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Abstract

We introduce an optimal mass transport framework on the space of Gaussian mixture models. 

These models are widely used in statistical inference. Specifically, we treat Gaussian mixture 

models as a submanifold of probability densities equipped with the Wasserstein metric. The 

topology induced by optimal transport is highly desirable and natural because, in contrast to total 

variation and other metrics, the Wasserstein metric is weakly continuous (i.e., convergence is 

equivalent to convergence of moments). Thus, our approach provides natural ways to compare, 

interpolate and average Gaussian mixture models. Moreover, the approach has low computational 

complexity. Different aspects of the framework are discussed and examples are presented for 

illustration purposes.
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I. INTRODUCTION

A mixture model is a probabilistic model reflecting the presence of subpopulations within an 

overall population. Formally, it is a mixture of distributions where each component 

represents a subpopulation. Mixture models are used in statistics for modeling subgroups 

and their impact on the total population, inferring properties of subpopulations from the 

whole, as well as inferring membership for hypothesis testing and other decision making 

tasks [1]. An important case of mixture models is the so-called Gaussian mixture model 

(GMM), which is simply a weighted average of several Gaussian distributions. Each 

Gaussian component stands for a subpopulation. The Gaussian mixture model is widely used 

because of its mathematical simplicity as well as the efficiency of pertinent inference tests 

(e.g., in Expectation Maximization algorithms).
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Optimal mass transport (OMT) on the other hand is an active and rapidly developing area of 

research that deals with the geometry of probability densities. It has applications in 

probability theory, stochastic processes, partial differential equations, fluid mechanics, and 

many other areas [2], [3]. The subject began with the work of Monge [4] in 1781. The next 

quantum leap came more than 150 years later, in the work of Kantorovich [5], who 

introduced a brilliant relaxation, duality theory and linear programming to solve the hitherto 

intractable Monge formulation. A more recent transformative phase of development came in 

the works of Brenier, McCann, Otto, Benamou, Gangbo and others [6–11] which culminated 

in an effective form of calculus on the space of probability measures [12]. Due to these 

recent advances OMT has become a powerful tool in mathematics, physics, economics, 

medical imaging and so on [13]–[19], while algorithms developed to address OMT [20]–

[28] have provided enabling tools in data science [29], [30].

Briefly, OMT deals with problems of transporting masses from an initial distribution to a 

terminal one in a mass preserving manner (continuity) incurring minimum cost. When the 

cost of transporting unit Dirac masses is the square of the Euclidean distance between the 

points of their support, OMT induces a rich Euclidian-like geometry on probability 

densities. It formally endows the space of probability densities with a Riemannian metric 

[2], [3], [31]. This geometry enables us to construct geodesic paths, to compare, interpolate, 

and average probability densities in a natural way, which is in line with our needs in a range 

of applications. Most importantly, the metric induced by the cost of transport (Wasserstein 

W2-metric) is weakly continuous, i.e. convergence in the metric is equivalent to convergence 

of moments.

While OMT has brought about transformative advances in many fields, computational 

difficulties persist: solving OMT problems in high dimensional spaces may be 

computationally prohibitive. The starting point of the present paper is the realization that, in 

many applications, probability densities have specific structure and can be effectively 

approximated as points in a suitable manifold [32]. In particular, this work has been 

motivated by problems in data science where high dimensional data often has lumped 

structure suggesting mixture models and subgroup membership. Thus, we aim to develop a 

mathematical framework that takes advantage of such data structures. More specifically, we 

seek to develop OMT on a most basic submanifolds of probability densities the space of 

Gaussian mixture models. The extension to more general structured densities will be a future 

research topic.

Section II provides backgound on OMT. Section III introduces an OMT inspired geometry 

on Gaussian mixture models, defines a suitable metric, explains how to construct the shortest 

paths between two points (geodesics), and details some of its properties. Section IV 

discusses how to average and construct barycenters on the space of Gaussian mixtures. 

Section V concludes with numerical examples that highlight differences and similarities 

between the metric structures we are discussing (W2 and our OMT-inspired metric on the 

manifold of Gaussian mixtures). The final section provides a summary and conclusions.
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II. BACKGROUND ON OMT

We provide a very brief overview of OMT theory. We only cover materials that are pertinent 

to the present work. We refer the reader to [2] for a more detailed development of the subject 

and references.

