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MARKOV LEARNING MODELS FOR MULTIPERSON SITUATIONS, I.

by

Patrick Suppes and Richard C. Atkinson

THE THEORY:':!

§l.l Introduction. The analysis of learning behaviQr as a stbchastic

process began only within the last decade. It seems that the first

serious article in this direction was W.K. Estes' "Towards a statistical

theory of learning" in the 1950 volume of Psychological Review. Shortly

thereafter Robert R. Bush and Frederick Mosteller also began publishing

papers on stochastic models for learning.

Of slightly older vintage but still quite recent is the development

of game theory. In spite of early work by Zermelo, Borel and others,

John von Neumann's paper of 1928 is the first real landmark in the

subject. The publication by von Neumann and Oskar Morgenstern in 1943

of their treatise Theory of Games and Economic Behavior introduced game

theory to a much wider circle.

The present monograph is partly concerned with the task of bringing

these two disciplines into closer alignment. More exactly, our aim has

been to apply learning theory to simple two-person and three-person game

situations. The present chapter describes the underlying theory used in

our experiments. The second chapter is concerned with various methods,

:':! This report is Chapter 1 of a forthcoming monograph. This research

was supported by the Group Psychology Branch of the Office of Naval

Research, the Behavioral Sciences Division of the Ford Foundation,

and the National Science Foundation.
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statistical and otherwise, used in the analysis of data. Because the

fundamental theory is pro1>abilistic in character, the conceptual

separation between the first two chapters is not absolutely clear.

Roughly speaking, we proceed as follows. Theoretical quantities

which do not depend on observed quantities are derived in the first

chapter; examples are asymptotic mean proba1>ilities of response and

associated variances. Quantities which dO depend on observed data

are derived in the second chapter; a typical instance is the deriva

tion of the maximum likelihood estimate of the learning parameter.

The remaining chapters are devoted to detailed presentation of

the experiments. Chapter 3 is concerned with some simple zero-sum,

two-person games, and Chapter 4 with some non-zero-sum, two-person

games. Chapter 5 deals with the analysis of game-theoretical informa

tion from the standpoint of what learning theorists call discrimination

theory. More particularly, in this chapter we study the effect of

showing one player the responses or choices of the other player.

Chapter 6 considers experiments conce.rned with a three-person, simple

ma,jority game. ChaPter 7 describes some experiments in "hich .the

subjects "ere told various things about the pay-off matrix. Chapter 8

analyzes the effects of monetary pay-offs.

It is pertinent to remark whY, before we em1>arked on our empirical

investigations, we thought learning theory "ould predict the actual

1>ehavior of individuals in game situations. To begin with, we endorse

the general characterization of learning given by Bush and Mosteller in

the opening pages of their book [8, p.jJ:
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'~e consider any systematic change in behavior to be learning

whether or not the change is adaptive, desirable for certain

purposes, or in aCcordance With any other such criteria •

.We .consider learning to be 'complete' when certain kinds of

stability--not necessarily stereotypy~-obtain."

The general character of our experiments is to bring a pair of SUbjects

into an interaction or game situation without telling them everything

about the game. (The degree of information given them varies from

experiment to experiment.) This restriction of information immediately

makes subjects learners as much as players of a game. A subject's

behavior naturally changes systematically as information accrues to him.

Readers oriented toward game theory might well wonder what was the

point of restricting information so severely as not to show the subjects

the payoff matrix, and even in some. experiments (Chapter 3) not to tell

subjects they were interacting at all. We chose this approach because

statistical learning theory had already been tested successfully in a

number of experimental studies. Our a priori confidence in learning

theory was mainly based on the excellent quantitative results of many

of these studies. Game theory, in contrast, was not originally formu

lated to predict behavior, but rather to recommend it. That is, as a

theory it has been normative through and through. Yet many people

f'amiliar with game theory have hoped it might describe actual behavior

of uninstructed but intelligent persons under certain stable and

restricted conditions. Initially we tended to think of our eXPeriments
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as a kind of competition between game theory and learning theory in

their relative ability to predict behavior. However, when we turned

to the actual design of experiments, it seemed obvious that the only

reasonable thing to do was to begin by staying close to some thoroughly

investigated learning setup and not worry ab.out fidelity to the game

theoretic notion of a game. So our "competition" between theoretical

approaches turned into the more constructive program of seeing how far

learning theory can be extended to predict behavior in situat.ionswhich

correspond ever more closely to real games. As we shall see in

Chapters 7 and 8, problems arise when this correspondence becomes very

close.

Because statistical learning theory provides the theoretical back

ground of our work, we would like to make certain general remarks about

the status of this theory before entering into technical details.

Although the theory is of recent origin, the concepts on which it is

based have been current for a long period of time, and are the basic

concepts of association and reinforcement psychology. These concepts

are only three in number: stimulus, response and reinforcement. The

great service, to this theoretical orientation, of earlie~ behavioristic

psychologists like.Watson, Thorndike, Guthrie, Tolman and Hull is to have

developed such concepts in a scientific context, cleanly pruning away

from them the tangled notions of common sense and of earlier philo

sophical psychology.



-5-

At this stage it would be a mistake to overemphasize the histor-

ical impqrtance of statistical learning theory, for it is too early to

evaluate its permanent significance. But it is possible to draw a

historical analogy to the development of classical mechanics by Newton,

and his successors in the eighteenth century (Euler, Lagrange, LaPlace

and others). The qualitative, conceptual work of Descartes was a

necessary preliminary for Newton. The virtue of Descartes was to view

the world mechanically and thus to sweep aside the subtle distinctions

of the Scholastics.

Descartes insisted that the physical world is nothing but matter

in motion. In his Principia Philosophiae he explains everything and

yet explains nothing. By this we mean he provides a way of looking at

the world that is sound, but his explanations of any particular

physical phenomena are hopelessly inadequate. To a certain extent the

same is true of the earlier association psychologists, although they

are definitely more empirically oriented than Descartes.~

~ However, it may be said in defense of Descartes that he .was not as

rationalistic as contemporary opinion would have him. Parts I and

II of the Principia area priori and independent of experience,

but Parts III and IV, in which he states his vortex hypothesis for

. explaining empirical details of the physical world, are regarded

by him as hypothetical and in need of empirical support. Descartes

is a worthy methodological predecessor to those psychologists

(Freud, Tolman and Hull, for instance) who have advanced all

encompassing theories of behavior.
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The contribution of' statistical learning theory is to use the

concepts of' association psychology to develop a genuine quantitative

theory of' behavior. Earlier attempts at quantitative theory, notably

Hull's, did not lead to a theory that was mathemati cally viable.

That is to say, in Hull's theory it is impossible to make non-trivial

derivations leading to new predictions of' behavior. Our contention is

that in statistical learning theory we have a theory which has the sam"

sort of' "f'eel" about it ,that theories in physics have. Non-trivial

quantitative predictions Can be Illade. Once we Jnake an experilllental

identif'ication of' stimuli and reinf'orcing events, it is usually clear

how t,o derive predictions ,about responses in a manner that is not ad hoc

and is mathematically exact.

To a psyChologist not f'aJniliar with game theory, it might seelllmore

Illeaningf'ul to say that we have been concerned with the application of'

learning theory to situations involving social interaction. Frolll this

standpoint a distinguishing ,f'eatlirE' of' our wO:r"k has been to ignore

concepts like those of' f'riendliness, cohe,siveness, group pressure,

opinion disc:r"epancy, which have been illlportant in recent investigations

by Jnany social psychologists. We have attempted instead to explain the

detailed f'eatures of' social interaction situations in terJns of' condition~

ing concepts. The exchange of' inf'orJnatio,n between playe,rs in a game, f'or

instance, can be successf'ullyanalyzed in terJns of' an organislll"s ability

to disc:r"illlinatebetween Stillluli, the illlportant point being that t,his

inf'OrJnation may be treated ,in terJns of' the notion of' stilllulus inexactly
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the same way that perceptual stimuli in a one-person situation are

handled. The s.ocial situation, 'lua social, does not re'luire the intro~

duct ion of new concepts. We do not claim that our experiments on highly

structured game situations justify the inference that no new fundamental

concepts are required to explain any social behaVior. But we think it

is important to demonstrate in empirical detail and with quantitative

accuracy that no new concepts are needed for a substantial class of

social situations.

In the stimulus sampling theory of learning outlined in the next

section, as in many other learning the.ories, an experiment consists of

a sequence ·of trials. Independent of particular theoretical assumptions,

the course of events for a given subject on a trial may be roughly

described as follows: (i) a set of stimuli is presented; (ii) a response

is made by the subject; (iii) a reinforcement occurs. However, the em

pirical specification of what is meant by stimuli, responses and

reinforcements is not a simple matter. The high degree of invariance

in the identification of responses and reinforcements in the experiments

reported in subsequent chapters arises from the fact that all of our

experiments were performed with very similar apparatus and under rela

tively homogeneous conditions.

Experimental identification of the relevant stimuli is more complex.

In fact, it is characteristic of many learning studies, including some

of ours, that direct identification.of stimuli is not possible ..For

example, in a simple learning situation for which the physical stimuli
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are constant from trial to trial, it is not clear how to enumerate the

relevant stimuli and their conditioning .relations. From a methodol~

ogical standpoint the concept of stimulus would, for these experiments,

seem to be best regarded as a theoretical construct which is useful

in deriving .experimental predictions.

On the other hand, in discriminati.on experiments, identification

of the stimuli is often natural, and on the basis of such an identifi

cation successful predictions of behavior may be made. Nevertheless,

as will be evident in subsequent chapters (see partiCularly Chapter 5) ,

identification of the stimuli does not necessarily imply direct

identification of the way in which the stimuli are conditioned to

responses. In our analysis these relations of conditioning will turn

out to be unobservable states of a Markov process.

