
UC Berkeley
UC Berkeley Previously Published Works

Title

Computing the Best Approximation over the Intersection of a Polyhedral Set and the
Doubly Nonnegative Cone

Permalink

https://escholarship.org/uc/item/66k9r2cg

Journal

SIAM Journal on Optimization, 29(4)

ISSN

1052-6234

Authors

Cui, Ying
Sun, Defeng
Toh, Kim-Chuan

Publication Date

2019

DOI

10.1137/18m1175562

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66k9r2cg
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Computing the Best Approximation Over the Intersection of a Polyhedral
Set and the Doubly Nonnegative Cone

Ying Cui∗ Defeng Sun† Kim-Chuan Toh‡

Abstract

This paper introduces an efficient algorithm for computing the best approximation of a given
matrix onto the intersection of linear equalities, inequalities and the doubly nonnegative cone
(the cone of all positive semidefinite matrices whose elements are nonnegative). In contrast
to directly applying the block coordinate descent (BCD) type methods, we propose an inex-
act accelerated (two-)block coordinate descent algorithm to tackle the four-block unconstrained
nonsmooth dual program. The proposed algorithm hinges on the efficient semismooth Newton
method to solve the subproblems, which have no closed form solutions since the original four
blocks are merged into two larger blocks. The O(1/k2) iteration complexity of the proposed
algorithm is established. Extensive numerical results over various large scale semidefinite pro-
gramming instances from relaxations of combinatorial problems demonstrate the effectiveness
of the proposed algorithm.

Keywords. semidefinite programming, doubly nonnegative cone, semismooth Newton, acceleration,
complexity

AMS subject classifications: 90C06, 90C22, 90C25

1 Introduction

Let X, Y, and Z be three finite dimensional Euclidean spaces. Our aim in this paper is to solve the
following convex optimization problem:

minimize
x∈X

f(x) + φ(x)

subject to Ax = b, g(x) ∈ C, x ∈ K,
(1)

where f : X→ R is a smooth and strongly convex function, φ : X→ (−∞,+∞] is a closed proper
convex function, A : X → Y is a linear operator, b ∈ Y is the given data, C ⊆ Z and K ⊆ X are
two closed convex cones and g : X → Z is a smooth and C-convex map for some closed convex set
C (see, e.g., [34, Example 4’]) satisfying

g (αx1 + (1− α)x2) − [αg(x1) + (1− α)g(x2)] ∈ C, ∀ x1, x2 ∈ g−1(C), ∀ α ∈ (0, 1).

∗The Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los
Angeles, California, USA. Email: yingcui@usc.edu
†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong. This

research is partially supported by a start-up research grant from the Hong Kong Polytechnic University. Email:
defeng.sun@polyu.edu.hk
‡Department of Mathematics and Institute of Operations Research and Analytics, National University of Singa-

pore, Singapore. Email: mattohkc@nus.edu.sg

1

ar
X

iv
:1

80
3.

06
56

6v
1

 [
m

at
h.

O
C

]
 1

7
M

ar
 2

01
8

Our interest in solving (1) stemmed initially from a particular application pertaining to the best
approximation problem over the intersection of affine spaces defined by linear equalities, inequalities
and the doubly nonnegative cone, which takes the form of

minimize
X∈Sn

1

2
‖X −G ‖2

subject to AX = b, BX ≥ d, X ∈ Sn+ , X ≥ 0,
(2)

where A : Sn → RmE , B : Sn → RmI are linear operators, G ∈ Sn, b ∈ RmE , d ∈ RmI are given
data, Sn and Sn+ are the cones of all n× n symmetric matrices and positive semidefinite matrices,
respectively. Problem (1) also includes the following quadratically constrained quadratic program
(which may include an additional nonsmooth regularization function φ in the objective) if f is taken
to be a strongly convex quadratic function and g is set to be a map consisting of convex quadratic
functions:

minimize
x∈X

1

2
〈x,Q0x〉+ 〈c0, x〉+ φ(x)

subject to
1

2
〈x,Qix〉+ 〈ci, x〉+ ri ≤ 0, i = 1, . . . ,m, x ∈ K.

Here Q0 : X → X is a self-adjoint positive definite linear operator, Qi : X → X are self-adjoint
positive semidefinite linear operators, c0, ci ∈ X and ri ∈ R are given data, all for i = 1, . . . ,m.

In this paper, we take a dual approach to solve (1) based on the observation that the dual
program, with the form of

minimize
w

h(w) +
4∑

i=1

ϕi(wi), w , (w1, w2, w3, w4), (3)

is an unconstrained convex nonsmooth problem, where h is a convex differentiable function whose
gradient is Lipschitz continuous, and ϕ1, . . . , ϕ4 are proper closed convex functions; see section 2
for the detailed derivations of this dual formulation. In fact, besides being the dual program of
(1), many optimization problems themselves have the form of (3), such as the robust principle
component analysis [46] and the robust matrix completion problem [21].

Naturally, one may consider the block coordinate (gradient) descent (BCD) method, whose
computational complexity is at best O(1/k), to solve the four block unconstrained problem (3). See
the papers [43, 42, 5, 33, 18] and a recent survey [47] for extensive discussions of this method. A key
factor for determining the efficiency of the BCD method is the number of blocks that are updated
sequentially during one iteration, since there is always a trade-off between such a number of blocks
and the difficulty for solving the subproblems for each block. One may notice that solving the conic
program (2) is different in nature from solving those problems arising in computational statistics
and machine learning. The properties of the latter problems, such as the low computational cost
of calculating one component of the gradient or solving one subproblem, and the need for only
low accuracy solutions, are conducive for the efficient implementations of multi-block (usually at
least hundreds-of-block) coordinate descent method. However, with the focus of solving the conic
program (2) to a higher accuracy, we have the following issues to resolve:

• Treating (3) as a single block problem and solving all the variables simultaneously is difficult
due to the degeneracy of this problem.

2

• Directly applying the four-block BCD method is inefficient as it potentially will need many
more iteration cycles compared with those of three or fewer blocks. (This observation is
indeed confirmed by the numerical experiments in section 5.) Within each iteration cycle,
the algorithm may involve a computationally intensive step such as the projection onto the
positive semidefinite cone.

To address the above issues, we propose to divide the four variables (w1, . . . , w4) into two groups and
solve the problem (3) via a two-block inexact majorized accelerated BCD method. The subprob-
lems with regard to each group may be non-degenerate and relatively easy to solve by Newton-type
methods. With the presence of four separable nonsmooth functions, this algorithm is rather differ-
ent from the inexact accelerated BCD method proposed in [39] to solve the doubly nonnegative best
approximation problem. In [39], an additional regularization term related to the linear inequali-
ties is added, which leads to only two nonsmooth separable functions in the corresponding dual
program. Furthermore, by using Danskin’s Theorem [12, Theorem 10.2.1], one of the nonsmooth
blocks can be solved implicitly and the accelerated proximal gradient method initiated by Nesterov
[27] is thus applicable to the resulting problem.

The key ingredient of our proposed algorithm is a combination of the inexactness, blockwise-
updating, as well as the Nesterov-type acceleration technique. The attractive theoretical complexity
of the acceleration technique for gradient-type methods and its good performance in practice has
spurred much of the recent research to further investigate this technique. In particular, it has been
extended to the BCD-type method with a random order in updating the blocks for smooth problems
in [28] and nonsmooth problems in [23, 24, 1, 29]; and to a BCD method which is added with a large
proximal term that is proportional to the number of blocks in [13, 14]. When the function h in (3) is
a least-squares quadratic function, the O(1/k2) complexity of a special majorized accelerated BCD
algorithm is established in [7]. Though all of the above works have presented important theoretical
progress, the numerical experiments in this paper indicate that their practical performance can
significantly lag behind our proposed algorithm for solving the best approximation problem (2).

To summarize, the main contributions of our paper are as follows.

• We design an inexact two-block accelerated BCD method for solving (3) where h is a general
smooth coupled function that is not necessarily quadratic. A key feature of the method
is the inexactness framework that allows us to apply the two-block based method to solve
the 4-block problem (3) by viewing the 4 blocks as two larger blocks each containing 2
smaller blocks. Theoretically, we establish the O(1/k2) complexity of the proposed inexact
accelerated BCD method. To achieve good practical performance, we suggest a proper way
to merge several variables into one block so that only small proximal terms are added to
the BCD subproblems. We also address the important issue of finding efficient algorithms to
solve the BCD subproblems.

• Numerically, we provide an efficient solver based on the proposed method for solving the
important class of best approximation problems of the form (2) that involves the positive
semidefinite cone constraint and a large number of linear equality and inequality constraints.
Our experiments on a large number of data instances from the Biq Mac Library maintained by
A. Wiegele demonstrate that our solver is at least 3 to 4 times faster than other (accelerated)
BCD-type methods.

The rest of the paper is organized as follows. In the next section, we derive the dual form of
the problem (1) and propose the inexact majorized accelerated BCD method. Section 3 is devoted

3

to the analysis of O(1/k2) iteration complexity of the proposed algorithm. In section 4, we describe
the implementation of this inexact framework for solving the dual program (3). Newton-type
algorithms for solving the subproblems are also discussed in this section. Numerical results are
reported in section 5, where we show the effectiveness of our proposed algorithm via comparison
with several variants of the BCD-type methods. We conclude our paper in section 6.

2 Formulation of the Dual Problem and the Algorithmic Frame-
work

By introducing an auxiliary variable x̃ = x and reformulating (1) as

minimize
x,x̃∈X

f(x) + φ(x̃)

subject to Ax = b, g(x) ∈ C, x ∈ K, x = x̃,

we derive the following Lagrangian function associated with the dual variable (y, λ, s, z) ∈ Y×Z×
X× X:

L(x, x̃; y, λ, s, z) , f(x) + φ(x̃)− 〈 y, Ax− b 〉 − 〈λ, g(x) 〉 − 〈 s, x 〉 − 〈 z, x− x̃ 〉,

which leads to the dual program:

maximize
y,λ,s,z

ψ(A∗y + s+ z, λ) + 〈b, y〉 − φ∗(−z)
subject to λ ∈ C∗, s ∈ K∗.

(4)

Here A∗ is the adjoint of A, p∗ is the conjugate function of p, C∗ and K∗ are the dual cones of C
and K, and the function ψ : X× C∗ → R is defined as

ψ(w, λ) , inf
x∈X
{ f(x)− 〈w, x〉 − 〈λ, g(x) 〉 } , (w, λ) ∈ X× C∗.

Since g is assumed to be C-convex, the term −〈λ, g(x) 〉 is convex with respect to x for λ ∈ C∗. The
optimal solution of the above problem is thus a singleton by the strong convexity of f . In addition,
the function ψ is concave and continuously differentiable with Lipschitz continuous gradient [12,
Theorem 10.2.1]. It therefore follows that the dual problem (4) is a special case of (3).

In what follows, we introduce an inexact majorized accelerated two-block coordinate descent
method (imABCD) to solve (3). By grouping the 4 blocks of variables (w1, w2, w3, w4) into two
larger blocks, we can express (3) in the following 2-block format:

minimize
w,u,v

θ(w) , h(w) + p(u) + q(v), w ≡ (u, v), u ≡ (u1, u2) ∈ U, v ≡ (v1, v2) ∈ V, (5)

where p(u) = ϕ1(w1)+ϕ2(w2) and q(v) = ϕ3(w3)+ϕ4(w4) are proper closed convex functions. Since
∇h is assumed to be globally Lipschitz continuous, there exist two self-adjoint positive semidefinite
linear operators Q and Q̂ : U× V→ U× V such that

h(w) ≥ h(w′) + 〈∇h(w′), w − w′〉+
1

2
‖w − w′‖2Q ,

h(w) ≤ ĥ(w;w′) , h(w′) + 〈∇h(w′), w − w′〉 +
1

2
‖w − w′‖2Q̂ ,

∀ w,w′ ∈ U× V. (6)

4

The operators Q and Q̂ may be decomposed into the following 2× 2 block structures as

Qw ≡
(
Q11 Q12

Q∗12 Q22

)(
u
v

)
, Q̂w ≡

(
Q̂11 Q̂12

Q̂∗12 Q̂22

)(
u
v

)
, w ∈ U× V,

where Q11, Q̂11 : U → U and Q22, Q̂22 : V → V are self-adjoint positive semidefinite linear oper-
ators, and Q12, Q̂12 : V → U are two linear mappings whose adjoints are given by Q∗12 and Q̂∗12,
respectively. The following assumption is made in the subsequent discussions.

Assumption 1. There exist two self-adjoint positive semidefinite linear operators D1 : U→ U and
D2 : V→ V such that

Q̂ = Q+ Diag (D1,D2) .

Furthermore, Q̂ satisfies that Q̂11 = Q11 +D1 � 0 and Q̂22 = Q22 +D2 � 0.

Below is our proposed algorithm for solving problem (3) via the two-block program (5).

imABCD: An inexact majorized Accelerated Block Coordinate Descent algorithm for (5)

Initialization. Choose an initial point (u1, v1) = (ũ0, ṽ0) ∈ dom p × dom q and a nonnegative
non-increasing sequence {εk}. Let t1 = 1. Perform the following steps in each iteration for k ≥ 1.

Step 1. Compute

ũk = argmin
u∈U

{
p(u) + ĥ(u, vk;wk) + 〈δku, u〉

}
,

ṽk = argmin
v∈V

{
q(v) + ĥ(ũk, v;wk) + 〈δkv , v〉

} (7)

such that (δku, δ
k
v) ∈ U× V satisfies max

{
‖Q̂−1/211 δku‖, ‖Q̂−1/222 δkv‖

}
≤ εk. Denote w̃k = (ũk, ṽk).

