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Preface

Having come to UCSF with only vague ideas about how best to spend my time here, I was

swayed to theoretical studies on protein structure within months after arrival. For that I

thank an excellent physical chemistry course by Professor Dill and the Biophysics

department's survey on biophysical chemistry taught by several faculty members. Professor

Babbitt provided the first opportunity to dabble in theory and gave me the confidence to use

past experience as a source of strength, not limitation. My gratitude to Irwin Kuntz extends

on a number of levels. I appreciated the freedom to pursue a course of study perhaps only

possible in graduate research, the 'childhood' of my scientific career. However, this freedom

is only valuable if properly balanced by advice, direction, and feedback, which Tack likewise

provided in kind, amazing me with his ability to critique nearly any idea laid in front of him.

The inspiration and provocation to make the initial leap into "measuring conformational

space", the dominating topic of my research, was largely generated locally, beginning with

seminars on protein dynamics by Peter Kollman. The initial source of encouragement and

background knowledge came from the Kuntz group, particularly from discussions with

Geoff Skillman and former rotation student Noel Southall. Curiously, I could not suppose

at the time that this subject, and related tangents, would consume the majority of my

graduate career. I also thank my readers, Professors Ken Dill, Patricia Babbitt, and Irwin

Kuntz for reading and critiquing this work.



The dissertation is divided into three chapters with an introduction. Each chapter is in the

form of a manuscript submitted for publication. Chapter one has been published (Sullivan

and Kuntz, 2001). Chapter two has been accepted for publication. Chapter three has been

submitted for publication.

Sullivan DC and Kuntz ID, Proteins 42,495-511 (2001).



Abstract

The following three chapters characterize structural variance seen across protein

conformational ensembles.

In chapter one, two approaches to measuring conformational space are taken. A method

called N-cube analysis (NCA) is developed for assigning a gross size to a conformational

ensemble. Using NCA, the conformational space size of villin headpiece subdomain's

compact unfolded state is calculated to be 10' times larger than the native state's. In

addition, Euclidean based methods for characterizing the behavior of conformational space

surrounding any given structure are developed. In the limit of small displacements, the

apparent number of model Euclidean dimensions is found to correspond to the true number

of mechanical degrees of freedom for a particular ensemble.

In chapter two we show how protein dynamics of the scale associated with protein folding

can be modeled as a diffusive search in a high dimensional space. The size of the space is

determined using principles developed in Chapter 1. Our numerical approach permits

simple comparison to molecular dynamics. Time dependent displacement in the diffusion

model agrees with results from molecular dynamics over many orders of magnitude. We

delimit the search space into 'native' and 'unfolded' regions and test different energy biases

in protein folding simulations. Our results provide insight into plausible energy landscape

models for protein folding.

Chapter three shows how crystal structures of HIV-1 protease, a well-studied drug target

with many crystal structures containing different inhibitors and point mutations, cluster by

crystal type, with apparent independence of inhibitor type and mutation. The many studies
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Introduction

Internal motion is an essential feature of proteins. Functionally important motions span a

large range in terms of time and positional displacement, with particular regions in the range

of consequence to different biological problems. Consider, for example, the internal motion

of the native state of an enzyme, perhaps one of the smallest functionally important motions

(Ansari et al., 1985). The amplitude of low energy loop motions near the active site is of

great interest to drug design efforts (Knegtel et al., 1997). These motions elude direct

observation at atomic detail. Structural variance across NMR ensembles built from NOE

constraints generally reflect lack of data more than observance of motion (MacArthur et al,

1994), though other NMR experiments, such as “N spin relaxation, show some promise in

offering a detailed description of structural fluctuation if combined with other biophysical

data (Palmer, 2001). Multiple crystal structures of the same system offer the opportunity to

view structural variance at high resolution, however the crystalline environment introduces

its own set of issues, which is addressed in this thesis. Contrast native state flexibility with

protein folding. The larger refolding motions qualitatively differ from the globular

vibrations of the native state since the reference frame for any given chain element is in flux.

Structural knowledge of the unfolded state is therefore much less detailed and open to

speculation (Ptitsyn, 1995). The next largest structural displacement of biological

importance is protein degradation, involving the breaking of covalent bonds, which is

outside the scope of this work.

The complexity of protein dynamics motivates separating its modeling into two parts: first,

generating an ensemble of conformations that exemplifies some structural variance (i.e. a

molecular dynamics trajectory) and, second, analyzing this ensemble. While the generation

step seeks to produce a correct answer, which in the ideal case involves comparison to some

experiment, the analysis step seeks to produce an informative answer, such as insight into a



poorly understood mechanism. This thesis focuses on the latter problem of structural

variance analysis.

Implicit to the 'holy grail' of the post-genomic era, prediction of structure from sequence, is

consideration of a huge space of alternate, though wrong, set of decoy structures which is

analogous to the ensemble of misfolded compact structures visited by a folding protein on

its path to the native state. Whether trying to understand protein folding or predict native

protein structure from sequence, an understanding of the physical principles that stabilize

the native state is crucial to both fields. Methods for characterizing conformational space, a

topic this thesis addresses, provide a means for measuring the entropic cost paid by a

folding protein and for assessing the challenge decoy conformations pose to structure

prediction.

Two approaches to measuring conformational space are explored in Chapter 1. Both

assume a Euclidean description of conformational space. First, a global measure of

conformational space (N-Cube Analysis) is developed which addresses the problem of

assigning a size to the conformational space spanned by a given ensemble of structures.

Second, the local behavior of conformational space surrounding any given reference

structure is also probed.

Measuring the size of a state's conformational space is one step towards measuring the

conformational entropy of that state. Combined with enthalpy calculations and other

entropic quantities such as vibrational and solvation terms, a free energy can be calculated.

Of course, if all minima can be enumerated, and if anharmonic factors can be safely

neglected or corrected for, then the partition function can be solved yielding free energy

quantities directly without resorting to adding energetic terms. This is not yet

computationally feasible for a protein. A related approach is to estimate the number of



conformational minima through a residue-based multiplicative argument as in the classic

Levinthal calculation (Levinthal, 1969). Two issues are often lumped together in this

respect. First is the assumption that the number of minima scales exponentially with the

number of residues. This is a reasonable initial assumption convenient for bookkeeping.

The more problematic extension of this idea is that the local shape of the energy landscape

(i.e. the inter-minima landscape) is determined by energetic terms local in nature (bond

angle, length and most importantly, torsional terms) without consideration to non-bonded

terms. This model may be reasonable for some polymer systems where non-bonded

interactions are not important, but not for proteins in water. It has been shown that for

short polyalanyl chains, local steric effects reduce independence among backbone torsion

angles (Pappu et al., 2000). In proteins, correlations between torsion angles should be

greater because of constraints arising from compactness (Dill, 1985). The alternative

extreme model is that the non-bonded terms exclusively determine the arrangement of

minima in the energy landscape, with correlated torsional displacements functioning only to

maintain inter-chain contact. In such a model, the molecular surface features of secondary

structure elements create and place minima in the energy landscape. Pursuing this model

requires a shape-based description of the amino acid chain's surface, which is very complex

from the perspective of a modeler. This operational obstacle probably explains why the

former model is more frequently developed. The manner in which non-bonded and bonded

terms combine to shape the energy landscape is complicated owing to terms being highly

correlated and of many dimensions. In summary, attempts at direct monitoring of individual

degrees of freedom in order to characterize the global energy landscape in an automated

fashion force simplifications that result in an unacceptable loss of information.

Instead of monitoring a protein's many individual degrees of freedom, this work uses global,

averaged displacement measures, such as the root-mean-squared displacement (RMSD) of

atoms (generally only the C-O atoms). This approach suffers from (1) specific structural



features being lost to averaging and (2) since RMSD is a pairwise measure, displacement

can only be measured assuming some reference structure. Conformational substate

clustering on picosecond time scales observed in two-dimensional (time versus time)

RMSD plots of molecular dynamics trajectories (Troyer and Cohen, 1995) provides

anecdotal evidence for the usefulness of RMSD in reporting energy landscape features.

One motivation for measuring conformational space of proteins is to connect structure with

dynamic events such as protein folding. Chapter 1 culminates with a very simple dynamic

model that relates (1) the total number of conformational substates in the compact-unfolded

state to (2) the number of conformational substates in the native state with (3) the time scale

of substate transitions to arrive at a predicted folding time for a protein based on a random

exploration of the conformational substates. The discrepancy between the folding time

based on random exploration and the actual experimental folding time (about 2 orders of

magnitude difference in the case of villin headpiece subdomain) is offered as a measure of

the energetic slope of the "folding funnel". Chapter 2 resumes with the subject of energetic

bias in protein folding using the averaged conformational space model developed in Chapter

1. Specifically, the protein is modeled as a point in a high-dimensional hyper-rectangular

Euclidean space. Displacement of the point represents changes to the proteins

conformation. The relationship between time and displacement is parameterized using all

atom molecular dynamics simulations, resulting in a numerical diffusion model for protein

dynamics. The simplicity of the model facilitates connecting the results of short time-scale

molecular dynamics simulations with long time-scale protein folding events. Since the

molecular dynamics model is parameterized with spectroscopic data from the sub

picosecond time scale (as well as high-level ab initio calculations) and the experimental

folding times are on a microsecond-plus time-scale, the diffusion model developed provides

the missing theoretical link between two sets of experiments with time-scales differing by



~8 orders of magnitude (10-13 sec. versus 10-5 sec.). Encouraging to the theorist, we show

the connection to be both seamless and reasonable.

Chapter 3 provides a conformational analysis of the native state of liganded HIV-1 protease

as revealed by x-ray crystallography. This chapter likewise addresses quantification of

conformational variation, however, since the magnitude of the displacements across the

native state is much smaller than through the unfolded state, the appropriate analysis differs

compared to protein folding studies. The aspiration of this chapter is to relate

crystallographically observed structural differences to sequence mutations and the particular

ligand bound to the enzyme, both of which vary across the selected set of 63 high-resolution

structures (resolution < 2.5 Å). The central finding of the work is that global structure

correlates strongly with the crystal type, and thus the space group in which the structure was

solved. No clear relationship between sequence, ligand type, and experimental conditions

emerges from our analysis. We do find that hypothesized functionally important

displacements resulting from mutations are generally smaller in magnitude than space

group associated displacements. If it assumed that cross-crystal type structural variance is

small relative to structural variance in solution, then factors not seen in the liganded crystal

structure, such as solute assisted loop motions and the dynamics of the less ordered non

liganded state, must be at least equally important to understanding structural perturbations

resulting from mutations. Alternatively, crystal packing forces may be inducing structures

not highly populated in solution.
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Abstract

We report a simple method for measuring the accessible conformational space explored by

an ensemble of protein structures. The method is useful for diverse ensembles derived from

molecular dynamics trajectories, molecular modeling and molecular structure determinations.

It can be used to examine a wide range of time scales.

The central tactic we use, which has been previously employed, is to replace the true

mechanical degrees of freedom of a molecular system with the conformationally effective

degrees of freedom as measured by the root-mean squared Cartesian distances among all

pairs of conformations. Each protein conformation is treated as a point in a high dimensional

Euclidean space. In this paper, we model this space in a novel way by representing it as an

N-dimensional hypercube describable with only two parameters: the number of dimensions

and the edge length.

To validate this approach we provide a number of elementary test cases and then use the N

cube method for measuring the size and shape of conformational space covered by molecular

dynamics trajectories spanning over 10 orders of magnitude in time. These calculations were

performed on a small protein, the villin headpiece subdomain, exploring both the native state

and the misfolded/folding regime. Distinct features include single, vibrationally-averaged,

substate minima on the 0.1-1 ps time scale, thermally-averaged conformational states that

persist for 1-100 ps and transitions between these local minima on nanosecond time scales.

Large-scale refolding modes appear to become uncorrelated on the microsecond time scale.

Associated length scales for these events are 0.2 Å for the vibrational minima; 0.5 Å for the
conformational minima; and 1-2 Å for the nanosecond events. We find that the

conformational space that is dynamically accessible during folding of villin has enough

volume for ~109 minima of the variety that persist for picoseconds. Molecular dynamics

2
º



trajectories of the native protein and experimentally-derived solution ensembles suggest the

native state to be composed of ~102 of these thermally accessible minima. Thus, based on

random exploration of accessible folding space alone, protein folding for a small protein is

predicted to be a milliseconds time scale event. This time can be compared with the

experimental folding time for villin of 10 - 100 p.s. One possible explanation for the 10-100

fold discrepancy is that the slope of the 'folding funnel' increases the rate 1-2 orders of

magnitude above random exploration of substates.

ºº
º sº
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Introduction

The size of conformational space has long been of interest to structural biologists, particularly

as it relates to the kinetics of protein folding. Levinthall 2 is credited with first appreciating

the vastness of the search space for a folding protein and for recognizing that a folding

mechanism based on random folding requires long and non-biological time scales.

