
UCSF
UC San Francisco Previously Published Works

Title
Uncertainty estimation and evaluation of deformation image registration based 
convolutional neural networks.

Permalink
https://escholarship.org/uc/item/66n521gx

Authors
Rivetti, Luciano
Studen, Andrej
Sharma, Manju
et al.

Publication Date
2024-05-15

DOI
10.1088/1361-6560/ad4c4f

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66n521gx
https://escholarship.org/uc/item/66n521gx#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Physics in Medicine & Biology
     

ACCEPTED MANUSCRIPT • OPEN ACCESS

Uncertainty estimation and evaluation of deformation image registration
based convolutional neural networks
To cite this article: Luciano Rivetti et al 2024 Phys. Med. Biol.

 

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 128.218.42.88 on 23/05/2024 at 20:20

https://creativecommons.org/licences/by/4.0
https://doi.org/10.1088/1361-6560/ad4c4f


1  

Uncertainty estimation and evaluation of deformation image 
registration based convolutional neural networks 

Luciano Rivetti1, Andrej Studen1,2, Manju Sharma3, Jason Chan3, and Robert Jeraj1,2,4  

1Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia 
2 Jo žef Stefan Institute, Ljubljana, Slovenia 

3Department of Radiation Oncology, University of California, San Francisco, California 
4School of Medicine and Public Health, Department of Medical Physics, University of 

Wisconsin, Madison, WI 
 

Corresponding author: Luciano Rivetti, Email: Luciano.Rivetti@fmf.uni-lj.si  
  
 

Abstract 
 

Objective 
Fast and accurate deformable image registration (DIR), including DIR uncertainty estimation, is 
essential for safe and reliable clinical deployment. While recent deep learning models have shown 
promise in predicting DIR with its uncertainty, challenges persist in proper uncertainty evaluation 
and hyperparameter optimization for these methods. This work aims to develop and evaluate a 
model that can perform fast DIR and predict its uncertainty in seconds.  

Approach 
This study introduces a novel probabilistic multi-resolution image registration model utilizing 
convolutional neural networks (CNNs) to estimate a multivariate normal distributed dense 
displacement field (DDF) in a multimodal image registration problem. To assess the quality of 
the DDF distribution predicted by the model, we propose a new metric based on the Kullback-
Leibler divergence. The performance of our approach was evaluated against three other DIR 
algorithms (VoxelMorph, Monte Carlo Dropout, and Monte Carlo B-spline) capable of predicting 
uncertainty. The evaluation of the models included not only the quality of the deformation but also 
the reliability of the estimated uncertainty. Our application investigated the registration of a 
treatment planning computed tomography (CT) to follow-up cone beam CT for daily adaptive 
radiotherapy. 
 
Main results 
The hyperparameter tuning of the models showed a trade-off between the estimated 
uncertainty's reliability and the deformation's accuracy. In the optimal trade-off, our model 
excelled in contour propagation and uncertainty estimation (p < 0.05) compared to existing 
uncertainty estimation models. We obtained an average dice similarity coefficient of 0.89 and a KL-
divergence of 0.15.  
 
Significance 
By addressing challenges in DIR uncertainty estimation and evaluation, our work showed that 
both the DIR and its uncertainty can be reliably predicted, paving the way for safe deployment in 
a clinical environment.  
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1 Introduction 
 

Multimodal deformable image registration (DIR) is a sophisticated computational process aimed at 
establishing a spatial correspondence between two paired images accounting for spatial distortions. 
DIR is crucial for several image processing applications, such as contour propagation [1], motion 
tracking and modeling [2], adaptive radiotherapy [3] and lesion tracking among others. Classical 
registration algorithms have been extensively developed and validated to achieve high-performance 
registrations. Among these algorithms, B-spline models hold a special place [4], frequently utilized to 
perform high-quality elastic deformations in numerous open-source DIR software tools [5], [6]. 
These algorithms iteratively optimize an objective function that measures the quality of spatial 
transformations, leading to precise alignments. However, due to the iterative nature and complexity of 
the optimization process, they often demand significant computational resources. This results in 
execution times that exceed the time available in the clinical environment. As an example, in 
radiotherapy, the requirement of fast DIR is indispensable to perform a daily online adaptation of 
the treatment plan [7], [8]. Another limitation of these algorithms is their inability to provide 
reliable uncertainty estimation of the deformation maps. 
 
DIR is mainly subject to two types of uncertainties. The first type is the aleatoric uncertainty, 
primarily stemming from limitations in the image acquisition process, including factors like a 
limited resolution, a poor contrast, or a high noise. These limitations make it difficult to establish a 
clear correspondence between the same anatomical point in two distinct images. Reducing this 
uncertainty would require advancements in image acquisition methods. The second type is 
epistemic uncertainty, often referred to as model uncertainty, which arises from the limitations of 
the model to find a proper registration. Reducing this type of uncertainty entails enhancing the 
capabilities of the employed models. The development of DIR models that can effectively capture 
both types of uncertainties becomes essential for the safe use of DIR algorithms in clinical 
applications. For example, in adaptive radiotherapy, the estimation of DIR uncertainty plays an 
important role in quantitatively evaluating the dose accumulated over the treatment fractions [3]. 
This directly impacts the plan quality evaluation and the clinical decisions for re-adaptation. In 
image-guided neurosurgery, DIR uncertainty estimation is crucial to prevent overconfidence in the 
accuracy of preoperative image matching [9]. This can help surgeons understand the registration 
limitations and adapt their approach to enhance surgical precision.  
 
Specifically, to the commonly used B-spline DIR models, early efforts to estimate uncertainty 
consisted of evaluating the sensitivity of an image similarity metric against randomly performed 
variations of the optimized B-spline coefficients [10]. Although such methods can achieve high 
accuracy of the B-spline models, they can only provide a rough estimation of the uncertainty in 
subregions of the image. Another way to estimate B-spline DIR uncertainty is by doing random 
Monte Carlo (MC) sampling over the hyper-parameters of the B-spline model [11]. In this way, 
slightly different models can be optimized, and their solutions can be used to estimate the mean 
and standard deviation of the likely deformation. Although this method can estimate a voxel-wise 
DIR uncertainty, it is very time-consuming since it requires multiple runs of the registration algorithm. 
 
