi-Dirac distribution of the (implicit) electronic reservoir to which each lead is coupled. With 

appropriate choices for the chemical potential and the electronic temperature of the various reservoirs a non-equilibrium 

charge-polarized state, characterized by charge accumulation and depletion near the corresponding junction model 

edges, is achieved. This, in turn, results in well-defined voltage and electronic temperature gradients that induce 

dynamic current flow through the system. The performance of the DLvN approach was demonstrated for simple 

molecular junctions based on tight-binding (TB) Hamiltonian models [29][30] as well as for explicit non-orthogonal 

basis-set representations based on extended-Hückel (EH) theory.[31] The dynamics obtained by the DLvN EOM were 

shown to conserve density matrix positivity and to obey Pauli's exclusion principle.[29][30][31][32] Furthermore, the 

method was shown to accurately describe dynamic currents in junctions subjected to time-dependent perturbations.[23] 

The success of the DLvN approach suggests that it offers an efficient and physically motivated methodology for 

time-dependent charge transport in molecular junctions. Nevertheless, the original theory incorporates a single fitting 

parameter that hinders its complete first-principles implementation[34]. This parameter is a driving factor that dictates 

the rate at which the system is driven out of equilibrium. While the results were shown to be fairly insensitive to the 

exact value of the driving rate [29], in practice it has to be fitted to reproduce reference steady-state Landauer currents. 

Interestingly, for simple model systems it was shown that an appropriate value of the driving rate can be deduced from 

physical considerations involving wave packet reflection time-scales at the boundaries of the finite junction model.[29] 

This suggests that the driving rate should be generally attainable from first-principles considerations. 

It is the purpose of the current study to present a rigorous methodology that replaces the single driving rate 

appearing in the original theory by a set of single-particle lead state broadening factors that are extracted explicitly from 

the self-energy of the corresponding reservoir. This eliminates the need for any fitting procedure, resulting in an 

autonomous methodology that can be readily implemented within existing packages in a "black box" fashion. 
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Methodology 

Within the DLvN approach, a finite junction model is formally divided into lead sections that are bridged by an 

extended-molecule region (See Fig. ure 1a). The latter incorporates the molecule augmented by lead sections that are 

sufficiently large such that the electronic properties at their far edges are converged to those of the infinite lead. 

Assuming a two-lead setup the original EOM has the following block form:[29] 

 
 

  
   

 

 
       

 

 

 

 
 
     

  
 
         

 
 
 
    

  
 
 
    

    
 
 
 
    

     
 

 

 
 
  (1) 

Here,   and   are the Hamiltonian matrix representation and density matrix of the entire finite junction, respectively, 

given in the eigenstate basis of the individual system sections (see Fig. ure 1b);      are the density matrix blocks of 

the left and right lead sections, respectively;         and         represent the lead/extended-molecule coherences; 

    
 

 are diagonal target density matrices, whose fixed diagonal elements follow the Fermi-Dirac occupation 

distribution sampled at the left/right lead eigenvalues with chemical potential and electronic temperature of the 

corresponding reservoir to which the lead section is implicitly coupled;   is the reduced Plank constant; and   is a real 

positive number determining the rate at which the leads are driven toward their target equilibrium states. 

In the energy domain, the choice of a single driving rate corresponds to the application of a uniform Lorentzian 

broadening to the entire single-particle lead state manifold. This broadening represents the effect of coupling the finite 

lead section to an implicit semi-infinite electronic reservoir within the wide band approximation. In practice, in order to 

obtain a continuous lead density of states (DOS) in the transport energy window [35], the discrete DOS should be 

slowly varying in this range such that the broadening factor can be chosen as the corresponding typical level spacing. 

Furthermore, only when the different leads present similar electronic structure can the same broadening factor be 

applied to all. 

In order to eliminate the ambiguity involved in the choice of the driving rate and to represent the effect of coupling the 

leads to external reservoirs more accurately, we introduce state-dependent broadenings to each lead level. To this end, 

we employ Green's function (GF) theory, where the effects of coupling a subsystem (in our case the finite lead section) 

to its environment (the semi-infinite reservoir) are described by augmenting the Hamiltonian of the subsystem with a 

self-energy operator, in which information as to the electronic structure of the environment and its coupling to the 

subsystem is encoded. The real part of the self-energy operator constitutes level shifting within the subsystem, whereas 

the imaginary part induces level broadening due to the finite life-time of the coupled states. 