Consider two nonnegative measures µ0, µ1 on ℝn with equal total mass. Without loss of 

generality, we take µ0 and µ1 to be probability distributions. In the original formulation of 

OMT, a transport map

T :ℝn ℝn: x T(x)

is sought that specifies where mass µ0(dx) at x should be transported so as to match the final 

distribution in the sense that T♯µ0 = µ1, i.e. µ1 is the “push-forward” of µ0 under T, meaning

μ1(B) = μ0(T−1(B))

for every Borel set B in ℝn. Moreover, the map should achieve a minimum cost of 

transportation

ℝnc(x, T(x))μ0(dx) . (1)

Here, c(x, y) represents the transportation cost per unit mass from point x to y. In this paper 

we focus on the case when c(x, y) = ǁx − yǁ2. To ensure finite cost, it is standard to assume 

that µ0 and µ1 live in the space of probability densities with finite second moments, denoted 

by P2(ℝn).

The dependence of the transportation cost on T is highly nonlinear and a minimum may not 

exist in general. This fact complicated early analyses of the problem [2]. To circumvent this 

difficulty, Kantorovich presented a relaxed formulation in 1942. In this, instead of seeking a 

transport map, one seeks a joint distribution π ∈ Π(µ0, µ1) on ℝn × ℝn, referred to as 

“coupling” of µ0 and µ1, so that the marginals along the two coordinate directions coincide 

with µ0 and µ1, respectively. Thus, in the Kantorovich formulation, we solve

J : = inf
π ∈ Π(μ0, μ1) ℝn × ℝn x − y 2π(dxdy) . (2)

For the case where μ0, μ1 are absolutely continuous with respect to the Lebesgue measure, it 

is a standard result that OMT (2) has a unique solution [2], [3], [6]. This is of the form

π = (Id × T)♯μ0,
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where Id stands for the identity map, and T is the unique minimizer of (1). Moreover, the 

unique optimal transport T is the gradient of a convex function ϕ, i.e.,

y = T(x) = ∇ϕ(x) . (3)

A. Wasserstein metric

The square root of the optimal cost formally defines a Riemannian metric on P2(ℝn), known 

as the Wasserstein metric W2 [2], [3], [9], [31], i.e.,

W2(μ0, μ1): = J

with J in (2). Naturally P2(ℝn) is a geodesic space: a geodesic between μ0 and μ1 is of the 

form

μt = (T t)♯μ0, T t(x) = (1 − t)x + tT(x) . (4)

A geodesic path is also known as displacement interpolation (McCann). It holds that

W2(μs, μt) = (t − s)W2(μ0, μ1), 0 ≤ s < t ≤ 1. (5)

B. OMT between Gaussian distributions

When both of the marginals µ0, µ1 are Gaussian distributions, OMT is substantially 

simplified [33]. In fact, the solution exists in closed-form as explained next.

Denote the mean and covariance of µi, i = 0, 1 by mi and Σi, respectively. Let X, Y be two 

Gaussian random vectors associated with µ0, µ1, respectively. Suppose the joint distribution 

between X and Y is π, then π ∈ Π(µ0, µ1) and the cost in (2) becomes

ℝn × ℝn x − y 2π(dxdy) = 𝔼{ X − Y 2} .

This can be further decomposed to

𝔼 X − Y 2 = 𝔼 X − Y 2 + m0 − m1
2, (6)

where X = X − m0, Y = Y − m1 are zero mean versions of X and Y. We minimize (6) over all 

the possible Gaussian joint distributions between X and Y. This gives

min
S

m0 − m1
2 + trace(Σ0 + Σ1 − 2S) |

Σ0 S

ST Σ1
≥ 0 , (7)
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with S = 𝔼{XYT}. The constraint is semidefinite constraint, so the above problem is a 

semidefinite programming (SDP). It turns out that the minimum is achieved by the unique 

minimizer in closed-form

S = Σ0
1/2(Σ0

1/2Σ1Σ0
1/2)1/2Σ0

−1/2

with minimum value

W2(μ0, μ1)2 = m0 − m1
2

+ trace(Σ0 + Σ1 − 2(Σ0
1/2Σ1Σ0

1/2)1/2) .
(8)

The consequent displacement interpolation μt between μ0 and μ1 is Gaussian with mean mt = 

(1 − t)m0 + tm1 and covariance

Σt = Σ0
−1/2 (1 − t)Σ0 + t(Σ0

1/2Σ1Σ0
1/2)1/2 2

Σ0
−1/2 . (9)

The Wasserstein distance and interpolation can be extended to singular Gaussian 

distributions by replacing the inverse by the Moor-Penrose pseudoinverse. In particular, 

when Σ0 = Σ1 = 0 and the distributions are Dirac, we have that

W2(μ0, μ1) = m0 − m1 .

