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Abstract 

Situations that present individuals with a conflict between 
local and global gains often evoke a behavioral pattern known 
as melioration — a preference for immediate rewards over 
higher long-term gains. Using a variant of a binary forced-
choice paradigm by Tunney & Shanks (2002), we explored 
the potential role of global feedback as a means to reduce this 
bias. We hypothesized that frequent explicit feedback about 
future expected and optimal gains might enable decision 
makers to overcome the documented tendency to meliorate 
when choices are rewarded probabilistically. Our results 
suggest that the human tendency to meliorate is tenacious and 
even prospective normative feedback is insufficient to reliably 
overcome inefficient choice allocation. We identify human 
memory limitations as a potential source of this problem and 
sketch a reinforcement learning model that mimics the effects 
of a variable feedback horizon on performance. We conclude 
that melioration is a powerful explanatory mechanism that can 
account for a wide range of human behavior. 
 

Introduction 
A specter is haunting psychology, decision sciences and 
economic theory — the specter of maximization. It is an 
intuitively appealing assumption that rational organisms 
maximize their expected reward when making decisions.  
The idea of optimal choice allocation to available 
alternatives (or maximization of utility) is often equated 
with the very concept of rationality and is one of the main 
guiding principles of contemporary cognitive science.  

Despite its intuitive appeal, this notion of utility 
maximization may be mistaken. One now familiar criticism 
is encapsulated in Simon’s (1956) notion of satisficing. A 
satisficing organism aspires to meet some subjective 
satisfaction criterion, thus replacing the optimal solution 
with a solution that is deemed ‘good enough’. 

The goal of this paper is to promote a less familiar but 
just as profound alternative—a phenomenon known as 
melioration (Herrnstein & Vaughn, 1980).  In a nutshell, the 
molecular mechanism underlying melioration is not the 
achievement of maximal utility or subjective satisfaction, 
but rather a general preference for high immediate rewards 
over higher long-term gains. While the origins of this 
research lie in studies of choice behavior in pigeons, the 
tendency to meliorate has equally been documented for 
humans (see Herrnstein, 1997). 

In this paper, we sketch the outline of a framework for 
understanding this phenomenon from an information 
processing perspective. After presenting the results of two 
empirical studies that demonstrate suboptimal choice 
behavior in humans, we develop a computational model that 
explains these results in terms of capacity limitations and a 
competition between local and global feedback. 

Melioration in Theory and Practice 
In an extensive series of experiments, Herrnstein and 
colleagues (1997) have documented many instances of 
motivated and systematic deviations from the rational ideal. 
When faced with a dilemma between short- and long-term 
rewards, both animals and humans appear to reliably favor 
high immediate reinforcements over a higher overall gain. 

One reason why these findings are not yet widely known 
is that melioration and maximization only predict different 
behaviors in environments in which local and global 
optimization conflict. Imagine an environment in which one 
alternative (call it L) is always better than another (X); 
however, the more L is chosen, the worse both options 
become.  Under certain circumstances, the optimal strategy 
in this environment is to always choose the locally worse 
option, X. Figure 1 presents the details of such an 
environment, where X stands for maximization, and L for 
melioration. The two parallel lines are produced by the 
functions P

max
h( ) = Ah + B  and P

mel
h( ) = Ah + B + C  and 

 
 

Figure 1:  Environmental contingencies known to  
induce melioration behavior. (See text for details.) 
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indicate the probability of receiving a reward by choosing 
option X or L as a function of the choice history h, which is 
defined as the percentage of choices to L over the w most 
recent trials. As both functions only differ by a constant C, 
choosing L at any moment yields a higher expected payoff 
than choosing X. While this makes L a locally dominating 
alternative, we also need to consider the long-term effects of 
choosing it. As every single choice of L increases the 
number of recent choices to L by 1 for the next w trials (i.e., 
shifts h by 1/w units to the right, relative to having chosen 
X), it results in a delayed and repeated cost of A/w on each 
of the next w trials. Whenever the absolute magnitude of A 
exceeds C, the global costs of choosing L outweigh its local 
benefits. (For values of w = 10, A = –2/3, B = 2/3, and C = 
1/3, the long-term costs 2/3 of any choice of L exceed its 
immediate benefit 1/3 by 1/3.) 

Another way of seeing the overall inferiority of option L 
despite its universal local dominance is to consider the 
expected reward for a stable mix of choice allocations. 
Always choosing L would yield a reward 33% of the time 
(P1). The optimal long-term strategy is indicated by the 
position on the abscissa at which the weighted average of 
reward probabilities (drawn as a dashed line) is maximal. 
This is the case when X is chosen 100% of the time (P2). 

