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Abstract of the Thesis

Estimation of a Ramsay-Curve Item Response

Model By The Metropolis-Hastings

Robbins-Monro Algorithm

by

Scott Lee Monroe

Master of Science in Statistics

University of California, Los Angeles, 2013

Professor Ying Nian Wu, Chair

In Ramsay curve item response theory (RC-IRT, Woods & Thissen, 2006),

the shape of the latent trait distribution is estimated simultaneously with the

item parameters. In its original implementation, RC-IRT is estimated via Bock

and Aitkin’s (1981) EM algorithm, which yields maximum marginal likelihood

estimates. This method, however, does not produce the parameter covariance

matrix as an automatic byproduct upon convergence. In turn, researchers are

limited in when they can employ RC-IRT, as the covariance matrix is needed for

many statistical inference procedures. The present research remedies this problem

by estimating the RC-IRT model parameters by the Metropolis-Hastings Robbins-

Monro (MH-RM, Cai, 2010) algorithm. An attractive feature of MH-RM is that

the structure of the algorithm makes estimation of the covariance matrix quite

convenient. Additionally, MH-RM is ideally suited for multidimensional IRT,

whereas EM is limited by the “curse of dimensionality.” When RC-IRT is further

generalized to multiple latent dimensions, MH-RM would appear to be the logical

choice for estimation.
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CHAPTER 1

Introduction

In unidimensional IRT, two typical assumptions are that the item response func-

tions (IRFs) are logistic and that the latent trait, g(θ), is normally distributed.

These default assumptions are supported by years of successful use in the analysis

of educational and psychological data. However, only one of these assumptions is

necessary since many different IRF-g(θ) combinations can produce the same joint

distribution of item responses (Duncan & MacEachern, 2008). A major advantage

of retaining the logistic form for IRFs is that doing so preserves interpretability

of the item parameters estimates. At the same time, abandoning the normality

assumption is attractive because it is easy to imagine scenarios where assuming

normality of g(θ) is likely a misspecification of the model (see e.g., Woods &

Thissen, 2006). For example, sampling of participants in psychological or educa-

tional studies may suggest a mixture of normals, based on treatment and control

groups. As another example, the distribution of proficiency latent variables may

be expected to be nonnormally distributed in certain subpopulations of interest

(e.g., English language learners). Consequently, researchers have developed sev-

eral methods to estimate or characterize the shape of the latent trait distribution.

These methods include empirical histograms (Bock & Aitkin, 1981), normal mix-

tures (Mislevy, 1984), Ramsay curves (Woods & Thissen, 2006; Woods, 2006),

and Davidian curves (Woods & Lin, 2008).

Despite the availability of these techniques, and their theoretical appeal, most

analyses in practice fall back on the traditional assumption of normality. One
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reason for this incongruity is that the methods need further development and

generalization. As a primary example, as well as motivation for this research,

standard errors for the item parameters are not currently available when using

Ramsay curve IRT (RC-IRT). Without standard errors or, more generally, the

observed information matrix, researchers are limited in when they can use RC-

IRT. For instance, standard errors are routinely used in test assembly as part of

the item selection process. Also, the observed information matrix is needed for

some limited-information goodness-of-fit testing (see, e.g., Cai, Maydeu-Olivares,

Coffman, & Thissen, 2006) and differential item functioning analyses (Lord, 1980;

Langer, 2008).

All model parameters of RC-IRT, in its original implementation, are estimated

using Bock and Aitkin’s (1981) EM algorithm. Decades after its development,

the method still enjoys extensive use because of its stability and, often, its speed.

However, the EM algorithm does not yield the observed information matrix upon

convergence. Consequently, standard errors for RC-IRT item parameters are not

currently available. There are methods designed to address this deficiency within

the framework of EM (see, e.g., Louis, 1982; Cai, 2008). However, an alterna-

tive strategy, adopted here, is to choose another estimation method that is more

amenable to estimation of standard errors.

This research uses the Metropolis-Hastings Robbins-Monro algorithm (MH-

RM, Cai, 2010) to perform maximum marginal likelihood (MML) estimation for

RC-IRT, and to obtain the observed information matrix upon convergence. As

noted above, Bock and Aitkin (1981) EM does not preclude approximation of the

observed information matrix. Nevertheless, MH-RM is preferred here because it

is better-suited to accomodate further generalizations of RC-IRT. More specif-

ically, when future research generalizes RC-IRT (or a similar methodology) to

multidimensional latent traits, MH-RM would seem to be a logical and attractive

choice for estimation. This is because the MH-RM algorithm is, in some sense,
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designed to address the “curse of dimensionality” that limits the feasibility of EM

in multidimensional IRT.

As an aside, I do not advocate the use of RC-IRT, specifically. Rather, I view

latent trait density estimation, generally, as theoretically appealing and practically

useful. The characterization of the density, however, may be accomplished by

numerous methods, all serving the same purpose.

The remainder of this paper is organized as follows. Chapter 2 presents Same-

jima’s (1969) graded response model. This is followed by a review of Ramsay

curves and RC-IRT in Chapter 3. Chapters 4-6 review and compare Bock and

Aitkin (1981) EM and MH-RM (Cai, 2010). In Chapter 7, the details of RC-IRT

implementation for MH-RM are provided. Then, Chapter 8 presents a simulation

study examining the accuracy of point estimates and standard error estimates.

Chapter 9 contains an empirical study. Finally, the paper concludes in Chapter

10 with directions for future research.
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CHAPTER 2

A Graded Response Model for IRT

This section introduces notation for a logistic IRT model for graded responses

following Samejima (1969).

2.1 Some Notation

Let there be i = 1, 2, . . . , N respondents, and j = 1, 2, . . . , n items. Let Cj be the

number of response categories for item j. And, let uij = h, h ∈ {0, 1, . . . , Cj − 1}

be the item response from person i to item j. Then, ui is a vector of item responses

from person i, and U is an N × n matrix of response patterns, whose ith row is

u′i.

For the jth item, let aj be the item slope. Let cj = (cj1, . . . , cj(Cj−1))
′, be a

(Cj − 1) × 1 vector of intercepts for item j. Parameters for item j are collected

in the Cj × 1 vector βj = (aj, cj). Collecting all of the item parameters, β =

(β′1,β
′
2, . . . ,β

′
n)′ is a (

∑n
j=1Cj) × 1 vector. For the ith person, let θi be the

latent trait score, and let θ be the N × 1 vector of latent traits scores for all

respondents. Often, the θi are assumed to follow a normal distribution. However,

in RC-IRT, they are i.i.d. random variables governed by η, a vector of Ramsay

curve parameters. The length of η is v = degree + number of knots − 1. The

terms degree and knots will be discussed in Section 3.1 below.

Lastly, the Ramsay Curve is described by a set of rectangular quadrature

points, xq, where there are q = 1, 2, . . . , Q points. The points are equally spaced
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every 0.1, and the range can be determined by the analyst (e.g., choosing a range

from −6 to 6 results in 121 points).