Step 2. Compute

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
,

wk+1 = w̃k +
tk − 1

tk+1

(
w̃k − w̃k−1

)
.

The above imABCD algorithm can be taken as an accelerated as well as an inexact version of
the alternating minimization method. When εk ≡ 0 for all k ≥ 0, the proposed algorithm reduces
to an exact version of the majorized accelerated block coordinate descent (mABCD) method. Since
Nesterov’s acceleration technique is able to improve the complexity of the gradient-type method
from O(1/k) to O(1/k2), it is interesting for us to investigate whether this acceleration technique
can be extended to the two-block coordinate descent method without random selection of the
updating blocks. In fact, extensive numerical experiments in the existing literature indicate that
the acceleration technique may substantially improve the efficiency of the BCD algorithm, see, e.g.,
the numerical comparison in [39]. The study on this subject is thus critical for understanding the
reasons behind this phenomenon.

5

3 The O(1/k2) Complexity of the Objective Values

In order to simplify the subsequent discussions, we introduce the positive semidefinite operator
H : U× V→ U× V defined by

H , Diag (D1 , D2 +Q22). (8)

We also write Ω as the optimal solution set of (3). We start by presenting the the following simple
lemma concerning the properties of the sequence {tk}.

Lemma 1. The sequence {tk}k≥1 generated by the imABCD algorithm satisfies the following
properties:

(a) 1− 1

tk+1
=

t2k
t2k+1

. (b)
k + 1

2
≤ tk ≤

5

8
k +

3

8
≤ k .

(c) Given any w+, w′ in U× V. Consider w = (1− 1
tk

)w+ + 1
tk
w′. Then

t2k [θ(w)− θ(w′)] ≤ t2k−1 [θ(w+)− θ(w′)]. (9)

Proof. By noting that t2k+1 − tk+1 = t2k, the property (a) can be obtained directly. The property
(b) can be derived from the inequalities

tk+1 =
1 + 2tk

√
1 + 1/(4t2k)

2
≤ 1 + 2tk(1 + 1/(8t2k))

2
=

1

2
+ tk +

1

8tk
≤ 5

8
+ tk ≤

5k

8
+ t1 =

5k

8
+ 1

and

tk+1 =
1 +

√
1 + 4t2k

2
≥ 1 + 2tk

2
≥ k + 2t1

2
=
k + 2

2
.

(c) From the convexity of θ, we have that

t2k θ(w) ≤ (t2k − tk) θ(w+) + tk θ(w
′) = t2k−1 θ(w

+) + (t2k − t2k−1) θ(w′).

From here, we get the desired inequality.

In the following, we shall first provide the O(1/k2) complexity of the ABCD method with
subproblems being solved exactly, and then extend the analysis to the inexact case.

3.1 The case where the subproblems are being solved exactly

The analysis in this subsection is partially motivated by the recent paper [7] in which the authors
consider the O(1/k2) complexity of an accelerated BCD method for (3) where h is a special least-
squares quadratic function. Here we extend this nice result to a more general setting where h is
only required to be a smooth function.

The lemma below shows an important property of the objective values for the sequence gener-
ated by the mABCD algorithm, which is essential to prove the main global complexity result.

6

Lemma 2. Suppose that Assumption 1 holds. Let the sequences {w̃k} , {(ũk, ṽk)} and {wk} =
{(uk, vk)} be generated by the mABCD algorithm. Then for any k ≥ 1, it holds that

θ(w̃k)− θ(w) ≤ 1

2
‖w − wk ‖2H −

1

2
‖w − w̃k ‖2H, ∀ w ∈ U× V.

In particular, if w∗ is an optimal solution of (3), then

‖w∗ − w̃k‖H ≤ ‖w∗ − wk ‖H.

Proof. By applying the optimality condition to the subproblems in (7), we derive that

0 ∈ ∂p(ũk) +∇uh(wk) + Q̂11(ũ
k − uk) ,

0 ∈ ∂q(ṽk) +∇vh(wk) +Q∗12(ũk − uk) + Q̂22(ṽ
k − vk) .

Thus, it follows from the convexity of p(·) and q(·) that

p(u) ≥ p(ũk) +
〈
u− ũk, −∇uh(wk)− Q̂11(ũ

k − uk)
〉
, ∀ u ∈ U,

q(v) ≥ q(ṽk) +
〈
v − ṽk, −∇vh(wk)−Q∗12(ũk − uk)− Q̂22(ṽ

k − vk)
〉
, ∀ v ∈ V.

(10)

Based on the inequalities in (6) that

h(w̃k) ≤ h(wk) +
〈
∇h(wk), w̃k − wk

〉
+

1

2
‖ w̃k − wk ‖2Q̂ ,

h(w) ≥ h(wk) +
〈
∇h(wk), w − wk

〉
+

1

2
‖w − wk ‖2Q ,

we get

h(w)− h(w̃k) ≥
〈
∇h(wk), w − w̃k

〉
+

1

2
‖w − wk ‖2Q −

1

2
‖ w̃k − wk ‖2Q̂ . (11)

By the Cauchy-Schwarz inequality, we also have

2
〈
ũk − u, Q12 (ṽk − vk)

〉
= 2

〈
Q (w̃k − w),

(
0

ṽk − vk
)〉
− 2 〈Q22 (ṽk − v), ṽk − vk 〉

≤
(
‖ w̃k − w ‖2Q + ‖ ṽk − vk ‖2Q22

)
−
(
‖ ṽk − v ‖2Q22

+ ‖ ṽk − vk ‖2Q22
− ‖ vk − v ‖2Q22

)

= ‖ w̃k − w ‖2Q + ‖ vk − v ‖2Q22
− ‖ ṽk − v ‖2Q22

.

(12)

Summing up the inequalities (10) and (11) and substituting the resulting inequality into (12), we
obtain

2
(
θ(w)− θ(w̃k)

)

≥
(
‖w − wk ‖2Q − ‖ w̃k − wk ‖2Q̂

)
− 2

〈
w − w̃k, Q̂ (w̃k − wk)

〉
− 2

〈
ũk − u,Q12 (ṽk − vk)

〉

≥ ‖w − wk ‖2Q − ‖ w̃k − wk ‖2Q̂ −
(
‖w − wk ‖2Q̂ − ‖w − w̃

k ‖2Q̂ − ‖ w̃
k − wk ‖2Q̂

)

−
(
‖ w̃k − w ‖2Q + ‖ vk − v ‖2Q22

− ‖ ṽk − v ‖2Q22

)
= ‖w − w̃k ‖2H − ‖w − wk ‖2H ,

where the last equality is due to Assumption 1. The stated inequality therefore follows.

7

Based on the above lemma, we next show the O(1/k2) complexity for the sequence of objective
values obtained by the mABCD algorithm.

Theorem 2. Suppose that Assumption 1 holds and the solution set Ω of the problem (3) is non-
empty. Let w∗ , (u∗, v∗) ∈ Ω. Then the sequence {w̃k} , {(ũk, ṽk)} generated by the mABCD
algorithm satisfies that

θ(w̃k)− θ(w∗) ≤ 2 ‖ w̃0 − w∗ ‖2H
(k + 1)2

, ∀ k ≥ 1.

Proof. Letting w = (1− 1
tk

)w̃k−1 + 1
tk
w∗ in Lemma 2, we derive that, for any k ≥ 2,

t2kθ(w) − t2kθ(w̃
k) ≥ 1

2

∥∥∥(tk − 1)w̃k−1 + w∗ − tkw̃k
∥∥∥
2

H
− 1

2

∥∥∥(tk − 1)w̃k−1 + w∗ − tkwk
∥∥∥
2

H
.

By applying Lemma 1 (c) with w+ = w̃k−1 and w′ = w∗, we get

t2k [θ(w)− θ(w∗)] ≤ t2k−1[θ(w̃
k−1)− θ(w∗)].

By combining the above inequalities and noting that wk = w̃k−1 +
tk−1−1
tk

(w̃k−1− w̃k−2), we get for
k ≥ 2,

t2k [θ(w̃k)− θ(w∗)] +
1

2

∥∥ tkw̃k − w∗ − (tk − 1)w̃k−1
∥∥2
H

≤ t2k−1 [θ(w̃k−1)− θ(w∗)] +
1

2

∥∥ tk−1w̃k−1 − w∗ − (tk−1 − 1)w̃k−2
∥∥2
H.

By applying Lemma 2 again for k = 1 and w = w∗, we get

θ(w̃1)− θ(w∗) ≤ 1

2
‖w1 − w∗ ‖2H −

1

2
‖ w̃1 − w∗ ‖2H =

1

2
‖ w̃0 − w∗ ‖2H −

1

2
‖ w̃1 − w∗ ‖2H .

It therefore follows that, for all k ≥ 1,

t2k [θ(w̃k)− θ(w∗)] +
1

2
‖ tkw̃k − w∗ − (tk − 1)w̃k−1 ‖2H

≤ t2k−1 [θ(w̃k−1)− θ(w∗)] +
1

2
‖ tk−1w̃k−1 − w∗ − (tk−1 − 1)w̃k−2 ‖2H

≤ · · ·
≤ t21 [θ(w̃1)− θ(w∗)] +

1

2
‖ t1w̃1 − w∗ − (t1 − 1)w̃0 ‖2H ≤

1

2
‖ w̃0 − w∗ ‖2H .

The desired inequality of this theorem can thus be established since tk ≥
k + 1

2
by Lemma 1(b).

3.2 The case where the subproblems are being solved inexactly

Theorem 2 shows the O(1/k2) complexity of the objective values for the two-block majorized
accelerated BCD algorithm for solving (3). However, there seems to have no easy extension of its
proof to problems with three or more blocks. In this section, we consider to allow for inexactness
when solving the subproblems. The introduction of the inexactness is crucial for efficiently solving

8

the multi-block problems. We note that such an idea has already been incorporated into different
variants of the BCD and APG algorithms, see, e.g., [37, 20, 45, 41]. But the analyses therein are
not applicable to our setting.

We characterize the decreasing property of the objective values for the imABCD algorithm in
the lemma below. Its proof can be derived similarly as the proof of the exact case in Proposition 2
by applying the optimality conditions at the iteration point (ũk, ṽk). We omit the details here for
brevity.

Lemma 3. Suppose that Assumption 1 holds. Let the sequences {w̃k} , {(ũk, ṽk)} and {wk} ,
{(uk, vk)} be generated by the imABCD algorithm. Then for any k ≥ 1,

θ(w̃k)− θ(w) ≤ 1

2
‖w − wk ‖2H −

1

2
‖w − w̃k ‖2H + εk ‖w − w̃k ‖Diag(Q̂11,Q̂22)

, ∀ w ∈ U× V.

For k ≥ 1, we denote the exact solutions at the (k + 1)-th iteration as

uk , argmin
u∈U

{
p(u) + ĥ(u, vk;wk)

}
, vk , argmin

v∈V

{
q(v) + ĥ(uk, v;wk)

}
. (13)

For consistency, we set (u0, v0) = (ũ0, ṽ0) = (u1, v1). Since Q̂11 and Q̂22 are assumed to be positive
definite, the above two problems admit unique solutions and thus, uk and vk are well defined for
k ≥ 0. The following lemma shows the gap between (uk, vk) and (ũk, ṽk).

Lemma 4. Let the sequences {(ũk, ṽk)} and {(uk, vk)} be generated by the imABCD algorithm,
and {(uk, vk)} be given by (13). For any k ≥ 1, the following inequalities hold:

(a) ‖uk − u∗ ‖2Q̂11
≤ ‖uk − u∗ ‖2D1

+ ‖ vk − v∗‖2Q̂22
= ‖wk − w∗‖2H;

(b) ‖ Q̂1/2
11 (ũk − uk) ‖ ≤ εk, ‖ Q̂1/2

22 (ṽk − vk) ‖ ≤ (1 +
√

2) εk;

(c) ‖ w̃k − wk ‖H ≤
√

7 εk.

Proof. (a) By applying the optimality conditions to the problems in (13), we deduce that

0 ∈ ∂p(uk) +∇uh(wk) + Q̂11(u
k − uk) and 0 ∈ ∂p(u∗) +∇uh(w∗).

By the monotonicity of ∂p, we get
〈
uk − u∗, ∇uh(wk)−∇uh(w∗) + Q̂11(u

k − uk)
〉
≤ 0. (14)

Since ∇h is assumed to be globally Lipschitz continuous, it is known from Clarke’s Mean-Value
Theorem [8, Proposition 2.6.5] that there exists a self-adjoint and positive semidefinite operator
W k ∈ conv

{
∂2h([wk−1, wk])

}
such that

∇h(wk)−∇h(wk−1) = W k(wk − wk−1),

where the set conv
{
∂2h([wk−1, wk])

}
denotes the convex hull of all points in ∂2h(z) for any

z ∈ [wk−1, wk]. To proceed, we write W k ,
(

W k
11 W k

12

(W k
12)
∗ W k

22

)
, where W k

11 : U→ U, W k
22 : V→ V

are self-adjoint positive semidefinite linear operators and W k
12 : U→ V is a linear operator. Since

〈(
ūk − u∗
vk − v∗

)
,W k

(
ūk − u∗
vk − v∗

)〉
≥ 0 and Q �W k � Q̂ ,

9

we can derive that

2
〈
uk − u∗, ∇uh(wk)−∇uh(w∗)

〉
= 2

〈
uk − u∗, W k

11(u
k − u∗) +W k

12(v
k − v∗)

〉

≥
(
‖uk − u∗ ‖2

Wk
11

+ ‖uk − u∗ ‖2
Wk

11
− ‖uk − uk ‖2

Wk
11

)
−
(
‖uk − u∗ ‖2

Wk
11

+ ‖ vk − v∗ ‖2
Wk

22

)

≥ ‖uk − u∗ ‖2Q11
− ‖uk − uk ‖2Q̂11

− ‖ vk − v∗ ‖2Q̂22
.