Levinthal's paradox becomes less of an issue when energetic biases toward the native state are

considered.” A useful framework for discussing the energetic landscape is the folding funnel

which incorporates such a bias directly 4

Estimates of the size of conformational space for a polymer typically begin by assessing the

number of states that each residue may assume, and then extrapolating to multi-residue cases.

In classical isomeric rotation models, each (non-glycine) peptide has 9 states: three each

minima for the () and u■ torsions. The vast majority of these conformations will be

energetically disallowed by excluded volume. For proteins with compact globular structures,

the number of states of the backbone, per residue, is estimated: to be 1.7 still yielding large

numbers of states; e.g. 2 x 108 for the 36 residue villin headpiece backbone.

Because of the difficulty of summing over individual states of such complex systems, we

approach the problem of measuring conformational space from an alternate perspective.

Instead of using a residue-based strategy, we estimate conformational volumes of entire

molecules using ensembles of conformations which sample specific protein constructs such

as the native state or the molten globuleo. With conformational 'volumes' for appropriate

substates in hand, we can estimate times for randomly finding the native ensemble from

among all globular structures. These times, which can be thought of as the "Levinthal"

times1.2 for random exploration of accessible states, can be compared to experimental

:

.
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estimates of the times for folding, to assess the 'slopes' of folding landscapes,” that is, the

increase in rate over random exploration conferred by the energy landscape. We make

extensive use of molecular dynamics (MD) which produces ensembles explicitly referenced

in time and temperature. The villin headpiece subdomain, is used as our example for MD

calculations. In addition to MD, we look at an NMR ensemble for the villin headpiece

subdomain and explore some issues using rotamer-based and lattice-based conformational

ensembles. NMR ensembles and lattice-based ensembles differ from ensembles generated

by MD in that the conformations are not kinetically connected.

A critical tactic in our overall approach is to relate conformational events to the root-mean

square differences (RMSD) between pairs of molecules in an ensemble.7 A basic question is

how many accessible structures lie within a given RMSD threshold of any arbitrary structure.
:

We explore the pair-wise distribution function p(r), which is defined as the number of

structures that lie within a shell at distance r of a reference structure or an integrated version,

v(r), which is the number of structures less than a distance r from the reference structure. In

this paper, r is the Co-RMSD after optimal superpositioning”. Representing molecular

ensembles in this way leads to a high dimensional "conformation space". We assume that

structures are distributed in a reasonably uniform way in this space. A simple way to model a

bounded conformational space is with an N-dimensional hypercube. The cube edge length

corresponds to the average amplitude of the effective modes while the dimensionality of the

N-cube (i.e. the value of N) corresponds to the number of high-amplitude conformationally

active modes. The edge length is the RMSD between two structures at opposite ends of

single modes, averaged over all the effective modes. In this paper we develop this N-cube

analysis (NCA) by deriving formulas for the average number of dimensions, N, and the

average displacement, A, from the mean and variance of the pair-wise distribution function

(see Methods). For the conformational space of a protein ensemble, N only loosely

corresponds to the number of mechanical degrees of freedom, because degrees of freedom

11



are not equal in terms of impacting the RMSD. For example, large-scale hinging motions

alter the structure more than covalent bond stretching. More properly, this parameter

corresponds to the number of degrees of freedom that are effective in producing significant

Cartesian coordinate displacements.

It is useful to compare NCA with its more sophisticated cousin, principal component analysis

(PCA). PCA has been used to distill out the "essential subspace" of conformational space

sampled by MD trajectories and has demonstrated that a small set of anharmonic and

multiple-minima modes captures the majority of fluctuations for an MD simulation.9-12 The

remaining modes are small scale, near harmonic fluctuations. However, the significance of

any single PCA mode is unclear. Balsera et al. 12 demonstrated that the largest PCA modes
derived from two 235 ps MD trajectories are not stable between trajectories. Dimensionally

reduced phase space projections of a 150 ps MD trajectory of myoglobin by Clarage et al. 13

show that the largest PCA modes are poorly sampled. In 500 ps, the trajectory of Clarage et

al. 13 still does not close back on itself, but simply explores more phase space, which they

point out agrees with Fig. 9a in Amadei et al.9. The simple hypercube analysis developed in
this paper allows us to focus on the size and shape of the accessible conformational space

and ignore the nature of particular modes, which appear to be of debatable significance.

More importantly, our simplification of space to two parameters greatly aids in analysis

between multiple ensembles. We point out that neither NCA nor PCA results can have a

rigorous relationship to equilibrium statistical mechanics since neither method directly counts

conformational states, but both give insight into the conformational events that characterize

particular macromolecular ensembles.

*

-º
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Methods

Derivation of N-Cube properties from Distributions of RMS Distances

We wish to find a hypercube of dimension N and edge length A such that the distribution of

squared distances between two points sampled uniformly from within the hypercube will have

the same mean M and variance V as our observed squared RMSDs. Begin by noting that the

squared distance between two points is equal to the sum of the squared distances in each

coordinate, and that sampling points uniformly means sampling each coordinate

independently from a uniform distribution on [0, A]. This in turn is equivalent to sampling

from a uniform distribution on [0,1] and then multiplying by A. The mean M and variance V

can therefore be derived from known results for the standard uniform distribution.

Let X1 and X2 be uniform random variables over [0,1]. The mean of X1 and X2 is known"

to have density

2 - 4|x-0.5l for 0 < x < 1 (1)

so that their sum has density

1 - |x-1| for 0 < x < 2 (2)

(Vertical bars denote absolute value.) Now X3 = 1-X2 is also uniform on [0,1], and the sum

of X1 and X3 follows the above density, implying that X1-X2 also has the same density, but

shifted by 1, since X1-X2 = X1+X3-1:

1 - |x| for -1 < x < 1 (3)

**2-

º
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This in turn implies that the distance D = [x1-X2 has density

2 - 2x over [0,1] (4)

and that the squared distance Y = D2 has density

--- for 0<x< (5)Wy

The mean and variance corresponding to this density are 1/6 and 7/180. Multiplying the

original variables X1 and X2 by A will multiply Y by A2, so that Y will have mean (A2)/6 and

variance 7(A4)/180. The squared distance between two points sampled uniformly within the

hypercube is the sum of N such independent variables, Y1, ..., YN, and will therefore have

IIlean

N)(A*M_(N)(A) (6)
6

and variance

7(N)(A*y_7(N)(A') (7)
180

Solving for N and A in terms of M and V thus gives:

7M?
N = 8

5V (8)

º
º --

º
:
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3OV (9)

If a particular dimension is to be imposed on the distribution, then solving for the edge length

is an over-determined problem. A simple solution for the edge length is to solve for A for the

expressions for both M:

M = sº (10)

A = º: (11)

and V:

| 180VA = A■ a |— 13
7N (13)

and report the mean value for the edge length:

|GM, JISOV
N 7N (14)

2
A =

º
º
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Root-Mean-Square Differences

RMSDs were calculated by independently overlaying all pairs of structures using the

McLachlan algorithm& as implemented in the program ProFit [Martin (1998), University

College, London, http://www.biochem.ucl.ac.uk/~martin/programs/] followed by taking the

root-mean of the squared atom displacements. Note that RMSDs calculated in this way are

not proper mathematical metrics because they include pair-wise rotations that are not

transferable across pairs of structures. 14 We show that this issue is not of quantitative
significance in the calculations of interest here by comparing to results from a global

alignment. For this calculation we use the global alignment algorithm developed by

Diamond*4 as implemented in the program polypose which is distributed in the CCP4

suite45.

Lattice Ensembles

The "lattice_SSfit" 15 lattice ensembles were acquired from the Decoys 'R' Us database at

http://dd.stanford.edu/. "Lattice_ssfit" has ensembles for eight proteins which range in size

from 55 to 98 residues.

Random Ensembles without Excluded Volume

A discrete-random torsion angle ensemble (DRT) was constructed by randomly enumerating

10,000 conformations of a 36-mer polyalanine chain with () and u■ taking values of -60', 60°

and 180°. Native values for bond lengths, bond angles, and the Q) torsion were retained. A

compact ensemble (DRT-C) was created from DRT by extracting the 1721 members of DRT

with a Co-Ryless than 9.5 Å.

Random Ensembles with Excluded Volume

16



The program YARN [Gregoret (1991), University of California, San Francisco,

gregoretG)chemistry.ucsc.edu] was used to generate random polyalanine conformations that

obey excluded volume constraints. In the default mode, combinations of () and Uy are chosen

based on statistics from a reference set of proteins. 16 Alternatively, () and \■■ can be selected

randomly, while still maintaining excluded volume and user-specified constraints. A user

specified ellipsoid constrains the size of generated conformations.

Error due to under-sampling

We tested the dependence of error on the number of structures in the ensemble by analysis of

point distributions in hyperdimensional cubes. Using both a 5 dimensional box and a 15

dimensional box, we found the variance in the dimension for a given number of randomly

picked points. For 10 points, the average dimensions are 17.1 for the 15 dimensional box

and 5.7 for the 5 dimensional box. Relative Standard deviations are 26% for both sets. For
***

25 points picked randomly from the boxes, the average dimensions reported are 15.6+ 1.1%

and 5.2 + 1.1% for the 15 and 5 dimensional boxes, respectively. Given these results, we use *

ensembles of at least 25 structures for NCA. :
*"
*"
*

Molecular Dynamics

All molecular dynamics calculations used AMBER17. The procedure for the long

simulations on villin has been published.18 We also carried out a number of studies on short

trajectories of 300 ps or less. The starting structure coordinates were the minimized average

NMR structure of villin headpiece subdomain19 (PDB20 access code IVII) which is the

same as used by Duan and Kollman!8. We performed two sets of simulations for native and
misfolded starting structures. For 'native' trajectories, the NMR structure was immersed in

2731 water molecules. The 'misfolded' starting structure was prepared by first performing 1

ns of in vacuo MD at 1000 K before solvating with 3102 water molecules. For all systems,

17



water molecules were minimized for 4000 conjugate gradient steps followed by 4000 steps

on the whole system. The systems were equilibrated for 10 ps at 10 K, 10 ps at 100 K, 10 ps

at 200 K, and 300 ps at 300K. The final equilibrated native structure had a Co-Ryof 9.0 Å

and Co-RMSD to 1vii of 3.4 Å. The final equilibrated 'misfolded' structure had a Co-Ryof

9.6 Å and Co-RMSD to 1vii of 7.3 Å.

The Cornell et al.21 force field was employed with full representation of solvent with the

TIP3P water model22. An 8.0 Å residue-based cutoff was applied to the non-bonded

protein-water and water-water interactions. Intramolecular protein-protein interactions were

calculated without truncation. The non-bonded pair list was updated every 50 steps. A time

step of 1 fs was employed, except for the very short simulations where a time step equal to

the time interval between saved snapshots was used. All bonds involving hydrogen atoms

were constrained using the SHAKE23 algorithm.

A high temperature MD ensemble was generated using the same method as the solvated villin

simulations, with the exceptions that: explicit solvent was not included, a distance dependent

dielectric function was used for electrostatic calculations and a non-bonded cut-off of 10 A

was imposed. For this calculation, villin was first simulated in vacuo at 1000 K for 650 ps.

The simulation was continued for another 30 ns, saving snapshots every 100 ps giving an

ensemble of 300 high temperature conformations. Each of these conformations was also

equilibrated at 300 K in vacuo for 300 ps, producing a second ensemble. The high

temperature (1000 K) permits large conformational transitions. The 300 ps of room

temperature equilibration, in which structures move an average of 2.7 Å (+0.7 Å) by Co

RMSD, allows the high temperature structures to move into nearby basins in the energy

landscape. For this high temperature ensemble, there is little structural correlation between

successive snapshots separated by 100 ps relative to pairs of snapshots further separated in
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time. The average Co-RMSD between successive high temperature conformations is 5.3 Å

(+ 1.1 Å) compared to 7.4 Á (+ 1.3 Å) over all pairs of conformations.

Ensembles from the room temperature dynamics were calculated as follows. For short time

windows (ts 100 ps), a trajectory of length 10*t was run and divided into 10 consecutive

sections. An ensemble of 25 equally spaced snapshot conformations was taken and NCA

parameters were calculated for each ensemble and averaged over the 10 ensembles. Time

windows of length 300 ps have only three windows (i.e. a single 900 ps trajectory was

divided into three 300 ps sections). Time windows longer than 300 ps use the trajectories

calculated by Duan and Kollman!8, which are of total length of 1 us for folding and 70 ns

for native. These longer time points likewise average over ensembles of 25 conformations

but differ from the shorter time points in that windows are uniformly distributed over the

entire trajectory. For example, the folding time window of 25 ns uses ten 25 ns time -

windows each spaced by 75 ns. Exceptions include the longest time window, which has only **

one ensemble and therefore no variance information, and the penultimate window length, -
which has three windows for averaging. º

-

~.
2

Principal component analysis

Principal component analysis employed standard techniques of diagonalizing the covariance

matrix of Co. atom positions after a least squares fit onto a reference structure. A projection

pv■ t) of an MD trajectory r3N(t) on a given eigendirection my uses the formula 10. pv(t) =

r(t) my.