With the advent of deep learning, novel algorithms have been developed for fast DIR, 
demonstrating competitive performance compared to classical registration methods [7], [12], [13], 
[14]. At the same time, considerable advancements in deep learning methods were carried out to 
generate models capable of estimating uncertainty. The development of Bayesian deep learning 
approaches offered an intuitive way to estimate models’ uncertainty [15]. Unlike classical neural 
networks (NNs), these architectures are parametrized by a normal distribution. However, training 
such a network is impractical since it presents substantial computational times for training. Recent 
results have shown that Monte Carlo dropout models can be used to approximate Bayesian 
Networks and to estimate the model uncertainty [16]. Dropout layers randomly disable nodes of the 
network, allowing different distributions of the same model while training. When such a model is 
implemented multiple times during validation, it generates likely different solutions that can be used 
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3  

to calculate the dispersion of the model using the standard deviation of the results. This concept 
was used by Gong et al. [17] to create a model that uses convolutional neural networks (CNNs) to 
perform DIR and predict its uncertainty. However, it is an open question how the uncertainty 
estimated with these models is affected by the election of the dropout probability. 
 
Another approach to estimating uncertainty in deep learning is using Bayesian probabilistic models. 
Such models describe the problem using Bayesian probabilities and estimate the posterior 
probability distribution of the phenomenon to model using variational inference [18]. Neural networks 
are used to model the parameters of the approximated probability density function. One of the main 
features of these methods is that they allow direct estimation of the uncertainty of the problem directly 
from the network. Such a method was used by Dalca et al. to create a probabilistic DIR model 
(VoxelMorph) that can predict the deformation and its uncertainty [19]. Their innovative work not 
only established a bridge between classical and learning paradigms but also presented exciting 
possibilities for predicting DIR uncertainty quickly. Using a similar methodology, Smolders et al. 
built a CNN model that can predict the DIR uncertainty of deformation maps generated using 
classical registration algorithms [11]. They validated their model by calculating a reliability diagram 
that correlates the error of the propagation of landmarks drawn by a physician and the uncertainty 
estimated with their model.  

 
Despite the previous efforts, the performance of the models that can predict the DIR uncertainty 
remains challenging to evaluate because of the absence of gold standard deformations and dedicated 
metrics that directly evaluate its quality. Furthermore, the relation between the predicted 
deformation maps' accuracy and the uncertainty estimated reliability remains unstudied. The main 
goal of this work is to develop and validate a fast deep learning DIR algorithm that can accurately 
predict the most likely deformation field and its uncertainty in a multimodal DIR problem.  

2 Methods 
 

In our work, we adopted the Bayesian probabilistic approach used by Dalca et al. (VoxelMorph)[19]. 
Their methodology describes how to predict a distribution of voxel-wise correspondences, or dense 
displacement fields (DDF), between a moved image (m) and a fixed image (f) using variational 
inference and CNNs. They approximated the posterior probability density function 𝑝(𝝓|𝒇	,𝒎) with a 
multivariate normal distribution 𝑁	(𝝓; 	µ(𝝍), 𝜮(𝝍, 𝜎)), where 𝝓 is a sample of the DDF,  µ is the 
mean of the distribution, 𝜮 its covariance matrix,	𝜎 a fixed scalar and 𝝍 the (hidden) parameters of 
the CNN that were optimized by minimizing: 

ℒ(𝝍; 	𝒇	,𝒎) = 𝜔	‖𝑓 − 𝝓(𝝍) ∘ 𝑚‖! + 	𝑇𝑟;𝜆𝑳𝑪(𝜎)𝚺(𝝍)𝑪(𝜎) − 	log	𝚺(𝝍)C +	
𝜆
2
𝐵𝐸;µ(𝝍)C					(1) 

where 𝒇,𝒎	 ∈ 	ℝ"×$  with N the number of voxels in the image, µ(𝝍) ∈ 	ℝ"×%$  and 𝜮(𝝍) ∈
	ℝ%$×%$  is a diagonal matrix, 𝜔 is a scalar hyperparameter of the problem, 	‖∙‖! is the Frobenius 
norm, 𝑇𝑟 is the trace function, 𝜆 is a hyper-parameter of the problem, L is the matrix 
representation of the Laplacian operator, 𝑪(𝜎) is a smooth convolution matrix with a standard 
deviation 𝜎 and 𝐵𝐸;µ(𝝍)C = 	µ(𝝍)&𝑳	µ(𝝍) is the bending energy. It is important to note that 
µ(𝝍) and 𝐷𝑖𝑎𝑔(𝜮(𝝍)) are predicted from a 3D UNet [20] and that 𝜮(𝝍, 𝜎) 	= 	𝑪(𝜎)𝜮(𝝍)𝑪(𝜎). 
To derive equation (1), the authors assumed independence between the variables 𝝓 and 𝒎 and 
approximated 𝑝(𝝓|𝒎) with a normal distribution 𝑁	(𝝓; 	𝟎, 𝜆'"𝑳'").  

 
2.1 Unsupervised multimodal deformable image registration framework 
 
Although VoxelMorph provides a mathematical framework to predict the DDF mean and standard 
deviation, the approach has limitations on predicting a smooth DDF with a realistic uncertainty. 
Furthermore, it doesn’t provide an efficient way to calculate 𝑳𝑪(𝜎)𝚺(𝝍)𝑪(𝜎) from equation 1 and 
the approach is derived only for the unimodal registration case. Because the probability 𝑝(𝝓|𝒎) is 
modeled as independent of the properties of the image m, the VoxelMorph implementation is 
missing important prior information that can better guide the registration uncertainty. For these 
reasons, we approximated 𝑝(𝝓|𝒎) with a normal distribution that is dependent on some properties 
of the moved image 𝒎. We assumed that given a moved image 𝒎, the average of the deformation 
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4  

field 𝝓 over all the possible fixed images would be zero and that the covariance matrix would depend 
on some properties of the moved image: 

 
𝑝(𝝓|𝒎)~𝑁(𝝓; 𝟎, 𝚺𝒑"/!(𝒎)𝑳'"𝚺𝒑"/!(𝒎))                                                       (2) 

 
where 𝚺𝒑 is a diagonal covariance matrix that depends on the properties of the moved image 𝒎. We 
modeled 𝚺𝒑 considering the independent contribution of two different sources of uncertainties. The 
first one is related to random missalignments between the moved and fixed image and its magnitude 
can be represented as 𝚺𝟏 =	𝑑!𝚰	, where d is the average missalignment distance and 𝚰 is the identity 
matrix. The second one is related to low-contrast regions in the moved image, and it can be modeled as 
𝜮! = 𝑑𝑖𝑎𝑔(𝑪(𝑑)𝑇	(𝒎)), where 𝑪(𝑑) is a smooth convolution matrix with standard deviation d and 
𝑇:	ℝ"×$ → 	ℝ"×$ is a function that computes the distance of every voxel of the moved image to the 
closest neighboring voxel that generates a difference in value above a specified threshold in 
Hounsfields Units (HU). In this way we calculated the prior covariance matrix as 𝚺𝒑 =	𝑑!𝚰 +
	𝑑𝑖𝑎𝑔(𝑪(𝑑)𝑇	(𝒎)). 
 
