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Miniaturized  lasers  are  an  emerging  platform  for  generating

coherent light for quantum photonics, in-vivo cellular imaging, solid-

state lighting, and fast 3D sensing in smartphones1-3. Continuous-

wave (CW) lasing at room temperature is critical for integration with

opto-electronic  devices  and  optimal  modulation  of  optical

interactions4,5.  Plasmonic  nanocavities  integrated  with  gain  can

generate  coherent  light  at  sub-wavelength  scales6-9,  beyond  the

diffraction limit that constrains mode volumes in dielectric cavities

such  as  semiconducting  nanowires10,11.  However,  insufficient  gain
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with respect to losses and thermal instabilities in nanocavities has

limited  all  nanoscale  lasers  to  pulsed  pump  sources  and/or  low-

temperature operation6-9,12-15. Here we show CW upconverting lasing

at  room  temperature  with  record-low  thresholds  and  high

photostability from sub-wavelength plasmons. We achieve selective,

single-mode  lasing  from  Yb3+/Er3+-co-doped  upconverting

nanoparticles (UCNPs) conformally coated on Ag nanopillar arrays

that support a single, sharp lattice plasmon cavity mode and < /20

field  confinement  in  the  vertical  dimension.  The  intense

electromagnetic  near-fields  localized  in  the  vicinity  of  the

nanopillars  result in a threshold of 70 W/cm2, orders of magnitude

lower than other small lasers. Our plasmon-nanoarray upconverting

lasers provide directional, ultra-stable output at visible frequencies

under  near-infrared  pumping,  even  after  six  hours  of  constant

operation, which  offers  prospects  in  previously  unrealizable

applications of coherent nanoscale light.

Lanthanide-based UCNPs  are  photostable  solid-state  nonlinear  emitters

that  are  efficient  at  sequentially  absorbing  multiple  near-infrared  (NIR)

photons and emitting at visible and shorter-NIR wavelengths16-19. Recently,

UCNPs have been used as gain media in small lasers, and their integration

with dielectric  microcavities and hyperbolic  metamaterials  has resulted in

multi-wavelength upconverted lasing20-22.  UCNPs also exhibit long radiative

lifetimes (typically 100s of µs) compared to other gain materials18,23,24, which
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leads  to  low  saturation  intensities  that  could  facilitate  CW pumping  and

population  inversion  build-up. Pump powers  required  for  UCNP lasing are

orders of magnitude lower than those for nanolasers based on quantum dots,

dye molecules, or conventional nonlinear optical materials7,22,25. Additionally,

organic  molecules  exhibit  triplet-state  accumulation  and  limited

photostability,  and  semiconductor  nanomaterials  undergo  Auger

recombination, which reduces population inversion under CW pump4,26,27.

Multiphoton  upconverting  processes  can  be  strongly  enhanced  by  the

intense  electromagnetic  fields  from plasmonic  nanostructures28.  However,

surface  plasmon  resonances  from  single  nanoparticles  are  typically

broadband with  low mode quality.  Spectral  overlap with  multiple,  narrow

UCNP energy bands results in reduced output efficiency at a single targeted

mode because of internal energy transfer29,30. Arrays of metal nanoparticles

can overcome these challenges because collective,  coherent coupling can

produce  narrow  lattice  plasmon  resonances  (linewidths  <  5  nm)  with

suppressed radiative loss and stronger near-field enhancements compared

to single nanoparticles31,32.  Previously,  we demonstrated band-edge lattice

plasmons  as  optical  feedback  for  down-shifted  dye  nanolasing  at  room

temperature  with  directional  emission  and  tunable  wavelengths6,7,33,34.

Compared  to  photonic  microcavities  that  exhibit  multiple  cavity  modes21,

plasmonic nanocavity arrays with a single lattice spacing support a single,

narrow mode that can, in principle, selectively enhance specific upconverting

energy transitions.
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We designed plasmon lasers that integrate two key advances in order to

enhance coupling between the nanocavity and the lanthanide (Ln) emitters,

to  lower  upconverting  lasing  thresholds,  and  to  improve  device  stability.