To obtain the self-energy operator, explicit reservoir models are constructed as duplicates of the finite lead sections 

(see Fig. ure 1c).[36] The energy dependent matrix representation of the retarded surface Green's function of each 

isolated reservoir,     
                  

    , is first calculated. Here,     
  is the Hamiltonian matrix representation 

of the uncoupled semi-infinite reservoir in a given basis-set,      is the corresponding overlap matrix,       , 

where   is a real variable representing the electron energy and      is a small imaginary part added to soften 

singularities (see Supporting Information for a discussion of the sensitivity of the calculated state-dependent 

broadenings to the value of  ). To this end, we use the iterative principal layer approach[37][38][39][40][41][42][43], 
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where the semi-infinite reservoir is sliced into finite sections (termed layers, see Fig. ure 1c) that are sufficiently wide 

such that interactions beyond nearest-neighboring layers can be neglected. Under the above conditions,     
  assumes a 

block tri-diagonal form, with the dimension of each block being that of the principal layer. An efficient iterative 

algorithm is then used to successively augment the surface layer by bulk layers until convergence of the surface 

electronic properties, to within the required accuracy, is reached. The resulting     
       has the dimension of one 

principal layer. Next, the reservoir's retarded self-energy matrix is constructed via     
              

           
                      , where        and        are the real-space lead/reservoir overlap and coupling 

matrix blocks, respectively, calculated between the finite lead section and its adjacent reservoir principal layer (see Fig. 

ure 1c), with               
 

 and              
 

. 

 

Figure 1: (a) Schematic real-space representation of a finite molecular electronic junction model formally divided into a 

left and right lead sections bridged by an extended molecule; (b) Energy representation of the same molecular junction 

model in the basis of eigenstates of the different system sections; (c) Schematic representation of the iterative principal 

layer procedure to obtain the reservoir's surface Green's function and of the coupling and overlap matrix blocks between 

the lead section and its adjacent reservoir's first principal layer, required to construct the self-energy matrix. 

 

For each bare lead state,      , the reservoir's self-energy, evaluated at the corresponding energy   , is added to the finite 

lead model Hamiltonian           
      in the real-space (site) representation.[44][45] The resulting dressed 

Hamiltonian is then diagonalized and the complex eigenvalue corresponding to the original bare lead state       is 

extracted, by comparing the eigenvectors of the dressed Hamiltonian to those of the bare lead Hamiltonian. The 

imaginary part (multiplied by -2)[45] of this eigenvalue is chosen as the (energy independent) broadening factor of state 

      (see Appendix A). We note that by evaluating the reservoir's self-energy at the energy of the given lead eigenstate a 

"local wide band approximation" is invoked, where     
     is assumed to be weakly dependent on energy in the 

vicinity of    (see Supporting Information for a discussion regarding the validity of this approximation).[46][47] It 

c. 

b. a. 
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should be emphasized that unlike the full wide band approximation, which assumes constant (i.e., independent of the 

electron energy) and uniform broadening of all lead states, our approach results in constant but state-dependent 

broadening factors. The latter, which are explicitely derived from the reservoir's self-energy, allow for a more reliable 

representation of the electronic structure of the semi-infinite lead by the finite lead model. 

To identify which dressed lead state corresponds to the bare lead state       we turn on the lead/reservoir coupling 

gradually.[44] To this end, we multiply the lead/reservoir overlap and coupling matrices         and         by a 

scaling factor that is progressively ramped up from 0 to 1. At each step,  , the (left or right) eigenfunction,       , of the 

new dressed Hamiltonian that has the largest overlap,               , with the eigenfunction that was associated with the 

bare lead state       in the previous step,         , is identified and stored.[45][48] This adiabatic connection assumption 

allows us to follow the evolution of the bare lead state continuously into the fully dressed one. As a complementary test 

we also follow the gradual shift in the real-part of the lead eigenvalue with increasing coupling to the reservoir, 

allowing us the association of the bare lead state with it fully dressed counterpart. These shifts are usually found to be 

small relative to the full bandwidth of lead states and are hence neglected throughout the rest of the calculation (see 

Supporting Information for a discussion regarding the validity of this approximation). 

The procedure described above is repeated for all eigenstates of a given finite lead section, resulting in a set of state-

specific broadening factors. Since the calculation requires only the bare lead Hamiltonian as input it is performed only 

once per given lead. The obtained broadening factors are then fully transferable to every molecular junction using the 

same lead model. 