2.2 Observed and Complete Data Likelihood

Conditional on an individual’s latent trait score, θi, and the item parameters, βj,

the conditional probability for response uij = k is given by

πijk = T (uij = k|βj, θi)

=
1

1 + exp(−ajθi − cjk)
− 1

1 + exp(−ajθi − cj(k+1))

= T ∗(k)− T ∗(k + 1), (2.1)

where T ∗(k) is the conditional probability that a response is in category k or

higher. Also, the following response probabilities are defined: T ∗(0) = 1 and

T ∗(Cj) = 0. Based on Equation (2.1), the conditional distribution of uij is a

multinomial with Cj cells and cell probabilities πijk,

f(uij|βj, θi) =

Cj−1∏
k=0

π
χk(uij)
ijk , (2.2)

where χk(u) is an indicator function defined as

χk(u) =


1, if u = k,

0, otherwise

. (2.3)

Further, conditional on the latent trait, item responses are assumed independent

(Lord & Novick, 1968). Consequently, the conditional density of ui is simply the
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product over the n items:

f(ui|β, θi) =
n∏
j=1

f(uij|βj, θi). (2.4)

Again, for RC-IRT, the shape of the latent distribution depends on the RC

parameters, η. Therefore, the density for any θi depends on η, and will hereafter

be expressed as g(θi|η). Also, let ω = (β,η) be the vector of all model parameters

with length d = (
∑n

j=1Cj) + ν. Thus, for a person sampled from this potentially

nonnormal distribution, the marginal density of ui is:

f(ui|ω) =

∫ n∏
j=1

f(uij|βj,θ)g(θ|η)dθ. (2.5)

Taking the product across persons, the observed data likelihood is

L(ω|U) =
N∏
i=1

[∫ n∏
j=1

f(uij|βj,θ)g(θ|η)dθ

]
. (2.6)

If we treat the latent traits as missing data, then the complete data are θ,

coupled with the observed item responses, U. The complete data likelihood, then,

is a product over every respondent’s item responses and latent trait densities. In

factored form, this complete data likelihood is

L(ω|U,θ) =
N∏
i=1

[
g(θi|η)

n∏
j=1

f(uij|βj, θi)

]

=

[
N∏
i=1

g(θi|η)

][
N∏
i=1

n∏
j=1

f(uij|βj, θi)

]
. (2.7)

If we write the likelihoods on the right-hand side of (2.7) as functions of the

parameters, and take the log of both sides, we obtain
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logL(ω|U,θ) = logL(η|θ) + logL(β|U,θ). (2.8)

Equation (2.8) reveals that the complete data log likelihood can be understood as

the sum of two independent parts: a log likelihood component for the RC parame-

ters, η, and a log likelihood component for the item parameters, β. Moreover, the

latter part corresponds to n ordinal logistic regressions, one for each item. This

structure implies that during estimation, each of these sets of parameters can be

updated separately.
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CHAPTER 3

Ramsay Curve Item Response Theory

Given the structure of Equation (2.8), we seek a model that describes the form of

the latent trait density given “observed” θ. Equation (2.8) also makes clear that

such a model does not depend on item parameters or responses. One such model

is based on Ramsay curves.

3.1 A Review of Ramsay Curves

What follows is a brief and general overview of Ramsay curves (RCs). The mathe-

matical details are beyond the scope of this research, but interested readers should

consult Ramsay (2000) and de Boor (2001) for a thorough treatment. Also, Woods

and Thissen (2006) provides a nice introduction to RCs, particularly from a psy-

chometric perspective.

Imagine we somehow observe θ, a collection of latent trait scores. Once ob-

served, the objective is to characterize the density of θ. One natural approach

is to construct a histogram, which is the motivation for the Empirical Histogram

method discussed in Chapter 1. Another approach is to use an RC, which, unlike

a histogram, will produce a smooth curve describing the distribution.

Basically, the shape of the RC density is found by connecting a set of curves

known as B-splines. The range and potential flexibility of the RC is determined by

the analyst, through three choices: the range for xq, the degree, and the number

of knots. First, the range of xq simply defines the support of the density of
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g(θ|η). A typical range for standardized latent traits is from −4.5 to 4.5 or −6

to 6. Second, the degree refers to the degree of the polynomial for each B-spline.

Higher degrees can accommodate sharper curves. Third, the knots are where the

B-splines connect to one another. Typically, the knots are evenly spaced across

the range of support. A greater number of knots also allows more flexibility in the

RC. The second and third choices (i.e., degree and number of knots) determine

the number of elements in η, the vector of RC parameters. As mentioned above,

the length of η is v = degree+ number of knots− 1.

Together, the three choices determine the structure of the B∗ matrix (see

Equation (11), Woods & Thissen, 2006). Assuming that B∗ can be obtained, the

height of the RC at each θi is given by

g(θi|η) =
exp [B∗(θi)η]

C
, (3.1)

where

C =

Q∑
q=1

exp [B∗(xq)η] (3.2)

is the normalization constant that ensures g(θi|η) integrates to 1 and is a proper

density.

The likelihood for the RC is

L(η|θ) =
N∏
i=1

g(θi|η), (3.3)

which can be recognized as one of the factors of Equation (2.7). Once estimates of

η are obtained, they can be used in (3.1) to find g(θi|η) for a particular respondent

or to construct the entire RC. In summary, the RC method provides a smooth

curve approximation for the distribution of “observed” θ.
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3.2 Considerations for RC-IRT Estimation

Recall the complete data log likelihood in Equation (2.8), which is equal to the sum

of two components. Given this structure, estimation for RC-IRT is conceptually

straightforward. Again, the structure implies that the RC parameters can be dealt

with separately from the item parameters during estimation. And conveniently,

whatever estimation scheme is used for the item parameters can likewise be used

for the RC parameters. Consequently, the basic structure of any estimation scheme

for unidimensional IRT needs few changes to accommodate RCs.

Nevertheless, there are practical considerations for RC-IRT estimation that

must be addressed. First among these is whether there is enough information in

the data (i.e., θ) to estimate the RC parameters. For traditional IRT, assuming

a normally distributed latent trait, little is lost by specifying the range of xq as

−4.5 to 4.5. This is because it is known a priori that there is little density outside

this range. However, with nonnormal g(θ|η), we have no such a priori knowledge.

Thus, a more reasonable range would be, for example, from −6 to 6. However,

this expanded range presents us with a problem.

In practice, there may be some regions of the latent trait scale over which

little or no information about the RC parameters is available. As a result, the

corresponding spline coefficient may become empirically underidentified. And

due to the dependencies among the RC parameters, this may cause a failure in

estimation for all elements of η. To safeguard against this possibility, Woods

and Thissen (2006) implement a diffuse prior density for η, and use Bayesian

maximum a posteriori estimates in lieu of maximum likelihood estimates.