Environmental contingencies like these may appear 
artificial, but there is nothing unusual per se about choices 
being rewarded probabilistically and incurring both short- 
and long-term benefits and costs. Outside the experimental 
laboratory, meliorating behavior has been demonstrated in a 
wide range of tasks and domains. For instance, even highly 
experienced users of interactive software packages routinely 
use inefficient procedures (Bhavani & John, 2000) and 
novice typists prefer locally efficient visually-guided typing 
to a superior touch typing strategy (Yechiam et al., 2003). 
Fu and Gray (2004) have recently explained this ‘paradox of 
the active user’ in terms of cost-benefit tradeoffs that favor 
small incremental gains of an interactive nature over less 
interactive but globally more efficient strategies. 

Beyond the realms of software applications, discounting 
local rewards in favor of higher global ones is notoriously 
difficult—otherwise, nobody would ever drive without a 
seatbelt, postpone a dentist’s appointment, pollute the 
environment, smoke cigarettes, or gamble. 

At the core of meliorating behavior lies an inability or 
unwillingness to discount high local rewards in favor of 
even higher global ones. Whereas previous research has 
often cast this in clinical terms of self control, addiction, and 
impulsiveness (see Herrnstein, 1997, Ch. 5–9), we approach 
the phenomenon as a problem of incomplete knowledge and 
a challenge to human information-processing limits. 

Adopting a Global Perspective 
In a series of experiments using the repeated forced-choice 
paradigm described above, Tunney and Shanks (2002) 
demonstrated that small changes in the type of payoffs can 
have large effects on behavior. Whereas participants 
maximized when payoffs systematically varied in 
magnitude (Exp-1), they tended to meliorate when payoffs 

were probabilistic (Exp-2). This bias to focus on immediate 
gains was alleviated when payoffs were negative (Exp-3) or 
when the test phase was preceded by an exploration phase 
(Exp-4). In the absence of a principled account, these results 
appear like an assortment of unrelated phenomena, 
suggesting that people’s choice allocation is heavily 
context-dependent and subject to relatively random 
situational constraints. 

As this seems unsatisfactory, we advocate a framework 
for understanding melioration in terms of information 
processing and cognitive limitations. The conflict between 
melioration and maximization is a consequence of a 
competition on two different timescales: attention to short-
term rewards (on a local timescale) favors option L, whereas 
attention to long-term gains (or adopting a global 
perspective) favors option X. While pigeons may be 
doomed to meliorate due to their inability to comprehend 
the long-term consequences of an action, a fundamental 
difference between pigeons and people is that the latter use 
language to describe and abstract from properties of task 
environments. Experimenters routinely rely on this ability 
by providing verbal instructions to communicate aspects of 
the task that are not directly observable or experienced, e.g., 
hidden properties about task dynamics or extrapolations of 
the current performance into the future.   

In our research, we focus on probabilistic rewards and 
investigate the use of feedback to direct attention away from 
immediate outcomes and towards the global consequences 
of an action. Under this approach, the phenomenon of 
melioration is cast as a competition between two sources of 
reward, with the goal of understanding how we can tip the 
balance in favor of globally optimal performance.  

Lessons from a Failed Experiment 
In a previous experiment (Neth, Sims & Gray, 2005) we 
explored the role of feedback frequency in a task modeled 
on Tunney and Shanks’ (2002) forced-choice paradigm, 
using the reward contingencies described above. In addition 
to the immediate reward obtained after each choice, we 
provided periodic global feedback designed to inform 
participants of the relative optimality of their recent choices 
on a larger timescale (every 10 or 100 trials). Our aim was 
to counteract the local push towards melioration by 
introducing an additional reward that favored maximization. 

Results Much to our surprise, our feedback manipulation 
did not have the desired result. Instead, we were baffled by a 
complete lack of maximization strategies. 

Critique Our choice of providing feedback over 10 trials 
may have been inadequate. While focusing on 10-trial 
segments may encourage a more global perspective and 
facilitate a task representation on the scale that actually 
determines the reward contingencies, it can be shown that it 
is still advantageous to consistently meliorate when merely 
extrapolating over units of 10 trials. 