Given the set of state broadening factors the DLvN EOM is written as follows (see Appendix B): 

 
 

  
   

 

 
       

 

  
 

          
                        

               
                              

    

   (2) 

where    and    are diagonal matrix blocks of dimensions of the finite left and right lead model basis-sets, respectively, 

containing the calculated state-specific broadening factors on their diagonals. Notably, this EOM naturally reduces to 

the original DLvN EOM of Eq. 1 when a single uniform driving rate is used (see Appendix B). 

 

Testing and Validation 

To validate the developed parameter-free DLvN (PF-DLvN) methodology we performed a set of time-dependent 

transport calculations on several test systems. We start from the simplest one-dimensional tight-binding (TB) junction 

model, consisting of two TB chains representing the leads bridged by a third TB chain acting as the active molecular 

region (all model parameters appear in the caption of Fig. ure 2). The calculated state-dependent broadening factors for 

lead models consisting of 200 and 300 sites are presented in Fig. ure 2a. The broadening factors form a band that 

reaches a maximum at the lead's Fermi energy and vanishes near the band edges. This can be rationalized by invoking 

Fermi's golden rule for a single lead level coupled to the entire reservoir state manifold.[49] Here, the lead level 

broadening is given by    
  

 
          

 
        , where          is the coupling matrix element between lead state 

      of energy    and reservoir state       of energy   , and         is the Dirac delta function. Therefore, within this 
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approximation the broadenings follow the lead/reservoirs coupling scheme that forms a Newns-Anderson type band. 

[30][50] Increasing the lead size by a factor of 1.5 without modifying its bandwidth result in a corresponding increase 

of the density of states. This is followed by a reduction of the calculated broadening factors such that the 200 and 300 

sites lead models present an overall similar continuous density of states. In both cases, it is clearly seen that the choice 

of a single uniform driving rate is justifiable in a small energy window around the Fermi energy but should be done 

with care when larger bias voltages, approaching the lead band edges, are applied. 

 

Figure 2: Application of the PF-DLvN method for a one-dimensional TB junction (see schematic at the upper right 

panel) constructed from two TB chain leads consisting of 200 or 300 sites each, bridged by an extended molecule 

comprising a 10 site TB chain molecular section embedded between two 50 site TB chains. (a) Calculated state-

dependent lead level broadenings for a finite lead model size of 200 (blue '+' marks) and 300 (black '+' marks) sites. (b) 

Time-dependent current at a bias voltage of 0.3 V and reservoir electronic temperature of 0 K, calculated using the 

procedure described in Ref. [29] for microcanonical dynamics [1] without the driving term (brown and red lines), 

compared with PF-DLvN simulations (blue and black lines) performed with lead model sizes of 200 (blue and brown 

lines) and 300 (black and red lines) sites. The steady-state Landauer current, calculated using the procedure described in 

Ref.[29], is presented with an X mark. On-site energies of all sites are taken as 0 eV. The hopping integrals between all 

lead and molecule sites, as well as all lead/molecule hopping integrals, are taken as -0.2 eV. (c) Same as (b) but with 

lead/molecule coupling of -0.05 eV. A 4
th

 order Runge-Kutta algorithm is used to propagate Eq. 2 with a constant 1 fs 

time-step.[51] 
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The simulated time-dependent currents for a bias voltage of 0.3 V, applied by a symmetric shift of the chemical 

potentials of the two reservoirs in the target density matrices, are presented in Figs. ure 2b and ure 2c for strong and 

weak lead/molecule coupling, respectively. Polarized initial conditions are employed where the leads are populated 

according to their target level occupations and the molecule levels are filled up to the Fermi energy of the entire finite 

model system. Using the calculated broadening factors both the 200 and 300 lead site model systems present very 

similar current traces that reproduce the Landauer steady-state current and the plateau regions in the 

microcanonical[1][2][4][5][6][7] simulation. The latter being performed by running unitary LvN dynamics starting from 

the same non-equilibrium initial polarized conditions. This provides a clear indication of the ability of the developed 

methodology to reliably simulate current dynamics in open quantum systems with no parameter fitting involved. 