First,  we fabricated Ag nanopillar arrays with a lattice plasmon resonance

that overlaps the red Er3+ upconverted emission transition (4F9/2 to  4I15/2) in

colloidal UCNPs doped with sensitizer Yb3+ ions / emitter Er3+ ions (Figs. 1a-

c).  Second,  we exploited  core-shell  UCNPs  with  high  Ln  content  that  are

known  to  show  significantly  improved  luminescence  properties  and

considerably  reduced  saturation  intensities  compared  to  canonical

compositions24,35-37.  The  high-Ln-content  UCNPs  are  core-shell

heterostructures with 13.9 ± 1.3 nm diameters comprised of 9.9-nm -phase

NaYF4 cores  doped  with  20% Yb3+ /  20% Er3+ and  2-nm  NaYF4 shells

(Methods,  Supplementary  Fig.  1)38. In  our  all-solid-state  system  under

ambient  conditions, NIR pumping  at  980 nm can excite  Yb3+ ions  in  the

UCNPs, which transfer energy to Er3+ ions to facilitate upconverted emission

at multiple visible and NIR wavelengths, and lattice plasmon modes can be

engineered to couple selectively to Er3+ emission (red) (Fig. 1d).
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The plasmonic arrays consist of Ag nanopillars (80-nm diameter, 50-nm

height) arranged in a square lattice with periodicity  a0 ranging from 450 –

460 nm depending on which transition within the Er3+ red emission manifold

was of interest (Figs. 1a-c). As described previously31,32, collective coupling of

plasmonic nanopillar arrays produces a sharp lattice plasmon mode with a

quality factor  Q =  
λ

Δ λ
  > 200 that is maintained after coating with UCNPs
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Figure 1. Continuous-wave (CW) upconverting nanolasing on Ag
nanopillar  arrays  at  room  temperature.  a, Schematic  of  the
upconverting nanoparticle (UCNP) coating on top of Ag arrays with spacing
a0 = 450 nm. Ag nanopillars are with 80-nm diameter, 50-nm height and
scalable over cm2 areas. The UCNP film is ca. 150 nm thick.  b, Scanning
electron  micrograph showing  the  Ag  nanopillar  array  with  partial
conformal  coating  (right)  with  a  film  of  14  nm  core-shell  UCNPs
(NaYF4:Yb3+,  Er3+).  c,  Representative  near-field  |E|2 plot  for  the  450-nm
spaced Ag nanopillars  at  resonance (n = 1.46)  from a finite-difference
time-domain method simulation.  d, Yb3+,  Er3+ energy levels and coupling
mechanism to the lattice  plasmons.  e, Power-dependent  lasing spectra
from lattice plasmon resonances at   = 664 nm for Ag nanopillar arrays



(Supplementary Fig. 2). UCNPs were drop-cast from solution onto the arrays

to form conformal films of thickness ca. 150 nm, resulting in UCNPs that are

situated at the nanoscale plasmonic hotspots within 25 nm surrounding each

nanopillar surface (Figs. 1a-c; near-field enhancement at the nanopillars, |E|

2/|E0|2 >1000). Since the refractive index  n of UCNPs (n ~ 1.47 @ 660 nm)

closely  matches  that  of  the  fused silica  substrate  (n ~  1.46  @ 660 nm)

(Supplementary Fig. 2), the Ag nanopillars were effectively embedded in a

uniform index environment, which is critical for sustaining high-quality lattice

plasmons. 

To determine whether UCNPs are coupled to the plasmonic nanocavities,

we first characterized spontaneous emission from UCNPs on the plasmonic

array  at  low  (ca.  20  W/cm2)  pump  intensities.  Enhanced  upconverted

emission between 650-660 nm was resolved at each Ag nanopillar position

(Supplementary Fig. 3). As CW pump intensity increased beyond a threshold,

lasing action occurred at the lattice plasmon resonance wavelength (Fig.