(15)
From (14) and (15), we may obtain that

0 ≥ ‖uk − u∗ ‖2Q11
− ‖uk − uk ‖2Q̂11

− ‖ vk − v∗ ‖2Q̂22
+ 2

〈
uk − u∗, Q̂11 (uk − uk)

〉

= ‖uk − u∗ ‖2Q11
− ‖uk − uk ‖2Q̂11

− ‖ vk − v∗ ‖2Q̂22
+ ‖uk − u∗ ‖2Q̂11

+ ‖uk − uk ‖2Q̂11
− ‖uk − u∗ ‖2Q̂11

= ‖uk − u∗ ‖2Q̂11
− ‖uk − u∗ ‖2D1

− ‖ vk − v∗ ‖2Q̂22
,

which yields ‖uk − u∗ ‖2Q̂11
≤ ‖uk − u∗ ‖2D1

+ ‖ vk − v∗‖2Q̂22
. This completes the proof of part (a).

(b) In order to obtain bounds for ‖ Q̂1/2
11 (ũk − uk)‖ and ‖ Q̂1/2

22 (ṽk − vk)‖, we apply the optimality
conditions to the problems in (13) at (uk, vk) and (ũk, ṽk) to deduce that

〈
Q̂11(ũ

k − uk) + δku , ũ
k − uk

〉
≤ 0 and

〈
Q∗12 (ũk − uk) + Q̂22 (ṽk − vk) + δkv , ṽ

k − vk
〉
≤ 0.

The first inequality implies that

‖ Q̂1/2
11 (ũk − uk) ‖ ≤ ‖ Q̂−1/211 δku ‖ ≤ εk.

The second inequality yields that

‖ ṽk − vk ‖2Q̂22
≤ ‖ Q̂−1/222 δkv ‖ ‖ Q̂1/2

22 (ṽk − vk) ‖ −
〈
Q∗12 (ũk − uk), ṽk − vk

〉

≤ ‖ Q̂−1/222 δkv‖ ‖ Q̂1/2
22 (ṽk − vk)‖+

1

2

(
‖ ũk − uk ‖2Q̂11

+ ‖ ṽk − vk ‖2Q̂22

)
.

Hence,

‖ ṽk − vk ‖2Q̂22
≤ 2 ‖ Q̂−1/222 δkv ‖ ‖ Q̂1/2

22 (ṽk − vk) ‖+ ‖ ũk − uk ‖2Q̂11
≤ 2εk ‖ Q̂1/2

22 (ṽk − vk) ‖+ ε2k.

By solving this inequality, we obtain that

‖ Q̂1/2
22 (ṽk − vk) ‖ ≤ (1 +

√
2) εk.

(c) From parts (a) and (b), we have that

‖wk − w̃k ‖2H = ‖uk − ũk ‖2D1
+ ‖ vk − ṽk ‖2Q̂22

≤ 7ε2k,

This completes the proof of this lemma.

We are now ready to present the main theorem of this section on the O(1/k2) complexity of
the imABCD algorithm.

10

Theorem 3. Suppose that Assumption 1 holds and the solution set Ω of the problem (3) is non-
empty. Let w∗ ∈ Ω. Assume that

∑∞
i=1 i εi <∞. Then the sequence {w̃k} , {(ũk, ṽk)} generated

by the imABCD algorithm satisfies that

θ(w̃k)− θ(w∗) ≤ 2 ‖ w̃0 − w∗ ‖2H + c0
(k + 1)2

, ∀ k ≥ 1,

where c0 is a positive scalar (independent of k).

Proof. By applying Lemma 2 for k = 1 and w = w1, we get

2 [θ(w1)− θ(w∗)] ≤ ‖w1 − w∗‖2H − ‖w1 − w∗ ‖2H
= ‖ w̃0 − w∗‖2H − ‖w1 − w∗‖2H = ‖w0 − w∗‖2H − ‖w1 − w∗‖2H .

For any k ≥ 2, since wk = (uk, vk) exactly solves the subproblem (7), we may take w̃k = wk and

w =
(tk − 1)wk−1 + w∗

tk
in Lemma 2 to obtain the following inequality:

θ(w)− θ(wk) ≥ 1

2

∥∥∥∥
(tk − 1)wk−1 + w∗

tk
− wk

∥∥∥∥
2

H
− 1

2

∥∥∥∥
(tk − 1)wk−1 + w∗

tk
− wk

∥∥∥∥
2

H
.

By applying Lemma 1(c) with w+ = wk−1 and w′ = w∗, we get

t2k [θ(w)− θ(w∗)] ≤ t2k−1 [θ(wk−1)− θ(w∗)].

By combining the above two inequalities and noting that tkw
k = tkw̃

k−1 +(tk−1−1)(w̃k−1− w̃k−2),
we have for k ≥ 2,

2 t2k
[
θ(wk)− θ(w∗)

]
− 2 t2k−1

[
θ(wk−1)− θ(w∗)

]

≤ ‖ tk−1w̃k−1 − w∗ − (tk−1 − 1)w̃k−2 − (tk − 1)(wk−1 − w̃k−1) ‖2H − ‖ tkwk − w∗ − (tk − 1)wk−1 ‖2H
= ‖λk−1 ‖2H − 2

〈
Hλk−1 , (tk−1 + tk − 1)(wk−1 − w̃k−1)− (tk−1 − 1)(wk−2 − w̃k−2)

〉

+ ‖ (tk−1 + tk − 1)(wk−1 − w̃k−1)− (tk−1 − 1)(wk−2 − w̃k−2)‖2H − ‖λk ‖2H ,
(16)

where λk , tkw
k − w∗ − (tk − 1)wk−1 = tk(w

k − w∗) − (tk − 1)(wk−1 − w∗). By Lemma 1(b),
Lemma 4 and the nonincreasing property of {εk}, we derive that for all k ≥ 3,

‖ (tk−1 + tk − 1)(wk−1 − w̃k−1)− (tk−1 − 1)(wk−2 − w̃k−2) ‖H
≤ (tk−1 + tk − 1) ‖wk−1 − w̃k−1 ‖H + (tk−1 − 1) ‖wk−2 − w̃k−2 ‖H
≤ c1(k − 1) εk−2,

where c1 = 5. Note that in deriving the above inequality, we have used Lemma 4 (c). For k = 2,
we also have that

‖ (tk−1 + tk − 1)(wk−1 − w̃k−1)− (tk−1 − 1)(wk−2 − w̃k−2) ‖H = t2‖ (w1 − w̃1)‖H
≤ c1(k − 1)εk−2,

11

where we set ε0 = ε1. It follows from (16) that for k ≥ 2, we have

2 t2k
[
θ(wk)− θ(w∗)

]
+ ‖λk ‖2H

≤ 2 t2k−1
[
θ(wk−1)− θ(w∗)

]
+ ‖λk−1 ‖2H + 2c1(k − 1)εk−2‖λk−1 ‖H + c21 (k − 1)2 ε2k−2

≤ · · ·

≤ 2 t21
[
θ(w1)− θ(w∗)

]
+ ‖λ1 ‖2H + 2c1

k−1∑

i=1

i εi−1 ‖λi ‖H + c21

k−1∑

i=1

i2 ε2i−1

≤ ‖w1 − w∗ ‖2H + 2c1

k−1∑

i=1

i εi−1 ‖λi ‖H + c21

k−1∑

i=1

i2 ε2i−1 .

Notice that by Lemma 2, ‖w1 − w∗ ‖2H ≤ ‖w1 − w∗ ‖2H = ‖w0 − w∗ ‖2H. Next we show that the
above inequality implies the boundedness of the sequence {‖λk‖H}. If ‖λk‖H ≤ 1 for all k ≥ 1,
then we are done. Otherwise, for any given sufficiently large positive integer m, we have that

‖λkm ‖H := max{‖λi ‖H | 1 ≤ i ≤ m} ≥ 1.

Thus, for any 1 ≤ k ≤ m, we have that

‖λk‖H ≤ ‖λkm‖H ≤ 1

‖λkm‖H

(
‖w0 − w∗ ‖2H + 2c1

km−1∑

i=1

i εi−1‖λi ‖H + c21

km−1∑

i=1

i2 ε2i−1

)

≤ ‖w0 − w∗ ‖2H + 2c1

km−1∑

i=1

i εi−1
‖λi ‖H
‖λkm ‖H

+ c21

km−1∑

i=1

i2 ε2i−1

≤ ‖w0 − w∗ ‖2H + 2c1

km−1∑

i=1

i εi−1 + c21

km−1∑

i=1

i2 ε2i−1

≤ ‖w0 − w∗ ‖2H + 2c1

∞∑

i=1

i εi−1 + c21

∞∑

i=1

i2 ε2i−1,

where the third inequality follows from the definition of ‖λkm‖H. Thus by letting m→∞, we get

‖λk‖H ≤ c2 , max

{
1, ‖w0 − w∗ ‖2H + 2c1

∞∑

i=1

i εi−1 + c21

∞∑

i=1

i2 ε2i−1

}
, ∀ k ≥ 1.

To estimate the bound for ‖wk+1 − w∗‖H, we set w = w∗ and w̃k = wk in Lemma 3 and deduce
that

tk+1 ‖wk+1 − w∗ ‖H ≤ tk+1 ‖wk+1 − w∗ ‖H

=
∥∥ (tk+1 + tk − 1)w̃k − (tk − 1)w̃k−1 − tk+1w

∗ ∥∥
H

≤ (tk+1 − 1)
∥∥ (wk − w∗)

∥∥
H +

∥∥ tkwk − (tk − 1)wk−1 − w∗
∥∥
H

+ (tk+1 + tk − 1)
∥∥ (w̃k − wk)

∥∥
H + (tk − 1)

∥∥ (w̃k−1 − wk−1)
∥∥
H

≤ t2k
tk+1

∥∥∥ (wk − w∗)
∥∥∥
H

+ c2 + c1 εk−1 tk+1 ,

12

where the last inequality is obtained by Lemma 1(a). It follows that

t2k
t2k+1

∥∥∥ (wk − w∗)
∥∥∥
H
≤ t2k

t2k+1

(
t2k−1
t2k

∥∥∥ (wk−1 − w∗)
∥∥∥
H

+
c2
tk

+ c1εk−2

)

t2k
t2k+1

t2k−1
t2k

∥∥∥ (wk−1 − w∗)
∥∥∥
H
≤ t2k

t2k+1

t2k−1
t2k

(
t2k−2
t2k−1

∥∥∥ (wk−2 − w∗)
∥∥∥
H

+
c2
tk−1

+ c1εk−3

)

... ≤ ...

t2k
t2k+1

t2k−1
t2k
· · · t

2
2

t23

∥∥ (w2 − w∗)
∥∥
H ≤ t2k

t2k+1

t2k−1
t2k
· · · t

2
2

t23

(
t21
t22

∥∥ (w1 − w∗)
∥∥
H +

c2
t2

+ c1ε0

)
.

Summing up the above inequalities, we obtain

∥∥∥ (wk+1 − w∗)
∥∥∥
H
≤ t21

t2k+1

∥∥ (w1 − w∗)
∥∥
H + c2

k∑

i=1

ti+1

t2k+1

+ c1

k∑

i=1

εi−1. (17)

By Lemma 1(b), we have

k∑

i=1

ti+1

t2k+1

≤ (3 + k) k

2
(
1
2k + 1

)2 ≤ 2, ∀ k ≥ 1.

Therefore, the inequality (17) implies that for all k ≥ 1,

∥∥ (wk+1 − w∗)
∥∥
H ≤ 4

(k + 2)2
∥∥ (w1 − w∗)

∥∥
H + 2c2 + c1

∞∑

i=1

εi−1

≤ c3 , 4

9

∥∥ (w1 − w∗)
∥∥
H + 2c2 + c1

∞∑

i=1

εi−1.

(18)

Note that we also have
∥∥ (w1 − w∗)

∥∥
H ≤ c3.

The next step is to prove the boundedness of the term
∥∥ tkũk − u∗ − (tk − 1)ũk−1

∥∥
Q̂11

. Before

that, we need to first bound
∥∥uk − u∗

∥∥2
Q̂11

. By using Lemma 4, we have that for k ≥ 2,

tk
∥∥uk − u∗

∥∥
Q̂11
≤ tk

∥∥wk − w∗
∥∥
H = ‖(tk−1 + tk − 1)(w̃k−1 − w∗)− (tk−1 − 1)(w̃k−2 − w∗)‖H

≤ (tk − 1)‖(w̃k−1 − w∗)‖H + ‖tk−1(w̃k−1 − w∗)− (tk−1 − 1)(w̃k−2 − w∗)‖H
≤ (tk − 1)

[
‖w̃k−1 − wk−1‖H + ‖wk−1 − w∗‖H

]
+ ‖tk−1(w̃k−1 − wk−1)− (tk−1 − 1)(w̃k−2 − wk−2)‖H

+ ‖tk−1(wk−1 − w∗)− (tk−1 − 1)(wk−2 − w∗)‖H
≤ (tk − 1)[

√
7εk−1 + c3] + (2tk − 1)

√
7εk−2 + ‖γk−1‖H

≤ tk[8ε1 + c2 + c3].