Next, we turn to examine the performance of the PF-DLvN method for non-orthogonal basis-set representations of 

molecular junctions, within the framework of extended Hückel (EH) theory.[31] To this end, a Slater orbital basis-set is 

introduced to evaluate the overlap and Hamiltonian matrix representation elements using the procedure and parameters 

described in Ref. [31]. First, we consider a hydrogen chain junction model equivalent to the TB chain model discussed 

above. Here, two hydrogen chain leads, 300 atoms in length each, are bridged by a third 110 atom hydrogen chain 

acting as the extended-molecule region. The time-dependent current obtained at a bias voltage of 0.5 V and a uniform 

inter-atomic distance of 2 Å is presented in Fig. ure 3a. Here, as well, the PF-DLvN current trace matches well the 

microcanonical simulation results up to the point where the latter exhibits current inversion due to wave-packet 

reflection from the edges of the finite lead models. Furthermore, the steady-state current corresponds well with the 

Landauer current (X mark) calculated using the procedure described in Ref. [31]. The broadening factors, plotted in the 

inset of Fig. ure 3a, form a band similar to the one obtained in the TB calculation (Fig. ure 2a), with slight asymmetry 

around the Fermi energy (-13.5 eV) due to the non-uniform density of states obtained from the EH model. 

A somewhat more involved picture is obtained when considering finite-width lead models. Fig. ure 3b presents the 

current dynamics obtained for a 110 atoms hydrogen chain bridging two finite-width hydrogen lead models constructed 

from five 100 atoms long rows each. Nullification of all broadening factors results in microcanonical dynamics that, in 

the present case, suffers from strong current oscillations. This indicates that the finite lead models used are insufficient 

to obtain a stable quasi-steady-state. To remedy this, much larger finite leads have to be modeled, thus hindering the 

practical applicability of the microcanonical approach to a reliable description of current dynamics in such molecular 

junctions. Using the PF-DLvN approach, after a typical initial rise the current trace gradually approaches the Landauer 

results, indicating the suitability of the calculated broadening factors for driving the system toward the required non-

equilibrium state. Unlike the atomic chain leads discussed above, however, here these broadening factors form five 

bands (see inset of Fig. ure 3b) around the Fermi energy (-13.09 eV) that correspond to the five single-particle states 

spanned along the direction perpendicular to the main lead axis by the minimal basis-set used.[30] 
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Figure 3: Application of the PF-DLvN approach to an extended Hückel non-orthogonal basis-set representation of 

hydrogen-based molecular junction models. The main panels present the PF-DLvN (black line) and the microcanonical 

(red line) time-dependent currents, calculated using the procedure described in Ref. [31], at a bias voltage of 0.5 V and 

reservoir electronic temperatures of 0 K for a 110 atom extended-molecule chain bridging: (a) two 300 hydrogen atom 

chain-lead models, and (b) finite-width lead models constructed from 5 rows of 100 hydrogen atom chains each (see 

schematics above the diagrams). The corresponding steady-state Landauer currents, calculated using the procedure 

described in Ref. [31], are presented as reference by the X marks. Insets: lead state-dependent broadening factors 

calculated using the PF-DLvN methodology (black '+' marks). Uniform nearest-neighbors inter-atomic distances of 2 Å 

are used. An adaptive time-step 5
th

 order Runge-Kutta algorithm is used to propagate Eq. 2.[51] 

 

As a last test case we consider a carbon chain junction model, where each atomic center contributes four (one 2s and 

three 2p) Slater orbital basis functions. The leads are modeled by 200 carbon atom chains each bridged by a 110 atom 

extended-molecule carbon chain. The lead broadening factors of this system form three bands (see Fig. ure 4a). The two 

higher broadening bands appearing in the ranges (-23.5)-(-18.6) eV and (-13.1)-(-8.5) eV correspond to the valence and 

conduction bands of the system, respectively. The lower band appearing between -11.8 and -10.8 eV corresponds to the 

increased density of states in the vicinity of the Fermi energy of -11.6 eV due to the appearance of van Hove 

singularities. 