To perform multimodal image registration between different imaging modalities, we exchanged the 
mean square error term of equation 1 (image similarity term) with the Mutual Information (MI). MI 
was chosen for its robust performance in quantifying image similarity between two multimodal images, as it 
maximizes the information extracted about the moved image when considering the fixed image [21].  We 
also considered scaling the magnitude of the BE since its value is influenced by the number of 
background voxels present in the images. Including these changes in equation 1, and solving the 
algebra (See supplementary material) we can rewrite the equation 1 as: 

 ℒ+,(𝝍; 	𝒇	,𝒎) = 𝜔	(𝑀𝐼(𝒇,𝝓(𝝍) ∘ 𝒎) +
𝛾
𝜔
𝐵𝐸(𝚺𝒑"/!µ(𝝍))

+ 	𝑇𝑟 X𝚺𝒑'"diag(𝑲(𝜎)𝚺(𝝍)𝟏) − log𝚺(𝝍)^ 
(3) 

 

 
where 𝛾 is a scalar hyperparameter of the problem, 𝑲(𝜎) ∈ 	ℝ%$×%$ is an effective smoothing 
convolution matrix and 𝟏 ∈ ℝ%$×" is a vector full of ones. Note that the expression 
𝑲(𝜎)𝜮(𝝍)	𝟏 is equivalent to convolving the image of 𝜮(𝝍) with the kernel used to generate the 
matrix 𝑲(𝜎). This  effective 3D convolution kernel 𝒌(𝜎) can be calculated as (detailed 
calculation in supplementary material):  
  

𝒌(𝜎) = 	` ` ` (𝛿-!
! ,/
		𝛿-"

! ,0
		𝛿-#

! ,1
	− 	𝑐/,0,1)	𝒄d(𝜎, [

𝑛2
2
,
𝑛3
2
,
𝑛4
2
])⨀𝒄d(𝜎, [𝑖, 𝑗, 𝑘])	

-#

15"

-"

05"

-!

/5"
 (4) 

where 𝑛6 is the size of the fixed or moved image in the r axis, δ is the Kroneker delta, and 
𝒄d(𝜎, [𝑖, 𝑗, 𝑘])	 is a Gaussian kernel centered to the position i,j,k respectively, 𝑐/,0,1 is the i,j,k 
element of the centered Gaussian kernel and ⊙ is an element-wise product. For 
implementation purposes, we normalized	𝒌(𝜎) to be 1 when all its elements are summed up. The 
incorporation of the K effective smoothing convolution matrix provides our method a 
computationally efficient way to calculate the term 𝑳𝑪(𝜎)𝚺(𝝍)𝑪(𝜎) from equation 1 by using 
convolutions that can be computed in any deep learning framework in python. 
 
Note that the MI term of equation 3 encourages image similarity between the fixed image and one 
realization of the warped moved image, the bending energy term regularizes µ(𝝍) and the trace 
term, or uncertainty term, regulates the magnitude of 𝜮(𝝍). This can be seen by considering the 
simplified 1D problem with only one voxel. In this case, 𝜮(𝝍) is a scalar variable, and the 
uncertainty term is 𝛴(𝝍)/𝛴𝑝	 − 	𝑙𝑜𝑔	𝛴(𝝍). This function is minimized only when 𝛴(𝝍) 	= 	𝛴7. If 
we extrapolate this result, we can think that the uncertainty term pushes the smoothed variational 
diagonal covariance matrix Σ(ψ) to be similar to 𝛴7. In the limit when 𝜔, 𝛾	 → 	∞, the unsupervised 
loss function collapses to the sum of an image similarity metric and a DDF regularizer as it was 
previously formulated in other works to predict only a DDF without its uncertainty [19], [22]. 
However, when ω is not so big, there is a trade-off between the image similarity term and the 
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5  

uncertainty term. 
 
2.2 Supervised multimodal deformable image registration framework 
 
In many clinical applications where registration is needed, the fixed and moving images have 
segmentation masks of anatomical regions that can be incorporated into the training process to 
improve the registration’s accuracy. However, the process of segmentation is subjected to 
uncertainty in the borders of the structures, which is mostly related to the bad definitions of the 
anatomical borders. For this reason, we developed a probabilistic approach that incorporates the 
segmentation and its uncertainty using probability maps to better guide the registration 
distribution. 
 
In addition to the methodology described for the unsupervised model, we propose to maximize the 
log-likelihood of the posterior probability distribution 𝑝;𝒔8/ 	q	𝜙, 𝒔9/ ), where  𝒔8/ 	 ∈ 	ℝ"×$ is the i-th 
contour in the fixed image and 𝒔9/ 	 ∈ 	ℝ"×$

 is the i-th contour in the moved image. Because 𝒔8/  
and	𝒔9/  are binary contours, i.e., their voxels values are 1 or 0, we can consider 𝒔8/  as a 
realization of the probability map defined as the average of different samples of the warped 
contour (𝑃𝑀/ =	∑ ;$∘	𝒔%&'

$
$

). Following this rationale, we can model 𝑝;𝒔8/ 	q	𝜙, 𝒔9/ ) with an 
independent Bernoulli distribution: 
 

𝑝;𝒔8/ 	q	𝜙, 𝒔9/ ) = 	∏𝑓;𝒔8/ , 𝑃𝑀C = 	∏𝑃𝑀
,(
&
(1 − 𝑃𝑀)"'𝒔(

&
	 (5) 

 
 

where 𝑓 is the voxel-wise Bernoulli distribution, ∏ 	is an element-wise multiplication and 𝑃𝑀 is the 
probability map of the position of the contour in the fixed anatomy. Minimizing the log likelihood of 
𝑝;𝒔8/ 	q	𝜙, 𝒔9/ )  (See supplementary material), and using equation 3, we can write the loss function for 
the supervised model as: 

 
ℒ,;𝝍; 	𝒇, 𝑠8/ , 𝒎, 𝑠9C = 	ℒ+,(𝝍; 	𝒇,𝒎) + 	𝛼	 ∑ 𝐻(𝑝𝑺8/ , 𝑃𝑀/)?

