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Abstract

Mixed-Variable Multi-Objective Bayesian Optimization, Design-by-Morphing and their
Applications

by

Haris Moazam Sheikh

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

Fluid flows are non-intuitive. Even with years of experience, non-intuitive behavior of fluids
can mean the optimal geometry of fluid machinery is surprising or even extreme (consider,
for instance, the bulbous bow of a ship). Finding the optimal design of a hydrodynamic or
aerodynamic surfaces is often impossible due to the expense of evaluating the cost functions
(say, with computational fluid dynamics) needed to determine the performances of the flows
that the surface controls. In addition, inherent limitations of the design space itself due
to imposed geometric constraints, conventional parameterization methods, and user bias
can restrict all of the designs within a chosen design space regardless of whether traditional
optimization methods or newer, data-driven design algorithms with machine learning are
used to search the design space.

This dissertation presents two methodologies to address these difficulties: (1) Design-by-
Morphing (DbM), a novel strategy for creating a design search space by morphing homeomor-
phic shapes to create a continuous and constraint-free design search space that can produce
radical extrapolated shapes, something which is unique from existing design strategies; and
(2) an optimization algorithm to search that space that uses a novel Mixed-variable, Multi-
Objective Bayesian Optimization that we call MixMOBO, that can optimize such expensive,
black-box problems with minimum number of functions calls. We apply these methodologues
for optimization of several problems and present shape optimization of airfoils, draft-tubes
for hydrokinetic turbines, and architected meta-materials. In all cases, we show significantly
improved and radical designs.

Chapter One of this thesis focuses on the details of the MixMOBO algorithm, the first
mixed-variable, multi-objective Bayesian optimization algorithm. MixMOBO outperforms
existing algorithms for mixed-variable problems. It details HedgeMO strategy for hedging
acquisition function portfolios for multi-objective problems. MixMOBO is then applied
for optimization of strain energy density of an architected meta-material structure with
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categorical variables. From a design space of 8.5 billion possible candidates, our algorithm is
able to optimize the design space with only 250 function evaluation and achieve 104 times
improvement in strain energy density over existing structures [1, 2]. Chapter Two focuses on
applying MixMOBO for design of Cauchy-Symmetric architected meta-material structures.
With only 69 function calls, MixMOBO is able to find such a structure from a design space
of 107 possible structures. Chapter Three demonstrates the use of Design-by-Morphing for
optimization of airfoils. We show that with just 25 baseline shapes, we are able to reproduce
the UIUC airfoil database with high fidelity and optimize this space to create aerodynamically
superior and safer airfoils [3]. Chapter Four focuses on application of design of a draft tube
for a hydrokinetic turbine to maximize pressure recovery at the exit of the turbine [4].
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Chapter 1

Bayesian Optimization For
Multi-Objective Mixed-Variable
Problems

1.1 Abstract

Optimizing multiple, non-preferential objectives for mixed-variable, expensive black-box
problems is important in many areas of engineering and science. The expensive, noisy, black-
box nature of these problems makes them ideal candidates for Bayesian optimization (BO).
Mixed-variable and multi-objective problems, however, are a challenge due to BO’s underlying
smooth Gaussian process surrogate model. Current multi-objective BO algorithms cannot
deal with mixed-variable problems. We present MixMOBO, the first mixed-variable, multi-
objective Bayesian optimization framework for such problems. Using MixMOBO, optimal
Pareto-fronts for multi-objective, mixed-variable design spaces can be found efficiently while
ensuring diverse solutions. The method is sufficiently flexible to incorporate different kernels
and acquisition functions, including those that were developed for mixed-variable or multi-
objective problems by other authors. We also present HedgeMO, a modified Hedge strategy
that uses a portfolio of acquisition functions for multi-objective problems. We present a new
acquisition function, SMC. Our results show that MixMOBO performs well against other
mixed-variable algorithms on synthetic problems. We apply MixMOBO to the real-world
design of an architected material and show that our optimal design, which was experimentally
fabricated and validated, has a normalized strain energy density 104 times greater than
existing structures.

1.2 Introduction

Optimization is an inherent part of design for complex physical systems. Often optimization
problems are posed as noisy black-box problems subject to constraints, where each function
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call requires an extremely expensive computation or a physical experiment. Many of these
problems require optimizing a mixed-variable design space (combinatorial, discrete, and
continuous) for multiple non-preferential objectives. Architected material design [5, 6, 7, 8, 9,
2], hyper-parameter tuning for machine learning algorithms [10, 11, 12], drug design [13, 14],
fluid machinery [3, 4] and, controller sensor placement [15] pose such problems. Due to their
cost of evaluation, Bayesian optimization is a natural candidate for their optimization.

Much research has gone into Bayesian optimization for continuous design spaces using
Gaussian processes (GP) as a surrogate model and efficiently optimizing this design space
with a minimum number of expensive function calls [16, 17, 18]. Despite the success of
continuous variable Bayesian optimization strategies, multi-objective and mixed-variable
problems remain an area of open research. The inherent continuous nature of GP makes
dealing with mixed-variable problems challenging. Finding a Pareto-front for multi-objective
problems, and parallelizing function calls for batch updates, Q-batch, also remain challenges
in the sequential setting of the BO algorithm. Hedge strategies, which use a portfolio of
acquisition functions to reduce the effect of choosing a particular acquisition function, have
not been formulated for multi-objective problems.

Mixed-Variable BO Algorithms:

We provide a brief description of the current approaches in recent studies for dealing with
mixed variables.

One Hot Encoding Approach: Most BO schemes use Gaussian processes as surrogate
models. When dealing with categorical variables, a common method is ‘one-hot encoding’
[19]. Popular BO packages, such as GPyOpt and Spearmint [10], use this strategy. However,
this can result in inefficiency when searching the parameter space because the surrogate
model is continuous. For categorical variables, this approach also leads to a quick explosion
in dimensional space [20].

Multi-Armed Bandit (MAB) Approach: Some studies use the MAB approach when
dealing with categorical variables where a surrogate surface for continuous variables is defined
for each bandit arm. These strategies can be expensive in terms of the number of samples
required [21, 22], and they do not share information across categories. An interesting approach,
where coupling is introduced between continuous and categorical variables, is presented in
the CoCaBO algorithm [20], and it is one of the baselines that we test MixMOBO against.

Latent Space Approach: A latent variable approach has also been proposed to model
categorical variables [23, 24, 25, 26]. This approach embeds each categorical variable in a Z
latent variable space. However, the embedding is dependent on the kernel chosen, and for
small-data settings can be inefficient.

Modified Kernel Approach: There is a rich collection of studies in which the underlying
kernel is modified to work with ordinal or categorical variables. For example, Ru, Alvi, Nguyen,
Osborne, and Roberts [20] considers the sum + product kernel; Deshwal, Belakaria, and
Doppa [27] proposes hybrid diffusion kernels, HyBO; and Oh, Gavves, and Welling [28]
proposes frequency modulated kernels. The BOCS algorithm [29] for categorical variables
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uses a scalable modified acquisition function. Pelamatti, Brevault, Balesdent, Talbi, and
Guerin [30], Oh, Tomczak, Gavves, and Welling [31], Nguyen, Gupta, Rana, Shilton, and
Venkatesh [22], and Garrido-Merchán and Hernández-Lobato [32] all use modified kernels to
adapt the underlying surrogate surface. Our approach is unique in that any modified kernel
can be incorporated into our framework. Currently we use the modified radial basis function
(RBF) kernel for modelling the surrogate surface, with our future research focused on using
different kernels in our framework.

Other Surrogate Models: Other surrogate models can be used in place of the GP to
model mixed-variable problems such as random forests, an approach used by SMAC3 [33] or
tree based estimators, used in the Tree-Parzen Estimator (TPE) [34]. Daxberger, Makarova,
Turchetta, and Krause [35] considers a linear model with cross-product features. BORE [36]
leverages the connection to density ratio estimation.

Multi-Objective BO Algorithms:

Multi-objective Bayesian optimization (MOBO) has been the subject of some recent studies.
BoTorch [37], the popular BO framework, uses the EHVI and ParEGO based on the works
of Fonseca, Paquete, and Lopez-Ibanez [38] and Daulton, Balandat, and Bakshy [39] and
Daulton, Eriksson, Balandat, and Bakshy [40]. Hyper-volume improvement is the main
mechanism used to ensure diversity in generations. ‘Q-batch’ parallel settings of the above
two acquisition functions use hyper-volume improvement and the previously selected point in
the same batch to choose the next set of points. For most single-objective BO algorithms
with parallel batch selection, the next batch of test points is selected by adding the ‘fantasy’
cost-function evaluation, usually the predicted mean, to the previously selected test point
within that batch. However, this commonly used method often leads to overly confident test
point selection, and the surrogate surface then needs to be optimized, and sometimes refitted
Q times. Using a genetic algorithm (GA), we can select a ‘Q-batch’ of points with a single
optimization of the surrogate surface from the GA generation.

Suzuki, Takeno, Tamura, Shitara, and Karasuyama [41] provide an interesting Pareto-
frontier entropy method as an acquisition function, and Shu, Jiang, Shao, and Wang [42] use
Pareto-frontier heuristics to formulate new acquisition functions. Their approaches were not
extended to mixed-variable problems.

Hedge Strategies

Hedge algorithms have proven to be efficient in dealing with a diverse set of problems by
using a portfolio of acquisition functions. ‘GP-Hedge’, introduced by Brochu, Hoffman, and
de Freitas [43] is a well-known and efficient algorithm. However, current Hedge algorithms
have not been extended for multi-objective problems and, to the authors’ knowledge, there is
no existing Hedge strategy implementation that solves such problems.
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1.3 MixMOBO

In this paper, we present a Mixed-variable, Multi-Objective Bayesian Optimization (Mix-
MOBO) algorithm, the first generalized framework that can deal with mixed-variable, multi-
objective problems in small data setting and can optimize a noisy black-box function with a
small number of function calls.

Genetic algorithms, such as NSGA-II [44], are well known for dealing with mixed-variable
spaces and finding an optimal Pareto-frontier. However, these algorithms require a large
number of black-box function calls and are not well suited to expensive small-data problems.
Our approach is to use a GA to optimize the surrogate model itself and find a Pareto-frontier.
Diversification is ensured by the distance metrics used while optimizing the surrogate model.
This method allows cheap Q-batch samples from within the GA generation, and also allows the
use of commonly used acquisition functions such as Expected Improvement (EI), Probability
of Improvement (PI) and Upper Confidence Bound (UCB) [43], which work well for single
objective problems. We note here that other metrics can easily be incorporated instead of
a distance metric within the GA setting and is one of the areas of our future work. Using
a GA on a mixed variable surrogate model in a multi-objective setting allows us to work
with modified kernels that were developed for mixed-variable problems in literature. We also
present a new acquisition function, ‘Stochastic Monte-Carlo’ (SMC), which performs well for
multi-objective categorical variable problems [2].

Hedge strategies for Bayesian optimization are efficient for single objective algorithms.
We present here our Hedge Multi-Objective (HedgeMO) algorithm, which uses a portfolio of
acquisition functions for multi-objective problems and can work with Q-batch updates. It
is an extension of GP-Hedge [43], which has regret bounds, and the same bounds hold for
HedgeMO.

We note here that MixMOBO is designed for mixed-variable, multi-objective problems.
Although there are algorithms in the literature that can solve problems with a subset of
these attributes (e.g. mixed-variable single-objective or multi-objective continuous variable
problems), no algorithm, to our knowledge, can deal with all of these attributes. In addition,
MixMOBO outputs a batch of query points and uses HedgeMO, the first multi-objective
hedging strategy. To the authors’ knowledge, no existing approaches can achieve all this
within a single framework.

In summary, the main contributions of our work are as follows:

• We present Mixed-variable, Multi-Objective Bayesian Optimization (MixMOBO), the
first algorithm that can deal with mixed-variable, multi-objective problems. The
framework uses GA to optimize the acquisition function on a surrogate surface, so it
can use modified kernels or surrogate surfaces developed to deal with mixed-variable
problems in previous studies. This extends the capabilities of previous approaches in
literature to handle mixed-variable and multi-objective problems as well if adopted
within our framework, since our framework is agnostic to the underlying GP kernel
over mixed-variables.
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• GA is used to optimize surrogate models, which allows the optimization of multi-
objective problems. ‘Q-batch’ samples can be extracted in parallel from within the GA
generation without sacrificing diversification.

• We present a Hedge Multi-Objective (HedgeMO) strategy for multiple objectives for
which regret bounds hold. We also present an acquisition function, Stochastic Monte-
Carlo (SMC), which performs well for combinatorial multi-objective problems, and use
it as part of our HedgeMO portfolio.

• We benchmark our algorithm against other mixed-variable algorithms and prove that
MixMOBO performs well on test functions. We applied MixMOBO to a practical
engineering problem: the design of a new architected meta-material that was optimized
to have the maximum possible strain-energy density within the constraints of a design
space. The fabrication and testing of this new material showed that is has a normalized
strain energy density that is 104 times greater than existing unblemished microlattice
structures in literature.

The rest of the paper is organized in the following manner: Section 1.4 defines the
optimization problem to be solved with MixMOBO. The detailed workings of MixMOBO and
HedgeMO are presented in Section 1.5. Section 1.6 details the validation tests performed on
our framework to test its efficiency and comparison to existing algorithms. Our application
of MixMOBO for design of architected materials and its results are presented in Section 1.7.

1.4 MixMOBO Problem Statement

We pose the multi-objective and mixed-variable problem as:

w⃗opt = argmaxw⃗∈W(f⃗(w⃗)) (1.1)

for maximizing the objective. Here f⃗(w⃗) = [f1(w⃗), f2(w⃗), . . . , fk(w⃗)] are the K non-
preferential objectives to be maximized, and w⃗ is a mixed-variable vector, defined as
{w⃗ ∈ W} = {x⃗ ∈ X , y⃗ ∈ Y , z⃗ ∈ Z}. x⃗ is an m-dimensional vector defined over a bounded set
X ⊂ Rm representing m continuous variables. Ordinal and categorical variables are defined as
y⃗ = [y1, . . . , yn] and z⃗ = [z1, . . . , zo], respectively. Each variable yj ∈ {O1, . . . , Oj} takes one
of Oj ordinal ‘levels’ (discrete numbers on the real-number line) and each categorical variable
takes a value zj ∈ {C1, . . . , Cj} from Cj unordered categories (that cannot, by definition,
be ordered on the real-number line). Y and Z are the ordinal and combinatorial spaces
respectively.

Generally, {w⃗opt} is a set of Pareto-optimal solution vectors i.e., vectors that are not
Pareto-dominated by any other vector. A vector w⃗ is Pareto-dominated by w⃗′, iff fk(w⃗) ≤
fk(w⃗′) ∀ k = 1, ...K. This {w⃗opt} is the optimal set found by MixMOBO, details of which are
presented in the following section.
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1.5 Methodology

Preliminaries

Single-objective Bayesian optimization is a sequential optimization technique, aimed at finding
the global optimum of a single objective noisy black-box function f with minimum number of
evaluations of f . For every ith iteration, a surrogate model, g, is fit over the existing data set
D = {(w1, f(w1)), . . . , (wi, f(wi))}. An acquisition function then determines the next point
w⃗i+1 for evaluation with f , balancing exploration and exploitation. Data is appended for
the next iteration, D = D ∪ (wi+1, f(wi+1)), and the process is repeated until the evaluation
budget for f or the global optimum is reached.

Gaussian processes are often used as surrogate models for BO [17, 45]. A GP is defined
as a stochastic process such that a linear combination of a finite set of the random variables
is a multivariate Gaussian distribution. A GP is uniquely specified by its mean µ(w⃗) and
covariance function ker(w⃗, w⃗′). The GP is a distribution over functions, and g(w⃗) is a
function sampled from this GP:

g⃗(w⃗) ∼ GP
(
µ(w⃗), ker(w⃗, w⃗′)

)
. (1.2)

Here, ker(w⃗, w⃗′) is the covariance between input variables w⃗ and w⃗′. Once a GP has
been defined, at any w⃗ the GP returns the mean µ(w⃗) and variance σ(w⃗). The acquisition
function A(g⃗), balances exploration and exploitation, and is optimized to find the next
optimal point w⃗i+1. The success of BO comes from the fact that evaluating g⃗ is much cheaper
than evaluating f⃗ .

MixMOBO Approach

Our Mixed-variable Multi-Objective Bayesian Optimization (MixMOBO) algorithm extends
the single-objective, continuous variable BO approach presented in the preceding section, to
more generalized optimization problems and is detailed in Algorithm 1.

A single noisy GP surrogate surface is fit for multiple objectives, g⃗(w⃗) ∼ GP
(
µ⃗(w⃗), ker(w⃗, w⃗′)

)
.

Note that this is different from Eq. 1.2, since the GP would predict mean for multiple ob-
jectives. For details on fitting a single GP to multi-objective data, we refer the reader to
[17, Eq. 2.25-2.26]. For multiple objectives, the response vector, with n-data points, is of
size k × n. The predicted variance remains the same, but the predicted mean is a k × 1
vector. This is equivalent to fitting K GP surfaces with the same kernel for all of the
surfaces, where K is the total number of objectives. All K objectives are assumed to have
equal noise levels. Only one set of hyper-parameters needs to be fit over this single surface,
rather than fitting K sets of hyper-parameters for K different surfaces; thus, when K is
large, the overall computational cost for the algorithm is reduced. Note that we could fit
K different GP surfaces, particularly if different noise levels for different objectives is to
be considered, with different hyper-parameters to the data to add further flexibility to the
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fitted surfaces. This idea will be investigated in our future work. We use LOOCV [45] for
estimating hyper-parameters since we are dealing with small-data problems.

Algorithm 1 Mixed-variable Multi-Objective Bayesian Optimization (MixMOBO) Algorithm

1: Input: Black-box function f⃗(w⃗) : w⃗ ∈ W, initial data set size N i, batch points per
epoch Q, total epochs N , mutation rate β ∈ [0, 1]

2: Initialize: Sample black-box function f⃗ for D =
{(

w⃗j, f⃗(w⃗j)
)}

j=1:N i

3: for n = 1 to N do

4: Fit a noisy Gaussian process surrogate function g⃗(w⃗) ∼ GP
(
µ⃗(w⃗), ker(w⃗, w⃗′)

)
5: For L total acquisition functions, from each Al acquisition function, propose Q-batch

test-points,
{

(u⃗)ln
}
1:Q

=
{
argmaxu⃗∈WAl (g⃗)

}
1:Q

within the constrained search space W
using multi-objective GA

6: Mutate point
{

(u⃗)ln
}
q

within the search space W with probability rate β if L2-norm

of its difference with any other member in set
{

(u⃗)ln
}
1:Q

is below tolerance

7: Select batch of Q points using HedgeMO, {w⃗n}1:Q = HedgeMO
(
g⃗,
{

(u⃗)1:L1:n

}
1:Q

,D
)

8: Evaluate the selected points from the black-box function, {f⃗(w⃗n)}1:Q
9: Update D = D ∪

{(
w⃗n, f⃗(w⃗n)

)}
1:Q

10: end for

11: return Pareto-optimal solution set
{(

w⃗opt, f⃗(w⃗opt)
)}

Gaussian processes are defined for continuous variables. For mixed variables, we need to
adapt the kernel so that a GP can be fit over these variables. Cited works in Section 1.2 dealt
with modified kernels that were designed to model mixed variables. Those kernels can be
used in the MixMOBO algorithm. For the current study, we use a simple modified squared
exponential kernel:

ker(w⃗, w⃗′) ≡ ϵ2f exp

[
−1

2
|w⃗, w⃗′|TC M |w⃗, w⃗′|C

]
, (1.3)

where θ⃗ = ({M}, ϵf) is a vector containing all the hyper-parameters, {M} = diag(⃗h)−2

is the covariance hyper-parameter matrix and h⃗ is the vector of covariance lengths. The
distance metric, |w⃗, w⃗′|C , is an concatenated vector, with the distance between categorical
variables defined to be the Hamming distance, and the distance between continuous variables
and the distance between ordinal variables defined to be their Euclidean distances. Noise
is added to the diagonal of the covariance matrix. We emphasize that any modified kernel
discussed in the citations of Section 1.2 can be used within our framework and is a focus of
our future work.
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Once the GP is fit over multi-objective data, acquisition functions, Al, explore the
surrogate model to maximize reward by balancing exploration and exploitation. Using a
standard optimization scheme is problematic when dealing with mixed-variable and multi-
objective problems due to non-smooth surrogate surface and conflicting objectives. We
propose using a constrained, multi-objective GA to optimize the acquisition functions, which,
although expensive to use on an actual black-box function, is an ideal candidate for optimizing
the acquisition function working on the surrogate surface. For multi-objective problems,
multi-objective GA algorithms, such as [44], are ideal candidates for obtaining a Pareto-front
of optimal solutions.