1e). At threshold, we observed both a significant increase in rising slope (s =

4.4) in the input-output curve compared to spontaneous emission (s = 2.2;

Supplementary Fig. 4) and simultaneous linewidth narrowing of the lasing

mode to < 1 nm (Fig. 1f, Supplementary Fig. 5, Supplementary Table 1).

The measured linewidths above threshold are consistent with those observed

in dye-based lattice plasmon lasers6,7,33.  The lasing threshold of  70 W/cm2

from the device in Fig. 1 represents a > 200-fold improvement over that of

upconverting microresonators21 and orders of magnitude reduction over that
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of  nanodisk-on-film12,39 or  nanowire-on-film14,15 plasmon  lasers  at  room

temperature  (Supplementary  Table  3).  The  low  thresholds  of  our  UCNP

plasmon lasers (as low as 29 W/cm2, Supplementary Fig. 6) can be attributed

to  both  bright  Yb3+/Er3+-co-doped UCNPs  and  single-mode  plasmon

nanocavities with spectrally selective optical  enhancement.  The measured

external quantum efficiency of 0.04% is consistent with expectations based

on Purcell enhancements and known upconverting quantum yield for these

UCNPs (Supplementary Figs. 7-8).
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Besides  enabling  low  thresholds,  plasmonic  array  nanocavities  offer

directional  and  highly-efficient  coupling,  in  contrast  to  spherical  and

cylindrical  cavity  geometries  based  on  whispering  gallery  modes,  where

input coupling is non-trivial and emission is less directional.  The collective

coupling  between periodic  Ag  nanopillars  results  in  directional,  beam-like

upconverted emission at the band-edge  point7 with a low divergence angle

of ca. 0.5° (Figs. 2a-b). Additionally, the lasing beam is polarized along the

same  direction  as  the  incident  pump  (Figs.  2c-d).  This  polarization

coherence is  distinct  from unpolarized spontaneous emission  from UCNPs
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Figure  2.  Upconverting  nanolasing  showed  spatial  and
polarization  coherence,  as  well  as  high  photo-stability.  a,
Schematic of the experimental optics setup to measure the far-field beam
profile. The excitation beam is filtered out using a short pass 745 nm filter
and 660/10 nm band pass filter, enabling the CMOS sensor to record only
the emission from the plasmon nanolasing at 664 nm.  b, Far-field beam
profile  of  lasing  emission  above  threshold,  with  the  camera  detector
placed 2 cm away from the sample plane, showing a beam divergence of
ca. 0.5°. c, Polarization-dependent lasing emission with pump polarized at
90°.  d,  The polar plot  represents the emission intensity of the 664 nm
lasing  mode  and  the  spontaneous  emission  (SE)  as  a  function  of  the
polarization  angle  .  e-f,  Stability  of  lasing  spectra,  intensity  and



(regardless  of  excitation  polarization)  that  results  from  energy  transfer

migration between dopant ions within a single UCNP over the long lifetimes

of Ln3+ excited states23 and random nanocrystal orientation40. Moreover, our

upconverting  nanolaser  shows  long-term  stability,  which  is  typically

challenging for multiphoton lasing systems since high peak pump intensities

are  often  required  for  nonlinear  responses21.  Our  all-solid-state  system

operated  at  room  temperature  for  more  than  6  h  under  continuous

irradiation, the longest operational period we tested (Figs. 2e-f). Over this

time, we did not observe any optical or thermal damage; the mode intensity

remained constant, and only minimal shifts in mode frequency (< 0.15 nm)

occurred. In contrast, CW lasing based on semiconductor nanoparticles was

not stable over 1 h under fluences similar to those used in this study4,26. 