Another potential problem was the counterfactual nature 
of the feedback provided to participants. Feedback of the 
form “You won $x on the last n trials. If you had pursued 
the optimal strategy all along, you would have won $y.” 
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implicitly directed attention to what participants did not do 
so far and provided little indication of what they should do 
instead. The hypothetical antecedent of the if-clause may 
also have conveyed the misleading impression that 
participants could not recover from past misallocations of 
choices. The emphasis on what participants could have done 
(given optimal performance) also rendered the feedback of 
the optimal value entirely static, i.e., insensitive to the 
current choices distribution of an individual. This also 
created the possibility of nonsensical (or ‘contra-optimal’) 
feedback when the sum of actually received rewards x (e.g., 
$0.24) exceeded the alleged ‘optimal’ reward y  ($0.20). 

Experiment:  
Providing Prospective Feedback 

The current study attempted to address the above 
shortcomings by making several changes.  First, rather than 
providing retrospective and counterfactual feedback we 
provided prospective feedback, for example, “If you 
continue the same strategy you can expect to win $x on the 
next n trials. By adopting the optimal strategy, you could 
expect to win $y instead.” Apart from a change in emphasis, 
this change has the additional advantage that it allows to 
compute and contrast the exact values of expected wins for 
consistent continuation and maximization, based on the 
actual and current choice history of the individual.  

Second, we increased the minimal global feedback 
horizon n to 20 trials, which we found to be the smallest 
number of choices for which consistent maximization 
always outperforms not only melioration, but also all 
alternative choice allocation strategies.  

Third, we added a control condition that did not receive 
any verbal (global) feedback in addition to the rewards 
received on individual trials.  

Fourth, and finally, we increased the number of trials 
from 500 to 800. 

Method 
Participants Thirty RPI undergraduate students volunteered 
to participate to earn a performance-related cash reward. 

Task Environment As shown in Figure 2, two buttons 
marked ‘Left’ and ‘Right’ were displayed at the bottom of 
the task window. The top of the window listed the 
participant’s cumulative winnings. The middle showed the 
previous trial number, their choice on that trial, and the 
reward received for that choice.  

For each participant, the maximizing choice alternative X 
was randomly assigned to either the left or right button. The 
possible payoff for each choice was a fixed $.02 reward that 
was probabilistically received or not received on each trial. 

The current probability of receiving a reward upon 
selecting an alternative was based on the participant’s 
distribution of choices over the last 10 trials, using the 
reward functions illustrated above. Over the course of 800 
trials, consistent maximization would yield an expected 
reward of $10.67, whereas consistent melioration would 
yield an expected reward of $5.33. 

Design All participants received local feedback on the 
presence or absence of a reward after each of 800 choices 
and were displayed their cumulative winnings so far.  The 
additional availability of global feedback distinguished 
between three conditions: Whereas a ‘No-Feedback’ control 
group did not receive any additional feedback, two groups 
received verbal feedback every 10 trials.  For a  ‘Future-20’ 
group the current choice history was extrapolated 20 trials 
into the future to contrast the expected payoff for continuing 
the current choice allocation ratio with the expected payoff 
for consistent maximization on those trials. For a ‘Future-
All’ group the same rationale was applied over a larger 
horizon, spanning from the current trial t to the end of the 
session, i.e., the remaining 800–t trials. Thus, our 
experiment employed a mixed design of three between-
subjects conditions, each of which made 80 blocks of 10 
choices. 

Procedure Participants were tested individually in a quiet 
room. During the instructions, participants were informed 
that their choices could earn them a cash payment of up to 
$11, depending on their performance. 

Each individual choice was indicated by pressing either 
the left or the right button. After each choice, both buttons 
were disabled for .5 sec and the feedback from the previous 
trial was updated. After the buttons were re-enabled the 
participant was free to make the next choice. 

Every 10 trials, the two global feedback conditions saw a 
feedback screen that occluded the task window and 
contained the verbal feedback message. 

An experimental session was completed in 45 minutes on 
average, including instructions. 

Predictions As the explicit global feedback was designed to 
overcome the local bias towards melioration, we predicted 
that both global feedback groups would select the 
maximization choice more frequently than the No-Feedback 
control group, which would result in higher overall gains. In 
addition, we expected maximization to be most facilitated 
for the Feedback-End group. 

 
 

Figure 2:  Screenshot of the experimental task window. 
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Table 2:  Choice allocations of individual participants on 40 blocks (of 20 trials each).  Blocks with 17 or more L-choices 
were classified as melioration blocks, blocks with 17 or more X-choices were classified as maximization blocks, and all 
other blocks as indeterminate (–). The overall classification of individuals in the final column is based on their total 
number of choices. (If the sum to either alternative exceeds 437 out of 800, random allocation can be rejected at p < .01). 