As has already been remarked, the theory of behavior used in this

book is based on the three concepts of stimulus, response and reinforce

ment. Clearly, an experiment testing the theory may fail for two

reasons: the theory is wrong or the wrong experimental identification

of the basic concepts has been made. Various philosophers of science

have been fond of emphasizing, particularly in discussions of the general

,,- theory of relativity, that by sufficient distortion of the "natural"

experimental interpretation of concepts any theory may be saved from

failure. This viewpoint is usually discussed as the doctrine of

Conventionalism. It is not appropriate here to examine the functional

role of this doctrine in the working practice of scientists, but it is
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our view that the issues of conventionalism are not highly relevant to a

newly developing. science. However beautiful the structure of a theory

may be, if stable, non-artificial experimental interpretations leading

t.o new empirical predictions cannot be found, the theory does not have

signific$.!lt empirical import. We believe that the interpretations of

stimulus sampling theory of learning given in this book do have such a

stable character ..

§ 1.2 Sti)lluJus Sampling Theory of Learning. The basic theory used in

our experiments is a modification of stimulus sampling theory as first

formulated by Estes and Burke [9J, [llL [7L [lOJ. The exact way in

which our theory deviates from theirs is indicated later, b.ut certainly

there is no deviation in basic ideas.

·We begin our discussion of the general theory by formulating in a

non-technical manner its fundamental axioms or assumptions. An exact

mathematical formulation is to be found in Estes $.!ld Suppes [13J.

The first group of axioms deals with the conditioning)of sampled

stimuli, the second group with the sampling of stimuli, and the third

with responses.

CONDITIONING AXIOMS

Cl. On every trial each stimulus element is conditioned to exactly

one response.
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C2.. If a stimulus element is sampled ~ .": trial it becomes

conditioned with probability e to the response (if any) which is

reinforced on that trial.

C3. If no reinforcement occurs on a trial there is no change in

conditioning on that trial.

c4. Stimulus elements which are not sampled ~ .": given trial do

not change their conditioning on that trial.

C5. The probability e of.": sampled stimulus element being

conditioned to .":reinforcedresponse is independent of the trial number

and the outcome of preceding trials.

SAMPLING AXIOMS

S.l. Exactly one stimulus element is sampled on each trial.

S2. If on ."; given trial it is known what stimuli are available

for sampling, then no further knOWledge of the Subject's past behavior

or of the past pattern of reinforcement will change the probability of

Sampling .";given element.

RESPONSE AXIOM

Rl. On any trial that response is made to which the sampled

stimulus element is conditioned.

There are a number of remarks we want to make about these axioms,

including comparison with the Estes-Burke theory and modifications of

it which have been proposed by other people.
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To begin with, we may mention that the axioms assume there is a

~ixed number ·o~ responses and rein~orcements, and a ~ixed set o~ stimulus

elements ~or any speci~ic experimental situation. (The ~ormulation in

[13] makes this obvious.) In all the experiments considered in this book

the number o~ stimulus elements is assumed to be small. Because o~ the

small number o~ stimulus elements we are able to consider explicitly the

appropriate Markov process derivable ~rom the theory. We return to thi s

point in detail later.

Turning now to the ~irst group o~ axioms, those ~or conditioning,

we note to begin with that no use o~ Axfom C3 is made here, because none

o~ our experiments involves non-rein~orcement on any trial. ·We have

included this axiom ~or completeness; experimental evaluations are

reported by Anderson and Grant [1], Atkinson [2], and Neimark [23].

Readers familiar with the Estes-Burke stimulus sampling theory will

recognize the basic modi~ication we have incorporated in·Cl-C5. Namely,

the conditioning process has itsel~ been converted into a probabilistic

process. For Estes and Burke, sampling o~ a stimulus element results in

it becoming conditioned or connected, to the rei~orced response with

probability one, that is, deterministically. The experiments we consider

lend themselveS naturally to the assumption that exactly one stimulus

element is presented on each trial and that the element is sampled with

probability one. If the condii;ioning process were then assumed to be

deterministic, we would be in the position o~ having .a theory which

predicts responses exactly i~ the sequence o~ stimulus presentations is
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known. This is, of course, top strong a theory. The model of condi

tioning used here is a rather drastic simplification of the actual state

of affairs, and it is precisely the probabilistic element of the theory

which provides our predictions with the right degree of definiteness.

If, as is n/1.tural for our discrimination experiments, we suppose

that exactly one stimulus element is presented to the subject on ea.ch

trial, we may assume that the element is then sampled with probability g,

and thus keep the Estes and Burke deterministic theory of conditioning.

In this case, an additional assumption must be made concerning the

probability of a response when no sample is drawn. Various assumptions

may be introduced to cover the empty .sample trials, but .mostof them seem

to be either awkward to work with or ad hoc in character. It may be

mentioned in this connection that Estes and Burke initially introduced

their deterministic condit.ioning assumptions for situations in which it

was natural to assume that a .large number of stimulus elements were

present. We have Concentrated on /1. different type of situation, and

this probably accounts for our changed emphasis: conditioning is

probabilistic, Sampling is required. It is possible to derive, for

ce:rtainexperimental situations, different numerical values for observ

able quantities in pur thepry and theirs, but in the cases we have looked

at so fa.r these differences are too small to make a direct test feasible.

Consequently it seems best to consider our conditioning assumptions as

being an obvious and not very deep generali~ation of ~he Estes-Burke

thepry. Further generalizatipn may be .obtained by intrp<1ucing
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dependenGies among the probabilities that a stimulus element will be

conditioned.

Other kinds of' generalization are possible. For example, Restle

([24], [25]) postulates two processes: conditioning and adaptation.

Relevant stimuli are conditioned, irrelevant oneS are adapted out.

Atkinson introduces the notion of' trace stimuli l3 ] and also observing

responses [4] .as determiners of' the stimulus elements to be sampled.

La Berge [l7] weakens Axiom Cl and assumes that initially some stimulus

elements are neutral in the sense that .they are conditioned to no response.

Independent of' any assessment of the merits of' these various generaliza

tions, they, like the initial work of' Estes and Burke, are aimed at

models with a large number of stimulus elements. For reasons which will

be evident bef'ore the end of' this chapter such models are very unwieldy

f'or analyzing our rather complicated experiments.

On the other hand, generalizations in the direction of' giving a

more complete account of motivation are highly pertinent to our work.

Two tentative models of' this sort are described in the final chapter.

Axioms C3 andS2 have not usually been explicitly formulated by

st.atistical learning theorists, but they are necessary for strict deri

vation of' the appropriate Markov process representing the course of'

learning. Axioms of' this character are of'tencalled independence of'

path assumptions.

The theory f'ormulated by our axioms would be more f'lexible and

general if' (i) Axiom Sl were replaced by the postulate that a f'ixed

number ·of' stimuli are sampled on each trial or that stimuli are sampled
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with independent probabilities and (ii) Axiqm JU were then changed to

read: the probability of a response is the proportion of sampled

stimulus elements conditioned to that respqnse. However, for the set

of experiments reported in this book it is scarcely possible experi

menta.lly 1;0 distinguish between 81 and JU and their generalizations.

In the next three sections we consider detailed application of the

learning theory formulated in the above axioJlls. Before turning to

these apPlications, it will be useful to introduce some concepts and

. notations which we use throughout t.he rest of the book. Without going

i;nto complete technical detail, we want to introduce the basic sample

space and the main random variables we define on this .sample space.

That the explicit use of random variables has been studiously avoided

in most of the literature of statistical learning theory is not a

serious argument for avoiding such use here, for the notion of a random

variable is exactly the one we need to give precision to the probability

asserti.o;ns we want to .make. We remind the reader that a random variable

is simply a (measurable) function defined on the sample space, and the

overall Probabili1;y measure on the sample space induces a probability

distribution on the values of the random variable.

Our sample space X for a given experiment is just the set of all

possible outcomes x of theexperime;nt. 11; is helpful to think of x

as a given subject's behavior in a particular realization of the

experiment (or in our situations, sometimes to think of x as the

behavior of a particular pair or 1;riple of subjects). ·For brevity we
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shall in the sequel speak of subject x, but we really mean "behavior

x of the subject."

For simplicity, let us consider first notation for an experiment

involving only single subjects, not pairs or triples of subjects. A

subject is given a sequence of trials. On each trial the subject makes

one of two responses, ~ or ~ Using boldface letters fOr random

variables, we may thus define the response random variable:

(1.2.l) A (x) =-n

l if subject x makes response ~

on trial n,

o if subject x makes response A2on trial n

After x's response the correct response is indicated to him by appro-

priate means. Indication of the correct response constitutes reinforce-

ment. On each trial exactly one of two reinforcing events, El or E
2

,

occurs. The occurrence of Ei means that Ai (for i = l,2) was the

correct response. Thus we may define the reinforcement random variable:

(l.2.2) E (x) =
~n

l if on trial n reinforcement Eloccurr$d for subject x ,

2 if on trial n reinforcement E2occurred for subject x

,When experiments are considered which permit non-reinforcement on some

trials, such a trial is called an Eo trial, and the value of E
--n

is

O. However, as already remarked, no such experiments are reported here.

The asymmetry between the values of A and E
-n -:n

is justified by the



fact that we want to sum the A 's but not the E 's When nO summa-
n n

tion is involved, we prefer to use the values 1 and 2 , which usage

readily generalizes to more than two responses.

The A and E notation is standard in the literature. Since the

additional random variables we need have not been explicitly used, we

introduce some new notation.