Thus, the Wasserstein space of Gaussian distributions, denoted by 𝒢(ℝn), can formally be 

seen as an extension of the Euclidean space ℝn.

III. OMT FOR GAUSSIAN MIXTURE MODELS

A Gaussian mixture model is an important instance of mixture models, which are commonly 

used to study properties of populations with several subgroups. Mathematically, a Gaussian 

mixture model is a probability density consisting of several Gaussian components. Namely, 

it has the form

μ = p1v1 + p2v2 + ⋯ + pNvN,

where each νk is a Gaussian distribution and p = (p1, p2, …, pN)T is a probability vector. 

Here the finite number N stands for the number of components of μ. We denote the space of 

Gaussian mixture distributions by 𝒢(ℝn).

As we have already seen in Section II-B, the displacement interpolation of two Gaussian 

distributions remains Gaussian. This invariance, however, no longer holds for Gaussian 

mixtures. Yet, the mixture models may contain some physical or statistical features that we 

may want to retain. This gives rise to the following question we would like to address: how 
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can we define a geometry that inherits the nice properties of OMT and while respects the 

Gaussian mixture structure? Our approach relies on viewing a Gaussian mixture as a discrete 

measure1 on the space of Gaussian distributions 𝒢(ℝn) and computing OMT distances 

between such by taking into account respective means and variances. We explain this next.

Our motivation in developing an optimal transport framework that that is specific to 

Gaussian mixture models stems from i) a general interest to compare such models as these 

are these are inferred from data and widely used in applications, and ii) as a way to bring in 

measurement uncertainty into data analysis since, in general, uncertain data points can be 

viewed as Gaussian distributions and then, at this fine scale, empirical distributions 

themselves can be viewed as Gaussian mixture models.

A. A metric on 𝒢(ℝn)

Let μ0, μ1 be two Gaussian mixture models of the form

μi = pi
1vi

1 + pi
2vi

2 + ⋯ + pi
Nivi

Ni, i = 0, 1.

Here N0 maybe different from N1. The distribution μi is equivalent to a discrete measure pi 

with supports vi
1, vi

2, …, vi
Ni for each i = 0, 1. Our framework is built on the discrete OMT 

problem

min
π ∈ Π(p0, p1) i, j

c(i, j)π(i, j)
(10)

for these two discrete measures. Here ∏(p0, p1) denote the space of joint distributions 

between p0 and p1. The cost c(i, j) is taken to be the square of the Wasserstein metric on 

𝒢(ℝn), that is,

c(i, j) = W2(v0
i , v1

j)2 .

By standard linear programming theory, the discrete OMT problem (10) always has at least 

one solution. Let π* be a minimizer, and define

d(μ0, μ1) =
i, j

c(i, j)π * (i, j) . (11)

Theorem 1. d(·, ·) defines a metric on 𝒢(ℝn).

Proof: Clearly, d(µ0, µ1) ≥ 0 for any µ0, μ1 ∈ 𝒢(ℝn) and d(µ0, µ1) = 0 if and only if µ0 = µ1. 

We next prove the triangular inequality, namely,

1A similar viewpoint has been used in [34] to reduce the dimensionality of Gaussian mixture models. However, the approach in [34] is 
based on KL divergence instead of OMT.
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d(μ0, μ1) + d(μ1, μ2) ≥ d(μ0, μ2)

for any µ0, µ1, μ2 ∈ 𝒢(ℝn). Denote the probability vector associated with µ0, µ1, µ2 by p0, p1, 

p2 respectively. The Gaussian components of µi are denoted by νj. Let π01 (π12) be the 

solution to (10) with marginals µ0, µ1 (µ1, µ2). Define π02 by Denote the probability vector 

associated with μ0, μ1, μ2 by p0, p1, p2 respectively. The Gaussian components of μi are 

denoted by vi
j. Let π01 (π12) be the solution to (10) with marginals μ0, μ1 (μ1, μ2). Define 

π02 by

π02(i, k) =
j

π01(i, j)π12( j, k)

p1
j .