Within a GA generation, for multi-objectives, diversification is ensured by a ‘distance
crowding function’ which ranks the members of a non-dominated Pareto-front. The ‘distance
crowding function’ can be computed in decision-variable space, in function space or a hybrid
of the two, and ensures that the generations are distinct and diverse. This inherent feature
of GA is exploited to ensure diversity in the ‘Q-batch’ of points. The ranking takes place
when choosing the test points from an acquisition function for a multi-objective problem
because the choice must take into account the diversity of the solution and propagate the
Pareto-front. Because the members of the population are ranked by the GA, we can easily
extract a ‘Q-batch’ of points from each of the acquisition functions without needing to add
any ‘fantasy’ cost function evaluations or optimizing the acquisition functions again. This is
a great advantage of using GA as our optimizer since we can output a ‘Q-batch’ of diverse
query points using the inherent GA features.

For dealing with mixed-variable problems, GA are again ideal candidates. Genetic
algorithms (GA) can be easily be constrained to work in mixed variable spaces. These
variables can be dealt with by using probabilistic mutation rates. The genes are allowed to
mutate within their prescribed categories, thereby constraining the proposed test points to
the W space.

Common acquisition functions, such as EI, PI, and UCB, can be used within this framework
and can be used to nominate a ‘Q-batch’ of points. If a candidate in a Q-batch is within the
tolerance limit of another candidate in the same batch or a previous data point (for convex
functions), we mutate the proposed point within W to avoid sampling the same data point
again.

Test points are selected from W to evaluate their f⃗ using HedgeMO algorithm which is
detailed in the next section. HedgeMO selects a ‘Q-batch’ of test-points from the candidates
proposed by each of the acquisition functions. These points are then, along with their function
evaluations f⃗s, appended to the data set.

HedgeMO Algorithm

Hedge strategies use a portfolio of acquisition functions, rather than a single acquisition
function. It is an extension to multi-objective problems of GP-Hedge algorithm proposed
by [43]. HedgeMO is part of our MixMOBO algorithm that not only extends the Hedge



CHAPTER 1. MIXMOBO 9

Algorithm 2 HedgeMO Algorithm

1: Input: Surrogate function g⃗(w⃗) : w⃗ ∈ W, proposed test points by AFs
({

(u⃗)1:L1:n

}
1:Q

)
,

batch points per epoch Q, current epoch n, total objective K, parameter η ∈ R+

2: for l = 1 to L do

3: For lth acquisition function, find rewards for Q-batch points nominated by that AF

from epochs 1:n-1, by sampling from g⃗,
{
θ⃗l1:n−1

}
1:Q

= µ⃗(
{

(u⃗)l1:n−1

}
1:Q

), where θ⃗ = {θ}k

for each objective k

4: end for

5: Normalize rewards for each lth AF and kth objective, ϕk
l =

∑n−1
j=1

∑Q
q=1

{θlj}k

q
−min(Θ)

max(Θ)−min(Θ)
,

where Θ is defined as Θ =
{
θ1:L1:n−1

}k
1:Q

6: Calculate probability for selecting nominees from lth acquisition function, pl =
exp(η

∑K
k=1 ϕ

k
l )∑L

i=1 exp(η
∑K

k=1 ϕ
k
i )

7: for q = 1 to Q do

8: Select qth nominee as test-point w⃗q
n from lth AF with probability pl

9: end for

10: return Batch of test points {w⃗n}1:Q

strategy to multi-objective problems, but also allows ‘Q-batches’. Our algorithm is shown in
Algorithm 2.

Extending the methodology presented by [43], HedgeMO chooses the next ‘Q-batch’ of
test points from the history of the candidates nominated by all of the acquisition functions.
Rewards are calculated for each acquisition function from the surrogate surface for the
entire history of the nominated points by the L acquisition functions. The rewards are then
normalized to scale them to the same range for each objective. This step is fundamentally
important because it prevents biasing the probability of any objective. This type of bias,
of course, cannot occur in single objective problems. The rewards for different objectives k
are then summed and the probability, pl, of choosing a nominee from a specific acquisition
function is calculated using step 6 in Algorithm 2. For a ‘Q-batch’ of tests points, the test
points are chosen Q times.

Regret Bounds: The regret bounds derived by Brochu, Hoffman, and de Freitas [43]
hold for HedgeMO if and only if the Upper Confidence Bound (UCB) acquisition function is
a part of the portfolio of acquisition functions. The regret bounds follow from the work of
Srinivas, Krause, Kakade, and Seeger [46] who derived cumulative regret bounds for UCB.
In essence, the cumulative regret in our case is bounded by two sublinear terms as for UCB
and an additional term which depends on proximity of the chosen point with the test point
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proposed by UCB. The interested reader is directed to Srinivas, Krause, Kakade, and Seeger
[46] and Brochu, Hoffman, and de Freitas [43] for a description of the exact regret bounds
and their derivation.

SMC Acquisition Function

We introduce a new acquisition function, Stochastic Monte-Carlo (SMC), which for the
maximization of an objective, is defined as:

SMC ≡ argmaxw⃗∈W [µ⃗(w⃗) + r(w⃗)], (1.4)

where r(w⃗) is sampled from U(0, 2σ(w⃗)), and µ⃗(w⃗) and σ(w⃗) are the mean and standard
deviation returned by the GP at w⃗, respectively. This is equivalent to taking Monte-Carlo
samples from a truncated distribution. For categorical and ordinal variable problems, this
acqusition function performs well across a range of benchmark tests [2]. We use this acquisition
function as part of our portfolio of HedgeMO in the MixMOBO algorithm.

Figure 1.1: Performance comparison of MixMOBO against other mixed-variable algorithms

1.6 Validation Tests

MixMOBO is designed to deal with mixed-variable, multi-objective problems. However, no
other small-data algorithm, to the authors’ knowledge, can similarly deal with all the attributes
of such problems to provide an honest comparison. In the absence of such competition, we
use the specific case of mixed-variable, single-objective problems to provide a comparison
to state-of-the-art algorithms present for such problems and prove that even for this subset
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case, MixMOBO is able to perform better than existing algorithms in the literature. We
then perform further experiments in both single and multi-objective settings to show the
efficacy of the HedgeMO algorithm compared to stand-alone acquisition functions and the
performance of SMC in the multi-objective setting.

We benchmarked MixMOBO against a range of existing state-of-the-art optimization
strategies that are commonly used for optimizing expensive black-box functions with mixed-
variable design spaces. We chose the following single objective optimization algorithms for
comparison: CoCaBO [20], which combines the multi-armed bandit (MAB) and Bayesian
optimization approaches by using a mixing kernel. CoCaBO has been shown to be more
efficient than GPyOpt (one-hot encoding approach [47]) and EXP3BO (multi-armed bandit
(MAB approach [21]). We used CoCaBO with a mixing parameter of 0.5. We also tested
MixMOBO against GBRT, a sequential optimization technique using gradient boosted
regression trees [48]. TPE Hyperopt (Tree-structured Parzen Estimator) is a sequential
method for optimizing expensive black-box functions, introduced by Bergstra, Bardenet,
Bengio, and Kégl [49]. SMAC3 is a popular Bayesian optimization algorithm in combination
with an aggressive racing mechanism [50]. Both of these algorithms, in addition to Random
Sampling, were used as baselines. Publicly available libraries for these algorithms were used.

Six different test functions for mixed variables were chosen as benchmarks. A brief
description of these test functions and their properties is given below with further details in
Appendix 1.9:

Contamination Problem: This problem, introduced by Hu, Hu, Xu, Wang, and Cao
[51], considers a food supply chain with various stages in the chain where food may be
contaminated with pathogens. The objective is to maximize the reward of prevention efforts
while making sure the chain does not get contaminated. It is widely used as a benchmark for
binary categorical variables. We use the problem as a benchmark with 21 binary categorical
variables.

Encrypted Amalgamated: An anisotropic, mixed-variable function created using a
combination of other commonly used test functions [52]. We modify the combined function so
that it can be used with mixed variables. In particular, it is adapted for categorical variables
by encrypting the input space with a random vector, which produces a random landscape
mimicking categorical variables [2]. Our Encrypted Amalgamated function has 13 inputs: 8
categorical, 3 ordinal variables (with 5 categories or states each) and 2 continuous.

NK Landscapes: This is a popular benchmark for simulating categorical variable
problems using randomly rugged, interconnected landscapes [53, 54]. The fitness landscape
can be produced with random connectivity and number of optima. The problem is widely
used in evolutionary biology and control optimization and is NP -complete. The probability
of connectivity between NK is controlled by a ‘ruggedness’ parameter, which we set at 20%.
We test the Li, Emmerich, Eggermont, Bovenkamp, Bäck, Dijkstra, and Reiber [54] variant
with 8 categorical variables with 4 categories each.

Rastringin: This is an isotropic test function, commonly used for continuous design
spaces [52]. We use a 9-D Rastringin function for testing a design space of 3 continuous and
6 ordinal variables with 5 discrete states.
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Figure 1.2: Performance comparison of HedgeMO against other acquisition functions

Encrypted Syblinski-Tang: This function is isotropic [52], and we have modified it as
we did with the Encrypted Amalgamated test function so that it can work with categorical
variables and was used as a representative benchmark for N -categorical variable problems.
The 10-D variant tested here consists only of categorical variables with 5 categories each.

Encrypted ZDT6: This is a multi-objective test function introduced by Zitzler, Deb,
and Thiele [55] that we modified with encryption so that it can deal with mixed variables.
The test function is non-convex and non-uniform in the parameter space. We test ZDT6 with
10 categorical variables with 5 states each. ZDT6 was only used for testing HedgeMO.

To the extent of our knowledge, no other optimization algorithm is capable of handling
mixed-variable, multi-objective problems in small-data settings. Thus, we have no direct
comparisons between MixMOBO and other published algorithms. Therefore, we tested
MixMOBO against a variant of NSGA-II [44] with the ZDT4 and ZDT6 test functions with
mixed variables. However, we found that using a GA required more than 102 more function
calls to find the Pareto front to a similar tolerance. For visualization purposes, we do not
plot the GA results.

All of the optimization algorithms were run as maximizers, with a 0.005 noise variance
built into all the benchmarks. The budget for each benchmark test was fixed at 250 function
calls including the evaluations of 50 initial randomly sampled data points for all algorithms,
except for SMAC3 which determines its own initial sample size. The algorithms were run
in single output setting (GBRT, CoCaBO and MixMOBO’s batch mode was not used for
fair comparison). Each algorithm was run 10 times for every benchmark. Our metric for
optimization is the ‘Normalized Reward’, defined as (current optimum - random sampling
optimum)/(global optimum - random sampling optimum). Figure 1.1 shows the Normalized
Rewards versus the number of black-box function evaluations for MixMOBO and five other
algorithms. The mean and standard deviation of the Normalized Rewards of the 10 runs for
each algorithm, along with their standard deviations (S.D.), are plotted. The width of each
of the translucent colored bands is equal to 1/5 of their S.D.

MixMOBO outperforms all of the other baselines and is significantly better in dealing
with mixed-variable problems. GBRT is the next best algorithm and performs better than
MixMOBO on the Rastringin function; however, note that the Rastringin function does not
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Table 1.1: Experimental values of the critical buckling Pc (minimization objective for Mix-
MOBO), strain energy density at buckling and fracture, ub and uf respectively, elastic stiffness
S, and ratio of normalized strain energy density compared to the Unblemished structure.

Structure Pc[µN ] ub[MJm−3] uf [MJm−3] S[MPa] (ufi/ubi)/(uf1/ub1)

Unblemished 3814.5 1.08 0.071 388.21 1
Random Sampling Optimal 996.2 0.08 2.85 347.19 526

MixMOBO Optimal 545.1 0.02 14.71 460.35 12030

include any categorical variables. For problems involving categorical variables, MixMOBO
clearly outperforms the others. TPE and CoCaBO have similar performances, and SMAC3
has the poorest performance. All three are outdistanced by MixMOBO.

We then perform experiments to test the performance of our HedgeMO algorithm by
comparing it to four different acquisition functions which make up the entirety of its porfolio.
These acquisition functions, namely, EI, PI, UCB, and SMC, along with HedgeMO are
tested on three different test functions: the Encrypted Amalgamated, Encrypted Syblinski-
Tang, and Encrypted ZDT6. The latter is used as the multi-objective test function. The
Normalized Reward for the multi-objective Encrypted ZDT6 is defined as (current P-optimum
- random sampling P-optimum)/(global P-optimum - random sampling P-optimum). Here,
P-optimum= 1

N

∑N
i=1 exp(-minimum Hamming distance in parameter space between ith global

Pareto-optimal point and any point in the current Pareto-optimal set), where N is the number
of global Pareto-optimal points.

The results of our acquisition function comparisons are shown in Figure 1.2, which
shows that HedgeMO performs well across all three test functions. For single-objective test
functions, PI outperforms HedgeMO for Encrypted Amalgamated test function. However,
for the multi-objective Encrypted ZDT6 test function, PI performs significantly worse and
is outperformed by both SMC and UCB. SMC performs well on multi-objective problems
combinatorial problems and hence should be a part of portfolio for a hedging algorithm.

These results prove that for a range of different problems, acquisition function choice
can play a huge role in the performance of the algorithm. For a black-box function, this
information can not be known a priori, making hedging necessary. HedgeMO consistently
performs well in all scenarios and ensures efficiency across a range of different problems.
Thus, for unknown black-box functions, HedgeMO should be the hedge strategy of choice for
multi-objective problems.

1.7 Application to Architected Materials

We applied our MixMOBO framework to the optimization of the design of architected,
microlattice structures. Advances in modeling, fabrication, and testing of architected materials
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have promulgated their utility in engineering applications, such as ultralight [56, 57, 58],
reconfigurable [59], and high-energy-absorption materials [60], and in bio-implants [61].
The optimization of architected materials [62, 57, 59, 58] often requires searching huge
combinatorial design spaces, where the evaluation of each design is expensive. [63, 64, 65].
The design space for the architected material we optimize here has ∼ 8.5 billion possible

Figure 1.3: Top Left: The 4 unit cells, labelled A – D. Top Right: The 2 orientations in
which they can be joined. Bottom Left: Optimization results using MixMOBO. Bottom Right:
SEM images of Unblemished and Optimum structures.

combinations of its 17 categorical inputs (one with 2 possible states, and the other 16 with 4
possible states). Our goal is to maximize the strain energy density of a microlattice structure.
We maximize the strain energy density (which is extremely expensive to compute, even for
one design) by minimizing the buckling load Pc, while maintaining the lattice’s structural



CHAPTER 1. MIXMOBO 15

integrity and stiffness before fracturing. Minimizing Pc (a proxy for maximizing the strain
energy density by instigating buckling which leads to the densification of the deformed
lattice members) is a more computationally tractable cost function to evaluate (but, it is
still expensive and involves solving a numerical finite element code for each evaluation of
the cost function.) The manufacturing and testing details of our methodology are included
in Vangelatos, Sheikh, Marcus, Grigoropoulos, Lopez, Flamourakis, and Farsari [2], which
focuses on the material aspects of the problem.

The design space consists of choosing one of four possible unit cells (shown in the upper
left of Fig. 1.3, each with one or more defects (shown in color) in them, at each of the
16 independent lattice sites) creating 16 of the categorical inputs with 4 possible values;
and the choice of whether the cells are connected along their faces or along their edges on
45o-diagonals (shown in the upper right panel of Fig. 1.3) creating the 17th categorical input
with 2 possible values.

The minimization of Pc using MixMOBO was initialized with 50 random structures and
the evaluation budget, including initial samples, was set at 250. The algorithm achieved a
42% improvement in the Pc of the lattice structure over the best structure obtained with the
first 50 random samples (Figure 1.3). The optimal microlattice obtained using Pc as a proxy
with MixMOBO has an experimentally measured normalized strain energy density that is
12,030 times greater than that of the unblemished microlattice structure with no defects that
is cited in the literature to have the best strain energy density [66], a 4 orders of magnitude
improvement. Table 1.1 shows the properties of the fabricated and experimentally measured
design created with MixMOBO. The choices of the units cells in the optimally designed
lattice that were determined by MixMOBO are not intuitive and have no obvious pattern or
structure. Images of our optimized structures using Helium Ion Microscopy (HIM) 1.4, shows
the comparison of the Unblemished structure from literature with our MixMOBO Optimal
structure, before and after loading. It is evident that the MixMOBO Optimal structure due
to its densification mechanism, can handle much higher loads without breaking [2].

1.8 Conclusions

The existing optimization literature does not offer an algorithm for optimizing multi-objective,
mixed-variable problems with expensive black-box functions. We have introduced Mixed-
variable Multi-Objective Bayesian Optimization (MixMOBO), the first BO based algorithm
for optimizing such problems. MixMOBO is agnostic to the underlying kernel. It is compatible
with modified kernels and other surrogate methods developed in previous studies for mixed-
variable problems. MixMOBO allows for parallel batch updates without repeated evaluations
of the surrogate surface, while maintaining diversification within the solution set. We
presented the Hedge Multi-Objective (HedgeMO) algorithm, a novel Hedge strategy for which
regret bounds hold for multi-objective problems. A new acquisition function, Stochastic
Monte-Carlo (SMC) was also proposed as part of the HedgeMO portfolio. MixMOBO
and HedgeMO were benchmarked and shown to be significantly better on a variety of test
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Figure 1.4: HIM images of the loaded and unloaded unblemished and optimum structures.
(a) Unloaded Unblemished structure (b) Unblemished structure after loading, showing severe
fracture and collapse of many beam members. (c) Focused image revealing several fractured
beams and the internal collapse of the upper layer that subsequently instigated the accu-
mulation of damage in the underlying layers. (d) Unloaded MixMOBO Optimum structure.
(e) MixMOBO Optimum structure after the structure was subjected to the same maximum
compressive load as the structure shown in (b). Unloading of the optimum structure showed
only excessive plastic deformation without catastrophic collapse and the manifestation of
the buckling mode. (f) Focused revealing the effect of buckling that led to deformation but
no fracture due to the occurrence of densification. (g) Side view of the unloaded optimum
structure. (h) Side view of the unloaded optimum structure revealing that fracture was
inhibited throughout the structure due to the densification precipitated by the low critical
buckling load. Scale: Each scale bar is equal to 10−5m.
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problems compared to existing mixed-variable optimization algorithms. MixMOBO was
then applied to the real-world optimization of an architected micro-lattice, and we increased
the structure’s strain-energy density by 104 compared to existing Unblemished structures
in the literature reported to have highest strain energy density. Our future work entails
further testing multi-objective and ‘Q-batch’ settings. We have also applied MixMOBO for
optimization of draft-tubes for hydrokinetic turbines [4] and Cauchy symmetric meta-material
structures and are currently applying it for optimization of vertical-axis wind turbines.

1.9 Additional Details for MixMOBO

Benchmark Test Functions

In this section, we define the benchmark test functions, all of which are set to be maximized
during our optimizations.

