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Abstract

Statistical Guarantees of Tuning-Free Methods for Gaussian Graphical Models

by

Chau Bao Tran

The majority of methods for sparse precision matrix estimation rely on computa-

tionally expensive procedures, such as cross-validation, to determine the proper level of

regularization. Recently, a special case of precision matrix estimation based on a dis-

tributionally robust optimization (DRO) framework has been shown to be equivalent to

the graphical lasso. From this formulation, a method for choosing the regularization

term, i.e., for graphical model selection, without tuning was proposed. In Chapter 2 of

this thesis, we establish a theoretical connection between the confidence level of graphi-

cal model selection via the DRO formulation and the asymptotic family-wise error rate

of estimating false edges. Simulation experiments and real data analyses illustrate the

utility of the asymptotic family-wise error rate control behavior even in finite samples.

Next, we propose a completely tuning-free approach to estimating sparse precision

matrix based on linear regression in Chapter 3. Theoretically, the proposed estimator is

minimax optimal under various norms. In addition, we propose a second-stage enhance-

ment with non-convex penalties, which possesses strong oracle properties. We assessed

our proposed methods through comprehensive simulations and real data application on

human gene network analysis.
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Chapter 1

Introduction

Undirected graphical models are ubiquitous in the general field of machine learning.

Learning the edge of an undirected graph G with nodes X1, . . . , Xd is equivalent to

estimating the dependence structure among these d random variables. Specifically, if

(j, k) is an edge in the graph G, then Xj and Xk are dependent conditioned on the

rest of variables. In Gaussian graphical models, where X = (X1, . . . , Xd) ∼ Nd(0,Σ),

the conditional dependence structure is encoded in the sparsity pattern of the precision

matrix Ω = Σ−1: Ωjk = 0 when (j, k) is not an edge in G [1]. This conditional dependency

make Gaussian Graphical Model a useful tool for network analysis in many applications

such as finance, neuroscience, and genetics [2, 3, 4, 5].

Also known as the covariance selection problem [6], we are primarily interested in

estimating Ω using n observations of the d-dimensional random vector X. In high-

dimensional setting where n < d, this problem becomes challenging, so regularization

becomes a common strategy for graph selection and estimation. Inducing sparsity is an

especially favorable choice of regularization since the sparsity pattern in Ω encodes the

conditional independence structures among X1, . . . , Xd.

In literature, there are essentially two types of sparsity-inducing estimators in Gaus-
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Introduction Chapter 1

sian graphical models. One type of method is based on penalized likelihood estima-

tion with the well-studied graphical lasso estimator [7, 8, 9] being an example of this

type. Subsequently, theoretical properties of likelihood-based methods are established

[10, 11, 12, 13], and penalized likelihood estimation methods with non-convex penalties

are proposed [14, 15]. An alternative type of approach that is more amenable to theoret-

ical analysis estimates Ω in a column-by-column fashion, where each column is estimated

in a regularized regression problem [16, 17, 18, 19]. These pseudo-likelihood methods

are also more flexible and less computationally challenging compared to the full likeli-

hood estimators [20]. The optimal performance of estimators from both types typically

depends on choosing the proper value of regularization parameter, which usually relies

on unknown population quantities. In practice, determining the level of regularization

involves computationally intensive procedures, such as cross-validation. Therefore, pro-

viding statistical guarantees for tuning-free methods the level of regularization of which

can be determined without any tuning is an interesting research direction.

Recently, a distributionally robust formulation for inverse covariance matrix was pro-

posed [21], resulting in a class of ℓp-regularized estimators, with the graphical lasso with

p = 1 is a special case. Additionally, they utilizing the Robust Wasserstein Profile func-

tion [22] for this formulation, [21] proposed the Robust Selection criterion with a fast

bootstrap-based algorithm for estimating the regularization parameter for graphical lasso.

In Chapter 2, we provide a theoretical connection between the Robust Selection criterion

and asymptotic family-wise error rate control in Gaussian Graphical model selection.

For penalized linear regression, a tuning-free estimator referred to as Rank Lasso has

been proposed [23]. The optimal regularization level for this estimator does not depend

on any unknown quantities and automatically adjusts for design matrix and random

error distribution. As a result, the regularization parameter can easily be simulated

from data. In Chapter 3, we proposed a novel estimator for high-dimensional Gaussian

2



Introduction Chapter 1

graphical models based on the Rank Lasso and provide the convergence rate for this

estimator. We further propose a second-stage enhancement using non-convex penalties,

which enjoys oracle properties.
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Chapter 2

Family-wise Error Rate control for

Graphical Lasso

2.1 Introduction

Distributionally robust optimization (DRO) as an estimation framework seeks pa-

rameters that minimize the worst expected risk over the uncertainty set of distributions

(often called ambiguity set in DRO terminology) [24]. Leveraging the DRO framework,

[21] showed that for a fixed ρ ≥ 1 and p ∈ [1,∞], their DRO formulation of regularized

inverse covariance estimation is equivalent to the following expression:

min
K∈S++

d

{
Tr(KAn)− log |K|+ δ1/ρ∥vec(K)∥p

}
, (2.1)

where An is the empirical covariance matrix, S++
d denotes the set of d×d positive definite

matrices, and δ is the radius of ambiguity set, which is constructed as a ball in the

Wasserstein space of distributions, centered at the empirical measure of the data. Note

that the graphical lasso objective function is a special case of (2.1) when p = 1 and

4



Family-wise Error Rate control for Graphical Lasso Chapter 2

ρ = 1. Constants p and ρ specify the Wasserstein distance metric between two probability

distributions. Remarkably, the regularization parameter of graphical lasso corresponds

to the ambiguity set radius δ despite the differing premise between DRO and maximum

likelihood estimator. Intuitively, an increase in ambiguity set radius δ (i.e., an increased

robustness in DRO) corresponds to an increased amount of regularization in graphical

lasso (which results in conservative selection of non-zeros).

Using the Robust Wasserstein Profile (RWP) function Rn introduced by [22], [21]

derived the RWP function for the graphical lasso, Rn(K) = ∥vec(An − K)∥∞, and

characterized its asymptotic distribution. The distribution is used to determine δ (equiv-

alently, the regularization parameter λ in graphical lasso from [8]) given the user specified

error tolerance level α:

λ = δ := inf {δ > 0 | P0(Rn(Ω) ≤ δ)}

= inf {δ > 0 | P0(∥vec(An − Σ)∥∞ ≤ δ) ≥ 1− α} , (2.2)

where P0 denotes the true underlying distribution of the data. This graphical model

selection procedure is called RobSel in [21]. Then, by Corollary 3.3 of [21], n1/2δ tends

to the 1 − α quantile of Rn, r1−α, and the corresponding δ can be determined from an

order statistic in finite samples. The asymptotic result also motivates the approximation

of the RWP function through a bootstrap procedure in Algorithm 1 to determine the

regularization parameter λ, given significance level α.

2.2 Family-wise error rate control with RobSel

In this section, we provide results for the interpretation of α and its relation to Type I

error control in graphical model selection. Recall that equation (2.1) shows that the DRO

5
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Algorithm 1 RobSel algorithm for estimation of the regularization parameter λ [21]

Input: n observations, X1, . . . , Xn.
Set parameters α ∈ (0, 1) and B ∈ N.
Compute empirical covariance An.
for b = 1, ..., B do

Obtain a bootstrap sample X∗
1b, . . . , X

∗
nb by sampling uniformly and with replace-

ment from the data
Compute empirical covariance A∗

n,b from the bootstrap sample.
R∗

n,b ← ∥A∗
n,b − An∥∞

end for
Set λ to be the bootstrap order statistic R∗

n,((B+1)(1−α)).

estimator is equivalent to the ℓ1-penalized estimator in graphical lasso, which produces

a sparse estimator of Ω, denoted Ω̂δ. Given equation (2.2), a natural question is how to

interpret error tolerance α, which was not addressed in [21]. The following result directly

connects the parameter α in RobSel and the asymptotic FWER of the corresponding

obtained estimator.