Clearly, π02 is a joint distribution between p0 and p2, namely, π02 ∈ ∏(p0, p2). It follows 

from direct calculation

i
π02(i, k) =

i, j

π01(i, j)π12( j, k)

p1
j

=
j

p1
jπ12( j, k)

p1
j

= p2
k .

Similarly, we have k π02(i, k) = p0
i . Therefore,
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d(μ0, μ2) ≤
i, k

π02(i, k)W2(v0
i , v2

k)2

=
i, j, k

π01(i, j)π12( j, k)

p1
j W2(v0

i , v2
k)2

≤
i, j, k

π01(i, j)π12( j, k)

p1
j (W2(v0

i , v1
j) + W2(v1

i , v2
k))2

≤
i, j, k

π01(i, j)π12( j, k)

p1
j W2(v0

i , v1
j)2

+
i, j, k

π01(i, j)π12( j, k)

p1
j W2(v1

j , v2
k)2

=
i, j

π01(i, j)W2(v0
i , v1

j)2

+
j, k

π12( j, k)W2(v1
j , v2

k)2

= d(μ0, μ1) + d(μ1, μ2) .

In the above, the second inequality is due to the fact W2 is a metric, and the third inequality 

is an application of the Minkowski inequality. ■

B. Geodesics on 𝒢(ℝn)

A geodesic2 on 𝒢(ℝn) connecting μ0 and μ1 is given by

μt =
i . j

π * (i, j)vt
i j, (12)

where vt
i j is the displacement interpolation (see (9)) between v0

i  and v1
j .

Theorem 2.

d(μs, μt) = (t − s)d(μ0, μ1), 0 ≤ s < t ≤ 1. (13)

Proof: For any 0 ≤ s ≤ t ≤ 1, we have

d(μs, μt) ≤
i, j

π * (i, j)W2(vs
i j, vt

i j)2

= (t − s)
i, j

π * (i, j)W2(v0
i , v1

j)2 = (t − s)d(μ0, μ1)

2Here by geodesic we mean the shortest path between two points.
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where we have used the property (5) of W2. It follows that

d(μ0, μs) + d(μs, μt) + d(μt, μ1)
≤ sd(μ0, μ1) + (t − s)d(μ0, μ1) + (1 − t)d(μ0, μ1)
= d(μ0, μ1) .

On the other hand, by Theorem 1, we have

d(μ0, μs) + d(μs, μt) + d(μt, μ1) ≥ d(μ0, μ1) .

Combining these two, we obtain (13). ■

We remark that μt is a Gaussian mixture model since it is a weighted average of the Gaussian 

distributions vt
i j. Even though the solution to (10) is not unique in some instances, it is 

unique for generic μ0, μ1 ∈ 𝒢(ℝn). Therefore, in most real applications, we need not worry 

about the uniqueness.

C. Relation between the metrics d(·, ·) and W2(·, ·)

We first note that we have

d(μ0, μ1) ≥ W2(μ0, μ1) (14)

for any μ0, μ1 ∈ 𝒢(ℝn). To see this, note that for any π ∈ ∏(p0, p1), γ: = i, jπ(i, j)γi, j is a 

joint distribution between μ0 and μ1. Here γij is the optimal coupling of v0
i , v1

j  solving the 

OMT problem with marginals v0
i , v1

j . Additionally,

i, j
c(i, j)π(i, j) = ℝn × ℝn x − y 2γ(dxdy) .

Therefore, any joint distribution π ∈ ∏(p0, p1) corresponds to a feasible solution γ to the 

Kantorovich problem (2). The inequality (14) then follows.

The equality in (14) holds when both μ0 and μ1 have only one Gaussian component. In 

general, d > W2. This is due to the fact that the restriction to the submanifold 𝒢(ℝn) induces 

sub-optimality in the transport plan. Let γ(t), 0 ≤ t ≤ 1 be any piecewise smooth curve on 

𝒢(ℝn) connecting μ0 and μ1. Define the Wasserstein length of γ by

LW(γ) = sup
0 = t0 < t1 < ⋯ < ts = 1 k

W2(γtk
, γtk + 1

),

and natural length by
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L(γ) = sup
0 = t0 < t1 < ⋯ < ts = 1 k

d(γtk
, γtk + 1

) .

Then LW(γ) ≤ L(γ).

Using the metric property of d we get

d(μ0, μ1) ≤ inf
γ

L(γ),

where the minimization is taken over all the piecewise smooth curve on 𝒢(ℝn) connecting μ0 

and μ1. In view of (13), we conclude

d(μ0, μ1) ≤ inf
γ

L(γ) ≥ inf
γ

LW(γ) .