/  (6) 
 
 

where 𝐻 is the average of the voxel-wise cross-entropy (CE), 𝑝𝑺8/ =	∑
,(
&,*

@
@
0  is the i-th probability 

map of the fixed contour obtained averaging contours of J physicians on the same organ. In 
this work, we will use J = 1 because we only have one segmentation per organ.  

 
2.3 Neural Network 
 
The variational µ(𝝍) and the diagonal of the covariance matrix 𝐷𝑖𝑎𝑔(𝜮(𝝍)) were modeled 
using CNNs. The architecture employed in this study is an adapted version of the network 
developed by Hu et al. [ 1 2 ] . By configuring the network with an output of 6 channels (3 for µ 
and 3 for 𝜮), it becomes adept at executing probabilistic multi-resolution image registration, 
effectively capturing both global and local deformations in a progressive manner from coarse to 
fine scales. At each level of resolution j, the network predicts a multivariate normal distribution 
𝑁(𝝓0; 	µ0(𝝍), 𝜮0(𝝍, 𝜎	)) that establishes the registration from 𝑚 to 𝑓 at that resolution. The 
composite distribution is derived by aggregating the contributions across various resolutions, 
resulting in  𝑁;𝝓; 	µ(𝝍), 𝜮(𝝍, 𝜎	)C = 	∑ 𝑁(𝝓0; 	µ0(𝝍), 𝜮0(𝝍, 𝜎	))0 = 	𝑁(𝝓;	∑ µ0(𝝍)0 , ∑ 𝜮0(𝝍, 𝜎	)0 ) 
The network takes the fixed and moved images as inputs and predict µ(𝝍) and 𝜮(𝝍) as outputs 
(Figure 1). These outputs are subsequently employed to construct a differentiable dense displacement 
field sample (𝝓) using the reparameterization step: 𝝓	 = 	µ(𝝍) + 𝑪(𝜎)𝜮"/!(𝝍)𝜹, where 𝜹 is a sample 
of the standard normal distribution 𝑁	(𝟎, 𝜤) [19]. This resultant sample is then utilized to warp the 
moved image and structures using a resampler layer. Following this step, the loss function is 
computed, and 𝝍 is updated accordingly. 

 
2.4 Data 
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Validation studies were conducted on head and neck patients undergoing external beam radiation 
therapy. The anonymized data was retrospectively acquired under an approved institutional review 
board. The moved image and contours were the planning computed tomography (pCT) and the 
planning structures, respectively. Each pCT contained at least ten planning structures that were 
segmented by an experienced radiation oncologist. The fixed image and contours were the daily cone 
beam computed tomography (CBCT) and their associated structures obtained by propagating the 
planning contours using a certified DIR algorithm (ANACONDA) that is used in clinics to perform 
contour propagation [23]. Every patient in this dataset contained at least one pCT with its 
structures and around 30 daily CBCTs with their structures.  
 
The networks were trained with 220 pairs of images (pCT and CBCT) obtained from 9 patients. To 
increase the diversification of the training pairs, the pCTs and their structures were anatomically 
modified by warping them to different daily anatomies using Elastix. Then, the training pairs were 
sampled between the different anatomical variations of the pCTs and the daily CBCTs.  
 
For validation and testing, the sampling was different from the training. The image pairs were 
generated as they will be in the clinics, i.e., the pCT was registered to every daily CBCT. This resulted 
in an independent validation dataset of 98 pairs of images (pCT and CBCT) obtained from 3 patients 
and an independent test dataset with 66 pairs of images obtained from 2 patients. To guarantee the 
fidelity of the evaluation, the testing and validation of daily CBCT structures were reviewed and corrected 
by an experienced radiation oncologist. 
 

 
Figure 1: Illustration of the training workflow used in our supervised and unsupervised models. The solid lines show the 
data flow for the unsupervised model and the solid lines plus the dash lines show the data flow for the supervised model. 

All images and structures were resampled to achieve an isotropic voxel spacing of 1.15 mm, 
resulting in a size of 192 voxels along each dimension. The image intensity was normalized to ensure 
values fell within the range of 0 to 1. 

 
2.5 Validation and Testing 

For validation and testing, the data flow was similar to the one described in Figure 1, with the 
difference that sixty samples of the pCT and its corresponding structures were generated to 
evaluate their dispersion. This number was selected as the maximum sampling size that our GPU 
could efficiently handle at once.  Several metrics were used to assess the quality of the dense 
displacement field (DDF) distribution. The Dice Similarity Coefficient (DSC) between the propagated 
structures with the mean DDF (𝜇 ∘ 𝒔9/ ) and the physician’s structures was calculated as an indirect 
measure of the quality of µ. The MI was calculated over a sample of the wCT (𝝓(𝝍) ∘ 𝒎), and the 
daily CBCTs were calculated as an indirect measure of the quality of the DDF samples. The average 
value of the percentage of negative values in the determinant of the Jacobian (|𝐽| 	≤ 	0) in different 
samples of the DDF was calculated to evaluate the smoothness of the sampled DDFs. The expected 
calibration error (ECE) of probability maps [24] was used as an indirect measure to assess the 
quality of the DDF distribution.  
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7  

 
While it would be ideal to assess the DIR distribution based on ground truth DDFs, it is important 
to acknowledge that such information is largely unavailable in most datasets. Consequently, 
various methods have been introduced to assess DDF accuracy using DDFs derived from plausible 
anatomical deformations as a reference [25], [26]. However, these methods primarily evaluate the 
accuracy of individual realizations of the DDF rather than the entire distribution which is our aim. 
Additionally, they are constrained to unimodal image registration since applying the known DDF to 
the fixed image generates a moved image of the same modality as the fixed image. To solve these 
challenges, we specifically developed a probabilistic approach to enable the evaluation of DDF 
distribution quality in multimodal image registration problems. 