Theorem 2.2.1 (FWER of graphical lasso) Let Ξ = {(i, j) : Ωij = 0} be the indices

corresponding to zero entries of Ω. For a fixed α, let δ satisfy (2.2) and let Ω̂δ be the

unique solution to optimization problem (2.1) with ρ = 1. Then

lim
n→∞

P(Ω̂δ
ij ̸= 0 for some (i, j) ∈ Ξ) ≤ α. (2.3)

Proof: In this proof, let Sd be the set of d × d symmetric matrices. Recall that

n1/2δ → r1−α, where r1−α is the 1 − α quantile of the distribution in Corollary 3.3 and

Remark 3.5 of [21]. Then, by Theorem 1 of [25], we have that n1/2(Ω̂δ −Ω) converges in

distribution to U∗, the minimizer of

arg min
U=U ′

Tr(UΣUΣ) + Tr(UH) + r1−α

∑
i ̸=j

{uijsign(Ωij)1(Ωij ̸= 0) + |uij|1(Ωij = 0)} ,

6
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where H ∈ Sd is a matrix of jointly Gaussian random variables with zero mean such that

Cov (hij, hkℓ) = E [xixjxkxℓ] − ΣijΣkℓ. By the convex nature of the above optimization

problem, using the first optimality criterion using subdifferentials (Corollary 2.7 of [26]),

it follows that there exists some Z ∈ Sd satisfying

Zij =



0, i = j,

sign(Ωij), i ̸= j,Ωij ̸= 0,

sign(uij), i ̸= j,Ωij = 0, uij ̸= 0,

∈ [−1, 1], i ̸= j,Ωij = uij = 0.

for which H +2ΣU∗Σ+ r1−αZ = 0. Letting ⊗ denote the matrix Kronecker product and

Γ = Σ⊗ Σ, it follows that

vec(U∗) = −1

2
Γ−1 {vec(H) + r1−αvec(Z)} .

Finally, let Ω̂δ
Ξ denote the vector of elements of Ω̂δ whose indices are in Ξ, ΩΞ denote the

vector of elements of Ω whose indices are in Ξ (so it is the zero vector), and U∗
Ξ denote

the vector of elements of U∗ whose indices are in Ξ. Then one concludes that

lim
n→∞

P(Ω̂δ
ij ̸= 0 for some (i, j) ∈ Ξ)

= lim
n→∞

P(
√
n(Ω̂δ

Ξ − ΩΞ) ̸= 0) = P(U∗
Ξ ̸= 0)

≤ P(U∗ ̸= 0) = 1− P(H ̸= −r1−αZ) ≤ 1− P(∥vec(H)∥∞ ≤ r1−α)

= α.

Using the estimated regularization parameter λ(α) from RobSel for graphical lasso,

Theorem 2.2.1 states that the asymptotic probability that the estimated graph includes

7
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a false edge (false non-zero estimated in Ω̂δ) is bounded by α. This interpretation is

equivalent to having the FWER bounded by α in hypothesis testing-based graphical

model selection in [27]. As a result, Theorem 2.2.1 implies that RobSel can also serve as

a tool for controlling graphical lasso’s FWER at some chosen significance level α with

similar to using a hypothesis testing-based graphical model selection.

Concretely, testing d(d − 1)/2 null hypotheses that each pairwise partial correlation

is zero can serve as an alternative way to construct a graphical model, where the partial

correlation between variables i and j is defined as ρij·rest = −Ωij/
√
ΩiiΩjj and i, j =

1, 2, . . . , d. The unadjusted p-value πij for each null hypothesis is be obtained by

πij = 2[1− Φ(
√
n− d− 1 · |zij·rest|)], (2.4)

where Φ is the CDF of standard normal distribution, zij·rest = arctanh(rij·rest) is the

Fisher z transformed sample partial correlation rij·rest for population partial correlation

ρij·rest. To account for multiple comparison, a p-value correction is needed to achieve a

desired FWER characteristic. One of the multiple testing correction methods given in

[27] controls the FWER based on Holm’s approach for p-value adjustment:

πHolm
a↑ = max

b=1,...,a

[
min

{((
d

2

)
− b+ 1

)
πb↑, 1

}]
, for 1 ≤ a ≤

(
d

2

)
. (2.5)

where π1↑ ≤ π2↑ ≤ ... ≤ πd(d−1)/2↑ are the ordered p-values from (2.4). This approach

will be referred to as the Holm-corrected testing method for graphical model selection

in our numerical experiments. Other multiple testing correction approaches discussed

in [27] include Bonferroni and Šidák adjustments. For the remainder of our work, we

compare RobSel with the Holm-corrected testing method for its simplicity (compared to

the Šidák-based approach) and better power characteristic (compared to the Bonferroni-

8
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based approach). We emphasize that the distinct advantage of graphical lasso is that it

can perform model selection and parameter estimation of Ω simultaneously, whereas any

testing-based approach can only identify the zeros/non-zero locations of Ω.

2.3 Numerical results

In this section, analyses of simulated and real data illustrate the usefulness of RobSel’s

asymptotic FWER property in finite samples and compare to the Holm-based multiple

testing approach for Gaussian graphical model selection. Furthermore, RobSel is used to

analyze real datasets from genomics.

To carry out our numerical experiments, we used packages CVglasso for cross vali-

dation, qgraph for the extended Bayesian information criterion, and robsel for Robust

Selection. These packages are from CRAN, and they use package glasso to estimate the

sparse inverse covariance matrix. Robust Selection algorithm is also available as a Python

package, robust-selection, at https://pypi.org/project/robust-selection/. The

codes to reproduce the numerical results is available at https://github.com/cbtran/

robsel-reproducible.

2.3.1 Simulation experiments

In applications, the finite sample behavior of the FWER characteristic whose asymp-

totic properties are given in Theorem 2.2.1 is of practical interest. In this section, simu-

lation studies are used to verify the FWER of graph reconstruction when using RobSel

with graphical lasso. Furthermore, the FWER of a testing-based graphical model selec-

tion from [27] is given as a comparison.

The true precision matrix Ω ∈ S++
d used to generate the simulated data has been con-

structed as follows. First, generate an adjacency matrix of an undirected Erdős-Renyi

9
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Figure 2.1: Observed family-wise error rate (top-left), True Positive Rate (top-mid-
dle), False Positive Rate (top-right), Matthews Correlation Coefficient (bottom-left),
and Jaccard index of similarity (bottom-right) evaluated from graphs estimated with
RobSel with graphical lasso and Holm-based multiple testing method. Note that
Holm-based method is not applicable when n ≤ d = 100. All traces represent average
quantities over 200 datasets.

graph with equal edge probability of 0.02 discarding any self-loops. Then, the weight of

each edge (the magnitude of the non-zero element) is sampled uniformly between [0.5, 1],

and the sign of each non-zero element is set to be positive or negative with equal proba-

bility of 0.5. The resulting matrix is made diagonally dominant by following a procedure

described in [28], which ensures that the resulting matrix Ω is positive definite with ones

on the diagonal. Finally, the diagonal entries of Ω are resampled uniformly between

[1, 1.5]. Throughout this numerical study section, one randomly generated instance of

sparse matrix Ω with d = 100 variables is fixed. Using this Ω, a total of N = 200 datasets

for each sample size n ∈ {50, 100, 200, 400, 800, 1600, 3200} were generated independently
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from a multivariate zero-mean Gaussian distribution, i.e., N (0d,Ω
−1).

To evaluate the selected models, family-wise error rate (FWER), true positive rate

(TPR), false positive rate (FPR), Matthews correlation coefficient (MCC), and Jaccard

index were used as performance metrics. These metrics are derived from elements in the

confusion matrix, true positives (TP), true negatives (TN), false positives (FP) and false

negatives (FN), where a positive indicates an estimated presence of an edge (two non-

zero entries in Ω). In this setting, family-wise error rate is the probability of any false

edge detection: FWER = 1(FP > 0). True positive rate is the proportion of edges in

true graph G that are correctly identified in the estimated graph: TPR = TP
TP+FN

. False

positive rate is the proportion of nonedges in true graph G that are incorrectly identified

as edges in the estimated graph: FPR = FP
FP+TN

. Matthews correlation coefficient sum-

marizes all count in confusion matrix to measure quality of graph recovery performance:

MCC = TP ·TN−FP ·FN
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

. Jaccard index measure the similarity between

two edge sets EA and EB: J(EA, EB) =
|EA∩EB |
|EA∪EB | , and, by convention, Jaccard index of

two empty sets is defined to be one, i.e., J(∅, ∅) = 1.

Figure 2.1 shows the FWER, TPR, FPR, MCC, and Jaccard index of the estimated

graphs from both Holm’s multiple testing method and the graphical lasso with RobSel

criterion. TPR increases as sample size increases; however, for each sample size, both

method have similar TPR, but RobSel appears to be more conservative at small signif-

icant levels since it tends to have smaller TPR and FWER. For larger α, RobSel is less

conservative with higher TPR while its FWER still bounded by α. Figure 2.1 also show

the average Jaccard index from 200 simulations at 5 different sample size and 10 different

levels α. It can be seen that Jaccard index increases as sample size increases indicating

the estimated graphs from both RobSel and Holm-based multiple testing method become

increasingly similar.

Figure 2.2 illustrates a striking similarity between graphical lasso tuned with RobSel

11
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(d) Holm’s multiple
testing (α = 0.05)

Figure 2.2: True and three estimated graphs from a dataset with n = 3200. Red edges
denote False Positive edges.

and testing-based graphs for large n. Most edges appear in both graphs and both graphs

do not contain any false positive edge owing to the stringent significance level. On the

other hands, graphical lasso tuned with cross-validation have many false positive edges.