Unlike typical Bayesian applications, the prior in this case does not reflect

a priori knowledge of the parameter values. Instead, it is employed to stabilize

estimation. Woods and Thissen (2006) specify a ν-variate normal prior to compute

the RC posterior, where ν is the number of RC parameters. The mean, µ, of the

10



prior are those coefficients that would reproduce a normal density. The variance,

Σ, is a diagonal matrix with all diagonal elements equal to some constant, ς. And

since Σ is diagonal, all of the marginals of the prior are normals with variance

equal to ς. Since the purpose of the prior is to stabilize estimation, ς should be

as large as possible while still allowing successful estimation.

One other related consideration involves the analyst’s choices for the degree

and number of knots used in the RC. Although it may be tempting to choose large

values (since the resulting RC is more flexible), there are two reasons to exercise

restraint. First, for any given dataset, as ν increases, so does the possibility of

estimation failure. This, of course, is related to the need for a prior, just discussed.

Second, as ν increases, so does the possibility of overparameterization. To address

this latter concern, multiple models should be fitted, with a range of values for

the degree and number of knots. Then, standard model selection criteria may be

applied, such as the Bayesian information criterion (BIC) or the Hannan-Quinn

information criterion (HQIC).
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CHAPTER 4

Two Approaches to Estimation for RC-IRT

Now that we have models for the item responses and the “observed” latent traits,

we can turn our attention to estimation. In a maximum likelihood framework, we

seek to find the estimate of ω that maximizes the observed log likelihood, l(ω|U)

(where l denotes log likelihood). This research considers two alternatives for RC-

IRT estimation: Bock and Aitkin (1981) EM (BA-EM) and MH-RM (Cai, 2010).

Both approaches have been applied to standard unidimensional IRT models and

are implemented in available software (see, e.g., IRTPRO Cai, Thissen, & du Toit,

2011). Further, BA-EM has been used extensively for RC-IRT (Woods & Thissen,

2006; Woods, 2007, 2008).

Before discussing the specifics of either algorithm, a major difference in ap-

proaches should be highlighted. Both EM and MH-RM exploit relationships

between the observed data log likelihood, l(ω|U), and complete data log like-

lihood l(ω|U,θ), but do so in different ways. In EM, the MLE is found by

iteratively maximizing the conditional expectation of l(ω|U,θ) over Π(θ|U,ω),

where Π(θ|U,ω) is the posterior predictive distribution of missing data. Conver-

gence results (Wu, 1983) show that the successive estimates will result in a (local)

maximizer of l(ω|U).

MH-RM, on the other hand, is at its core a root-finding algorithm. Let l̇

denote the first derivative of the log likelihood. Then, the equation for which we

seek the root is

12



l̇(ω|U) =
∂l(ω|U)

∂ω
= 0, (4.1)

found by setting l̇(ω|U) equal to zero. The root of Equation (4.1) is the MLE.

Also, due to the so-called Fisher’s identity (Fisher, 1925),

l̇(ω|U) =

∫
l̇(ω|U,θ)Π(θ|U,ω)dθ. (4.2)

Finding the root of the right-hand side of Equation (4.2) results in a (local)

maximizer of l(ω|U). MH-RM obtains the solution iteratively by drawing imputa-

tions from the posterior predictive distribution Π(θ|U,ω) and stabilizes the noise

introduced by the random draws with the Robbins-Monro (Robbins & Monro,

1951) stochastic approximation method.

13



CHAPTER 5

Bock-Aitkin EM for RC-IRT

Woods and Thissen (2006), in the original RC-IRT implementation, embedded

estimation of the Ramsay curve within Bock and Aitkin (1981) EM. This sec-

tion provides a brief overview of the algorithm, and the modifications needed to

accommodate estimation of the Ramsay curve.

5.1 A Review of the Bock and Aitkin (1981) EM Algo-

rithm

Notably, Bock and Aitkin (1981) EM (BA-EM) is quadrature-based. This feature

dictates how values are computed, and requires equations slightly different in

form than those presented in (2.5) through (2.8). The primary distinction is that

while MH-RM takes a summation over examinees, BA-EM takes a summation

over quadrature points. As an aside, this latter summation is what can limit

the practicality of BA-EM in multidimensional IRT. The number of quadrature

points grows exponentially with the dimensionality of the latent trait, regardless

of sample size. In the literature, this phenomenon is sometimes called the “curse

of dimensionality.”

Very generally, the EM algorithm (Dempster, Laird, & Rubin, 1977) itera-

tively maximizes the expectation of l(ω|U,θ) over Π(θ|U,ω), where Π(θ|U,ω)

is the posterior predictive distribution of missing data. The procedure alternates

between E-steps (for expectation) and M-steps (for maximization) until conver-
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gence. For BA-EM, the steps take the following forms.

For the E-step, given observed data and current parameter estimates, the

conditional expectation of the missing data, θ, is found. For each item, this

conditional expectation is collected in the so-called E-step tables. For the M-step,

for each item, the E-step tables are treated as observed data and logit analysis is

performed. The resulting item parameter estimates are used in the next E-step.

5.2 Modifications to BA-EM estimation for RC-IRT

Provided the infrastructure for constructing the RC is in place (as discussed in

Chapter 3), the modifications needed to use BA-EM for RC-IRT are quite minimal.

First, revise the E-step by using the current characterization of g(θ|η) to find the

conditional expectation of θ. As before, fill in the E-step tables for each item.

Second, estimate the proportion of respondents at each quadrature point, denoted

N(xq), by summing across all E-step tables. Following Woods and Thissen (2006),

at this point, the scale is identified by standardizing N(xq) to have a mean of 0

and variance of 1.

Finally, in the M-step, update the RC parameters. Given the structure of

Equation (2.8), this update occurs independently of the item parameter updates.

Since the set of N(xq) is akin to a collection of “observed” latent trait scores, the

RC methodology in Section 3.1 can be used to find updated estimates of η. The

updated RC is used in the next E-step.
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CHAPTER 6

A Review of the Metropolis-Hastings

Robbins-Monro Algorithm

What follows is a broad outline of the MH-RM algorithm. For full details, see Cai

(2010). As its name suggests, the MH-RM algorithm couples stochastic imputa-

tion via a Metropolis Hastings sampler (Hastings, 1970; Metropolis, Rosenbluth,

Rosenbluth, Teller, & Teller, 1953) with a Robbins-Monro (Robbins & Monro,

1951) root-finding algorithm for noise-corrupted functions. Pieced together ap-

propriately, these two methods complement one another to facilitate maximum

likelihood estimation.

Recall Fisher’s identity in Equation (4.2), which motivates the MH-RM algo-

rithm. If we can find the expectation of l̇(ω|U,θ) over Π(θ|U,ω), then we know

the value of l̇(ω|U), the gradient of the observed data log likelihood. And, if

we can sample from Π(θ|U,ω), we can find the requisite expectation by Monte

Carlo approximation. Fortunately, Π(θ|U,ω) is proportional to L(ω|U,θ), which

allows us to construct an MH sampler. This is the MH part of MH-RM.

By laws of large numbers, we can approximate l̇(ω|U) with arbitrary precision

by increasing the number of MH imputations. However, with MH-RM, such a

brute force approach is misguided. From one cycle to the next, the approximation

to l̇(ω|U) is only used to find the direction of the update for ω. For the sake

of efficiency, a more sensible approach is to use a small number of imputations.