The enumeration of which stimulus elements are conditioned to which

responses may be represented by a state of conditioning random variable

We use the term j state' because the possible values of this ra,ndom.C-n

variable on a given trial correspond to the possible states of the funda-

mental Markov process we" introduce in the next section. A general

definition of the state of conditioning random variable is not feasible,

since the definition depends on the number of stimulus elements in the

experiment. For a,pplication in the next section, where only a single

stimulus element "'1 is a",sumed, we define C as follows:-n

1 if on trial ll, sl is conditioned

to Al for subject x ,
(1.2.3) c (x) ;=

--n

2 if on trial n , sl is conditioned

to ~ for subject x .
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Note that ~or an experiment with a single stimulus element, it ~ollows

~rom Axioms Sl and Rl that ':J

P(A = l Ie = l) = l-n -n

(L2.4 )

P(A = l Ie =2) = a-n n

We also need a random variable F ~or e~~ectiveness o~ condition-n

ing. The value o~ this random variable corresponds to the sampled

stimulus element's becoming conditioned, or not, to the rei~orced

response. I~ it doeS the conditioning situation is ef~ective, otherwise

not. In view o~·the sampling Axiom Sl, which says that exactly one

element is sampled on each trial, the definition o~ F-n
is simple,

l i~ on trial n, the stimulus element
sampled is e~~ectively conditioned,

F (x) =
-n

a otherwise.

Notation like P(A = l) is standard. The explicit de~inition in
n

terms .o~ the sample space is:

P(A =l) =p((x: A (x) • l}) J-n -n

where (x: A (x) ';l) is the set o~ all experimental outcomes x
-n

which have response Al on trial n •
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It follows immediately from Axiom C2 that

P(F == 1) = e-n

(1.2.6)

P(F == 0) == 1 - e-n

We shall use F
l

and Fo informally to indicate the event of the

conditioning being effective o:r not. This usage is simila:rto that

which we have adopted fo:r Al , ~, E
l

, and E
2

•

In most expe:rimental studies :res:ponse p:robabilities a:re computed

by ave:raging ove:r a block of t:rials as well as subjects. Fo:r this pu:rpose

we introduce the :random variable .~ fo:r the sum of ;responses:

(1.2.7) ~(x)

Although this definition indicates that we sum f:rom t:rial 1 of the

expe:riment, o:rdina:rily this. is not ou:r p:rocedu:re. .When the summation

begins on t:rial m, and it is necessa:ry to be exPlicit, the following

notation will be used; :J

(1.2.8) A N(x)4Il,

m+N
== >. ~n(x)

n=m+l

Obviously a t:roublesome p:roblem is what to do about Definitions

(1.2.1), (1.2.2), (1.2.3), (1.2.5), (1.2.7) and (1.2.8) when we tu:rn

:J In the expe:rimental lite:ratu:re the:re has been a fai:ramount of

confusion between the :random va:riables A and A--n 4Il,N



from experiments with individual subjects to pairs of subjects. The

simplest systematic device is to add a superscript (1) or (2) to

designate the first or second member of the pair. The practical

difficulty is that this notat.ion is :r'ather cumbersome. Often we

shall call one member of the pair of subjects playe:r' A and the other

player B • We then define:

A
--n

B = A (2)
-n -n

0: = P(A = 1)
n -n

13 = P(B = 1)n -n

'1 = p(A =' 1, B =' 1)n -n -n

Note that '1
n

is the probability of a joint event, namely an 1\ re-

sponse by player A and a Bl response by player B In a similarfashim

I
we define sums of random variables and Cesaro mean probabilities:

N

~=L~
n=l

N

='L~
n=l

(1.2.10 )
1 N

Ci_ = - L 0:
11 N n=l n

13 =N

'1=N
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Summation starting at trial m rather than at trial 1 is defined in

an analogous fashion. Finally, if the appropriate limits exist, we

define:

ex = lim ex
n

n~oo

13 = lim I3nn-)oo

(1.2.11)

13= lim I3N
N~oo

'I = lim 'In
n~co

y = lim Y
N

N~.oo

Because the other random variables are not often referred to

explicitly in subsequent .chapters we do not introduce an abbreviated

notation for their use in the two-person experiments.

§ 1.3 Simple Example: Markov Model for Non~contingent Case. We

shall now illustrate the method of deriving, from the learning axioms

stated in the last section, the Markov learning process for a given

experimental situation. The sequence of events on atrial is:

Stimulus sampled ..... Response made ..... Reinforcement occurs .....

Conditioning of sampled stimulus.
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We consider 'What is from a theoretical standpoint one of th" simplest

cases: non-contingent reinforcement. This case is defined by the

condition that the probability of E
l

on any trial is constant and

independent .ofthe subject's responses. It is customary in the

literature to call this probability Jt. Thus

r~
= l) = Jt

(1.3.l)
ptE = 2) = l-Jt

-n

We assume further that the set S of stimulus elements contains exactly

one element which we label The definition of the random variable

C for the state of conditioning is thus defined by (l.2.3) of the-n

previous section. It is possible to interpret sl as the ready signal

for a trial, but a physical identification of sl is not necessary.

Moreover, if two or more stimulus elements are postulated rather than one

t.here is no obvious clear-cut physical interpretation of the stimuli .•

the sequence of random
. y

chain. This means,is a Markov

.What we may prove from our axioms is that

variables Q.l'~' Q.3,···, Q.n , .. •

among other things, that knowing the conditioning on trial n, the

conditional probability

(1.3·2 ) P(Q.n+l = j C = i)
~n

y For an exact definition of Markov chains, see Feller [l4j or Kemeny

and Snell [l6]. For more complicated schedules of reinforcement

this particular sequence of random variables may not be a Markov

chain .•
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is unchanged by knowledge of the conditioning on ~y trials preceding n •

This fact is characteristic of Markov. processes. The process is a

Markov chain when the transition probabilities (l.3.2) are indePendent

of n, that is, constant over trials. ·When we have a chain, the

transition probabilities may be represented by a matrix (Pij);

obviously the process is completely characterized by this matrix and

the initial probabilities of a response. For explicitness we note:

that is, is the probability that ~n+l = j given that C = i-n
"

k
In the usual language .of Markov processes, the values i and j of

the random variable C are the states of the process. When there is-n

but one stimulus element and two responses, there are only two states

in the process, l and 2 (see (l.2.3)).

We now use the axioms of the prec.eding section and the particular

assumptions for the non~contingent case to derive the transition matrix

(Pij)' In making such a derivation it is convenient to represent the

various possible events happening on a trial by a tree.. Each set..of

branches emanating from a point must represent a mutually exclusive and

exhaustive set of possibilities. Thus, suppose that at the end of

trial n subject x is in state l • At the beginning of trial n + l ,

x will make response Al , then either El or E2 will occur, El

with probability 1l, and E
2

.with pr9bability l - 1l .We thus have

this much of a tree:
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a

(1.3.4 ) 1

b

To complete the tree, we need to indicate the possibilities at a and

b. At a, the stimulus sl will become conditioned to A
l

with

probability e (event F
l

) and remain unchanged with probability 1- e

(event Fa) But since x is already in state 1, this means there is

only one possibility at a: stay in state 1. At b, the situation

is different. With probability e the stimulus sl will become

conditioned to ~ (event F
l

) since the occurrence of E
2

reinforced

A2 ' that is, x will go from state 1 to state 2. And with probability

1- e event Fa occurs, so that x will stay in state 1. We then

have as the complete tree:
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1

1

2

Assuming now that x is in state 2 at the end of trial n, we derive

by exactly the same argument, the other tree (clearly we always need

exactly as many trees as there are states in the process to compute

the transition matrix (P .. )) .
lJ

1

2
2

2
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Each path of a tree, from beginning point to a terminal point,

•represents a possible outcome on a given trial. The probability of

each path is obtained by multiplication of conditional probabilities.

Thus for the tree of (1.3.5) the probability of the top path of the

four may be represented by:

P(E =1, F = 1) = P(F = 1 I E = l)P(E = 1)-n -n -n -n -n

= en

Of the' four paths of (1;3.5), three of them lead ,from state 1 to

state 1. Thus

Pll = P(C 1 = 11 C = 1)-n+ -n

= en + (1- e)n+ (1- e)(l- ll)

= ell+(l-e) •

Similarly

Notice, of course, that

By similar computations for (1.3.6), we obtain:

= e n

= (1-e)Il+6(1-n)+(1-e)(1-1l)

=1-611"



-26-

Combining th" above results the transition matrix for the non-

contingent case with one stimulus element is:

1 2

1 8rr+ (1-8) 8(1 - rr)

(1.3.7)
2 err l~ 8 rr

•

Before examining some of the predictions which may be derived for

the Markov chain repre sented by (1.3.7), some general remarks are

pertinent concerning the relation of this process to the learning axioms

of § 1.2. The central problem may be illustrated by an exampl".

Suppose subject x makes an .l\ response on trial n and reinforcing

event E
l

then occurs. Assuming there is a single stimulus element,

it follows that it must be conditioned to A
l

in order for A
l

to

occur on trial n. But if E
l

then occurs, according to Axiom C2

the conditioning of sl cannot change and we predict, using Axioms Sl

and Rl, that response A
l

will occur on trial n+ 1 with probability

one. This prediction may be represented by:

(1.3.8) = 11 A = 1, E = 1) =-n -n 1 .

Equation (1.3.8) provides a very sharp test, in fact one which is sure

to lead to rejection of the theory. On the .other hand, (1.3.8) cannot

be derived from the Markov process represented by (1.3.7).