Interestingly, we find that CW lasing occurs even under pulsed pumping

conditions in our upconverting plasmon nanolaser (Fig. 3). This observation

is consistent with excited state lifetimes that are much longer than both the

pulse width and repetition period of the pulsed pump (~120 fs and ~13 ns,

respectively). In contrast to measured spontaneous emission lifetimes of ca.

100 µs for these UCNPs24, the lifetime curve for lasing emission at 660 nm

within  a  1-s  time  window  shows  a  bi-exponential  fit  with  a  slower

component of 510 ns and a faster component of 66 ns (Supplementary Fig.

9,  Supplementary  Table  2).  These  values  agree  well  with  our  estimated

range of Purcell enhancement factors (Supplementary Fig. 8), with increased

decay rates for decreased Er3+-nanopillar separation distances. Second-order
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correlation  measurements  (g(2)())  of  lasing  emission  confirm  CW  output

(Supplementary Figs. 10-12). The lasing thresholds under pulsed pumps (in

terms  of  average  power)  are  similar  to  those  under  CW  pumps

(Supplementary Table 3). 

To highlight the ability of the system to select specific Er3+ transitions for

lasing, we varied the nanopillar lattice constant a0, which modified the lattice

plasmon nanocavity mode. Shifting the resonance from 650 nm (a0 = 450

nm) to 660 nm (a0 = 460 nm), we observed that the upconverted lasing

emission  followed the  cavity  mode resonance,  demonstrating that  single-

mode  upconverting  lasing  is  directly  determined  by  the  plasmonic

nanocavities  (Fig.  3a).  We  found  similar  lasing  thresholds  and  power

dependencies  for  both  lattice  spacings,  including  high  nonlinearity  in  the

gain portion of the input-output curves (s = 5.3 and 4.7 above the threshold

for the devices with modes at 650 nm and 660 nm, respectively,  Fig. 3b).

Note that the extreme saturation of excited states under pulsed excitation

led to a smaller rising slope (s = 1.2) at high pump powers. 
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To  gain  insight  into  the  lasing  mechanisms  of  these  low-threshold

upconverting nanolasers, we developed a semi-quantum model and a time-

domain  approach  to  study  the  nonlinear  optical  build-up  under  a  pulsed

pump (Fig. 3c).  The narrow lattice plasmon resonance provides selective

enhancement only for the 4F9/2-to-4I15/2 red emission without directly affecting

energy transfer processes at other energies. Therefore, we used a simplified
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Figure 3. Upconverting CW nanolasing under a pulsed laser and
semi-quantum modeling in the time domain. a,  Lasing spectra with
lasing modes at  = 650 and 660 nm from UCNPs coupled to Ag nanopillar
arrays with spacing  a0 = 450 (blue) and 460 nm (red), respectively. The
results  show  the  selective  coupling  between  Er3+ red  emission  from
components  of  the  4F9/2 level  and  the  tailored  plasmon  resonances
associated with collective  Bragg modes of  the Ag nanopillar  arrays.  b,
Input-output curves in log-log scale show a slightly lower laser threshold
for  the  mode  at  660  nm.  c,  Six-level  model  system  describing
upconverting  nanolasing  and  the  associated  population  inversion.  The
transition lifetimes are t54 = t10 = 10 fs and t41 = 0.1 ns, respectively, which
are reduced to allow for simulation within the computational window (< 3
ps)  in  the  time-domain  approach  (Supplementary  Figs.  13-15).  d,
Simulated input-output curve showing a threshold-like power dependence
with laser thresholds comparable to the experimental values. e, Simulated
time-dependent evolution of  population density describing upconverting



six-level  model  to  approximate  the  multiphoton  optical  pump  process19,

different  from  the  single-photon  pump,  four-level  system7 for  dye-based

plasmon nanolasers (Supplementary Fig. 13). The calculations show a large

exponentially  rising  slope  (s  = 4.8)  above  the  lasing  threshold,  which  is