However, it is unclear whether d is the restriction of W2 to 𝒢(ℝn).

In general, d is a very good approximation of W2 if the variances of the Gaussian 

components are small compared with the differences between the means. This may lead to 

an efficient algorithm to approximate Wasserstein distance between two distributions with 

such properties. If we want to compute the Wasserstein distance W2(μ0, μ1) between two 

distributions μ0, μ1 ∈ 𝒢(ℝn), a standard procedure is discretizing the densities first, and then 

solving a discrete OMT problem. Depending upon the resolution of the discretization, the 

second step may become very costly. In contrast, to compute our new distance d(μ0, μ1), we 

need only to solve (10). When the number of Gaussian components of μ0, μ1 is small, this is 

very efficient.

IV. BARYCENTER OF GAUSSIAN MIXTURES

The barycenter [35] of L distributions μ0, μ1, …, μL is defined to be the minimizer of

J(μ) = 1
L k = 1

L
W2(μ, μk)2 . (15)

This resembles the average 1
L (x1 + x2 + ⋯ + xL) of L points in the Euclidean space, which 

minimizes

J(x) = 1
L k = 1

x − xk
2 .

The above definition can be generalized to the cost
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min
μ ∈ p2(ℝn)k = 1

L
λkW2(μ, μk)2 . (16)

where λ = [λ1, λ2, …, λL] is a probability vector. The existence and uniqueness of (16) has 

been extensively studied in [35] where it is shown that under some mild assumptions, the 

solution exists and is unique.

In the special case when all μk are Gaussian distributions, the barycenter remains Gaussian. 

In particular, denoting the mean and covariance of μk as mk, Σk, then the barycenter has 

mean

m =
k = 1

L
λkmk (17)

and covariance Σ solving

Σ =
k = 1

L
λk(Σ1/2ΣkΣ1/2)1/2 . (18)

A fast algorithm to get the solution of (18) is through the fixed point iteration [36]

(Σ)next = Σ−1/2
k = 1

L
λk(Σ1/2ΣkΣ1/2)1/2

2
Σ−1/2 .

In practice, the iteration

(Σ)next =
k = 1

L
λk(Σ1/2ΣkΣ1/2)1/2

appears to also work. However, no convergence proof for the latter is known at present [35], 

[36].

For general distributions, the barycenter problem (16) is difficult to solve. It can be 

reformulated as a multi-marginal optimal transport problem and is therefore convex. 

Recently several algorithms have been proposed to solve (16) through entropic 

regularization [26]. However, due to the curse of dimensionality, solving such a problem for 

dimension greater than 3 is still unrealistic. This is the case even for Gaussian mixture 

models. What’s more, the Gaussian mixture structure is often lost when solving problem 

(16).

To overcome this issue for Gaussian mixtures, herein, we propose to solve a modified 

barycenter problem
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min
μ ∈ 𝒢(ℝn)k = 1

L
λkd(μ, μk)2 . (19)

The optimization variable is restricted to be Gaussian mixture distribution and the 

Wasserstein distance W2 is replaced by its relaxed version (11). Let μk be a Gaussian 

mixture distribution with Nk components, namely, μk = pk
1vk

1 + pk
2vk

2 + ⋯ + pk
Nkvk

Nk. If we 

view μ as a discrete measure on 𝒢(ℝn), then clearly, it can only have support at the points 

(Gaussian distributions) of the form

argminv
k = 1

L
λkW2(v, vk

ik)
2

(20)

with vt
ik being any component of μk. As we discussed before, the optimal ν is Gaussian. 

Denote the set of all such minimizers as {ν1, ν2, …, νN}, then μ is equal to

μ = p1v1 + p2v2 + ⋯ + pNvN,

for some probability vector p = (p1, p2, …, pN)T. The number of element, denoted by N, is 

bounded above by N1N2 ··· NL. Finally, utilizing the definition of d(·, ·) we obtain an 

equivalent formulation of (19), which reads as

min
π1 ≥ 0, ⋯, πL ≥ 0k = 1

L

i = 1

N

jk = 1

Nk
λkck(i, jk)πk(i, jk) (21a)

i = 1

N
πk(i, jk) = pk

jk, ∀1 ≤ k ≤ L, 1 ≤ jk ≤ Nk (21b)

j1 = 1

N1
π1(i, j1) = ⋯ =

jL = 1

NL
πL(i, jL), ∀1 ≤ i ≤ N . (21c)