 
The method consisted of creating a simulated phantom image (Ω	 ∘ 𝒇) with a likely anatomical 
deformation (Ω) obtained by registering 𝒇 to a follow-up image of the same patient (Figure 2). Then, a 
DIR model was used to estimate the DDF distribution which registers 𝒇 to 𝒎 and  Ω	 ∘ 𝒇 to 𝒎 (𝝓𝟏 
and 𝝓𝟐 respectively). Considering that 𝝓𝟏 and 𝝓𝟐 are diffeomorphism, then the deep learning DDF 
distribution (Ω∗) which registers 𝒇 with Ω	 ∘ 𝒇 as Ω∗ = 𝝓𝟐 −	𝝓𝟏 can be estimated. If Ω∗	 is a good 
estimation of	Ω, then µΩ∗ 	≈ 	Ω  and 𝑧(Ω∗)~	𝑁	(𝟎, 𝜤) where 𝑧(Ω∗) =

𝛀,-%./01
∗ '𝛀	

EF/GH(𝚺2∗)
  and 𝐷𝑖𝑎𝑔 is a function 

which set all off-diagonal elements to zero (detailed calculation in the supplementary material). In other 
words, the distribution generated with the elements of the vector 𝑧(Ω∗) should follow a normal distribution 
𝑁(0, 1). For this reason, the Kullback–Leibler divergence 𝐾𝐿(𝑧(Ω∗) ∥ 𝑁	(0, 1)) was used to evaluate 
the quality of a multivariate normal DDF distribution. In this work, this metric was averaged over all 
the likely anatomical deformations (Ω) between the first CBCT and all the follow-up CBCTs. 
 

 
Figure 2: Illustration of the method used to evaluate a normalized dense displacement field (DDF) distribution. 𝒎 and 𝒇 are 
the moved and fixed image respectively, Ω	 is a DDF generated by registering the fixed image to one of the follow-up image, 
Ω	 ∘ 𝒇 is a virtual image generated warping 𝒇 with a known DDF, 𝝓𝟏 and 𝝓𝟐 are the DDFs distribution created with the DIR 
method and Ω∗	 is the estimated DDF distribution which register 𝒇 to Ω	 ∘ 𝒇. 
 

 
2.6 Hyperparameter tuning 

The hyperparameters of the supervised (𝛼, 𝛾, 𝜔) and unsupervised (𝛾, 𝜔) models were fine-tuned in 
the validation dataset to achieve the best deformation capabilities while still predicting good-quality 
uncertainties based on the KL-Diverge metric. The hyperparameter tuning was performed 
iteratively. First, one hyperparameter was selected, and a grid search of the parameter that 
generated the best trade-off between the averaged DSC, MI, ECE, and the KL-Divergence metric on 
the validation dataset was selected. Then, this hyperparameter was fixed with its optimal value and 
the same procedure was repeated for the rest of the hyperparameters. To highlight the benefit in 
the image similarity, the MI was normalized (%MI) to be 0 when there is no registration and 100 
when the MI is the lowest achieved by the model.  
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8  

In this work, the value of σ used to calculate 𝜮(𝝍, 𝜎) was not considered a hyperparameter of the 
problem. Instead, the same value was used for all models. The smallest σ which generated, on 
average, less than 0.1% of voxels with negative Jacobian in the sampled DDF (𝜙) for all the models 
was selected to avoid over-smoothing the matrix 𝜮(𝝍, 𝜎). We also fixed the average misalignment 
distance (d) used to calculate 𝜮𝒑 to be equal to 2.4 mm. This value is within the expected 
misalignment error that can be found for different organs when using rigid registration in head and 
neck treatments [29]. T (m) was calculated for each voxel as the maximum distance in all directions 
(x, y, z) that resulted in an average Hounsfield Unit (HU) difference of at least 20 HU compared to 
the voxel’s position. We considered this HU threshold value since this corresponds to two sigmas of 
the average HU uncertainty of a CT. 

 
2.7 Evaluation 
 
The model’s capabilities to predict the DDF and its uncertainty were evaluated in different ways. A 
qualitative assessment was performed by visually inspecting the DDF and its uncertainty. A semi-
quantitative assessment was performed by looking at the trend of the DDF uncertainty when the 
spatial resolution of the pCT and the CBCTs gradually decreased. A quantitative evaluation was 
performed by comparing the evaluation metrics between the developed models and other DIR 
methods. 
 
Qualitative assessment 
 
The supervised model capabilities to generate high-quality deformation and uncertainty estimation 
were visually evaluated by the authors to detect obvious gross miss-registrations in different challenging 
scenarios of the test set. The deformation capabilities were assessed in two patients who experienced 
significant anatomical changes throughout their treatment. The diagonal of the covariance matrix 
(𝐷𝑖𝑎𝑔(𝜮(𝝍, 𝜎))) was examined in regions where the wCT showed discrepancies with the CBCT, 
including cases where anatomical structures were present in one image but not in the other, as well 
as in the presence of image artifacts. Furthermore, the structure uncertainty was assessed by 
comparing probability maps of the binary target segmentations generated by a physician, B-spline 
and the dropout model. 
 
Aleatoric uncertainty analysis 
 
The relation between the contrast of the input images and the DDF uncertainty, represented by 
𝐷𝑖𝑎𝑔(𝜮(𝝍, 𝜎)), was examined in the test set. Gaussian kernels with various standard deviations (𝜎d)  
were employed to smooth the input pairs (pCT, CBCT). The average of the median of the DDF 
uncertainty was calculated for all test samples. 

 
Model comparison 
 
The performance of the models developed in this work were compared against three different 
models that can predict DIR uncertainty, a Monte Carlo dropout model (MCD), VoxelMorph model 
and a Monte Carlo B-spline model (MCBS) (See detailed description in the supplementary 
material). 
 
The MCD model was implemented by introducing dropout layers in all the convolutional layers of 
the encoding block of the network. The weighted sum of the MI, BE, and Dice Similarity Coefficient 
Loss (DSCL) were used as the loss function [17], [19], [23]. The VoxelMorph model was 
implemented to predict a multivariate normal distribution of a dense displacement field [19]. The 
network of the model was a 3D-Unet which was extracted from the Pytorch version of their GitHub 
code. The loss function was the same as they proposed in their paper with the additional 
calculations developed in this paper for the term 𝑳𝑪(𝜎)𝚺(𝝍)𝑪(𝜎) of equation (1). The MCBS 
models was implemented using an open-source DIR algorithm (Elastix) that use MI and BE to 
regularize the displacement field. The Monte Carlo samplings were performed over the strength of the 
regularizer and the size of the B-spline grid. All these models hyperparameters were fine tuned in the 
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9  

validation dataset to achieve similar mutual information than the supervised and unsupervised 
model. Then, all the models were compared in the test set considering the metrics described in 
section 2.5. For each metric, paired signed ranked Wilcoxon test was used to evaluate the median of 
the distribution of every model against the distribution of the supervised model. Bonferroni 
correction was used when multiple comparisons were performed. 

