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On the Quantum Mechanical Theory of Collisional Recombination 

Rates IT. Beyond the Strong Collision Approximation 

William H. Miller 

Department of Chemistry, University of California, and 
Chemical Sciences Division, Lawrence Berkeley National Laboratory 

Berkeley, California 94720 

Abstract 

A quantum mechanical theory of collisional recombination (within the 

Lindemann mechanism, A +B H AB*, AB* + M--? AB + M) is presented 

which provides a proper quantum description of the A + B collision dynamics 

and treats theM+ AB* inelastic scattering within the impact approximation (the 

quantum analog of a classical master equation treatment). The most rigorous 

version of the theory is similar in structure to the impact theory of spectral line 

broadening and involves generalized (4-index) rate constants for describing M + 

AB* collisions. A simplified version is also presented which involves only the 

nonnal (2-index) inelastic rate constants forM+ AB* scattering but which also 

retains a proper quantum description of the A + B dynamics. 
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I. Introduction 

Collisional recombination reactions, i.e., 

A+B+M~AB+M, 

have recently been receiving considerable attention, 1 one reason being their 

importance in combustion processes (e.g., H + 0 2 ~ H02, H + CO ~ HCO, 

H + C02 ~ HOCO). The standard Lindemann mechanism for collisional 

recombination2, 

A+BHAB* (l.la) 

AB*+M~AB +M, (l.lb) 

leads (via the steady-state approximation and with the strong collision 

approximation (SCA) for the deactivation step, Eq. (l.lb)) to the following 

well-known expression for the recombination rate constant (units= 

crn3/molecule-sec) 

kr(T,ro) = Q.(T)-1 L e-13El rokl/(ro+k.!), (1.2) 
l 

where { E l } and { k l} are the energies and unimolecular decay rates of the 

metastable states of AB*, f3 = (kT)-1, Qr is the reactant (A+B) partition function 

per unit volume, and ro = [M] ~eact is the frequency of "strong collisions" 

(which is proportional to the pressure of the bath gas M), where ~eact is the 

bimolecular rate constant for the M + AB* collisional deactivation step in Eq. 

(l.lb). Most applications of this theory are within the RRKM framework,2 
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whereby one assumes a classical continuum of meU:!Stable AB* states, i.e., E 1 

~Eand 

~ ~JdE p(E), 
.l 

(1.3a) 

where p(E) is the density of AB* states, and uses rnicrocanonical transition 

state theory for the unirnolecular decay rates, 

(1.3b) 

Attemptslc,ld,3 at a more rigorous, quantum mechanical description of the 

A+ B collision dynamics in Eq. (l.la)- still with the phenomenological SCA 

for the relaxation step in Eq. (l.lb)- have focused on identifying the energies 

{E 1 } and unimolecular decay rates {k1 } in Eq. (1.2) as the energies and widths 

(r 1 = ftk 1) of scattering resonances of the A + B system. In some cases the 

lifetime (or time delay) matrix introduced by F.T. Smith4 has been used to 

describe the quantum dynamics of the A + B system. Though these approaches 

are appropriate when the A + B collision dynamics is dominated by long-lived 

resonances, if the separation of the resonant and non-resonant A + B scattering 

is ambiguous and/or if non-resonant scattering makes a significant contribution, 

then these approaches are ill-defined and can give unphysical results that are 

clearly not correct 

A recent paperS has presented a more rigorous quantum mechanical 

description of the A + B collision dynamics which is physically correct whether 

or not resonances dominate. It is based on flux correlation functions6 (vide 

infra) and does not require that one separately identify resonant and non-
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resonant contributions to the A + B scattering. The initial version of this theory 

utilized the strong collision approximation (SCA) for the relaxation step, Eq. 

( 1.1 b), and it is the purpose of the present paper to go beyond the SCA, i.e., to 

show how a more general treatment of the M + AB* inelastic scattering can be 

combined with this rigorous quantum treatment of the A + B collision 

dynamics. 

Section IT first summarizes the quantum theory of ref. 5; this provides a 

rigorous quantum description of the A+ B collision dynamics in Eq. (l.la) but 

utilizes the SCA for the relaxation step in Eq. (l.lb). Section ill next briefly 

reviews the classical master equation description 7 for going beyond the SCA; 

this provides a more general treatment of theM + AB* energy transfer process 

in Eq. (l.lb) but relies on a classical description of the A+ B dynamics in Eq. 