N-cube conformational volumes

An important feature of NCA is that it allows straightforward calculation of conformational

volume:
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conformational volume = (A) N (15)

where N is the NCA dimensionality and A the NCA edge length. The units are (distance

metric unit) N. Note that direct comparison of these conformational volumes can only be

done for systems with the same dimensionality. We utilize two methods to overcome this

limitation. First, for some systems, an average dimension can be imposed and an edge length

that best matches this dimension can be calculated for a distance distribution (Equation 14).

This method is particularly suited for cases where the number of dimensions are very similar.

Alternatively, if the dimension difference is meaningful, we examine the possibility of

ignoring the 'extra' dimensions of the higher dimensional volume, particularly when the larger

NCA edge length space has a lower NCA dimensionality. An example of this concept would

be the calculation of how many 3-dimensional boxes one could place upon a 2-dimensional º
***

floor. Here, the height of the box is of no concern and this extra dimension can be
º

legitimately ignored. *

º
º

sº
Results *

*

Introduction

A primary focus of this paper is the use of NCA for analyzing MD trajectories. Our aims are

to understand features in conformational space that emerge at various time scales and to

assess the energy landscape's influence on the kinetics of protein folding. However, given the

novelty of our method, we first explore test systems where the dominant degrees of freedom

are known in advance to determine the reasonableness of the results. We then explore

ensembles of random villin-like conformations generated by simple geometric manipulation

as well as some lattice models of protein folding. We next study the MD trajectories of the

villin headpiece subdomain. Knowing the conformational space spanned by these MD
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trajectories, via NCA, helps us understand protein folding dynamics and energy landscapes.

Finally, we return to the question of how the distribution of structures in this representation

of conformation space, expressed by p(r), can be used to estimate the probability of finding a

structure arbitrarily close to a target structure.

Test Systems: NCA on Protein-like conformational ensembles

To test the hypothesis that the hypercube dimension reflects the number of dominant modes

of variation and that the edge lengths are sensible, we created ensembles of protein-like

structures with known numbers of near-orthogonal, activated modes through simple

geometric manipulations. From the 148 residue two domain protein, calmodulin (PDB20

code 1CFD24), we generated an ensemble of 50 structures by rotating about a single linker

region torsion angle, Ó80, in fixed increments. NCA, using Co-RMSD as the distance

metric, yields a dimension of 1.05 for the ensemble. An ensemble of 125 structures with

three active modes was generated by independent rotations about 080, \!/80, and U81. NCA

yields a dimension of 2.7. To examine motions smaller than domain-level, we created 100

calmodulin-like structures by randomizing all Co. coordinates in x, y, and z (438 modes) by

up to 1 A. This ensemble, analyzed by NCA, has a dimension of 443 and edge of 0.082 Å.
The effective amplitude in this case corresponds to the Co. RMSD between two structures

where a single Co. has been shifted by 1 Å, which is also 0.082 Å. To study the behavior of

mixing modes of different amplitude, we varied a linker region torsion across the structures

randomized in x, y, and z. (See ensemble overlay in Figure 1). The single "domain motion"

dominates the variance and the reported dimension is 1.6.
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UCSF Midasplus º

Figure 1: Calmodulin overlay. Shown are Co. traces of calmodulin-like structures generated "...
by random and independent sub-Angstrom shifts in x, y, and z in addition to a single linker --

torsion variation. The size of the ensemble's conformational space is (3.8 Å)1.6 (see text). ***

Created by the MIDAS43 program.

Test Systems: Harmonic Oscillator

A potentially more complex test is provided by an harmonic oscillator. The position

distribution of a mass oscillating harmonically will not be uniform. For two points connected

by an ideal spring, with one point fixed and the other point oscillating harmonically with unit

amplitude, distances between the two points were recorded at random times. Absolute

differences between all pairs of distances were generated, from which NCA parameters were

calculated. The NCA dimension is 1.12 + 0.01 (instead of 1) and the NCA amplitude is 1.15

+ 0.01 (instead of 1). These slightly larger amplitudes and dimensions result from the point

slowing down near the extremes of its range of motion. This leads to a skew in the distance
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distribution towards relatively long and short distances, which gives a higher distribution of

larger distance differences. Damping the harmonic oscillator would decrease the variation in

the point's speed, which would give a more uniform distribution of positions. Conversely,

the moving point in this harmonic oscillator has a Gaussian distribution if the probability of a

position is Boltzmann energy weighted. For a Gaussian distance distribution, the NCA

dimension is 0.71 + 0.01, resulting from the higher distribution of lengths near equilibrium

and thus a higher proportion of smaller distance differences. Thus the NCA results reflect

the expected physics in these harmonic oscillator test cases.

Pairwise Alignment Compared to Global Alignment

In this paper, the RMSD between two structures is calculated after optimally superpositioning

the two structures. An alternative method for calculating the RMSD distribution is to use a

global alignment+4 for calculating all pairwise RMSDs. RMSDs calculated in this fashion

are true distance metrics that are embeddable in a space of dimension at most 3 × (number of

atoms). NCA analysis of two villin MD-generated ensembles of 50 members equally spaced

throughout 1 ns and 1 pus and the villin NMR ensemble are given in Table I. Both pairwise

alignment and global alignment results are given. For ensembles with small displacements (1

ns and NMR), the results are nearly identical. The pairwise-based NCA volume for the 1 pis

MD ensemble, which has large structure variation, is noticeably smaller than the NCA volume

from global alignment. However, for calculations of the nature presented here, this

difference is not significant.
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Table I: Pairwise versus global alignment” in RMSD calculations.
Standard Pairwise Based NCA Global Alignment Based NCA

Average Dimension Edge Average Dimension Edge Volume Ratio
RMSD Length RMSD Length (Pairwise

/Global)

1 pis 6.85 8.70 5.83 6.97 8.33 6.07 0.815

1 ns 0.780 2.708 1.234 0.780 2.709 1.234 0.9999

NMR 1.381 3.750 1.819 1.382 3.749 1.820 0.998
Ensemble

* - Standard NCA uses RMSDs calculated after optimally superpositioning pairs of
structures. Standard NCA results are compared to results using RMSDs calculated from a
single global alignment” of all structures. Volumes were calculated using the average
dimension between the two NCA methods. The three ensembles analyzed include MD
trajectories over 1 pus and 1 ns and the NMR ensemble.

The Conformational Space of Random Protein Folds

We first carry out NCA on ensembles of randomly folded peptide backbones that obey

various levels of constraints. We then explore ensembles created from lattice models of

proteins and from molecular structural experiments. Lastly, we study MD trajectories.

The first systems we take up are ensembles built from discrete random torsion (DRT) angles.

The DRT conformations are distributed uniformly (in torsion space) and no excluded volume

or self-avoiding constraints are imposed. We use the DRT ensemble as a reference for other

chain models. For more physically reasonable systems, we generate ensembles that include

excluded volume, constraints, compactness, and, finally, an ensemble with a limit to the

distance between terminal residues. We then compare these random structures with an

ensemble generated from a high temperature MD simulation for villin.
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Constrained ensembles were built with the program YARN (see Methods). All ensembles

contain 2500 members each. No sequence information was encoded - all chains are taken as

36 residue polyalanine. Members of the compact ensembles (Y-C) lie within a constraining

ellipsoid while extended conformations (Y-E) do not have this constraint. Very-compact

ensembles (Y-V) were built within a constraining ellipsoid with a volume 73% of the standard

compact ellipsoid. An ensemble of conformations with terminal Coºs separated by less than 6

A (Y-6) was constructed by selecting from the large set of structures. Generally, there was

little difference between the assemblies built using "biased" dihedral angles (Y-B) compared

with those using random angles (Y-N). As noted in the Methods section, a high temperature

MD ensemble for villin was generated using the same method as the solvated villin

simulations, with the exceptions that explicit solvent was not included, a distance-dependent

dielectric function was used for electrostatic calculations and a non-bonded cut-off of 10 Å

was imposed. *

Average Co-Ryand NCA parameters for all ensembles in this section are given in Table II. •

Distribution functions for some of these ensembles are given in Figure 2 and NCA

parameters are plotted in Figure 3.
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Table II: NCA parameters and average Ry for constructed and high
temperature MD ensembles.

Ensemble NCA NCA Edge Co-RY (A) 10-D Volume”
Dimensionality Length (A)

DRT-C 25.3 4.1 8.5 + 0.7 1.80

DRT 7.6 8.9 12.2 + 2.8 47.9

Y-CN 23.1 4.0 8.2 + 0.3 1.14

Y-CB 20.9 4.2 8.2 + 0.3 1.25

Y-VB 20.8 4.0 7.7 + 0.2 0.75

Y-VB6 14.9 4.6 7.7 + 0.2 0.86

Y-EN 8.7 8.3 13.0 + 2.5 36.1

Y-EB 7.5 9.5 14.1 + 2.8 81.2

Villin 1000 K (Equil.) 13.1 4.9 8.5 + 0.4 0.82

Villin 1000 K. 11.7 5.3 9.1 + 0.4 1.42

Villin 300K, 1 pis 10.3 5.4 9.9 + 1.2 1

* - 10-D conformational volumes are calculated by imposing 10 as the dimensionality in
calculation of NCA edge length parameter A. Volume equals A10. All volumes are
normalized against the volume for the 1 p.s folding simulation18, equal to 244 x 107 A10.
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Figure 2: Comparison of effects of geometric and energetic constraints. Results from
seven ensembles [Y-EN (black), Y-CN (green), Y-VB(red), Y-VB6(blue), 300 member 1000
K MD ensemble (black, dashed), 300 member room-temperature equilibrated high
temperature MD ensemble (red, dashed), and DRT-C (green, dashed)] are plotted. 2a shows
the p(r) distribution normalized to an area of one. For the purposes of displaying the y-axis
on a log scale, zero value bins surrounded by non-zero value bins were set to one before
normalizing. No more than two bins were artificially non-zeroed in any ensemble. 2b plots
v(r), normalized to have a maximum of one, as a function of RMSD.
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NCA Edge Lengths and Dimensionalities
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Figure 3: NCA comparison of multiple ensembles. NCA edge lengths and
dimensionalities are plotted for DRT and DRT-C (diamond), room temperature MD on
misfolded villin (plus), room temperature MD on native villin (triangle-down), lattice_ssfit
(triangle-up), high temperature equilibrated MD (circle), villin NMR ensemble (star), and the
YARN ensembles (square).

NCA on Lattice Model Ensembles

Our results on random conformations show that constraints as basic as excluded chain

volume cause conformations to be distributed non-uniformly. We tested the magnitude of

the effects of these deviations by calculating conformational volumes of the "lattice_ssfit"
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ensembles!5. Using volumes for the entire ensemble and for sub-ensembles, we can check

for self-consistency. Each of their ensembles contains 2000 conformations. From these

2000 structures, sub-ensembles of 100 structures were randomly picked for NCA (set 1). A

set of three such sub-ensembles was chosen to provide an estimate of the standard deviation.

Another three sub-ensembles of 100 structures each were randomly selected from the 1000

conformations closest via RMSD to the experimental structure (set 2). If the structures are

distributed uniformly in conformational space, set 2 should occupy one-half the

conformational volume of set 1. NCA parameters were also calculated using the 100

conformations closest to the experimental structure (set 3). For additional comparison, we

calculated NCA parameters for the 100 structures with lowest RMSD to the conformation

furthest from the experimental structure (set 4). This comparison was inspired by the results

of Shortle et al.25, who found that the density of accepted conformations in ensembles from
lattice models is often greater than average in the vicinity of the experimentally determined

native structure. While algorithms for generating conformations may search conformational

space uniformly, the ensemble of energetically acceptable conformations will reflect

properties of the energy landscape.

The NCA results on these lattice model ensembles are given in Table III. We used the

average dimension for all sub-ensembles of each model to determine volumes. If the

conformations are uniformly distributed throughout conformational space, we would expect

the volumes to be of ratio 1 : 0.5: 0.05: 0.05 for sets 1 through 4. On average, the ratio

expected from uniform distribution between the whole space (set 1) and one-half the space

(set 2) is obeyed (0.46 compared to 0.5). However, the near-native sub-ensembles (set 3) on

average occupy a smaller space than uniform sampling would predict. This is in agreement

with Shortle et al’s result25 discussed above. The sub-ensembles far from the experimental

structure but centered about a single particular conformation, set 4, on average occupy a

slightly larger space than uniform sampling would predict and is nearly five-fold larger than
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the near-experimental sub-ensembles' conformational volume. Together, sets 3 and 4 on

average occupy 9.4% of the total conformational volume, which agrees with the uniform

prediction of 10%. In summary, these results suggest that using NCA for conformational

volume calculations does give internally consistent results and that the deviations for uniform

distribution, at least in these lattice-generated ensembles, are relatively minor.