These qualitative observations were typical in our numerical simulations when data were

generated from multivariate normal distributions across a wide range of sample sizes we

considered.

2.3.2 Application to gene regulatory network reconstruction

Here, we infer gene regulatory networks from real datasets provided for the DREAM5

transcriptional network inference challenge from [29]. We reconstructed the networks of

interactions among transcription factors (TF). TF-encoding genes usually act as hub-

genes with large numbers of interactions with other genes [30]. Thus, identifying inter-

actions between TFs may help researchers better understand the relationships between

different groups of genes. The in silico dataset contains d = 195 transcription factors on

n = 805 arrays. The Escherichia coli (E. coli) dataset contains d = 334 transcription

factors on n = 805 arrays. The Saccharomyces cerevisiae (S. cerevisiae) dataset contains

d = 333 transcription factors on n = 536 arrays. To evaluate the inferred networks,

12
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we validated the edges in estimated graphical models against experimentally validated

interactions given in [29].

Graphical models were constructed using graphical lasso tuned with three different

regularization parameter selection approaches as well as the using the Holm-corrected

testing method described in Section 2.2. The regularization parameter tuning approaches

we considered were as follows. The first is Robust Selection (RobSel), with B = 200 sets

of bootstrap samples. The second is 5-fold cross-validation (CV) procedure, where the

performance on the validation set is the evaluation of the graphical loss function under

the empirical measure of the samples on the training set. The third is extended Bayesian

information criterion (EBIC) proposed in [31]. CV and EBIC are evaluated on the same

grid of λ, which are ten logarithmically spaced values in the interval (0.05smax, smax] with

smax being the minimal value of regularization that gives an empty graph: i.e., setting

λ = smax for graphical lasso returning a diagonal matrix Ω. Note that increasing the

number of λ values on the grid increases computational time.

Because DRO framework minimizes worst case expected loss, specifying a small error

tolerance α for RobSel often results in a graph with very few edges being estimated

especially when analyzing a real dataset. In practice, a larger α might be beneficial in

order to estimate graphs with more edges. Note, however, that setting a λ corresponding

to a large α when using graphical lasso would still return a very sparse graph. In our

analyses, RobSel was specified with α = 0.9, EBIC with parameter γ = 0.5, and 5-fold

for cross-validation. EBIC criterion has the following form:

EBICγ(E) = −2L(Ω̂(E)) + |E| log n+ γ4|E| log d, (2.6)

where E is the edge set of a candidate graph implied by Ω̂, and L(Ω̂(E)) denotes the

maximized log-likelihood function of the associated model.

13
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Dataset Method # Estimated # Validated Precision Time(s)

In silico

Holm 289 63 0.2184 0.088
RobSel 693 89 0.1284 0.467
EBIC 1237 108 0.0873 1.566
CV 7241 168 0.0232 8.611

E. coli

Holm 269 14 0.0520 0.166
RobSel 3479 22 0.0063 3.355
EBIC 6599 37 0.0056 10.46
CV 10770 43 0.0040 52.92

S. cerevisiae

Holm 56 3 0.0536 0.149
RobSel 4259 46 0.0108 2.728
EBIC 7731 70 0.0091 17.80
CV 11367 93 0.0082 85.64

Table 2.1: Graph recovery results and computational times in seconds from the
DREAM5 datasets for three methods, Holm’s testing procedure with α = 0.9, RobSel
with α = 0.9, extended BIC (EBIC) with γ = 0.5, and 5-fold cross-validation (CV).

Table 2.1 show the number of edges in the estimated graph, number of validated edges

(interactions found in [29]), precision (the ratio of validated edge counts to total edge

counts), and the wall clock times. In our results, an estimated edge (i.e. gene interaction)

is a true positive if it is experimentally validated interaction in the database, i.e. in [29].

We can see that for all three data sets, RobSel appears to be faster than EBIC and CV

with similar precisions. Between E. coli and S. cerevisiae data sets, computational time

for RobSel decreases when sample size decreases, but computational times of both EBIC

and CV increase. Even though we used RobSel with α = 0.9 to get a denser graph, the

estimated graph by RobSel are still much sparser than EBIC and CV.

2.4 Discussion

We made a theoretical connection between significant level α from RobSel and family-

wise error rate of estimating any false positive edges when RobSel is used to tune graphical

lasso. Furthermore, the asymptotic FWER control property is tested in finite sample us-

14
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ing simulation experiments. The similarity between Holm-testing method and RobSel

tuned graphical lasso solutions when using the same significance level α give users prac-

tical insight about the behavior of graphical lasso: graphical lasso regularization can be

chosen according to a user specified FWER level.
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Chapter 3

A Completely Tuning-Free Approach

to Precision Matrix Estimation

3.1 Introduction

In this chapter, we consider the pseudo-likelihood approach to Gaussian Graphical

Model estimation. Given a d-dimensional multivariate Gaussian random vector X =

(X1, . . . , Xd) ∼ N(0,Σ), we are interested in estimating the precision matrix Ω = Σ−1.

It is well known that for each j, the joint normality implies the following conditional

distribution Xj|X−j ∼ Nd−1(Σj,−j(Σ−j,−j)
−1X−j,Σj,j − Σj,−j(Σ−j,−j)

−1Σ−j,j), which is

equivalent to the following linear model (by implicitly conditioning on X−j):

Xj = XT
−jβ

(j) + ϵj, (3.1)

where β(j) = [Σ−j,−j]
−1Σ−j,j and ϵj ∼ N

(
0, σ2

j

)
with σ2

j = Σj,j − Σj,−j[Σ−j,−j]
−1Σ−j,j.
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By the block matrix inversion formula, we have

Ωj,j = σ−2
j , and Ω−j,j = −σ−2

j β(j). (3.2)

It suggests that an estimate of the j-th column of Ω can be obtained by estimating the

regression coefficients β(j) and the error variance σ2
j of the linear model (3.1). Thus, the

problem of estimating Ω can be formulated as a series of d regression problems, each of

which estimates one column of Ω.

Note from (3.2) that the sparsity pattern in an estimate of β(j) is equivalent to the

sparsity pattern of the estimated j-th column of Ω under the joint normality. This ob-

servation drives many recently proposed methods, most of which are built upon various

regularized regression techniques. For example, to estimate each column of Ω, neighbor-

hood selection [16] use lasso [32], [17] use the Dantzig selector [33], [18] use scaled lasso

[34], [19] use square-root lasso [35]. However, these methods either require computa-

tionally intensive procedures (e.g., cross-validation) to carefully choose the proper level

of regularization, which depends on certain unknown population parameters. The only

exceptions, as far as the we know, are the strongly related TIGER [19] and the scaled

lasso [18]. Although both methods greatly simplify the tuning procedure, the claimed

tuning-free property only holds asymptotically. In practice, the computational caveats

of these methods include (1) enforcing the same tuning parameter value to be used for

estimating all columns of Ω, and (2) the common tuning parameter value includes a

constant that still requires fine-tuning. These limitations call for the development of an

estimator of Ω that is completely tuning-free, where the level of regularization can be

determined without any tuning and is fully adaptive to each column problem separately.

Contributions: In this chapter, we propose a completely tuning-free method in

high-dimensional Gaussian graphical models. Our estimator possesses the completely

17



A Completely Tuning-Free Approach to Precision Matrix Estimation Chapter 3

pivotal property, so the regularization parameter for each column problem does not de-

pend on any unknown parameters and can be easily computed. Theoretically, our method

achieves the minimax optimal rate of convergence for a well-studied matrix class under

different norms. We further propose a second-stage enhancement using non-convex penal-

ties, which enjoys the oracle properties. Through comprehensive numerical studies, we

demonstrate that the favorable performance of the proposed methods, and illustrate their

robustness to the violation of the Gaussian assumptions.

First, we provide detail on the notation. For the rest of the section, we let operator

|·| denote absolute value for a scalar and cardinal number of a set. For a vector β ∈ Rd,

βi denotes its i-th element. We define the ℓp norm of a vector as ∥β∥p = (
∑d

i=1|βi|p)1/p

for 0 < p < ∞, and ∥β∥∞ = maxi|βi|. For a matrix A ∈ Rn×d, Ajk denotes its (j, k)

entry, A∗,j denotes the j-th column of A, and A∗,−j denotes the submatrix of A with

j-th column removed. We denote the matrix Lp norm as ∥A∥p = max∥v∥p=1 ∥Av∥p, and

matrix Frobenius norm as ∥A∥F = (
∑

j,k|Aj,k|2)1/2. Finally, A ≻ 0 denotes that the

matrix A is positive definite. We use capital letter C to denotes an absolute constant

which may change for each line of equations.