Contamination Problem

The contamination problem was introduced by Hu, Hu, Xu, Wang, and Cao [51] and is
used to test categorical variables with binary categories. The problem aims to maximize
the reward function for applying a preventative measure to stop contamination in a food
supply chain with D stages. At each ith stage, where i ∈ [1, D], decontamination efforts can
be applied. However, this effort comes at a cost c and will decrease the contamination by a
random rate Γi. If no prevention effort is taken, the contamination spreads with a rate of Ωi.
At each stage i, the fraction of contaminated food is given by the recursive relation:

Zi = Ωi(1 − wi)(1 − Zi−1) + (1 − Σiwi)Zi−1 (1.5)

here wi ∈ 0, 1 and is the decision variable to determine if preventative measures are taken at
ith stage or not. The goal is to decide which stages i action should be taken to make sure Zi

does not exceed an upper limit Ui. Ωi and Σi are determined by a uniform distribution. We
consider the problem setup with Langrangian relaxation [29]:

f(w⃗) = −
D∑
i=1

(
cwi +

ρ

T

T∑
k=1

1{Zk>Ui}

)
− λ||w⃗||1 (1.6)

Here violation of Zk < Ui is penalized by ρ = 1 and summing the contaminated stages if
the limit is violated and our total stages or dimensions are D = 21. The cost c is set to be
0.2 and Z1 = 0.01. As in the setup for [29], we use T = 100 stages, Ui = 0.1, λ = 0.01 and
ϵ = 0.05.

Encrypted Amalgamated

Analytic test functions generally cannot mimic mixed variables. To map the continuous output
of a function into N discrete ordinal or categorical variables, the continuous range of the test
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function’s output is first discretized into N discrete subranges by selecting (N − 1) break
points, often equally spaced, within the bounds of the range. Then, the continuous output
variable is assigned the integer round-off value of the subrange defined by its surrounding
pair of break points. If necessary, the domain of the test function’s output is first mapped
into a larger domain so that each subrange has a unique integer value. To mimic ordinal
variables, we are done, but for categorical variables, a random vector for each categorical
variable is then generated which scrambles or ‘encrypts’ the indices of these values, thus
creating random landscapes as is the case for categorical variables with a latent space. The
optimization algorithm only sees the encrypted space and the random vector is only used
when evaluating the black-box function.

We also define a new test function that we call the Amalgamated function, a piece-wise
function formed from commonly used analytical test functions with different features (for more
details on these functions we refer to Tušar, Brockhoff, and Hansen [52]). The Amalgamated
function is non-convex and anisotropic, unlike conventional test functions where isotropy can
be exploited.

For i = 1...n, k =mod(i− 1, 7):

f(w⃗) =
D∑
i=1

g(wi) (1.7)

where

g(wi) =



sin(wi) if k = 0, wi ∈ (0, π)

−w4
i−16w2

i+5wi

2
if k = 1, wi ∈ (−5, 5)

−(w2
i ) if k = 2, wi ∈ (−10, 10)

−[10 + w2
i − 10cos(2πwi)] if k = 3, wi ∈ (−5, 5)

−[100(wi − w2
i−1)

2 + (1 − wi)
2] if k = 4, wi ∈ (−2, 2)

abs(cos(wi)) if k = 5, wi ∈ (−π/2, π/2)

−wi if k = 6, wi ∈ (−30, 30)

(1.8)

To create the Encrypted Amalgamated function, for categorical and ordinal variables,
equally spaced points are taken within the bounds defined above. For our current work, we
use a D = 13 with 8 categorical and 3 ordinal variables with 5 states each, and 2 continuous
variables.

NK Landscapes

NK Landscapes were introduced by Kauffman and Levin [53] as a way of creating optimization
problems with categorical variables. N describes the number of genes or number of dimensions
D and K is the number of epistatic links of each gene to other genes, which describes the
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‘ruggedness’ of the landscape. A large number of random landscapes can be created for given
N and K values. The global optimum of a generated landscape for experimentation can only
be computed through complete enumeration. The landscape cost for any vector is calculated
as an average of each component cost. Each component cost is based on the random values
generated for the categories, not only by its own alleles, but also by the alleles in the other
genes connected through the random epistasis matrix, with K probability or ruggedness. A
K = 1 ruggedness translates to a fully connected genome.

The NK Landscapes from Kauffman and Levin [53] were formulated only for binary
variables. They were extended by Li, Emmerich, Eggermont, Bovenkamp, Bäck, Dijkstra,
and Reiber [54] for multi-categorical problems, which is the formulation we use. Details of the
NK Landscape test-functions we use can be found in Li, Emmerich, Eggermont, Bovenkamp,
Bäck, Dijkstra, and Reiber [54]. For the current study, we use N = 8 with 4 categories each
and ruggedness K = 0.2.

Rastringin

Rastringin function is a commonly used non-convex optimization function [52] with a large
number of local optima. It is defined as:

f(w⃗) = −[10 + w2
i − 10cos(2πwi)], wi ∈ (−5, 5) (1.9)

We use D = 9 for testing with 6 ordinal with 5 discrete states and 3 continuous variables.
The ordinal variables are equally spaced within the bounds.

Encrypted Syblinski-Tang

We use the Syblinski-Tang function [52], an isotropic non-convex function. The function is
considered difficult to optimize because many search algorithms get ‘stuck’ at a local optimum.
For use with categorical variables, we encrypt it as described previously. The Syblinski-Tang
function, in terms of input vector w⃗, is defined as:

f(w⃗) = −
∑D

i=1w
4
i − 16w2

i + 5wi

2
, wi ∈ (−5, 2.5) (1.10)

For the current study, this function was tested with D = 10 categorical variables and 5
categories for each variable.

Encrypted ZDT6

ZDT benchmarks are a suite of multi-objective problems, suggested by Zitzler, Deb, and
Thiele [55], and most commonly used for testing such problems. We use ZDT6, which
is non-convex and non-uniform in its parameter space. We again modify the function by
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encrypting it to work with categorical problems. ZDT6 is defined as:

f1(w⃗) = exp(−4w1)sin
6(6πw1) − 1

f2(w⃗) = −g(w⃗)
[
1 − (f1(w⃗)/g(w⃗))2

]
g(w⃗) = 1 + 9

[(
D∑
i=2

wi

)
/(n− 1)

]1/4 (1.11)

Here w1 ∈ [0, 1] and wi = 0 for i = 2, . . . , D. The function was tested for D = 10 with 5
categories each. We note that to evaluate the performance of MixMOBO, we compared it
against the NSGA-II variant [44] that can deal with mixed variables (by running ZDT4 in a
mixed variable setting and ZDT6 with categorical variables). No encryption is necessary for
GAs. GAs required, on average, 102 more function calls compared to MixMOBO.
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Chapter 2

Systematic Design of Cauchy
Symmetric Structures Through
Bayesian Optimization

2.1 Abstract

Using a new Bayesian Optimization algorithm to guide the design of the lattice structure of
mechanical metamaterials, we design nonhomogeneous 3D structures possessing the Cauchy
symmetry, which dictates the relationship between continuum and atomic deformations. The
recent efforts to merge optimization techniques with the design of mechanical metamaterials
has resulted in a concentrated effort to tailor their elastic and post elastic properties. Even
though these properties of either individual unit cells or homogenized continua can be
simulated using multi-physics solvers and well established optimization schemes, they are
often computationally intensive and require many design iterations, rendering the validation
stage a significant obstacle in the design of new metamaterial designs. This study aims to
provide a framework on how to utilize miniscule computational cost to control the elastic
properties of metamaterials such that specific symmetries can be accomplished. Using
the Cauchy symmetry as a design objective, we engineer structures through the strategic
arrangement of 5 different unit cells in a 5 × 5 × 5 cubic symmetric microlattice structure.
This lattice design, despite constituting a design space with 510 3D lattice configurations, can
converge to an effective solution in only 69 function calls as a result of the efficiency of the
new Bayesian optimization scheme. To validate the mechanical behavior of the design, the
lattice structures were fabricated using multiphoton lithography and mechanically tested,
revealing a close correlation between experiments and simulated results in the elastic regime.
Ultimately, a similar methodology can be utilized to design metamaterials with other material
properties of interest, aspiring to control properties at different length scales, an endeavor
that requires inordinate computation cost.
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2.2 Introduction

The continued development of advanced 3-dimensional manufacturing processes such as
multiphoton polymerization has enabled the manufacture of complex geometries with sub-
micron resolution at increasingly fast rate [67, 68, 69]. Furthermore, merging spatial light
modulation technologies with multiphoton lithography has resulted in the production of larger
arrays with the same feature resolution [70]. Consequently, these techniques have provided
the avenue to design scalable architectures that yield bulk material properties that exceed
those of natural materials [71, 72]. These architected materials, can be employed for various
engineering applications such as ultralight [73, 74, 75, 76], ultraprecise [77, 78], reconfigurable
[79], high energy absorption materials [60, 2], as well as different engineering domains such as
wave mechanics [80] and optics [81]. Furthermore, the fabrication of flexible structures with
tailored mechanical properties has proved important design bio inspired designs, inducing
enhanced properties on significantly weaker bulk materials [82, 83]. Lessons from nature
can be derived from the most unexpected cases, such as the flower beetle Torynorrhina
flammea [84] or the deep sea sponge Euplectella aspergillum, showing how the ”optimization”
of nature can lead to complex optomechanical designs that resemble the features and patterns
of optomechanical or purely mechanical metamaterials [85, 86].

Evidently, from a structural standpoint, the lattice nature of microscale metamaterial
structures has led to the predominant design strategy of different truss-like structures that
mimic the crystalline structure and defect formation of metals and alloys [82, 57, 87, 88].
These architected lattice, plate or triply periodic minimal surface structures have been shown
to provide high stiffness and increased strength, at extremely low relative densities [89, 90,
91]. This is also reflected in the plethora of results aiming specifically in the control of elastic
properties, as they are determined by the stiffness tensor [92, 93, 94]. The vast majority
of the literature focuses in the control of properties such as isotropy, leading to mechanical
behavior independent of direction [95, 96, 97] and auxeticity, a riveting property leading to
negative Poisson’s ratio and resilience to collapse mechanisms such as necking and barrel
shape formation [98, 99].

Apart from design approaches such as the addition of beam elements, and the reconfigu-
ration of beam sizes [66, 57, 63, 56, 2], accelerating the design process and circumventing
the inherent challenges of continuum modeling that drives this endeavor [100, 101] has been
accomplished through optimization. Several studies have attempted employing optimization
techniques to obtain the elastic properties of the structure. Techniques such as topology
optimization [94, 93, 102], artificial neural networks [103, 104] and machine learning [105, 106,
107, 108] have risen in metamaterial design and investigation of controlled elastic properties.
Nevertheless, in these publications, the required number of evaluations to obtain the optimum
is thousands, tens of thousands or even millions of data to explore the design space [93],
creating a high computational cost. As a consequence, the number and type of design variables
(continuous, discrete, qualitative and ordered) has to be limited and in many cases isolate the
study to 2D or uniform homogeneous 3D structures to sustain a feasible computational budget.
Some techniques with low computational budgets for meta-material design have also been
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proposed [109, 110, 111, 112, 113]. In our previous study we explored how these challenges
can be successfully surpassed by the development of a novel Bayesian Optimization scheme [1].
We combined this algorithm with a new approach to model different building blocks in the
metamaterial structure as states, which are discrete, qualitative design variables [2, 114, 66].
This approach required only 250 cost function evaluations, and resulted in defected mechanical
metamaterials with architected defects, facilitating enhanced mechanical behavior which was
orders of magnitude higher than the thoroughly studied monolithic metamaterial structures
[115, 115, 60]. This study aims to expand use our improved Mixed-variable Multi-Objective
Bayesian Optimization (MixMOBO) framework [1] on the following fronts: (a) decrease the
computational cost by an order of magnitude even with a larger number of states, rendering
such exorbitant problems more accessible even with meagre computational sources using
MixMOBO and (b) design lattice structures that are nonhomogeneous in every direction,
expanding the design of arbitrary metamaterials [116] to complex 3D problems.

Investigating the controlled elastic behavior of imperfect and nonhomogeneous lattices
will elucidate a new approach to address such problems. However, instead of the thoroughly
studied isotropy and auxeticity, this study will explore another intriguing property derived
from crystalline materials, namely the Cauchy–Born Rule [117, 118, 119]. This model
shows that elastically deformed states of the lattice model at the localized level are closely
approximated by solutions of the continuum model. Even though this rule is based on
the absence of lattice vibrations and ionic polarization, limiting its validity to describe
complex phenomena in the lattice, this kinematic theory has been thoroughly employed as
the constitutive behavior of continuum regions in multi-scale models. Thus the fine scale is
proposed to depict the real behavior of crystalline structure when the continuum description
is incapable to accomplish this [120]. As it will be explained later, this rule is referred with
respect to the stiffness tensor of the material as ”Cauchy Symmetry”. Therefore, designing
mechanical metamaterials with controlled auxeticity will provide new metamaterial families
that can be used for homogenized continua and constitutive models and will enable the
fabrication of structures with homogeneous behavior.

Thus, using Cauchy Symmetry as an example of a non-intuitive design objective, we present
a method to systematically tailor the mechanical behavior of architected microstructures.
By building a 5 × 5 × 5 microlattice structure out of five different unit cells, we yield a
large combinatorial design space. Such a design space with combinatorial or categorical
variables, with a expensive-to-evaluate black-box cost function that would be prohibitively
expensive to optimize with conventional optimization techniques. We use our Mixed-variable
Multi-Objective Bayesian Optimization (MixMOBO) algorithm [1] to optimize this large and
expensive combinatorial design space. Through finite element analysis simulations, we study
the mechanical response and calculate the elastic constants of the lattice which are the data
required by the algorithm. To validate our results, we employ multiphoton lithography to
fabricate the structures resulted by the optimization, which enables the design of complex
nonuniform 3D structures. Finally, with in-situ SEM-microindentation experiments, we
evaluate the validity of the optimization algorithm. Our results illuminate how complex 3D
structures can be successfully optimized with a low computational budget and can lead to
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new types of metamaterials that can be employed for continuum modeling and controlled
elastic behavior.

2.3 Problem Setup

Modeling of Cauchy-Symmetric Structures

The Cauchy-Born rule relates the position of atoms in a crystal to the overall strain of the
medium [121]. Assuming that the potential energy of the lattice is a function of the distance
between the atoms, or in lattice metamaterials, the nodes, through the second derivative on
the potential energy with respect to the strain, the elastic stiffness tensor C can be obtained.
Databases possessing millions of geometries to describe the mechanical properties of truss
metamaterials as a function of the lattice node locations have been reported [93], indication
that such an assumption can be valid as long as higher gradient elasticity is not dominant
[101]. However, the particular form of the potential energy in the Cauchy-Born rule can lead
to additional symmetries in the stiffness tensor, defined as “Cauchy Symmetries”. These
additional symmetries reduce the number of independent elastic constants in the structure,
leading in some cases to unphysical results as in a triclinic material. However, while the
number elastic independent variables of bulk materials cannot be physically reduced, the
arrangement of beam members in the metamaterial structure can result in the control of the
elastic constants [122].

A particular case of interest can be metamaterials possessing cubic symmetry, since the
vast majority of thoroughly studied structures such as the Diamond, the Octet Truss, the
Kelvin have cubic symmetry [123]. In this reduced form, the effective stiffness tensor has only
three independent elements: C11, C12, and C44, where C11 and C12 are stiffness components
of normal stress and C44 specifies the shear modulus of a cubically symmetric structure. This
correlation between stiffness elements and loading mode are conveyed in Figure 2.1. However,
Cauchy-Symmetry is obtained in a cubic material when C12 = C44. This requirement will
set the framework to define the problem and optimize it as it will be discussed in the next
section.

Cauchy symmetry Problem Setup

The objective of this work is to design a nonmonolithic microlattice composed of discrete
unit cells that is Cauchy Symmetric. Figure 2.2 depicts the process used to identify and
validate a near-optimal structure. Throughout this process we use five different unit cells,
shown in Figure 2.2a, labeled A, B, C, D or E. For simplification, we choose unit cells that
have cubic symmetry so that they can be systematically joined together to create a bulk
microlattice. Each unit cell is 10 µm × 10 µm × 10 µm, which is compatible with the
dimensions realizable by our multiphoton lithography (MPL) apparatus. These unit cells are
positioned in a 5 × 5 × 5 array. We strategically chose a layout scheme of unit cells depicted
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Figure 2.1: The stiffness matrix of a cubic symmetric unit cell can be described by three
independent stiffness components which corresponded to the stress components orthogonal
to the direction of strain (left) the stress components in the direction of loading (middle) and
the shear modulus (right).

Figure 2.2: (a) Five types of cubic unit cells, labeled A-E, used to construct a 5 x 5 x 5 lattice.
Unit cells are all face-centered cubic geometry to ensure compatible connectivity within the
lattice (b) Unit cells are placed together into three layers that are cubic symmetric. Unit
cells of the same type are placed into one of 10 positions, labeled 1-10, which the k-vector is
composed of. Layer 1, located on the outside of the structure is composed of 5 x 5 unit cells.
Layer 2 is the middle layer and is composed of 3 x 3 unit cells, and Layer 3 is a singular unit
cell located in the center of the microlattice.



CHAPTER 2. CAUCHY SYMMETRIC STRUCTURES 26

in Figure 2.2b. The micro lattices consist of an outer ”shell” (Layer 1, 5 × 5 unit cells), a
middle layer (Layer 2, 3 × 3 unit cells), and the inner core unit cell (Layer 3, 1 × 1 unit cell).
The ten positions, 1-10 in the different layers, which can be equipped with unit cells, are a
result of ensuring that the boundary condition of cubic symmetry is fulfilled. Accordingly,
the same unit cells must be positioned at locations with the same letter.

This layout scheme was strategically chosen to provide two key benefits. The first benefit
is that it roughly imposes isotropic bulk material behavior. In doing so, it reduces the
stress tensor to three independent stiffness values which simplifies the number of simulations
and mechanical tests required to probe the stiffness values. The second benefit is that it
substantially reduces the number of possible combinations of lattices. With this restriction,
the design space reduces from 2.3*1087 states to 9765625. Even though we search a design
space that likely has multiple sufficiently low values of the cost function, the reduction in the
dimensionality of the design space should still significantly reduce the number of function
evaluations required. In addition, it is important to state that even though symmetries in the
lattice structure will also decrease the design space, the optimization algorithm determines
the overall number of required evaluations by the overall size of the design space.

Figure 2.2c shows the optimization utilized to find a Cauchy-Symmetric microlattice. Fab-
ricating and physically testing structures is a labor-intensive process with a non-insignificant
amount of noise, so finite element analysis is used as a proxy for calculating stiffness com-
ponents for the cost function in our MixMOBO algorithm. The principal improvement of
this algorithm is the utility of the hedge strategy which hedges acquisition functions. This
approach uses a set of acquisition functions instead of a single one, rendering the algorithm
much more efficient and versatile as it was been reported before [124]. To converge on an a
near-optimal solution we employ finite element code to compute the static behavior of each
lattice in its elastic domain. Each microlattice contains roughly 100,000-900,000 nodes, and
the optimization of lattice properties requires that this computation be done repeatedly. In
turn, even this more time-effective method remains prohibitively expensive to search the
entire design space or employ other optimization techniques that still require thousands of
function calls. Once our algorithm converged on an acceptable solution, we fabricated and
mechanically tested (further information about the mechanical testing process are provided
in Materials and Methods).

The material that was used was the hybrid organic-inorganic Zr-DMAEMA [(2-dimethylaminoethyl)
methacrylate] (further details about the fabrication and the material properties are provided
in Materials and Methods). Based on previously conducted work [114, 66], the stiffness values
measured by mechanical testing can only be reliably related within the elastic regime, since
the photoresist material is highly sensitive in the plastic domain due to variations in the
fabrication parameters. To incorporate the noise caused by fabrication imperfections and the
experimental measurement, a 0.005 noise variance (7% standard deviation) is built into the
test function based on previously reported results [125]. Mechanical testing and structural
analysis are conducted inside a scanning electron microscope (SEM).
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Figure 2.3: Process diagram beginning with the selection of 50 initial random microlattices.
Afterwards the process iteratively loops between (i) application of the MixMOBO algorithm
to choose new parameters and (ii) the modeling, simulation, and evaluation of the Cauchy-
symmetry cost function. Once a microlattice with sufficiently small cost function value is
found, the iterative loop is exited and the optimal design is fabricated and tested to validate
its properties.