NCA parameters for these lattice models show a significant dependence of N on the chain

length of the model protein (Table III). When the lattice model results are added to Figure 3,

we see that they are slightly displaced from the off-lattice YARN models, with a slightly

longer edge length and a similar range of dimensionality. While edge lengths are relatively

constant for all lattice_ssfit ensembles, dimensionalities correlate with the number of residues

with rº- 0.71. This is consistent with sub-unit size being constant between these ensembles
while the number of sub-units increases with the number of residues.
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Table III: NCA parameters" and volumes of lattice ensembles15 divided into
sub-ensembles by RMSD from native or outlier.

NCA Dimension + Standard Deviation

NCA Edge Length (A) + Standard Deviation (Å)

model (number of Whole space 50% with lowest 5% with 5% with volume ratio
residues) (set 1) RMSD to Crystal lowest RMSD lowest RMSD 1 : 2 : 3 : 4

(set 2) to Crystal” to Outlier”
Set 3 set 4

1 foa (55) 18.5 + 0.3 17.7 + 1.0 15.9 19.2 1 : 0.64 : 0.0089 : 0.0027

5.24 + 0.05 5.2 + 0.1 4.3 3.7

1pgb (56) 16.9 + 0.6 18.1 + 0.2 17.8 14.7 1 : 0.33 : 0.016 : 0.069

5.5 + 0.1 5.0 + 0.1 4.3 5.0

1trl-A (62) 14.2 + 0.5 15.5 + 0.5 19.5 9.0 1 : 0.31 : 0.0088 : 0.097

5.7 + 0.1 5.1 + 0.1 3.7 5.8

1ctf (68) 15.7 + 1.8 16.3 + 0.6 16.0 18.2 1 : 0.23 : 0.0051 : 0.29

6.0 + 0.3 5.38 + 0.04 4.3 4.5

1.dkt-A (72) 25.8 + 0.8 21.4 + 1.6 14.0 14.3 1 : 0.95 : 0.049 : 0.28

5.09 + 0.04 5.5 + 0.2 5.6 6.0

4icb (76) 16.1 + 0.1 16.9 + 0.8 16.6 13.1 1 : 0.21 : 0.0012 : 0.084

5.99 + 0.01 5.3 + 0.2 3.9 5.6

1nkl (78) 19.1 + 1.1 17.9 + 0.7 17.8 14.3 1 : 0.37 : 0.0089 : 0.046

5.8 + 0.1 5.6 + 0.2 4.6 5.4

1beo (98) 30.1 + 1.4 28.7 + 0.5 17.2 15.4 1 : 0.61 : 0.04.1 : 0.014

5.4 + 0.1 5.4 + 0.1 6.0 6.0

Averages (71 + 19.6 + 5.5 19.1 + 4.3 16.9 + 1.6 14.8 + 3.1 1 : 0.46 : 0.017 : 0.077

14) 5.6 + 0.4 5.3 + 0.2 4.6 + 0.8 5.3 + 0.8 (+ 0.25) (+ 0.018) (+0.087)

# - The NCA dimension is given in the top of each cell, with the NCA edge length (divided by
Å) given below.

* -Standard deviations are not reported for the 100 member sub-ensembles for which only
one NCA calculation was performed, but can be inferred from the calculations on the larger
sub-ensembles performed in triplicate.
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I microsecond trajectory

We next undertake an assessment of the conformational space of a MD folding trajectory. A

study of villin headpiece subdomain folding, derived from a 1 pus MD simulation, has been

reported. 18 The protein exhibits large conformational fluctuations over much of the

trajectory. A marginally stable conformation is formed in the interval between 240 to 400 ns.

This state is characterized by a consistently low radius of gyration (Ry), RMSD from native

structure, the solvation component of the free energy, and structural clustering. The

difference between the folding regime and the marginally stable (mis)folded regime is readily

detected by NCA. We divided the trajectory into 1 ns windows, each window containing 50

structures, and calculated the number of dominant modes over time (Figure 4). During the

folded (low Ry) time region, the dimension jumps to values greater than 8, compared to an

average of less than 5 in the remainder of the trajectory. Principal component analysis, with

selection of the dominant modes, leads to a comparable but noisier result (data not shown).

Table IV lists correlations between NCA dimensions and the number of PCA dominant

modes for several threshold values. The ratio of the average number of NCA dimensions to

PCA modes is also given.
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Figure 4: Number of dominant modes for villin 1-pus MD trajectory. The number of
dominant modes for 1-ns time windows was calculated using NCA.
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Table IV: Correlation between NCA dimension and number of PCA modes

which capture X% of variance for 1000 time windows of 1 ns each.

Correlation between NCA

Effective Dimension (N) and # <NCA Dimension»”

X % of PCA Modes which capture <PCA # of modes-"
X% of variance

50 0.86 2.1

60 0.87 1.5

70 0.85 1.1

80 0.83 0.71

85 0.82 0.55

90 0.79 0.40

95 0.72 0.25

99 0.49 0.11

* - Closed angle brackets indicate mean value.

Time domain analysis

To understand the peak in dimensionality in Figure 4, we explore the time dependence of the ºr-"

NCA parameters using windows of various lengths for the two villin simulation sets: the º

folding trajectories from 1 fs up to 1 pis and "native" villin simulations from 1 fs to 67 ns (see

Methods).

There are several interesting features seen in the plot of dimensionality versus time interval

(Figures 5a and 5c). Starting at the shortest times, both trajectories give rise to an increase in

dimensionality from 1 at the shortest time scales, to a weak shoulder at 0.1 ps (amplitude ca.

02A) and a peak at ~8 dimensions in the 1-100 ps interval (amplitude ca. 0.5A). This
behavior is consistent with the dephasing of the elastic vibrations of globular proteins in a

single substate within 0.1 - 1 ps26.27 followed by exploration of thermally-averaged
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anharmonic conformational minima on the 1-100 ps time scale. The convergence in

dimensionality on 1 at very short time scales for all states reflects the fact that the positions of

all Coºs are correlated at the shortest times. This convergence supports the concern noted by

Janezic et al.28 that modes of similar frequency will not dephase in short time simulations
and will result in artificial mixing of modes.
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Figure 5: Conformational volume dependence on time window size. NCA parameters
were calculated for MD trajectories of various lengths for a 'folding' regime (dimension: 5a,
edge length: 5b) and a 'native' regime (dimension: 5c, edge length: 5d). With some exception
(see text), the average NCA parameters of ten trajectories with 25 conformations uniformly
spaced in time are graphed.
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Very short time intervals

We can look more closely at very short time behavior with a slight modification of our

procedures. Instead of comparing all pair-wise conformations in a time window, we take

RMSD measurements only between successive snapshot conformations. We refer to this

technique as Successive N-Cube Analysis (S-NCA). We used multiple ensembles of 250

structures from the misfolded/folding simulations where ensembles differ from each other by

the time interval between successive conformations. We examined time intervals from 0.04 fs

to 4 ns. The premise for S-NCA is that a large abundance of vibrational modes decreases the

variance in RMSD between consecutive structures, yielding a higher number of dimensions.

We would expect the dominant modes at sub-picosecond time scales to be the normal mode

vibrations. The Co. RMSDS-NCA dimensionalities peak on the order of 100 in the 1-100

femtosecond time scales (data not shown). This is sensible given that there are 36 Co. atoms
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with 102 internal degrees of freedom. S-NCA dimensionalities calculated from all-atom or

all-heavy-atom (non-hydrogen) RMSD measurements peak significantly higher, on the order

of ~1000, since many more atoms (and degrees of freedom) are captured. Villin has 596

total atoms and 295 heavy atoms. The use of the SHAKE23 algorithm in the simulations

likely reduces the S-NCA dimensionality for the all-atom RMSD calculation from what it

would otherwise be. Coordinates of conformations were only saved to 0.001 Å limiting the
significance of results below 0.1 femtoseconds.

Nanosecond time scales

Returning to our analysis of the MD trajectories, transitions between thermally averaged

conformational substates comprise the dominant modes during nanosecond time scales,

leading to a lower number of effective dimensions and much increased edge length. The NCA

parameters for the native state of villin continue to track those for the folding trajectory * - -

although the edge lengths start to deviate at longer times. In the parlance of Clarage et al. 13,

this time scale transition is analogous to going from the level of "beads" (<100ps, many intra

substate modes dominate) to "beads on a string" (>1ns, fewer inter-substate modes

dominate). The high standard deviation in the dimension values between 100 ps and 1 ns . . .

partly arises from the large variation in lifetime of the substates. This variance is seen in the 1

ps trajectory, where the majority of nanosecond time blocks reveal a low dimensional regime,

which implies that substates persist for less than 1 ns. However, from 240 ns to 400 ns,

substates persist at least 1 ns as indicated by high effective dimensionality using 1 ns time

windows (Figure 4).

Microsecond time-scale

For the folding simulations, there is a rise in the dimension as the 1 pis time-window is

approached. We interpret this as a dephasing of the "folding modes". This is similar to the

dephasing of the substate modes at shorter times, but on a larger scale. These folding modes
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have NCA amplitudes of -5-6A compared to sub-Angstrom amplitudes in the
conformational substates. As expected, the native trajectories do not show this same increase

in dimension at longer time points; however, the longest native trajectory is more than an

order of magnitude shorter than the longest folding trajectory. We can learn more about

longer time-scales of the native structure of villin if we make the naive, yet useful,

interpretation that the NMR ensemble!9 is equivalent to a series of conformations separated

by long time intervals. The NMR ensemble has an effective dimensionality of 3.8, which is

similar to the effective dimensionalities of the longer native villin MD trajectories and an edge

length of 1.8 Å. This relatively low dimensionality contrasts with longer-time dimensionalities
for the protein folding trajectory. Both MD and NMR results agree with the model that

native conformational space consists of relatively few medium amplitude modes that connect

many conformational substates which are themselves higher dimensional entities.

Principal Component Analysis

We performed PCA on the entire 1 p.s folding simulation and projected the MD trajectory

along with the native conformation into the largest PCA modes (Figure 6). These results

show that the native structure is contained within the conformational subspace explored by

the simulation, even though the native state is not explicitly sampled during the simulation.

Finding the native conformation is thus a matter of searching the space at a finer resolution

(i.e. more time) and not moving into new spaces. Projection of the MD simulation's

coordinates onto the PCA coordinate system does not reveal any obvious progression toward

the native state. Instead, fluctuations along the largest eigenmodes appear to have a time

period much shorter than the length of the simulation. This lack of progression in the largest

eigenmodes is one indicator that the trajectory has 'converged' on the accessible folding

Space. 12,13 Additionally, the NCA conformational volume of the 1 pis folding simulation is

approximately equal to the conformational volumes of the random compact polypeptide

ensembles (Table II). We did not explore the physical significance of the PCA eigenmodes,
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with the exception of the largest eigenmode which has the nature of an expansion/contraction

mode, i.e., the correlation coefficient (r2) of the trajectory along PC 1 with the radius of

gyration is -0.86.
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Figure 6: PCA projection of villin 1-pus MD trajectory compared to native. PCA
coordinates were calculated for the villin 1-pus MD trajectory with snapshots spaced by 100
ps. 6a is a two dimensional projection (see Methods for projection procedure) into the two
largest principal components. 'X' marks the position of the native conformation in the PCA
space. 6b shows the movement in time of the trajectory in the eight largest PCA modes. The
thin horizontal line marks the native position.

41



PC 1

PC 2

PC 3

PC 4

PC 5

PC 6

PC 7

PC 8

--~~~ ---> --- --> ---

--- --- -o-o- --- ---
-->

C- -

—ao

---

- --- --- --- --- ---

*

--- --> -ºc, --> T-o-o-o

Time (ns)
Figure 6b

42



Size of conformation space for Willin native and molten globule states

It would be interesting to know (a) how many substates exist in accessible folding space (i.e.

the molten globule state) and (b) how much time would be required to sample all substates.

NCA can be used to answer this question. We first estimate the conformational volume ratio

of the molten globule state to the conformational substate. We interpret this number as the

maximum number of conformational substates that compose the molten globule. We then

need to find the rate at which substates are sampled. Our interpretation of the NCA

dimensionality plots, that the fall in dimensionality between -10 ps and ~1 ns results from a

transition from intra-substate exploration to excursions between multiple substates, yields an

estimate on this rate.

In order to compare two hypervolumes, we first need to find a common dimensionality.