The cost

ck(i, j) = W2(vi, vk
j)2

(22)

is the optimal transport cost from νi to ℝn. After solving the above linear programming 

problem (21), we get the barycenter μ = p1ν1 + p2ν2 + · · · + pN νN with
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pi =
j = 1

N1
π1(i, j)

for each 1 ≤ i ≤ N. We remark that our formulation is independent of the dimension of the 

underlying space ℝn. The dimension affects only the computation of the cost function (22) 

where a closed-form (8) is available. The complexity of (21) relies on the numbers of 

components of the Gaussian mixtures distributions {μk}. Therefore, our formulation is 

extremely efficient for high dimensional Gaussian mixtures with small number of 

components.

The difficulty of formulation (21) lies in the number N of components of the barycenter μ, 

which is usually of order N1N2 · · ·NL. To overcome this issue, we can consider the 

barycenter problem for Gaussian mixture with specified components. More specifically, 

given N Gaussian components ν1, ν2, …, νN, we would like to find a minimizer of the 

optimization problem (16) subject to the structure constraint that

μ = p1v1 + p2v2 + ⋯ + pNvN

for some probability vector p = (p1, p2, …, pN)T. Note that νk here doesn’t have to be of the 

form (20). It can be any Gaussian distribution. Moreover, the number N can be chosen to be 

small. It turns out this problem can be solved in exactly the same way. Clearly, a linear 

programming reformulation (21) is straightforward.

V. NUMERICAL EXAMPLES

Several examples are provided to illustrate our framework in computing distance, 

computational cost, geodesic and barycenter.

A. Comparing d(·, ·) and W2(·, ·)

To demonstrate the difference between d and W2, we choose μ0 to be a one dimensional 

zero-mean Gaussian distribution with unit variance. The terminal distribution μ1 is set to be 

the average of two unit variance Gaussian distributions, one with mean ∆ and the other one 

with mean −∆. Clearly, d(µ0, µ1) = ∆. Figure 1 depicts d(µ0, µ1) and W2(µ0, µ1) for different 

∆ values. As can be seen, these two distances are not equivalent and d is always bounded 

below by W2.

We also compared the computational cost of our method to two other algorithms commonly 

used in solving optimal transport problems. One is a simplex method developed by Rubner 

et al. [20], and the other is based on the Sinkhorn algorithm [22]. The latter is employed to 

solve an entropic regularized optimal transport problem. We ran the algorithms for problems 

in 1d and 2d with varying number of components and summarize the results in Table I. The 

computational cost is averaged over 3 trials for each configuration. Both algorithms in [20] 

and [22] require discretizing the densities on grids (here we use 100 points for 1d and 30×30 

points for 2d) first, and therefore do not work for high dimensional problems due to the 
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“curse of dimensionality.” In contrast, our framework leverages the closed-form expression 

for optimal transport distance between Gaussian components and because of that it scales 

nicely as the dimension increases. Figure 2 depicts the computational cost (again averaged 

over 3 trials) for different choice of dimension. The number of components is fixed to be 10 

and the parameters are chosen randomly.

B. Comparing geodesics

We compare shortest path interpolation provided by standard OMT theory with our proposed 

geodesic interpolation (see (12)) on 𝒢(ℝn). To this end we consider the two Gaussian 

mixture models in Figure 3. Both have two (Gaussian) components; one shown in red and 

one in blue, while the mixture model is shown in black. The components as well as the 

mixture model are normalized to have unt integrals. The two mixture models serve as 

marginals, with mass equally distributed among the respective components. The 

corresponding means and covariances are m0
1 = 0.5, m0

2 = 0.1, Σ0
1 = 0.01, Σ0

2 = 0.05 for μ0, and 

m1
1 = 0, m1

2 = − 0.35, Σ1
1 = 0.02, Σ1

2 = 0.02 for µ1 (see Section III for notations).

Figure 4 compares interpolation between the two marginals based on standard OMT and 

interpolation based on the geometry on 𝒢(ℝn) introduced herein. As seen in the figures, the 

flow of densities that is based on standard OMT interpolation loses the Gaussian mixture 

character. Our method is of course designed to preserve the Gaussian mixture structure as 

can be seen from Figure 5, which displays the two Gaussian components of the density flow 

interpolation using our method.