For k = 1, we also have that ‖uk − u∗‖Q̂11
≤ ‖wk − w∗‖Ĥ ≤ c3.

13

Now we have for all k ≥ 2,

‖ tkũk − u∗ − (tk − 1) ũk−1 ‖Q̂11

≤ tk

(
‖uk − ũk ‖Q̂11

+ ‖uk − u∗ ‖Q̂11

)
+ (tk − 1)

(
‖uk−1 − u∗ ‖Q̂11

+ ‖uk−1 − ũk−1 ‖Q̂11

)

≤ (2tk − 1) [8 ε1 + c2 + c3].

In addition, for k = 1, we have

‖ t1ũ1 − u∗ − (t1 − 1)ũ0 ‖
Q̂11

= ‖ ũ1 − u∗ ‖
Q̂11
≤ ‖u1 − u∗ ‖Q̂11

+ ‖ ũ1 − u1‖
Q̂11

≤ ‖w1 − w∗ ‖H + ε1 ≤ c2 + ε1 ≤ (2tk − 1) [8 ε1 + c2 + c3].

On the other hand,

‖ tkṽk − v∗ − (tk − 1) ṽk−1 ‖Q̂22
= ‖ tk(ṽk − v∗)− (tk − 1) (ṽk−1 − v∗) ‖Q̂22

≤ ‖ tk(vk − v∗)− (tk − 1)(vk−1 − v∗) ‖Q̂22
+ ‖ tk(ṽk − vk)− (tk − 1) (ṽk−1 − vk−1) ‖Q̂22

≤ ‖λk‖H + tk‖ (ṽk − vk)‖Q̂22
+ (tk − 1)‖(ṽk−1 − vk−1) ‖Q̂22

≤ c2 + (2tk − 1)(1 +
√

2)εk−1 ≤ (2tk − 1)[c2 + 3ε1].

Finally, by applying Lemma 3 at w =
(tk − 1)w̃k−1 + w∗

tk
and using Lemma 1(c), we see that

t2k
[
θ(w̃k)− θ(w∗)

]
+

1

2
‖ tkw̃k − w∗ − (tk − 1)w̃k−1 ‖2H

≤ t2k−1
[
θ(w̃k−1)− θ(w∗)

]
+

1

2
‖ tk−1w̃k−1 − w∗ − (tk−1 − 1)w̃k−2 ‖2H

+εk ‖ tkw̃k − w∗ − (tk − 1)w̃k−1 ‖
Diag(Q̂11, Q̂22)

≤ · · ·

≤ t21
[
θ(w̃1)− θ(w∗)

]
+

1

2
‖ t1w̃1 − w∗ − (t1 − 1)w̃0 ‖2H +

k∑

i=2

εi ‖ tiw̃i − w∗ − (ti − 1)w̃i−1 ‖
Diag(Q̂11, Q̂22)

≤ 1

2
‖ w̃0 − w∗ ‖2H +

k∑

i=1

εi ‖ tiw̃i − w∗ − (ti − 1)w̃i−1 ‖
Diag(Q̂11, Q̂22)

≤ 1

2
‖ w̃0 − w∗ ‖2H +

k∑

i=1

(2ti − 1) [11ε1 + 2c2 + c3] εi

≤ 1

2
‖ w̃0 − w∗ ‖2H +

1

4
c0,

where

c0 , 4

∞∑

i=1

(2ti − 1) [11ε1 + 2c2 + c3] εi

is a finite value since
∑∞

i=1 ti εi <∞. Since tk ≥
k + 1

2
, we complete the proof of this theorem.

14

4 Solving the Best Approximation Problem (2)

In this section, we discuss an application of the imABCD framework to solve the dual of the best
approximation problem (2). The study of the best approximation problems with only equalities
constraints dates back three decades [19, 2, 9, 10, 11]. The best approximation problem with the
positive semidefinite cone constraint was studied recently, see, e.g., [25, 31, 6, 16, 39].

The dual of (2) is given by

minimize
y,S,z,Z

1

2
‖A∗y + S + B∗z + Z +G ‖2 − 〈b, y〉 − 〈d, z〉+ δSn+(S) + δ≥0(z) + δ≥0(Z), (19)

where δC(·) denotes the indicator function of a given set C, i.e., δC(x) = 0 if x ∈ C, and δC(x) =∞
otherwise. The notation δ≥0(·) is used to denote the indicator function over a nonnegative orthant.
To implement the two-block imABCD algorithm, we take (y, S) as one block, and (z, Z) as the
other block. There are two important reasons for us to merge the four blocks in such a way.
First, based on our previous experiences from developing several solvers with similar types of
constraints, in particular for linear and least squares semidefinite programming in [48, 39], we find
that, compared to the linear inequalities and the nonnegative cone constraints, the linear equalities
and the semidefinite cone constraints are more challenging to be satisfied numerically. Putting the
corresponding multipliers y (for the linear equalities constraints) and S (for the positive semidefinite
cone constraint) in one group and solving them simultaneously by the inexact semismooth Newton
method may help these two types of constraints to achieve a high accuracy simultaneously. Second,
putting S and z (corresponding to the linear inequalities constraints) or Z (corresponding to the
entrywise nonnegative constraints) in one group often leads to a degenerate Newton system when
the semismooth Newton method is applied to solve the resulting subproblem.

4.1 Solving the subproblems by the Newton-type methods

With fixed (z, Z) and a properly defined matrix G1 ∈ Sn, the first workhorse of the imABCD for
solving (2) is the following convex program:

minimize
y,S

1

2
‖A∗y + S +G1‖2 − 〈b, y〉 subject to S ∈ Sn+, y ∈ Rm.

Let ΠS+n (·) denote the projection onto the cone Sn+. Since the optimal solution (ȳ, S) always satisfies

S = ΠSn+(−G1 −A∗ȳ), (20)

we may solve y first via the following unconstrained minimization problem:

minimize
y

ξ(y) , 1

2
‖A∗y+G1 + ΠSn+(−G1−A∗y)‖2−〈b, y〉 =

1

2
‖ΠSn+(G1 +A∗y)‖2−〈b, y〉 (21)

and then substitute the solution into (20) to obtain S. Notice that ξ is a continuously differentiable
function and its gradient

∇ξ(y) = AΠSn+(G1 +A∗y)− b
is strongly semismooth [38]. Therefore, the semismooth Newton-CG algorithm with line search,
which is proven to converge globally and local superlinearly/quadratically [22, 32, 31, 49], can be

15

applied to solve the above unconstrained problem (21). The details of this algorithm are given
below.

SNCG: a Semismooth Newton-CG method for solving (21)

Initialization. Given µ ∈ (0, 1/2), η ∈ (0, 1), τ ∈ (0, 1] and ρ ∈ (0, 1). Iterate the following steps
for j ≥ 0.

Step 1. Choose V j ∈ ∂ΠSn+(G1 + A∗y j). Solve the following linear system to find d j by the
conjugate gradient (CG) method:

AV jA∗ d+∇ξ(y j) = 0

such that dj satisfies the accuracy condition that ‖AV jA∗ d+∇ξ(y j) ‖ ≤ min{ η, ‖∇ξ(y j) ‖1+τ }.
Step 2. (Line search) Set αj = ρmj , where mj is the first nonnegative integer m for which

ξ(y j + ρmdj) ≤ ξ(y j) + µρm 〈∇ξ(y j), dj〉.

Step 3. Set yj+1 = y j + αjd
j .

To solve the second subproblem involving (z, Z) in (7), we need to deal with the program

minimize
z,Z

1

2
‖B∗z + Z +G2 ‖2 − 〈d, z〉+

c

2
‖ z − z0 ‖2 subject to z ≥ 0, Z ≥ 0 (22)

for some properly defined matrix G2 ∈ Sn. Notice that an additional proximal term
c

2
‖z− z0‖2 for

some scalar c > 0 is added to the objective function (which serves as a majorant of the original
objective function) to make this problem strongly convex with respect to z. Similar to the first
subproblem, the optimal solution (z̄, Z) satisfies that

Z = Π≥0(−B∗z̄ −G2).

We therefore need to solve the problem

minimize
z

1

2
‖Π≥0(B∗z +G2) ‖2 − 〈d, z〉+

c

2
‖ z − z0 ‖2 subject to z ≥ 0. (23)

Different from (21), the above problem is a constrained SC1 problem (i.e., the objective function
is continuously differentiable with a semismooth gradient). Though we may still apply a globally
convergent semismooth Newton algorithm as proposed in [30], however, a strictly convex quadratic
programming problem has to be solved in each step, which itself may be challenging. In fact, the
problem (23) is a special case of the general unconstrained nonsmooth convex program

minimize
x

ζ(x) + ψ(x), (24)

where ζ : X → (−∞,∞) is a strongly convex and smooth function, and ψ : X → (−∞,+∞]
is a convex but possibly nonsmooth function. One can apply Nesterov’s accelerated proximal

16

gradient method (APG) [27], which converges globally and linearly, to solve such a strongly convex
problem [37]. Alternatively, the solution of (24) can be obtained via the nonsmooth equation

F (x) , x− Proxψ (x−∇ζ(x)) = 0,

where Proxψ(x) , argmin
{
ψ(x′) + 1

2 ‖x′ − x ‖2 | x′ ∈ X
}

denotes the proximal mapping of ψ at x,
see, e.g., [35, Definition 1.22]. Since the composition of semismooth functions is semismooth [15],
it follows that F is semismooth at x if ∇ζ is semismooth at x and Proxψ(·) is semismooth at
x − ∇ζ(x). We may then apply the semismooth Newton-CG method locally to solve the above
nonsmooth equation for a faster convergence rate. Therefore, a convergent and efficient way to
solve (23) may be a hybrid of the APG algorithm and the semismooth Newton-CG method. We
present this algorithm below, where the positive scalar Lζ denotes the Lipschitz constant of ∇ζ.

APG-SNCG: A hybrid of the APG algorithm and the SNCG method for solving (24)

Choose an initial point x1 ∈ X, positive constants η, γ ∈ (0, 1), ρ ∈ (0, 1/2), and a positive integer
m0 > 0. Iterate the following steps for j ≥ 0.

Step 1: Select V j ∈ ∂F (x j), the generalized Jacobian of F at x j , and apply the CG method to
find an approximate solution d j to

V jd+ F (x j) = 0 (25)

such that
R j , V jd j + F (x j) and ‖R j ‖ ≤ ηj ‖F (x j) ‖, (26)

where ηj , min{ η, ‖F (x j) ‖ }. If (26) is achievable, go to Step 2. Otherwise, go to Step 3.

Step 2: Let mj ≤ m0 be the smallest nonnegative integer m such that

‖F (x j + ρmd j) ‖ ≤ γ ‖F (x j) ‖.

If the above inequality is achievable, set tj = ρmj and x j+1 = x j + tj d
j . Replace j by j + 1 and

go to Step 1. Otherwise (i.e., the above inequality fails for all m ≤ m0) go to step 3.

Step 3: Set x j1 = x̃ j0 = x j , βj1 = 1 and i = 1, compute

x̃ ji = Proxψ/Lζ (x
ji −∇ζ(x ji)/Lζ),

βji+1 =
1

2

(
1 +

√
1 + 4β2ji

)
,

x ji+1 = x̃ ji +
βji − 1

βji+1

(x̃ ji − x̃ ji−1).

If ‖F (xji+1) ‖ ≤ γ ‖F (x j) ‖, set x j+1 = x ji+1 . Replace j by j + 1 and go to Step 1. Otherwise,
set i = i+ 1 and continue the above iteration.

Since ζ is strongly convex, the sequence {x ji} generated by the APG algorithm always converges
to the unique optimal solution x∗ of the problem (24), which further implies that F (x ji)→ 0 by the
continuity of the proximal mapping. Therefore, the APG algorithm can be viewed as a safeguard
for the global convergence of {x j} in the above framework. We make two further remarks of this
algorithm below.

17

Remark 4. It is known from Rademacher’s Theorem that the Lipschitz continuous function F is
differentiable almost everywhere. Assume that (26) is achievable at a differentiable point x j and
‖F (x j)‖ 6= 0, then ‖F (x)‖2 is differentiable at x j and

‖F (x j + td j) ‖2 = ‖F (x j) + t [R j − F (x j)] + o(t) ‖2

= ‖F (x j) ‖2 + t 〈F (x j) , R j − F (x j) 〉+ o(t)

≤ ‖F (x j) ‖2 + t (ηj − 1) ‖F (x j) ‖2 + o(t).

Since ηj ≤ η < 1, we have ‖F (x j + t d j) ‖ < ‖F (x j) ‖ for t sufficiently small such that d j is a
descent direction of ‖F (x) ‖ at x j . This yields that the direction obtained by (25) is a descent
direction of ‖F (x) ‖ at x j with probability 1.

Remark 5. The equation (25) may not be a symmetric linear system. If this occurs, one may use
the BiCGStab iterative solver (e.g., van der Vorst [44]) to solve the corresponding equation.

4.2 Decomposing (22) into smaller decoupled problems

For some best approximation problems, the number of inequalities in BX ≥ d may be ultra large,
and that can make the subproblem (22) extremely expensive to solve. Fortunately, by the design
of imABCD, one can add an appropriate proximal term in (7) to make the subproblem involving
(z, Z) easier to solve. In particular, by decomposing (22) into smaller decoupled problems.