Since the NCA dimensionalities of the entire 1 pis simulation and single substates are similar º

(~10), we use the method of imposing a dimension on the RMSD distribution (Equation 14).

From Figure 5, if we assume folding space to be (5.4 Å)10.3 (10.3. being the effective

number of dimensions and 5.4 Å being the edge length, taken from Figures 5a and 5b at 1

ps), then the maximum number of substates, with volume equal to (0.68 Å)10.3 [NCA * - - -

parameters of the 30 ps length ensemble with maximum dimension (N = 10.0) with a new
-

edge length found by forcing the dimension to 10.3, which reflects the size of a single

substate's conformational space], is 5.4103/0.68103 = 2 x 109. If each minimum persists

for 100 ps on average, exploration of all minima would require about 0.2 seconds.

The time required to find the native state by random exploration is a more interesting number

than the time to find a single substate in the molten globule, which we just calculated. The

time required for protein folding by random exploration of the molten globule can be found

by first recognizing that the native state is not a single conformational substate, but a

collection of substates.29 Therefore, finding the native state is an easier task than finding a
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single substate. NCA can be used to give a crude estimate of the number of substates that

compose the native state. We have two independent data sets for estimating this number: a 67

ns MD simulation of native villin!8 and the NMR determined structure ensemble!9. The

conformational volume explored in 67 ns of MD simulation is (4.1 Å)2.9. The NMR

conformational volume is (1.8 Å)38. Both MD and NMR suggest native conformational
space to be of lower dimension than substate space. We assume intra-substate space to be

composed of modes coincident with inter-substate modes as well as extra, orthogonal modes.

These coincident intra-substate modes are simply less activated forms of inter-substate

modes. Therefore, we ignore the extra dimensions unique to intra-substate space for volume

comparison. By MD, the number of native substates is 183 (4. 12.9/0.682.9]. By NMR, the

number of substates is 40 [1.83.8/0.683.8]. These results suggest that the native state's

conformational space is about two orders of magnitude larger than that of a single substate.

Therefore, about two orders of magnitude less time is needed to find the native state of villin

than the -0.2 seconds needed for finding a single substate within the native state. Protein

folding by random exploration of the molten globule is therefore calculated to require

milliseconds.

The NCA parameters for the native and molten globule states of villin, as well as those for the

NMR ensemble, are compared to the other structural representations in Figure 3. We see that

the microsecond villin folding ensemble parameters, and especially those for the simulation at

1000 K, fall near the most compact of the random structure arrays (Y-VB6). For time

windows of a nanosecond or less, all the folding trajectories look rather similar to each other

in the lower left corner of the diagram. The NMR ensemble and the native villin simulation

have almost the same NCA dimensionality (4) and edge length (2 A). At very short times, as

noted above, the NCA parameters tend towards a dimensionality of 1, reflecting the artificial



coupling of the vibrational degrees of freedom, and an edge length of a fraction of an

Angstrom.

Detailed Distribution of RMSDs and Implications for Finding "Native-like"

Structures

Up to this point we have used NCA to analyze the distributions of RMSDs for a given

ensemble under the assumption that the distribution could be fit to two parameters. In fact, the

distributions are more complex and additional information can be extracted. Returning to

Figure 2, notice that the p(r) distributions for the compact ensembles all have approximately

the same mean values. The variances differ significantly and are the source of the

dimensionality changes in this set (see Table II and Methods). It is interesting that several of

the most constrained distributions show secondary shoulders at smaller r, indicating some

weak clustering of conformations.

We compare DRT's distributions with simple models in Figure 7 (see also Appendix). The

normal distribution and a NCA model based on DRT's dimensionality rounded to the nearest

integer (N = 8) both fail to describe the asymmetry of the DRT distribution (Figure 7a),

under-predicting the frequency of finding longer distances and over-predicting the frequency

of shorter distances (Figures 7a and 7b). The NCA distribution, compared to the normal

curve, does have the redeeming quality that it does not intersect the y-axis at a non-zero value.

Rather than using these simple models, a more accurate assessment of the probability of

finding structures that fall "close" to an arbitrary reference structure can be generated by

extrapolating (where necessary) the limiting slopes on the v(r) distribution plots (Figures 7c

and 7d). For the ensembles listed in Table V, these limiting slopes (not extrapolated) all have

approximately the same value (20) on log-log plots (data not shown). The high

dimensionality of the conformation space utilized by these ensembles implies that it is very

difficult to find structures close to an arbitrary structure. On a numerical basis, the sample
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populations must be expanded at least by 106 to start to see reliable representations within 3

A. and beyond 109 to produce structures within 2 Å for all the distributions. An
extrapolation of DRT extended by assuming an increasing slope of v(r) at small r (see

Appendix) shows the probability of randomly generating a structure within 2 A as less than
10-22.
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Figure 7: Comparison of multiple distributions. In 7a, DRT's p(r) distribution (black)
is compared to a normal distribution (red) and an n-cube distribution (green). 7b plots v(r)
for the three distributions and also plots the unbounded 8-space derived v(r), Equation A-5
(blue). 7c gives the slope of log(r) versus log(v(r)) for v(r) calculated for the four sets of V(r).
The slope of log(r) versus log(v(r)) was calculated in a 0.2 Á sliding window (20 data points)
using the method of determinants+0. 7d uses Equation A-12 (cyan) to extrapolate DRT's v(r)
to r = 0.2 Å, v(r) distributions in 7d are normalized to unity maximum.
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Table V: Probability” of finding a structure within a given RMSD.

Ensemble RMSD

2 Å 3 Å 4 Å

1000 K Equilibrated <1.2 × 10-8 4.5 × 10-5 5.2 × 10−3

Y-VB <4.9 x 10-9 1.4 x 10-5 2.1 x 10-3

DRT-C <9.2 × 10-13 <3.0 x 10-9 <9.6 x 10-7

Y-EN <6.3 × 10-13 <2.1 x 10-9 <6.6 × 10-7

*-Probabilities are the normalized value of v(r) at a given RMSD. Probabilities that are
prefixed by a '<' were calculated by performing linear extrapolations of log(r) versus
log(v(r)). The point where v(r) = 10 (not normalized) is taken as the point of extrapolation in
order to decrease the effect of noise at low v(r) values. A slope of 20 for log(r) versus
log(v(r)) is used for all extrapolations. Since the slope appears to be rising at decreasing
RMSD for all ensembles, extrapolations should be treated as overestimates.
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The Effects of Geometric and Energetic Constraints on Conformational space

As shown in Figure 3, we find that the NCA parameters and average Co-Ryseparate the

ensembles into three major regimes - the extended sets have a dimensionality ca. 8 and edge

lengths of 8-9 A similar to those found for the random flight ensemble (DRT). The compact
random structures have dimensionalities of 15-25 and edge lengths of 4-5A, with Co

Ryrelatively close to that of structures from the equilibrated version of the 1000 KMD

simulation of villin. Even though the degree of compactness as measured by Ry is relatively

constant, the number of NCA dimensions varies inversely with the level of constraints with

the compact random flight ensemble DRT-C having the largest dimensionality (25) and the

"very compact, close ends"Y-VB6 set most closely approaching the molten globule

simulation (see below). This result is consistent with there being fewer effective modes of

achieving a fixed displacement in the more highly constrained ensembles. There are small

effects of Ö/\!/ bias in determining the spread of YARN conformations. The compact, biased

Y-CB ensemble is in a tighter conformational space than the unbiased sample Y-CN (Figure

3). Similarly, the equilibration procedure tightens the conformational space of the high

temperature MD ensembles (data not shown). The native structures (NMR, MD) occupy the

third regime of small dimensionality and small edge length.

Non-Uniform Distributions from Conformational Model Systems

To explore further the effects of extreme non-uniformity of the RMSD distribution, we

considered a system composed of M conformational minima. Each conformational minimum

is equidistant from all the others and is equally populated (same well depth). For M minima,

an M-1 dimensional space is required. We generated RMSD distributions by randomly

placing points into minima and recording the point-to-point distance for all pairs, yielding a

distribution function composed of two delta functions at 0 and L, the inter-minima distance.
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NCA yields the data in Table VI, showing that reasonable results are obtained even with

extremely non-uniform distributions.

Table VI: NCA on minima equidistantly spaced by one unit.

Number of Minima – 1 + N A

1 1.40 1.46

2 2.81 1.19

3 4.23 1.03

5 7.06 0.84

10 14.0 0.62

20 28.1 0.45

100 140 0.21

1000 1400 0.065

*—Since a set of M equidistant points embeds into a space with M-1 dimensions, M-1 is
listed for convenience in comparison with NCA results.

Discussion

We have presented new tools for protein ensemble analysis that are based on a Euclidean

model for conformational space. While this model requires simplifying assumptions and

does not provide a rigorous statistical mechanical treatment of conformational degrees of

freedom, we find we can get interesting answers to three basic questions for models of

protein conformations. First, the simplicity of the approach allows comparisons among static

and dynamic ensembles generated in very different ways, revealing general features about

effective mechanical motions. Second, the time dependence of dynamics trajectories suggests
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limits on random search folding times. Third, we see that the probability of finding structures

within a particular ensemble arbitrarily close to another structure is very small in high

dimensional conformation spaces. We consider the implications of each of these results

below.

If we look at the NCA parameters for all the static and dynamic ensembles considered in this

paper, the most striking results are for compact systems which differ little in their radius of

gyration or NCA edge length but differ dramatically in the NCA dimensionality. As one

might expect intuitively, the effective degrees of freedom decrease smoothly as the constraints

increase. The difference between the most constrained random structure ensemble (Y-VB6)

and the high temperature or microsecond ensembles of villin are rather small, suggesting that

relatively few additional constraints are needed to generate molten globule-like states from

random chain programs. The lattice models span approximately the same number of degrees

of freedom as the random chain ensembles. Native-like states of proteins (e.g. the NMR

ensemble of structures or a native MD simulation) are distinguished by much smaller over-all

geometric distortions - edge lengths of 2 A versus -5 Å and lower dimensionality. The
effective degrees of freedom to produce RMSD changes in such highly constrained systems

are likely to be associated with displacements in a few flexible features such as mobile

loops.30

To summarize the dynamics results from the villin MD trajectories, there are five interesting

time intervals (Table VII). From 0.1 to 10 fs, thermal excitation of all the harmonic or near

harmonic vibrational motion dominates as shown by the S-NCA results. This regime would

be classically explored with normal mode analysis without solvent coupling. A weak

maximum in dimensionality at 100 fs suggests local minima in the near-harmonic regime

spanning 0.1-0.2 Å and most likely corresponds to thermally-averaged vibrational motions.

Such states have been described by previous workers3031. A major peak in dimensionality

51



at 1-100 ps with an edge length of 0.5 Å is associated with thermally-averaged

conformational substates. Troyer and Cohen30 specifically note that snapshots minimized

over these time scales do not fall into the same conformational minima. In the nanosecond

regime, transitions occur among these substates that are separated by 2-5 Å. Finally, in the
longest villin folding trajectory, there is some evidence for the dephasing of the major folding

modes. By exploring the major modes and comparison of MD and NMR results, we estimate

that the conformational volume of the native state of villin is about 100 times larger than a

single substate and that the unfolded molten globule state contains ca. 109 substates, leading

to an estimated time to fold villin randomly of ca. 1 millisecond.

Table VII: NCA analysis of important time intervals in protein dynamics.

Time Scale Assignment NCA parameters

N A

1 fs full normal mode excitation 70% 0.003 Å*

100 fs averaged vibrations 2.8 0.2 Å

1-100 ps averaged conformations 6.5 0.5 Å *** *

1-100 ns conformational transitions 4.8 2 Å

— Re- compact state transitions 10 >5 Å

*-S-NCA parameters listed for 1 fs data.

The probability distributions can be used either directly or with extrapolation to ask about the

chance of finding "near native" structures in any particular ensemble. We find that the simple

chain-generating models and, by implication, the lattice model ensembles, have a reasonable
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chance of finding structures in the 4-5 Å regime, but a very small chance of finding structures
much closer to an arbitrary structure. Normal distribution curves greatly overestimate this

probability, as does a distribution function generated by the simple NCA parameters for a

distribution. This latter problem presumably arises from the likelihood that the dimensionality

of the space grows inversely to the size of the distortion.