3 Results 
 
3.1 Hyperparameter tunning 

An analysis over the smoothness of the DDF samples predicted with the models for different values of 
the standard deviation of the smooth convolution matrix 𝑪 showed that using 𝜎L = 6 voxels and a 
kernel size = 25 voxels generated on average less 0.1% of voxels with negative Jacobian. With these 
parameters, we used equation 4 to calculate the effective smooth convolution kernel 𝑘(𝜎L). Then we 
compared the effective kernel k(σ) with the gaussian kernel (Figure 3). 

 

The effective kernel k(σ) was sharper than the Gaussian kernel, giving more importance to 
neighboring voxels. With these parameters fixed we optimized the supervised and unsupervised 
network. 
 
Unsupervised Network 
 
For the unsupervised model, it was found that M

N
= 50 generated the highest DSC in the limit of 𝜔, 𝛾	 →

	∞. This also generated the lowest MI = -0.73, ie. %MI = 100, for all the explored combination of 
hyperparameters for this model. The maximum MI = -0.52, ie. %MI = 0, was achieved when no 

Figure 3: Comparison of the middle slice of the normalized Gaussian kernel (A) and the normalized 
effective kernel (B) used in this work. C shows the diagonal profile indicated in the lines of images A and 
B. 

Figure 4: a) shows the hyperparameter optimization plot for the unsupervised model with 5
6

 = 50. The blue plot 
shows the average KL Divergence metric evaluated in the validation dataset as described in methods (lower is better). 
The axis is inverted to show lower KL divergence on the top. The red plot shows the average normalized mutual 
information evaluated in the validation dataset (higher is better image similarity). B and C compare the 
distribution 𝑧(Ω∗) (blue) with the 𝑁(0,1) (orange) for a specific sample of the validation dataset and ω equal to 20 
and 200 respectively. 
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registration was applied. The optimization of 𝜔 showed that the DSC remained roughly stable at 
0.855. However, the average normalized MI and the average KL-Diverge metric show a trade-off for 
different values of ω (Figure 4).  

 
When ω = 20, the MI only decreased 15% from its maximum while the quality of the deformation 
field distribution has almost reached its maximum (KL-Divergence = 0). Moreover, the ECE 
analysis revealed a decline in conjunction with the KL Divergence metric for lower values of ω 
reaching its minimum (0.04) at ω = 20, as illustrated in Figure 5. As a compromise between 
registration accuracy and uncertainty reliability, ω = 20 was used for the supervised and 
unsupervised models. 

 
Figure 5: Relation between the KL-Divergence metric developed in this work and the Expected Calibration Error (ECE) 
for different values of the hyperparameter ω of the unsupervised model. 

 
Supervised Network 
 
To fine-tune the hyperparameter α of the supervised network, the optimal hyperparameters of the 
unsupervised network (M

N
= 50 and ω = 20) were used. It was found that the MI and the KL 

vergence metric remained stable for different values of α but the DSC increased from 0.855 at 𝛼	 = 	0 
to 0.863 at α = 100. For this reason, in our following experiments, we used M

N
 = 50, ω = 20 and α 

= 100 for the supervised model. 
 
3.2 Qualitative Assessment 
 
The visual inspection of Figure 6 shows that the model could effectively predict a DDF that generate 
a wCT with similar characteristics to the CBCT even in presence of strong anatomical changes.  
 
Because of the superior quality of the pCT, there are some anatomical structures that can be found 
on it but not in the daily CBCTs. In Figure 6, case 1, a blood vessel and muscle structures can be 
spotted in the pCT but they are not clearly seen in the CBCT. Because of this information loss, the 
model predicts high values in the 𝐷𝑖𝑎𝑔(𝜮(𝝍, 𝜎L)) in those regions. 
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Figure 6: Coronal, sagittal and axial images of two different patients (1 and 2) of the test set. The first, second and third 
rows show slices from the planning CT (pCT), the last CBCT of the treatment and the warped CT (wCT), propagated with 
the mean DDF, respectively. The DDF is illustrated with small arrows superimposed over different planes of the pCT. The 
color of the arrows qualitatively indicates the intensity of the DDF in the region, red for large, yellow and green for 
moderate and black for mild deformations. The large red arrows indicate the regions of the pCT which shrank during 
treatment. 

 
High uncertainty is also found in regions where the model could not find a proper DDF to register 
the pCT to the CBCT. In Figure 7, case 2, the anatomical differences in the oral cavity between the 
wCT and the CBCT are associated with an increase of the 𝐷𝑖𝑎𝑔(𝜮(𝝍, 𝜎L)). Image artifacts were also 
responsible for high DDF uncertainty. In Figure 7, case 3, the CBCT is cropped in the bottom right 
region of the pCT. Because of this loss of information, the DDF generates high uncertainty in that 
region. Note that high-contrast regions, such as bones, were generally associated with low uncertainty, 
and low-contrast regions in the pCT and CBCT were associated with high uncertainty. The 
magnitude of the DDF uncertainty also affects the confidence in the position of the warped structures. 
Figure 8 shows that the supervised model is confident (PM ≈ 1) in regions where most binary 
structures agree and not confident in regions where the binary structures disagree (PM ≈ 0.5). 
 
3.3 Aleatoric uncertainty analysis 
 
Figure 10 shows that the median of the DDF uncertainty of the supervised model significantly 
increases with the intensity of the smooth filter applied to the input images. This agrees with the 
observation in Figure 7, which shows that low-contrast regions have large DDF uncertainty. 
However, the VoxelMorph model doesn’t associate significant changes in predicted uncertainty with 
the degree of smoothness and the dropout model predicts a smaller uncertainty when the contrast of 
the image decreases. 

 
3.4 Model Comparison 
 
The hyperparameters tunning of the dropout and VoxelMorph model also showed a similar trade-off 
as shown in Figure 4 (See results on supplementary material). The hyperparameters of these 
models were selected in such a way that these models generate the same mutual information for the 
validation dataset as obtained by the supervised and unsupervised models. 
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Figure 7: Different images driving uncertainty of the dense displacement field (DDF) . C o l u m n s  show a) the planning 
CT (pCT), b) the CBCT, c) the warped CT (wCT), propagated with the mean DDF, and d) the diagonal elements of𝛴(𝜓, 𝜎7)  
for different test samples in rows 1, 2 and 3. The DDF is illustrated with small arrows superimposed on the pCT. The color 
of the arrows indicates the intensity of the DDF in the region: red large yellow/green moderated and black mild 
deformation. The large red arrows show regions of the pCT that do not match the CBCT. The blue arrow shows a region 
of the patient’s anatomy which is not capture in the CBCT. The vertical gray bar on the right is a scale for the intensity 
variations within the RGB image of 𝐷𝑖𝑎𝑔5𝛴(𝜓, 𝜎7)6. Within this RGB representation, the uncertainty along the right-left 
direction is depicted in red, the uncertainty along the posterior-anterior direction is represented in green, and the 
uncertainty along the inferior-posterior direction is visualized in blue. 