The difficulty with the one"element model (meaning the assumption

of one stimulus element) is that the fundamental theory laid down by
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Axioms Cl-C5, 81, 82, Rl is for this model det.erministic in all but

minor· respects. In particular, from the response on trial n + 1 we

can always derive exactly what was, according to the theory, the

conditioning on trial n Effectively then, the random variables

A E C and F are all observable, and the values of the-n' -n' -n -n

dependent variables A , C-n -n and F-n can be predicted in a nearly

deterministic fashion from experimental protocols for individual

subjects.V

On the other hand, the Markov process defined by (1.3.7) leads

only to probabilistic predictions for the values of A-n and C , and-n

no predictions about E and F-n -n The assumed distributions on the

latter two random variables are used in the derivation of (1.3.7) but

are not observed in any direct fashion. Contrary to an opinion that

seems to be widely held by psychologists, it is possible to compare

the fit of (1.3.7) to the protocol of an individual subject. In fact,

a standard goodness of fit test is available (see § 2.1). Naturally

a goodness of fit test can also be made for a sample of protocols drawn

from a homogeneous population of subjects. Thus the Markov model

defined by (1.3.7) is thoroughly testable, but it is in no respect

deterministic.

cannothave the same value then the value ofIf

be

A and-n
obsewed,

E
-n
but it does not matter in this case.

F-n
If the values of

A and E differ on a-n -n
uniquely by the value of

~n+l is observable.

trial, the value of

A l '. and hence it-n+

F
-n
is

is determined

observable since
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If we assume that it seems too muCh to ask for a deterministic

theory of learning at this stage of development, the abQve discussion

does not really entail that the fundamental theory embodied in the

axioms of § 1.2 should be abandoned, or perhaps regarded as a "make

believe" theory from which realistic st.ochastic processes like (1.3.7)

may be derived. FO,r the fundamental theory has a sharply deterministic

character only when we assume there is but a single stimulus element.

Notice that the axioms of § 1.2 say nothing about the number of

stimulus elements. When we assume there are two stimulus elements,

say sl and s2 in the non-contingent case, the random variables

C and F are not ob servable .. and few deterministic predictions
-n -n

can-.be made.

The one-element model has sO many special features that it will

be useful to discuss the two-element model in some detail. Let us

introduce S as the sampling random variable defined for the two-n

element model by:

(1.3·9) S (x) =
-n

1 if sl is sampled on trial n,

2 if s2 is sampled on trial n

The trial sequence beginning with

be represented by:

C-n
and ending with may then

(1.3.10) C .... 8 .... A ->E .... F .... C
l-n -n. -n -n o....n-n+
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We also need to define the random variable C representing the
-n

state of conditioning for the two-element model. For expository

purposes we make the value of' C-n simply the set of stimulus elements

conditioned to the ~ response. Here and subsequently 0 is used

to designate the empty set as we],l as· the number zero.'!J Thus if

C (x) = 0-n

this means neither nor is conditioned to A
l

(1.3.11) C =
-:-n '

(Sl,S2) if' sl and s2 are both

conditioned to A
l

(sl) if' sl is conditioned to Al and s2
is conditioned to A

2

(s2) if' s2 is conditioned to A
l and sl

is conditioned to A2

o if' neither element iscondftiollecl.

As (l.3.n) indicl;l.tes the two~element mode.l lel;l.ds to a four stl;l.te Ml;l.rkov

process. In deriving this process we give here only the first two trees,

that is, the two f'or which we are at the beginning of' the tril;l.l in

'!J We use a f'amiliar notation for sets. A set is described by writing

the names of its members, separl;l.ted by commas, and then enclosing

the whole in braces. Thus (sl,s2) is the set of two stimulus

elements and
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state (sl,s2} or state (51}' Trees for the other two are in all

essentials the same. Note that we have a set of branches for each of

the intermediate steps in (1.3.10), that is, the successive branches

correspond to the sequence

(1.3.12) 8 ...,A ->E ...,F
-n -n -n -n

But since by Axioms Cl and 81 the value of A-n is uniquely determined

by the values of C
~n

and S ,that is, the response is uniquely-n

determined by the state of conditioning and the single sampled

stimulus element, we may reduce (1.3.12) to:

8...,E...,F
-n -n -n

Each of the random variables in (1.3.13) has two possible values, which

means then that there are eight possible paths in each of the four trees

corresponding to the four possible states of conditioning. Eowever,

some reduction in the number of paths may be made by observing that

if the sampled stimulus is conditioned to the response which is rein-

fo.rced, the effectiveness of conditioning is irrelevant. For example,

(1.3.14) P(~+l = (Sl} Ie = (sl}' S = 1, E = 1, F = 1) =-n -n -1l -n

p(C = (sl} I Q.n = (sl} , 8 = 1, E = 1, F = 0) - 1-n+l -n -1l -n

We take account of this irrelevancy to reduce the number of paths. Thus

there are not eight but six paths in the tree of any state.

Given (1.3.13) and conditional probabilities like (1.3.14), it

is straightforward to derive the trees:
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(sl,s2}

E
1

: :If
F

1
: e (s2}

sl:1/2 E ·l-:If2·
FO:1-

(1.3.15) (sl,s2} (sl,s2}

s2:1
E

1
: :If (sl,s2}

F
l

: e (sl}

E
2

:1- :If

FO:l-
(sl,s2}

o

E ·12·
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The tree for the state of conditioning represented by the empty set

is symmetrical to (1.3.15), and the tree for (s2) is similar to

(1.3.16). One assignment of probabilities in (1.3.15) and (1.3.16)

which is not justified by any of the preceding discussion is that ·of

the equi-probabilities of 1/2 to or being sampled. Axiom

Sl requires simply that exactly one stimulus element be sampled, and

the special experimental conditions of the non-contingent case do not

entail the probability with which or will be sampled. .We

make this additional assumption in its simplest form, but it is clear

how the analYsis could be carried through under the supposition that

sl is, sampled with probability w and with probability 1 -w •

When we come to discrimination experiments, where one player discrim-

inates between known responses of the other player, we shall see that

the probabilities corresponding to 1/2 for and fallout in

a natural manner from the theory (see Chapter 5).

From (1.3.15), (1.3.16) and the two additional trees not displayed,

the transition matrix obtained for the two-element non-contingent model

is as follows: 21

:I The possibility will be examined later of collapsing states (sl)

and (s2) into a single state to yield a three-state process,

where the states are designated 0, 1, 2, depending simply on

the number of stimulus elements conditioned to Al •
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0 (Sl) (S2) (sl,S2)

0 1 - 6 " ('m /2 e ,,/2 0

(sl) 6(1- ,,)/2 1- 6/2 0 6 ,,/2
(1.3.17)

(s2) 6(1-,,)/2 0 1- 6/2 6 ,,/2

(Sl,S2) 0 6(1 - ,,)/2 6(1 ~ ,,)/2 (1-6)+6"

Detailed analysis is not re~uired to see that the two-element

model meets the criticisms mentioned above of the one-element model.

The probabilistic character of the Markov chain represented by (1.3.17)

is also part of the elementary process given by the trees (1.3.15) and

(1.3.16). Knowing which response and which reinforcing event occurred

on trial n does not permit us to make a deterministic prediction

about the response on trial n+ 1. It should be noted that the states

of conditioning are not observable; consequently deterministic

predictions are generally not possible in the two-element model.

On the other hand, statistical analysis of the degree to which

the Markov chain of (1.3.17) fits empirical data is more difficult

and less satisfactory than the corresponding analysis for the Markov

chain represented by (1.3.7). We return to this problem in the next

chapter. If a two-element model were ao.opted for each subject then

all of our two-person models would have at least sixteen states in

the appropriate Markov chain. It is mainly to avoid the burden of

this increased complexity that we have generally restricted ourselves

to the one-element models. We believe the experimental predictions



reported in subsequent chapters have been good .enough to justify this

restriction.

We now turn to the derivation of asymptotic probabilities of

response for the Markov chains (1.3.7) and (1.3.17). That is, we

want to find the quantity

(1.3.18) lim P(A = 1)
"'""'Xln .....oo

if the appropriate limit exists. In most experiments estimates of

(1.3.18) are obtained by averaging over sUbjects and a final block

of trials. Thus, we could as well ask for the Ces~ro mean asymptotic

probability

(1.3.19) lim
N.....oo

1 m+N
- ~ P(A = 1)
N L- -n

n=m+l

,
- I,

'j

It is a well-known result that when both these limits exist, they are

identical, although (1.3.19) may exist and (1.3.18) not. It is also

well-known that for any finite-sta,teMarkov chain the limit (1.3.19)

existS.

Some notation less awkward than (1.3.18) is useful. If' (Pij) is

the transition matrix then pi~) is the probability of being in state

j at trial r+ n given that at trial I' we were in state i . We

define this quantity recursively:

(1)
P = Pij ij

(1.3.20)
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Moreover, if the appropriate limit exists and is independent of i,

we set

(n)
lim Pij

n ->00

In particular, in the one-element model discussed above

~= lim P(A = 1)
n

n·~

The limiting quantities u.
J

exist for any finite state Markov chain

which is irreducible and aperiodic. A Markov chain is irreducible if

there is no Closed proper subset of states, that is, a proper subset

of states such that once within this set the probability of leaving it

.is zero. For example, the chain whose transition matrix is:

1

3

1

1
2

1
Ii:'

o

2

1
2

1
2

3

o

o

1
2

is reducible, because the set [1,2} of states is a proper closed

subset. A Markov chain is aperiodic if there is no fixed period for

return to any state; that is, to put it the other way, a chain is

periodic if a return to some state j having started in j is

impossible except in t,2t, 3t, ••• trials, for t > 1

chain whose matrix is:

Thus the
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2
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1

o

o

1

2

1

o

o

3

o

1

o

exist in all cases and are inde~

has period t = 3 for return to each state.