3.2 Methods

3.2.1 Our proposed method: gRankLasso

In this section, we propose the graph rank lasso estimator (gRankLasso) of Gaussian

graphical models, where each column of Ω is estimated using rank lasso [23]. Specifically,

to estimate the j-th column of Ω using the data matrix X ∈ Rn×d, we use the following
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rank loss function

Qj(β) = [n(n− 1)]−1

n∑
k=1

∑
m ̸=k

|(Xkj −Xmj)− (Xk,−j −Xm,−j)β|, (3.3)

which is the summation of absolute pairwise difference (among the n observations) of

the linear model predictions when Xj is regressed on all other variables X−j. In non-

parametric regression, this loss is equivalent to, up to a constant, the Jaeckel’s dispersion

function with Wilcoxon scores [36, 37]. Then the estimate of the j-th column of Ω can

be obtained by

β̂(j) = argmin
β∈Rd−1

{Qj(β) + λj∥β∥1}, (3.4)

σ̂2
j = n−1∥X∗,j −X∗,−jβ̂

(j)∥22,

Ω̂jj = 1/σ̂2
j , Ω̂−j,j = −Ω̂jjβ̂

(j).

Using Algorithm 2, we can easily simulate the regularization parameter λj in (3.4) that

satisfies the subgradient condition with high probability [23, 38, 39]. The value of α

and c are theoretical necessities. Setting α = 0.1 and c = 1.01 works well in practice.

Moreover, the optimization problem (3.4) can be formulated as a linear programming

(LP), which can be solved efficiently using a standard solver.

While recently there are numerous tuning-free methods in high-dimensional linear

models [40, 41, 42, 43], we argue that rank lasso loss (3.3) is an especially attractive can-

didate in each column estimation problem. First of all, rank lasso enjoys the completely

pivotal property, which means that the theoretically optimal regularization parameter

does not depend on any unknown model parameters and adjusts to both the distribution

of random errors and the structure of design matrix. Hence, we allow regularization

parameters λj to be different for different j. Second, the regularization parameters λj
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Algorithm 2 Simulate λj, for j = 1, ..., d

Input: X ∈ Rn×d, α ∈ [0, 1], c > 1, B ∈ N
for k in 1 : B do

Generate random perturbation for 1 : n, denotes as r
ϕ = 2 · r − (n+ 1)
for j in 1 : d do

Lj[k] = c · ∥2[n(n− 1)]−1(X∗,−j)
Tϕ∥∞

end for
end for
Output: λj = Quantile(Lj, 1− α/d), for j = 1, ..., d

can be easily simulated from data, which is extremely efficient to compute and requires

absolutely no fine tuning. Third, among other regression methods that share similar

properties, the rank lasso is significantly more efficient in Gaussian settings [23]. Finally,

it was also noted that the rank lasso estimator is robust to heavy-tailed error contami-

nation. This bonus property makes it attractive for many data applications where the

stringent multivariate Gaussian assumption is not guaranteed.

3.2.2 A second-stage improvement

The ℓ1 penalty used in (3.4), while being computationally friendly, is known to induce

large estimation bias [44]. Therefore, many non-convex penalties have been proposed to

circumvent this issue [45, 46]. Next, we present a second-stage improvement with non-

convex penalties [23] using gRankLasso as an initial estimator. Specifically, for 1 ≤ j ≤ d,

β̃(j) = argmin
β∈Rd−1

{Qj(β) +
d∑

i=1

p′η(|β̂
(j)
i |)|βi|}, (3.5)

σ̃2
j = n−1∥X∗,j −X∗,−jβ̃

(j)∥22,

Ω̃jj = 1/σ̃2
j , Ω̃−j,j = −Ω̃jjβ̃

(j),
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where β̂(j) is obtained in (3.4) and p′η(·) denotes the derivative of a non-convex penalty

function pη(·) with a tuning parameter η > 0. The second-stage improvement is moti-

vated by the local linear approximation algorithm [47, 23] and applies to a general class of

non-convex penalties, which will be described in Section 3.3. The optimization problem

(3.5) can also be formulated as a LP, which can be solved efficiently. As mentioned in

[47], this one-step estimate provides dramatically computational speed-up without losing

statistical efficiency. Note that a tuning parameter η is required in the general non-

convex penalty in (3.5), which requires light tuning. At a cost of higher computational

cost, we show in Section 3.3 that with a proper choice of η, the second-stage enhancement

achieves stronger theoretical guarantees than gRankLasso. Particularly, the second-stage

enhancement enjoys the oracle property, meaning that it performs as if one knows the

support of true Ω.

Practically, to ensure that the estimate of Ω is symmetric, we set Ω̂sym
ij = Ω̂sym

ji =

min{Ω̂ij, Ω̂ji} and Ω̃sym
ij = Ω̃sym

ji = min{Ω̃ij, Ω̃ji} for i ̸= j. This additional symmetriza-

tion step does not affect the theoretical analysis shown in [48].

3.3 Theoretical analysis

In this section, we study the theoretical properties of the proposed estimators. Let

Sj = {i : i ̸= j,Ωij ̸= 0} be the support of the off-diagonal part of the j-th column of

Ω. We further define the matrix class M(s,Md) = {Ω = ΩT ∈ Rd×d : Ω ≻ 0, ξ−1 ≤

Λmin(Ω) ≤ Λmax(Ω) ≤ ξ,max1≤j≤d|Sj| ≤ s, ∥Ω∥1 ≤ Md}, where ξ is a positive constant,

Λmin(Ω) and Λmax(Ω) are minimum and maximum eigenvalues of Ω, and Md may scale

with d. We assume the following conditions:

(C1) Ω ∈M(s,Md),

(C2) s2 log d = o(n).
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Condition (C1) requires that the true precision matrix has a bounded minimum and

maximum eigenvalues, and is sparse column-wise. Condition (C2) allows the maximum

degree of the graph encoded by the true Ω to grow with d.

3.3.1 Main theorems

Theorem 3.3.1 (Matrix L1 and spectral norm rates) With the adaptive choice of λj, j =

1, ..., d from Algorithm 2, under assumptions (C1) and (C2), we have

∥Ω̂− Ω∥2 ≤ ∥Ω̂− Ω∥1 ≤ CsMd

√
log d

n

with probability at least 1−O(1/d), where C is a positive constant.

Theorem 3.3.1 shows the convergence rate of matrix estimation under L1 and spectral

norms. This is the minimax optimal rate of convergence for the matrix classM(s,Md)

(Theorem 4 in [17]).

Corollary 3.3.2 (Frobenius norm rate) With the adaptive choice of λj, j = 1, ..., d from

Algorithm 2, under assumption (C1) and (C2), we have

∥Ω̂− Ω∥F ≤ CsMd

√
d log d

n

with probability at least 1−O(1/d), where C is a positive constant.

The Frobenius norm bound is worse than the minimax optimal rate by a factor of
√
s

[10, 49, 19]. Whether gRankLasso could achieve the minimax Frobenius norm rate is an

interesting future research direction.

Next, we show the strong oracle property and the faster convergence rate using the
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second-stage enhancement. We assume the following conditions on the general non-

convex penalty function:

1. pη(t) is increasing and concave for t ∈ [0,+∞), and has a continuous derivative

p′η(t) on (0,+∞).

2. pη(t) has a singularity at the origin, i.e. p′η(0+) > 0, which can be standardized so

that p′η(0+) = η.

3. There exist constants a1 > 0 and a2 > 1 such that p′η(t) ≥ a1η for all 0 < t < a2η;

and p′η(t) = 0 for all t > a2η.

These general conditions hold for many non-convex penalty functions, including the two

popular choices SCAD [45] and MCP [46]. We show that the second-stage improvement

performs as if one knows the sparsity pattern of the true Ω. Specifically, let Ω̌ be the

oracle estimator of Ω defined as follows: For i ≤ j ≤ d

β̌(j) = argmin
supp(β)⊂Sj

Qj(β),

σ̌2
j =

1

n
∥X∗,j −X∗,−jβ̌

(j)∥22,

Ω̌jj = 1/σ̌2
j , Ω̌−j,j = −Ω̌jjβ̌

(j).

That is, β̌(j) is the minimizer of the rank loss function Qj in (3.3) when the support

of the j-th column of Ω is known. Using a non-convex penalty such as SCAD or MCP

for the second-stage estimator, we can show the oracle property of the precision matrix

estimation.

Theorem 3.3.3 Let Ω̃ be the second-stage estimator of Ω using gRankLasso Ω̂ as an

initial estimator. Suppose the conditions in Theorem 3.3.1 are satisfied and the non-

convex penalty function satisfies the general conditions above. Furthermore, suppose s =
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O(na1), η = O(n−(1−a2)/2), log d = na3, and non-zero entries of the true Ω satisfies

min
i ̸=j
|Ωij| ≥ bn−(1−a4)/2 (3.6)

where a1, a2, a3, a4, b are positive constants such that 2a1 < a2 < a4 ≤ 1 and a1+a3 < a2,

then we have

Ω̃ = Ω̌, and

∥Ω̃− Ω∥2 ≤ ∥Ω̃− Ω∥1 ≤ C1Md
s√
n
+ C2Md

√
log d

n

with probability at least 1−O(1/d), where C1, C2 are positive constants.