Bayesian Optimization

Optimization for expensive black-box functions involving categorical or mixed variables is
an area of active research. For such hard-to-evaluate problems, Bayesian optimization (BO)
has proven to be efficient [18, 126] using small number of function calls compared to other
optimization strategies. A large range of these problems require optimizing combinatorial or
categorical design spaces. Architected material design [5, 6, 7, 8, 9, 2], hyper-parameter tuning
for machine learning algorithms [10, 11, 12], drug design [13, 14], controller sensor placement
[15] pose such problems with expensive black-box function and Bayesian optimization is a
natural candidate for their optimization. However, for problems such as design of architected
materials, the design space can include categorical or ordinal variables [2].

Much research has gone into Bayesian optimization (BO) for continuous design spaces with
minimum number of expensive function calls [16, 17, 18]. Despite the success of continuous
Bayesian optimization strategies, combinatorial problems remain an area of open research.
The inherent continuous nature of Gaussian processes (GP) makes dealing with categorical
variables challenging.

In our past work, detailed in [1], we developed a Mixed variable, Multi-Objective Bayesian
Optimization (MixMOBO) algorithm, a generalized framework that can deal with categorical
problems and can optimize a noisy black-box function with a small number of function calls.
We applied a categorical variable Bayesian optimization algorithm (previously known as
Evolutionary Monte Carlo Simulations, EMCS) for the design of an architected meta-material
to have the maximum strain-energy density [2]. The fabrication and testing of this new
material shows that is has a normalized strain energy density that is 104 times greater than
existing unblemished microlattice structures in literature [2], generalized mixed-variable and
multi-objective BO algorithm, for design of an Cauchy-Symmetric structure.
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2.4 Materials and Methods

FEA Design

All FEA simulations were performed with the multipurpose finite element code ANSYS
(Workbench 18.0). The following beam lattice properties were used in the FEA: 1.281 elastic
modulus, 0.4999 Poisson’s ratio. Only elastic material properties were used. The structures
were meshed with 10-node, tetrahedral finite elements. Each structure roughly contained
between 100,000 and 900,000 nodes. The average element size was selected by conducting a
mesh convergence study. For uniaxial compressive testing, an infinitely stiff plane attached to
the top surface of the structure was displaced downwards and C12 was calculated by averaging
σy across all elements. For shear testing and a vertice on the structure was displaced laterally
and C44 was calculated by averaging τxy across all elements. In both cases, the bottom face of
the structure was attached to the substrate and fully constrained. All of the structures were
designed using SOLIDWORKS. This methodology has been employed before for the precise
calculation of the polar stiffness map of structure, leading to a close correlation between
theoretical and experimental results [127, 128].

Mechanical Testing

Compression and shear tests were performed in situ with a nanoindentation apparatus (PI 87
SEM PicoIndenter, Hysitron) mounted inside the chamber of a scanning electron microscope
(SEM) (FEI Scios 2, Thermo Fisher Scientific). A molybdenum flat tip indenter (model
72SC-D3/035 (407A-M) Probing Solutions, Inc.) with a diameter of 70 µm is applied in all
mechanical tests. The glass substrates on which the microlattices are fabricated are fixed
onto an SEM pin stub mount (TED PELLA) with PELCO ® Pro C100 Cyanoacrylate
Glue (TED PELLA). Test structures for compression testing are aligned such that the top
face contacts the indenter tip while the side profile is imaged by the electron beam. Test
structures for shear testing are aligned such that a side face with a flat bar attached on the
side contacts the indenter and the top is imaged. Each structure was deformed at a rate of
250 nm/s, and to ensure repeatability, 4 tests were performed on each structure.

Fabrication

The microlattice structures were fabricated with a hybrid organic-inorganic resin Zr-DMAEMA
(30 wt%). The resin is composed of 70 wt% zirconium propoxide and 10 wt% (2-dimethylaminoethyl)
methacrylate (DMAEMA) (Sigma-Aldrich). The structures for mechanical testing were fabri-
cated by sub-micron resolution direct femtosecond laser writing, which uses MPL and the
aforementioned photoresist for high-resolution fabrication. The basic optical system consists
of a FemtoFiber pro NIR laser emitting 780 nm wavelength, with a pulse width of 100 fs, and
a repetition rate of 80 MHz. The local photopolymerization of the photosensitive material was
accomplished with a 100× microscope objective lens (Plan-Apochromat 100×/1.40 Oil M27,
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Zeiss). The laser output energy for the fabrication was measured before the objective lens at
4.2 mW, and the scanning speed used was set to 20 µm/s. The resin sample is attached to a
stage with both piezo and servo elements with movements in the XYZ directions.

MixMOBO

For minimizing the objective, we pose the categorical variable problem as:

w⃗opt = argminw⃗∈W(f(w⃗)) (2.1)

Here f(w⃗) is the objective to be minimized, and w⃗ ∈ W is a categorical variable vector,
defined as z⃗ = [w1, . . . , wm] for m total variables. W is the combinatorial space. Each
categorical variable takes a value wj ∈ {C1, . . . , Cj} from Cj unordered categories (that
cannot, by definition, be ordered on the real-number line).

Figure 2.4: Benchmarks for MixMOBO.

For practical engineering problems such
as design of architected meta-materials, f(w⃗)
can be extremely expensive to evaluate. For
combinatorial problems, gradient based al-
gorithms cannot be used. The difficulty
for optimization is also exacerbated due to
the large number of possible combinations,
approximately 1 billion possible combina-
tions for our design space, making such prob-
lem intractable to optimize using conven-
tional optimization techniques. Bayesian op-
timization is a sequential optimization tech-
nique for optimizing expensive noisy black-
box function f with minimum number of
function calls. For every iteration, a sur-
rogate model g, is fit over the data set
D = {(w1, f(w1)), . . . , (wi, f(wi))}. Here i
is the total number of points evaluated until
the ith iteration. Gaussian processes (GP) are usually used as the surrogate models. Once
the surrogate surface has been fit to the data, the surrogate surface is explored to determine
which point has the highest probability of finding the optimum point as well as improving
the fit of the surrogate surface, exploitation and exploration respectively. An acquisition
function is used to balance the exploitation and exploration trade-off and determine the next
point w⃗i+1 for evaluation with f . w⃗i+1 is then evaluated using f and appended to the data
set, D = D ∪ (wi+1, f(wi+1)). The process is repeated until the evaluation budget for f or
the global optimum is reached.
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Table 2.1: Benchmark Test Functions

Name Objective Functions

Encrypt. Spherical f(w⃗) = w2
i , wi ∈ (−10, 10)

Encrypt. Rastringin f(w⃗) = [10 + w2
i − 10cos(2πwi)], wi ∈ (−5.12, 5.12)

Encrypt. Syblinski-Tang f(w⃗) =
w4

i − 16w2
i + 5wi

2
, wi ∈ (−5, 5)

Encrypt. Amalgamated

f(w⃗) =
D∑
i=1

g(wi)

g(wi) =



−sin(wi), if k = 0, wi ∈ (0, π)

w4
i−16w2

i+5wi

2
, if k = 1, wi ∈ (−5, 5)

w2
i , if k = 2, wi ∈ (−10, 10)

[10 + w2
i − 10cos(2πwi)], if k = 3, wi ∈ (−5.12, 5.12)

[100(wi − w2
i−1)

2 + (1 − wi)
2], if k = 4, wi ∈ (−2, 2)

−|cos(wi)|, if k = 5, wi ∈ (−π/2, π/2)

wi, if k = 6, wi ∈ (−30, 30)

k = mod(i− 1, 7), i = 1, ..., n

Bayesian optimization has proven to be successful for optimizing expensive black-box functions
with continuous design spaces. For combinatorial or mixed variable problems, conventional
Bayesian optimization techniques cannot be used due to the smooth nature of GP. In our
previous work [2], we introduced EMCS, a Bayesian optimization algorithm for combinatorial
variables using Stochastic Monte-Carlo (SMC) acquisition function. In the current work, we
use MixMOBO, a mixed variable algorithm we developed in [1], to optimize find a Cauchy-
Symmetric structure within our design space. It also uses HedgeMO, a hedging strategy
introduced as part of MixMOBO in [1], that uses a portfolio of acquisition functions rather
than a single one. Hedge algorithms have proven to be efficient in dealing with a diverse
set of problems since they don’t rely on a single acquisition function which might affect the
efficiency of the BO algorithm [43].

To test the efficacy of MixMOBO for our problem, we test MixMOBO on a range of test
functions with the same design space as our problem, i.e. 10 categorical variables with 5
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categories for each variable. These tests demonstrate the number of function calls that would
be necessary to optimize a design space of this size. We run MixMOBO 5 times for each test
function to ensure reproducibility with 50 initial random data points. We use Encrypted
Amalgamated, Encrypted Rastringin, Encrypted Syblinski-Tang, and Encrypted Spherical as
our test functions. These test functions are commonly used for performance benchmarking of
optimization algorithms [52] and have been modified for testing categorical variables.

All test functions are defined to be minimized. Analytical test functions are generally
not able to mimic mixed variables. We describe a method to ‘Encrypt’ the test functions,
which is then suitable for mixed variable problems. The categorical variable dimension of
the test function is first discretized into the required number of categories by equally spaced
points within the bounds. A random vector for each categorical variable is generated which
scrambles or ‘encrypts’ the indices of these values thus creating random landscapes as is the
case for categorical variables with a latent space. The optimization algorithm only sees the
encrypted space and the random vector is only used when evaluating the black-box function.
For ordinal variables, the design space is discretized.

We also define a new test function that we call the Amalgamated function, a piece-wise
function formed from commonly used analytical test functions with different features. For
more details on these functions we refer to Tušar, Brockhoff, and Hansen [52]. Amalgamated
function is non-convex and anisotropic, unlike conventional test functions where isotropy
can be exploited. The other test functions used in Encrypted mode are commonly used for
testing optimization algorithms [52] and are detailed in Table ??.

For categorical variables, equally spaced points are taken within the bounds defined above.
In our current work, we use a D = 10 categorical variables with 5 states each similar to
our lattice optimization problem. The results of our benchmarks are depicted in 4.8. The
plots show Normalized Cost, defined as (global optimum - current optimum)/(global optimum
- random sampling optimum) versus number of black-box function evaluations, with the
Normalized global minima at 0. The mean Normalized Cost of 5 runs for each test function
along with the S.D. is plotted. For each test function run, global optimum is found within
150 function calls for each run, demonstrating the efficacy of our MixMOBO setup.

2.5 Results

Convergence of the Algorithm

The convergence of the algorithm is summarized in Figure 2.5. It is noted that despite
the fact the design space is comprised of of almost 107 structures, the algorithm converged
after 69 function evaluations, which is at least 3 orders of magnitude lower compared
to other optimization schemes as it was reported elsewhere [1]. The structure, as it is
mathematically described in Figure 2.2b is shown in Figure 2.5 and has the following sequence
wopt = [EEBEEDECAE].
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It is noted that this structure does not have any specific pattern or layer arrangement
that shows some periodicity or uniformity in specific directions. To experimentally validate
the optimized structure, it was fabricated by the MPL apparatus provided in the previous
section. Specifically, to control the uniformity of the cross section of the structures, the setup
and fabrication protocol had the following modifications.

Figure 2.5: Optimization progress for Cauchy-Symmetric structures

Properties of Optimum Structure

To extract the elastic constants from the experimental results, the directional elastic properties
were obtained following the methodology that is provided elsewhere [129]. Specifically, the
direction Young’s Modulus, Poisson’s ratio and Shear Modulus are provided by the following
equations:

E(n) = 1/S ′
11 (2.2)

G(n,m) = 1/S ′
44 (2.3)



CHAPTER 2. CAUCHY SYMMETRIC STRUCTURES 33

ν(n,m) = −S ′
12/S

′
11 (2.4)

where n is the direction normal to the loading, m is the perpendicular direction in the
shear plane, S ′

11, S ′
12 and S ′

44 are the tensor products of the vectors n and m with the
compliance tensor C−1. Based on these definitions, for the direction n = [100] and m = [010],
the ratio of the elastic constants C12 and C44 is given by the following equation:

C12/C44 =
Fε22ε12

ε211T (1 − ε22/ε11)(1 + 2ε22/ε11)
(2.5)

where F is the measured force during compression, T is the measured force during shear,
ε11 is the strain in loading direction during compression, ε22 is the strain in the perpendicular
direction during compression and ε12 is the strain during shear. To obtain the measurements
for the aforementioned quantities, compression and shear test were conducted. The fabricated
optimal structure is presented in Figure 2.6(a) (isometric view) and 2.6(b) (top view), captured
in the Helium Ion Microscope, enabling high resolution imaging and large depth of focus to
observe the internal nonuniformity.

Figure 2.6: (a) Orthogonal view of the Cauchy Symmetric structure taken in a helium ion
microscope. (b) Top view of structure highlighting with a large depth of focus to resolve
internal beam members. Scale bars are both 20 µm.

Characteristic force-displacement curves for the two types of experiments are shown in
Figure 2.7(a). Through the experimental curves and the video recordings provided in the
supplementary material (Video A for compression and Video B for shear), the parameters of
equation 2.5 can be obtained. A representative frame of the compression measurement and
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a shear measurement are shown in Figure 2.7(b) and 2.7(c) respectively. For a set of shear
tests and compression tests, the ratio C12/C44 was found equal to 0.9752 ± 0.0035, a result
close to the theoretical estimate of the FEA simulations which is 1.

Figure 2.7: (a) Mechanical loading response curves of the optimal Cauchy Symmetric lattice
structure measured using a PI-87 picoindenter. Points are added to both curves to identify
slopes that can be employed for the validation of the cost function. (b) Representative frame
of the compression measurement. The indenter applies a compressive load to the structure in
the lateral direction. (c) Representative frame of the shear measurement. The indenter is
attached to the bar that is fabricated on the edge of the structure, applying a shear load to
the geometry. Scale bars are both 20 µm.

2.6 Discussion

It was demonstrated how the control of the stiffness tensor of the lattice structure such that
the Cauchy symmetry rule was accomplished using the MixMOBO scheme. The versatility
and efficiency of the algorithm is reflected on the minuscule number of simulations required to
obtain the optimum. Specifically, the optimum structure was obtained using 69 data points
simulations (i.e. 207 linear elastic FEA simulations) to calculate the elastic behavior of the
lattice. This is a consequence of the incorporation of the hedge strategy, which enabled the
decrease of required simulations compared to previously conducted work [2] and two or three
orders of magnitude less compared to other problems using other optimization schemes [130,
131, 132]. Furthermore, this algorithm is able to work with mixed variables (a mixture of
categorical, discrete and continuous variables) and multi-objectives, expanding the framework
of this work to different types of problems. Currently we are applying this for optimization
of draft-tubes for hydrokinetic turbines and vertical-axis wind turbine shapes.

The structure possessing the Cauchy symmetry rule from a sample of approximately 107

geometries does not show any inherent pattern that could be predicted by intuition or purely
mechanics principles. This result highlights the necessity of optimization for the design of
nonmonolithic structures, but also the versatility of MixMOBO for black box and extortionate
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problems. Future work should focus on the utility of mixed variables, such as continuous and
discrete, which will lead to non monolithic structures that also possess nonuniform thickness
[93].

Figure 2.8: In situ analysis of the force displacement curves for compression and shear. (a)
The response of the structure during compression shows a smooth linear response without
discernible boundary effects (stage A-B), until the critical failure load is reached and the first
layer collapses (stage C), leading to permanent deformation (stage D). (b) The response of
the structure during shows the transition from linear behavior to instability and buckling of
the lattice members (stage A-B), which result the initiation of microbuckling phenomena and
densification, creating a serrated profile (stage B-C) without extensive permanent deformation
(stage C-D). The black scale bar is 50 µm.

Regarding the mechanical performance of the optimal structure, a juxtaposition of the
force-displacement curve with the video caption also demonstrates the reverberations of
Cauchy Symmetry to the mechanical performance. These results are depicted in Figure
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2.8. In previous work the introduction of architected defects led to controlled densification
and tailored buckling, but the small number of unit cells that can be realized by the MPL
also leads to boundary effects [75, 87, 92]. However, a frame by frame comparison of the
compression measurement shows that whole array of lattices follows the overall strain of the
medium (Figure 2.8a), without substantial localised failure events as they had been observed
before [66]. While this is one of the necessary assumptions for the Cauchy-Born rule to be
valid in a crystalline material, the observation of this effect to the optimal array signifies
the potential utility of such structures for the design of homogenised microscale lattices. In
addition, during loading mode such as shear at the edge of the structure, localized buckling
and post contact phenomena are shown (Figure 2.8b), leading to a serrated profile in the
force-displacement curve and densification. The buckling deformation is dominant on ±45o

plane. This same mechanism was observed under compression in lattice structures with
architected defects or different types of unit cells [66, 2] and resembles the formation of
mechanical twinning during shear that has been investigated when the Cauchy-Born rule
is satisfied [133]. The consequence of this mechanism in shear loading mode can result in
architected materials with improved tribological properties, enhanced post linear elastic
mechanical performance and strain hardening [114].

Furthermore, future work should focus on the exploration of the design space with different
types of unit cells. Different unit cells will significantly increase the design space. For instance,
utilizing 6 or 7 types of different unit cells instead of 5 leads to a design space comprised
of 60466176 and 282475249 lattice structures respectively. Moreover, increasing the size of
the lattice increases the size of the design space. While a 5 × 5 × 5 3D cubic lattice has
10 design variables, it can be shown that the number of design variables increases each two
steps. A 6 × 6 × 6 array still has 10 design variables, while a 7 × 7 × 7 and 8 × 8 × 8
have 20 design variables. Utilizing 5 different types of unit cells will lead to a design space of
approximately 9.53 ∗ 1013 lattices. Therefore, different strategies should also be explored to
decrease the computational cost for such design spaces and identify different approached to
define the design space. To this end, the generation of data-bases to easily extract specific
geometries and use for the optimization algorithm would be a versatile tool to automate this
process.

Future work should also focus on the effect of such lattice structures on the vibrational
behavior of structure and the effect of the Cauchy symmetry on the dispersion curves of the
lattice. This investigation will reveal how the tailored stiffness tensor will affect the wave
propagation to the medium and control the energy absorption in the materials and create
band-gaps. For the experimental validation of these effects, experimental techniques such
as heterodyne interferometry and laser Doppler vibrometry can be employed to record a
reflection of a laser beam through time and calculate the velocity of the vibration through
the medium [134]. Finally, these results illuminate the necessity of larger scale printing that
can capture the required feature resolution of the lattice members fabricated by MPL and
can facilitate a tailored mechanical performance in bulk material. To achieve this, more
advanced addititve manufacturing techniques such as projection lithography [70] can increase
the printing area and also reduce the fabrication time to efficiently produce mesoscale samples.
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2.7 Conclusions

In this work, a new Bayesian optimization scheme, MixMOBO, was used for the design of
nonmonolithic architected materials described by discrete and qualitative design variables.
Utilizing 69 data points, the optimum of the structure that possesses Cauchy symmetry was
obtained in a design space of 107 structures. Utilizing MPL and in-situ mechanical testing
for compression and shear, it was revealed that the the structure’s mechanical response
shows the formation of shear planes and controlled buckling and a smooth strain, alluding
how the assumptions of Cauchy-Born rule in the crystal lattice can be harnessed for the
controlled mechanical performance of mechanical metamaterials. These results elucidate how
the mitigation of the computational cost can pave the way for the exploration of exorbitant
design spaces and the strategic design of architected nonmonolithic materials with tailored
mechanical performance.
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Chapter 3

Airfoil Optimization using
Design-by-Morphing

3.1 Abstract

We present Design-by-Morphing (DbM), a novel design methodology to create a search space
for topology optimization of 2D airfoils. Most design techniques impose geometric constraints
or designers’ bias on the design space itself, thus restricting the novelty of the designs created,
and only allowing for small local changes. We show that DbM methodology doesn’t impose
any such restrictions on the design space, and allows for extrapolation from the search
space, thus allowing for truly radical and large search space with only a few parameters. We
apply DbM to create a search space for 2D airfoils, and optimize this shape design space for
maximizing the lift-over-drag ratio, CLDmax, and stall angle tolerance, ∆α. Using a genetic
algorithm to optimize the DbM space, we show that we create a Pareto-front of radical airfoils
that exhibit remarkable properties for both objectives.