All of the Markov chains we consider in this book are irreducible

and aperiodic. Moreover, since each has only a finite number of

states, the limiting quantities uj

pendent of the initial state on trial 1. If there are r states,

we call the vector ~ = (ul ' u2 ' •.• ,

vector of the chain. It may be shown

u) the stationary probability
r

(Feller [14 ], Frechet [15]) that

the components of this vector are the solutions of the r linear

equat.ions

j=l, ... ,r

such that L u. = 1
J

Thus to find the asymptotic probabilities u j of a state, we need

only find the solutions of the r linear equations (1.3.22). The

intuitive basis of this system of equations seems clear. Consider a

two-state process. Then the probability Pn+l of being in state 1

is just:
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but at asymptote

whence

which is the first of the two equations of the system (1.3.22) when

r= 2

We now find the asymptotic probabilities u. for the one-element
J

and two-element non-contingent models. Recalling (1.3.7), the transition

matrix for the one-element model is:

1

2

1

err+ (I-e)

err

2

e(l - rr)

I-err

The two equations given by (1.3.22) are:

and the normalizing assumption is

(1.3.24) u +u--=l1 c

Using (1.3.24) and the first equation of (1.3.23) we obtain:
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u1 we conclude

u ",:n:
1

For the two-element model, the five equations, including the

normalizing assumption are, on the basis of (1.3.17):

1+ 2 6(1 - :n:)u4

1) 1+ (1- 2 6 u
3

+ 2 e(l ~ :n:)u4

To indicate that systems of equatioIls like (1.3.26) may often be

solved by a little insight rather than by applying routine methods

which guarantee an answer, we proceed to solve this system. Note

initially that the first three equations simplify to:

(1) 1:n:u
1 '" 2(1- :n:)(u2 + u

3
)

(2)
~ '" :n:u1 + (1 - :n:)u4

(3 ) u
3 '" :n: '\. + (1 - :n:)u4
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We conclude from (2) and (3) that

(4 )

whence we may express ul and u4 in terms of u2 ' using (1) and (2)

1- :It
U :::::: --u
1 :It 2

(6) :It
U ~--lL.

4 - l-:It C

Substituting from (4), (5) and (6) into the fifth equation of (1.3.26),

we get:

whence simplifying (7)

but since the c·oefficielit of u2 is

2
(1 - :It + 1£) '" 1 ,

we infer

and by appropriate substitution

u=
1

u '" :It(l~ 1£)
3
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Bince the states of' conditioning cannot be observed in the two~element

model, ~ f'ortio.ri the asymptotic probabilities of' these states cannot.

However, f'or any trial n we may relate the probabilities of' states

of' conditioning to the probability of' an A
l

response, namely:

(1.3.27)

1
Note why the coef'f'icient 2 occurs. If' the subject is in state sl'

then if' sl is sampled on trial n he will make response Al , but

From (1.3.27) and the asymptotic

if' s2 is sampled, he will make

probability of' sampling sl is

response ~

1
2

And by assumption the

Probabilities of' the states (sl,s2)' (sl) and (S2) , the f'ollowing

asymptotic probability of' an A
l

response is obtained:

lim
n-+oo

2 11
= II + 2" II (1 - ll) + 2" II (1 - ll)

= II

This result agrees with the asymptotic probability of' an A
l

response

in the one-element model. Moreover, it is not dif'f'icult to show that

this asymptotic probability of' response will be obtained on the

assumption of' any number I' of' stimulus elements and any sampling

probability distribution wl ' "', wI' •

In the next chapter we shall be concerned with the general

question of' goodness of' f'it of' a model to observed data, but the
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fundamental character of this general question should not obscure the

importance of certain particular quantities like the asymptotic proba-

bilities of response. It is generally agreed that the first and most

gross test of a model in the area of statistical learning theory is

its ability to predict observed asymptotic response probabilities.

From this gross test we may move in either two directions: toward

further asymptotic results or toward analysis of the rate of learning.

Let us begin with the former.

It is often charged that statistical learning theory correctly

predicts only the average behavior of a group of subjects and not the

behavior of ,individual subjects. This misconception rests on some

rather widespread misunderstandings of probabilistic theories of

behavior. ,Rather than speak in g",neralities, we may illustrate what

we mean by considering the variance of the sum of the random variables

~+l' ... , ~+n' at asymptote. Following (1.2.8), this quantity is

defined as

(1.3.28) A-m,N =
m+N
L

n=m+l
A-n

In a given experiment consisting, say, of 240 trials for each subject,

we may compute ~,N(x) for each subject x over the last 100 trials,

that is, we compute K140 ,100 . By averaging over subjects we obtain

the expectation E(A N) , which is predicted to be Nrc. But from am,

given sample of subjects drawn from a homogeneous population, we may

also compute the variance of A ,which can then be compared with the-m,N
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predicted variance. Moreover, the same variance is predicted f'or the

corresponding number of' blocks of' trials of' length N f'or a given

subject at asymptote. In either case we have a probabilistic predic-

tion about individual subjects. For example, if' N = 10 , and we

consider the last 100 trials f'or a given subject at asymptotej then

we may directly compare the variance of' the ten blocks of' ten trials

each with the theoretically computed variance of' A N
--Ill,

We now turn to the derivation of' this variance. For notational

simplicity we drop the m subscript, particularly since at asymptote

it does not matter at which trial we begin.

Theorem. In the ~-element, non-contingent model the variance

of' ~ at asymptote is:

var(~) = Nrt (1- rt)(2~ e) _
N

2rt(1-rt)(1-e)[l-(1-e) ]

e2

Proof': By the classical theorem f'or the sum of' random variables

(see Feller [13], p. 216):

N

var(~) = L var(~n)
n=l

cov(A.A )
-J"'k

(Note that for simplicity we sum from n = 1 ; this does not affect the

result at asymptote.)

Now since at asymptote

E(A ) = rt ,-n
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the variance is:

var(A ) '" 11 (1 ~ 11)-n

and

Furthermore

'" lIE (~I~)

(k-j)
= 1C P 11

Now for the transition matrix of the one_element model we may prove by

induction that

whence, combining the above results

k' 2cov(A.A ) '" 11 [11+ (1- 11)(1- e) -J] -1!
-J~
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Finally, we need the following summation:

> (l_e)k- j = (1_e)2-1 + [(1_e)3-2 + (1_e)3-1 ]
1:::: j< k::::N

) )N-l+ •••+ [(1- e + ..•+(1- e ]

2 N
l-(l-e) l-(l-e) (N-l)= e + ....+ e ~ .

N -.1 1 2 N
= [-g- - (N-l)] - e [(1- e) +".+ (l-e) ]

= N-l(l,-e) _ (1- e) [l_e_(l_e)N]
e . e2

N 1- e N
= -(1- e) - - [1- (1- e) ]

e e2

Using this result and substituting in (1) we then have:

= Nn:(l-n:) (2-e)
e

var(~) = N n:(l- n:)+ 2 n:(l- n:) ~(l- e) -2 n:(l:- n:) (1-2e )
e

N2 n:(l- n:)(l- e)[l- (1- e) ]
g2

N[1- (1- e) ]

Q,.E.D.

Later, (1.3.29) will be compared with some observed data. A

nearly endless number of further interesting asymptotic quantities can

be presented, but we delay additional computations until we consider

some data for the non-contingent case in Chapter 7.

We conclude this section with a discussion of the rate of learning

for the one '-element non-contingent model.. The learning rate may be
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represented by the absolute probability of an Al response on

(n)
trial n, which,using a standard notation, is al defined by:

I
j,

(1.3 .30)

where

trial 1.

(n) _ ..:#- (n-l)
al - L- a·p·l '

i=l l l

is the initial probability of response Ai ' that is, on

We observed in the proof of (1.3.29) that

and we may easily prove that

The absolute probability ain ) is then:

( )
(n)

For rr> al and 0 < e < 1 , it is clear from 1.3·31 that al

is a strictly' increasing function of n.

~ FOr explicitness, note that

al = P(~l = 1)

P(A = 1)
-n
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The analogues of (1.3.29) and (1.3.31) for the two-element model

are somewhat cumbersome to derive for arbitrary e and rr. They

will not be pursued here, but the analogues in the two~perSon

situations will.

At this point we stop our theoretical analysis of the non~

contingent case, but we return to it briefly in § 1.6 and again in

Chapter 7. In Chapter 8 the effects 01' strengthened motivation (money

payoffs) is ana.lyzed by introducing another concept, namely that of

memory.

§ 1 .. 4 Markov Model for Zero-S.um Two-Person Games. In the preceding

section stimulus sampling learning theory was applied to the simplest

one-person experimental case •. Wenow want to a.pply it to one of the

simpler two~person cases (cf. [5]). The general experimental situation

may be de scribed as follows. On a given trial each of the two players

(i.e., subjects) independently makes one of two responses. As indicated

in §1.2, the pla.yers are designated as A and B ,with A making

response A
l

or A
2

,and B making response B
l

or B
2

The

probability that a given response for a given player will be reinforced

on a particular trial depends on the actual responses made on the trial.

It is by virtue of this dependence or contingency that the game aspect

of the experiment arises. For example, if player A makes !,€sponse A
l

,

and player B response B
l

, then there is a probability a
l

that ~

is reinforced and B2 is reinforced, and a probability 1- a
l

that



is reinforced and Bl is reinforced.V Thus with probability

it turns out that A made a correct response and B an incorrect one;

with probability 1- al the situation is reversed. The zero-sum

character of the game is due to the fact that whichever one of the

occurs, exactly one player wins in the sense of having made a correct

response. Thus the reinforcement probabilities may be described by

the following payoff matrix:

(1.4.1)

In thinking of each trial as the play of a simple 2X2 game, it is

to be noted that

probability a
i

the payoff is not being correct or incorrect, but the

~of being correct. The experimenter's selection of

V Using the Ei notation introduced in § 1.2, there is a

event occurs for player A

and a probability

probability

and an E2
that an E2

al that an El
event for player B

occurs for player A and an for

1- a
l

player B.

~ Technically we then have a constant-sum game, which is

strategically equivalent to the zero-sum game obtained by

subtracting 1/2 from each
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actual reinforcements on the basis of the a. 's corresponds to a
1

chance move by the referee in a game. Appropriate choice of a game

strategy is in terms of the expected values of these chance moves.