Of course, this renders the sequence of approximations rather noisy. The RM

method, though, was designed for such situations. Despite the noise, the RM
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method allows us to find the root of l̇(ω|U), that is, the MLE. This is the RM

part of MH-RM.

17



CHAPTER 7

An MH-RM Approach to RC-IRT

Having sketched an outline of the MH-RM algorithm, more details are needed

to understand the implementation for RC-IRT. Some of these details are specific

to the RC-IRT model (e.g., derivatives, selection of a sampler), while others are

provided for context.

The sections that follow detail choices and results for derivatives, gain con-

stants, starting values, parameter updates, and standard errors.

7.1 Complete Log Likelihood Derivatives

As mentioned above, l̇(ω|U,θ) is used to approximate l̇(ω|U). Thus, first deriva-

tives of the complete log likelihood are clearly needed. In addition, second deriva-

tives are used in MH-RM for two purposes. Following the convention established

earlier, let l̈ = ∂2l/(∂ω∂ω′) denote the matrix of second derivatives of the log

likelihood. In MH-RM, l̈(ω|U,θ) is used to compute a scaling factor for the pa-

rameter update which ideally speeds convergence. Also, it is used to approximate

the observed information matrix and, by extension, estimates of standard errors.

How this is accomplished is discussed below.

The derivatives for the graded response model are standard results (see, e.g.,

Baker & Kim, 2004, p. 213-217). Derivatives for the RC parameters are contained

in Appendix A.
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7.2 Specification of Gain Constants

Let k = 1, 2, . . . ,∞ index the iteration for the MH-RM algorithm. The gain

constants γk, for k ≥ 1, scale the updates and serve to slowly average out the

noise in the approximations to l̇(ω|U). For this to occur, the γk need to slowly

decrease to zero, which is ensured by the following conditions,

γk ∈ (0, 1],
∞∑
k=1

γk =∞, and
∞∑
k=1

γ2k <∞. (7.1)

If the γk decrease too quickly, then the estimates for ω may stabilize prematurely,

before the MLE is reached. Alternatively, if the γk decrease too slowly, the esti-

mates for ω may never stabilize. One satisfactory option, noted by Cai (2010), is

to take γk as 1/k. The rate of the decrease can be further fine-tuned by taking γk

as 1/kε, 1/2 < ε ≤ 1 (Polyak & Juditsky, 1992).

7.3 Computing Updates

What follows is a presentation of Equations (16) through (18) from Cai (2010).

There is nothing particular to RC-IRT that needs to be addressed here. Neverthe-

less, the material is included because it is essential to understanding other aspects

of the RC-IRT implementation.

Recall that MH-RM seeks to find the root of l̇(ω|U) by iteratively estimat-

ing the expectation of l̇(ω|U,θ) over Π(θ|U,ω), and updating ω accordingly.

Provided appropriate gain constants are specified, and samples from Π(θ|U,ω)

can be obtained, the parameters are updated in the following manner. Let

d = (
∑n

j=1Cj)+ν be the number of parameters in the model. Then, let (ω(0),Γ0)

be initial values, where Γ0 is a d × d symmetric positive definite matrix. Let

ω(k) be the parameter estimate at the end of iteration k. The (k + 1)th iteration

consists of stochastic imputation, stochastic approximation, and an RM update.
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For stochastic imputation, mk sets of missing data {θ(k+1)
p ; p = 1, 2, . . . ,mk}

are drawn from Π(θ|U,ω), to form mk complete data sets {(U,θ(k+1)
p ); p =

1, 2, . . . ,mk}. Again, the RM method renders large mk unnecessary.

For stochastic approximation, using Fisher’s (1925) identity, we approximate

the observed data gradient, l̇(ω|U), by the sample average of complete data gra-

dients,

s̃(k+1) =
1

mk

mk∑
p=1

l̇(ω(k)|U,θ(k+1)
p ). (7.2)

Also, to speed convergence, we use curvature information by recursively approxi-

mating the conditional expectation of the complete data information matrix,

Γ(k+1) = Γk + γk

{
− 1

mk

mk∑
p=1

l̈(ω(k)|U,θ(k+1)
p )− Γk

}
. (7.3)

Finally, in the RM update, we set the new parameter estimate to

ωk+1 = ωk + γk(Γ
−1
k+1s̃k+1). (7.4)

For RC-IRT, the above steps are carried out n + 1 times per iteration, once per

item and once for the set of RC parameters. Again, this is a consequence of the

independence implied by Equation (2.8).

7.4 Constructing an MH Sampler

As in Patz and Junker (1999) and Cai (2010), a Metropolis-within-Gibbs sampling

scheme is used to impute the latent trait scores. Let q(θi, θ
∗
i ) be the transition

density for moving from θi to θ∗i . Also, define the acceptance factor as
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α(θi, θ
∗
i ) = min

[
f(ui|β, θ∗i )g(θ∗i |η)q(θ∗i , θi)

f(ui|β, θi)g(θi|η)q(θi, θ∗i )
, 1

]
. (7.5)

Notably, (7.5) depends on the RC parameters to calculate g(θi|η). However,

the acceptance probability for each θi depends on neither the latent trait scores

of other persons, nor their item responses. Thus, all draws can be performed

simultaneously with vector operations. Commonly, a symmetric random walk

chain with some scalar dispersion parameter is used (Metropolis et al., 1953) for

the transition density. In such a case, q(θ∗i , θi) = q(θi, θ
∗
i ), and the acceptance

factor can be further simplified.

However, for RC-IRT, a symmetric random walk chain proves problematic.

The minimum and maximum for xq are user-defined, but in any case the RC has

no density outside this range. Consequently, for all θ∗i 6∈ [xmin, xmax], g(θ∗i |η) = 0,

which implies α(θi, θ
∗
i ) = 0. Clearly, any transition density routinely imputing val-

ues that cannot be accepted is inefficient. To address this issue, the implemented

transition density is constructed so that α(θi, θ
∗
i ) 6= 0 (except very rarely), regard-

less of the scalar dispersion parameter.

To accomplish this goal, we seek a transition density where Var(θ∗) = 1. Such

a condition will ensure that the imputations only rarely fall outside of the range for

xq. Let δ be the scalar dispersion parameter, let ei ∼ N (0, 1), and let e be a vector

of normal deviates whose ith element is ei. As a reminder, Var(θ) = 1 to identify

the scale. Then, let ϕ = Var(θ + δe) = 1 + δ2. Finally, let the proposal draws be

generated by θ∗ = (θ/
√
ϕ) + (δ/

√
ϕ)e. It can easily be verified that Var(θ∗) = 1,

which achieves the stated goal. For the simulation study and empirical example,

δ = 2.4 was used.