(l.la). Section IV then presents the new development of the paper, a synthesis 

of the two previous sections, combining a rigorous quantum description of the 

A + B collision dynamics with the appropriate quantum qeneralization of the 

master equation treatment of theM+ AB* energy transfer. Finally, an 

approximation to the general result of Section IV is identified which leads to a 

much simpler result that also provides a synthesis of Sections IT and ill; i.e., in 

the SCA it reverts to the quantum theory of Section IT, and in the classical limit 

it becomes the master equation treatment of Section ill. 

II. Review of Quantum Theory of Recombination within the SCA 

Referring to Fig. 1, the quantum theory of ref. 5 is the quantum analog of 

a classical trajectory simulation in which one would begin trajectories inward 

(r < 0) at timet= 0 from the "dividing surface" r =a (sampled from a 
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Boltzmann distribution at temperature T) and follow them until the time 't at 

which they return to the dividing surface, weighting each trajectory by ( 1 -

e-CO't), the probability of a "strong" (i.e., stabilizing) collision sometime within 

the time interval (O,'t). The quantum mechanical expression for the 

recombination rate constant corresponding to this classical picture was shown to 

be 

(2.1a) 

where cf is the flux autocorrelation function6 

,.... .,.... * .,.... ""' 
Cr(t) = tr[F eiH*tc Itt F e-iHtclh] , (2.1 b) 

where tc = t- i 1i J3f2. Here F is the usual flux operator, 8 related to the dividing 

surface in Fig. 1, 

(2.2) 

where h = h(a-r) is the Heaviside function (1 for r < a, 0 for r >a), and His 
the Hamiltonian for the A - B system, augmented by the absorbing potential 

e(q) (see Fig. 1), 

"' "' H = HAB - ie(q) , (2.3) 

which enforces outgoing wave boundary conditions9 for the time evolution 

operators (and Green's functions). 
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The correlation function Ct(t) is a property solely of the A+ B collision 

system; the only effect of stabilizing collisions is the factor e-cot in Eq. (2.la). 

Since the A + B collision system is that of a non-reactive system -i.e., 

everything that goes in through the dividing surface must come out (if there are 

no collisions)- one has 

(2.4) 

so that Eq. (2.1) gives J.s. = 0 if co = 0, an obvious physical requirement. Eq. 

(2.4) also allows one to write Eq. (2.1a) as 

krOr = J; dt( e-mt -1) Ct{ t) , (2.5) 

which explicitly enforces the limit Is- -7 0 if co -7 0 even for an approximate 

correlation function. 

The quantum rate expression can be written more explicitly if one 

diagonalizes a matrix representation of H (a complex symmetric matrix), 

yielding the complex eigenvalues { E 1 - ir j2} and eigenfunctions, { I'V 1>}. 

The time evolution operator can then be expressed as follows 

e-ilitth = L h!f 1.><\!f 1 1 e-i(E 1-u J.l2)tlh , 

J. 
(2.6) 

where we note that, unless explicitly indicated, the wavefunction is not complex 

conjugated in the bra state <\If 1 1 in this complex-symmetric algebra.9 Eq. (2.1b) 

for the flux correlation function thus becomes 
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(2.7a) 

the time integral of which gives the following expression for the rate 

(2.7b) 

From Eq. (2.7) it is easy to see what approximations are necessary to 

degrade it to the classical result in Eq. (1.2): one neglects the off-diagonal 

interference terms, ..2 '# ..2', in Eq. (2.7a) fort> 0 and makes the identification 

whereby Eq. (2.7a) becomes 

Cr(t) =-I, e-~E.t k] e-k,tt. 

l 

(2.8) . 

(2.9) 
• 

Since this approximation is only valid fort> 0, Eq. (2.5) is used10 to obtain the 

rate, 

(2.10a) 
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= 2. e-~E.t (k1 - k,? ) ' 
1 O>+k1 

= 2. e-~E 1 c.ok1 ' 
l O>+k1 

which is the classical result, Eq. (1.2). 

III. Summary of Classical Description of Energy Transfer 

(2.10b) 

(2.10c) 

Even within the classical RRKM description of the A + B collision 

dynamics, i.e., Eqs. (1.2) and (1.3), it is common nowadays to go beyond the 

strong collision approximation in treating the collisional relaxation in Eq. 