similar to nonlinear buildup seen in the experiments (Fig. 3d). In contrast,

the slow rise close to threshold (s = 1.8) corresponds to the intrinsic two-

photon  emission  of  Yb3+/Er3+-co-doped UCNPs.  To  capture  the  time-

dependent lasing build-up, we tracked the evolution of population density in

different energy levels and found a characteristic population inversion from

4F9/2 to 4I15/2 above threshold (Fig. 3e). No population inversion was observed

for upconverted emission below threshold, consistent with a slow rising slope

(Supplementary Figs. 14, 15). The calculated lasing threshold occurred at an

average power of 270 W/cm2  (Fig. 3d), comparable with experiments. Minor

differences in threshold are likely because of unknown gain values for the

UCNPs and the simplified  Er3+ electronic structure in our model, where we

included only select Er3+ excited states. 

In summary, we demonstrated CW upconverting plasmon nanolasing at

room  temperature.  We  observed  exceptionally  stable  lasing  over  long

periods (> 6 h), with lasing thresholds as low as 29 W/cm2, significantly lower

than  other  plasmon  and  upconverting  nanolasers.  In  addition,  the

upconverting nanolaser can achieve CW emission under both CW and pulsed

pump conditions.  Our time domain,  semi-quantum modeling captured the

characteristic  population  inversion  and  strong  optical  nonlinearities. Low-
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threshold  upconverting  nanolasers  with  NIR  pump  open  possibilities  for

integration with compact, low-power circuits as well as in vivo applications

including  deep-tissue  imaging,  sensing,  theranostics  and  optogenetic

manipulation41.  Looking  forward,  the  large  variety  of  available  output

wavelengths in the Ln series, the ability to couple plasmonic nanocavities

with  densely-packed  quantum  emitters,  and  the  general  nanocavity

architectures  provide  an  almost  unlimited  number  of  robust  low-power

coherent  nanoscale  light  sources.  Our  all-solid-state  nanolaser  platform

offers prospects to realize quantum-optical technologies and commercial lab-

on-a-chip photonic devices. 
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Methods

Synthesis of core/shell UCNPs

-NaYF4 UCNP  cores  with  20%  Yb3+,  20%  Er3+,  and  20%  Gd3+ were

synthesized  as  described1,2 with  minor  modifications.  YbCl3 ·  H2O  (0.080

mmol, 32 mg), YCl3 (0.16 mmol, 31 mg), ErCl3 (0.08 mmol, 22 mg), GdCl3

(0.080 mmol,  21 mg), oleic acid (3.25 g),  and 1-octadecene (ODE, 4 mL)

were stirred in a 3-necked flask with an in-reaction thermocouple, heated at

110  °C  under  vacuum,  and  purged  with  N2 every  15  min  for  1  h.  The

dissolved lanthanides were then cooled under N2, and sodium oleate (1.25

mmol, 382 mg), NH4F (2.0 mmol, 74 mg), and ODE (3 mL) were added to the

flask. The reaction mixture was stirred under vacuum at room temperature

for 30 min and then heated at 317 °C for 45 min.  The reaction flask was

cooled to 40 °C with a strong stream of air, the product transferred to a 50-

mL centrifuge tube, 10 mL of EtOH added, and the tube centrifuged at 3000

x g for 3 min.  The supernatant was decanted and 3 mL of hexane used to

wash the reaction flask was added to the pellet,  which was dispersed by

sonication.   The  tube  was  then  centrifuged  at  3000  x  g  for  3  min,  the

supernatant transferred to a new tube, 5 mL of EtOH was added, and the

tube centrifuged again at 3000x g for 3 min.  The pellet was dispersed in 1

mL of hexane, precipitated with 5 mL of EtOH two additional times, and the

resulting pellet was dispersed in 15 mL of anhydrous hexane. 