Theorem 3.3.3 states that under the minimal signal strength condition (3.6), the second-

stage improvement recovers the support of the oracle estimator by noting that Ω̃ = Ω̌.

Furthermore, it achieves a significantly faster convergence rate. The minimum condition

on the magnitude of true nonzero entries (3.6) is mild and standard for proving support

recovery results and oracle property [16, 48, 50]. Remarkably, we do not need to impose

the irrepresentable condition [51], which is very stringent.

3.3.2 Comparison to existing methods

We compare the theoretical properties of graphical Rank Lasso with other existing

methods for sparse precision matrix estimation.

The matrix class M(s,Md) is widely considered in the Gaussian graphical models

literature. Specifically, the Graph Dantzig selector [17] can also be formulated as a LP.

However, the graphical Dantzig selector requires tuning of regularization parameter while

gRankLasso is completely tuning free. Furthermore, graphical Dantzig selector does not

have the strong oracle property with a second-stage enhancement.
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Another method that utilizes the idea of Dantzig selector [33] is CLIME [48]. While

CLIME considers a slightly larger class of matrix where the conditional number (instead

of the minimal and maximal eigenvalues) of the precision matrix is bounded, its conver-

gence rate under spectral norm is Op(sM
2
d

√
(log d)/n), which is slower. Moreover, similar

to the graphical Dantzig selector, CLIME requires tuning of the optimal regularization

parameter.

The TIGER method from [19] achieves the minimax optimal rate for the same larger

matrix class. However, a fine-tuning procedure is still needed since TIGER is only tuning-

insensitive in finite samples. Moreover, TIGER does not have a second-stage enhance-

ment with oracle property and faster convergence rate.

The SCIO estimator [52] requires the irrepresentable condition, which is a very strong

condition to achieve the same minimax optimal rate and the support recovery. In con-

trast, the graphical Rank Lasso only requires the minimal signal strength condition. It

is still unclear if SCIO can achive the optimal minimax rate without the irrepresentable

condition.

Similar to SCIO, the GLasso estimator also assumes the irrepresentable condition to

obtain Op(sMd

√
(log d)/n) rate of convergence under spectral norm [11]. [15] proved the

SCAD-penalized maximum likelihood estimator achieves the oracle property. Even so,

they can not the improve convergence rate, while our second-stage enhancement with

nonconvex penalty can achieve a significantly faster rate.

Under similar conditions as our second-stage estimator, [50] estimate each column of

Ω using a non-convex penalty, which achieves the oracle property and a faster convergence

rate in spectral norm. However, their method reuquire heavy-tuning while our second-

stage estimator only needs light tuning with high-dimensional BIC, whose consistency

result is proved in [23].
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3.4 Simulation studies

We consider MCP penalty in the second-stage enhancement and denote our method as

gRankMCP. In this section, we compare the performances of gRankLasso and gRankMCP

with GLasso, CLIME, and TIGER in terms of precision matrix estimation. All numerical

experiments are implemented in R [53]. The CLIME estimator is computed using R

package flare [54]; the TIGER and GLasso estimators are computed using R package

huge [55].

3.4.1 General Comparison

We consider 3 types of graph: random, band, cluster as described in [19] to determine

the sparsity pattern in the final Gaussian graphical models. Specifically,

1. Erdős–Rényi random graph: Each pair of nodes are connected by an edge with

probability 0.05 independently.

2. Band graph (with bandwidth 3): Two nodes i, j are connected if |i− j| ≤ 3.

3. Cluster graph: The d nodes are partitioned into ⌈d/20⌉ disjoint groups. The sub-

graph of each group is an random graph with edge probability 0.2.

From each of the generated graph, we further generate an adjacency matrix A by setting

the nonzero off-diagonal elements to be 0.3 and the diagonal elements to be 0. Let

Λmin(A) be the smallest eigenvalue of A. The precision matrix is then generated by

Ω = D[A+ (|Λmin(A)|+ 0.2) · Id]D, (3.7)

where D ∈ Rd×d is a diagonal matrix with Djj = 1 for j = 1, ..., d/2 and Djj = 1.5

for j = d/2 + 1, ..., d. Finally, n i.i.d. observations are sampled from the multivari-
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ate Gaussian distribution Nd(0,Ω
−1). For each type of graph, we set n = 100 and

d ∈ {25, 50, 100, 200, 400} and repeat the simulation 50 times. For CLIME and GLasso,

the optimal tuning parameter values are chosen using a validation set approach. Specif-

ically, for each tuning parameter, CLIME and GLasso estimate the precision matrix Ω̂

using the training data, and the optimal tuning parameter is chosen so that it mini-

mizes the negative log-likelihood loss L(Ω̂) = trace(Ω̂Σ̂)− log det(Ω̂) on the validation

set, where Σ̂ is the sample covariance matrix. We use the regularization parameter value

λ =
√
(log d)/n for TIGER as suggested in [19] instead of doing a fine tuning. While

gRankLasso is completely tuning-free, gRankMCP requires some light tuning. We use

the high-dimensional Bayesian information criteria (HBIC) as suggested in [23] to select

the best value of η in (3.5).
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Figure 3.1: Comparison of estimation performance (in terms of spectral norm
∥Ω̂− Ω∥2, averaged over 50 replications) of various methods in the three graph models
with d ∈ {25, 50, 100, 200, 400}.

In Figure 3.1 we present the estimation error (averaged over 50 replications) un-

der spectral norm ∥Ω̂− Ω∥2 for the three graph models. Evidently, gRankLasso and

gRankMCP both outperform other methods in all three graph types. The performance

advantage is especially pronounced in the high-dimensional setting where d = 400. The
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Figure 3.2: Spectral norm ratio ∥Ω̂gRankLasso − Ω∥−1
2 ∥Ω̂TIGER − Ω∥2 and Frobenius

norm ratio ∥Ω̂gRankLasso −Ω∥−1
F ∥Ω̂TIGER −Ω∥F (averaged over 50 replications) in the

random graph model.

performance of CLIME and GLasso, the two methods that require tuning, are sensi-

tive to the underlying graph type. In particular, CLIME has a higher estimation error

than GLasso and TIGER for band graph, but achieves a lower estimation error for the

other graph types. Remarkably, gRankLasso outperforms TIGER when both methods

do not use tuning. This could be due to the difference of the completely tuning free

property of gRankLasso and the asymptotic tuning free property of TIGER. With fine

tuning, TIGER could potentially achieve an improved estimation performance, at a cost

of more expensive computation. In Section 3.4.2, we further investigate the performance

difference between gRankLasso and TIGER in various settings.

3.4.2 Sensitivity of tuning-free methods

In this section, we further illustrate the benefit of the completely tuning-free property

of gRankLasso. To this end, we focus on the random graph model and study the perfor-

mance difference between gRankLasso and TIGER. We consider various settings of the

diagonal matrix D in (3.7). Specifically, we set Djj = 1 for j = 1, ..., d/2 and Djj = τ
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for j = d/2 + 1, ..., d with τ ∈ {1, 1.5, 2, 2.5, 3}. Intuitively the optimal level of regu-

larization for estimating each column then falls into one of the two categories (Djj = 1

versus Djj = τ). Thus the value τ gives a simplified characterization of the difference

in the optimal level of regularization in estimating different columns of Ω. As the value

of τ increases, it is expected that a method like TIGER, which enforces the regulariza-

tion parameter λj to be the same across all column problems, will have a deteriorating

performance.

For each generated precision matrix, we follow the same paradigm to generate n = 100

observations of dimension d ∈ {50, 100, 200} from the multivariate Gaussian distribution

X ∼ Nd(0,Ω
−1). Figure 3.2 shows the ratio (averaged over 50 replications) of the Frobe-

nius norms ∥ΩgRankLasso − Ω∥−1
F ∥ΩTIGER − Ω∥F . As expected, we observe that with an

increasing value of τ , the performance advantage of gRankLasso over TIGER becomes

more pronounced. This demonstrates a setting where the completely tuning-free prop-

erty of gRankLasso is favored and the asymptotic tuning-free property might fall short.

We also note that this pattern holds for all three values of d, which covers the whole

spectrum of the n > d, n = d, and n < d settings.

3.4.3 Benefit of the second-stage enhancement

It is almost impossible to identify the difference in performance between gRankLasso

and gRankMCP in Figure 3.1. To better understand the benefit of the second-stage

enhancement in practice, we consider a more challenging setting with a denser true

precision matrix: Ωij = 0.6|i−j|, for 1 ≤ i, j ≤ d, which is also considered in [48]. We then

generate n = 100 observations with dimension d ∈ {25, 50, 100, 200, 400} fromNd(0,Ω
−1).