A practical way to achieve the decomposition of (22) is to add a proximal term of the form

1
2

∥∥
(
z
Z

)
−
(
z0
Z0

)∥∥2
Q̂, where the positive semidefinite linear operator Q̂ is constructed based on

dividing the operator B and the dual variable z into q ≥ 1 parts as

BX ≡

B1X

...
BqX

 with Bi : Sn → Rmi , X ∈ Sn,

B∗z ≡ (B∗1z1,B∗2z2, . . . ,B∗qzq), z ≡ (z1, z2, . . . zq) ∈ Rmi1 × Rmi2 × . . .× Rmiq = RmI .

By observing that for any given matrix X ∈ Rm×n,

(
X

XT

)
�
(

(XXT)
1
2

(XTX)
1
2

)
,

we may derive that
BB∗ � M , Diag (M1, . . . ,Mq) ,

where
Mi , BiB∗i +

∑

j=1,...,q, j 6=i
(BiB∗jBjB∗i)1/2, i = 1, . . . q.

It therefore follows that
(

2M
2I

)
�
(

2BB∗
2I

)
�
(
B
I

)(
B∗ I

)
.

18

By choosing Q̂ = diag(2M, 2I)− (B∗, I)∗(B∗, I) � 0, we can show that

1

2

∥∥(B∗, I)

(
z
Z

)
+G2

∥∥2 − 〈d, z〉+
c

2
‖ z − z0 ‖2 +

1

2

∥∥
(
z
Z

)
−
(
z0
Z0

)∥∥2
Q̂

=
〈
z,Mz

〉
+
c

2

∥∥z
∥∥2 −

〈
z, h

〉
+
〈
Z, Z

〉
+
〈
Z, G2 − Z0 + B∗z0

〉
+ κ

= κ+
〈
Z, Z

〉
+
〈
Z, G2 − Z0 + B∗z0

〉
+

q∑

i=1

1

2

〈
(2Mi + c I)zi, zi

〉
−
〈
zi, hi

〉
,

where h = d+ cz0 + 2Mz0 − B(G2 + Z0 + B∗z0) and κ = c
2

∥∥z0
∥∥2 + 1

2

∥∥
(
z0
Z0

)∥∥2
Q̂ + 1

2

∥∥G2

∥∥2. Thus,

we can obtain the following decomposition for solving (22) with an additional proximal term:

minimize
z,Z

{1

2
‖B∗z + Z +G2 ‖2 − 〈d, z〉+

c

2
‖ z − z0 ‖2 +

1

2

∥∥
(
z
Z

)
−
(
z0
Z0

)∥∥2
Q̂ | z ≥ 0, Z ≥ 0

}

⇐⇒ minimize
Z

{〈
Z, Z

〉
+
〈
Z, G2 − Z0 + B∗z0

〉
| Z ≥ 0

}

+

q∑

i=1

minimize
zi

{1

2

〈
(2Mi + cI)zi, zi

〉
−
〈
zi, hi

〉
| zi ≥ 0

}
.

Observe that the subproblem with respect to Z can be solved analytically. For each i, the decoupled
subproblem with respect to zi is simple convex quadratic program of the form (24) that can be
solved by the APG-SNCG method.

5 Numerical Experiments

In this section, we test our imABCD algorithm on solving the dual problem (19). The equalities and
inequalities constraints are generated from the doubly nonnegative relaxation of a binary integer
nonconvex quadratic (ex-BIQ) programming that was considered in [39]:

minimize
x,Y,X

1

2
〈Q,Y 〉+ 〈c, x〉

subject to Diag(Y) = x, α = 1, X =

(
Y x
xT α

)
, X ∈ Sn+, X ≥ 0,

−Yij + xi ≥ 0, −Yij + xj ≥ 0, Yij − xi − xj ≥ −1, ∀ i < j, j = 2, . . . , n− 1.

The test data for Q and c are taken from Biq Mac Library maintained by Wiegele, which is available
at http://biqmac.uni-klu.ac.at/biqmaclib.html.

We set G = −1

2

(
Q c
c 0

)
in (2). Under Slater’s condition, the KKT optimality conditions of

the problem (2) are:

{
X = G+A∗y + B∗z + S + Z, AX = b,

BX − d = Π≥0(BX − d− z), X = ΠSn+(X − S), X = Π≥0(X − Z).

19

We measure the accuracy of an approximate dual solution (y, z, S, Z) by the relative residual of the
KKT system η , max{ η1, η2, η3, η4 }, where, by letting X = G+A∗y + B∗z + S + Z,

η1 ,
‖AX − b‖

1 + ‖b‖ , η2 ,
‖BX − d−Π≥0(BX − d− z)‖

1 + ‖d‖ ,

η3 ,
‖X −ΠSn+(X − S)‖

1 + ‖X‖+ ‖S‖ , η4 ,
‖X −Π≥0(X − Z)‖

1 + ‖X‖+ ‖Z‖ .

We also report the duality gap defined by

ηg ,
objp − objd

1 + |objp|+ |objd|
,

where objp , 1
2 ‖X −G‖2 and objd , −1

2‖A∗y+B∗z+S+Z +G‖2 + 〈b, y〉+ 〈d, z〉+ 1
2‖G‖2. We

stop the algorithms if η < ε for some prescribed accuracy ε.
In order to demonstrate the importance for incorporating the second order information when

solving the subproblems, we compare our imABCD method with the two-block accelerated block
coordinate gradient descent algorithm proposed by Chambolle and Pock in [7]. For a fair compar-
ison, the two blocks are also taken as (y, S) and (z, Z). Let λmax(BB∗) be the largest eigenvalue of
BB∗. The algorithm adapted from [7] is given as follows:

ABCGD: An Accelerated Block Coordinate Gradient Descent algorithm for solving (19).

Initialization. Choose an initial point W 1 = W̃ 0 ∈W. Let t1 = 1.

Step 1. Compute Rk+ 1
2 = A∗yk + B∗zk + Sk + Zk +G and

ỹk = yk − 1

2
(AA∗)−1 (ARk+ 1

2 − b),

S̃k = ΠSn+

(
Sk − 1

2
Rk+ 1

2

)
.

Step 2. Compute Rk = A∗ỹk + B∗zk + S̃k + Zk +G and

z̃k = Π≥0

(
zk − 1

2λmax(BB∗) (BRk − d)

)
,

Z̃k = Π≥0

(
Zk − 1

2
Rk

)
.

Step 3. Compute

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
,

W k+1 = W̃ k +
tk − 1

tk+1
(W̃ k − W̃ k−1).

Figure 1 shows the performance profile of the imABCD and ABCGD algorithms for some large
scale ex-BIQ problems with ε = 10−6. Recall that a point (x, y) is on the performance profile
curve of a method if and only if it can solve exactly (100y)% of all the tested problems at most x
times slower than any other methods. The detailed numerical results are presented in Table 1. The
first four columns list the problem names, the dimension of the variable y (mE), z (mI) and the
size of the matrix G (ns), respectively. The last several columns report the number of iterations,
the relative residual η, the relative duality gap ηgap, and the computation time in the format of
“hours:minutes:seconds”. One can see from the performance profile that the ABCGD algorithm
requires at least 5 times the number of iterations taken by imABCD and is about 4 times slower

20

than the imABCD algorithm. In particular, the ABCGD method cannot solve all the large scale
bdq500 problems within 50000 iterations, whereas our imABCD can obtain satisfactory solutions
after 6000 iterations. This indicates that even though the computational cost for each cycle of the
imABCD method is larger than that of the ABCGD method, this cost is compensated by taking
much fewer iterations. In fact, the Newton system is well-conditioned in this case such that it only
takes only one or two CG iterations to compute a satisfactory Newton direction.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

at most x times of the best

(1
0

0
y
)%

 o
f

th
e

 p
ro

b
le

m
s

Performance profile: iterations

imABCD

ABCGD

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

at most x times of the best

(1
0

0
y
)%

 o
f

th
e

 p
ro

b
le

m
s

Performance profile: time

imABCD

ABCGD

Figure 1: Performance profile of imABCD and ABCGD with ε = 10−6

iterations η ηgap time

problem mE ;mI | ns imabcd|abcgd imabcd|abcgd imabcd|abcgd imabcd|abcgd
be100.1 101 ; 14850 | 101 5276 | 31048 9.9-7 | 9.9-7 -2.3-7 | -7.7-8 45 | 3:08
be100.2 101 ; 14850 | 101 5747 | 30645 9.9-7 | 9.9-7 -2.0-7 | -9.4-8 47 | 3:08
be100.3 101 ; 14850 | 101 5950 | 41172 9.9-7 | 9.9-7 -3.7-7 | -8.7-8 53 | 4:02
be100.4 101 ; 14850 | 101 5704 | 36684 9.9-7 | 9.9-7 -2.7-7 | -7.2-8 49 | 3:48
be100.5 101 ; 14850 | 101 5762 | 39956 9.9-7 | 9.7-7 -3.1-7 | -7.6-8 51 | 4:05
be100.6 101 ; 14850 | 101 5769 | 36134 9.9-7 | 9.9-7 -1.8-7 | -7.9-8 48 | 3:40
be100.7 101 ; 14850 | 101 4994 | 28087 9.9-7 | 9.9-7 -3.3-7 | -8.4-8 40 | 2:53
be100.8 101 ; 14850 | 101 5613 | 33772 9.9-7 | 9.9-7 -1.5-7 | -5.3-8 45 | 3:32
be100.9 101 ; 14850 | 101 5763 | 40048 9.9-7 | 9.9-7 -2.7-7 | -8.1-8 51 | 4:10
be100.10 101 ; 14850 | 101 5260 | 32010 9.9-7 | 9.9-7 -3.7-7 | -8.8-8 43 | 3:46
be120.3.1 121 ; 21420 | 121 4120 | 27781 9.9-7 | 9.9-7 -2.2-7 | -5.6-8 41 | 3:42
be120.3.2 121 ; 21420 | 121 4106 | 23809 9.9-7 | 9.9-7 -2.3-7 | -6.3-8 40 | 3:00
be120.3.3 121 ; 21420 | 121 3548 | 21867 9.9-7 | 9.9-7 -9.8-8 | -6.6-8 35 | 2:53
be120.3.4 121 ; 21420 | 121 4745 | 31783 9.9-7 | 9.9-7 -3.1-7 | -6.7-8 47 | 4:08
be120.3.5 121 ; 21420 | 121 5637 | 31076 9.9-7 | 9.9-7 -4.9-8 | -7.1-8 58 | 3:51
be120.3.6 121 ; 21420 | 121 3946 | 26558 9.9-7 | 9.9-7 -1.8-7 | -4.8-8 39 | 3:26
be120.3.7 121 ; 21420 | 121 4169 | 26176 9.9-7 | 9.9-7 -2.7-7 | -6.5-8 41 | 3:37
be120.3.8 121 ; 21420 | 121 3793 | 23796 9.9-7 | 9.9-7 -1.6-7 | -3.8-8 35 | 3:11
be120.3.9 121 ; 21420 | 121 4951 | 28518 9.9-7 | 9.9-7 -2.0-7 | -5.2-8 52 | 3:58
be120.3.10 121 ; 21420 | 121 4264 | 24803 9.9-7 | 9.9-7 -3.4-7 | -5.3-8 42 | 3:06
be120.8.1 121 ; 21420 | 121 5671 | 32200 9.9-7 | 9.9-7 -3.5-7 | -8.1-8 58 | 4:26
be120.8.2 121 ; 21420 | 121 5897 | 35336 9.9-7 | 9.9-7 -3.1-7 | -7.1-8 1:02 | 4:39
be120.8.3 121 ; 21420 | 121 5199 | 33259 9.9-7 | 9.9-7 -4.9-7 | -9.2-8 52 | 4:35
be120.8.4 121 ; 21420 | 121 6688 | 40964 9.9-7 | 9.9-7 -4.0-7 | -8.0-8 1:12 | 5:26
be120.8.5 121 ; 21420 | 121 5828 | 41263 9.9-7 | 9.9-7 -3.6-7 | -6.3-8 1:03 | 5:40
be120.8.6 121 ; 21420 | 121 4735 | 29524 9.9-7 | 9.9-7 -4.8-7 | -7.8-8 47 | 3:52
be120.8.7 121 ; 21420 | 121 4456 | 29722 9.9-7 | 9.9-7 -3.8-7 | -6.5-8 44 | 3:36