Implications for Protein Folding

Our calculated folding time assuming random exploration of 1 millisecond is 1-2 orders of

magnitude larger than the number found by experiment, which is 10-100 microseconds

(Duan and Kollman!8 and references within). We offer two alternative explanations. First,

one could interpret these two numbers as being essentially the same, particularly given the

level of error in our calculation. Assessing the random error is possible by repeating the

experiment (i.e. calculating another microsecond of simulation) and by simply carrying

through uncertainties in the calculation. There might well also be systematic errors associated

with modeling the asymmetric pair distributions with a simple hypercube. We currently have

no method for determining systematic errors. If the experimental folding time and predicted

random search folding time are the same, within error, the energy landscape seen by the

folding protein is not biased toward the native state once collapse has occurred. Alternatively,

the discrepancy between our time prediction for random protein folding and experiment may

be meaningful and result from the energy landscape of the molten globule directing the

protein toward the native state. The logarithmic difference (1-2 in this case) can thus be taken

as a folding funnel 'slope'. Thirdly, if we again assume the time difference is real, the speed

up in actual folding could also result from a large transition region surrounding the native

state in accordance with the results of Sali et al.32. Conformations in this region, while not

themselves native, rapidly transition to the native structure. If the search is random, then our

results suggest this transition region to be 1-2 orders of magnitude larger than the native

State.
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The apparent lack of progression to native in the PCA projection of the 1 microsecond

simulation reveals the complexity of the energy surface in a manner consistent with Crippen

and Ohkubo's 14 model for a protein folding trajectory where winding streams in a

mountainous landscape lead to the lake which represents the native state. The streams,

however, do not always point toward the lake in an arbitrary coordinate system. These

streams (representing folding trajectories) can approach very close to the native state in a

Cartesian coordinate based system, as revealed by the PCA projections (Figure 6), while still

being quite far from native in the time coordinate. This mountain stream model also explains

the lack of correlation between RMSD-from-native and energy score observed for 'decoy'

ensembles.33

The conformational substate

We treat the conformational substate as the common currency of conformational space and

protein dynamics. It is modeled here using only two parameters: dimension (number of

dominant degrees of freedom) and edge length (average amplitude of dominant degrees of

freedom). The simplicity in description is the main advantage over a more detailed

description such as that from normal mode analysis. However, the conformational volume

has no intrinsic physical meaning and requires additional assumptions to convert total

accessible conformational volume measurements to an estimate of the number of substates.

The more traditional method of conformer accounting, where the size of conformational space

is presented as zº, where z is the number of states per residue and n is the number of

residues, also requires corrections for excluded chain volume. Conformer counting based on

extrapolation of the number of conformations available to a single chain segment has an

additional problem because it does not consider the extent to which non-bonded energy terms

determine the shape of the energy surface. For example, the helix-interface shear mechanism
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of domain closure, which is based on conformational differences observed in experimentally

determined structures, illustrates how non-bonded attractions and steric effects can provide

the dominant barriers.34 In this mechanism, helices bump over each other as rigid bodies.

Sidechain torsions are important but repacking appears to present the dominant barrier to

unhindered shearing. Likewise, the hinging mechanism of domain closure is marked by a

lack of packing constraints at the hinge, suggesting sterics to be the dominant modulator of

this motion.33 From MD calculations on myoglobin aimed at sampling multiple

conformational states, Elber and Karplus?! found that substate transitions are perhaps best

described by rigid body translations and rotations of substructure subunits. The NCA

approach avoids the complexities of defining a structure-based framework for quantifying

conformational freedom.

The molten globule and unfolded states

Our current model for the molten globule state is an ensemble of compact regimes. NCA

parameters for a single such regime have high dimensionality (ca. 10) and relatively small

edge length (ca. <1 A). Transitions between such regimes presumably lead to the decrease in
dimensionality and increase in edge length in the 1-100 ns time intervals. The ultimate

uncoupling of such transitions gives the rise in dimensionality in the longest time windows.

These observations are consistent with the view of molten globules as partially ordered

compact structures with local secondary structure but large-scale tertiary disorder 6,36-38

We note that the analysis of conformational volumes produced here yields a change in

entropy from native to "unfolded" state of RIn(Vu/Vn) or 0.9 eu/residue for villin backbone

structures. This is close to the estimate from Dillº for the transition between folded and

compact unfolded states of 1.05 eu/residue. These numbers are much less than the

conformational entropy associated with the transition from native to fully unfolded states of
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4-6 eu.39 It is not clear, at this point, that NCA models can treat fully unfolded states in a

quantitative manner since none of the structural ensembles studied here produce the very

much larger "volumes" associated with the experimental entropy changes.

Conclusions

We have developed a method, NCA, for quantifying the conformational volume given an

ensemble of representative conformations. The premise for our method is that

conformational space expands exponentially with distance from a reference conformation.

The exponent by which space expands implies a dimensionality to the space, which is

physically likened to the number of large amplitude, normal degrees of freedom. Our studies

employ Co-RMSD as the distance metric, but the method is general.

Analysis of the folding of villin using NCA on long time MD simulations reveals the

mechanism for folding from the molten globule to the native state to occur by near-random

exploration of conformational substates. To our knowledge, this is the first study aimed at

resolving "Levinthal's paradox" which uses an all-atom model for a protein with a simulation

method that explicitly references time.

NCA results with MD trajectories reveal local conformational clustering consistent with the

substate model. Using constructed conformational ensembles and high temperature MD we

have shown that the excluded chain volume constraint in compact structures is a primary

cause of a secondary clustering of conformations at the level of different folds.

NCA was shown to give self-consistent conformational volume measurements for lattice

ensembles, however NCA is generally too simple to give meaningful statistics on the RMSD

distribution in the low RMSD range. In order to determine the probability of randomly
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folding a protein less than a given RMSD from native, calculations based directly on the

distribution functions must be used.
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Appendix. Derivations of integrated probability, v(r), for different

distribution functions of conformational space.

N-space model

In the limit of small distances compared to the extent of the smallest dimensions, v(r) in a

bounded space approaches the hypersphere volume formula C(r)". C is a scaling factor

equal to the volume of a sphere of radius 1 and dimension n. We can numerically calculate

the analogous scaling constant for con■ omnioma space, C', by considering a

hyperdimensional grid, with edge length and dimensionality (forced to the nearest integer)

given by NCA. This gridded n-cube is created to contain as many grid points as DRT

ensemble members. Our equation for v(r)

v(r) = Crn (A-1)

is first expanded by setting:

C = Cb■ , (A-2)

to give:

v(r) = (Cbn)rn (A-3)

where b is the number of points per Angstrom along any axis. C is equal to 4.06 for an 8

dimensional sphere 42 b is found by solving:

(bA)N = ensemble size (A-4)

61



where A and N are the NCA parameters, edge length and dimensionality, respectively. In our

case, N=8, A=8.767 Å, and ensemble size is 10,000, to give b=0.361. C therefore equals

1.16 x 10-3. C was multiplied by 5000 to scale to v(r) calculated from DRT. (While there

are 10,000 ensemble members in DRT, only unique pairs are considered.) In the limit of

small RMSD, NCA predicts DRT's v(r) to approach:

v(r) = 5.8 x rº (A-5)

Normal distribution

Cohen and Sternberg" suggest that the distribution of RMSD values for a conformational
ensemble against a reference structure follows a normal distribution. Our all-pairs RMSD

distribution differs only slightly from the type of distribution they consider in that effectively

we average over all conformations serving as reference. To calculate v(r) derived from a

normal curve, the function:

P(r) = 4.9995× 10’ x 1 _1(x-1)
-sº {{

O
) (A-6)

[4.9995× 105 is a normalizing constant, pu (=9.861) and o (=1.174) are calculated from

DRT's RMSD distribution] is calculated at 0.01 intervals and numerically integrated (starting

at -10).

Extrapolation of DRT's v(r)

Assuming the hypervolume formula (Equation A-1) for conformational space, the slope of

log(v(r)) versus log(r) is the dimensionality n in the limit of small r where boundary effects

become negligible (i.e. where C' is constant).
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log(v(r)) = log(C) + n(log(r)) (A-7)

Because C generally depends on r, the slope of log(r) versus log(v(r)) (the "log-log slope")

does not generally yield a dimensionality of direct physical significance. In this paper, our

primary use of the log-log slope is for informing the extrapolation of V(r).

Figure 7c plots the log-log slope for DRT, the normal distribution and the n-cube

distribution. The divergence at low r between the log-log slopes of DRT and the 8-cube

likely reflects the non-cubic nature of DRT's conformational space. At a finer resolution of

conformational space (smaller r), more modes become significant. DRT's log-log slope is

arguably converging on a number near 68, the total number of degrees of freedom (torsion

angles) that impact DRT's Co. RMSD. We extrapolate DRT's log-log slope back to zero

RMSD by fitting the curve over a well-behaved portion (4.64 Å to 8 A) to a quadratic

equation. If we ignore the contribution of C to this slope we can express this fit as the

function n(r):

n(r) = 68.36 - 11.48r +0.5031r2 (A-8)

The y-intercept is very close to 68, thus supporting our interpretation of the log-log slope at

small r. We can now determine the dependence of log(C) on r by rearranging Equation A-7

to give:

log(C) = log(v(r)) - n(log(r)) (A-9)

Log(C) was plotted using Equation A-8 for n and the observed function for v(r). We fitted

log(C) to a quadratic function over the interval from r = 3.82 A to r = 8 A yielding the
equation:
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log(C) = -41.35+6.754r -0.2123r? (A-10)

If a Euclidean model, with uniformly distributed points, perfectly described DRT's

conformational space, we would expect log(C) at r=0 (i.e. -41.4) to correspond to that of a 68

dimensional hypersphere. We test this by first taking the log of both sides of Equation A-2:

log(C) = log(C) + n(log(b)) (A-11)

Log(C) equals -21.6 for a 68 dimensional hypersphere 42 Estimating the grid spacing for

the ensemble in a 68 dimensional space can be very crudely approximated by forcing a

dimension of 68 on DRT's RMSD distribution and calculating A. This gives A equal to 4.08

A, and, by Equation A-4, b equal to 0.28 A with n equal to 68. The right side of Equation A

11 thus equals -59.2 compared to -41.4. We currently have no method for assessing the

significance of this discrepancy.

Combining equations A-7, A-8 and A-10 we can extrapolate v(r)'s approach to zero RMSD:

v(r) = 10^ (A-12)

where y equals [(−41.35+6.754r-02123r’)+(68.36–11.48r +0.5031r”)(logr)].
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Summary

Analysis of molecular dynamics trajectories for a small protein, the villin headpiece

subdomain, shows that its internal dynamics can be modeled as a random walk on a bounded

high dimensional lattice where each lattice point corresponds to a protein conformation. The

time evolution of the dynamics trajectory can be described as a three stage process. The first

stage, over a very short time scale of 10 fs, is consistent with an all-atoms ballistic flight with

an average path length of 0.068 A. The apparent conformational displacement "velocity" of
680 meters/sec is of similar magnitude to free flight monatomic carbon gas at room

temperature. The second stage is unobstructed random walk diffusion in a high dimensional

space for-300 fs, average displacement of 0.4 Å. In the third stage, at longer times,
"harmonic-like" barriers confine the conformational diffusion to a few large amplitude

modes. We use this description to develop a lattice model that can reproduce the time

dependence of the root-mean square displacement (RMSD) along the dynamics trajectory

with surprisingly few parameters.

The lattice model allows exploration of specific energy landscapes on the folding of the villin

headpiece subdomain. For example, we test a simple funnel landscape with a Monte Carlo

search in which displacement is biased toward a corner of the lattice-space representing the

native state. An energy difference of ~15 kcal/mol between native and unfolded states is

sufficient to give a reasonable folding time of 10 pus with two-state kinetics. To our

knowledge, these are the first protein folding simulations that successfully predict the protein

folding dynamics using a model with explicit time representation, a stochastic search and

without a native-state specific potential function.

Keywords: Protein folding, energy landscape, lattice models, molecular dynamics, folding

kinetics.
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Introduction

Lattice models have been critical for understanding protein folding. Examples include

development of energy landscape theories such as the "folding funnel", in which a global
energy bias directs the folding protein toward the native state, and the importance of the

hydrophobic effect in explaining collapse in the initial stages of folding? Simplified atom

representation permits simulation of events outside the range of computationally demanding

methods such as molecular dynamics (MD) treatments of all-atom models with explicit

solvent representation. Lost in most minimalist models is explicit time representation. Its

absence ultimately limits the level of kinetic interpretation derivable from these models. In

this paper we develop a lattice model that is parameterized from MD simulations over

femtosecond (fs) to microsecond (pus) time scales. With this lattice, we can exchange explicit

atom representation in favor of explicit time dependence. Each point in the high dimensional

lattice represents a single conformation although there is no direct mapping between points

and actual structures as explained below.