(Llb). This is typically done7 via a classical master equation: if { c _t(t)} denote 

the populations of the energy levels { E l} of AB * at time t, then the master 

equation is 

(3.1) 

where 

c.oP l'h.e(T) = [M]kl'+-i(T) , (3.2a) 

it being noted that the state-to-state transition probabilities depend on 

temperature. (Note that the diagonal terms, .t' = .t, in Eq. (3.1) cancel, but for 
" 
convenience I leave them in.) The terms on the right hand side of Eq. (3.1) are, 

respectively, the rate of loss from state l due to unimolecular decay (to A+ B), 

the rate of loss from state l due to collisions that transfer population to other 

states l', and the rate of gain of population in state l due to transitions from 

other states. The state-to-state transition probabilities are normalized as 

8 



(3.2b) 

and they satisfy the detailed balance relation 

(3.2c) 

(The nonnalization condition is essentially a defmition of the diagonal element 

P .e.i = 1 - L, P l'+-.t·) It is also usefu17 to introduce the symmetric matrix 
l'd 

p .e· • .e' 

(3.3a) 

or in matrix notation 

p = e~Ho/2. P•e -~Hot2 , (3.3b) 

where Ho is the diagonal matrix of energy levels 

(3.4) 

Because of the nonnalization, Eq. (3.2b ), the master equation reads 

9 
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c.e(t) =- L (ou·k.e+roo.e.e·-roP .t.t·~ 1 .(t) , 
l' ' 

'-

and its solution is conveniently written in matrix form, 

c(t) = e-[k+ro(I-P)]t • c(O) , 

where k is the diagonal matrix of unimolecular decay rates 

Therefore if l' is the initial state at t = 0, i.e., c1 (0) = <>.e· . .t, then the 

populations at time t are 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

The classical flux correlation function which corresponds to the generalization 

of the classical SCA result in Eq. (2.9) (including the collisional factor e-O>t), is . 

thus given by 

Ct{t) =- I. k.ec1~1.(t) k.e·e-PE.e· 
l,l' 

= - L k,t { e-[k+ro(I-P)t]} l,l' k.e-e-PE l' ' (3.9) 
l,l' 

the time integral of which gives 

10 

/ 



l,l' 
(3.10) 

As before, 10 this result needs to have its ro = 0 limit subtracted from itself, 

giving 

= L {k•[k+ro(I-P)Y1•(1-P)ro}1,1 . e-~E..t·. 
l,l' 

(3.11) 

Finally, this can be written in a more symmetrical form by noting that the 

similarity transformation relating P and Pin Eq. (3.3b) is also true for any 

power of these matrices, i.e., 

and thus also for any function of the matrices, so that in terms of the 

symmetrized transition probability matriX P Eq. (3.11) becomes 

where b is the "Boltzmann vector" 

11 
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Eq. (3.13) (or Eq. (3.11) is thus the desired generalization of the classical 

SCA result, Eq. (1.2); the SCA result is obtained when P or P ~ 0. (P l'+-l ~ 0 

in the SCA because an infinite number offmal states l' are populated.) Note 

also that the rate vanishes if the collisions are purely elastic, i.e., P ~ I, for 

inelastic (i.e., energy loss) collisions are clearly necessary for recombination to 

take place. 

IV. Quantum Theory Beyond the SCA 

The recombination rate given by Eq. (2. 7b) of Section II contains a 

rigorous quantum description of the A + B collision dynamics but with the 

(rather crude) strong collision approximation for energy transfer in M + A-B 

collisions. Eq. (3.11) or (3.13) of Section ill, on the other hand, gives the rate 

with a more general and realistic (classical master equation) treatment of M +A­

B inelastic scattering but neglects quantum effects in the A + B dynamics. Here 

we wish to combine these two approaches, i.e., to have a rigorous quantum 

description of the A+ B dynamics together with a master equation-like 

treatment of theM+ A-B inelastic scattering. We expect this more general 

theory to reduce to Eq. (2.7b) if the SCA is made and to Eq. (3.11) if one 

neglects quantum effects in the A + B dynamics. 