Restricting ourselves to the assumption of one stimulus element

for each player, the stipulation of (1.4.1) completely determines

the derivation of the Markov process from the axioms of .91.2. We

assume, of course, that both players satisfy the axioms. On each

trial the single stimulus element of player A is conditioned to

response Al or ~ , and the single element of player B is condi-

tioned to response B
l

or B
2 There are, conse~uently, four

possible states of conditioning, whiCh will be represented by the

four ordered pairs: (1,1), (1,2), (2,1), (2,2) . The first member

of each pair indicates the conditioning of player A's stimulus

element, and the second member that of player B's. Thus the pair

(1,2) represents the conditioning state defined by player A's element

being conditioned to Al and player B's to B
2

.

In view of the detailed derivations given in the preceding

section, we restrict ourselves here to deriving only one of the

four trees for the Markov process. Let us assume we are in the

state (1,2) . Then the tree looks like:



(1.4.2)

(1,2)

eAeB: (1,1),

eA(l-eB): (1,2 )

eB(l-eJA): (1,1)

(l-eA)(l-eB) : (1,2 )

6AeB: (2,2 )

eA(l-eB): (2,2 )

eB(l-eA) : (1,2)

We want to make several remarks about this tree. First, in order to

avoid a further multiplication of notation, the actual reinforcement

aRd conditioning events have not been indicated on the tree, since

these events are unequ~vocally specified by their probabilities. For

example, a
2

on the upper main branch indicates that player A made a

correct response and player B an incorrect one, that is, both players

A and B received an E
l

reinforcing event. The probability eA8B at

the top indicates that conditioning was effective for both players.

However, in the one-element model the effectiveness of conditioning is

irrelevant when the response actually made is reinforced (a point

already made in § 1.3), and therefore by considering only relevant

conditioning, (1.4.2) may be reduced as follows:
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al
(1-6B): (1,2 )

(1.4.3 ) (1,2 )

l-al eA: (2,2 )

It should be clear from (1.4.2) and (1.4.3) that 6A is the proba-

bility of effective conditioning for player A, and 6B the

corresponding probability for B That is, using a superscript A

or B to designate the random variable

have as a generalization of (1.2.6):

F for player A or B , we
-n
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An important observation about (l.4.2) and (l.4.3) is that it is

not possible in a single trial to go from the state (1,2) to the state

(2,1). Analysis of the other three trees leads to similar conclusions:

it is not possible in a single trial to go from (2,1) to (1,2), from

(1,1) to (2,2), or from (2,2) to (1,1). This means that the anti

diagonal of the transition matrix must be identically zero. With this

result we bring into the Markov process itself the kind of overly

strong deterministic predictions which arise in the one-element stimulus

model for the non-contingent case but not in the Markov process for

that case, as represented by (1.3.7). In this respect then the

situation is worse in the case under present discussion, for the Markov

process itself yields deterministic predictions. As any experimenter

would expect and as we shall see in Chapter 3, these predictions are

not borne out by actual data. As in the case of the non-contingent

case these difficulties may be met by passing from a one-element to a

multi-element stimulus model for each player, the device which was also

used for the simple contingent case in § 1.3. The two-element model

will be discussed in Chapter 3.

Construction of the other three trees like (1.4.3) yields the

following transition matrix
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(1,1 ) (1,2 ) (2,1) (2,2 )

(1,1 ) al (8A-8B) alGB (1-al )8A 0

+ (1-8A)

(1,2 ) a
2

8B a2 (8A-8B) 0 (1-a2 )8A

+ (l-eA)

(l.4.5)

(2,1) (1-a
3

)eA 0 a3 (8A-8B) a
3

eB

+ (1-8A)

(2,2 ) 0 (1-a4)8A a48B a4(eA-8B)

+ (1-8A)

From the discussion in 91.3, it is clear that this matrix

represents an irreducible, aperiodic case and thus the asymptotes

exist and are independent of the initial probability distribution on

the states. We are interested in establishing certain general conclu-

sions about the asymptotic probabilities and consequently it is

necessary to obtain the solution of (1.4.5). For this latter purpose

we can, as easily as not, proceed by solving for the asymptotic proba-

bilities of any four-state, irreducible and aperiodic Markov chain.

To simplify notation the states will be numbered as follows: 1 = (1,1),

2 = (1,2), 3 = (2,1) and 4 = (2,2) . Let (Pij)' for i,j = 1,2,3,4

be the transition matrix. Then we seek the numbers u. such that
J
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(1.4.6)

The general solution is given by 2/

,

:'
for j = 1, .. , 4,

D =
1

D =
2

where

[P21 P32 P43 + P31 P42 P23 + P41(P22 -1)(P33-1)]

- [P41 P32 P23 + P2l P42(P33-1) + P31 (P22 -1)P43]

-[(P1l-l)P32 P43 + P31 P42 P13 + P41 P12 (P33 -1)]

+ [P41 P32 P13 + (PU -l)P42(P33 -1) + P31 P12 P43]

(1.4.8) D3 = [(Pll -l)(P22 -1)P43 + P21 P42 P13 + P41 P12 P23 ]

- [P41(P22 -1)P13 + (Pll -l)P42 P23 + P21 P12 P43]

D4 = -[(Pll-l)CP22-1)(P33-1) + P21 P32 P13 + P31 P12 P23 ]

+ [P31(P22-1)P13 + (Pll-l)P32 P23 + P21 P12(P33~1)]

D = LD.
J

When the antidiagonal of (p,.) is identically zero, as is the case
~J

with (1.4.5), the first four equations of (1.4.8) simplify to:

2/ We are indebted to Mr. Frank Krasne for making this computation.
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Dl = -[P21 P42(P33-1 ) + P31(P22-1 )P43]

D2 = -P31 P42 P13 + [(Pll -l)P42(P33 -1) + P31 P12 P43]
(1.4.9)

D3 = [(Pll-l)(P22-1)P43 + P21 P42 P13 ] - P21 P12 P43

D4 = -(Pn-l)(P22-1)(P33-1) + [P31 (P22 -1)P13 +P21 P12 (P33 -1)]

Applying (1.4.9) to (1.4.5) we obtain after some simplification:

iDl
=

[a2 (1-a
3

)(1-a4) + (1-a2 )(1-a
3

)a4]
2eA8B +

2
[a2a

3
(1-a4) + a2 (1-a

3
)a4] eA8B '

D = [al (1-a
3

)(1-a4 ) + (1-al )a
3

(1-a4)]
2

2 8A 8B +

2
[al a

3
(1-a4) + al (1-a

3
)a4] 8A8B '

(1.4.10)

[(1-al )(1-a2 )a4 + (1-al )a2 (1-a4)]
2D = 8A8B +

3

[(1-al )a2a4 + al (1-a2 )a4] 8A8~ ,

,D
4

= [(1-al )(1-a2 )a
3

+ al (1-a2 )(1-a
3

)]
2

8A8B +

l ' 2
[(1~al)a2a3 + al (1-a2 )a

3
] 8A8B

Since D is the sum of the D 's , and by virtue of (1.4.7)
j

we may infer from (1.4.10) that the asymptotic probability u. of each
J

state is a function only of the ratio 8A1eB and the experimenter

determined values a. • To see this, first note that
l
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where the coefficients c., d., c and d are functions of the a 's
J J i

given by equations (1.4.10), namely,

(1.4.12)

cl = a2 (1-a
3

)(1-a4) + (1-a2 )(1-a
3

)a4

c2 = al (1-a
3

)(1.a4) + (1-al )a
3

(1-a4)

c
3

= (1-al )(1-a2 )a4 + (1-al )a2 (1-a4)

c4 = (1-al )(1-a2 )a
3

+ al (1-a2 )(1-a
3

)

dl = a2a
3

(1-a4) + a2 (1-a
3

)a4

d2 = al a
3

(1-a4) + a1 (1-a
3

)a4

d
3

= (1-al )a2a4 + a1 (1-a2 )a4

d4 = (lcal )a2a
3

+ al (1-a2 )a
3

2Dividing numerator and denominator of (1.4.11) by ClA6B we obtain the

desired result:

(1.4.13)
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With (1.4.12) and (1.4.13) at hand it is a matter of elementary arith-

metic to compute the asymptotic probabilities uj for any fixed ratio

8J 8
B

of the learning parameters. Moreover, for some experimental

situations it is reasonable to expect that the rate of learning will be

approximately the same for both players, and therefore to assume that

(1.4.14)

With this additional assumption a parameter-free prediction of

asymptotic response probabilities can be made independent of, and

prior to, any analysis of experimental data. The results of such

predictions are reported in Chapter 3.

From (1.4.13) we can also draw some interesting conclusions about

the relationship of the asymptotic response probabilities u j to the

ratio 8J8
B

Setting p = 8J8
B

and differentiating (1.4.13) with

respect to p we obtain:

d c.d - cd.
J Ju. =

+ d)2dp J (cp

has no maximum for p in the open intervalIf Cjd r Cdj then u j

(0,00) , the permissible range of values for the ratio 8J8B In

(1.4.15)

isfact, since the sign of the derivative is independent of p, uj

either a monotonically decreasing or monotonically increasing function

of p , strictly decreasing if c.d < cd. , and strictly increasing if
J J

c.d> Cd
J
.

J
Obviously both cases must obtain since

= 1
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Moreover, because of the monotonicity of u
j

in p , it is easy to

compute the bounds of from (1.4.13). Namely,

(1.4.16)

lim
p .... O

If is an increasing function with respect to p , then
d. c .
...!i<...!i
d c

Numerical values of these intervals are given

and its values lie in the open interval

c. d.
the interval (-;, dJ )

d. c.
(...!i ...!i). if decreasing, in
d' c ~

in Chapter 3 for the sets of experimental parameters a i actually used.