Written as the density function of a normal distribution, the transition density

is
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q(θi, θ
∗
i ) =

1

(δ/ϕ)
√

2π
exp

{
−1

2

(θ∗ − (θ/
√
ϕ))2

(δ2/ϕ)

}
. (7.6)

Examining the exponent of Equation (7.6), it is clear that q(θ∗i , θi) 6= q(θi, θ
∗
i ).

Consequently, the ratio of transition densities in Equation (7.5) cannot be further

simplified.

7.5 Providing Reasonable Starting Values

Without reasonable starting values, MH-RM estimation may fail, particularly if

there is little information for some parameters. This is unsurprising as the con-

vergence theory for the algorithm depends on the use of sufficiently good starting

values (Borkar, 2008). Consequently, starting values for MH-RM are quite im-

portant. Luckily, the flexibility of the method allows a clever solution to this

problem.

To explain this solution, it helps to consider the algorithm as proceeding

through three successive stages: Stage 1, Stage 2, and Stage 3. These will be

explained momentarily. Similarly, it is useful to introduce two types of starting

values: “crude” and “refined.” Let us assume for a moment that if refined values

are available to start Stage 3, then estimation will succeed. The goal, then, is to

find refined values to start Stage 3.

This goal is achieved in the following way. First, crude values are provided to

start Stage 1. For instance, set a = 1 for all slopes and c = 0 for all intercepts.

These values are crude in that they are in no way based on the data. Next, we

set γk and mk equal to unity for all of the iterations in Stage 1. As noted in

Cai (2010), the MH-RM algorithm, specified in this way, is a close relative to

Diebolt and Ip’s (1996) stochastic EM (SEM) algorithm. Importantly, the SEM-

type iterations move ω̂k quickly to the neighborhood of the MLE. Stage 1 should
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run as long as necessary for the analyst to be confident that ω̂k has reached this

neighborhood. This concludes Stage 1.

In Stage 2, the SEM-type iterations continue where Stage 1 left off, but with

a different purpose. As a reminder, the goal of this process is to provide refined

starting values for Stage 3. These refined values can be obtained by averaging ω̂k

for some number of Stage 2 iterations (e.g., 100). Upon obtaining these averages,

Stage 2 is complete.

Finally, the refined values are used to start Stage 3. In this last stage, the

SEM-type iterations are abandoned for iterations with decreasing gain constants.

In this way, the noise is averaged out and the MLE is reached. This strategy is

effective because the mean of the invariant distribution in Stage 2 is close to the

MLE. As a result, there is a bit of leeway in the choice for the series of decreasing

gain constants in Stage 3.

Figure 7.1 shows the Stages for three typical sequences of estimates from one

replication of the simulation study (presented in Chapter 8). From the top, the

three panels show the estimates for a slope parameter, an intercept parameter, and

an RC parameter. In Stage 1 (SEM-type iterations 1− 800), the estimates move

(relatively) quickly to reach the neighborhood of the MLE. In Stage 2 (SEM-type

iterations 801−1000), sample estimates are collected to compute means with which

to start Stage 3. And lastly, in Stage 3 (decreasing γk iterations 1, 001− 1, 663),

the estimates converge to the MLE.

7.6 Approximating the Observed Information

Louis (1982), derived a useful equality, linking the observed information to func-

tions of the complete log likelihood. The information matrix of the observed log

likelihood is
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Figure 7.1: Example of MH-RM for RC-IRT: Sequences of estimates for three
parameters
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−l̈(ω|U) = Eω{−l̈(ω|U,θ)} − covω{l̇(ω|U,θ)}, (7.7)

where the expectation is with respect to Π(θ|U,ω). Cai (2010) proposed a method

that uses Louis’s equation, where the elements needed for computation are simply

byproducts of the MH-RM estimation procedure (Cai, 2010, p. 42). This is one of

the (two) methods of approximation implemented in IRTPRO (Cai et al., 2011).

A benefit of this approach is that the observed information approximation is

performed concurrently with parameter estimation.

Another approach, again following Louis (1982), is proposed by Diebolt and Ip

(1996). Basically, the strategy uses Monte Carlo integration to approximate the

mean and covariance in Equation (7.7). The parameter estimate, ω̂, is fixed at

the MLE, and P Monte Carlo samples of θ are generated from Π(θ|U,ω). These

samples are used to approximate the terms on the right-hand side of Equation

(7.7). For some examples of this latter method, see Diebolt and Ip (1996) and

Fox (2003). This method is also available in IRTPRO (Cai et al., 2011).

One last feature of the complete information matrix should be noted. Due to

the independence of the logistic regression models, as well as the independence

of the RC model, the complete data information matrix is block diagonal. Each

item block is Cj×Cj, and the RC block is ν×ν. Hence, the entire matrix is d×d,

where d = (
∑n

j=1Cj) + ν.
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CHAPTER 8

Simulation Study

A Monte Carlo simulation study was conducted to compare the MH-RM and EM

results, and to evaluate the accuracy of the MH-RM standard errors. The purpose

of comparing MH-RM and EM is simply to verify that the MH-RM implementa-

tion is correct. As both methods compute MLEs, substantially discrepant results

would indicate an improper implementation.

8.1 Methods and Design

This section details how the data were generated and how estimation was specified.

Generally, data were generated to be realistic for psychological or educational

research. For the study, there were N = 1000 simulees and n = 25 items. There

were three conditions, based on the true shape of the latent trait distribution.

Finally, there were 100 replications for each condition.

The true shape of g(θ|η) was either normal, skewed, or bimodal. All densities

were represented by rectangular quadrature points, ranging from −6 to 6 by 0.1.

The RC parameters for these densities were generated by mixing two normals.

For the skewed density, the generating parameters were: µ1 = −0.25, µ2 = 2.19,

σ2
1 = 0.37, σ2

2 = 1.10, mp1 = 0.9, and mp2 = 0.1. For the bimodal density,

the values were: µ1 = −1, µ2 = 1, σ2
1 = 0.49, σ2

2 = 0.49, mp1 = 0.48, and

mp2 = 0.52. The mixtures were then standardized to have µ = 0 and σ2 = 1.

Next, the standardized mixtures were treated as data in RC likelihood functions
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Figure 8.1: True densities used for the simulation study
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Note. True normal curve (gray solid line); true skewed curve (dashed line); true
bimodal curve (thick dotted line).

(see Equation (3.3)) with degree=5 and knots=6. Finally, the likelihoods were

maximized to yield estimates of η. These estimates were subsequently treated as

the true RC parameters. The resulting densities can be seen in Figure 8.1.

The true item parameters were generated in a manner similar to Woods and Lin

(2008). The slope parameters, a, were drawn from a truncated normal distribution

with mean = 1.8 and standard deviation = 0.8, and truncation at 0.5 and 4.

Difficulty parameters (typically labelled b) were drawn in the following way. The

first difficulty parameter (b1) was drawn from a normal with mean= 1 and SD=

0.5. To obtain b2, a random draw was taken from a normal (mean= 1 and SD=

0.2) and added to b1. Both b3 and b4 were drawn under the same procedure. Since

the graded response model in Equation (2.1) is written in terms of slopes and

intercepts, the latter were calculated as c = −ab. The same item parameters were

used for all replications across all conditions, and are displayed in Table 8.1.