The general treatment presented here is based on the impact approximation 

forM+ A-B scattering and follows very closely the collisional line broadening 

theory of Baranger.11 (See also Fano, 12 Ben Reuven, 13 and Gordon.14) The 

recombination rate is still given by the time integral of the flux autocorrelation 

function15 
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(4.1) 

where the evolution operator U(t) includes the effect of collisions by the bath 

gas M. Within the impact approximation - which assumes that the collisions 

of A-B with Mare isolated, independent, and random events- if there are n 

collisions, at times t1 < ~< ... < to. then this propagator is 

u<n>(t) = e-rn(t-t0 )1hS(n) e-rn(t0 -t0 • 1)11tS(n-1) ..• s<2) e-rn(t2-t1)11tSO> e-rn<t1-0)I1z, 

(4.2) 

where H = HAB- iE and S(k) is the S-matrix for an M + A-B collision at time tk. 

If the classical path approximation16 is used to treat theM+ A-B collisions, 

then S(k) is a matrix b~tween states of A-Band is a function of impact parameter 

and relative velocity for theM+ A-B collision, S .l,.l' (ht,vk); Eq. (4.1) is to be 

averaged over impact parameters in the usual way and also over a Boltzmann 

distribution of relative M + A-B velocities. (The superscript index in S(k) 

indicates that the impact parameter ht and velocity vk are independent variables 

for each collision.) 

Eq. (4.1) must also be averaged17 over the various collision times, 

and fmally averaged17 over the number of collisions n, weighted by the 

probability of having n collisions if ro is the collision frequency, 

13 
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00 

L e-rot (rot)n/n! . (4.4) 

n=O 

Applying all of these operations to Eq. (4.1) gives 

(4.5a) 

where 

(4.5b) 

with 

(4.6) 

where Et = i Jlv2 is the relative translational energy for theM+ A-B collision 
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'and v = Y 8rcThtJl the average thennal velocity. The average over impact 

parameter b produces a (generalized) cross section, and the average over 

translational energy a (generalized) rate constant. The integral overt in Eq. 

(4.5a) is recognized17 to be the Laplace transform of ann-fold convolution, so 

the result is the product of then individual Laplace transforms; Eq. (4.5a) thus 

becomes 

n=O lQ, ... ,l 0 l'Q, ... ,l'0 f.to+(.e·o ro + + iro .to.t·0 211 

(4.7) 

Further progress in simplifying the general result is made by using a 
) 

1

, Liouville (or tetradic) vector space:11-14 each pair of indices (.tk',.tk) is 

considered a composite vector index. The following vectors are thus defined 

~ l' l = .c""llr* •• IFI\II,t > n n ~'I" ... n 'I" n (4.8a) 

(4.8b) 

and the matrices 

(4.9a) 

15 



the latter two of which are diagonal. In this notation Eq. ( 4.7) reads 

00 

kr~ =-L 3" •[ro(ro+K+i0f1•'P]lle(c0+K+i0f1•3"(~), (4.10) 
n=O 

so that the geometric_series over n can be summed to give 
~ 

(4.11a) 

which in component reads 

2. 2. <V~ .IFhjr .z>[ro(l-.,)+K+inJl·.z,.z ·o.zo<V 101Fhlf~ ·o> e-~<E.zo+E.z ·o)12 

.!o,.!'o .z,.z · 
(4.11b) 

Eq. (4.11) can also be written in the following time-dependent form, 

(4.11c) 

Eq. ( 4.11) is the desired result that generalizes Eqs. (2. 7b) and (3.11 ); it 

treats the A+ B dynamics fully quantum mechanically and treats energy transfer 

16 



( 

(from collisions with M) more generally (via the impact approximation). In the 

SCA (i.e., 'F ---? 0), it is easy to see that Eq. (2.7b) is recovered, and if one 

keeps only the "semi-diagonal" elements l'k = lk for all kin Eqs. (4.7)­

(4.10), then Eq. (3.11) is obtained (noting that 

(4.12) 

is the transition probability matrix of Section Ill). 

This more general result. Eq. ( 4.11), has been achieved at a heavy price, 

however, for it involves the generalized "4-index" transition probability matrix 

ofEq. (4.9a), a "super matrix" in Liouville space. This involves the phases of 

the S-matrix, as well as their magnitudes, and thus requires much more 

information about the inelastic M + A-B scattering than simply the transition 

probability ma¢x of Section III. It would thus be very desirable to have a 

theory, necessarily more approximate, that involves only the transition 

probability matrix but nevertheless contains both Eqs. (2.7b) and (3.11) in the 

appropriate limits. 