 

Results 
We will first present performance results on an aggregate 
level before considering individual choice allocations. 

Table 1 (below) contains the overall wins and 
percentages of maximization choices by experimental 
condition. Despite consistent trends in the predicted 
direction, the group differences are relatively small and 
the within group variability is high. Comparing overall 
wins and maximizations by group yielded two non-
significant ANOVAs, F(2, 29) = 1.6, MSE = 1.33, p = .22 
and F(2, 29) = 1.7, MSE = 434.6, p = .20, respectively, 
suggesting that our feedback manipulations have failed 
yet again. Even though two planned comparisons between 
the extreme No-Feedback and Feedback-End conditions 
are marginally significant (p = .087 and p = .073, 
respectively) we cannot claim on the basis of group 
means that global feedback elicits a larger proportion of 
maximization choices and higher overall wins.  

On the other hand, this conclusion is strangely at odds 
with the impression gained when studying participants’ 
performance profiles.  To illustrate the sequential choices 
of individual decision makers we classified each block of 
20 choices as instances of unambiguous melioration or 
maximization if the number of corresponding decisions 
significantly deviated from chance levels in that direction 
(i.e., less than 4 or more than 16 maximizations, in which 
case a sign-test assuming a random binomial random 
distribution yielded p < .01). 

 
Table 2 (above) reveals structural regularities that were 

obscured by the group averages. Consistent with the 
average trends, the total number of maximization blocks 
appears to be higher for the groups that received 
prospective feedback. This applies particularly to the 
Feedback-End group in which three individuals 
discovered the maximization strategy by the 4th block. 

If we count the total number of maximization blocks 
per participant the average count of 12.4 in the Feedback-
End group is more than twice that of the 6.0 average in 
the Feedback-20 group and more than 4 times the value of 
2.6 blocks for the No-Feedback group.  

Similarly, when classifying the overall performance of 
each individual participant (by a binomial test rejecting 
the assumption of random choice allocation at p < .01) the 
Feedback-End group contained 3 maximizers, whereas 
the Feedback-20 group contained 2, and the No-Feedback 
group contained 1 (last column of Table 2). Although 
these numbers are only descriptive, they still show that 
individual decision-makers were able to benefit from the 
global feedback provided. 

Another interesting pattern emerging from Table 2 is 
that participants rarely switched back to a meliorating or 
intermediate strategy after having once maximized. This 
may have been facilitated by the feedback received (in 
which the projected actual gains would closely 
approximate the projected optimal gains) but also 
suggests that maximizers typically realized that they had 
found the optimal strategy. 

But beyond all qualitative accounts we cannot disregard 
the fact that at least half of the participants in either group 
were classified as overall meliorators. Although our 
provision of clear and prospective feedback may have 
budged a few individuals, our results demonstrate yet 
again that melioration, rather than maximization, seems to 
dominate human choice. 

Group No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Tmax: Class.
1 – – – X – – – – – – – – – X – – – – – L – – L – L X – – – L L – – – – – – – – – 309 L
2 – – – – – – – – X – X – – X – – – X – X – – X – X – – – – – X – – – X – X – – – 472 X
3 – – – – – – – – – L L – – – – – L – – – – – – – – – – L – – – – – – – L L – – – 297 L
4 – – – – – – – – – – – – – L L – – – L – L – – – L – – – L L – L – L – – – X X X 298 L
5 – – – – – – – – – – – – L – L – L – L L L – L L L L L – – – – – L L L – L L – – 207 L
6 – – – – – – L – – – – L – – – – – – – – L – L – – – – – – – – – – L – – L – – – 247 L
7 – – – X – – – – – – – – – L – L – – – – – L – – L – – – – – – – – – – L – – – – 260 L
8 – – – – – – – – – – – L – – – – – – – – – – – – – – – – – – – – – – – – – – – – 295 L
9 – – – – – – L – X – L L L – – X – L – – – – – L – L L L – L L – X X X X X X X X 369 –
10 – – – – – – – – – – – – – – – – L – – – – – – – – – – – – – – – – – – – – – – – 269 L
11 – – – – – – – – – L – – – – – – – – – X – X X – – X X X X X X X X X X X X X X X 589 X
12 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – L – – L – – 302 L
13 – – – – – – – – L – – – L – – – L L – – – – – – – – – – – – L – – – – – – – – – 264 L
14 – – – – – – – – – – – – – L – – – – – – – – – L – – – – – – – – – – – – – – – – 348 L
15 – – – – – – – – – – – – – – – – – – – – – – – – – – – L – – – L L – – – – L – – 304 L
16 – – – – – – – – X – L X – – – X – X X – X – – – – – – – X L – L – L – – L L – – 407 –
17 – – – – – – – – L – L – – – – – L L – – – – – – – – – – – – – L – – – L – – – X 298 L
18 – – – L – L – L – – – L – – – – L – – – – L – – L L – – – – L – – – – L L L – L 195 L
19 – – – – – – L X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 713 X
20 – – – – – – L L L – – – – – – L – L L – – – – – – L X – – – – – – – – – L – L – 281 L
21 – L – X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 758 X
22 – – – X X X X X X X X – X X X X X X X X X X X X X X X X X X X X X X X X X X X X 760 X
23 – – – – – – – – L – L – – – – – – – – – – – L L – – – L – – L – – – L – – – – – 202 L
24 – – L L – – – – L – – – – – – – – – – – – – – L – – – – X X X X X X X X X X X X 431 –
25 X X X – X X – X L – – X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 748 X
26 – – – – – – – – – – – – L – – – – L – – – – – – – – – – – – – – – – – L – – L – 236 L
27 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 300 L
28 – – – – – – – – – – – – – – X – – – – – – – X L – – – – – X X – – L – – L – L – 359 L
29 – – – – – – – L – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 394 –
30 – – – – – – – – – – – – – L – – – – – – – – – L – – – – – – – – – L – – – – – – 225 L