3.2 Introduction

Optimizing the shape of an airfoil is an integral design stage for aerodynamic components like
aircraft wings[135, 136, 137, 138] and wind-turbine blades[139, 140, 141, 142, 143, 144]. A
typical airfoil optimization process contains three main components: shape parameterization,
airfoil evaluation, and optimization, among which the parameterization method determines
both the design space and the complexity of the optimization problem. In this sense, a
desirable parameterization technique must cover a wide design space within a limited number
of design parameters[145, 146, 147], which is especially important during the early design stage
when minimum geometric constraints are placed and radical changes during the optimization
process are welcomed.

Different shape parameterization methods offer different fidelity and ranges of control[148,
147, 145], and, according to the scope of the design parameters, one can place these methods
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on a spectrum where, on one end, the change of one parameter affects only a local section of
the airfoil shape thus offering a finer control of the shape, and, on the other end, each design
parameter affects the airfoil’s global contour[145].

On the local end of the spectrum is the discrete method[149], whose design parameters
are exactly the discrete surface points that define the airfoil shapes. Because the displacement
of each point can be adjusted, the design space is potentially limitless[150], and very fine
local control as well as high fidelity can be achieved. However, to describe an airfoil shape
accurately, a large number of surface points are needed, which increases the complexity of the
optimization problem. Furthermore, to accommodate the large number of design variables,
one usually uses gradient-based method to guide the optimization which is limited to small
local changes and can easily get stuck at a local optimum.

Increasing the geometrical extent of each parameter’s influence, one would find classical
methods that determine the airfoil shape based on the regional features or the control
points and perform curve-fittings of some kind. For example, the popular parametric
section (PARSEC) method[151] uses eleven parameters that represent specific sectional
features such as leading edge radius and upper and lower crest locations and approximate the
airfoil surface using a 6th order polynomial. Another popular method would be the Bézier
parameterization[152], which forms the upper and the lower surfaces of the airfoil through
the Bézier curves defined by the pre-selected control points. Additionally, a combination of
the two techniques, Bézier-PARSEC parameterization[153], also exists, which creates
Bézier curves using the parameters of the PARSEC method and combines these curves
to form the shape contours. One main issue with the above methods is their inability or
inefficiency to include high-fidelity features: the PARSEC and the Bézier-PARSEC method
have fixed number of parameters and offer very limited range of fidelity, while the Bézier
parameterization requires higher-degree Bézier curves to describe complex shapes, which
become inefficient to calculate as the order increases[150].

To include high-fidelity features, or, equivalently, represent more complex curves, B-
splines[154, 155], including nonuniform rational B-spline (NURBS)[156], can be used,
which form curves by connecting low-order Bézier segments defined by the control points.
Naturally, with denser control points, these methods move to the local end of the spectrum
and are able to represent high-fidelity features, but the computation complexity also increases.
In an effort to reduce the number of the design parameters, the control points can be grouped
together, and global transformations such as twisting and thickening can be used as the
parameters instead. This is known as the free-form deformation (FFD) method[157,
158] and is closer to the global end of the spectrum. A similar method, namely Radial Basis
Function Domain Element (RBF) approach[159, 160], also exists and uses radial basis
function to exert deformation on the airfoil.

To the global end of the spectrum includes methods that use spectral construction of some
basis functions or modes to form or deform the airfoil shapes. One typical way of determining
the basis modes is through proper orthogonal decomposition (POD) of a set of airfoil
data, and dimensionality can be reduced by using only the dominant modes[161, 162]. Other
methods include the Hicks-Henne’s approach[163], which uses a linear combination of sine
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functions to deform the airfoil surface, and class/shape function transformation (CST)
method proposed by Kulfan[164, 165], which represents an airfoil shape as the product of a
class function and a shape function formed by a linear combination of Bernstein polynomials.
Similar to all the other methods on the spectrum, in order to resemble high-fidelity features,
more basis modes have to be included, which again falls into the so-called the curse of
dimensionality.

There have been attempts that aim to reduce the number of parameters needed while
capturing a large enough design space[166, 167, 168]. A most recent one was conducted by
Chen et al.[169], who used a deep generative model, called Bézier-GAN, to parameterize airfoil
shapes by learning from the major shape variations in an existing database. Furthermore,
they preserve the minor features of the airfoil shapes via a noise space, which allows them to
separate the major and the minor features hence leading to a faster design space exploration.
However, this study, like many other dimension reduction methods, relies on the assumption
that the optimum design is not far from an existing database, which is not always true. For
our study, we mainly consider the shape parameterization technique for the early design stage
and prefer not to make the same assumption. In particular, We are interested in a method
that would contain high-order features while keeping a limited number of design parameters
and allowing radical change from the initial airfoil shapes.

In this paper, we apply the Design-by-Morphing (DbM) parameterization technique, a
novel design strategy that was introduced by Oh et al.[170] and has been used in recent years
for geometry optimization of different problems[170, 171, 172], to the airfoil optimization
problem. Specifically, our DbM method ‘morphs’ the baseline shapes together to create new
shapes and can interpolate as well as extrapolate the design space, which allows for both
the high-fidelity representation of shapes without the curse of dimensionality and radical
improvements in the shapes without any geometric constraints[170, 172]. Our paper makes
the following scientific contributions:

• A DbM parameterization technique designed for the two-dimensional airfoil shape
optimization allowing both accurate reconstruction of the existing airfoil database and
radical change of airfoil shapes while being free of geometric constraints and designers’
biases.

• An optimization strategy using the DbM parameterization technique and the genetic
algorithm that is able to create the Pareto-front of multi-objective airfoil optimizations.

3.3 Design-by-Morphing

Design-by-Morphing (DbM) works by morphing homeomorphic, i.e. topologically equivalent,
shapes to create a continuous and constraint-free design search space that can produce radical
extrapolated shapes, something which is unique from existing design strategies. The details
of DbM are presented in the subsequent subsections.
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(a) nth airfoil shape (b) y-coordinate collocation vector

Figure 3.1: An example of DbM. The coordinates of the baseline shapes are weighted, summed,
and normalized to form the coordinates of a morphed shape.

Figure 3.2: An Example of DbM. Column 1 shows the baseline shapes. Column 2 depicts the
elements of the collocation vectors of the baseline shapes plotted as a function of the index i
of the collocation vector. Column 3 shows the weighted elements of the collocation vector
plotted as a function of the index i of the collocation vector. Column 4 shows the resultant
collocation vector of the morphed shape and the morphed shape itself.

Baseline Shapes and Morphing

The DbM technique generally requires two or more ‘baseline shapes’, usually chosen from
pre-existing designs in the literature, for the design search space creation. In order to be
‘morphed’ together, these baseline shapes must be homeomorphic, which can be achieved
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by establishing a one-to-one correspondence between the shapes via some systematic shape
collocation methods in either the functional[170] or geometric space[171, 172]. The new
shapes can then be generated by applying weights to the baseline shape collocation vectors
and summing them together.

The DbM method is valid for shapes of any dimensions, and because radically different
baseline shapes can be morphed together, exotic shapes can be created. Furthermore, in
addition to ‘interpolation’ between the shapes, applying negative weights during morphing
allows ‘extrapolation’ from the search space spanned by the baseline shapes, which can
create truly novel and unusual shapes. Lastly, DbM is completely free from any geometric
parameter constraints and the only implicit constraints are the selections of the ‘baselines
shapes’ themselves.

For 2D airfoils, the closed shapes can be collocated in the Euclidean coordinate system.
We note here that all 2D shapes bounded by a single surface are homeomorphic to one another.
Using the leading edge of each airfoil as origin, each shape can be collocated by taking fixed
and uniformly spaced points on the x-axis, which creates a one-to-one correspondence between
the shapes. This collocation strategy is demonstrated in Figure 3.1, and the baseline shapes
used in this paper are chosen from various airfoils from literature, which are detailed later.
Morphing is performed by multiplying a specific airfoil shape with a scalar weight, summing
up the weighted vectors, and then normalizing them, which is given by Eq. 3.1:

P⃗ (x⃗) =
1∑N

m=1wm

N∑
n=1

wnS⃗n(x⃗) . (3.1)

Here S⃗n(x⃗) is the y-coordinate collocation vector determining the nth baseline shape, collocated
at x⃗ = [x0, · · · , xF ] where the ith x-coordinate xi = |1 − 2i/F | and F is the number of

collocation points. Accordingly, the first half elements of S⃗n represents the top surface of
the airfoil and the second half elements of S⃗n renders the bottom surface of the airfoil. N is
equal to the total number of baseline shapes. wn ∈ [−1, 1] is the morphing weight applied to
the y-coordinate vector of the nth baseline shape. A visual demonstration of our strategy is
presented in Figure 3.2.

Intersection Control

For smooth baseline shapes, applying positive weights, i.e. interpolation, will always create
smooth shapes without applying any geometric constraint. However, because the DbM
imposes no geometric parameter restraints, extrapolation, i.e. applying negative weights, may
produce non-physical geometries such as self-intersections, which have ‘zero-area’ regions as
shown in Figure 3.3(a). One may discard the morphed airfoil shapes with self-intersections
during the optimization but that diminishes the size of our design space. Instead, we recover
new shapes by removing the intersections. This is accomplished by first locating within the
morphed coordinate vector where the intersection occurs and restructuring the coordinate
vector by ‘flipping’ it between the intersection points as shown in Figure 3.3(c). The vector
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is then ‘stiffened’ to remove the zero area between the intersections by removing the points
in their neighborhoods and then linearly interpolating between the broken coordinate vectors.
As seen in Figure 3.3(d), this removes the ‘zero-area’ space and gives some physical area to
the shape at the point of intersection. The above process is repeated until all intersections
are removed, e.g. both intersections in Figure 3.3 are successfully removed, and, finally, a
moving-average smoothing filter is applied to smooth out the sharp edges.

Figure 3.3: Conditioning for intersection removal. (a) Intersections are detected; (b) Blown up
image of one intersection. Shape coordinates direction is depicted by arrows; (c) Intersection
removed by flipping vector between intersection; (d) Zero area removed by linear interpolation
to remove the intersecting area and then smoothed over, shown by hat coordinates
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Baseline Shape Selection

The selection of baseline shapes is an important component of DbM strategy and ultimately
determines the size and the novelty of our search space. Metaphorically, the selection of the
baseline airfoil shapes serves as the gene pool for the morphed airfoils, and its diversity is
important for creating a large design space. Our baselines shape selection contains good ones
with either high lift-to-drag ratio or good stall performance, bad ones with poor aerodynamic
performance, commonly used airfoil shapes in the literature or industry, and airfoils with
irregular shapes to provide novelty to the design space. It is worth noting that, contrary to the
conventional airfoil optimization processes[173], we deliberately include the bad performers
so that our optimization can suppress their features by assigning negative weights to the
corresponding baseline shapes. Our results in later sections will demonstrate this in greater
detail.

In this paper, we select 25 baseline shapes (see Figure 3.4) from the UIUC airfoil coordinates
database[174]. The airfoils are selected to ensure diversity and to introduce radical features
in the design space. Their model names and characteristics are attached in Appendix 3.8.
Each airfoil shape is represented by 4000 coordinates that span from the first surface trailing
edge around the leading edge to the second surface trailing edge with equally distributed
x-coordinates parallel to the airfoil chord line of a unit length.

Representation Capacity

To examine the robustness and the extent of our design space generated by the morphing
of only 25 airfoil baselines, we reconstructed the pre-existing 2D airfoil shapes archived in
the UIUC airfoil database[174] via DbM. A total of 184 randomly-chosen airfoils are tested,
which accounts for approximately 11% of the UIUC database as of 2022. All 184 airfoils were
reconstructed to the same accuracy, and a random selection of 100 out of the 184 airfoils are
shown in Figure 3.5.

For each airfoil, the shape was reconstructed by running a global optimization of the
weight vector that minimizes the total area of the original and morphed shapes where one
shape does not overlap with the other, e.g. the geometric XOR of 2 closed shapes. Note
that the geometric XOR serves as a good measure of the similarity between 2 shapes since it
gradually goes to zero as the shapes become identical to one another. As a result, all the
test airfoils were successfully re-created by the morphing of only 25 baseline shapes with the
areal difference of less than 0.01. It means the average error in y-coordinate is ¡0.5% since
the airfoil chord is normalized as a unit length and the area is formed by 2 airfoil surfaces.
This affirms that the current 25 baseline shapes are diverse enough to span the design space
via DbM to explore airfoils in a universal manner.

Overall, by using only 25 dimensions, our DbM method is able to recreate the UIUC
database airfoils with high fidelity, and it does not suffer from the ‘curse of the dimensionality’
compared to other techniques where the fidelity of the parametrization depends on the number
of independent dimensions used. Moreover, DbM’s capability of creating exotic shapes via its
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Figure 3.4: Twenty-five baseline shapes picked from the UIUC airfoil coordinates database[174].
See Appendix 3.8 for more details.

extrapolation feature increases the chance to find novel solutions that are deviated from the
previously-established space like the UIUC database. This exploration is essential especially
for the airfoil design where the correlation between the geometric feature and the aerodynamic
performance of an airfoil can be very non-intuitive, thus necessitating exploratory design
spaces.

3.4 Optimization Methodology

Our airfoil optimization methodology is built around the DbM technique introduced in
Sec. 3.3. As shown by the flowchart in Figure 3.6, the optimization starts from the selection
of the baseline shapes and then evaluates and optimizes the airfoils formed by morphing these
baseline shapes using DbM. Our methodology does not rely on one specific airfoil evaluation
tool or one specific optimizer, and discussions on their choices are provided in Sec. 3.4 and
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Figure 3.5: Reconstruction of randomly chosen 100 pre-existing airfoil shapes via DbM using
twenty-five baseline shapes in Figure 3.4.

Figure 3.6: General flowchart of airfoil optimization via DbM

Sec. 3.4 respectively.

Airfoil Evaluation

Our optimization methodology is not limited to one particular airfoil performance analyzer.
One can use any CFD or experimental methods. For the optimization of airfoil shapes
using CFD-based solvers, the evaluation of the objective functions (aerodynamic properties)
typically falls into two categories: the full Reynolds-averaged Navier-Stokes (RANS) based
approach and the interacted viscous/inviscid zonal approach. The RANS-based approach
is computationally expensive and demands the optimizer to be highly efficient, and, to
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accommodate the large number of design variables as often seen in the aerodynamic designs,
gradient-based optimizers coupled with adjoint methods for computing the derivatives are
deemed the most feasible[175, 176, 177]. On the other hand, the viscous/inviscid zonal
approach, which combines separate solutions for the inviscid external flow and the viscous
shear layer flow iteratively to form a continuous profile, is faster and less expensive. Among
the many inviscid/viscous airfoil analysis codes, the XFOIL program[178] has been the most
dominant and widely adopted one[179, 180, 181, 182, 183, 184, 185, 186]. It couples a vorticity
panel method for exterior flow with an integral boundary-layer method for viscous boundary
layers and uses an e9-type amplification formulation to determine the transition point[178].
Its applicability to airfoil designs has been demonstrated in the past literature, where its
predictions of aerodynamic properties are shown in good agreement with the wind-tunnel
experiment data[187, 188] and the RANS-based simulation results[189].

The specific choice of the evaluation tool used in this paper is not essential to manifest the
power of the DbM parameterization technique, which is the main focus of our paper. For this
work, we opt for XFOIL because of its acceptable accuracy under our flow condition as well
as its low computation cost. Its wide usage also allows quick reproduction of our optimization
results. It is used in a black-box manner so that any other commercial or in-house airfoil
analysis tools can be incorporated into our optimization framework if necessary. Our detailed
airfoil evaluation setup is attached in the appendix 3.8.

Optimization

When given a set of solutions, for single objective optimization problems, the most optimal
solution within the set can be determined. However, for multi-objective optimization, multiple
and potentially conflicting objectives must be considered simultaneously to determine the
optimal answer in the solution set[190, 191]. If the designer has a quantitative ranking of
the objectives, these objectives can be combined together to formulate a single objective
problem, but when no such ranking exists, constructing a Pareto front is the most common
methodology[192, 193, 194], which is applicable to real-world problems such as the design of
architected materials[195, 196, 2], turbo-machinery[197, 198, 199], process-engineering[200,
201], shape design[202], and structural engineering[203, 204] when multiple objectives that
cannot be quantitatively ranked are involved.

We pose the multi-objective optimization problem as

w⃗opt = argmaxw⃗∈W(f⃗(w⃗)), (3.2)

where f⃗(w⃗) = [f1(w⃗), f2(w⃗), · · · , fK (w⃗)]. Here f1, · · · , fK are the K objectives to be maxi-
mized and w⃗ is the design variable vector. Generally w⃗ is a d-dimensional vector defined over
a bounded set W ⊂ Rd representing d continuous variables. {w⃗opt} is a set of Pareto-optimal
solution vectors, i.e., a vector which is not Pareto-dominated by any other vector. For the
reader’s convenience, it is noted that a design variable vector ⃗̂w is Pareto-dominated by
another design variable vector ⃗̃w if fk( ⃗̂w) ≤ fk( ⃗̃w) for all k ∈ {1, · · · , K}. To obtain the
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Pareto-front, especially when objectives cannot be weighted or when a non-convex black-box
function is considered, evolutionary or genetic algorithms are a natural choice[205, 206]. In
fact, they have been commonly implemented in many previous aerodynamic optimization
studies due to their gradient-free nature and wide region of the search domain[165, 207, 208,
209]. On the other hand, when the cost functions are expensive to compute (e.g. when
using experiments as an evaluation tool), Bayesian optimization methods have proven to be
efficient[1].

Our study considers a bi-objective (K = 2) two-dimensional airfoil shape optimization.
In particular, we optimize the shape of a subsonic airfoil operating in an incompressible flow
with Re ≡ Uc/ν of 1× 106, where U and ν are the free-stream flow speed and fluid kinematic
viscosity, respectively, and c is the airfoil chord length. The parameter to be optimized is the
morphing weight vector for the DbM technique:

w⃗ ≡ (w1, · · · , w25) ∈ D25, (3.3)

where D = [−1, 1] ⊂ R and wi (i = 1, 2, · · · , 25) is the weight applied to the ith baseline
shape. The design objectives to be maximized are the maximum lift-drag ratio at any angle
of attack α, i.e. f1(w⃗) = CLDmax(w⃗), and the difference between the stall angle αs and the
angle where the maximum lift-drag ratio occurs, i.e. f2(w⃗) = ∆α(w⃗), where ∆α is often
called the stall angle tolerance. Precise definitions of these design objectives are explicated in
Appendix 3.8, and both objectives are evaluated using the XFOIL simulations, which are
efficient enough to be used with the genetic algorithm.

We use a MATLAB-based variant of the popular NSGA-II[44] algorithm, which is a
controlled, elitist genetic algorithm. Our initial population consists of the single-objective
optimums of each design target as well as random samples in the design space. The population
size of 372 is used with a total of 3,000 maximum generations, and the solutions are actively
ranked within each generation so as to maintain diversity and avoid over-crowding in the
Pareto-optimal solution set. Our setup was tested on the commonly used set of ‘ZDT ’
benchmark problems for multi-objective problems, suggested by Zeidtler et al.[55]. The
details of the test problems and the validation results are provided in Appendix 3.8.

3.5 Results

The Pareto front on the ∆α - CLDmax objective plane, which resulted from the 3,000
generation genetic algorithm (GA) runs, is depicted in Figure 3.7. The convergence of the
front is confirmed by the large generation number with the population size of 372, involving
around 1.1 million XFOIL evaluations of CLDmax and ∆α. After non-dominant or duplicate
individuals are removed in the final generation of the population, we are able to identify
208 Pareto-dominant airfoil shapes composed via DbM using 25 baseline airfoil shapes. For
comparison, these 25 baseline shape cases are evaluated and plotted as red hollow circles
in Figure 3.7 together. The reason why baseline #19 has zero CLDmax and ∆α is that we
inverted the shape intentionally and therefore XFOIL failed to evaluate its aerodynamic
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performance. We assigned the objective functions zero values for such failing cases because
they represented airfoil geometries that are not aerodynamically viable in the XFOIL space.
The GA optimization successfully developed the Pareto front, where two ends are posed
at (CLDmax,∆α) = (30.63, 40◦) and (CLDmax,∆α) = (273.39, 10◦). Even in the largest
maximum lift-drag ratio case, the angle of attack gap between stall and design point is found
to be 10◦, giving the airfoil a tolerant range for off-design operations.