One way to achieve such a result is to make a random phase approximation 

for the phases of the S-matrix elements in Eq. ( 4.6); i.e., with all the averaging 

(over impact parameter and relative velocity) that is involved in Eq. (4.6), one 

assumes that the most oscillatory terms, those involving the phases of the S­

matrix elements, average to zero. This corresponds to the following 

approximation for the generalized transition probabilities matrix of Eq. ( 4.9a) 

17 



(4.13) 

which is now to be used in Eq. (4.7). Separating off then= 0 tenn ofEq. 

(4.7)- since it does not involve any S-matrix factors- Eq. (4.7) thus 

becomes 

+ i L e-l3E..eo <'If ..eoiFhlf~o><'l'~niFI'If..en> IT (I) p ..ek..ek-1 

n=l lo.··· . ..en (I)+ r ..eofh k=l (I)+ r ..e.jh 

(4.14) 

The frrst tenn above is recognized as the quantum SCA result of Section IT, i.e., 

Eq. (2.7b), and with the identifications of Eq. (2.8) and recognition of the sums 

over .l0, ••• ,.l0 in the second tenn above as a matrix product, Eq. (4.14) 

becomes 

The sum over n can be evaluated, 

L. [(ID+k)-1•Pro]n =- I + [k+ro(l-P)]"1•(ro+k) , 
n=l (4.16) 
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so that the Eq. (4.15) becomes 

(4.17) 

The second tenn on the right hand side above is recognized (once the ro = 0 

limit is subtracted off10) as the classical SCA result, Eq. (2.10), and the third 

tenn as the classical result of Section ill, Eq. (3.11 ), which includes the 

description of energy transfer via the classical master equation; 

The final result of this random phase approximation may thus be written as 

kx- = ~M SCA - kcL SCA + kcL • (4.18) 

where the first tenn on the right hand side is the rigorous quantum result within 

the SCA, Eq. (2.7b), the second term is classical result within the SCA, Eq. 

(2.10c), and the third tenn the classical result which describes the energy 

transfer via the classical master equation, Eq. (3.11) or (3.13). If the SCA is 

valid, then the latter two tenns in Eq. (4.18) cancel each other, and one obtains 

the quantum SCA result If quantum effects are negligible, then the first two 

tenns cancel, and one obtains the classical master equation result Eq. (4.18) 

thus does successfully combine the results of Sections II and ill in the 

appropriate limits. 

In various applications one may wish to write Eq. (4.18) as 

(4.19a) 

19 



where~= !coM seA- kcL seA is a "quantum correction" to the classical master 

equation result, the correction being made within the SCA, or as 

~ = !coM SCA + .1kcon, (4.19b) 

where &con = kcL - kcL SCA is a "collisional correction" to the SCA, the 

correction being made classically. In either case one notes the important 

practical feature that Eq. (4.18) requires one to carry out the quantum 

calculation only within the SCA, so that the more complicated aspects of the 

energy transfer step are described via the classical master equation. This latter 

feature is not true, of course, for the more rigorous result given by Eq. (4.11). 

V. Summarizing Remarks 

Thus it has been possible to combine a proper quantum mechanical 

treatment of the A+ B collision dynamics, Eq. (l.la), with a more general 

description of the energy transfer step of the Lindemann mechanism, Eq. 

(l.lb). The general result, Eq. (4.11), is essentially an adapted version of 

Baranger's impact theory of spectral line broadening. Unfortunately, however, 

this result involves the generalized rate constants ofEq. (4.6) forM+ A-B 

collisions, considerably more detailed quantities than the inelastic rates c.oP .l+-.l' 

that are commonly used7 to model the classical master equation description ofM 

+ A-B energy transfer. A random phase approximation for the S-matrix 

elements in Eq. (4.6), though, leads to a very simple result, Eq. (4.18), which 

incorporates both a quantum description of the A + B dynamics and the master 
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equation description ofM + A-B energy transfer. It will be interesting to see in 

applications the extent to which these more general theories can be applied and 

the nature of the corrections to the simpler treatments. 
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Figure Caption 

A one-dimensional schematic of the interaction potential for the A + B 

system, r being the center of mass separation of A and B. r = a is the dividing 

surface with respect to which the flux operator of Eq. (2.2) is defmed, and E(r) 

is the absorbing potential in Eq. (2.3). 
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