21

iterations η ηgap time

problem mE ;mI | ns imabcd|abcgd imabcd|abcgd imabcd|abcgd imabcd|abcgd
be120.8.8 121 ; 21420 | 121 5979 | 35240 9.9-7 | 9.9-7 -2.8-7 | -6.4-8 1:01 | 4:52
be120.8.9 121 ; 21420 | 121 5788 | 37397 9.9-7 | 9.9-7 -3.3-7 | -8.5-8 1:02 | 4:42
be120.8.10 121 ; 21420 | 121 5636 | 35274 9.9-7 | 9.9-7 -3.5-7 | -8.0-8 58 | 4:53
be250.1 251 ; 93375 | 251 3958 | 25038 9.9-7 | 9.9-7 1.4-7 | -4.9-8 2:10 | 9:40
be250.2 251 ; 93375 | 251 4213 | 29313 9.9-7 | 9.9-7 -3.7-7 | -6.8-8 2:22 | 11:36
be250.3 251 ; 93375 | 251 4230 | 27211 9.9-7 | 9.8-7 -3.7-7 | -4.4-8 2:29 | 10:56
be250.4 251 ; 93375 | 251 4059 | 28985 9.9-7 | 9.9-7 -3.6-7 | -5.8-8 2:24 | 11:15
be250.5 251 ; 93375 | 251 4361 | 29277 9.9-7 | 9.9-7 -3.9-7 | -5.2-8 2:35 | 11:45
bqp100-1 101 ; 14850 | 101 7344 | 50000 9.9-7 | 1.1-6 -9.8-8 | -1.1-7 1:08 | 5:25
bqp100-2 101 ; 14850 | 101 3799 | 24170 9.9-7 | 9.9-7 -1.5-7 | -6.7-8 30 | 2:48
bqp100-3 101 ; 14850 | 101 3630 | 22570 9.9-7 | 9.9-7 8.6-8 | -5.1-8 29 | 2:35
bqp100-4 101 ; 14850 | 101 4293 | 27893 9.9-7 | 9.9-7 -2.2-7 | -5.9-8 35 | 3:13
bqp100-5 101 ; 14850 | 101 5145 | 34243 9.9-7 | 9.9-7 -1.0-7 | -4.8-8 43 | 3:29
bqp500-1 501 ; 374250 | 501 6385 | 50000 9.9-7 | 1.3-6 -1.2-6 | -1.2-7 23:40 | 1:43:49
bqp500-2 501 ; 374250 | 501 6622 | 50000 9.9-7 | 1.7-6 -1.1-6 | -1.6-7 23:21 | 1:43:49
bqp500-3 501 ; 374250 | 501 6042 | 50000 9.9-7 | 1.1-6 -1.1-6 | -9.1-8 22:10 | 1:45:49
bqp500-4 501 ; 374250 | 501 5537 | 50000 9.9-7 | 1.2-6 -1.1-6 | -8.0-8 20:05 | 1:46:16
gka1e 201 ; 59700 | 201 5292 | 37861 9.9-7 | 9.9-7 -2.6-7 | -4.8-8 2:05 | 10:59
gka2e 201 ; 59700 | 201 4623 | 29338 9.9-7 | 9.9-7 -6.8-7 | -7.1-8 1:47 | 8:29
gka3e 201 ; 59700 | 201 6033 | 40016 9.9-7 | 9.9-7 -3.7-7 | -6.0-8 2:12 | 11:44
gka4e 201 ; 59700 | 201 7001 | 47779 9.9-7 | 9.9-7 -5.9-7 | -6.9-8 2:45 | 14:09
gka5e 201 ; 59700 | 201 6245 | 42175 9.9-7 | 9.9-7 -5.3-7 | -7.8-8 2:30 | 12:30

Table 1: The performance of imABCD and ABCGD with accuracy ε = 10−6.

We also compare our imABCD algorithm with some other BCD-type methods. The first one is
a direct four-block BCD method. In this case, the block z is solved by the APG-SNCG algorithm,
while other blocks have analytical solutions. The second one is an enhanced version of the four-
block inexact randomized ABCD method (denoted as eRABCD) that is modified from [23], where
we use the proximal terms 1

2‖y − yk‖2AA∗ instead of 1
2‖y − yk‖2λmax(AA∗) when updating the block

yk+1, and 1
2‖z − zk‖2BB∗+‖B‖I when updating the block zk+1. A similar modification has also been

used in [39] when the randomized BCD algorithm is used to solve a class of positive semidefinite
feasibility problems. The detailed steps of the eRABCD are given below.

eRABCD: A four-block inexact enhanced Randomized ABCD algorithm for solving (19)

Initialization. Choose an initial point W 1 = W̃ 0 ∈ W. Set k = 1 and α0 = 1
4 . Let {εk} be a given

summable sequence of error tolerance such that the error vector δkz ∈ RmI satisfies ‖δkz‖ ≤ εk.

Step 1. Compute αk =
1

2

(√
α4
k−1 + 4α2

k−1 − α2
k−1
)

.

Step 2. Compute Ŵ k+1 = (1− αk)Ŵ k + αkW̃
k.

Step 3. Denote R̂k = A∗ŷk +B∗ẑk + Ŝk + Ẑk +G. Choose ik ∈ {1, 2, 3, 4} uniformly at random and update

W̃ k+1
ik

according to the following rule if the k-th block is selected:

22

ik = 1 : ỹk+1 = (AA∗)−1((b−AR̂k)/(4αk) +AA∗ỹkE),

ik = 2 : z̃k+1 ≈ argmin
z≥0

{
〈∇zh(Ŵ k+1), z〉+

4αk

2
‖z − z̃k‖2BB∗+‖B‖I + 〈z, δkz 〉

}
,

ik = 3 : Z̃k+1 = Π≥0(Z̃k − R̂k/(4αk)),

ik = 4 : S̃k+1 = ΠSn+(S̃k − R̂k/(4αk)).

Set W̃ k+1
i = W̃ k

i for all i 6= ik, k = 1, 2, 3, 4.

Step 4. Set W k+1
i =

{
Ŵ k

i + 4αk(W̃ k+1
i − W̃ k

i), i = ik,

Ŵ k
i , i 6= ik,

i = 1, 2, 3, 4.

In order to know whether our proposed APG-SNCG method could universally improve the
efficiency for different outer loops, we also test two variants of the BCD and eRABCD, where the
block z is updated by the proximal gradient step. They are named as mBCD and eRABCD2.
The numerical performance of two selected test examples is shown in Table 2. One can see that
the mBCD and eRABCD2 perform much worse than their inexact counterparts. These numerical
results may indicate that if one of the blocks is computationally intensive (such as the block S in
(19) that requires the eigenvalue decomposition for each update), a small proximal term is always
preferred for the other blocks in order to reduce the the number of iterations taken by the algorithm,
which is also the number of updates required by the difficult block.

iteration η time

problem erabcd|erabcd2|bcd|mbcd erabcd|erabcd2|bcd|mbcd erabcd|erabcd2|bcd|mbcd
bqp50-1 5168 | 20172 | 110848 | 500000 9.9-6 | 9.9-6 | 9.9-6 | 7.6-3 19 | 40 | 8:02 | 18:02
bqp100-1 7789 | 39167 | 203733 | 500000 9.3-6 | 9.0-6 | 9.9-6 | 1.1-2 48 | 2:19 | 33:24 | 52:57

Table 2: The performance of eRABCD, eRABCD2, BCD and mBCD with accuracy ε = 10−5.

Table 3 lists the numerical performance of the imABCD, BCD and eRABCD methods, with
the performance profile given in Figure 2. One can see that the BCD algorithm is much less efficient
than the other algorithms, as all the test examples cannot be solved to the required accuracy within
50000 iteration steps (We thus do not include its performance in the performance profile). This
phenomenon has clearly demonstrated the power of the acceleration technique. Observe that the
imABCD method is about 3.5 times faster than the eRABCD method.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

at most x times of the best

(1
0

0
y
)%

 o
f

th
e

 p
ro

b
le

m
s

Performance profile: iterations

imABCD

eRABCD

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

at most x times of the best

(1
0

0
y
)%

 o
f

th
e

 p
ro

b
le

m
s

Performance profile: time

imABCD

eRABCD

Figure 2: Performance profile of imABCD and eRABCD for with accuracy ε = 10−6.

23

iterations η ηgap time

problem mE ;mI | ns imabcd|bcd|erabcd imabcd|bcd|erabcd imabcd|bcd|erabcgd imabcd|bcd|erabcd
be100.1 101 ; 14850 | 101 5276 | 50000 | 27844 9.9-7 | 3.3-5 | 9.9-7 -2.3-7 | -6.1-6 | -4.8-7 45 |7:52 |2:39
be100.2 101 ; 14850 | 101 5747 | 50000 | 28405 9.9-7 | 3.6-5 | 9.9-7 -2.0-7 | -7.6-6 | -7.1-7 47 |7:50 |2:40
be100.3 101 ; 14850 | 101 5950 | 50000 | 30325 9.9-7 | 3.2-5 | 9.9-7 -3.7-7 | -5.1-6 | -7.1-7 53 |8:00 |3:00
be100.4 101 ; 14850 | 101 5704 | 50000 | 28722 9.9-7 | 3.7-5 | 9.9-7 -2.7-7 | -6.7-6 | -5.9-7 49 |7:49 |2:47
be100.5 101 ; 14850 | 101 5762 | 50000 | 29125 9.9-7 | 3.1-5 | 9.9-7 -3.1-7 | -4.5-6 | -7.0-7 51 |7:55 |2:52
be100.6 101 ; 14850 | 101 5769 | 50000 | 27866 9.9-7 | 3.3-5 | 9.9-7 -1.8-7 | -5.9-6 | -5.0-7 48 |7:49 |2:44
be100.7 101 ; 14850 | 101 4994 | 50000 | 27913 9.9-7 | 3.4-5 | 9.7-7 -3.3-7 | -8.9-6 | -5.5-7 40 |7:40 |2:46
be100.8 101 ; 14850 | 101 5613 | 50000 | 28035 9.9-7 | 3.5-5 | 9.9-7 -1.5-7 | -6.7-6 | -5.4-7 45 |7:46 |2:44
be100.9 101 ; 14850 | 101 5763 | 50000 | 28728 9.9-7 | 3.5-5 | 9.9-7 -2.7-7 | -4.0-6 | -4.5-7 51 |8:08 |2:52
be100.10 101 ; 14850 | 101 5260 | 50000 | 27868 9.9-7 | 3.3-5 | 9.9-7 -3.7-7 | -6.7-6 | -6.9-7 43 |7:49 |2:41
be120.3.1 121 ; 21420 | 121 4120 | 50000 | 22564 9.9-7 | 3.6-5 | 7.7-7 -2.2-7 | -1.0-5 | -6.5-7 41 |10:03 |2:45
be120.3.2 121 ; 21420 | 121 4106 | 50000 | 20388 9.9-7 | 3.7-5 | 9.9-7 -2.3-7 | -1.1-5 | -9.9-7 40 |10:02 |2:29
be120.3.3 121 ; 21420 | 121 3548 | 50000 | 18503 9.9-7 | 3.5-5 | 9.9-7 -9.8-8 | -1.2-5 | -9.9-7 35 |9:59 |2:15
be120.3.4 121 ; 21420 | 121 4745 | 50000 | 24812 9.9-7 | 3.7-5 | 9.9-7 -3.1-7 | -1.2-5 | -7.3-7 47 |10:04 |3:01
be120.3.5 121 ; 21420 | 121 5637 | 50000 | 27721 9.9-7 | 3.6-5 | 9.9-7 -4.9-8 | -8.9-6 | -6.2-7 58 |10:19 |3:28
be120.3.6 121 ; 21420 | 121 3946 | 50000 | 18775 9.9-7 | 3.3-5 | 9.8-7 -1.8-7 | -9.0-6 | -9.4-7 39 |10:05 |2:14
be120.3.7 121 ; 21420 | 121 4169 | 50000 | 22564 9.9-7 | 3.5-5 | 7.2-7 -2.7-7 | -1.2-5 | -6.2-7 41 |10:05 |2:48
be120.3.8 121 ; 21420 | 121 3793 | 50000 | 20388 9.9-7 | 3.3-5 | 9.9-7 -1.6-7 | -1.2-5 | -7.2-7 35 |9:56 |2:27
be120.3.9 121 ; 21420 | 121 4951 | 50000 | 22879 9.9-7 | 3.7-5 | 9.9-7 -2.0-7 | -1.0-5 | -5.0-7 52 |10:17 |2:32
be120.3.10 121 ; 21420 | 121 4264 | 50000 | 22877 9.9-7 | 3.3-5 | 9.9-7 -3.4-7 | -9.8-6 | -5.6-7 42 |10:33 |2:57
be120.8.1 121 ; 21420 | 121 5671 | 50000 | 28844 9.9-7 | 3.6-5 | 9.9-7 -3.5-7 | -9.8-6 | -1.0-6 58 |11:02 |3:43
be120.8.2 121 ; 21420 | 121 5897 | 50000 | 28010 9.9-7 | 3.8-5 | 9.9-7 -3.1-7 | -7.1-6 | -8.1-7 1:02 |11:09 |3:37
be120.8.3 121 ; 21420 | 121 5199 | 50000 | 28010 9.9-7 | 3.7-5 | 9.9-7 -4.9-7 | -8.5-6 | -9.0-7 52 |11:02 |3:35
be120.8.4 121 ; 21420 | 121 6688 | 50000 | 33698 9.9-7 | 3.6-5 | 9.9-7 -4.0-7 | -6.3-6 | -7.0-7 1:12 |11:00 |4:27
be120.8.5 121 ; 21420 | 121 5828 | 50000 | 28138 9.9-7 | 3.6-5 | 9.9-7 -3.6-7 | -5.8-6 | -7.5-7 1:03 |11:05 |3:42
be120.8.6 121 ; 21420 | 121 4735 | 50000 | 25034 9.9-7 | 3.6-5 | 9.9-7 -4.8-7 | -9.8-6 | -8.7-7 47 |10:54 |3:12
be120.8.7 121 ; 21420 | 121 4456 | 50000 | 23393 9.9-7 | 3.4-5 | 9.6-7 -3.8-7 | -9.3-6 | -7.8-7 44 |10:44 |3:01
be120.8.8 121 ; 21420 | 121 5979 | 50000 | 28880 9.9-7 | 3.7-5 | 9.9-7 -2.8-7 | -8.9-6 | -9.7-7 1:01 |10:57 |3:44
be120.8.9 121 ; 21420 | 121 5788 | 50000 | 28851 9.9-7 | 3.8-5 | 9.9-7 -3.3-7 | -6.1-6 | -8.2-7 1:02 |11:16 |3:48
be120.8.10 121 ; 21420 | 121 5636 | 50000 | 28138 9.9-7 | 3.6-5 | 9.6-7 -3.5-7 | -7.7-6 | -9.2-7 58 |11:15 |3:45
be150.3.1 151 ; 33525 | 151 5917 | 50000 | 28133 9.9-7 | 3.9-5 | 9.8-7 -1.8-7 | -1.2-5 | -9.3-7 1:23 |15:44 |5:08
be150.3.2 151 ; 33525 | 151 4565 | 50000 | 23958 9.9-7 | 3.9-5 | 9.7-7 -5.8-7 | -1.4-5 | -1.2-6 1:02 |15:32 |4:23
be150.3.3 151 ; 33525 | 151 4524 | 50000 | 23103 9.9-7 | 4.0-5 | 9.5-7 -4.9-7 | -1.3-5 | -8.4-7 1:02 |15:34 |4:09
be150.3.4 151 ; 33525 | 151 4506 | 50000 | 22609 9.9-7 | 3.7-5 | 9.3-7 -4.7-7 | -1.3-5 | -1.1-6 1:01 |15:34 |4:02
be150.3.5 151 ; 33525 | 151 5975 | 50000 | 28854 9.9-7 | 3.8-5 | 9.7-7 -3.0-7 | -9.8-6 | -9.9-7 1:24 |15:53 |5:12
be150.3.6 151 ; 33525 | 151 4131 | 50000 | 23008 9.9-7 | 3.9-5 | 9.9-7 -2.8-7 | -1.7-5 | -6.6-7 56 |16:56 |4:03
be150.3.7 151 ; 33525 | 151 4914 | 50000 | 23971 9.9-7 | 4.0-5 | 9.9-7 -4.9-7 | -1.1-5 | -1.2-6 1:08 |15:41 |4:20
be150.3.8 151 ; 33525 | 151 4354 | 50000 | 22976 9.9-7 | 3.6-5 | 9.9-7 -4.0-7 | -1.4-5 | -8.0-7 59 |15:30 |4:03
be150.3.9 151 ; 33525 | 151 5559 | 50000 | 25534 9.9-7 | 3.9-5 | 9.9-7 -2.6-7 | -1.1-5 | -1.0-6 1:22 |15:46 |4:38
be150.3.10 151 ; 33525 | 151 5647 | 50000 | 28752 9.9-7 | 3.9-5 | 9.9-7 -2.8-7 | -1.2-5 | -7.0-7 1:24 |15:35 |5:10
be150.8.1 151 ; 33525 | 151 5999 | 50000 | 29705 9.9-7 | 3.7-5 | 9.9-7 -4.0-7 | -9.0-6 | -1.0-6 1:26 |15:48 |5:19
be150.8.2 151 ; 33525 | 151 6516 | 50000 | 33468 9.9-7 | 3.7-5 | 9.8-7 -5.8-7 | -8.3-6 | -9.7-7 1:36 |16:18 |6:03
be150.8.3 151 ; 33525 | 151 6733 | 50000 | 32219 9.9-7 | 4.0-5 | 9.8-7 -5.5-7 | -8.3-6 | -9.9-7 1:40 |16:10 |6:00
be150.8.4 151 ; 33525 | 151 6063 | 50000 | 29344 9.9-7 | 3.8-5 | 9.8-7 -4.6-7 | -8.0-6 | -1.1-6 1:27 |16:05 |5:17
be150.8.5 151 ; 33525 | 151 6717 | 50000 | 33518 9.9-7 | 4.2-5 | 9.9-7 -4.9-7 | -7.6-6 | -8.2-7 1:44 |16:20 |6:18
be150.8.6 151 ; 33525 | 151 5953 | 50000 | 29344 9.9-7 | 3.6-5 | 9.8-7 -3.4-7 | -9.7-6 | -1.2-6 1:25 |15:50 |5:13
be150.8.7 151 ; 33525 | 151 5965 | 50000 | 31697 9.9-7 | 3.7-5 | 9.9-7 -4.7-7 | -1.0-5 | -1.2-6 1:25 |15:44 |5:47
be150.8.8 151 ; 33525 | 151 6396 | 50000 | 33130 9.9-7 | 3.9-5 | 8.0-7 -5.3-7 | -7.9-6 | -9.0-7 1:38 |16:21 |6:09
be150.8.9 151 ; 33525 | 151 5892 | 50000 | 28854 9.9-7 | 4.0-5 | 9.5-7 -4.0-7 | -7.4-6 | -8.1-7 1:25 |16:15 |5:19