Figure 3.3 shows the spectral norm error (averaged over 50 replications) ∥Ω̂− Ω∥2 for

gRankLasso and gRankMCP with 5 values of d. Unsurprisingly, in a more challenging sce-
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Figure 3.3: Comparisons between gRankLasso and gRankMCP on a decay graph
model in terms of spectral norm ∥Ω̂− Ω∥2 (averaged over 50 replications).

nario, the efficiency gain of gRankMCP becomes more obvious. However, as mentioned,

this statistical efficiency gain from gRankMCP comes at a cost of additional tuning. It

is then up to the practitioners’ discretion to choose between the tuning-free gRankLasso

and its second-stage enhancement, based on the trade-off of budgets on statistical error

and computation resources.

3.4.4 Heavy-tailed setting

Finally, as mentioned in Section 3.2.1, one potential bonus property of our proposed

methods is the robustness against the violation of the underlying joint normality assump-

tion. In this section, we evaluate performance of our methods in heavy-tailed setting in

comparison with other methods. We consider the same set up of the random graph

model as in Section 3.4.1. Instead of the Gaussian distribution, we generate observations

from a multivariate t-distribution tν(0,Ω
−1) of dimension d ∈ {25, 50, 100, 200, 400} with

degrees of freedom ν ∈ {3, 5, 10}.

Figure 3.4 shows the estimation error in Frobenius norm (averaged over the 50 repli-

cations). Across different settings, gRankLasso and gRankMCP still achieve the most
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Figure 3.4: Comparison of estimation performance (in terms of Frobenius norm
∥Ω̂− Ω∥F , averaged over 50 replications) of various methods in the three graph mod-
els when data are drawn from a multivariate t-distribution with degrees of freedom
ν ∈ {3, 5, 10}.

favorable performance among all competing methods. In the most extreme case when

ν = 3, all methods suffer while gRankLasso and gRankMCP clearly win in the challeng-

ing high-dimensional case (d = 400). When ν = 10, we see a similar performance to the

Gaussian setting for all methods, which again shows the efficiency advantage of using the

rank loss in (3.3) [23].

3.5 Data example: Human gene network

We apply our proposed methods to reconstruct the interaction network from hu-

man gene expression data in R package BDgraph [56], which was previously studied by

[57, 58, 19]. This dataset consists of n = 60 individuals of Northern and Western Euro-

pean ancestry from Utah, whose genotypes are available online at the Sanger Institute

website1. We use d = 100 variables in the dataset that are the 100 most variable probes

corresponding to different Illumina TargetID transcripts, and they were selected from

1ftp://ftp.sanger.ac.uk/pub/genevar
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Figure 3.5: The sparsity pattern of estimated graphs from TIGER, gRankLasso, and
gRankMCP on human gene network data. The plot 3.5a shows 124 significant edges
whose estimated posterior probabilities are greater than 0.6, and is considered to be
the comparison baseline.

Method True Total Precision
GLasso 77 301 0.255
TIGER 66 179 0.368

gRankLasso 62 136 0.456
gRankMCP 56 108 0.518

Table 3.1: Comparison of gRankLasso, gRankMCP, and TIGER on the human gene
expression data in terms of the number of True recovery, Total recovery, and Precision.

earlier study from [57] and subsequent study from [58].

The goal of this analysis is to learn the significant associations among the 100 chosen

traits. As shown in [56], all chosen traits are continuous but not Gaussian, so the joint

normality assumption is hardly satisfied. For the sake of comparison, we first use the

Bayesian approach from [58] to estimate posterior probabilities of all possible edges, which

leads to 124 significant edges (interaction with estimated posterior probability greater

than 0.6), and use these recovered edges as the baseline as if they were the truth. We

then use the following methods to estimate the underlying graph: GLasso (the optimal

tuning parameter selected using a 5-fold cross-validation), TIGER (with regularization

parameter value set as λ =
√

(log d)/n), gRankLasso, and gRankMCP.

Table 3.5 shows the Precision, which is the ratio between True and Total, where True

is the number of recovered edges that are significant (in the sense of recovery by [58]),
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and Total is the total number of recovered edges from each method. The sparsity pattern

of recovered graphs are showed in Figure 3.5. While the graph estimated by gRankLasso

and gRankMCP are sparser, which is a favorable feature in terms of interpretability, they

both achieve higher precision than TIGER and GLasso.

3.6 Discussion

We presented gRankLasso, a completely tuning-free method in estimating Gaussian

graphical models. This estimator can be efficiently computed using linear programming

and requires no tuning in finite samples. Minimax estimation error rates are derived. Our

proposed method is accompanied with a second-stage enhancement to reduce estimation

bias to improve statistical efficiency with strong oracle properties. Favorable finite sample

performance of our methods are illustrated through extensive numerical simulations and

a real data application.
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Appendix for Chapter 2

A.1 Robust Wasserstein Profile Inference for Neigh-

borhood Selection

Let X = (X1, X2, ..., Xd) ∈ Rn×d be the data matrix with Xj be the j-th column

of X, and X−j be the matrix with j-th column of X removed. Recall that if X follows

multivariate Gaussian distribution, then the conditional ofXj givenX−j is also Gaussian,

and it can be described by the following linear model:

Xj = X−jβ
(j) + ϵj, (A.1)

where β(j) ∈ Rd−1 and ϵj ∼ N
(
0, σ2

j

)
. Therefore, conditional dependency is reflected on

the coefficients vector β(j) since Ω−j,j = −σ−2
j β(j). Suppose that Ω is sparse, then β(j)

is also sparse with only few non-zero coefficients, [20] suggested using the square-root
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Lasso [35] to estimate β(j) and Ω using neighborhood selection [16] as follows:

β̂(j) = argmin
β∈Rd−1

∥Xj −X−jβ
(j)∥2 + λj∥β∥1, (A.2)

σ̂2
j = n−1∥X∗,j −X∗,−jβ̂

(j)∥22, (A.3)

Ω̂jj = 1/σ̂2
j , Ω̂−j,j = −Ω̂jjβ̂

(j). (A.4)

As shown in [22], we can use a stochastic upper bound for the limit of the RWP function

to simulate the regularization parameter of the square-root Lasso:

Algorithm 3 RWP criterion for square-root Lasso regularization with Gaussian errors

Set parameters α ∈ (0, 1), m ∈ N, Σ̂
Sample Z1, . . . , Zm independently from N (0, Σ̂).
for j = 1,. . . ,d do

for k = 1,. . . ,m do
ajk ← π

π−2
maxl ̸=j |Zkl|2.

end for
ηj1−α ← 1− α quantile of {aj1, ..., ajm}.

λj ←
√

ηj1−α

n
.

end for
Return λ1, ..., λd.

Algorithm 3 assumes that additive error ϵj follows a centered normal distribution,

which is the case for Gaussian graphical model. Thus, we can directly use λj from

algorithm 3 for (A.2). In high-dimensional setting when n < d, under standard regularity

conditions, λj might be chosen as

λj =
π

π − 2
· Φ

−1(1− α/2d)√
n

,

where Φ−1(·) is the inverse cumulative distribution function of the standard normal dis-

tribution and α ∈ (0, 1). Similar to algorithm 3, this formulation is derived from the

stochastic upper bound for the RWP limit. As mentioned in [22], this RWP-based ap-

35



Appendix for Chapter 2 Chapter A

proach for choosing λj in high-dimensional settings is in agreement with the theoretical

choice that satisfies the subgradient condition of the square-root Lasso ([38, 35, 39]), so

asymptotic bounds on estimation errors also hold. Consequently, one can follow frame-

work from [17] to show convergence rate for Ω obtained from (A.4).

Recently, the confidence region and asymptotic normality for DRO estimators have

been established in [59]. However, it is unclear if one can provide a Type-I error control

in graph selection similar to our result in Theorem 2.2.1.
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Appendix for Chapter 3

B.1 Preliminaries

We follow the framework in [17, 19] to prove convergence results. First, we provide

some preliminary assumptions. For a constant c > 1, define c̄ = c+1
c−1

and consider the

cone set

Γd = {γ ∈ Rd : ∥γSc∥1 ≤ c̄∥γS∥1, S ⊂ {1, 2, ..., d}, ∥S∥0 ≤ s}.

Let Sj be the support of the j-th column of Ω, recall the s-sparse matrix class

M(s,Md) = {Ω = ΩT ∈ Rd×d : Ω ≻ 0, ξ−1 ≤ Λmin(Ω) ≤ Λmax(Ω) ≤ ξ,

max
1≤j≤d

|Sj| ≤ s, ∥Ω∥1 ≤Md},

We assume the following conditions are satisfied:

(C1) Ω ∈M(s,Md),

(C2) s2 log d = o(n).
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For a nonconvex penalty function, we assume some general conditions are satisfied:

1. pη(t) is increasing and concave for t ∈ [0,+∞), with a continuous derivative p′η(t)

on (0,+∞).

2. pη(t) has a singularity at the origin, i.e. p′η(0+) > 0.