 

Figure 8: Warped planning target volume for two different patients of the test set. The green contours were segmented by a 
physician; the white contours were propagated using the B-spline model, the cyan contours were propagated using the 
mean of the dense displacement field obtained using the dropout model and the probability maps (color map) were 
generated using sixty samples from the supervised model on a test set patient. The red arrow shows that regions in which the 
binary contours do not match each other present low confidence in the probability map (PM ≈ 0.5). 
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Figure 10: Dependence of the dense displacement field uncertainty with the image contrast. The y-axis shows the 
normalized average median Diag(𝛴(𝜓, 𝜎7)) calculated for all the test samples. Because of difference in the magnitude of 
the uncertainty predicted with the different methods, the median uncertainty values were normalized with their value at 
𝜎7=0. The x-axis the standard deviation of the Gaussian filter applied to the input image pairs. The small images at the 
button of the figure show an example of the CBCTs smoothed with 𝜎7. 

Even though the dice similarity coefficient for all the test contours and all the models don’t present 
obvious visible differences (Figure 9), the supervised model exhibited statistically superior 
performance (p < 0.005) compared to the unsupervised model in 6/10 assessed organs (Organs: 2, 4, 
5, 6, 8, 9). At the same time, it demonstrated statistically inferior performance in the submandibular 
glands and the thyroid when compared to the unsupervised model. In contrast, when compared to 
the dropout model, the unsupervised model displayed statistically better performance in 5/10 (3, 5, 6, 
8, 9), while no statistically significant differences were observed in the remaining organs. A similar 
pattern was observed when comparing the supervised model with the B-spline model, as the supervised 
model exhibited superior performance in organs 1, 3, 4, 5, and 6, while no statistical differences were 
observed in the other organs. Notably, the unsupervised model outperformed the VoxelMorph model 
in all the assessed organs. 

 

 

Figure 9: Dice similarity coefficient (Dice) calculated with the four calibrated methods in 10 
different organs of the test dataset. 
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Model DSC ↑ MI ↓ KL Divergence ↓ ECE ↓ run Time (s) ↓ 

Supervised 0.891 [0.850, 0.920] -62.98 [-73.10, -59.55] 00.11 [00.08, 00.14] 0.03 [0.02, 0.04] ∼ 2 
Unsupervised 0.888 [0.848, 0.917] -63.03 [-73.61, -59.79] 00.15 [00.11, 00.21] 0.03 [0.02, 0.04] ∼ 2 
VoxelMorph 0.880 [0.833, 0.912] -65.03 [-73.51, -60.70] 21.35 [16.44, 26.92] 0.17 [0.14, 0.19] ∼ 1.5 

Dropout 0.883 [0.846, 0.915] -64.55 [-74.00, -60.48] 21.95 [16.08, 26.89] 0.16 [0.14, 0.18] ∼ 120 
B-spline 0.892 [0.844, 0.925] -60.19 [-69.85, -55.65] - 0.18 [0.14, 0.21] ∼ 7661 

Table 1: Comparison of different deformable image registration models that can predict DIR uncertainty. The first value 
shows the median of the metric over all scenarios and the brackets show the first and third quartile of parameter 
distribution. DSC is the dice similarity coefficient between the structures propagated with µ and the physician’s structures 
(higher better). The MI is the average mutual information between 60 different samples of the warped CTs and the CBCT 
(lower better). The KL divergence corresponds to the metric developed in this work to evaluate the quality of the DIR 
distribution (lower is better). The ECE is the average expected calibration error calculated between the probability maps 
for all the structures (lower better). The run time is the time spent by the computer to obtain the uncertainty of the DDF. 

 
Although the supervised model demonstrated enhanced performance in specific organs, with a higher 
DSC compared to both the unsupervised model and the B-spline model, there were no statistically 
significant differences (p < 0.05) in terms of the average DSC across all organs (Table 1). This 
suggests that while the supervised approach may excel in specific organ segmentation tasks, its 
overall performance, as measured by the average DSC across all organs, remains comparable to that of 
the B-spline and unsupervised models. However, the supervised model outperformed both the 
dropout and VoxelMorph models as measured by the DSC. 
 
When analyzing the mutual information, no statistically significant differences were observed 
between the supervised model and the dropout, unsupervised, and VoxelMorph models. This can 
be attributed to the hyperparameter tuning, which aimed to achieve comparable image similarity 
performance to assess the uncertainty estimation capabilities fairly. 
 
When evaluating the ECE of probability maps and KL divergence metric, the two models presented 
in this study demonstrated superior performance compared to the other models. Additionally, in 
terms of computational efficiency, our models outperformed all the models except for VoxelMorph. 
This discrepancy arises from the nature of the algorithms employed. Our model and VoxelMorph 
directly estimate uncertainty from the network, whereas the other models need sampling over 
various parameters, resulting in time-consuming computations. 
 

4 Discussion  
 

In this work, we built a probabilistic multi-resolution image registration model that uses prior and 
image information to estimate the parameters of a normal distributed dense displacement field (DDF) 
using convolutional neural networks (CNNs). The model offers the flexibility to be trained in either an 
unsupervised or supervised manner, enabling the integration of segmentation probability maps to 
enhance the accuracy of DDF distribution prediction. Our model has shown comparable or superior 
performance when compared to other DIR models considering metrics related to DDF accuracy, 
such as mutual information (MI) and dice similarity coefficient (DSC), and has outperformed all 
the methods when considering metrics that evaluate the DDF distribution quality, such as the KL-
Divergence and expected calibration error (ECE). The analysis carried out in this paper has shown 
that our model can generate registration in a matter of seconds, allowing fast and reliable 
deformable image registration. 
 