The resulting PF-DLvN time-dependent current approaches the Landauer reference value at steady-state (Fig. ure 4b) 

providing additional support for the physical validity of the developed methodology. This is further emphasized in light 

of the microcanonical simulation results that present a complex set of current plateaus with abrupt current variations 

(Fig. ure 4b). This reflects the different time-scales associated with the dynamics of various lead states as manifested by 

the three broadening factor bands in Fig. ure 4a. While one of the obtained plateaus indeed matches the correct steady-

state value it is difficult to assess, without a priori knowledge, when does the system attain the correct quasi-steady-

state. 
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Figure 4: Application of the PF-DLvN approach to an extended Hückel non-orthogonal basis-set representation of a 

carbon chain molecular junction constructed from 200 atom lead models bridged by a 110 atom extended-molecule 

section. (a) The calculated state-dependent lead level broadening factors (black '+' marks). Inset: the corresponding lead 

model density of states calculated by broadening each finite lead level with a normalized Gaussian function of width 

0.062 eV that corresponds to the highest broadening factor calculated for this system. (b) Current traces obtained using 

the PF-DLvN methodology (black line) and the microcanonical approach (red line), using the procedure described in 

Ref.[31], for a bias voltage of 0.5 V and leads electronic temperature of 0 K. The reference Landauer steady-state 

current, calculated using the procedure described in Ref.[31], is represented by the X mark. A uniform inter-atomic 

distance of 2 Å is used throughout the junction model. An adaptive time-step 5
th

 order Runge-Kutta algorithm is used to 

propagate Eq. 2. [51] 

 

Finally, it should be noted that all systems considered herein consist of identical lead models that present relatively 

uniform DOS within the Fermi transport window. This suggests that the use of a single driving rate should be sufficient 

to sustain appropriate open boundary conditions. Indeed, if one uses the maximal broadening value calculated for each 

system using the     procedure described above as the single driving rate, the resulting current traces and steady-

state occupations are comparable to those obtained using the full PF-DLvN procedure (see Supporting Information). 

Nevertheless, more realistic model systems, like those considered in Ref.[31], often exhibit complex non-uniform DOS 

in the vicinity of the lead Fermi energy. For such systems, the use of a single driving rate per lead is insufficient for 

obtaining an appropriate description of the lead surface electronic properties with a finite lead model. Hence, the entire 

set of state-dependent broadening factors should be used to drive the system out of equilibrium. Notably, the 

computational overhead associated with using state-dependent broadenings over the single driving rate during the 

dynamics is negligible. 
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Summary and Conclusions 

A parameter free version of the driven Liouville von Neumann approach to time-dependent simulation of non-

equilibrium electron dynamics in open quantum systems was presented. The computational overhead, with respect to 

the single fitting parameter version of the method, involves the calculation of the reservoir self-energy operator and a 

diagonalization of the corresponding dressed lead Hamiltonian block for the evaluation of each state-dependent 

broadening factor. The whole procedure is performed only once per lead/reservoir model and the obtained set of 

broadening factors is fully transferable to any molecular junction using the same lead model. The performance of the 

method was demonstrated on tight-binding and non-orthogonal basis-set representations of simple molecular junctions 

models, including hydrogen and carbon atomic chains bridging one-dimensional and finite-width lead models. The 

developed methodology eliminates the need for any fitting procedure. This potentially allows for a black-box 

implementation within the framework of advanced electronic structure methods, at least under the assumption that 

single-electron states can be interpreted as approximate quasi-particle states[52][53][54]. 
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Appendix A – Derivation of the     Approach for Calculating Lead State-Dependent 

Broadening Factors. 

The accurate description of quantum dynamics in large systems is usually a prohibitively demanding computational 

task. Nevertheless, often it is sufficient to focus on the dynamics of a small section of the entire system. In these cases, 

the equation of motion can be recast as a sum of terms describing the internal subsystem dynamics and the influence of 

its coupling to the rest of the system. In the context of the present study, we are interested in describing electron 

dynamics within a finite lead model that is coupled to an external semi-infinite reservoir. The contribution of the 

reservoir to the lead dynamics,     , can be expressed in terms of the lesser Green's function,        , and 

Hamiltonian,  , matrix representations of the entire lead/reservoir system as follows: [23][55] 

         
 

 
        

          
             (A1) 

Here,   and   are state indices within the finite lead model and the index   runs over all reservoir states. The lesser GFs 

can be factorized using Langreth rules to obtain:[23][55] 

  
   
       

 

  
       

                  
          

 

  
       

                
           

   
       

 

  
       

              
              

 

  
       

            
               

  (A2) 

where          ,          ,              ,               are the advanced and retarded GFs of the entire system in the 

presence and absence of lead/reservoir coupling, respectively, and             is the lesser GF of the entire uncoupled 

lead/reservoir system. The indices   and   run over all lead and reservoir states, respectively. 