3. There exist constants a1 > 0 and a2 > 1 such that p′η(t) ≥ a1η for all 0 < t < a2η;

and p′η(t) = 0 for all t > a2η.

B.2 Technical lemmas

Lemma B.2.1 Let Y ∼ χ2
d. We have

P(|Y − d| > dt) ≤ exp(
−3
16

dt2),∀t ∈ [0, 1/2),

P(Y ≤ (1− t)d) ≤ exp(
−1
4
dt2),∀t ∈ [0, 1/2).

Lemma B.2.2 Let ϵ(j) ∈ Rn such that ϵ(j) ∼ N(0, σ2
j In). Then

max
1≤j≤d

|∥ϵ
(j)∥22
nσ2

j

− 1| ≤ 3.5

√
log d

n

hold with probability at least 1− 1/d.

Lemmas B.2.1 and B.2.2 are taken from [60, 61, 19].

Lemma B.2.3 ℓ1 Restricted Eigenvalue condition: Let Σ̂ = XTX/n. Suppose

s log(d) = o(n), then there exist constants c1, c2 such that

inf
γ∈Γd

√
γΣ̂γ

∥γ∥2
≥ 1

5ξ1/2
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holds with probability at least 1− c1 exp(−c2n).

Proof: For and S ⊂ {1, 2, ..., n} with |S| ≤ s, we have, for any γ ∈ Γd,

∥γ∥1 ≤ (1 + c̄)∥γS∥1 ≤ (1 + c̄)
√
s∥γS∥2 ≤ (1 + c̄)

√
s∥γ∥2,

and

γΣγ ≥ Λmin(Σ)∥γ∥22 ≥ Λmin(Σ)∥γS∥22 ≥ Λmin(Σ)
∥γ∥21

s(1 + c̄)2
.

Consider a random matrix X ∈ Rn×d, in which each row is drawn i.i.d. from a N(0,Σ).

From [62], we have there exists two positive constants c1, c2 such that

P

(√
γΣ̂γ ≥ 1

4

√
γΣγ − 9 max

1≤j≤d

√
Σjj

√
log d

n
∥γ∥1,∀γ ∈ Rd

)
≥ 1− c1 exp(−c2n)

By definition, we have

Λmax(Σ) ≥ max
1≤j≤d

Σjj ≥ min
1≤j≤d

Σjj ≥ Λmin(Σ).

It follows that,

P

(√
γΣ̂γ ≥ 1

4

√
Λmin(Σ)∥γ∥2 − 9(1 + c̄)

√
Λmax(Σ)

√
s log d

n
∥γ∥2,∀γ ∈ Rd

)

≥ 1− c1 exp(−c2n)

Thus

P

inf
γ∈Γ

√
γΣ̂γ

∥γ∥2
≥ 1

4

√
Λmin(Σ)− 9(1 + c̄)

√
Λmax(Σ)

√
s log d

n
,∀γ ∈ Rd


≥ 1− c1 exp(−c2n)
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Since we assume s log d = o(n), for n large enough, we have

1

4

√
Λmin(Σ)− 9(1 + c̄)

√
Λmax(Σ)

√
s log d

n
≥ 1

4ξ1/2
− 9ξ1/2(1 + c̄)

√
s log d

n

≥ 1

5ξ1/2

Lemma B.2.4 Prediction error bound of first-stage estimator: Let β̂(j) be the

Rank Lasso estimator of β(j). We have

max
1≤j≤d

∥X∗,−j(β̂
(j) − β(j))∥2 ≤ C

√
s log d,

holds with probability at least 1−O(1/d).

Proof: We have

inf
γ∈Γd

√
γΣ̂γ

∥γ∥2
= inf

γ∈Γd

∥Xγ∥2√
n∥γ∥2

≥ 1

5ξ1/2
,

then,

min
1≤j≤d

inf
γ∈Γd−1

∥X∗,−jγ∥2√
n∥γ∥2

≥ inf
γ∈Γd

∥Xγ∥2√
n∥γ∥2

≥ 1

5ξ1/2
.

Thus the ℓ1-RE condition holds for all Rank Lasso subproblem from each column. From

lemma 2 of [23], using a simulated λj from 2, we have β̂(j) − β(j) ∈ Γd−1. Then from
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Theorem 1 of [23] and lemma 9 of [63], we have

max
1≤j≤d

∥X∗,−j(β̂
(j) − β(j))∥2√
n

≤ max
1≤j≤d

∥XT
∗,−jX∗,−j/n∥2∥β̂(j) − β(j)∥2

≤ max
1≤j≤d

∥XTX/n∥2∥β̂(j) − β(j)∥2

≤ 9Λmax
C

Λmin

√
s log d

n

=
9ξ2C√

n

√
s log d.

Lemma B.2.5 Prediction error bound for oracle estimator: Let β̌(j) be the oracle

estimator of β(j). Then

max
1≤j≤d

∥X∗,−j(β̌
(j) − β(j))∥2 ≤ C

√
s,

holds with probability at least 1−O(1/d).

Proof: From Lemma 3 of [23], we have ∥β̌(j) − β(j)∥2 = OP (
√
s/n). It follows that

max
1≤j≤d

∥X∗,−j(β̌
(j) − β(j))∥2√
n

≤ max
1≤j≤d

∥XT
∗,−jX∗,−j/n∥2∥β̌(j) − β(j)∥2

≤ max
1≤j≤d

∥XTX/n∥2∥β̌(j) − β(j)∥2

≤ 9ΛmaxC

√
s

n

≤ 9ξC

√
s

n
.
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B.3 Proofs of main Lemmas

Lemma B.3.1 Analyzing the diagonal elements of first-stage estimator

max
1≤j≤d

|Ω̂jj − Ωjj| ≤ C∥Ω∥2

√
log d

n

Proof: We have

|(Ω̂jj)
−1 − (Ωjj)

−1| = |∥X∗,j −X∗,−jβ̂
(j)∥22

n
− σ2

j |

= |∥X∗,−j(β
(j) − β̂(j)) + ϵ(j)∥22

n
− σ2

j |

≤ |∥ϵ
(j)∥22
n
− σ2

j |+
∥X∗,−j(β

(j) − β̂(j))∥22
n

+ 2
|(β̂(j) − β(j))TXT

∗,−jϵ
(j)|

n

From Lemmas B.2.1, B.2.2, B.2.4, we have

|∥ϵ
(j)∥22
n
− σ2

j | ≤ 3.5σ2
j

√
(log d)/n,

∥X∗,−j(β
(j) − β̂(j))∥2 ≤ C

√
s log d.

From standard Gaussian tail bounds in [64], we also have for all δ > 0

P

[
∥
XT

∗,−jϵ
(j)

n
∥∞ ≤ Cσj

(√
(2 log d)/n+ δ

)]
≥ 1− 2 exp(−nδ2/2).
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It follows that

2
|(β̂(j) − β(j))TXT

∗,−jϵ
(j)|

n
≤ 2∥β̂(j) − β(j)∥1∥

XT
∗,−jϵ

(j)

n
∥∞

≤ 2(1 + c̄)
√
s∥β̂(j) − β(j)∥2Cσj

(√
2 log d

n
+ δ

)

≤ 2
√
2(1 + c̄)Cσj

√
s

√
s log d

n

(√
log d

n
+ δ

)

= 2
√
2(1 + c̄)Cσjs

√
log d

n

(√
log d

n
+ δ

)
.

By setting δ =

√
2 log d

n
, we have

|(Ω̂jj)
−1 − (Ωjj)

−1| ≤ 3.5σ2
j

√
log d

n
+ C2 s log d

n
+ 4
√
2(1 + c̄)Cσjs

log d

n
.

Since s

√
log d

n
= o(1), there exists a constant C such that, for large enough n

|(Ω̂jj)
−1 − (Ωjj)

−1| ≤ Cσ2
j

√
log d

n
.

The rest of the proof follow [19]. Since Ωjj = 1/σ2
j , we have

|Ωjj

Ω̂jj

− 1| ≤ C

√
log d

n
.

This implies that

(
1 + C

√
log d

n

)−1

≤ Ω̂jj

Ωjj

≤

(
1− C

√
log d

n

)−1

.
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Then, for large enough n

1− C

√
log d

n
≤

(
1 + C

√
log d

n

)−1

and

(
1− C

√
log d

n

)−1

≤ 1 + 2C

√
log d

n
,

we have (
1− C

√
log d

n

)
≤ Ω̂jj

Ωjj

≤

(
1 + C

√
log d

n

)
.

Thus

max
1≤j≤d

|Ω̂jj − Ωjj| ≤ C max
1≤j≤d

Ωjj

√
log d

n
≤ C∥Ω∥2

√
log d

n
.