F
e
e
d
b
a
c
k
-E
n
d

F
e
e
d
b
a
c
k
-2
0

N
o
-F
e
e
d
b
a
c
k

Table 1:  Performance by experimental condition. 
 

 Wins (in $): Max choices (%): 
Group: Mean (SD) Mean (SD) 
No Feedback: 7.27 (0.49) 37.8   (9.2) 
Feedback-20: 7.81 (1.12) 46.3 (20.0) 
Feedback-End: 8.18 (1.58) 55.2 (28.6) 
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Modeling Variable Feedback Horizons 
To develop a formal understanding of the impact of local 
rewards on choice performance, we developed a 
reinforcement learning (Sutton & Barto, 1998) model 
designed to examine the effects of adopting a local versus 
global perspective on feedback.  While reinforcement 
learning is increasingly used in the cognitive modeling 
community as a process model of human learning (e.g., 
Fu & Anderson, 2006), our use of the technique instead 
reflects a desire to form quantitative predictions of 
performance under known or hypothesized processing 
limits. This approach mirrors the Ideal Performer 
Analysis approach (Gray, Sims, Fu, & Schoelles, in press) 
in terms of seeking a theory of optimal human 
performance under constraints.  In our case, the relevant 
constraint is the extent to which the model adopts a local 
or global perspective on its trial-to-trial feedback. 

On each trial, the model chooses the button with the 
highest utility based on its experience with each button.  
Following each action, the model probabilistically 
receives a reward r using the same contingencies as our 
human participants. This reward is then used to update the 
model’s utility estimate for the chosen button. This is 
accomplished using a simple linear difference equation: 

 
!U "U +#[r $U ] , 

 
where α is a learning rate parameter determining how 
much the error between the current estimate and observed 
reward is reduced after each outcome. By itself, the above 
equation would quickly learn to meliorate, as by 
definition, the average return on any single choice is 
greater for the melioration button than the maximization 
button.  In order to shift the model’s focus from local 
rewards to a global perspective, we added eligibility 
traces (Sutton & Barto, 1998) to the model’s utility 
calculation.  The effect of adding the eligibility trace is 
that after each action is taken, a temporary record is made 
of that action.  This record is used to update the utility 
estimates for an action based not just on its immediate 
outcome, but also the resulting outcomes for subsequent 
choices.  The duration in trials that the eligibility trace 
remains in memory is governed by a parameter (λ) that 
can be used to shift the model’s perspective from local to 
global performance.  For example, by setting λ=5, the 
model’s utility estimate for each action will consist of not 
just the immediate reward, but rather the average rewards 
obtained for the five choices following each action. 

Figure 3 shows the average performance of 500 runs of 
the reinforcement learning model using various settings of 
the parameter λ.  As would be expected, with λ=1 the 
model quickly learns to meliorate.  However, as the 
parameter increases the model gradually shifts towards 
maximization.  The most obvious result obtained by the 
model is a demonstration of the memory demands 
required by any human participant to learn the 
maximizing strategy in our experiment.  In order to 
reliably discover a maximizing strategy, participants 
would have to attribute each reward not just to the most 

recent action, but also to at least the four preceding 
actions (and possibly much greater), a span that could 
easily overwhelm human working memory capacity. 