To overgrow inert 2-nm NaYF4 shells on these 10-nm cores, we used a

layer-by-layer protocol incorporating 20% Gd3+ to facilitate the growth of  -
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phase  morphology3.  A  hexane  dispersion  of  28  nmol  of  core  UCNPs  was

added to a 3-neck, 50-mL flask and the hexane evaporated under N2.  Oleic

acid (4 mL) and ODE (6 mL) were added and the flask was stirred at 70 °C for

1  hour  under  vacuum.   In  separate  flasks,  Ln  oleates  were  prepared  by

heating YCl3 (0.40 mmol, 78 mg), GdCl3 (0.10 mmol, 26 mg), oleic acid (2

mL), and 1-octadecene (3 mL) at 110 °C for 1 h under vacuum; and sodium

trifluoroacetate (1.20 mmol, 16 mg) was dissolved in oleic acid (3 mL) and

stirred at room temperature for 1 hour under vacuum.  The UCNPs flask was

purged with N2 and heated at 280 °C for 10 min, allowing the temperature to

stabilize.  Shell  precursors  were  injected  as  in  previous  work38,  with

sequential injections of lanthanide and Na/F precursors performed every 15

min.  After four rounds of injections, the reaction was allowed to stir for an

additional 30 min at 280 °C, and a strong stream of air to the flask was used

for  cooling.  Core/shell  UCNPs  were  isolated  and  stored  using  the  same

protocol for core UCNPs.   Final TEM diameters were measured to be 13.9 ±

0.8 nm (Supplementary Fig 1). 

Nanoparticle characterization

For TEM imaging, stock solutions  of  oleate-capped UCNPs were diluted

100-fold in hexane and 10 μL was adsorbed onto a carbon film/ holey carbon,

400 mesh copper grid (Ted Pella). The grid was wicked of excess hexane and

allowed to dry in the hood.  Standard TEM images were taken with a FEI

Tecnai TEM or Philips CM200/FEG in SEM mode. Size statistics were acquired

for  approximately  100 nanoparticles  using ImageJ  software.  Incoherent  Z-
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contrast images were acquired using a high angle annular dark field detector

(HAADF, Fischione) on the TEAM I aberration-corrected electron microscope

(Thermo Fischer Scientific)  in  scanning transmission (STEM) mode,  with a

primary beam energy of 300 keV. Core/shell structures were characterized

by  incoherent  Z-contrast  imaging  with  a  high  angle  annular  dark  field

detector (HAADF) on an aberration-corrected scanning transmission electron

microscope (STEM). Core/shell structures are apparent based on Z-contrast

with an abrupt change in the intensity of the atomic columns corresponding

to differences in Ln3+ content between core and shell, a transition not seen in

the UCNP cores.

Preparation of plasmonic nanopillar arrays

Ag nanopillars are in a cylindrical shape (diameter 80 nm, height 50 nm)

and scalable up to cm2 by large-scale nanopatterning processes. We made

these samples by thermal metal deposition, and no annealing process was

involved. Arrays of Ag nanopillars on fused silica were fabricated with a soft

nanofabrication process referred to as PEEL4. Briefly, we generated periodic

photoresist  posts  on  Si  wafers  by  phase-shifting  photolithography  with

controlled post size. The patterns were then transferred into free-standing Au

nanohole  films  after  Cr  deposition,  removal  of  photoresist  posts,  etching

through  the  Si  nanoholes  and  lift-off  of  Au  film.  Finally,  we  created  Ag

nanopillar  arrays  by  metal  deposition  through  the  hole-array  mask  on  a

transparent substrate and then removal of the mask. A 2-nm Cr layer was

deposited in-between for better adhesion between Ag nanopillars and fused
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silica.  Later  for  protection  of  these  nanopillars,  we  used  atomic  layer

deposition to deposit 5 nm Al2O3 around the nanopillar surface. 