We make similar observations on a 2-dimensional example displayed in Figures 6–8. To this 

end, we plot the level sets of the densities so as to highlight their actual 3-dimensional shape. 

The two marginal distributions are the Gaussian mixtures shown in Figure 6. Figures 7 and 8 

show snapshots of the two interpolation paths, the first one based on OMT (Figure 7) and the 

second based on our method (Figure 8), respectively. We can easily discern that the Gaussian 

mixture structure is not preserved along the geodesic path of Figure 7. In contrast, the 

snapshots in Figure 8 are seen to contain two (dominant) Gaussians that are clearly 

recognizable.

C. Barycenter

Three Gaussian mixture distributions are given in Figure 9. The masses are equally 

distributed among the respective components. The statistics for µ1, µ2, µ3 are 

(m1
1 = 0, m1

2 = 0.1, Σ1
1 = 0.01, Σ1

2 = 0.05), (m2
1 = 0, m2

2 = − 0.35, Σ2
1 = 0.02, Σ2

2 = 0.02) and 

(m3
1 = 0.4, m3

2 = − 0.45, Σ3
1 = 0.025, Σ3

2 = 0.021) respectively. We compare our method with the 

traditional OMT theory to compute the barycenter. Two sets of weights are considered and 

the results are displayed in Figures 10 and 11. It is quite clear that our method gives a more 

“desirable” average. The Gaussian mixtures character is not preserved with traditional OMT-

barycenter construction while it is evident in our setting.
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VI. CONCLUSION

In this paper, we have defined a new optimal mass transport distance for Gaussian mixture 

models by restricting ourselves to the submanifold of Gaussian mixture distributions. 

Consequently, the geodesic interpolation utilizing this metric remains on the submanifold of 

Gaussian mixture distributions. On the numerical side, computing this distance between two 

densities is equivalent to solving a linear programming problem whose number of variables 

grows linearly as the number of Gaussian components. This represents a huge reduction in 

computational cost as compared with traditional OMT.

When the covariances of the respective components in Gaussian mixture models are small, 

our distance is a very good approximation of the standard OMT W2 distance, and the 

respective geodesics are also close. Thus, in this case the computationally more efficient 

framework herein represents a good compromise.

In general, our objective in this paper has been twofold. First, being interested in Gaussian 

mixtrure models, we set out to develop an OMT-based geometry on the respective manifold 

𝒢(ℝn). Geometric constructions (geodesics, averages) on this manifold, with respect to the 

metric d(·, ·) retain the Gaussian mixture character. Besides computations are much more 

tractable even for very high dimensional spaces as compared to OMT. The computational 

burden is only dictated by the number of components of the Gaussian mixture model and not 

the size of the space, and it is quite modest. Thus, our approach can be used for 

approximating OMT transport as well, for cases where distributions can be reasonably well 

approximated by Gaussian mixtures. A subject of interest for future research is to extend our 

toolset so that we are able to work efficiently on more general mixture models that are not 

necessarily Gaussian.
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Fig. 1: 
d vs W2 for different shift ∆ value
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Fig. 2: 
Computation cost vs. dimension (averaged over 3 experiments)
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Fig. 3: 
Marginal distributions (blue and red represent the two Gaussian components and black is the 

Gaussian mixture)
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Fig. 4: 
Shortest path interpolations between µ0 and µ1 using different methods
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Fig. 5: 
Two Gaussian components of the shortest path interpolation

CHEN et al. Page 22

IEEE Access. Author manuscript; available in PMC 2019 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6: 
Level sets of marginal distributions
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Fig. 7: 
Level sets of OMT interpolation
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Fig. 8: 
Level set of shortest path interpolation using our method
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Fig. 9: 
Marginal distributions (blue and red represent the two Gaussian components and black is the 

Gaussian mixture)
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Fig. 10: 
Barycenters of µ1, µ2, µ3 with weight λ = (1/3, 1/3, 1/3)
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Fig. 11: 
Barycenters of µ1, µ2, µ3 with weight λ = (1/4, 1/4, 1/2)
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TABLE I:

Computational cost comparison (in seconds)

Our algorithm Rubner [20] Sinkhorn [22]

1d, N=2 0.00046 0.013 0.0046

1d, N=10 0.005 0.014 0.0048

2d, N=10 0.028 15.5 0.78

2d, N=50 0.53 15.9 0.80
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