For each replication, θ was drawn from the true g(θ|η) using rejection sampling

(von Neumann, 1951). Then, probabilities of uij = 1 (i.e., correct item responses)

were simulated according to the graded model in Equation (2.1). These proba-
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Table 8.1: Simulation study: generating item parameter values

Item Slope Intercept 1 Intercept 2 Intercept 3 Intercept 4

1 1.89 1.71 −0.32 −2.59 −4.56
2 1.44 2.37 0.88 −0.66 −1.90
3 1.45 3.71 2.50 1.42 0.24
4 2.18 3.20 0.60 −1.24 −2.97
5 1.56 0.47 −1.66 −3.36 −5.11
6 1.81 3.28 1.42 −0.25 −2.69
7 0.50 1.07 0.58 0.20 −0.27
8 0.89 0.37 −0.48 −1.56 −2.66
9 0.94 1.00 −0.22 −1.24 −2.37

10 1.30 1.09 −0.32 −1.30 −2.60
11 1.56 2.05 0.20 −1.17 −3.17
12 1.37 2.28 0.51 −1.05 −1.82
13 3.18 5.04 2.11 −2.37 −5.47
14 2.02 3.15 1.05 −1.16 −2.65
15 2.34 3.93 1.97 0.44 −1.23
16 3.87 2.94 −1.16 −5.59 −10.14
17 1.63 1.03 −1.06 −2.70 −4.46
18 1.41 1.39 −0.31 −1.33 −2.93
19 0.75 0.62 −0.19 −1.13 −2.22
20 1.99 1.35 −0.37 −2.31 −3.90
21 1.99 −0.48 −2.54 −4.23 −6.34
22 1.98 0.04 −1.79 −3.29 −5.88
23 1.85 1.67 −0.52 −2.60 −4.14
24 1.57 0.35 −1.02 −2.23 −4.22
25 1.96 1.06 −0.86 −2.99 −5.14
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bilities were compared to random uniform (0, 1) variables. Item responses were

determined in proportion to the model-implied probabilities.

The graded model was fitted to the data in each replication, using both BA-EM

and MH-RM. The starting values for all a = 1. For all cj, the starting values were

1, 1/3,−1/3, and −1. The starting values for η were those that would reproduce

a normal density. The density, g(θ|η), was represented using 121 rectangular

quadrature points, evenly spaced from −6 to 6. Lastly, the RC was estimated

using degree=5 and knots=6. Thus, for both the item responses and RC, the

fitted and data generating models were the same.

As mentioned earlier, the forms of the RC likelihood functions for BA-EM and

MH-RM take different forms and imply different scales. Thus, different values for

ς (the variance for each marginal of the multivariate normal prior) are appropriate

depending on the method of estimation. Based on trial and error, ς was set to 1

for MH-RM. For BA-EM, ς was set to 1000.

For MH-RM, the simulation size mk was set to 1 for all iterations. Like in

the example in Section 7.5, Stage 1 consisted of 800 iterations, followed by Stage

2 with 200 iterations. For Stage 3, the decreasing gain constants were set to

γk = 1/kε with ε = 0.75. For convergence criteria, the iterations were examined

across a window of 3 iterations. Once the maximum absolute change across the

window dropped below 1.0 × 10−4, the iterations were deemed converged. For

BA-EM, the iterations were considered converged once the maximum absolute

between-iteration change in parameter estimates dropped below 1.0× 10−4.

8.2 Outcome Measurements

Overall model fit was assessed using log-likelihood values. Greater values indicate

better fit. To evaluate the accuracy of item parameter recovery, estimated bias and

root mean square error (RMSE) are used. Let M be the number of Monte Carlo
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replications and ω denote the true value of an arbitrary element of the parameter

vector ω. Then, estimated bias is defined as M−1∑M
m=1(ω̂m−ω) where ω̂m is the

MLE for ω in replication m. RMSE is defined as
√
M−1

∑M
m=1(ω̂m − ω)2.

Since the scales of the true RC parameters are both unfamiliar and quite

variable, estimated bias and RMSE are less appropriate measures of recovery

accuracy. Instead, the integrated square error (ISE),

ISE(ĝ) =

∫
{g(θ|η̂)− g(θ|η)}2dθ, (8.1)

is used to measure the similarity between the true and estimated RCs, as in Woods

and Lin (2008). The ISE was multiplied by 1,000 to facilitate comparison. Also,

when aggregating the ISE statistic, the median instead of the mean was used due

to skewness and kurtosis.

To assess the accuracy of the estimated standard errors, let se(ω̂)m be the es-

timated standard error for ω in replication m. Then, se(ω̂) = M−1∑M
m=1 se(ω̂)m.

Also, let sd(ω̂) =
√

(M − 1)−1
∑M

m=1(ω̂m − ω)2 be the Monte Carlo standard de-

viation, where ω is the mean of the estimates across replications. If the standard

errors are estimated accurately, the averages, se(ω̂), should correspond to the

Monte Carlo standard deviations, sd(ω̂).

8.3 Results: Points Estimates from MH-RM and EM

All replications converged for both the MH-RM and BA-EM algorithms. For both

algorithms, the log-likelihood (plus 30,000), ISE (multiplied by 1,000), and esti-

mated bias and RMSE of item parameters are displayed in Table 8.2. Generally,

the comparability of BA-EM and MH-RM is established by comparing means of

outcome measurements across replications, as well as inspecting plots of these

measurements by replicaton.
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Table 8.2: Simulation Results for MH-RM and BA-EM Estimations of RC-IRT

LogL RMSE: a Bias: a RMSE: c Bias: c ISE

Normal g(θ|η)

MH-RM −500.10 0.10 0.01 0.14 −0.01 0.04
BA-EM −500.11 0.10 0.01 0.14 0.02 0.04

Skewed g(θ|η)

MH-RM −393.75 0.12 0.01 0.13 0.00 0.09
BA-EM −393.07 0.12 0.01 0.13 0.00 0.09

Bimodal g(θ|η)

MH-RM −381.78 0.10 0.01 0.14 −0.00 0.13
BA-EM −381.77 0.09 −0.00 0.14 0.01 0.14

Note. LogL = log-likelihood (plus 30,000); RMSE = root mean square error;
Bias = Monte Carlo average estimate minus the true parameter value; a = slope
parameter; c = intercept parameter; ISE = median of the integrated square error
multiplied by 1,000.

For each g(θ|η) shape, the average log-likelihoods for MH-RM and BA-EM

estimations are virtually identical. In addition to the average log-likelihoods, the

values at each replication are extremely similar. In Figure 8.2, all of the points are

very close to the 45◦ reference line, regardless of g(θ|η). Thus, in terms of global

fit, there is no appreciable difference between the MH-RM and BA-EM results.

Again consulting Table 8.2, the average RMSE and estimated bias for the

item parameters are nearly indistinguishable under MH-RM and BA-EM. Assess-

ing item parameter recovery from another perspective, Figure 8.3 compares the

average RMSE for all item parameters, by replication, for MH-RM and BA-EM.