In connection with asymptotic response probabilities of players

A and B we want to show that a certain linear relation obtains between

cx= lim P(A = 1) and t> = lim P(B = 1) , which is independent of-n --nn .... m n .... oo

the ratio eieB .:J (In §1.5 we show that this same linear relation

obtains in the non-Markov linear model.) To begin with, note that

(1.4.17)

since

P(A = 1) = P(A = 1, B = 1) + P(A = 1, B = 0) ,-n -n -n -n-n

and correspondingly

(1.4.18)

:J Note that y as defined in (1.2.n) is simply u
l
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From (1.4.13), (1.4.17) and (1.4.18) it follows that

By elementary operations we may eliminate p from these two e~uations

and obtain:

(cl + c
3

- cl3 )dO: - (cl + c
3

- cl3) (dl + d2 ) = (cl + c2 - co: )dl3

+ (cl + c2 - cd)(dl + d
3

)

The ~uadratic te:rm cdO: 13 cancels out and we have:

(cl d + c
3

d + cdl + Cd
3

) 0: = (cl d + c2,r+cdi+cd2)13

(1.4.19 )

In terms of the parameters ai' we may derive from (1.4.12) and (1.4.19)

[ (a
3

+ a4 - al - a2 ) + (al a2 - a
3

a4)]0: =

(1.4.20)

(al a3 - a2a4)13 + ~(a3 + a4 - al - a2 )

+ a4(a2 -a
3

)

It would be pleasant to state that we have proved a theorem about

the variance of the sum of A
l

or B
l

responses, corresponding to

the variance theorem proved for the non-contingent case in the preceding

section (see e~uation (1.3.29)). The analytical difficulties of proving

such a theorem are not insurmountable, but the effort re~uired to obtain

the explicit higher transition probabilities p~~) for (1.4.5) seemed
~J

considerably greater than the value of the result. The compromise we
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struck was to prove some relatively simple theorems about variances

for arbitrary 4X4 irreducible, aperiodic Markov chains, and then

proceed from these by numerical computation. The theorems are given

in this section; the computations are reported in Chapters 3 and 4.

The generalization of the theorems to n Xn chains is obvious.

We first define the following random variables:

(1.4.21) =

\

10X (x)
-n

if on trial n

otherwise.

state 1 occurs,

Thus, with reference to (1.4.5) if x = 1-n then state (1,1) occurred

on trial n, that is, responses A
l

and B
l

were made. Note that

here the proper interpretation of the sample space point x is as a

pair of subjects, players A and B, not as a single subject.

(1.4.22) !nix) - {:

if on trial

otherwise.

n state 2 occurs,

Again with reference to (1.4.5), state 2 corresponds to (1,2) ,

that is, to the pair of responses ~ and B2 •

(1.4.23)

if on trial n

otherwise.

state 3 occurs,

With respect to (1.4.5), state 3 corresponds to the state (2,1) ,

that is, to the pair of responses ~ and Bl
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Analogous to (1.4.17) and (1.4.18) we have the following two .

functional equalities for A and B in terms of X, Y and Z-n -n -n -n -n

A = X + Y-n -n -n
(1.4.24)

B = X+ Z-n -n -n

For the sum of any of these five random variables over a block of N

trials we use the notation already introduced for A and B ,-n -n

namely ~,IN' ~N' ~ and ~N . Also, from previous notation the

asymptotic probabilities of

and ~ respectively.

X , Y , Z , A-n -n -n -n and B-n are

The theorem with which we conclude this section is then:

Theorem. At asymptote we have the following variances for the sum

of N random variables:

(1.4.25)

(1.4.26)

(1.4.27)

N-l ( )
var(~) = Nul(l-Nul ) + 2u L (N - j)p j ,

1 j=l II

N-l ( )
var(~) = NU

2
(1 - Nu2 ) + 2u L (N- j)p j ,

2 j=l 22

N-l
(N-j)p(j)var(~) = Nu

3
(1 - Nu

3
) + 2u3~j=l 33

(1.4.28)
N-l ( )

2u ~ (N - j)p j
1 j=l 12

N-l

~
j=l
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Proof; We prove only (l.4.25) and (l.4.28); proofs of the other
.

three cases are similar.

By the fundamental theorem for the variance of a sum of random

variables (see Feller [l4], P .2l6), at asymptote

(l) var(lC_) = N var(~ ) + 2 > cov(~.~ )
9.\[ n l:::j<k:::N r k

Now at asymptote

(2)

and

2
= E(X.X ) - u

-J"'k l

Moreover,

~
t
i

I

(4)

=Ul E(~ I ~j)

.= U p(k-j)
III

for j < k
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We need to evaluate one sum:

> (k-j) (2-1) [(3-2) (3-1)]
- p =P +Pll +Pll +

1"":s;"'j:-<7k:-<-::-:=N II II

[ (4-3) (4-2) (4-1)]
Pn + Pn + Pll . +. .. +

[ (N-(N-l)) (N-l)]
Pll + ... + Pll

(1) (2) (N-l)
= (N -l)P

ll
+ (N - 2)P

ll
+ .. , + Pn

N-l ( )
= L (N - j)p j

j=l II

Substituting (4) into (3) and applying the summation result (5) J we

infer that

(6)

N-l ( )
= 2u ~ (N - j)p j

1 j=l II

2
- N(N - l)u

1

Finally combining the last term on the right of (6) and (2) multiplied

by N J we have:

2
Nu.. (1- u ) - N(N - l)u = Nu (1- Nu )

.L 1 1 1 1

The term on the right of (7) and the first term on the right of (6)

yield the desired result for var(~)
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We turn now to (1.4.28). By virtue of (1.4.24) we have immediately:

Now as before

We note that the product ~!N is a product of sums and for 1 < n < N

E(X Y ) = 0 ,
-n-n

whence

N (°1) (1) N (°2)
=u L p J- + [u p + u L p J- ] +

1 j=2 12 2 21 1 j=3 12
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(N-j)P(j)+U
12 2

N-l
L
j=l

(N- j)p(j)
21

,.

Substituting the results of (9) and (10) into (8) yields the desired

result. Q.E.D.

In comparing these variances with empirical data in Chapters 3

and 4 we shall divide them by ~ to normalize to the relative

frequencies of responses in N trials.

Models for more complicated experimental situations are presented

in later chapters. And in Chapter 3 the two-stimulus-element model is

discussed for the simple zero-sum game situation which has been the focus

of this section. However, all of these models are derived on the basis

of the fundamental axioms of § 1.2.

91.5 Alternative Linear Model. For those experiments in which the

available stimuli are the same on all trials it is possible to use a

model which di spense s with the concept of st imuli . In such a "pure"

reinforcement model the only assumption is that the probability of a

response on a given trial is a linear function of the probability of

that response on the previous trial. A one-person experiment .may be
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represented simply as a sequence (~, ~l' ~2' ~2'···' ~n' ~n'···) o:f

the response andrein:forcement random variables de:fined by (1.2.1) and

(1.2 .2). Any sequence o:f values o:f these random variables represents

a possible experimental outcome. (For analysis o:f an experiment in

which more than two responses or rein:forcements are possible, (1.2.1)

and (1.2.2) need to be modi:fied so that the value o:f the random

variable A is·a number j representing the response on trial n,-n

and the value o:f E is a number k representing the rein:forcing
-n

event on trial n However, this modi:fication is not necessary :for

purposes o:f this section.)

The linear theory is :formulated :for the probability o:f a response

on trial n + 1 , given the entire preceding sequence o:f responses and

rein:forcements. V For this preceding sequence we use the notation xn

Thus, x is a sequence o:f length 2n with a's
n

and l's in the

odd positions indicating responses A
l

and A
2

and l's and 2's in

the even positions indicating rein:forcing events E
l

and E2 The

axioms o:f the linear theory are as :follows:

Axiom Ll. I:f E = 1 and p(x) > a then
-n n

Axiom L2. I:f E = 2 and p(x) > a then
-n n

P(A = 11 x) = (l-eJ)P(A = llx 1)n+l n n . n-

V In the language o:f stochastic processes, this means we have replaced

the Markov chains o:fearlier sections by chains o:f in:finite order.
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Here, as usual, 8 is to be thought of as the learning parameter.

For the non-contingent .case of §1.3 we can derive from Lland

L2 the same asymptotiC mean result as for the Markov model, namely,

lim peA = 1) = n-n
n40Q

On the other hand, the expression for the variance of the Cesaro sum

~ given by (1.3.29) is different for the linear model. We shall

not derive it here, but in Estes and Suppes [12] it is shown to be:

var(_-A) = n (1 - n) (N g (4 _ 38) _ 2 (1 _ 8)[1 _ (1 _ 8)N])
=-~ (2-e)8

The following interesting result obtains.

Theorem. In the non-contingent case, for every N::: 2 and for

every e in the open interval (0,1), the variance of ~ at

asymptote is less in the linear model than in the one-element Markov

model.

Proof: We seek the conditions on Nand e under which the

following ine'luality holds (n(l - n)/e has been cancelled from both

N e (4 - 38)
2 - e

N
2(1-e)[l-(1-e)] <N(2-e)

2~e

2(1- e)[l - (1- e)N]
e

This simplifies to:

(1) l-(l-el<Ne
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Now

(2) 1- (l_e)N = ell + (l-e) + (1_8)2 + •.•+ (1_e)N-1 J ,

whence from (1) and (2), cancelling 8, which by hypothesis is not 0,

we have:

1 + (l-e) + (1_e)2 + .•.+ (1_8)N-l < N ,

and clearly this strict inequality holds under the conditions of the

hypothesis of the theorem. Q.E.D.