24

iterations η ηgap time

problem mE ;mI | ns imabcd|bcd|erabcd imabcd|bcd|erabcd imabcd|bcd|erabcgd imabcd|bcd|erabcd
be150.8.10 151 ; 33525 | 151 6262 | 50000 | 29344 9.9-7 | 4.0-5 | 9.7-7 -3.7-7 | -9.4-6 | -1.1-6 1:30 |16:08 |4:24
be200.3.1 201 ; 59700 | 201 6020 | 50000 | 28718 9.9-7 | 4.1-5 | 9.7-7 -4.1-7 | -1.5-5 | -1.0-6 2:27 |23:30 |7:18
be200.3.2 201 ; 59700 | 201 5440 | 50000 | 28026 9.9-7 | 4.3-5 | 9.8-7 -6.4-7 | -1.6-5 | -1.2-6 2:13 |25:08 |6:23
be200.3.3 201 ; 59700 | 201 6150 | 50000 | 30498 9.9-7 | 4.3-5 | 9.8-7 -4.6-7 | -1.3-5 | -1.4-6 2:31 |22:09 |6:46
be200.3.4 201 ; 59700 | 201 6079 | 50000 | 28715 9.9-7 | 4.4-5 | 9.8-7 -4.1-7 | -1.3-5 | -1.3-6 2:30 |22:10 |6:16
be200.3.5 201 ; 59700 | 201 6536 | 50000 | 33573 9.9-7 | 4.1-5 | 9.9-7 -5.8-7 | -1.2-5 | -1.3-6 2:42 |22:04 |7:43
be200.3.6 201 ; 59700 | 201 5193 | 50000 | 28028 9.9-7 | 4.3-5 | 9.9-7 -5.0-7 | -1.6-5 | -1.1-6 2:08 |24:24 |6:07
be200.3.7 201 ; 59700 | 201 5750 | 50000 | 28715 9.9-7 | 4.2-5 | 9.8-7 -1.7-7 | -1.6-5 | -1.1-6 2:22 |23:04 |6:19
be200.3.8 201 ; 59700 | 201 6087 | 50000 | 28820 9.9-7 | 4.1-5 | 9.9-7 -5.2-7 | -1.4-5 | -1.5-6 2:30 |22:00 |6:35
be200.3.9 201 ; 59700 | 201 6088 | 50000 | 28820 9.9-7 | 4.2-5 | 9.9-7 -3.9-7 | -1.4-5 | -1.4-6 2:32 |22:16 |6:29
be200.3.10 201 ; 59700 | 201 5464 | 50000 | 28026 9.9-7 | 4.0-5 | 9.6-7 -6.8-7 | -1.6-5 | -1.3-6 2:14 |22:14 |6:16
be200.8.1 201 ; 59700 | 201 6882 | 50000 | 34136 9.9-7 | 4.0-5 | 9.9-7 -7.2-7 | -7.9-6 | -1.5-6 2:53 |23:08 |8:00
be200.8.2 201 ; 59700 | 201 6345 | 50000 | 33798 9.9-7 | 4.0-5 | 9.8-7 -7.0-7 | -1.0-5 | -1.4-6 2:37 |22:44 |7:48
be200.8.3 201 ; 59700 | 201 7829 | 50000 | 39097 9.9-7 | 4.1-5 | 9.3-7 -6.4-7 | -8.3-6 | -1.0-6 3:17 |23:29 |9:09
be200.8.4 201 ; 59700 | 201 7475 | 50000 | 34483 9.9-7 | 4.2-5 | 9.8-7 -6.3-7 | -6.7-6 | -1.2-6 3:21 |24:03 |8:15
be200.8.5 201 ; 59700 | 201 7600 | 50000 | 39771 9.8-7 | 4.1-5 | 9.9-7 -7.1-7 | -6.8-6 | -9.9-7 3:24 |23:58 |9:40
be200.8.6 201 ; 59700 | 201 7164 | 50000 | 34143 9.9-7 | 3.9-5 | 9.9-7 -7.6-7 | -7.6-6 | -1.6-6 3:00 |23:11 |7:47
be200.8.7 201 ; 59700 | 201 5677 | 50000 | 29693 9.9-7 | 3.9-5 | 9.7-7 -7.4-7 | -1.5-5 | -1.9-6 2:20 |22:18 |5:42
be200.8.8 201 ; 59700 | 201 5620 | 50000 | 29427 9.9-7 | 3.9-5 | 9.9-7 -7.7-7 | -1.1-5 | -1.7-6 2:19 |21:33 |6:32
be200.8.9 201 ; 59700 | 201 7100 | 50000 | 34143 9.9-7 | 4.0-5 | 9.9-7 -7.1-7 | -7.4-6 | -1.5-6 3:01 |22:11 |7:38
be200.8.10 201 ; 59700 | 201 6981 | 50000 | 34136 9.9-7 | 3.9-5 | 9.7-7 -7.5-7 | -8.3-6 | -1.5-6 2:55 |21:58 |7:35
be250.1 251 ; 93375 | 251 3958 | 50000 | 19178 9.9-7 | 5.2-5 | 9.8-7 1.4-7 | -3.0-5 | -1.9-6 2:10 |35:43 |6:15
be250.2 251 ; 93375 | 251 4213 | 50000 | 23028 9.9-7 | 5.1-5 | 9.9-7 -3.7-7 | -2.8-5 | -1.1-6 2:22 |37:47 |7:25
be250.3 251 ; 93375 | 251 4230 | 50000 | 23195 9.9-7 | 5.1-5 | 9.8-7 -3.7-7 | -3.0-5 | -1.2-6 2:29 |37:37 |7:52
be250.4 251 ; 93375 | 251 4059 | 50000 | 23109 9.9-7 | 4.7-5 | 9.9-7 -3.6-7 | -2.4-5 | -1.1-6 2:24 |32:53 |7:45
be250.5 251 ; 93375 | 251 4361 | 50000 | 23141 9.9-7 | 5.2-5 | 9.9-7 -3.9-7 | -2.7-5 | -1.1-6 2:35 |38:43 |7:39
be250.6 251 ; 93375 | 251 4131 | 50000 | 22773 9.9-7 | 5.2-5 | 7.7-7 -2.4-7 | -2.9-5 | -8.7-7 2:25 |37:40 |7:46
be250.7 251 ; 93375 | 251 6019 | 50000 | 28518 9.9-7 | 4.9-5 | 9.9-7 -1.8-7 | -2.1-5 | -1.1-6 3:37 |33:21 |9:46
be250.8 251 ; 93375 | 251 3398 | 50000 | 18307 9.9-7 | 5.5-5 | 8.6-7 -5.0-7 | -3.3-5 | -1.4-6 2:00 |38:14 |5:56
be250.9 251 ; 93375 | 251 5299 | 50000 | 28464 9.9-7 | 4.9-5 | 9.9-7 -5.8-7 | -2.4-5 | -1.0-6 3:09 |33:24 |9:38
be250.10 251 ; 93375 | 251 4601 | 50000 | 24611 9.9-7 | 5.0-5 | 9.9-7 -3.7-7 | -2.6-5 | -1.1-6 2:39 |37:58 |8:09
bqp50-1 51 ; 3675 | 51 3219 | 50000 | 13417 9.9-7 | 2.3-5 | 9.8-7 -2.1-8 | -2.8-6 | -5.3-8 16 |4:03 |49
bqp50-2 51 ; 3675 | 51 4717 | 50000 | 19129 9.9-7 | 3.2-5 | 9.9-7 -3.7-8 | -3.5-6 | -1.3-7 21 |3:52 |1:00
bqp50-3 51 ; 3675 | 51 3252 | 50000 | 14389 9.9-7 | 2.9-5 | 9.9-7 -6.4-8 | -3.8-6 | -1.7-7 14 |3:49 |44
bqp50-4 51 ; 3675 | 51 3817 | 50000 | 14850 9.9-7 | 1.9-5 | 9.9-7 -3.6-8 | -1.3-6 | -5.7-8 18 |3:54 |51
bqp50-5 51 ; 3675 | 51 1887 | 50000 | 6945 9.8-7 | 1.2-5 | 9.9-7 3.4-8 | -1.1-6 | -7.6-8 09 |4:00 |24
bqp50-6 51 ; 3675 | 51 3234 | 50000 | 14601 9.9-7 | 3.2-5 | 9.9-7 -6.0-8 | -4.8-6 | -1.4-7 14 |3:50 |46
bqp50-7 51 ; 3675 | 51 2209 | 50000 | 11197 9.9-7 | 1.9-5 | 9.9-7 -1.6-8 | -1.9-6 | -5.9-8 10 |3:51 |36
bqp50-8 51 ; 3675 | 51 4293 | 50000 | 18393 9.9-7 | 3.1-5 | 9.9-7 -8.2-8 | -5.5-6 | -1.1-7 19 |3:52 |56
bqp50-9 51 ; 3675 | 51 4751 | 50000 | 18573 9.9-7 | 3.1-5 | 9.9-7 -1.0-8 | -4.0-6 | -8.5-8 22 |3:55 |1:04
bqp50-10 51 ; 3675 | 51 4145 | 50000 | 14601 9.9-7 | 3.2-5 | 9.9-7 -3.6-8 | -3.1-6 | -8.0-8 20 |3:57 |52
bqp100-1 101 ; 14850 | 101 7344 | 50000 | 25527 9.9-7 | 4.8-5 | 9.9-7 -9.8-8 | -6.1-6 | -2.7-7 1:08 |7:54 |2:22
bqp100-2 101 ; 14850 | 101 3799 | 50000 | 18857 9.9-7 | 4.3-5 | 9.8-7 -1.5-7 | -1.4-5 | -6.4-7 30 |7:22 |1:39
bqp100-3 101 ; 14850 | 101 3630 | 50000 | 18066 9.9-7 | 4.4-5 | 6.7-7 8.6-8 | -1.1-5 | -2.5-7 29 |7:22 |1:32
bqp100-4 101 ; 14850 | 101 4293 | 50000 | 22744 9.9-7 | 4.4-5 | 9.6-7 -2.2-7 | -1.0-5 | -3.6-7 35 |7:26 |1:58
bqp100-5 101 ; 14850 | 101 5145 | 50000 | 23136 9.9-7 | 4.5-5 | 9.9-7 -1.0-7 | -1.0-5 | -3.7-7 43 |7:25 |1:58
bqp100-6 101 ; 14850 | 101 4170 | 50000 | 20467 9.9-7 | 4.6-5 | 9.9-7 -2.3-7 | -9.6-6 | -6.3-7 34 |7:34 |1:46
bqp100-7 101 ; 14850 | 101 5697 | 50000 | 27700 9.9-7 | 4.7-5 | 9.9-7 -1.4-7 | -9.3-6 | -3.7-7 48 |7:28 |2:27
bqp100-8 101 ; 14850 | 101 5491 | 50000 | 22986 9.9-7 | 4.4-5 | 9.9-7 -6.4-8 | -8.3-6 | -4.7-7 46 |7:29 |2:00