Inserting the expressions of Eq. A2 in Eq. A1 yields: 

       

 
 

   
             

                      
                  

                    
          

      
                

                        
              

                      (A3) 

We can now define the retarded, advanced, and lesser self-energies as follows: 

  

   
                

                  

   
                

                  

   
              

                

   (A4) 

And rewrite Eq. A3 as: 
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Sink Term 

The first sum in Eq. A5 can be identified as the sink term absorbing electrons traveling in the lead toward the reservoir: 

    
        

 

  
        

         
               

           
          (A6) 

The retarded and advanced self energies appearing in Eq. A6 can be recast as Fourier integrals of the form: 

  
   
          

  

  
   

 

 
        

         
  

  
   

 

 
           

               

   
          

  

  
   

 

 
        

         
  

  
   

 

 
           

               

   (A7) 

where we have used the definitions appearing in Eq. A4 and the fact that we are working in the basis of eigenfunctions 

of the isolated lead and reservoir subsystems (state representation), where the isolated reservoir's retarded and advanced 

GFs are diagonal. 

Invoking the wide band approximation (WBA), we can neglect the real-part of the isolated reservoir's retarded and 

advanced GFs, associated with level shifting. Notably, in all numerical examples appearing in the main text lead level 

shifts due to coupling to the reservoir were found to be very small with respect to the full lead energy bandwidth and 

level crossing was rarely observed (see Supporting Information for further discussion regarding the effect of coupling to 

the reservoir on the lead level shifts). This indicates the validity of this approximation. The remaining imaginary part 

can be written as: 

     
                               

 

          
                  

          

       
    

                
  

       
    

  

             (A8) 

Inserting Eq. A8 in Eq. A7 the retarded and advanced self-energies can be approximated as: 

  
   
              

  

  
   

 

 
                     

   
             

  

  
   

 

 
                     

   (A9) 

Eq. A9 can be rewritten in terms of the broadening matrix element: 

    
                            (A10) 

as: 

  
   
          

 

 
 
  

  
   

 

 
        

       

   
         

 

 
 
  

  
   

 

 
        

        

   (A11) 

The WBA further implies that    
        is energy independent (see Supporting Information for a discussion regarding 

the validity of this assumption) for all indices   and   it can be taken out of the integration in Eq. A11 to give: 

  
   
          

 

 
   
     

  

  
   

 

 
       

 

 
    

          

   
         

 

 
   
     

  

  
   

 

 
       

 

 
    

          

  (A12) 

Inserting Eq. A12 in Eq. A6 gives: 
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        (A13) 

where we have introduced the reduced density matrix of the finite lead model                   . 

Eq. A13 can be written in matrix form as: 

           
 

  
                               

 

  
                   (A14) 

If we further assume that the lead states are not mixed by the coupling to the reservoir,       becomes a diagonal matrix 

holding the state-dependent (and energy independent) broadening factors and Eq. A14 becomes identical to the lead 

block damping term appearing in Eq. 2 above. 

 

Source Term 

The second sum in Eq. A5 can be identified as the source term injecting electrons from the reservoir traveling toward 

the extended molecule through the lead: 

    
          

 

  
        

           
             

         
            (A15) 

The lesser self-energies appearing in Eq. A15 contain information regarding the reservoir states populations. To obtain 

this information explicitly we first assume, as above, that the lead states are not mixed by the bath such that both the 

lesser Green's function appearing in Eq. A4 and the lesser self-energy itself are diagonal. Next, the diagonal elements of 

the lesser self-energy can be expressed in terms of a Fourier integral: 

    
                 

                    
  

  
    

 
       

    
               (A16) 

Since the lesser GF appearing in equation A16 relates to the uncoupled reservoir at thermal equilibrium it can be 

expressed in terms of the advanced and retarded GFs as: 

    
                  

              
                                        (A17) 

where the spectral function of the uncoupled reservoir,       , consists of a set of Dirac   functions centered at the 

corresponding eigenvalues. Inserting A17 in A16 gives: 

    
            

  

  
  

       

                              
        

               (A18) 

Using this in the expression for the source term in Eq. A15 one obtains: 

   
          

 

  
        

                
        

                          
        

                 
           

 

  
            

     
          

        

         
        

 
        

    
              (A19) 

Next, we assume that the lead Hamiltonian is time-independent such that the retarded and advanced GFs appearing in 

Eq. A19 have time-translational invariance and can be written as the following Fourier integral:  
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   (A20) 

Inserting these expressions in the time integrals appearing in Eq. A19 we obtain: 
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and 
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where we have defined    
  