Our lattice corresponds to the ensemble of compact unfolded conformations for the 36-mer

villin headpiece subdomain protein. The lattice is parameterized using the one microsecond

MD simulation by Duan and Kollman3 on villin. While their simulation does not
successfully fold the protein to its experimentally determined native state, it does search a

conformational space that contains the native state,” arguably providing a reasonable model
for the conformational readjustments associated with the folding process. We use additional

simulations on misfolded villin to examine time scales shorter than possible with the 1 pis

simulation which saved conformations only every 20 picoseconds (ps).
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An important question in protein folding is whether there is a bias of the global energy

landscape that favors the native state. Such a bias would be difficult to assess by MD. The

Duan and Kollman31 pus simulation, the longest to date on a solvated protein, does not reveal

any obvious downhill trend in energy after initial collapse. This lack of folding is not thought

to reflect a force-field limitation. Free energy calculations using the AMBER molecular

mechanics force-field? with an additional solvation free energy term (Poisson

Boltzmann/surface area?) show the native state to be 15-35 kcal/mol lower in energy than

snapshots taken from the 1 pus simulation." In this paper we show that an energetic

difference of this magnitude, expressed as a constant slope between native and unfolded

regions of our conformation space lattice, yields reasonable folding times while unbiased

models fold much too slowly.

The primary tool we introduce for studying protein dynamics is exploration of a lattice

representing conformation space that can be explored by diffusional processes (i.e. random

walks). Distances traveled on this lattice conform to the time-dependent conformational

displacement of a protein as measured by the root mean square deviation (RMSD) of Co.

positions after optimal pairwise superpositioning.8 Our conformation-space lattice has
relatively few parameters. They are: 1) the inter-point spacing, 2) the time associated with a

single move on the lattice, 3) the number of dimensions of the lattice, 4) the length of

dimensions, and thus the gross size of the lattice, and 5) the roughness of the energy

landscape. To derive these parameters we analyze specific features of the trajectory recast as

the time auto-difference (TAD) function, which is roughly equivalent to the time

autocorrelation function but uses pairwise RMSDs instead of a similarity measure.

Specifically, point spacing and time equivalence come from analyzing the transition between

the free-flight and diffusive time scales. The displacement variance at short time separation

determines the total number of dimensions of the lattice (see below). RMSDs between pairs
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of random conformations taken from the state of interest (e.g. the compact unfolded state of

villin headpiece) determines the size of the lattice. This is done by requiring that the

distribution of RMSDs between random protein conformations and the distribution of

distances between random points on the lattice be similar. Finally, estimates of energetic

roughness are taken from the increase in the RMSD variance at longer time scales. We will

model landscape roughness with a set of minima (traps). Our trap parameters were found by

iteratively adjusting trap size, depth, and total number to give good fit between random walk

and MD TAD functions.

Methods

Molecular Dynamics.

All molecular dynamics calculations used AMBER 9 Details of the solvated MD simulations

have been described elsewhere 34 For in vacuo simulations, a distance-dependent dielectric

function was used for electrostatic calculations and a non-bonded cut-off of 10 Å was

imposed. The Cornell et alº force field was used. The non-bonded pair list was updated

every 100 steps. A time step of 1 fs was employed, except for the very short simulations

where a time step equal to the time interval between saved snapshots was used. All bonds

involving hydrogen atoms were constrained using the SHAKE algorithm.10 The starting

structure (PDB code IVIIll) was minimized and equilibrated first at 300 K for 1 ns and then

for another 100 ps at the temperatures reported (10 K, 80 K, 150 K, 200 K, 250 K, 300 K,

and 500 K).

The primary entity we extract from MD is a time auto-difference (TAD) function, which is

the spread of RMSD values for conformations separated by a particular time (Figure 1a).

The TAD function is similar to a time autocorrelation function with multiple time origins, with
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the main exception that we are measuring a difference (RMSD) instead of a similarity (dot

product). Since we are interested in examining behavior over several orders of time, we wish

to spread the calculated RMSDS uniformly over a logarithmic time scale while keeping the

total number of RMSD measurements at a reasonable level. To meet these needs, the TAD

function for the solvated folding MD studies was calculated as follows. A trajectory of

length 10 x t was divided into 10 consecutive sections of length t. An ensemble of 25 equally

spaced snapshots from each section was extracted and all pairwise RMSDs calculated. The

time separation between pairs of structures was noted. For example, a single 1 ns trajectory

with 250 snapshots would yield 3000 RMSDs [300 = (24 × 25)/2 from each 100 ps section,

multiplied by 10 sections] with time separations ranging from 4ps to 96 ps. MD trajectories

range in length from 10 fs (0.04 fs separation between successive snapshots) to 1 pus in

approximately one-half log time units (i.e. 10 fs, 30 fs, 100 fs... 1 pus). The shortest time

scale RMSDs (< 0.1 fs) suffer from rounding errors since our coordinate files are saved

only to the thousandth of an Angstrom. In sum, 48,300 RMSD measurements were

calculated from these studies. RMSDs for the in vacuo simulations were calculated by the

same approach. For each temperature, five trajectories were calculated (100 fs, 1 ps, 10 ps,

100 ps and 1 ns) which were each divided into 5 sections of 50 equally spaced snapshots.

All pairwise RMSDs in each section were calculated yielding 1225 RMSDs per section, 6125

RMSDs per trajectory, and 30,625 for all five trajectories. For further details see Sullivan

and Kuntz.4

RMSDs were calculated using only alpha-carbons by independently overlaying all pairs of

structures using the McLachlan al gorithm.8 as implemented in the program ProFitl2 followed

by taking the root-mean of the squared atom displacements.

Random Walk Lattice Model.
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The first issue in developing our lattice model is defining the set of allowable steps. We use

an N-dimensional hypercubic lattice with steps confined to neighboring lattice points. Our

basic move is between points along the N-dimensional diagonals to simulate the MD model

where all atoms move simultaneously in a protein. Steps in our simulations are attempted

along all dimensions at every time step. As expected, we find tighter correspondence to the

behavior of MD RMSDs with this diagonal step compared to steps along a single randomly

chosen dimension. Since there are 2n possible steps along a single randomly chosen

dimension where n is the total number of dimensions, while there are 20 possible diagonal

steps, for spaces where n23 there are far more possible diagonal steps than possible

orthogonal steps. The chance of back-stepping is much lower if diagonal steps are taken.

Lattice points adjacent along an all-dimension diagonal are spaced 0.07 Å. The spacing of
points along a single dimension will thus be less than 0.07 Å (for lattices with more than one
dimension) and depend on the number of dimensions. In the 65-dimension lattices used

here, points have a spacing of 0.00868 A along any axis. Each step has a time equivalence of
10 fs. For time scales shorter than 10 fs, we linearly interpolate between trajectory points.

Number of dimensions.

Having established, for a particular system, the diagonal step size and the fundamental time

per step, we turn to an analysis of the dimensionality needed to simulate the RMSD-time

data. The number of dimensions of the lattice determines the displacement variance after a

given time. For example, in the limit of an infinite number of dimensions, displacement

variance goes to zero as each step will be in a direction normal to all previous steps. 13 That

is, for a walk with unit-length steps in a space with an infinite number of dimensions,

displacement simply equals the square-root of the number of steps taken with zero variance.

In spaces with a finite number of dimensions, there will be a distribution of possible

displacement magnitudes for a given number of steps. We use the variance observed in MD

RMSDs for a given time separation to determine the number of dimensions of the lattice.
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Barriers associated with conformational substates should also affect this variance, so we limit

this analysis to a short time scale where barrier effects should be minimal.14 Specifically, we

performed 12 step random walks, equal to 120 fs, with diagonal steps of length 0.07 Å. The
610 MD RMSD measurements at 120 fs have an average of 0.26 Å and standard deviation of
0.021 A. The 610 random walks in 65 dimensions have an average displacement of 0.24A
and standard deviation of 0.021 A. We use 65 as the number of dimensions for our lattices.

Based on measured variance in the standard deviation for random walk displacements, the

number of dimensions can be changed by +5 without changing our results.

Conformational space boundaries.

The next concern is whether to treat all these dimensions equally. In earlier work” we found
that the villin trajectory could be best represented as sampling a few large amplitude modes

and many small amplitude modes. Using a hypercube model related to principal component

analysis that we termed N-Cube analysis (NCA),4 we found the number of large

displacement modes for the unfolded state” to be ~10, while the small scale motions had a

dimensionality of ~70. To model these large scale and small scale changes, we allowed the

"large" lattice dimensions to contain hundreds of points while the "small" lattice dimensions

contain tens of points (see below). At the lattice edge, exiting steps are disallowed so that no

move occurs in that dimension on that step. Moves in different dimensions are treated

independently. So, for a given step, there may be displacement in some dimensions with no

displacement in other dimensions yielding a displacement magnitude less than 0.07 Å.

Starting points are randomly chosen from within the allowed space.

Trap parameters.

We add roughness to the energy landscape with local "traps". A trap is defined as an

energetic barrier that hinders exiting the defined region of the lattice. Traps have the effect of

slowing lattice exploration for part of the time. Analogous to a pit in the ground with vertical
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walls, there is no impediment nor bias to "falling" into the pit. Also, displacement within the

trap is not slowed compared to outside the traps. In contrast to a two dimensional trap in the

ground, our traps take the form of 12-dimensional hypercubes (i.e. they are located in the

"large" dimensions, see below). There is no bias to enter a trap, but attempts to exit the trap

are permitted only a fraction of the time in accordance to the energetic depth of the trap,

expressed as a Boltzmann probability and calculated once per time step. If "escape" is

rejected on a particular time step, all moves except exiting components of the move are

accepted. A variety of trap parameters were explored. They were evaluated by comparing

random walk simulations to the time dependence and variance of the RMSD from MD

studies. The following parameters were chosen: Traps are 6.86 kcal/mol deep. A single trap

occupies 30 points in all 12 "large" dimensions. Traps are spaced by 27 points. 30% of

each dimension at one end is free of traps. In energy-biased random walks, the trap-free

region is at the high energy end of the dimension (see below). In sum, 0.0015% of all lattice

points are part of a trap.

To explore the kinetic implications of our "conformational" lattice, we defined three sets of

parameters:

Parameter set A: Bounded lattice with minima traps - "Molten Globule State".

There are 65 dimensions of which 12 allow large displacements. The 12 large dimensions

are 600 points long (5.21 A). The remaining 53 dimensions permit local displacement with a
maximum displacement of 30 lattice points (0.260 A). The average distance between two
randomly selected points is 7.3 + 1.3 A. Trap parameters are taken from above.

Parameter set B: Trap-less Random Walk - "Molten Globule State".

Set Brandom walks use the same parameters as set A, however the minima traps have been

removed.
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Parameter set C: Reduced Size Trap-less Random Walk - "Native State".

In this lattice there are only 5 large displacement modes that are 176 points long (1.57 Å).

The remaining 60 dimensions are 30 points long. The average distance between any two

points is 1.6+03 A. For comparison, a structurally diverse set of 11 NMR conformations

of villin!! has an N-Cube Analysis (NCA)4 dimensionality of 4.8, NCA dimension length of
1.9 Å, and average pairwise RMSD of 1.7+0.4 Å.

Monte Carlo sampling of lattices.

Protein folding was simulated by designating a corner of the 12 long dimensions in the

molten globule lattice as 'native'. The size of the native region was set equal to the

hyperrectangle formed by the parameter set C lattice, with five medium length edges and

seven short length edges. Energy bias was only added to the large displacement modes since

small displacement modes of the folding lattice are already congruent with the native state

small displacement modes. Along all biased axes, an energy difference, dE, was imposed

between successive points. Thus, the total energy difference between the termini of an axis

simply equals the number of points on the axis, minus one, multiplied by dB. This quantity,

multiplied by twelve, is the maximum energy difference between any two points. The time at

point of first passage into native is taken as the folding time. The actual energy drop on any

folding run on average will be slightly less than half the largest energy difference, since the

initial point will be at the energy midpoint, on average, and the first passage into native will be

slightly above the lowest energy point. For simplicity, we designate the difference between

the lattice midpoint and the lowest energy point as AE. Actual energy differences traversed in

our folding simulations are ~0.9AE reported here. Reported AE values do not consider local

minima traps. For any given lattice, AE is 3600 times larger than dB. Monte Carlo searches

use the Metropolis acceptance criterion15 where an uphill move within the lattice bounds is
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accepted only if a random number on [0,1] is less than exp(-dE/kT). Moves in different

dimensions are treated independently.

Results

Our first task is to establish the diffusive character of protein internal motion. We first

analyze the very short time behavior in terms of a mean free path length and collision interval

using MD. From these basic diffusion parameters, we create a random walk model for

conformational diffusion on a high dimensional lattice that represents conformational space.

The measured mean free path length defines the grid spacing on the lattice. The collision

interval provides the time equivalence for individual steps in the random walk. We vary

additional lattice parameters, as described in the Methods, so that random walk displacement

as a function of time reproduces the MD TAD function. Finally, we extend our model to

protein folding by adding a funnel energy landscape to the lattice. We replace the random

walk mechanism with a Monte Carlo search for a "native" corner in the unfolded

conformational space. We calculate folding times as a function of the folding funnel slope.

Diffusive behavior of protein dynamics.