Preparation of lanthanide-based nanoparticles plasmon nanolasers

Solution-processed UCNPs were drop cast on top of Ag nanopillar arrays

(diameter d = 80 nm, height h = 50 nm). The thickness of the coating can be

controlled with the concentration of the nanocrystals in solution. The drop-

cast  film thickness  was  ca.  150  nm for  the  devices  discussed  here.  The

measured  transmission  spectra  suggested  that  sharp  lattice  plasmon

resonances were preserved after coating Ag nanopillars with Yb3+/Er3+ UCNP

emitters.

Confocal microscopy and spectroscopy

For direct UCNP excitation, a dispersion of nanoparticles was added to a

glass coverslip and placed on an inverted confocal  microscope (Nikon).  A

980-nm laser (ThorLabs) was directed into the back aperture of a 0.1 NA 4×

Objective (Nikon), and focused directly on the sample. The emitted light was

collected back through the same objective, filtered by one 496-nm long-pass

and one 745-nm short-pass (SP) filter (Semrock, Inc. Brightline multiphoton

filter),  in  addition  to  a  720SP  dichroic  and  sent  to  an  LN2-cooled  CCD-

equipped  spectrometer  (Princeton  Instruments).  The  same  confocal

microscope was used for excitation of the upconverting plasmon nanolaser

and spectroscopy studies of laser modes. Different gratings are available in

the  dispersion  system,  namely  150  grooves/mm  and  600  grooves/mm,

providing different spectral resolution and dynamic ranges. The resolution of
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the spectrometer is 0.1 nm, which could be improved slightly by closing the

slit  of  the  spectrometer  at  a  cost  of  collection  efficiency.  For  power

dependence  measurements  for  the  evaluation  of  lasing  action,  a  neutral

density wheel with a continuously variable density was used, synchronized

with  the  collection  system  and  automatically  rotated  by  an  Arduino-

controlled rotator. Powers were simultaneously recorded by a Thorlabs power

meter by using a glass coverslip to reflect ~10% of the incoming flux. The

powers were in-line recorded in H5-files as metadata for each independent

file.

Wide-field imaging

For wide-field imaging, a CMOS Andor Neo 5.5 camera was attached to

the microscope without going through the confocal optical pathway. Instead,

the signal was collected laterally on one of the external side ports of the

microscope.

Photon statistics

A  second-order  correlation  measurement  was  implemented  using  a

Hanbury-Brown and Twiss (HBT) setup with a 50/50 beam splitter and 2 MPD

detectors. The g(2) optical second-order cross correlation is defined as:

g(2)(τ)=〈Idet1 (t)∙Idet2 (t+τ)〉

where Idet1 (t)  and Idet2 (t)  are the  signal  intensities  measured at  the  two

detectors (the two discrete photon streams collected by the two channels).

The brackets denote the expectation value and t and τ are the photon arrival

time and delay. The counts in the  g(2) histogram are the number of photon
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pairs detected for different delays using the two detectors (which means it

should  vary  with  the  measurement  length,  selected  bin  size  and  signal

intensity). The normalized g(2)  is:

g(2)¿
⟨ Idet1 (t )∙Idet 2 (t+τ ) ⟩

( ⟨ Idet1 (t ) ⟩∙ ⟨ Idet 2 (t+τ ) ⟩ )

which  is  the  normalization  by  division  of  the  mean  signal  of  the  two

detectors.

The  second  order  correlation  has  been  used  to  evaluate  the  photon

statistics  for  the  upconverting  plasmon  nanocavity  array,  producing

upconverted lasing by coupling these nanocavity arrays with Yb3+ and Er3+

ions doped in a NaYF4 matrix, which are able to upconvert near-infrared 980

nm excitation wavelength to red (ca. 660) nm visible emission from the Er.

The emission at ca. 660 nm coupled resonantly with the engineered plasmon

nanocavity array, and when the excitation power was above the threshold,

lasing appeared selected from Er3+  emission at ca. 660 nm. The emission

spectra  show  that  the  nanocavity  mode  modifies  the  Er3+ spontaneous

emission even at low pump powers, funneling energy into the preferential

mode, which increases in intensity and narrows with increased pump power.