Lemma B.3.2 Analyzing the off-diagonal elements in ℓ1-norm error of first-

stage estimator

max
1≤j≤d

∥Ω̂−j,j − Ω−j,j∥1 ≤ C(∥Ω∥2s+ ∥Ω∥1)
√

log d

n

Proof: Recall that

Ω−j,j = −Ωjjβ
(j),

Then

∥Ω̂−j,j − Ω−j,j∥1 = ∥σ̂−2
j β̂(j) − σ−2

j β(j)∥1

= ∥Ω̂jjβ̂
(j) + Ω̂jjβ

(j) − Ω̂jjβ
(j) − Ωjjβ

(j)∥1

≤ |Ω̂jj|∥β̂(j) − β(j)∥1 + |Ω̂jj − Ωjj|∥β(j)∥1

= |Ω̂jj|∥β̂(j) − β(j)∥1 + |Ω̂jj − Ωjj|∥Ω−j,jΩ
−1
jj ∥1

≤ |Ω̂jj|∥β̂(j) − β(j)∥1 + |
Ω̂jj

Ωjj

− 1|∥Ω−j,j∥1

44



Appendix for Chapter 3 Chapter B

From lemmas B.2.4, B.3.1, we have

Ω̂jj ≤

(
1 + C

√
log d

n

)
Ωjj ≤ 2∥Ω∥2,

∥β̂(j) − β(j)∥1 ≤ (1 + c̄)
√
s∥β̂(j) − β(j)∥2 ≤ C(1 + c̄)s

√
log d

n
,

|Ω̂jj

Ωjj

− 1| ≤ C

√
log d

n
.

Thus

∥Ω̂−j,j − Ω−j,j∥1 ≤ C∥Ω∥2s
√

log d

n
+ C∥Ω∥1

√
log d

n
.

Lemma B.3.3 Analyzing the diagonal elements of oracle estimator

max
1≤j≤d

|Ω̌jj − Ωjj| ≤ C∥Ω∥2

√
log d

n

Proof: Follow similar arguments from B.3.1, we have

|(Ω̌jj)
−1 − (Ωjj)

−1| ≤ |∥ϵ
(j)∥22
n
− σ2

j |+
∥X∗,−j(β

(j) − β̌(j))∥22
n

+ 2
|(β̌(j) − β(j))TXT

∗,−jϵ
(j)|

n
.

From Lemmas B.2.1, B.2.2, B.2.5, B.3.1, we have for all δ > 0

|∥ϵ
(j)∥22
n
− σ2

j | ≤ 3.5σ2
j

√
(log d)/n,

∥X∗,−j(β
(j) − β̌(j))∥2 ≤ C

√
s,

2
|(β̌(j) − β(j))TXT

∗,−jϵ
(j)|

n
≤ 4
√
2(1 + c̄)Cσjs

√
1

n

(√
log d

n

)
.
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Therefore,

|(Ω̌jj)
−1 − (Ωjj)

−1| ≤ 3.5σ2
j

√
log d

n
+ C2 s

n
+ 4
√
2(1 + c̄)Cσj

s√
n

(√
log d

n

)
.

Since s

√
log d

n
= o(1), there exists a constant C such that, for large enough n

|(Ω̌jj)
−1 − (Ωjj)

−1| ≤ Cσ2
j

√
log d

n
.

The rest of the proof follow B.3.1. We have

max
1≤j≤d

|Ω̌jj − Ωjj| ≤ C max
1≤j≤d

Ωjj

√
log d

n
≤ C∥Ω∥2

√
log d

n
.

Lemma B.3.4 Analyzing the off-diagonal elements in ℓ1-norm error of oracle

estimator

max
1≤j≤d

∥Ω̌−j,j − Ω−j,j∥1 ≤ C1∥Ω∥2
s√
n
+ C2∥Ω∥1

√
log d

n
.

Proof: Follow similar arguments of lemma B.3.2, we have

∥Ω̌−j,j − Ω−j,j∥1 ≤ |Ω̌jj|∥β̌(j) − β(j)∥1 + |
Ω̌jj

Ωjj

− 1|∥Ω−j,j∥1
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From lemmas B.2.5, B.3.3, we have

Ω̌jj ≤

(
1 + C

√
log d

n

)
Ωjj ≤ 2∥Ω∥2,

∥β̌(j) − β(j)∥1 ≤ (1 + c̄)
√
s∥β̌(j) − β(j)∥2 ≤ C1(1 + c̄)

s√
n
,

|Ω̌jj

Ωjj

− 1| ≤ C2

√
log d

n
.

Thus

∥Ω̌−j,j − Ω−j,j∥1 ≤ C1∥Ω∥2
s√
n
+ C2∥Ω∥1

√
log d

n
.

B.4 Proofs of main Theorems

Theorem 3.3.1

Proof: The proof is identical to [19]. From lemmas B.3.1 and B.3.2, we have

∥Ω̂− Ω∥1 = max
1≤j≤d

∥Ω̂∗,j − Ω∗,j∥1

≤ max
1≤j≤d

|Ω̂jj − Ωjj|+ max
1≤j≤d

∥Ω̂−j,j − Ω−j,j∥1

≤ C∥Ω∥2

√
log d

n
+ C(∥Ω∥2s+ ∥Ω∥1)

√
log d

n

≤ C(∥Ω∥2s+ ∥Ω∥1)
√

log d

n

≤ C

(
s∥Ω∥1

√
log d

n

)

≤ C

(
sMd

√
log d

n

)
.
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Theorem 3.3.3

Proof: Let β̃(j) be the second-stage estimator of β(j), β̌(j) be the oracle estimator

of β(j). From Theorem 2 of [23], we have for α from algorithm 2

P(β̃(j) = β̌(j)) ≥ 1− α/d− hn,

where hn → 0 as n→∞. It follows that

P(σ̃j = σ̌j) ≥ 1− α/d− hn.

Consequently, we get the strong oracle property through union bound.

From lemmas B.3.3 and B.3.4, we have

∥Ω̃− Ω∥1 = max
1≤j≤d

∥Ω̃∗,j − Ω∗,j∥1

≤ max
1≤j≤d

|Ω̃jj − Ωjj|+ max
1≤j≤d

∥Ω̃−j,j − Ω−j,j∥1

≤ C0∥Ω∥2

√
log d

n
+ C1∥Ω∥2

s√
n
+ C2∥Ω∥1

√
log d

n

≤ C1∥Ω∥1
s√
n
+ C2∥Ω∥1

√
log d

n

≤ C1Md
s√
n
+ C2Md

√
log d

n

48



Bibliography

[1] S. L. Lauritzen, Graphical Models. Oxford University Press, 1996.

[2] M. Drton and M. H. Maathuis, Structure learning in graphical modeling, Annual
Review of Statistics and Its Application 4 (2017) 365–393.

[3] S. M. Smith, K. L. Miller, G. S. Khorshidi, M. A. Webster, C. F. Beckmann, T. E.
Nichols, J. D. Ramsey, and M. W. Woolrich, Network modelling methods for
FMRI, NeuroImage 54 (2011), no. 2 875–891.

[4] O. Stegle, S. A. Teichmann, and J. C. Marioni, Computational and analytical
challenges in single-cell transcriptomics, Nature Reviews Genetics 16 (2015), no. 3
133–145.

[5] S. Na, M. Kolar, and O. Koyejo, Estimating differential latent variable graphical
models with applications to brain connectivity, Biometrika 108 (2021), no. 2
425–442.

[6] A. P. Dempster, Covariance selection, Biometrics (1972) 157–175.

[7] M. Yuan and Y. Lin, Model selection and estimation in the gaussian graphical
model, Biometrika 94 (03, 2007) 19–35,
[https://academic.oup.com/biomet/article-pdf/94/1/19/617853/asm018.pdf].

[8] J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation
with the graphical lasso, Biostatistics 9 (12, 2007) 432–441.

[9] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont, Model selection through sparse
maximum likelihood estimation for multivariate Gaussian or binary data, J. Mach.
Learn. Res. 9 (2008) 485–516.

[10] A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu, Sparse permutation invariant
covariance estimation, Electron. J. Statist. 2 (2008) 494–515.

[11] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, High-dimensional
covariance estimation by minimizing ℓ1-penalized log-determinant divergence,
Electronic Journal of Statistics 5 (2011), no. none 935 – 980.

49

http://xxx.lanl.gov/abs/https://academic.oup.com/biomet/article-pdf/94/1/19/617853/asm018.pdf


[12] R. Mazumder and T. Hastie, Exact covariance thresholding into connected
components for large-scale graphical lasso, Journal of Machine Learning Research
13 (2012), no. 27 781–794.

[13] G. Yu and J. Bien, Learning local dependence in ordered data, The Journal of
Machine Learning Research 18 (2017), no. 1 1354–1413.

[14] C. Lam and J. Fan, Sparsistency and rates of convergence in large covariance
matrix estimation, The Annals of Statistics 37 (2009), no. 6B 4254 – 4278.

[15] J. Fan, L. Xue, and H. Zou, Strong oracle optimality of folded concave penalized
estimation, The Annals of Statistics 42 (2014), no. 3 819 – 849.
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