A further point demonstrated by the reinforcement 
learning model is that even adopting the appropriate 
global perspective on choice outcomes does not guarantee 
that the maximizing strategy will be discovered quickly.  
With λ=8, the reinforcement learning models require over 
200 trials of experience before 80% of the agents discover 
the optimal strategy, and roughly 10% of the agents never 
learn to maximize.  If the learning problem faced by the 
model is great, then humans face an even greater 
challenge, as they must somehow learn or guess the 
appropriate global perspective, as well as deal with the 
working memory demands imposed by that perspective. 

While it is impossible to directly measure anything like 
a “λ parameter” in humans by looking at behavioral data, 
it is possible to examine the extent that each decision 
reflects past outcomes over various timescales. Figure 4 
shows the likelihood of receiving a reward over the past 
10 trials and the decision to switch buttons or stay on the 
current trial. For a stay decision, there is a high likelihood 

 
Figure 4:  Likelihood of having received a reward on the 
preceding 10 trials and deciding to switch or stay on the 
current trial, contrasted with the overall reward likelihood. 

 
Figure 3: The percentage of maximizing choices of 
reinforcement learning agents for various settings of the 
eligibility trace parameter λ. 
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that the participant was rewarded on the previous trial 
(and low likelihood for participants who switched). 
However the correlation rapidly diminishes between 
choices and outcomes more than two trials apart. This 
result strongly suggests that participants in our 
experiment attributed the utility of each action mainly to 
its local consequences, and failed to learn the connection 
between local choices and their long-term consequences.  
The value of our computational model is to suggest that 
this failure may represent not just the choice of an 
inappropriate perspective on feedback, but more 
fundamentally, a working memory limitation that could 
prevent the adoption of a more global perspective. 

Discussion 
Our results provide yet another demonstration of the 
persistence of the tendency to meliorate rather than 
maximize. Even with a feedback manipulation that clearly 
highlighted the global suboptimality of their choice 
allocations, the majority of our participants meliorated. 
We interpret these findings as both partial success and 
successful failure. Although group means did not show 
any systematic effects, individual performance profiles 
suggested that our manipulation has helped some 
individuals to maximize their rewards. 

The success in our failure is that our theoretical model 
allows us to account for those findings to a certain extent. 
Even with perfect attribution of rewards to past choices 
the model needs to consider sequences of six or more 
choices in order to learn to maximize. By contrast, 
people’s choice allocations seem to be governed by local 
events like the presence or absence of rewards on the 
immediately preceding trials.  

At present our model does not take into account the 
global feedback provided to participants.  However, the 
important contribution of the model is its ability to place 
both local and global perspectives on a continuous scale 
(via the parameter λ), whereas our experiments have only 
manipulated this dimension by providing qualitatively 
different types of feedback. An interesting question is 
whether a particular combination of local and global 
feedback would tip the balance sufficiently that a 
maximizing strategy could be learned using a lower 
demand on working memory (concretely, a smaller 
parameter λ). If so, the model might shed light on the 
cognitive mechanisms that underlie melioration and may 
guide the design of experiments in which decision makers 
reliably manage to maximize their rewards. 

Conclusion 
Maximization is not just an obsolete ideal in need of 
retirement and remains an important benchmark for 
understanding human behavior. But as individual choice 
allocations often defy the notion of utility maximization 
an alternative explanatory mechanism is needed: We 
propose that current list of contenders (including notions 
of ‘bounded rationality’ and an ‘adaptive toolbox’) needs 
to be extended to include melioration.  

Our findings imply that humans, like pigeons, 
systematically favor local over globally optimal rewards. 
Although some humans, some of the time, under some 
conditions are able to steer against local optima this 
clearly does not come easily. In fact, the tenaciousness of 
the melioration phenomenon may suggest that local 
optimization is an evolutionary adaptive mechanism that 
is only dysfunctional in very special environments. 

As many phenomena of addictive and impulsive 
behavior patterns can be explained from a melioration 
perspective, it would be worrying if humans could not in 
principle overcome this tendency. Future research should 
concentrate on the interaction between conflicting local 
and global feedback. A better model of this interaction 
would not only benefit our theoretical understanding of 
behavioral mechanisms, but would bear great potential for 
applications that range from interactive software tools to 
the prevention or cure of self-destructive behaviors. 
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