 
. Inserting Eqs. A21 and A22 in Eq. A19 yields: 

    
          

 

 
            

    
             

         
           (A23) 

Following the assumption that the lead state are not mixed by the coupling to the reservoir we focus on the diagonal 

elements of the source term appearing in Eq. A23: 

   
          

 

 
            

    
             

         
          

 

 
           

      
           

          

 

 
           

          
 

 
             

                 (A24) 

where we have introduced the spectral function              
           

         and used the properties of the Dirac 

  function in the last equality. Using the definition of the broadening matrix elements of Eq. A10 above, Eq. A24 can 

be written as: 

    
          

 

 
 
  

  
       

               (A25) 

Since the spectral function,       , is peaked around the lead eigenvalue    we can evaluate the broadening at this 

eigenvalue    
           

         and take it out of the integral to obtain the equilibrium density matrix (see Supporting 

Information for a discussion regarding the validity of this approximation): 

    
          

 

 
   
         

  

  
           

 

 
   
           

  
 

  
    

           
     

    
           (A26) 

Defining the diagonal matrix       whose diagonal elements host the values of    
         and the diagonal matrix    

whose diagonal elements have the Fermi-Dirac distribution sampled at the isolated lead's eigen-energies       encoding 

the chemical potential and electronic temperature of the corresponding reservoir, we can rewrite Eq. A26 as: 

    
          

 

  
          

 
  (A27) 

This is identical to the lead block injection term appearing in Eq. 2 above.  
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Appendix B – Heuristic Derivation of the Driven Liouville von-Neumann Equation with State-

Specific Broadening Factors 

To obtain the DLvN equation in the case of state-dependent broadening factors we follow the heuristic derivation of 

the original equation with a single driving rate, appearing in Ref. [29]. First, the Hamiltonian of the entire finite junction 

model is written in the basis of eigenfunctions of the leads and the extended molecule section. The procedure to 

transform the real-space (site) Hamiltonian to the energy (state) representation in the case of orthogonal and non-

orthogonal basis-set representations is given in Refs. [29] and [31], respectively. Next, to account for absorption of 

outgoing electrons propagating through the leads towards the edges of the finite lead models, the Hamiltonian blocks 

representing the lead sections are augmented by diagonal imaginary matrices        representing the broadening (or 

damping rate) of each single-particle lead state. For a two-lead setup this translates to the following form: 

             

        

             

        

    
    
   
    

   

            

             

            

   (B1) 

Inserting this expression in the Liouville von Neumann Eq. A8 of Ref. [29] and assuming that in the state representation 

   and    are diagonal blocks, the absorption term obtains the following anti-commutation form (see Eq. A9 of 

Ref.[29]): 

 
 

 
             

 

 
                  

 
 

 
  
    
   
    

  

           
             

           
   

           
             

           
  

    
   
    

   

 
 

 
  

                 
   

                 

   

           
               
           

   

 
 

 
 

                             
               

                             

   
 

 
 

                            
               

                            

   (B2) 

The emission term is obtained in a similar manner by replacing the density matrix of the system with the density matrix 

of the electronic reservoirs and inverting the overall sign (see Eq. A12 of Ref.[29]): 

 

 
          

 

 
              

 

 
  
    
   
    

  
  
   
   
    

 
   

  
   
   
    

 
  

    
   
    

   

 

 
  
    

   
   
      

 
   

  
     
   
    

   

   
 

 
 
      

     
   
        

   

   (B3) 

where     
  are diagonal matrices holding equilibrium Fermi-Dirac single-particle state occupations on their diagonal 

with the chemical potential and electronic temperature of the left/right reservoirs. 

Summing the absorption (Eq. B2) and emission (Eq. B3) contributions results in the driving term appearing in Eq. 2 of 

the main text: 
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   (B4) 

Defining        and        we obtain: 

  
 

 
            

 

 
           

 

  
 

          
                        

               
                              

    

   (B5) 

When using a uniform driving rate the broadening matrices obtain the structure        and       , where      are 

unit matrices of dimensions of the left and right lead model basis. In this case, the driving term of Eq. B5 assumes the 

form: 

 
 

 
                

 

  
 

          
                        

               
                              

    

  

 
 

  
 

       
            

           

                 
  

   
 

 

 

 
 
     

  

 
         

 

 
      

 

 
     

    
 

 
          

 

 

 
 
  (B6) 

This is the driving term appearing in the original DLvN EOM of Eq. 1. 
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