To extend the linear model to two-person situations, we assume that

both subjects satisfy Axioms Ll and L2. For the study of higher moments,

which will not be considered here (see Lamperti and Suppes [18]), we

also need the assumption that, given the sequence of past responses and

reinforcements, the probabilities of responses of the two players on

trial n are statistically independent. It is shown in Estes and

Suppes [12J that the following recursive equations hold for the two

person zero-sum situation defined in § 1.4 (we use here the notation

of (1.2.9»:

an+l = [1- 6A(2- a2 - a4)Jan + 6A(a4 - a3)~n + 6A(1- a4)

+ eA(al +a
3

-a2 -a4)Yn

~n+l = [1-eB(a3+a4)J~n + 8B(a2 -a4)an + eBa4

+ 6B(a
3

+a4 -al -a2 )Yn
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It is further shown in Lamperti and Suppes [18] that the limits

a, ~ and 7 exist, whence we obtain from (1.5.3) two linear

relations, which are independent of eA and 6B :

(1.5. 4)
(2 - a2 - a4)a = (a4 - a

3
)~ + (al + a

3
- a2 - a4 h + (1 - a4)

(a
3

+ a4)~ = (a2 -a4)a + (a3 +a4 -al - a2 h + a4 .

By eliminating 7 from these two e~uations we obtain the linear

relation (1.4.20) in a and ~ . Unfortunately, this linear

relationship represents one of the few ~uantitative results which

can be directly computed when this model is applied to multiperson

situations.. Our relative neglect of.the linear model in the se~uel

is due mainly to its mathematical intractability in comparison with

the Markov models already discussed ([5]).

§ 1.6 Comparisons with Game Theory. As remarked in the first

section, it is possible to view game theory as a descriptive,

empirical theory of behavior, but in fact, this does not seem to be

a very promising approach. Our a posteriori reason is that for our

own experiments it did not make good predictions. It seems to us

that there are several general reasons why one should not be surprised

by the poor predictive success of game theory. In the classical sense

of psychological theories, game theory is not a behavior theory. It

does not provide an analysis of how the organism interacts with its

environment, that is, of the way in which the organism receives cues



or stimuli from its environment and then adjusts its behavior

accordingly. Another way of stating the matter is that game theory

does not provide, even in schematic form, a formulation of the

elementary process which would lead an organism to select the

appropriate game-theoretic choice of a strategy.

From a general methodological standpoint, the orientation of

game theory is that of classical economics: the concern is with what

should be the behavior of a rational man. This concern with the

rational man is the basis of another strong bond between classical

economics and game theory; namely, both are very much theories of

equilibrium. The derivation of an equilibrium condition does not,

in these disciplines, depend on any assumptions about the particular

dynamic process by which the equilibrium point is reached. This

static character no doubt accounts for the uneasiness with which

many psychologists view the concept of utility. The economist and

game theorist take the utility function of the individual consumer

or player as given, whereas a psychologist immediately tends to

inquire where the utility function came from and to seek the environ

mental factors controlling the process of acquisition of a particular

set of values or utilities. (We do not imply by this last sentence

that psychologists are yet able to propound a theory which will

account in any detail for the actual preferences, tastes and values of

organisms.)
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Granted that gaJIle theory is an eg.uilibrium theory, i tmay still

be argued that it has predictive pertinence to our experiments. For

it can be maintained that when individuals have reached what, from

the learning standpoint, is described as an asymptotic level of

behavior, then they will be in e'luilibrium with their environment

(including the other players in a gaJIle situation) and the optimality

concepts of gaJIle theory may well apply to their patterns of choice.

For eXaJIlple, even when subjects are not shown the pay-off matrix,

after a large number of trials they may have learned enough about the

prospects of winning and losing to approximate an optimal gaJIle strategy.

For ready reference in reporting our experimental findings with

regard to gaJIle theory, we define here the three concepts of optimality

which later will be used for comparison with learning theory predictions.~

In the first place, when it is applicable, the appealing sure-

thing principle may be used to select an optimal strategy. A strategy

satisfies the sure-thing principle if, no matter what your opponent

does, you are at least as well off, and possibly better off, with this

strategy in comparison to any other available to you. For eXaJIlple,

consider the following 2~ 2 matrix of a two-person, zero-sum game.

~ For a detailed presentation of gaJIle theory, see McKinsey [20],

Luce and Raiffa [19], or Blackwell and Girshick [6].
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5

2

7

-1

On each play of the game player A chooses row A
l

or A2 and

player B chooses column Bl or

then A receives ¢5.00 and B

are chosen, A loses ¢l.OO and

B2 • If Al and Bl are chosen

loses this amount. If ~ and B2

B receives this amount, and

similarly for the other two combinations of strategies. It is

obvious that the choice of Al by player A is the selection of a

strategy satisfying the sure~thing principle, for no matter what B

does, A is better off with Al than ~ However, the weakness

of the sure-thing principle is exemplified by B's situation. Neither

Bl nor B2 satisfies the sure-thing principle, and so, in his

choice of a strategy, B is not in a position to apply this principle

of optimality.

Intuitively, it seems clear what B should do, namely, always

select B , since he will only lose ¢5.00 rather than ¢7.00 when A

chooses A
l The optimality principle which covers the selection of

Bl is von Neumann's famous minimax principle [26].

B should minimize his maximum loss. If he chooses

loss is ¢7.00, and if he chooses B , it is ¢5.00.

minimize this loss and choose B
l

The idea is that

B2 his maximum

So he should
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When the sure-thing principle applies, it agrees with the

minimax principle. Thus, if A minimizes his maximum loss he will

pick .Al . This is most easily seen by maximizing his minimum gain,

which amounts to the same thing. If A picks A
l

his minimum gain

is ¢5.00 and if he picks ~ his minimum "gain" is the loss of ¢l.OO.

Thus to maximize his minimum gain he should pick Al .

Let (a .. J, with i = 1, ... , nand j = 1, ... , m, be t.he
lJ

payoff matrix of an n")( m zero-sum game. If

max min
i j

:::: min max
j i

a .. :::: v,
lJ

we call v the value of the game and any strategies i* and j*

such that

and

min
j

max
i

= max min
i j

:::: min max
j i

are pure minimax strategies, i * for A and j* for B . A pure

strategy is one which selects a given row or column with probability

one.

Unfortunately, pure minimax strategies do not always exist. For

instance, there are none for the following payoff matrix:
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(1.6.1)

because

but

-1

o

max min
i j

min max
j i

3

-2

a .. = -1
lJ

a .. = 0
lJ

The implication of this situation is that in repeated plays of this

game a fixed choice of Al or A2 ' by A, or a fixed choice of Bl

or B2 ' by B , will not be optimal against an intelligent opponent.

The insufficiency of pure strategies may be remedied by intro-

ducing probability mixtures of pure strategies. For instance, player A

might choose Al with probability 1/3 and ~ with probability 2/3

A probability mixture is called a mixed strategy. Such a strategy for

A may be designated S = (Sl'S2) , where Si is the probability of

choosing Ai ' for i = 1,2 .2/ Similarly, mixed strategies for B

The fundamental theorem of von Neumann

2/ If n strategies are available to A, then S = (Sl"'" Sn) is

an n-dimensional vector such ~hat S. > 0 for i = 1, ... , nand
1 -



is that mixed minimax strategies exist for any zero-sum, two-person

game with a finite number of strategies available to each player. In

other words, there are probability mixtures ~* and 1)* such that

(1.6.2) max L a .. ~. I)~ =
• .' . 1.J 1. Js 1.,J

min
T}

La..
. . 1.J
1.,J

v ,

and v is called the value of the game.~ What (1.6.2) shows is that

player A may assure himself of winning at least v by playing ~* and

player B may assure himself of losing at most v by playing T}*.

It is not appropriate to discuss here general methods of finding

the value of a game and its min-imax strategies, but we can illustrate

the simple technique for 2 X2 games with payor:(' matrix (a
ij

) . For

simplicity, let and Then it may be shown that it is

sufficient to consider x and y separately against the use of pure

strategies by the other player. Thus we seek numbers x, y and v

such that

xall + (1 - x)a21 >v

xa12 + (1 - x)a22 >v

(1.6.3) ya
11 + (1- y)a12

<v

ya21 + (1- y)a22
<v

a ::: x,y ::: 1

•
~ Note that ~ aij ~i T}j is just the expectation of A's gain

with respect ''60 the two independent probability mixtures ~ and I) •
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In any numerical case solution of these ine~ualities is a simple matter.

For (1.6.1), we obtain: x = 1/3 , y = 5/6 , v = -1/3. (In example

(1.6.1), x and y are uni~ue. This is not always the case; as a

trivial instance, if a .. =0 for i and j ,any S and any ~
lJ

is a mixed. minimax strategy.)

The development of an adequate theoryof' optimal strategies for

non-zero-sum, two-person games is a complicated matter which as yet

does not have a satisfactory solution. (Recall that a two-person

game is non-zero-sum when what one player receives at the end of a

play is not the negative of what the other player receives.) A

natural division of non-zero-sum games is into cooperative and ~-

cooperative games. In a cOoPerative game the players are permitted

to communicate and bargain before selecting a strategy; in a non-

cooperative game no such communication and bargaining is permitted.

Subsequent chapters devoted to non-zero-sum games are entirely

concerned with those of the non-cooperative type. Probably the best

concept of optimality yet proposed for such games is Nash's notion of

an equilibrium point ([21], [22]). An equilibrium point is a set of

strategies, one for each player, with the property that these strategies

provide a way of playing the game such that if all the players but one

follow their given strategies, the remaining player cannot do better by

following any strategy other than one belonging to the equilibrium point.

It was ShOwn by Nash that every non-zero-sum, n~person game, in which

each player has a finite number of strategies, has an equilibrium point

among its mixed strategies. Consideration of techniques for finding the

equilibrium point will be delayed until Chapter 4.
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