Again, the vast majority of points are quite close to the 45◦ reference line, indi-

cating that for each replication MH-RM and BA-EM are producing comparable

results.

Results for the accuracy of the estimated RCs is also presented in Table 8.2 via

the ISE statistic. As should be expected, the ISE values for the normal g(θ|η) are
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Figure 8.2: Log-likelihood Values for MH-RM (x-axis) and BA-EM (y-axis) Al-
gorithms

-30800 -30400

-3
08
00

-3
04
00

Normal

MH-RM

E
M

-30800 -30400 -30000

-3
08
00

-3
04
00

-3
00
00 Skewed

MH-RM

E
M

-30800 -30400

-3
08
00

-3
04
00

Bimodal

MH-RM

E
M

Figure 8.3: Average RMSE for Item Parameters within a Replication for MH-RM
(x-axis) and BA-EM (y-axis) Algorithms
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Figure 8.4: ISE for MH-RM (x-axis) and BA-EM (y-axis) Algorithms
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the lowest among the three distributions. While Table 8.2 presents the median

ISE values, Figure 8.4 compares the MH-RM and BA-EM ISE values for each

distribution by replication. The proximity of the points to the 45◦ reference line

implies that the two methods are yielding comparable density estimates.

Given all of the evidence above, it is clear that the implementations of MH-RM

and BA-EM produce very similar point estimates for RC-IRT. Additionally, for

MH-RM, figure 8.5 shows the average approximated RC for each condition (left

column) and the 95% confidence intervals (right column). For the normal and

skewed distributions, the differences between true and average approximated RC

are nearly indistinguishable. Also, the 95% confidence intervals for the normal and

skewed distributions clearly capture the true curves. For the bimodal distribution,

the approximated RCs are less accurate. While the approximated curves are

largely bimodal distributions, they fail to capture the full extent of the local

extrema.

8.4 Results: Standard Errors from MH-RM

Table 8.3 presents the average standard error and Monte Carlo standard deviation

(in parentheses) for all slope parameters across the three distributions. As can

be seen, overall, the values are very close to one another. Figure 8.6 presents
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Figure 8.5: True densities (gray solid lines) used for the simulations, average
RC-IRT estimates (dotted lines), and 95% confidence intervals (dashed lines)
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Note. RC-IRT = Ramsay-curve item response theory. Left column: True curves
(gray solid lines) and average RC-IRT estimate (dotted line). Right column: True
curves (gray solid lines) and 95% confidence interval (dashed lines) for RC-IRT
estimate.
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Figure 8.6: Average Standard Errors and Monte Carlo Standard Deviations for
Item Parameters

0.1 0.2 0.3 0.4

0.
1

0.
2

0.
3

0.
4

Normal

Standard Error

M
on

te
 C

ar
lo

 S
D

0.1 0.2 0.3 0.4

0.
1

0.
2

0.
3

0.
4

Skewed

Standard Error
M

on
te

 C
ar

lo
 S

D
0.1 0.2 0.3 0.4

0.
1

0.
2

0.
3

0.
4

Bimodal

Standard Error

M
on

te
 C

ar
lo

 S
D

the same statistics, but for all item parameters. From the plots, it is clear that

the Monte Carlo standard deviations tend to be slightly larger than the average

standard errors.
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Table 8.3: Average Standard Errors and Monte Carlo Standard Deviations for
Slope Parameters

Item Normal Skewed Bimodal

1 0.09 (0.10) 0.10 (0.11) 0.09 (0.10)
2 0.08 (0.08) 0.09 (0.12) 0.08 (0.08)
3 0.09 (0.09) 0.12 (0.13) 0.09 (0.10)
4 0.10 (0.12) 0.12 (0.13) 0.10 (0.09)
5 0.09 (0.10) 0.09 (0.11) 0.09 (0.10)
6 0.09 (0.09) 0.10 (0.11) 0.09 (0.10)
7 0.06 (0.06) 0.07 (0.07) 0.06 (0.06)
8 0.07 (0.07) 0.07 (0.07) 0.07 (0.07)
9 0.07 (0.07) 0.07 (0.07) 0.07 (0.06)

10 0.08 (0.09) 0.08 (0.10) 0.07 (0.08)
11 0.08 (0.09) 0.09 (0.10) 0.08 (0.07)
12 0.08 (0.08) 0.09 (0.09) 0.08 (0.07)
13 0.15 (0.18) 0.17 (0.20) 0.15 (0.14)
14 0.10 (0.10) 0.11 (0.12) 0.09 (0.09)
15 0.11 (0.12) 0.13 (0.14) 0.11 (0.13)
16 0.20 (0.23) 0.21 (0.23) 0.20 (0.20)
17 0.09 (0.09) 0.09 (0.12) 0.09 (0.09)
18 0.08 (0.08) 0.08 (0.11) 0.08 (0.07)
19 0.07 (0.07) 0.07 (0.07) 0.06 (0.06)
20 0.10 (0.12) 0.10 (0.12) 0.10 (0.10)
21 0.11 (0.13) 0.11 (0.14) 0.11 (0.11)
22 0.11 (0.12) 0.11 (0.13) 0.10 (0.10)
23 0.09 (0.10) 0.10 (0.13) 0.09 (0.08)
24 0.09 (0.09) 0.09 (0.11) 0.09 (0.10)
25 0.10 (0.11) 0.10 (0.12) 0.10 (0.11)

Note. Entries are the Monte Carlo averages of estimated standard errors and the
Monte Carlo standard deviations (in parentheses) of the estimated parameters.
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CHAPTER 9

Empirical Data Analysis

Data used to illustrate RC-IRT via MH-RM with standard errors comes from

the Drug Abuse Treatment Outcome Studies (DATOS). DATOS is a national

evaluation of treatment effectiveness funded by the National Institues of Drug

Abuse. The available sample was quite large, and N = 2, 500 respondents were

randomly selected for the analysis. 11 Likert-type items measuring mental health

and emotional distress were analyzed using RC-IRT. As an example, one item

asked, “How troubled or distressed (bothered) are you now by emotional or psy-

chological problems?” Respondents could answer with one of the following: not at

all (0), somewhat (1), or very troubled (2). Accordingly, higher latent trait scores

correspond with greater emotional distress.

To verify that a unidimensional analysis was appropriate, and to provide a

comparison for RC-IRT, a standard IRT analysis was carried out using Bock and

Aitkin’s (1981) EM algorithm in flexMIRT
TM

(Cai, 2012). All items were fitted

to the graded response model. The resulting RMSEA value was 0.04, suggesting

that a unidimensional model fit the data reasonably well. Further results from

the standard IRT analysis will be discussed below.