25

iterations η ηgap time

problem mE ;mI | ns imabcd|bcd|erabcd imabcd|bcd|erabcd imabcd|bcd|erabcgd imabcd|bcd|erabcd
bqp100-9 101 ; 14850 | 101 5481 | 50000 | 24863 9.9-7 | 4.1-5 | 9.9-7 -1.3-7 | -6.7-6 | -4.5-7 47 |7:28 |2:13
bqp100-10 101 ; 14850 | 101 5715 | 50000 | 24868 9.9-7 | 4.4-5 | 9.9-7 -6.9-8 | -1.0-5 | -5.7-7 45 |7:25 |2:10
bqp250-1 251 ; 93375 | 251 7230 | 50000 | 34885 9.9-7 | 4.7-5 | 9.9-7 -7.1-7 | -1.4-5 | -1.6-6 4:06 |32:10 |10:38
bqp250-2 251 ; 93375 | 251 6848 | 50000 | 34885 9.9-7 | 4.8-5 | 9.9-7 -7.7-7 | -1.5-5 | -1.7-6 3:51 |31:20 |10:17
bqp250-3 251 ; 93375 | 251 5352 | 50000 | 28522 9.9-7 | 4.8-5 | 9.7-7 -8.0-7 | -2.1-5 | -1.4-6 2:56 |35:00 |8:13
bqp250-4 251 ; 93375 | 251 6624 | 50000 | 33999 9.9-7 | 5.0-5 | 9.9-7 -6.2-7 | -1.3-5 | -1.4-6 3:46 |31:52 |10:08
bqp250-5 251 ; 93375 | 251 6933 | 50000 | 34834 9.9-7 | 4.7-5 | 9.9-7 -7.5-7 | -1.5-5 | -1.7-6 3:55 |31:36 |10:15
bqp250-6 251 ; 93375 | 251 6789 | 50000 | 34379 9.9-7 | 4.9-5 | 9.8-7 -6.1-7 | -1.4-5 | -1.5-6 3:49 |33:00 |10:16
bqp250-7 251 ; 93375 | 251 5894 | 50000 | 33670 9.9-7 | 5.0-5 | 9.9-7 -6.2-7 | -2.1-5 | -9.6-7 3:17 |34:30 |9:47
bqp250-8 251 ; 93375 | 251 7654 | 50000 | 34379 9.9-7 | 5.0-5 | 9.9-7 -6.7-7 | -1.1-5 | -1.4-6 4:32 |32:13 |10:27
bqp250-9 251 ; 93375 | 251 6089 | 50000 | 33694 9.9-7 | 4.8-5 | 9.9-7 -8.8-7 | -1.9-5 | -1.3-6 3:23 |32:00 |9:43
bqp250-10 251 ; 93375 | 251 7023 | 50000 | 34834 9.9-7 | 4.6-5 | 9.8-7 -6.1-7 | -1.7-5 | -1.6-6 3:55 |34:32 |10:20

Table 3: The performance of imABCD, BCD and eRABCD with accuracy ε = 10−6.

Based on the above numerical results, we may conclude that the efficiency of the imABCD
algorithm can be attributed to the double acceleration procedure: the outer acceleration of the two-
block coordinate descent method, and the inner acceleration by proper incorporation of the second-
order information through solving the subproblems in each iteration by Newton type methods.

6 Conclusions

In this paper, for the purpose of overcoming the potential degeneracy of the matrix best approxi-
mation problem (2), we have proposed a two-block imABCD method with each block solved by the
Newton type methods. Extensive numerical results demonstrated the efficiency and robustness of
our algorithm in solving various instances of the large scale matrix approximation problems. We
believe that our algorithmic framework is a powerful tool to deal with degenerate problems and
might be adapted to other convex matrix optimization problems in the future.

References

[1] Z. Allen-Zhu, Z. Qu, P. Richtárik, and Y. Yuan, Even faster accelerated coordinate descent
using non-uniform sampling, in International Conference on Machine Learning (2016), pp. 1110-1119.

[2] L.E. Andersson and T. Elfving, An algorithm for constrained interpolation, SIAM J. Sci. Stat.
Comput., 8 (1987), pp. 1012–1025.

[3] H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility prob-
lems, SIAM Rev., 38 (1996), pp. 367–426.

[4] H.H. Bauschke, J.M. Borwein, and W. Li, Strong conical hull intersection property, bounded
linear regularity, Jameson’s property (G), and error bounds in convex optimization, Math. Program.,
86 (1999), pp. 135–160.

[5] A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type methods, SIAM
J. Optim., 23 (2013), pp. 2037–2060.

[6] S. Boyd and L. Xiao, Least-squares covariance matrix adjustment, SIAM J. Matrix Anal. A., 27
(2005), pp. 532–546.

26

[7] A. Chambolle and T. Pock, A remark on accelerated block coordinate descent for computing the
proximity operators of a sum of convex functions, SIAM J. Comput. Math., 1 (2015), pp. 29–54.

[8] F.H. Clarke. Optimization and Nonsmooth Analysis, SIAM (1990).

[9] A.L. Dontchev and B.D. Kalchev, Duality and well-posedness in convex interpolation, Numer.
Func. Anal. Optim., 10 (1989), pp. 673–689.

[10] A.L. Dontchev, H. Qi, and L. Qi, Convergence of Newton’s method for convex best interpolation,
Numer. Math., 87 (2001), pp. 435–456.

[11] A.L. Dontchev, H. Qi, and L. Qi, Quadratic Convergence of Newton’s Method for Convex Inter-
polation and Smoothing, Constr. Approx., 19 (2003).

[12] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity
Problems: Volume I, Springer-Verlag, New York (2003).

[13] O. Fercoq and P. Richtárik, Accelerated, parallel, and proximal coordinate descent, SIAM J.
Optim., 25 (2015), pp. 1997–2023.

[14] O. Fercoq and P. Richtárik, Optimization in high dimensions via accelerated, parallel, and prox-
imal coordinate descent, SIAM Rev., 58 (2016), pp.739–771.

[15] A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian functions,
Math. Program., 76 (1997), pp. 513–532.

[16] Y. Gao and D.F. Sun, Calibrating least squares semidefinite programming with equality and in-
equality constraints, SIAM J. Matrix Anal. A., 31 (2009), pp.1432–1457.

[17] J. B. Hiriart-Urruty and C. Lemaéchal, Convex Analysis and Minimization Algorithms, Vol-
umes I and II, Springer, Berlin (1993).

[18] M. Hong, X. Wang, M. Razaviyayn, and Z.Q. Luo, Iteration complexity analysis of block coor-
dinate descent methods, Math. Program., 163 (2017), pp. 85–114.

[19] L.D. Irvine, S.P. Marin, and P.W. Smith, Constrained interpolation and smoothing, Constr.
Approx., 2 (1986), pp. 129–151.

[20] K.F. Jiang, D.F. Sun, and K.-C. Toh, An inexact accelerated proximal gradient method for large
scale linearly constrained convex SDP, SIAM J. Optim., 22 (2012), pp. 1042–1064.

[21] O. Klopp, K, Lounici, and A.B. Tsybakov, Robust matrix completion, Probab. Theory Rel.,
(2014), pp. 1–42.

[22] B. Kummer, Newton’s method for non-differentiable functions, Adv. Math. Optim., 45 (1988), pp.
114–125.

[23] Q. Lin, Z. Lu, and L. Xiao, An accelerated proximal coordinate gradient method, In Advances in
Neural Information Processing Systems (2014), pp. 3059–3067.

[24] Z. Lu and L. Xiao, On the complexity analysis of randomized block-coordinate descent methods,
Math. Program., 152 (2015), pp. 615–642.

[25] J. Malick, A dual approach to semidefinite least-squares problems, SIAM J. Matrix Anal. A., 26
(2004), pp. 272–284.

[26] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control
Optim., 15 (1977), pp. 959–972.

[27] Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2),
In Soviet Mathematics Doklady, Vol. 27, 2 (1983), pp. 372–376.

27

[28] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM
J. Optim., 22 (2012), pp. 341–362.

[29] Y. Nesterov and S. Stich, Efficiency of the accelerated coordinate descent method on structured
optimization problems, SIAM J. Optim., 27 (2017), pp. 110–123.

[30] J.-S. Pang and L. Qi. A globally convergent Newton method for convex SC1 minimization problems.
J. Optim. Theory Appl., 85 (1995) pp. 633–648.

[31] H. Qi and D.F. Sun, A quadratically convergent Newton method for computing the nearest correla-
tion matrix, SIAM J. Matrix Anal. A., 28 (2006), pp. 360–385.

[32] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Program., 58 (1993), pp. 353–367.

[33] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent methods
for minimizing a composite function, Math. Program., 144 (2014), pp. 1–38.

[34] R.T. Rockafellar, Conjugate Duality and Optimization, Volume 14. SIAM, Philadelphia (1974).

[35] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Springer, New York (1998).

[36] A. Saha and A. Tewari, On the nonasymptotic convergence of cyclic coordinate descent methods,
SIAM J. Optim., 23 (2013), pp. 576–601.

[37] M. Schmidt, N.L. Roux, and F.R. Bach, Convergence rates of inexact proximal-gradient methods
for convex optimization, In Advances in Neural Information Processing Systems (2011), pp. 1458–1466.

[38] D.F. Sun and J. Sun, Semismooth Matrix Valued Functions, Math. Oper. Res., 27 (2002), pp.
150–169.

[39] D.F. Sun, K.-C. Toh, and L.Q. Yang, An efficient inexact ABCD method for least squares semidef-
inite programming, SIAM J. Optim., 26 (2016) pp. 1072–1100.

[40] J. Sun and S. Zhang, A modified alternating direction method for convex quadratically constrained
quadratic semidefinite programs, Eur. J. Oper. Res., 207 (2010), pp. 1210–1220.

[41] R. Tappenden, P. Richtárik, and J. Gondzio, Inexact coordinate descent: complexity and pre-
conditioning, J. Optim. Theory Appl., 170 (2016), pp. 144–176.

[42] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J.
Optim. Theory Appl., 109 (2001), pp. 475–494.

[43] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization,
Math. Program., 117 (2009), pp. 387-423.

[44] H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 13 (1992), pp. 631–644.

[45] S. Villa, S. Salzo, L. Baldassarre, and A. Verri, Accelerated and inexact forward-backward
algorithms, SIAM J. Optim., 23 (2013), pp. 1607–1633.

[46] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, Robust principal component analysis: Exact
recovery of corrupted low-rank matrices via convex optimization, In Advances in Neural Information
Processing Systems (2009), pp. 2080–2088.

[47] S.J. Wright, Coordinate descent algorithms, Math. Program., 151 (2015), pp. 3–34.

[48] L.Q. Yang, D.F. Sun, and K.-C. Toh, SDPNAL+: A majorized semismooth Newton-CG aug-
mented Lagrangian method for semidefinite programming with nonnegative constraints, Math. Pro-
gram. Comput., 7 (2015), pp. 1–36.

[49] X.Y. Zhao, D.F. Sun, and K.-C. Toh, A Newton-CG augmented Lagrangian method for semidef-
inite programming, SIAM J. Optim., 20 (2010), pp. 1737–1765.

28