The assumption that the propagated structures follow an independent Bernoulli distribution generates 
a cross-entropy (CE) term in the loss function of the supervised model. This metric has been 
extensively used in segmentation models but has not been used to optimize a DIR distribution before 
[30], [31] . The integration of CE into our model offers distinct advantages over the use of the DSC 
employed in previous works [12], [19], particularly in terms of providing a more probabilistic 
interpretation of the contour matching metric and improving the calibration of the probability 
maps [24]. In summary, the supervised model presented in the paper has a significant advantage 
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over other methods, as it not only allows to use segmentations provided by a physician but also to 
use segmentations coded as probability maps, where probability maps reflect aggregated overlap of 
contours drawn by multiple evaluators. 

 
Unlike other evaluation methods that use DDFs derived from plausible anatomical deformations to 
assess the DDF accuracy [27], [28], our approach provides a way to perform a probabilistic 
evaluation of the whole DDF distribution in a multimodal image registration problem. Notably, we 
observed a correlation between this metric and the ECE (Figure 5), which is a metric that indirectly 
assesses the quality of the DDF by looking at the calibration of the probability maps. However, our 
metric presents some limitations since it only works for multivariate normal DDF distributions and 
requires the generation of likely anatomical deformations. 
 
The hyperparameter tuning of the deep learning models employed in this study revealed a trade-off 
between the average M, calculated with different realizations of the wCT and the CBCTs, and the 
quality of the DDF distribution. This trade-off arises due to the fine-tuning of the 
hyperparameter that governs the amplitude of the DDF dispersion. Higher DDF dispersions can 
impact voxel-wise matching in regions with high-intensity gradients, resulting in reduced image 
similarity. These trade-off curves are characteristic of the model performance to predict DIR 
uncertainty since better models will thoroughly increase the uncertainty in regions of the image 
where this will not significantly affect the image similarity (low contrast areas). Our unsupervised 
and supervised model achieved the best trade-off balance between these two metrics, allowing the 
generation of a DDF distribution with KL-Divergence of 0.2 with an average normalized Mutual 
Information (nMI) of 85% during validation. Even though we selected ω = 20 to generate these values, 
the optimal value of this hyperparameter should be selected based on how much accuracy the user 
is willing to sacrifice to gain confidence in the uncertainty estimated. This trade-off is particular to 
the problem at hand. 
 
The visual inspection of the DDF uncertainty showed that our model presents high uncertainty in 
smoother regions of the images (aleatoric uncertainty) and in regions where the matching of 
different anatomical structures was not performed accurately (epistemic uncertainty). The 
uncertainty estimated with our model might also present characteristics for out-of-distribution 
detection (OOD). In the experiment conducted in  Figure 10, the use of over-smoothed images can 
be regarded as an exploration of OOD scenarios. By observing the model’s response to such a 
simplistic analysis, we could suspect that it could recognize inputs that fall outside the distribution it 
was trained on. The heightened uncertainty for these extreme cases indicates that the model exhibits 
greater uncertainty when encountering unfamiliar or abnormal inputs, such as over-smoothed 
images. However, a more detailed analysis should be performed to make a stronger claim. 
 
Despite the theoretical advantages of the supervised model over the unsupervised model, the analysis 
of the DSC revealed superior performance in only 6 out of 10 organs. Moreover, the supervised 
model did not exhibit better results when assessing the average DSC across all organs. We suspect 
that the absence of ground truth segmentation during the training of the supervised model limited 
its ability to generate even better contour propagation. This problem is significantly more relevant 
in small organs such as the submandibular glands and the thyroid, in which subtle differences 
between the predicted and validation mask generate bigger changes in the DSC. This might explain 
why the unsupervised model performed better in these structures. On the other hand, it is expected 
that overall the Dropout model and the supervised model did not present statistical differences in 
DSC because both methods are supervised. Oppositely, the supervised model achieved better DSC 
than VoxelMorph because the former was trained in a supervised way. 
 
The overall mutual information (MI) did not show statistical differences for the learning-based 
models because we set the loss function weights to generate similar MI between these models to 
make a fair analysis of the DDF distribution. The quality of the DDF distribution was relevant only 
for the unsupervised and supervised models developed in this work. The main reason why the 
VoxelMorph model could not predict relevant DDF distribution while generating a high image 
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similarity is because, in the loss function, the model couples the uncertainty term with the 
regularization term using the hyperparameter λ. The dropout model’s lack of performance in 
predicting a good DIR distribution could be interpreted as a limitation of the model in estimating the 
aleatoric uncertainty (Figure 10). As Kendall et al. [32] described, such models cannot estimate the 
uncertainty related to noise in the input data. Although we could not assess the quality of the DIR 
distribution of the Monte Carlo B-spline model, its performance can be estimated to be poor 
because of its high probability map ECE. However, we believe these results might be influenced by 
a poor selection of the phase space in investigating B-spline uncertainty. 
 
Incorporating structures within the supervised model inevitably introduces a bias in estimating 
DDF uncertainty when compared to the unsupervised model. While quantifying the exact 
magnitude of this bias presents challenges, the assessment of uncertainty prediction consistency, as 
gauged by KL divergence, reveals statistically significant differences (Wilcoxon p < 0.05). 
Specifically, the supervised model demonstrates an average KL divergence of 0.11, whereas the 
unsupervised model registers a slightly higher average of 0.15. This statistically significant 
difference in uncertainty prediction between the two methods suggests a bias introduced by the 
supervised model. Incorporating multiple physician segmentations during the training process 
could increase the bias in the supervised model, thereby generating better DIR distribution 
prediction in the vicinity of the structures. 
 
One of the most direct applications of this method in clinics is in the area of adaptive radiotherapy 
since the estimation of DIR uncertainty can be used to assess better the dose accumulated over the 
treatment fractions quantitatively and to decide if re-planning is needed [3]. Furthermore, fast and 
reliable DIR can be used in daily online adaptive radiotherapy for contour propagation. The 
advantage of predicting the structure uncertainty might open the possibility to speed up the 
adaptive workflow by incorporating these uncertainties in the treatment optimizer and thus reduce 
the need for the time-consuming structure physician reviewing. 
 

5 Conclusion 
 
In conclusion, we developed a probabilistic multi-resolution image registration model that uses 
convolutional neural networks to estimate the dense displacement field distribution between two 
multimodal images. Compared to other models that can estimate DIR uncertainty, our model 
presented equal or better contour propagation capabilities, predicted a higher quality DDF 
distribution and presented faster execution times. Future research will study the consequence of 
the DIR uncertainty when re-planning in daily adaptive radiotherapy workflow. 
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