The plot of emission intensity versus pump power shows that its intensity

and linewidth are power dependent with a PTh  ̴  30-70 W/cm2 for CW pumping

and PTh  ̴  32-300 W/cm2 average power for pulsed pumping conditions.

The plasmon lasers were measured at above-threshold excitation pump

powers of 112 W/cm2 for CW and 230 W/cm2 for pulsed pumping at 980 nm.
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Supplementary Fig. 10 depicts the g(2) histogram for the upconverted lasing

at  ca.  660  nm  for  above-threshold  powers  (CW  and  pulsed  pumping

schemes), showing that the normalized  g(2) function is 1 for both pumping

schemes. This demonstrates that there is no temporal correlation between

the emitted photons, which is a signature of CW lasing. Below and above

threshold measurements of the laser emission yield a small photon bunching

for below laser thresholds at g(2)(t=0) attributed to amplified spontaneous

emission (ASE); a comparison to Er3+ spontaneous emission is added to the

plot in Supplementary Fig. 11. As a reference, the second order optical cross

correlation g(2) of the 80 MHz chameleon laser at 800 nm was measured with

the  same  detector  configuration.  Supplementary  Fig.  12  depicts  the  g(2)

histogram of the chameleon laser at 800 nm, showing the pulsing of the 80

MHz laser with bunching peaks rising every 12.5 ns corresponding to the

laser repetition rate (bunching peaks every 12.5 ns corresponds to the laser

pulse  train).  Note  that  there  is  no  bunching  peak  recorded  for  the

upconverting  plasmon  nanocavity  laser,  which  instead  shows  photon

statistics  typical  of  CW  lasing  emission.  A  Poissonian  distribution  is  not

sufficient  to  indicate  CW  lasing  behavior,  since  lanthanide  spontaneous

emission also exhibits this. However, the highly nonlinear scaling with power

shows  slopes  as  high  as  10,  which  agrees  with  our  upconverting  lasing

modeling, and the simultaneous mode narrowing experienced at threshold

powers indicates lasing behavior that happens in a CW fashion.

Finite-difference time-domain (FDTD) simulations
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FDTD calculations  with  commercial  software  (FDTD solution,  Lumerical

Inc., Vancouver, Canada) were used to simulate the linear optical properties

of Ag nanopillar arrays. The optical constant of Ag was taken from Johnson

and Christy measurements (400–1000 nm). A uniform mesh size of 4 nm (x,

y and  z)  was used to ensure the accuracy of  electric  and magnetic  field

calculations within the metal nanopillars. 

Simulation  of  upconverting  nanolasing  was  performed  by  home-built

Matlab  codes,  where  a  six-level  one-electron  model  was  integrated  for

modeling Yb3+/Er3+-co-doped UCNPs. The narrow lattice plasmon resonance

provides  selective  enhancement  only  for  the  Er3+ red  emission  without

directly affecting other energy transfer processes, and hence, we could use a

simplified six-level model to approximately describe the upconverting lasing

process (Supplementary Figs. 13-15). In the semi-quantum system, we set

the Ag nanopillar size d = 80 nm and height h = 50 nm, pump wavelength at

a =  980  nm,  emission  at  e =  660  nm  and  index  n =  1.42,  close  to

experimental conditions. The decay lifetimes were set as t54 = t10 = 10 fs, t41

= 0.1 ns, and t50 = t32 = t30 = 1 ns. We initially pumped the six-level system

from the ground state (population density N0 = 1, N1 = N2 = N3 = N4 = N5 =

0) and collected all emitted flux with a plane monitor placed 0.3 µm away on

top of the nanopillars. Er3+ emitter concentration was C = 3 mM. The whole

simulation  is  within  ~1  ps,  and  time-dependent  evolution  of  population

density at different  energy levels  was tracked to probe the characteristic

population inversion for lasing action.

26



DATA AVAILABILITY

The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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