RC-IRT was carried out with maximums of degree = 5 and number of knots

= 6 (see Section 3.1). Model selection was based on the Hannan-Quinn infor-

mation criteria (HQIC), as recommended by Woods (2007, 2008). The MH-RM

specifications were identical to those used for the simulation study (see Section

8).
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Table 9.1: Model Comparison Criteria for 11 DATOS Items (N = 2, 500)

Model Parameters -2LogL AIC BIC HQIC

1-3 RC 46 8685.07 8777.07 9044.97 8874.33
Normal 43 8750.19 8836.19 9086.63 8927.11

Note. 1-3 RC = RC-IRT Model with degree = 1 and knots = 3; Normal = IRT
estimation assuming a normal distribution for g(θ); AIC = Akaike information
criteria; BIC= Bayesian information criteria; HQIC = Hannan-Quinn information
criteria. All values are less 30,000 to facilitate comparison.

Figure 9.1: Estimates of Item Parameter Standard Errors for 11 DATOS Items

● ●
●

●
●●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

2.
5

Slope Estimates

RC−IRT

N
or

m
al ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−5 −4 −3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0

Intercept Estimates

RC−IRT

N
or

m
al

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

0.05 0.10 0.15 0.20 0.25

0.
05

0.
15

0.
25

Standard Errors

RC−IRT

N
or

m
al

Note. RC-IRT = Ramsay curve IRT; Normal = Standard IRT with Assumption
of Normal Density.

9.1 Empirical Analysis Results

For RC-IRT, the 1-3 model (i.e., degree = 1 and knots = 3) yielded the lowest

HQIC, and was thus selected. Table 9.1 displays different comparison criteria for

both the RC-IRT and standard IRT models. For all criteria, the 1-3 RC-IRT

model has lower values, indicating better fit. Point estimates and standard error

estimates for both RC-IRT and standard IRT models are displayed in Figure 9.1.

Notably, some standard errors obtained for the 1-3 RC-IRT model are appreciably

larger than the corresponding values obtained via traditional analysis.

Figure 9.2 shows the estimated RC associated with this scale. Interestingly, the
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Figure 9.2: Estimated RC-IRT Curve for 11 DATOS Items (N = 2, 500)
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distribution is skewed left. In comparison to the normal density, the estimated RC

indicates a greater number of the respondents are characterized by an exceptional

lack of emotional distress. The difference in the two sets of results also manifests

itself in the test information curves, shown in Figure 9.3. Of note, neither curve

dominates. This implies that the conditional standard error of measurement is not

uniformly higher for either analysis. That being said, the most obvious difference

in the curves occurs at moderately positive values for the latent trait, where the

RC-IRT analysis reveals more information.
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Figure 9.3: Estimated Test Information Curve for 11 DATOS Items (N = 2, 500)
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CHAPTER 10

Discussion and Conclusion

The empirical example provides a nice context for discussing some of the ad-

vantages of RC-IRT, as well as remaining challenges. First, conventional model

selection criteria indices (e.g., BIC, HQIC) ensures that the Ramsay curve may

be parsimoniously modelled. In the empirical example, the Ramsay curve was a

function of just three parameters. Nevertheless, its shape was clearly nonnormal.

Furthermore, the RC-IRT model fit better than the corresponding standard IRT

model, as measured by conventional criteria. And, if the criteria reveal that the

data do not support non-normality, we can always use the standard model. Thus,

from the standpoint of fit, there is little to be lost by using RC-IRT.

On the other hand, by not using RC-IRT, the potential misspecification may

lead to other undesirable results. As shown in Figure 9.3, the test information

curves from the RC-IRT and standard analyses are clearly different. This dis-

crepancy can have a practical impact on test assembly and item selection, where

obtaining a certain test information or conditional standard error of measurment

(SEM) curve may be the ultimate goal. Another practical implication involves

computer adaptive testing (CAT), where stopping criteria may be based on the

conditional SEM. To the extent that RC-IRT models result in smaller conditional

SEM values, CAT efficiency may be improved.

Again, in real-world applications, the form of the latent trait distribution is

unknown. Thus, treating it as such and estimating its shape from the data is

rather compelling. This theoretical argument, along with the practical advan-
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tages mentioned above, make a strong case for RC-IRT. Nevertheless, researchers

need and prefer methods that do not limit their lines of inquiry. In IRT, the

unavailability of standard errors is clearly one such limitation. This research has

provided the means to remedy this situation.

Still, other limitations exist. A notable example is that a multidimensional

generalization of RC-IRT has not yet been developed. When such a development

does occur, MH-RM will be a logical choice for estimation. Unlike BA-EM, MH-

RM does not impose artificial ceilings on the dimensionality of a model. To the

contrary, the method is, in a sense, designed to address “the curse of dimension-

ality.” While other methods for implementing standard errors for unidimensional

RC-IRT exist, choosing MH-RM lends itself to future generalizations. Hopefully,

when this occurs, the current research can serve as a template.
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APPENDIX A

Complete Data Log-Likelihood and Derivatives

for the Ramsay Curve

The log-likelihood for the Ramsay Curve is

l =
N∑
i=1

log g(θi|η). (A.1)

To avoid clutter, let W (θi) = B∗(θi)η. Then,

∂

∂η
W (θi) = B∗(θi) (A.2)
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The first derivatives are

∂l

∂η
=

∂

∂η

N∑
i=1

log
exp [W (θi)]

C

=
N∑
i=1

[
∂

∂η
log exp [W (θi)]−

∂

∂η
logC

]

=
N∑
i=1

[
B∗(θi)−

1

C

∂

∂η
C

]

=
N∑
i=1

[
B∗(θi)−

1

C

Q∑
q=1

(
∂

∂η
exp [W (xq)]

)]

=
N∑
i=1

[
B∗(θi)−

Q∑
q=1

(
exp [W (xq)]

C
B∗(xq)

)]

=
N∑
i=1

[
B∗(θi)−

Q∑
q=1

g(xq|η)B∗(xq)

]

which corresponds to Equation (14) in Woods and Thissen (2006).

The second derivatives involve ∂
∂η
g(xq|η), which is:

∂

∂η
g(xq|η) =

∂

∂η

exp [W (xq)]

C

=
C
(
∂
∂η

exp [W (xq)]
)
−
(
∂
∂η
C
)

exp [W (xq)]

C2

=
C(exp [W (xq)])B

∗(xq)−
(∑Q

q=1 exp [W (xq)] B
∗(xq)

)
exp [W (xq)]

C2

which, should be noted, does not involve any subscript i. That is, the term is

constant across persons.
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Finally, the second derivatives are:

∂2l

∂η∂η′
=

∂

∂η′

N∑
i=1

[
B∗(θi)−

Q∑
q=1

g(xq|η)B∗(xq)

]

=
N∑
i=1

[
0−

Q∑
q=1

(
∂

∂η
g(xq|η)B∗(xq)

)]

= −N
Q∑
q=1

[(
∂

∂η
g(xq|η)

)
B∗(xq)

′ + g(xq|η)

(
∂

∂η
B∗(xq)

)]

= −N
Q∑
q=1

[(
∂

∂η
g(xq|η)

)
B∗(xq)

′
]

where ∂
∂η
g(xq|η) is the v × 1 vector given above.
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