Figure 3.7: The Pareto front consisting of the optimal airfoil shapes as a result of the 3,000
generation runs of NSGA-II. Twenty-five red hollow circles with indices indicate twenty-five
baseline airfoil shape evaluations. See Appendix 3.8 to understand how the clustering is
performed.

The front is divided into 3 different clusters, each of which constitutes a segment of the
front which does not overlapping one another. It is worth noting that the non-overlapping
division of the front is a consequence of clustering through the Principal Component Analysis
(PCA), rather than arbitrary. The detail of the clustering is provided in Appendix 3.8.

Figure 3.8 shows nine representative optimal airfoil shapes on the Pareto front in ascending
order of CLDmax. In each cluster, three airfoil shapes having considerably different objective
function values were selected to be presented. Also, note that Figure 3.8a illustrates the
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extreme case of the smallest CLDmax and largest ∆α while Figure 3.8i depicts the other
extreme of the largest CLDmax and smallest ∆α. It can be seen that within the cluster the
overall shape remains identical and only a gradual decrease in the airfoil thickness is observed
as CLDmax increases. Since thin airfoils such as bird-like airfoils[210], which we take as part
of the baseline shapes, e.g. #13 and #14, are known to have high CLD performance, the
trend of airfoil thickness observed in the Pareto front appears to be reasonable.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Nine representative Pareto-optimal airfoil shapes. a-c are in cluster 1, d-f are in
cluster 2 and g-i are in cluster 3.

In cluster 1 where 112 optimal airfoil shapes exist, it is found that they mostly look similar
to the total mean airfoil shape (see Figure 3.10a). This makes sense because they account for
the majority of the airfoil shapes located on the front. Moreover, this cluster is located near
the origin in the PCA-projected weight space (see Figure 3.13 in Appendix 3.8), indicating
that there was no radical morphing of the airfoil shape taking place from the mean shape.

Next, cluster 2 contains 83 optimal airfoil shapes. Compared to the airfoil shapes in
cluster 1, the most distinguishing feature is that the trailing edge region becomes narrow.
This creates the sharp trailing edge, which is generally favorable to obtain a lift increase.
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However, they are still not deviated far from the origin in the PCA-projected weight space,
and their common shape mostly resembles the total mean airfoil shape.

Finally, 13 optimal airfoil shapes are discovered in cluster 3 from the optimization. This
cluster includes the airfoil shapes experiencing more drastic morphing than those of in other
cluster. It can be confirmed that they are the thinnest airfoils where the leading edge region’s
thickness is also diminished.

The mean weight distributions with respect to 25 original baseline shapes are given in
Figure 3.9. Overall, the weight distributions of 3 clusters comply with the weight distribution
of the total mean. It turned out that baseline shape #13 (model name: AS6097) is commonly
the most significant one for morphing. Since this baseline shape is the best in CLDmax and
the second best in ∆α among 25 baseline shapes (see Figure 3.7), it was likely to survive in
the GA runs over the generations against the selection pressure that only sorts out dominant
individuals in terms of both CLDmax and ∆α. However, excellence in the objectives of an
individual baseline shape does not necessarily guarantee its survival, which is the case for
the globally best baseline shape #6 (model name: AH 79-100C), as an individual’s superior
‘phenotype’ may be no longer revealed, or even suppressed after the morphing is done and all
‘genes’ are mixed with each other.

Figure 3.9: Mean weight distributions of the Pareto-optimal airfoil shapes with respect to
twenty-five baseline airfoil shapes.

As we discussed from the examination of the morphed airfoil shapes, both cluster 1
and 2’s mean weight distributions show no considerable difference from the total mean
weight distribution. Through small shape variation from the total mean airfoil shape as in



CHAPTER 3. AIRFOILS 52

Figure 3.10a, it is possible to reach these optima relatively easily. In contrast, cluster 3 has a
number of weights that are quite different from the mean (e.g., #6 and #11) and substantial
morphing would be required if one starts with the total mean airfoil shape.

In the context of the present study, each axis obtained by the PCA can be represented by
a unique form of morphed airfoil shapes because 25 PCA coefficient vectors defined in the
weight space D25 are orthogonal to each other. These 25 new morphed airfoils span the whole
design space and therefore serve as alternative baseline shapes in lieu of the original ones.
More importantly, the dominance of the first 2 PCA axes with respect to the data point
variance suggests that the major geometric feature of 208 airfoil shapes we found via the
optimization is virtually generated by morphing of these two new airfoils. Small variance of
a PCA axis indicates that the data points are not considerably deviated from their mean on
the axis. In other words, the baseline shape corresponding to this PCA axis has an marginal
impact on morphing the airfoil shape for optimization. Once we pick two baseline shapes from
the first two dominant PCA axes, whose associated collocation vectors are say P⃗1 and P⃗2,
and use them to morph the airfoil shape obtained from the total mean of the Pareto-optimal
weight vector set, which corresponds to the mean collocation vector P⃗mean, we get better
understanding of how the morphing, especially along each PCA axis, has an influence on
major geometric changes in the optimal airfoil shapes. These airfoil shapes are depicted in
Figure 3.10, where the black and red surfaces are generated from the first and second half of
the collocation points, respectively. For example, we note that the orientation of two surface
of P⃗1 is flipped in comparison to that of P⃗mean, meaning that the stronger the weight of PCA
axis 1 in the positive direction is, the narrower a morphed airfoil shape is.

3.6 Discussion

Most parameterization strategies depend upon careful selection of constraints and parameters,
which determines their probability of success. The fidelity offered by such methods is very
dependent on the number of the parameters chosen. Moreover, these designs are limited by
the parametric constraints and the implicit designer’s bias, making extrapolation or radical
global changes difficult. Data driven methods typically rely on the assumption that the
optimum solutions are not far from the training data-set, which again prevents radical shape
changes.

Design-by-Morphing, on the other hand, creates a design space that is uninhibited by
any geometric constraints and also allows extrapolation from the design space. It doesn’t
suffer from the curse of dimensionality when parameterizing airfoils and allows high-fidelity
representation of airfoils without increasing the number of independent parameters in the
problem. Using only 25 baseline shapes from the UIUC database, we were able to recreate the
UIUC database with 0.5% error. We also showed that radical, global changes are possible using
DbM. Applying that for the bi-objective shape optimization with objectives of maximizing
CLDmax and ∆α, we were able to achieve significant results compared to our baseline shapes.

We posit that for design parametrization of airfoils and for other 2D/3D shapes, DbM
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(a) Total mean

(b) PCA axis 1

(c) PCA axis 2

Figure 3.10: Morphed airfoil shapes generated by the optimal weight vectors, representing
a the total mean of all optimal airfoils’ weights, b the coefficients of the PCA axis having
the most variance and c the coefficients of the PCA axis having the second-most variance.
The black and red surfaces correspond to the first and second half of the collocation points,
respectively.

should be the method of choice for creating an unconstrained, unbiased and non-data intensive
design space that allows radical modifications, which can often be non-intuitive shapes.

3.7 Conclusion

DbM methodology creates a design space for radical 2D airfoils. We show that the space
creates novel airfoils that are not constrained by geometric parameters or designer bias.
Optimizing the design space created for dual objectives of CLD and ∆α, we show remarkable
improvements in both objectives and provide a Pareto-front of optimal airfoil designs. Our
final airfoils show remarkable improvements over our existing baseline shapes. For optimizing
2D or 3D airfoils, DbM should be used as the method of choice for design space creation.
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Moreover, our methodology is flexible to be used for optimizing shapes for other fluid
machinery as well. Currently we are applying DbM in tandem with Bayesian optimization
for the optimization of 3D airfoils and vertical-axis wind turbines.

3.8 Additional Details for Airfoil Optimization and

Design-by-Morphing

Aerodynamic Optimization Objectives

Airfoil optimization has become common in aerodynamic design problems involving max-
imization of one or more performance parameters of an airfoils. We mainly consider the
following 2 performance parameters: the lift-drag ratio and stall angle. Given the flow speed
U , fluid density ρ and airfoil chord length c, the lift and drag coefficients of an airfoil per
unit span at an angle of attack α, Cl and Cd, are expressed as

Cl(α) ≡ l(α)
1
2
ρU2c

, Cd(α) ≡ d(α)
1
2
ρU2c

(3.4)

where l and d are lift and drag force per unit span, respectively, both of which change with
respect to α. In this paper, there parameters are predicted via XFOIL[178], an program for
analysis of subsonic isolated 2D airfoils, with varying α and then used for the optimization.
Based on Cl and Cd, the lift-drag ratio CLD is calculated as:

CLD(α) =
Cl (α)

Cd (α)
. (3.5)

On the other hand, we define the stall angle αs as an angle of attack where Cl reaches the
first local maximum when we increase the angle starting from 0◦, or

αs ≡ min
α≥0

α where ∃δ > 0 such that

Cl (α) ≥ Cl (x) ∀x ∈ [α− δ, α + δ]
(3.6)

Note that this definition is more conservative than the typical definition of the stalling in
practice, where flow at the rear region begins to fully separate and Cl is globally maximized.
αs is occasionally smaller than the global maximum of Cl. Nonetheless, this approach helps
avoid overestimation of the stall angle, which is expected to happen in XFOIL because of the
nature of its flow solver having a limited accuracy in stall and post-stall conditions.

CLD and αs have been typically considered to be significant to characterize the airfoil
performance. For example, when it comes to lift-type wind turbines, the point where CLD is
maximized may be commonly chosen as the design point. Since a wind turbine cannot always
operate in the design condition, however, αs needs to be additionally considered to evaluate
how far the turbines run under an increasing-lift condition. For well-designed airfoils, αs
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generally occurs later than the design point, which yields tolerance in operation beyond the
design point. Consequently, the stall angle tolernace, i.e. the range between these two angles
of attack ∆α, which is expressed as

∆α ≡ max (0, αs − argmaxα∈RCLD(α)) , (3.7)

can be a proper choice to evaluate the off-design performance [211]. Figure 3.11 depicts a
scheme of how CLD and ∆α are determined on performance curves of an airfoil.

Figure 3.11: Airfoil performance curves

Baseline Airfoil Shapes and Validation

Our optimization methodology does not rely on one specific airfoil evaluation tool. To compare
our results with the previous literature and to help future researchers quickly reproduce our
results, we use XFOIL[178] in the present study. The two design objectives, CLDmax and
∆α, are obtained from the Cl and Cd data calculated by the XFOIL at different angle of
attacks (see Figure 3.11).
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(a) ZDT1 (b) ZDT2

(c) ZDT4 (d) ZDT6

Figure 3.12: Multi-objective optimization of benchmark test functions using GA

Optimization Test Functions and Validation

We use the multi-objective problems, suggested by Zeidtler et al.[55], for testing our GA
setup. The details of the test functions are given in Table 3.2. All the test functions were
minimized with 25 variables in the design space.

MATLAB’s NSGA-II genetic algorithm, a fast sorting and elitist multi-objective genetic
algorithm, was used in the current study. Single objective optimization for each objective
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and random sampling were used for initialization. The population size of 372 was used
with a total of 3,000 maximum generations. A ‘phenotype’ crowding distance metric was
used. This setup was validated on the test functions described above. All the problems were
benchmarked with 25 variables (d = 25) and two objective functions (K = 2) as with the
present airfoil optimization problem. The results of our setup on four benchmark problems
are shown in Figure 3.12. It was found that the algorithm could capture ZDT1, ZDT2, and
ZDT4 accurately and predicts ZDT6, which is not only non-convex but also non-uniform,
reasonably well.

Airfoil Shape Clustering

To analyze characteristics of the optimized airfoil shapes in detail, the airfoil shapes on the
Pareto front are classified into 3 clusters using k-means clustering based on the Euclidean
distance with k = 3. The clustering is performed in the design variable space, or weight space,
of D25 rather than in the objective plane because the purpose of clustering is to identify
common geometric features over different airfoil shapes as a result of the optimization. The
selection of the cluster size is based on the PCA of the optimal weight vector set.

Figure 3.13 shows the projection of the 25-dimensional weight vector set to the 2-
dimensional subspace spanned by 2 PCA axes having the first- and second-most variance.
The explained variance ratios of PCA axes 1 and 2 are 77.8% and 14.6%, respectively. On the
other hand, the PCA axis of the third-most variance accounts for only 2.5% of the variance,
affirming that the 2-dimensional projection in Figure 3.13 adequately scatters the clusters.
From this observation, k = 3 is thought to be the most appropriate cluster size.



CHAPTER 3. AIRFOILS 58

Figure 3.13: Projection of the 25-dimensional optimal weight vectors to the 2-dimensional
subspace spanned by 2 PCA axes of the dominant variance. k-means clustering with the
cluster size of 3 is used to identify the clusters.
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Table 3.1: The model names, features, shape outlines, and XFOIL evaluation results of the
25 baseline shapes used by DbM in this paper. The coordinates of the baseline shapes are
obtained from the UIUC airfoil coordinates database[174]. The airfoil evaluation results are
obtained for an incompressible outer-flow of Re = 1 × 106. The reference evaluation results
are interpolated from the Airfoil Tools online database[212], where N/A indicates that there
is no data available for this airfoil.

Index Model Name Series (Features) Airfoil Shape
Reference[212] Present

CLDmax∆α CLDmax∆α

1 NACA 0012 NACA (4-digit) 75.6 8.50 69.3 6.75
2 NACA 2412 NACA (4-digit) 101.4 12.00 99.5 12.00
3 NACA 4412 NACA (4-digit) 129.4 1.75 126.2 11.50
4 E 205 Eppler 128.3 8.50 124.4 10.50

5
AH 81-K-144 W-F
Klappe

Althaus 89.7 2.00 91.6 2.00

6 AH 79-100 C Althaus 183.0 14.75 170.6 15.50
7 AH 79-K-143/18 Althaus 110.9 1.50 107.0 1.50

8 AH 94-W-301 Althaus 103.0 4.00 101.4 2.75

9 NACA 23112 NACA (5-digit) 98.6 6.75 96.9 8.00
10 NACA 64(2)-415 NACA (6-digit) 120.6 12.50 113.8 13.00
11 NACA 747(A)-315 NACA (7-digit) 111.5 12.00 105.8 13.00

12
Griffith 30% Suc-
tion

Griffith (Suction) 17.3 0.00 17.9 0.00

13 AS 6097 Selig (Bird-like) N/A N/A 171.2 14.00
14 E 379 Eppler (Bird-like) N/A N/A 160.0 2.00
15 Clark YS Clark 85.7 5.25 82.3 5.75
16 Clark W Clark 116.1 11.00 114.8 11.00
17 Clark Y Clark 114.8 11.75 113.7 12.75
18 Chen Chen 125.4 0.00 126.7 0.00
19 S2027 Flipped Selig (Flipped) N/A N/A 0.00 0.00

20 GOE 417A
Gottingen (Thin
plate)

86.7 5.25 90.4 5.25

21 GOE 611
Gottingen (Flat
bottom)

125.6 9.00 129.7 9.00

22 Dragonfly Canard Dragonfly 144.6 2.50 147.5 3.00

23 FX 79-W-470A Wortmann (Fat) N/A N/A 23.9 9.25

24 Sikorsky DBLN-526 Sikorsky (Fat) 53.3 4.75 51.5 4.25

25 FX 82-512 Wortmann 99.1 14.75 98.7 13.00
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Table 3.2: Benchmark Test Functions. All of the test functions are bi-objective with extended
to n-dimensional constrained search space.

Problem Bounds Objective Functions Optima Note

ZDT1
wi ∈ [0, 1],

i = 1, . . . , n

f1(w⃗) = w1

f2(w⃗) = g(w⃗)
[
1 − (f1(w⃗)/g(w⃗))1/2

]
g(w⃗) = 1 + 9

(
n∑

i=2

wi

)
/(n− 1)

w1 ∈ [0, 1]

wi = 0,

i = 2, . . . , n

convex

ZDT2
wi ∈ [0, 1],

i = 1, . . . , n

f1(w⃗) = w1

f2(w⃗) = g(w⃗)
[
1 − (f1(w⃗)/g(w⃗))2

]
g(w⃗) = 1 + 9

(
n∑

i=2

wi

)
/(n− 1)

w1 ∈ [0, 1]

wi = 0,

i = 2, . . . , n

non-convex

ZDT4

w1 ∈ [0, 1]

wi ∈ [−5, 5],

i = 2, . . . , n

f1(w⃗) = w1

f2(w⃗) = g(w⃗)
[
1 − (f1(w⃗)/g(w⃗))1/2

]
g(w⃗) = 10n +

n∑
i=2

(
w2

i − 10 cos(4πwi)
)
− 9

w1 ∈ [0, 1]

wi = 0,

i = 2, . . . , n

non-convex

ZDT6
wi ∈ [0, 1],

i = 1, . . . , n

f1(w⃗) = 1 − exp(−4w1) sin6(6πw1)

f2(w⃗) = g(w⃗)
[
1 − (f1(w⃗)/g(w⃗))2

]
g(w⃗) = 1 + 9

[(
n∑

i=2

wi

)
/(n− 1)

]1/4 w1 ∈ [0, 1]

wi = 0,

i = 2, . . . , n

non-convex,

non-uniform
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Chapter 4

Optimization of the Shape of a
Hydrokinetic Turbine’s Draft Tube
and Hub Assembly Using
Design-by-Morphing with Bayesian
Optimization

4.1 Abstract

Finding the optimal design of a hydrodynamic or aerodynamic surface is often impossible due
to the expense of evaluating the cost functions (say, with computational fluid dynamics) needed
to determine the performances of the flows that the surface controls. In addition, inherent
limitations of the design space itself due to imposed geometric constraints, conventional
parameterization methods, and user bias can restrict all of the designs within a chosen
design space regardless of whether traditional optimization methods or newer, data-driven
design algorithms with machine learning are used to search the design space. We present
a 2-pronged attack to address these difficulties: we propose (1) a methodology to create
the design space using morphing that we call Design-by-Morphing (DbM); and (2) an
optimization algorithm to search that space that uses a novel Bayesian Optimization (BO)
strategy that we call M ixed variable, Multi-Objective Bayesian Optimization (MixMOBO).
We apply this shape optimization strategy to maximize the power output of a hydrokinetic
turbine. Applying these two strategies in tandem, we demonstrate that we can create a
novel, geometrically-unconstrained, design space of a draft tube and hub shape and then
optimize them simultaneously with a minimum number of cost function calls. Our framework
is versatile and can be applied to the shape optimization of a variety of fluid problems.
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4.2 Introduction

Motivation and Background

Renewable energy is fundamental to meeting our energy demands in a sustainable fashion.
Although there exist several renewable sources for clean energy (wind, wave, solar, etc.),
hydroelectric power is perhaps the most pertinent as a viable replacement for petroleum,
natural gas and other fossil fuels. In fact, hydropower was one of the largest renewable energy
sources in the United States in 2021 [213]. As such, it is important to consider ways in which
the hydroelectric power plant (HEPP) can be more efficient, and thereby more cost-effective.

The relative size of HEPP’s is usually classified by the amount of power they generate.
Although there exists no unique definition of “small” hydropower, it is often accepted as
a generating capacity at or below 10 megawatt electrical (MWe) [214]. The demand for
“small” hydropower is steadily increasing [215] despite concerns about its potential adverse
environmental impacts (but impact studies and how the impacts scale with the size of the
hydropower plant remain controversial [216, 217]). Currently, there are numerous undeveloped
sites across the globe that have large potentials for efficient and sustained power generation
via small hydropower [218]. The sites with the most potential and that are easiest to exploit
are those with low-impact stream-reaches, existing non-powered dams, and sites with existing
conduits [214]. Motivated by this potential for inexpensive and sustainable energy, we propose
here a new methodology for the design of some of the parts of a small hydrokinetic turbine.
As a specific demonstration of our methodology, we provide a new, more efficient design of
the draft tube and hub assembly of a small, low-head Kaplan turbine.

The turbine component of the HEPP works by converting the potential and kinetic energy
of the water entering the turbine into mechanical work, and then producing electricity via a
generator [219]. As one of the oldest and largest sources of renewable energy, there exists a
wide variety of hydrokinetic turbines, but a concept common to all of them is the dynamic
pressure or hydraulic head P + ρv2/2 (where P is the static pressure, ρ the density and
v the velocity) of the water entering the turbine. Using Bernoulli’s principle (see § 2) we
can relate this head to the amount of power an ideal turbine can produce and the physical
properties of the hydropower system such as the relative heights of the dam, penstock, and
tail water discharge [220]. For high head ranges, impulse turbines (e.g., Pelton) exploit only
the velocity of the fluid across the runner (see Fig. 4.1) to create the mechanical of the
turbine blade; whereas in medium and low head ranges, reaction turbines (e.g., Francis and,
with later developments for low head applications, Kaplan) exploit both the fluid’s velocity
and the fluid pressure or enthalpy across the runner. It is the conversion of enthalpy that
allows the draft tube and hub assembly to enhance the performance of a reaction turbine
[221, 222]. The draft tube and hub assembly make up only part of the overall hydropower
system’s performance, but they are most important for low-head turbines, which we consider
here to be those under 20 m.

The draft tube is a diffuser, or several diffusers joined together, that sits beneath the
runner of the turbine and directs the flow downstream of the turbine blades to the tailwater
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pool. It therefore has a large role in determining the dimensions of the lower section of
the power plant [223]. The draft tube increase the efficiency of the turbine by adjusting
the dynamic pressure (P + ρv2/2) such that the static pressure P just downstream of the
turbine blade is decreased. The adjustment is done by decelerating the velocity of the fluid
passing through the draft tube, and it is this property (hereafter referred to as the “pressure
recovery”) that affects the power-generating capacity of Kaplan and other reaction turbines
[224, 225].

The hub is a conically shaped part that extends just past the inlet of the draft tube,
centered about the axis turbine’s of rotation and connecting its blades. Water flows into the
draft tube through an annular-shaped region between the hub and the draft tube wall. The
hub rotates with the same angular velocity as the turbine blade, while the outer boundary of
the draft tube is non-rotating. (See Fig. 4.1.) It is important to optimize the hub because
it modifies the inlet flow to the draft tube, and therefore has a large effect on the pressure
recovery.

Poorly designed parts of the draft tube or hub can significantly decrease a turbine’s
efficiency by exacerbating turbulence and increasing friction losses. For example, the draft
tube’s elbow (Fig.4.1), which is necessary for redirecting the tailwater flow, can promote flow
separation due to excessive centrifugal force at its inner radius. Similarly, a poorly designed
hub can allow the swirl flow at the inlet due to the turbine blades create instabilities in the
flow that lead to noise, vibration (prompting failure due to fatigue), and even the reversal
of flow through the center of the draft tube (causing sudden changes in power output of
the turbine) [226]. A well-designed hub can help prevent these problems, and, in addition,
allow a larger opening angle of the diffuser (and therefore higher pressure recovery). As such,
we not only optimize the draft tube, but also the hub, which is usually neglected in prior
optimization studies [227, 228, 229].

Much of the optimization effort of Kaplan draft tubes in recent years was focused on
improving the sharp-heeled elbow draft tube [229]. This shape was first installed in 1949 at the
Hölleforsen Hydro Power Station in Vattenfall, northern Sweden, utilising a 25m head and with
a power generating capacity of 150 MWe [230]. Gubin [229] and Dahlbäck [231] independently
argued that this draft tube shape needed improvement, and subsequently there have been
many proposed design changes. Marjavaara and Lundström [232] and Marjavaara [227] use
a Response Surface Method (RSM) surrogate modeling strategy, as well as a commercial
CFD code (ANSYS CFX4.4) to create new designs with different parametrizations (circular
and elliptical, respectively) of the elbow section. More recent improvements include those of
Daniels, Rahat, Tabor, Fieldsend, and Everson [233] and Daniels, Rahat, Everson, Tabor,
and Fieldsend [234] who use multi-objective Bayesian optimization to maximize pressure
recovery using a series of subdividing curves, optimizing over the inflow cone, outer-heel, and
secondary straight diffuser. Other improved designs focus on the optimization of the draft
tube for low-head applications while retaining the sharp-heel shape [235, 236].
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Design-by-Morphing

To address the design challenges for improved hydrodynamic and aerodynamic surfaces, we
introduced a new framework, Design-by-Morphing (DbM), for creating a design space that is
versatile enough to include old and new designs and that is sufficiently free of human bias
that radical and counter-intuitive designs are also included. DbM was first used by Oh et al.
[170] and later used in other optimization problems [3, 171]. An N -dimensional design space
for a shape is created by choosing N baseline shapes. The shape within our design space is
specified by the choice of the N weights of these baselines from which the design is morphed.
The bounds of the weights are sufficiently large that the morphed shapes can be not only
interpolations among the shapes, but also extrapolations. Furthermore, any of the weights
can be negative so that features of poorly performing baseline shapes can either be suppressed
or entirely avoided. Negative weights and large positive weights allow for unintuitive shapes
and for extrapolations. Many design techniques only allow for small departures from existing
designs [237] or allow only local changes at one or a few specific locations, rather than global
changes to the overall shape [238, 239]. This is especially problematic with most methods
that use control points. CAD, and/or NURBS. Generally, methods with parametric control
[148, 238, 240, 241, 242] and the adjoint method [237, 239, 243] limit the amount of change
that can be made to a design so that radical new designs are not possible. DbM also allows
a more extensive design space where both spatially local and global changes can be made
to the design, and those changes can be subtle and/or radical [3]. This allows us to find an
optimum which may be a completely new, unconventional shape [170].

Improved Bayesian Optimization

Once a design space is chosen, many engineering optimization problems require the repeated
numerical (or laboratory) evaluation of an expensive multi-modal black-box function to
determine the performance or cost of a particular design. In optimizations of a surface
that interacts with a fluid, generally the fluid flow must be computed with an expensive
Computational Fluid Dynamics (CFD) program to determine the quantitative performance of
each candidate design. Those quantitative results are then fed into an optimizing algorithm
to determine the best performing design. The expense of computing the performance function
with CFD makes many optimization problems intractable. Furthermore, the highly nonlinear
behaviour of fluid flows often leads to a design space where the performance function has
many local maxima, and it is difficult for the search algorithm to find the g lobal maximum.

Optimizing draft tubes is an example of a search requiring an expensive multi-modal, black-
box, performance function because the efficiency and pressure recovery of each candidate draft
tube must be computed with CFD. Bayesian Optimization (BO) is an efficient search method
for this type of optimization because it requires far fewer evaluations of the performance
function to find an optimum than most other optimization algorithms [18, 126]. BO techniques
have been successful in the design of architected meta-materials [5, 6, 7, 8, 9, 2], hyper-
parameter tuning for machine learning algorithms [10, 11, 12], drug design [13, 14], and
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controller sensor placement [15]. In this study, we use an improvement that we made to
BO, that we call Mixed-variable Multi-Objective Bayesian Optimization (MixMOBO) [1].
Previously, we used MixMOBO to design an architected meta-material that has maximum
strain-energy density [2].

4.3 Preliminaries

Any kinetic energy or potential energy that is not converted into mechanical energy of the
turbine shaft (and then into electrical energy) is discarded (i.e., wasted) when it leaves
the turbine blades. A well-designed draft tube minimizes the wasted energy by converting
dynamic head into static head. The schematic of a hydrokinetic turbine assembly is shown in
Figure 4.1. The overall drop in pressure across the turbine blade is (∆P ) ≡ P0 − P1, where
P0 is the average fluid pressure just upstream of the turbine blade and is assumed to be fixed
and independent of the designs of the hub and draft tube. P1 is the average fluid pressure
just downstream of the turbine blade, which is dependent on the designs of the hub and
draft, and, in general, must be computed numerically and cannot be estimated using control
volume analysis or a Bernoulli equation. However, control volume analysis does allow us to
estimate the theoretically available power, Ẇ , that can drive the turbine blade and produce
electricity. It is

Ẇ = A0 v0 (∆P ) (4.1)

where A0 = A1 are the cross-sectional areas of the flow upstream and downstream of the
turbine blade (where the subscripts refer to the location in Fig. 4.1) and v0 = v1 are the
characteristic velocities at these same locations.1 We assume that along with P0, A0 = A1

and v0 = v1 are fixed, given parameters, and are not affected by the hub and draft tube
designs. The goal of a well-designed hub assembly and draft tube is to maximize Ẇ .

Traditionally, [223, 225, 244], the mean pressure recovery is defined as P2 − P1 and is
the performance function used to the power output Ẇ . We define the d imensionless mean
pressure recovery coefficient as:

Cprm ≡ P2 − P1

1
2
ρv21

(4.2)

where ρ is the density of the fluid, P1 and P2 are the average pressures, averaged over their
respective cross-sections, and the subscripts refer to the location in Fig. 4.1. Using this
definition and eq. (4.1), we see that Ẇ and Cprm are related by

Ẇ = A0 v0
[
P0 − P2 + Cprm(ρv21/2)

]
. (4.3)

1Although v0 can be thought of as an average streamwise velocity of the fluid upstream of the turbine
blades, the amount of power that the blades can extract depends on the detailed flow interaction of the fluid
velocity with the blade, which among other things depends on the swirl of the upstream velocity. Therefore,
we leave the definition of this ‘characteristic’ velocity purposefully undefined.
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Figure 4.1: Simplified schematic of a hydroelectric power plant. The enumerated cross-sections
in red are: (0) the entrance to the turbine; (1) the inlet of the hub/draft tube assembly; and
(2) the outlet of the draft tube. The relative size of the draft tube (depicted in red) and hub
(depicted in green) has been enlarged for clarity. The turbine blades are between points (0)
and (1). The reservoir surface is open to atmosphere. The pressure at the draft tube exit (2)
is P2 and is a given, fixed reference or gauge pressure.

Because (A0 v0 ρ v
2
1) is positive (and because A0, v0, ρ, P0, P2, and v1 are assumed to be fixed,

and independent of the designs of the hub and draft tube), maximizing Cprm and maximizing
Ẇ are equivalent. We therefore have chosen Cprm to be the performance function that is
maximized in this study.

Note that in order to prevent back flow without a draft tube, P1 would need to be greater
than or equal to the given reference or gauge pressure P2. Because P0 is assumed to be given
(and the same value with or without a draft tube), the maximum value of Ẇ w ithout a draft
tube would be constrained by

Ẇ ≤ A0 v0 (P0 − P2) . (4.4)

The draft tube allows P1 < P2, and therefore allows an extra amount of power, A0 v0Cprm(ρv21/2),
to be generated. Note that because ρ, P2, and v1 are assumed to be fixed, maximizing Cprm

minimizes P1. Also note that because the fluid must be discharged from the draft tube at
(2) with a finite velocity, and therefore the discharged fluid must necessarily contain some
kinetic energy that cannot be recovered or converted into shaft mechanical energy, Cprm can
never sufficiently maximized, and P1 never sufficiently minimized (even in the inviscid case)
to make the generating system 100% efficient [219, 220, 221].
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4.4 Methodology

An overview of our procedure is demonstrated in the schematic in Fig. 4.2. Our method
starts with five different draft tube and two different hub baseline shapes to create the DbM
search space. This search space is then initially sampled randomly for 50 data points. This
data was then used to determine the next epoch or batch of designs or test points to evaluate
using the MixMOBO algorithm. Each batch is a set of 5 data points or designs. As each new
batch of designs is evaluated, their Cprm’s are added to the data base that MixMOBO uses to
compute the next batch of designs to evaluate.This procedure continues until the evaluation
budget is reached.

Figure 4.2: Optimization flowchart. The baselines for our draft tube and hub shapes are
shown. The baselines are morphed together to create new shapes that are evaluated for
their performance using CFD. This search space is sequentially optimized using parallel
batches (represented by diamonds) of 5 shapes using MixMOBO, until the evaluation budget
is reached. Note that the hub and the draft tube shapes are optimized simultaneously.
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Baseline Shapes

The design space is created from five baseline draft tube shapes and two baseline hub shapes.
The shapes are morphed with the weights chosen by MixMOBO to create a new draft tube
and hub shape. These baselines are shown in Figure 4.2. The five baseline draft tube shapes
are homeomorphic to each other as are the two baseline hub shapes. Some of the baselines
that we chose were used previously in literature so that we were able to exploit any inherent
advantageous features they might have, while other baselines were chosen to have non-intuitive
features that would lead to radical designs, rather than incremental improvements. In the past,
the fundamental design features of the Kaplan draft tube were formed through experimental
observation and quasi-empirical formulae derived from geometries already installed and in
use in HEPPs [233]. The works of Gubin [229], Cervantes [223], Mulu [245] and Nilsson et.
al. [226] [246]) provide insights into draft tube geometries.

Our first baseline shape for the draft tube is the sharp heel draft tube, which has been
the focus of extensive optimization attempts. It is also the subject of extensive experimental
and numerical studies, the majority of which were completed through the European Research
Community On Flow, Turbulence And Combustion (ERCOFTAC) Turbine-99 Workshop
series [247, 248, 244]. For this reason, this shape also provides excellent validation of our
CFD setup.

The second and third baseline draft tube shapes are based on designs cited by Gubin
[229] and are particularly well-suited to low-head applications (i.e., for Kaplan turbines). The
fourth and fifth baseline tube shapes were both devised in order to create features which
would expand the design space. These shapes have radically different features such as a
rounded outlet and a circular diffuser. All the baseline draft tubes have the same shape at
their inlets, and in all cases the planes containing inlet and outlet are perpendicular to each
other.

Both baseline hubs have the same radius at the inlet, the same radius at the end of
the hub, and the same length. The first baseline hub shape is based on one currently used
in a Kaplan turbine [245, 249]. The second baseline hub is a cone shape, and which was
historically used in a wide variety of low to medium head reaction turbines [229]. Morphing
these two hubs allows for a variation in the inlet geometry, which in turn modifies the flow
profile near the inlet and therefore the pressure recovery. The baseline hub shapes are shown
in Figure 4.2.

Design-By-Morphing

Design-by-Morphing (DbM) works by creating a one-to-one correspondence between the set
of baseline shapes. The shapes are then “morphed” i.e. linearly combined together using
“weights”. These weights are the independent parameters that form the search space for
optimizing the shape. DbM requires that the set of shapes be homeomorphic or topologically
equivalent so that a one-to-one correspondence can be created between the surface elements.
This one-to-one correspondence is created by defining a collocation strategy for the baseline
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shapes that ensures all constraints for our design are fulfilled (for example inlet and outlet
orientation) even if individual shapes are radically different from each other.

Figure 4.3: The origin curve is an arbitrarily chosen curve, shown in the figure with a
dot-dash, that starts at the inlet and ends at the outlet. Its only constraint is that it must lie
within all of the baseline draft tubes. Because all of the baseline draft tubes used in this study
are reflection symmetric about the same x-z plane, we chose to embed the origin curve within
this symmetry plane. A unit vector ŝ lies along the origin curve pointing from the inlet to the
outlet. The arc-length, or coordinate, along the origin curve is denoted as s, with a value of
s = 0 at the entrance and s = S at the exit. We choose Ns equally-spaced collocation points
{si}, i = 0, 1, 2, · · · , Ns − 1 along the origin curve, with s0 in the inlet plane, and sNs−1 in
the outlet plane. Planes are defined at each value of si that are locally perpendicular to the
origin curve, with the planes at s0 and sNs−1, at the inlet and outlet, respectively. The figure
shows three of these planes as dashed lines at s0, sj, and sNj−1, where 1 ≤ j ≤ Ns − 2. The
solid lines in each of these planes show the local polar coordinates(r, φ) within each plane. In
each of the Ns planes, we chose the origin of φ to lie in the x-z symmetry plane, and the
angle φ = 0 is indicated in each of the three illustrated planes as broken lines.

For the draft tube baseline shapes (shown in Figs. 4.3 and 4.4), the inlet is constrained
to a plane parallel to the horizontal (x-y) plane and the outlet is constrained to a plane
parallel to the vertical (y-z) plane for all the baseline shapes. Note that this ensures that
all the morphed shape inlets and outlets are similarly constrained i.e. inlets are in the same
horizontal plane and the outlets are in the same vertical plane. Fig 4.3 explains how we
construct a single coordinate system (r, φ, s) for all of the baseline and morphed draft tubes
that is mapped from the cylindrical coordinates (r, φ, z). The z axis is mapped to the origin
curve in the figure with with arc length s and local unit vector ŝ.

The boundary of the draft tube is defined by its intersections with each of the Ns

perpendicular planes shown in Fig. 4.3. Within each perpendicular plane, the intersection
of the plane with the draft tube boundary is defined by the closed curve rj(φ), the radial
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distance of the draft tube boundary from the origin curve in the jth perpendicular plane. We
note here that, because the same origin line is used for all of the baseline shapes, the start
and end points of the origin line are always constrained to the same location in the inlet and
outlet planes. The draft tube shape, however, changes around the origin line, meaning that
the average path length for a fluid particle to travel from inlet to outlet, can vary for each
draft tube.

In each of the Ns perpendiclar planes, we discretize φ into Nφ equally-spaced collocation
angles φk with k = 0, 1, 2, · · · , Nφ − 1, with φ0 = 0 and φNφ = 2π(Nφ − 1)/Nφ.

The radius of the pth draft tube as a function of the arc length s and polar angle φ is
completely defined by the radial location matrix Rp

k,j ≡ rp(φk, sj), with k = 0, 1, 2, · · · , Nφ−1,
and j = 0, 1, 2, · · · , Ns − 1. Note that the sj perpendicular planes and the φk collocation
angles are the same for all of the the baseline and the morphed draft tubes.

For hub shapes, the same collocation strategy is used as we used for the draft tube shapes,
with the origin curve of the hubs passing through the center of both of the baseline hubs
because the baseline hub are axi-symmetric.

After morphing, each morphed radial matrix can be projected back into a 3-D shape as
in Figure 4.4.

Because all of the five baseline draft tube shapes are homeomorphic, they can easily be
combined into a new morphed shape, given by rmorph(φk, sj) ≡ Rmorph

k,j , once the weights wp,
p = 1, 2, · · · , 5 of each baseline are chosen (see Fig. 4.4):

Rmorph
k,j ≡ 1∑5

p=1wp

∣∣∣∣ 5∑
p=1

[
wpR

p
k,j

] ∣∣∣∣ ∀
5∑

p=1

wp ̸= 0. (4.5)

Note that negatives weights and weights greater than unity allow for extrapolations;
negative weights also allow us to “avoid” some baselines. This means that the only existing
constraints are those imposed by choosing the baselines shapes themselves. That said, the
lack of CAD parameterization means that DbM may produce non-physical, self-intersecting
shapes when negative weights are applied. If the morphed shape is not physical because it
has intersecting radial boundaries, we set the pressure recovery function of that morphed
draft tube function to be zero so that the optimization method avoids that region of design
space. For draft tube optimization, we limit the allowable range of the weights of each of the
draft tubes such that: wp ∈ [−0.5, 1.0].

The morphed shape of the hub is given by an equation similar to eq. (4.5), but the sum is
over only 2 baseline radii. We denote the weights for hubs with β to differentiate it from the
draft tube weights. Furthermore, the sum weight for the second hub baseline is constrained
by
∑2

p=1 βl = 0.5., and for the morphed hub shape, β1 ∈ [−0.5, 1]. Due to the fact that sums
of the weights of the draft tube baseline shapes and of the hub baseline shapes are fixed, there
are only 6 degrees of freedom in choosing the values of the weights of the baseline shapes, so
our design space has 6 dimensions.
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Figure 4.4: An example of design-by-morphing (DbM). Column 1 shows the baseline shapes.
Column 2 shows the radius Rp

k=0,j ≡ rp(φ0 ≡ 0, sj) of each baseline shape as a function of
j. Note that for ease of visualization, we are only plotting the radius at the “top” of the
baseline shape, rather than for all φ. Column 3 shows the weighted radius of each baseline
at its top (i.e., the product of the baseline’s weight with its radius at the top). Column 4
shows the morphed shape produced from the weights as well as the radius of the top of the
morphed draft tube as a function of s.

CFD Setup and Validation

The coefficient of pressure recovery Cprm of each morphed draft tube shape that is physically
allowable is determined with CFD. We validated the CFD code by comparing our simulations
of the sharp heel draft tube with previously published results. In order to compute the flow
in a morphed hub and draft tube shape, a mesh of that shape is created from a surface point
cloud of the shape using Gmsh [250]. The average statistics of a typical mesh is given in
Table 4.1, where D is the inlet diameter. The software used is OpenFOAM, and the solver
used is pimpleFoam.
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Table 4.1: Draft Tube Mesh Statistics

Max Cell Size / D 0.638
Number of Elements 7.9e+05
Number of Nodes 1.3e+05
Meshing Algorithm Delaunay (3D)

For turbulence modeling, we use the k-ω SST turbulence model. This choice was made
based on its success in previous draft tube studies [225, 251]. Based on the kinematic
viscosity of water, the distance between the outer edge of the hub and the inlet wall, and
the average streamwise velocity at the inlet, the Reynolds number is 5.56e+05, and based
on the azimuthal velocity of the hub, it is 9.48e+05. No-slip conditions are applied at the
rotating, inner hub wall (62.3 rad s−1) and at the non-rotating draft tube boundary.2 The
inlet velocity is axisymmetric with non-zero values of the azimuthal, radial, and streamwise
components. Our CFD simulations use the experimentally measured inlet velocities found by
Engström, Gustavsson, and Karlsson [248]. The outlet pressure is the pressure at location
(2) in Fig. 4.1, and is fixed gauge pressure, but the pressure at the inlet, needed to determine
the Cprm, is computed by the CFD code as a function of r, φ, and time. We run the CFD
for 128,571 time steps for each morphed hub/draft tube shape. Our choice of the number
of time steps is based on how long it takes the solution to reach a statistical steady state
– see Fig. 4.5. Note that Cprm, given by eq. (4.2), is not determined at a single time step,
but rather it is averaged over the final 28,500 time steps of the computation (and note that
as shown in Fig. 4.5, the solution has converged to a statistically-steady equilibrium during
those final time steps). The time step was chosen to be 0.00134 D/uavg, where D is the outer
diameter of the hub and uavg is the average streamwise inlet velocity. This time step was
chosen based on a time resolution study (see below).

The CFD is validated in two ways. The first compares our CFD-computed pressures with
the experimentally-measured values along the top and bottom center lines of the baseline 1,
Sharp-Heel, draft tube. The second uses baseline 1 to test the convergence of the CFD code
by refining the numerical time step and grid size. We note here that the experimental studies
did not provide the Cprm values, thus no Cprm comparison could be made.

The local pressure recovery along the top and bottom lines of the first baseline shape (i.e.,
the sharp heel draft tube) is shown (and defined) in Figure 4.6. The figure compares our
numerically-computed local pressure recovery values to the experimentally-measured values
[248]. Figures similar to Fig. 4.6 appear throughout the ERCOFTAC Turbine-99 Workshop
series, and the deviation between our CFD and experimental values are consistent with the
previous numerical studies.

2The optimization studies in the past for draft tubes [235, 236], did not consider a rotating hub inlet
condition, which makes the CFD boundary conditions less close to the actual operating or experimental
conditions
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Figure 4.5: Numerical evaluation for all five baseline draft tube shapes using the first baseline
hub shape. In our study, each simulation was run for 128,571 time steps. We chose this
number of time steps to insure that the computed flow has come to a statistically steady state.
Note that it requires approximately 50,000 time steps for the Cprm to come to a statistically
steady state. (We assume that the flow itself comes to a statistically steady state some time
between 50,000 and 128,571 time steps). The sharp heel draft tube (baseline shape 1), has
the highest Cprm among the tube baseline shapes.

The second way we validated our use of our OpenFoam code and gridding scheme was by
time step and mesh refinement. We chose our time step size by decreasing its value in the
CFD code until the late time-averaged Cprm values of the sharp heel draft tube with the first
hub baseline shape changed by less than 0.01%. In particular, once we set the value of the
time step as 0.00134 D/uavg, we repeated the calculation of the local pressure recovery Cp(j)
for both the top and bottom as a function of j as defined in Fig. 4.6 – once with a time step
20% greater than that used in the figure and once with it 20% lower. Plots of these new
curves computed with these time steps are indistinguishable from the curves (error less than
0.5%) shown in Fig. 4.6 (at the resolution at which we created the figure), validating that
our time step is sufficiently small. We determined the size of the spatial resolution of the
grid for the CFD in a similar manner: we decreased the grid size (or equivalently, increased
the square of the number of grid points) until the late time-averaged values Cprm values of
the sharp heel draft tube changed by less than 0.4%. We also recomputed the two curves of
the Cp(j) in Fig. 4.6 with a spatial resolution of the spatial gridding mesh with a size that
was 20% greater than that used in the figure and once with it 20% lower. Again, we found
that the plots of these new curves computed with these grids are indistinguishable (error less
than 0.5%) from the curves shown in Fig. 4.6, validating that our grid is sufficiently fine.

It is important to note that Fig. 4.5 shows that it takes more than 50,000 time steps for
our numerically-computed Cprm to reach a statistical equilibrium. The 50,000 time steps
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corresponds to a time that is approximately equal to 10 “advective times”, where the latter
is the streamwise length of the draft tube divided by the average streamwise velocity at the
inlet uavg. Previous numerical studies of draft tubes were often validated by comparing the
numerically-computed local pressure recovery Cp(j) at the bottom or top of the draft tube
with the experimentally measured values. However, in many of those studies the codes were
run for only one advective time (5000 of our time steps) before the pressure recovery factor
Cprm was evaluated [248]. Figure 4.5 clearly shows that although that time be sufficient to
numerically capture the final statistically steady state of Cp(j), it is insufficient for the full
flow and Cprm to have come to a statistical steady state.

Bayesian Optimization

The search in our 6-dimensional design space (consisting of the 5 weights of the baseline draft
tubes and the 1 independent weight of the two baseline hubs) for the draft tube/hub design
with the maximum Crpm is an example of an optimization problem that can generically be
posed as:

w⃗opt = argmaxw⃗∈W [f(w⃗)], (4.6)

where f(w⃗) is the objective to be maximized (in this case Cprm), and w⃗ is a D-dimensional
(in this case 6-dimensional) variable vector, defined over a bounded set W ⊂ RD (in this case,
the weights of the baselines). For many practical engineering problems, f(w⃗) is expensive to

Figure 4.6: Pressure Recovery at the “Top” or “Bottom” of the Sharp-Heel draft tube and
Hub 1 (in the x-z symmetry plane). According to our collocation defined in Section 4.4,
the “Top” corresponds to R1

k=0,j and “Bottom” corresponds to R1
k=Nφ/2,j

as a function of j,

where j = 0 is at the inlet. We define Cp(j) ≡ Pwall(j)−Pwall(0)

1
2
ρ
(

Q
A1

)2 , where Pwall(j) is the pressure

at the draft tube wall. Solid circles are the experimental data; continuous curves are our
numerically computations. The time step is 0.00134 D/uavg.
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evaluate (as is the case here, which requires repeated CFD evaluations of a complex draft
tube designs). In such cases, a Bayesian optimization algorithm is often the best choice [18].
Bayesian optimization is a sequential optimization technique, specifically designed to find
the optimal solution of a noisy black-box function f w ith the fewest possible evaluations
or function calls to f . At every iteration of the algorithm, a surrogate model g, usually a
Gaussian process (GP), is fit over the data set D = {[w1, f(w1)], . . . , [wi, f(wi)]}. Here i is
the total number of points (in this case, morphed draft tube/hub designs) evaluated until the
ith iteration. Once the surrogate surface has been determined, one of two required things must
be done: the point in the design space that is the most likely optimum (e.g., the design with
the largest Cprm) must be determined, and the point whose evaluation will most likely best
improve the fit of the surrogate surface must be determined. These two determinations are
not the same, and the former is called “exploitation” and the latter “exploration”. Bayesian
optimization is a balance of exploitation and exploration that continues until there is either
evidence that a global optimum has been found or a maximum proscribed number of iterations
of the algorithm is reached. An acquisition function is used to determine the next point (or
points) w⃗i+1 in the design space to be evaluated with f (in this case, with the costly CFD),
by balancing the competing needs of exploitation and exploration. Once the point (or points)
has been determined , f is evaluated for that point (or points) and is then appended to the
data set, D = D ∪ (wi+1, f(wi+1)). In our case, the process is repeated until the evaluation
budget is reached. Our choice for the evaluation budget was based on several optimization
experiments on test functions and design spaces, described below, that we believe to be
representative of the draft tube/hub optimization.

In our previous work, we developed a Mixed variable, Multi-Objective Bayesian Optimiza-
tion (MixMOBO) algorithm [1], a framework for optimizing mixed-variable multi-objective
problems with noisy black-box function using parallel batch updates of the data set, that
is, letting the acquistion function pick several points to evaluate at each iteration to allow
their CFD evaluations to be carried out in parallel. MixMOBO was proven to be more
efficient in terms of number of black-box function evaluations compared to other algorithms
in small data settings. In our previous studies, we used MixMOBO to design a microlattice
structure with the objective of maximizing its strain-energy density [2]. We are also applying
MixMOBO for the optimization of vertical axis wind turbines [171]. We note here that with
continuous variables and a single objective function, our current study is a specialized case
for MixMOBO algorithm since it can optimize mixed-variable and multi-objective problems.

We apply our Bayesian optimization algorithm in tandem with DbM here for the shape
optimization of a draft tube/hub. As an additional refinement to our optimization algorithm
for the draft tube/hub problem, we use a hedge strategy that we call HedgeMO [1] in which
multiple acquisition functions are used [43]. We use the Upper Confidence Bound, Expected
Improvement, Probability of Improvement, and Stochastic Monte-Carlo [18, 1] acquisition
functions.

To determine the number of iterations of the Bayesian optimization algorithm, or epochs
(where each epoch determines the Cprm of 5 morphed draft tube/hub designs in parallel),
required to likely find the optimal design within the design space, we carried out optimizations
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of a suite of test functions with different properties and whose maximum values could
be determined analytically. We optimized the Spherical, Rastringin, Syblinski-Tang and
Amalgamated functions, all of which are standard functions used to test optimization schemes
[52] with the exception of the Amalgmated function, which is novel and created by us to
mimic some of the properties of the draft tube/hub design space. The test functions are
given in Table 4.4 of the Appendix, and the results of our optimization method are shown in
Fig. 4.8 of the same Appendix.

MixMOBO, like most Bayesian optimization schemes, needs to be initialized with evalu-
ations of random designs. Based on the results shown in the Appendix on Test Functions,
we use 50 random evaluations, and 75 epochs with 5 parallel batch evaluations per epoch to
optimize our 6D design space.

4.5 Results

We searched for the morphed draft tube/hub design with the maximum Cprm in our 6-
dimensional design space using MixMOBO with 50 initial random designs and 75 epochs
with 5 design evaluations per epoch. The results our shown in Fig. 4.7 and Table 4.2. The

Normalized Cprm used in the figure is defined as:
[
(Cprm of Current Epoch’s Optimum)−(Cprm

of Sharp heel draft tube with the baseline 1 hub)
]/[

(Cprm of the Optimum design found by

MixMOBO) − (Cprm of Sharp heel with baseline 1 hub)
]
.

We note here that our CFD simulations are run to convergence, as explained in Section 4.4.
If we ran our simulations for only one advective time, we would potentially have gotten a
higher Cprm value, which would not be converged and erroneous, as shown in Fig. 4.5.

Figure 4.7 and the Table show that the Cprm of the sharp heel draft tube with the baseline
hub 1 is significantly lower than the Cprm of the best (and second and third best) design
found with MixMOBO. In fact, the Cprm of the best of the 50 random designs that were
used to initialize MixMOBO was better than that of the sharp heel draft tube, which shows
the strength of our Design-by-Morphing approach. The sharp heel draft tube had the best
Cprm (when coupled with hub shape 1) of all the baseline draft tubes. We note that the Cprm

of the optimal design found by MixMOBO is significantly better than the Sharp-Heel draft
tube, which is the draft tube of choice for Kaplan turbines around the world [229].

Note that all three of the morphed draft tube/hub designs in Table 4.2 have at least
one negative weight, meaning that they are extrapolations, rather than interpolations of the
baseline shapes. Generally, extrapolation is not possible with conventional design techniques.
The Design-by-Morphing (DbM) response surface is highly sensitive to any changes in the
values of the weights, which makes the DbM design space highly non-convex. We found
that with each new epoch, small changes in the weights led to significant changes in the
overall shape of the morphed draft tube/hub. This characteristic means that the DbM
space needs to optimized with high precision where very small changes in the weights need
to be considered. In particular, if we were to consider the value of each weight to be a
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Figure 4.7: Optimization progress showing the Normalized Cprm of the current epoch’s
optimum as a function of the epoch number. The Normalized Cprm is defined in the text. By
definition, the Normalized Cprm must increase monotonically with the epoch number. The
morphed draft tube/hub with the second highest, and third highest Cprm’s are shown within
the main figure. The designs that are illustrated in the panels to the right of the main figure
are the shape of the morphed draft tube/hub design with the highest Cprm (framed with a
blue box) and also the sharp heel draft tube with the first baseline hub (framed with a red
box). The main figure begins at epoch zero and the Normalized Cprm at epoch 0 is that of
the design of 50 random designs used to initialize MixMOBO with the highest Cprm.

Design Epoch ω1 ω2 ω3 ω4 ω5 β1 Cprm

Sharp-Heel 1 0 0 0 0 0.5 0.9370
3rd Best 19 0.86 -0.17 0.40 -0.21 0.98 0.98 0.9607
2rd Best 26 0.88 -0.24 0.26 -0.17 0.99 0.92 0.9617
Optimal 30 0.90 -0.14 0.22 -0.25 0.99 0.99 0.9620

Table 4.2: Cprm and DbM weights of draft tube/hub designs. The designs listed are those
with the best, second best, and third best Cprm’s found with MixMOBO. We also show the
epoch number when the design was found by MixMOBO. (See Fig. 4.7.) In addition, the
sharp heel draft tube with the baseline 1 hub is listed.



CHAPTER 4. DRAFT TUBES 78

discrete, rather than a continuous variable, then the design space would need to have a very
large number of discrete variables. Since we are treating the weights here as continuous
variables, the sensitive dependence of the morphed shape on the weight values means that
most conventional optimization schemes, the search may get “stuck” at a local maximum and
will fail to find the global maximum. Bayesian Optimization algorithms, including MixMOBO,
that are designed to search for the g lobal maximum of Cprm, will tend to over-explore the
region of the design space around a local maximum. This effect, however, is less pronounced
for BO based schemes since they do not depend upon the gradient of the surrogate surfaces.
MixMOBO also uses “mutation” to get out of the local maxima. Our numerical experiments
with MixMOBO show that it tends to not get stuck at local maxima, and it finds the global
maximum [1].

4.6 Conclusion

We have introduced a novel systematic shape optimization framework using the Design-by-
Morphing (DbM) technique with a Mixed-variable Multi-Objective Bayesian Optimization
(MixMOBO) algorithm. As a proof-of-concept of this optimization framework, we found the
shape of a draft tube/hub for a hydrokinetic turbine such that the coefficient of pressure
recovery Cprm was maximized. Our Design-by-Morphing (DbM) technique creates novel
shapes from interpolations and extrapolations of pre-existing designs and/or new ones, and
the shapes we create are free from designer’s biases. Most existing design strategies cannot
extrapolate among designs, and this limits their abilities to create radically different designs.

The design space created with the Design-by-Morphing framework was searched by our
novel MixBOBO Bayesian Optimization. This search method is especially useful when
the property that is being optimized, in this case the Cprm, is costly to compute (or find
experimentally). In these cases, it is necessary for the search algorithm to find the optimum
design with as few evaluations of Cprm as possible. Using MixMOBO, we successfully found
a design with large Cprm (certainly a local maximum in the design space, and possibley the
global maximum) with 30 epochs, or 200 evaluations of a design’s Cprm.

The draft tube/hub design found here has a significantly better coefficient of mean
pressure recovery than the sharp-heel draft tube, which is the most commonly used draft
tube for hydrokinetic turbines. More significantly, we have shown that the design framework
used here, which can easily be generalized to a number of engineering design optimization
problems, with the current study providing a proof-of-concept for our optimization framework.
DbM provides a methodology to create a bias and constraint free design space which also
allows extrapolation from the existing designs and can yield radical shapes. MixMOBO
provides a global optimization strategy to optimize optimize design spaces where evaluating
each candidate design is extremely expensive, the design space contains mixed variables
and/or multiple objectives, rendering conventional optimization techniques intractable. The
framework can be used for optimizing expensive black-box shape optimization problems
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such as vertical-axis wind turbines [171], high-performance airfoils [3] and architected meta-
materials [1].

4.7 Additional Details for Draft-Tube and Hub

Optimization

MixMOBO Convergence Tests

The test functions that we used to determine the number of epochs that are needed for
MixMOBO to likely find the maximum Cprm are defined in Table ??. Similar to the design
space of the draft tube/hub, each test function was tested with 6 dimensions.

Figure 4.8 shows how MixMOBO approaches the global maximum of each of the four test
functions as a function of epoch. Two of the four test functions find the global maximum
within 75 epochs.

The optimization was terminated after 75 epochs because the test functions reached
reasonable convergence, other than Rastringin function, which is know to have a a multitude
of local optima, as shown in Fig. 4.8. We could only afford 75 epochs worth of CFD evaluations
of candidate draft tube designs in our computational budget so the evaluations were not
carried past 75 epochs. As depicted in our Results, the draft tube optimization converged to
the final design in 30 epochs.



CHAPTER 4. DRAFT TUBES 80

Table 4.3: Benchmark test functions

Name Objective Functions Notes

Spherical f(w⃗) = −w2
i , wi ∈ (−10, 10) convex

Rastringin f(w⃗) = −[10 + w2
i − 10 cos(2πwi)], wi ∈ (−5.12, 5.12) non-convex

Syblinski-Tang f(w⃗) = −w4
i − 16w2

i + 5wi

2
, wi ∈ (−5, 5) non-convex

Amalgamated

f(w⃗) =
D∑
i=1

−g(wi)

g(wi) =



− sin(wi), if k = 0, wi ∈ (0, π)

w4
i−16w2

i+5wi

2
, if k = 1, wi ∈ (−5, 5)

w2
i , if k = 2, wi ∈ (−10, 10)

[10 + w2
i − 10 cos(2πwi)], if k = 3, wi ∈ (−5.12, 5.12)

[100(wi − w2
i−1)

2 + (1 − wi)
2], if k = 4, wi ∈ (−2, 2)

−| cos(wi)|, if k = 5, wi ∈ (−π/2, π/2)

wi, if k = 6, wi ∈ (−30, 30)

k = mod(i− 1, 7), i = 1, ..., n

non-convex,

non-uniform,

anisotropic

Table 4.4: Details about the test functions, other than the Amalgamated function, are given
in Tušar, Brockhoff, and Hansen [52]. All of the test functions have known global maxima.
We created the Amalgamated function, a piece-wise function formed from commonly used
analytical test functions with different features. The Amalgamated function is non-convex
and anisotropic (as is the design space of the draft tube/hub), unlike the other test functions
listed here, which are isotropic. These other test functions are commonly used for testing
optimization algorithms. Similar to the optimization of the draft tube/hub, each test function
here has 6 dimensions.
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Figure 4.8: Benchmarks for determining the number of epochs of MixMOBO needed to find
the likely global maximum. The number of random evaluations of the function to be maximize
that are needed to initialize MixMOBO, was set at 50. Our MixMOBO algorithm was then
run with 5 parallel batch evaluations per epoch. The evaluation budget was 425 black-box
function evaluations including the 50 initial random evaluations. Thus, we ran the code for
75 = (425 − 50)/5 epochs. Because each optimization begins with random evaluations, the
algorithm was run 5 times for each test function to determine the average and standard
deviation of the number epochs needed to find the global maximum. The mean Normalized
Reward, defined as (current optimum-random sampling optimum)/(global optimum - random
sampling optimum) is plotted along with the 0.2*standard deviation plotted as colored bands.
A Normalized Reward of unity means that the algorithm has successfully found the global
maximum.
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Finally, a few last words...

Nitwit! Blubber! Oddment! Tweak!
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