Figure 1a plots the MD TAD function. This raw form of the TAD function suggests

transitional times exist. These characteristic time intervals are more clearly shown by simple

data transformations, below.

Dividing displacement by time separation gives the magnitude of a conformational "velocity".

Constant conformational speed is observed up to ~10 fs (data not shown). Villin undergoes

a 0.068 A displacement in 10 fs (Figure 1a), giving a speed of 680 m/s. For comparison,

ideal gas at 300 K with the mass of monatomic carbon would have a free-flight RMS speed

of V3RT/M = 789 m/s, where R is the gas constant, T is the absolute temperature and M
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Figure 1 (A) RMSD time auto-difference (TAD) function from solvated MD
simulations on misfolded villin and (C) on in vacuo MD simulations on the native structure.
The logarithmic slope of the RMS average RMSDs for (B) solvated misfolded and (D) in
vacuo native villin. For the native simulations, only RMS average values are shown for each
temperature. For all slope calculations, RMS average displacements were first calculated with
a sliding time window of 0.1 logarithmic units (base 10), followed by slope calculation over
0.5 logarithmic units by the method of determinants.36 Reference lines are given at 10 fs and
300 fs for (A) and (B). In vacuo simulations were performed at 10 K (C), 80 K (O), 150 K
( ), 200 K (Cl), 250 K (A), 300 K (A), and 500 K (9).
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is the molar mass. The 10 fs "free flight" has a time length comparable to a single C-C bond

vibration (~33 fs). The time observed by RMSD analysis is less since conformational

displacement originates from averaging effects of out-of-phase vibrations.

The transition from the very short time free-flight regime to simple diffusion is indicated by

the change in slope of RMSD vs. time, in double logarithmic form (Figure 1b). The initial

slope of log(displacement) vs. log(time) is unity as expected for free-flight. The drop in

slope to ~0.5 starting at ~10 fs (Figure 1b) suggests a transition to an "unbounded" random

walk regime. Thus villin's dynamics up to ~300 fs can be approximated as a simple diffusion

process composed of very short free-flight steps. From this description, the diffusion

constant, D, is calculated from the Einstein-Smoluchowski equation, D=A2/2t, where A is the

mean free path length (0.068 A) and t is the time step (10 fs), giving a value of 2.3× 10–9

m2/s.

The decrease in slope beyond -300 fs (Figure 1b) presumably arises from barriers slowing

the diffusion process. What is the nature of these barriers? Multiple TAD functions (Figure

1c) calculated from in vacuo MD simulations on the native structure of villin, | each for a

different temperature, have slope functions (Figure 1d) that are essentially independent of

temperature over the observed time range, 1 fs to 100 ps. Further, the mean squared

displacements (i.e. RMSD2) correlate strongly with temperature for a given time separation,

with rºof 0.998 at 100 fs and dropping only to 0.91 at 100 ps. This correlation is consistent

with harmonically bound motions dominating the displacement behavior at short time scales,

as expected. This time range would include even the lowest frequency normal modes (V - 2

cm') associated with coupled vibrations in proteins.16

Lattice-based Random Walk Simulations.
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Random walks on lattices using optimized parameters (set A) give displacement magnitudes

with good fit to the MD RMSD time distribution function (Figure 2). In this set of

simulations, we added an equilibration period of 100 ns ( 107 steps) before tracking

displacement and time. Figure 2b plots the means for the MD RMSD time distribution

function and for displacement in the parameter set A random walks. Figure 2c plots the

standard deviations of the logarithms of the same two data sets. There is clearly a tight

correspondence between the random walk and MD results. Even the variance (Figure 2c) is

reproduced in a semi-quantitative manner.
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Figure 2 (A) Random walk TAD function on a 65 dimensional lattice with minima
traps (set A) and the (B) mean and (C) standard deviation for random walk displacements
(solid line) compared to values for solvated misfolded MD on villin (dashed line). Mean and
standard deviations were calculated using a 0.1 logarithm unit sliding window for MD and at
discrete time points for random walk data. Standard deviations are calculated on the
logarithms of the displacements.
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High dimensional random walks do not explore each dimension at an equal rate even when

the dimensions are geometrically equivalent. 13 A simple way to monitor the extent of

exploration is to calculate the principal radii of gyration (the variance along the principal

axes!3) as a function of time on the path drawn by the trajectory through the conformational

space. On bounded lattices, given enough time, the radii of gyration should converge to

values reflecting the extent of each lattice dimension. The convergence time is a property of

the lattice and the random walk parameters and is of interest to us because it establishes a

time frame for effective sampling of the lattice. If we ignore traps and barriers, we can

establish a lower bound on the time required for sampling the "molten globule" and "native"

lattices by following the radii of gyration in each principal axis using parameter sets B and C

(see Methods). For the molten globule lattice, 1-10 pus are required for the bounds of the

lattice to impose convergence (Figure 3a). The same level of convergence occurs at ~100 ns

in the smaller, native sized lattice (Figure 3b). At shorter times, variance among principal axes

extents simply reflects the stochastic nature of the random walk trajectory rather that an

enduring quality of the "energy landscape". As these calculations are performed on

energetically flat landscapes free of traps and conformational substate barriers, the

convergence times should be taken as underestimates of what would be seen in MD

trajectories. These results are consistent with earlier observations that show that short MD

trajectories (235 pS) do not yield stable principal moments. 17
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Figure 3 Principal radii of gyration spectra for (A) "folding" (set B) and (B) "native"
(set C) random walk trajectories. Random walks were performed in triplicate and the mean
radii of gyrations are plotted. Simulation lengths are 100 ps (O), 1 ns (O), 10 ns (L), 100 ns
(U), 1 pus (A), and 10 pus for folding only (A). The dashed line gives the spectra for 10,000
points randomly placed on the lattice to serve as reference for limiting spherical symmetry.
Random walk radii spectra likewise use 10,000 points spaced uniformly along the trajectory.
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Energy-biased random walks: Protein Folding.

Our lattices are excellent systems for testing which energy landscapes are consistent with

experimentally determined folding times. Here we focus on simplified funnel landscapes,

though other landscape models such as a Go potentiallê and pathway models 19 could be

explored. First, the dependence of folding time on funnel slope was determined (Figure 4).

Since the minima traps are arguably the most ad hoc parameter in our simulations, we present

results on lattices without minima traps (set B lattice parameters) to gauge their effects. In

general, the traps slow folding about two orders of magnitude for a given energy difference

(Figure 4).
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Figure 4 Folding half-times as a function of AE, the energy difference between the
mean lattice energy (i.e. the energy of the lattice's center point) and the global minimum for
optimized (set A) parameters (O) and for trap-free (set B) parameters (Q). For each energy
value, 20 simulations from random starting points were performed, with the point of first
passage into the native state being the folding time for that run. The time for one-half of the
20 runs to complete is plotted.
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Two-state folding behavior is a hallmark of most fast folding single domain proteins.2021
We tested for two-state folding behavior on our lattice by performing many (>100) folding

simulations for a given set of conditions and checking for a linear drop in the logarithm of the

unfolded population versus time (data not shown). We observe two-state folding behavior

for AEs -1000 kcal/mol with set A lattice parameters (with traps) and AEs -25 kcal/mol

with set B lattice parameters (no traps). For both sets of parameters, two-state folding

behavior begins when the folding half life is greater than ~10 ns. For larger energetic biases,

folding times appear to become proportional to the distance between the starting

conformation and the native state.

Preliminary dynamic NMR measurements suggest a folding time for villin headpiece

subdomain on the order of 10 pus (MingHui Wang, Liliya Vugmeyster & Daniel P. Raleigh.

Personal communication.). Figure 4 shows that an energy gap of ~15 kcal/mol gives a

folding time of ~10 pus. Figure 5a gives the distance to the global minimum for a

conformation in a single folding simulation with AE = 15 kcal/mol (dE = 0.00417 kcal/mol).

Since we assume the native state to be a hyperrectangle, there are some lattice points closer to

the lowest energy point (and lower in energy) than some native points, which explains why

the point of first passage into native is not necessarily the lowest point for a simulation. The

interesting result is that the downhill trend (in energy and displacement) is lost in the noise

even though the bias significantly shortens the time to folding. Figure 5b plots the same

information as in Figure 5a except that the trap-free parameters are used (set B). In both

cases, an entropic barrier slows progression to native at -5A from the global minimum. The
traps in parameter set A slow the folding process but do not qualitatively change the

progression pattern.
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Figure 5 The displacement from the global minimum is given as a function of time for
folding simulations on a lattice with AE = 15 kcal/mol using (A) optimized parameters (set
A) and (B) trap-free parameters (set B). The final and initial conformational distances are
marked with a star.
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Experimental free energies of unfolding further constrain theoretical models for a folding

system. Denaturation studies on villin headpiece show the native state to be more stable than

the unfolded state by about 3 kcal/mol.22 Free energies of unfolding on the lattice AE = 15

kcal/mol (set A parameters) were calculated by measuring the equilibrium constant for 200 ps

simulations. Six simulations were run, three starting from the native state and three starting in

the unfolded state. These calculations converged on free energy differences of 10.0 (+0.3)

kcal/mol in favor of the unfolded state. This -13 kcal/mol discrepancy (10 kcal/mol in favor

of the unfolded state versus 3 kcal/mol in favor of the native state) can be explained as the

extra stability that would be gained upon formation of the native state from the transition

state. Here we are defining the transition state as simply the set of 11-dimensional

hyperplanes that divides the native and unfolded states in our model. Including a 13 kcal/mol

drop at the native/unfolded transition zone could correct for this thermodynamic discrepancy

without affecting our first-passage folding times. This precipitous drop in energy at the

transition zone would be in agreement with existing energy landscape models (see

Discussion). Figure 6 diagrams a quantitative energy landscape of villin headpiece in the

typical reaction coordinate form.
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Figure 6 Reaction coordinate for villin headpiece subdomain that conforms to
experimental kinetic and thermodynamic constraints assuming a funnel landscape.
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Discussion

Short-time dynamics.

The basic time step of our random walk models (~10 fs) and the number of dimensions

required (~65) are consistent with a physical mechanism based on bond vibrations. While

the total number of internal degrees of freedom for the Coºs of villin (102) is similar in

magnitude to the number of lattice dimensions for sub-picosecond time scales, bonding

restraints between successive Coºs may explain why the best-fit number of dimensions is

closer to 2N "active" modes rather than 3N.

The diffusion constant (2.3 × 10−9 m2/s) calculated early in the time evolution agrees with

values for very small molecules, such as methane in carbon tetrachloride (2.9 × 10–9 m2/s)

and water in water (2.3 × 10−9 m2/s).23 This is not surprising given that the Coºs are of

similar mass as methane or water and are undergoing thermal motion in a medium (the

protein) of similar density to common solvents. This contrasts with the much lower apparent

diffusion constants of -5 x 10-11 m2/s between residues separated by tens of residues in

denatured proteins for microsecond time scale motions.24,25. In these larger displacement

motions, constraints arising from solvent friction, internal friction and excluded volume

become significant.

Energy bias.

The energy difference necessary for 10 pus folding (~15 kcal/mol) is on the low end for the

energy difference between native and compact unfolded ensemble calculated by Lee et al" of
15-35 kcal/mol. Our thermodynamics calculations likewise show the free energy of

unfolding to be ~1.3 kcal/mol too low, compared to experiment. Together, these results

suggest that the energy gradient steepens significantly at the unfolded/native transition zone.
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This would give the native state additional stability compared to our simple uniform slope

model and would affect only thermodynamics but not first-passage folding times.

Experimental thermodynamics studies suggest many small fast folding proteins to have a

transition state that is an ensemble of slightly expanded and distorted native-like structures.26

MD studies of unfolding pathways for small proteins also support the model of a transition

state ensemble that is near-native, yet heterogeneous in that particular ensemble members

from different MD trajectories are equally (dis)similar to each other as to the native

state 27,28 Free energy (intraprotein energy plus solvation free energy) calculations on 24

unfolding MD simulations of chymotrypsin inhibitor 2 by Lazaridis and Karplus29 show the
final ordering of structure to the native state, measured by the fraction of native contacts, is

accompanied by a sharp drop of ~10-15 kcal/mol (their29 Fig 4a). This contrasts with the

gentle energy gradient they see in earlier stages of folding.29 It is quite reasonable that a

locking-in of native structure by proper side chain ordering in the final stage of folding would

give a pronounced drop in internal energy relative to near-native structures.30 In our lattice,

an additional drop of ~13 kcal/mol at the native/unfolded transition zone would give a model

that conforms to experimental kinetics and thermodynamics results as well as detailed free

energy calculations.

Comparison to other dynamics models.

A primary issue with dynamics studies using lattice models?!,32 or very simplified atom

representation33 is placing the observed events on a time axis. This is an issue with Monte

Carlo studies in general, but reduced atom representation further obscures the connection.

Our random walk model with explicit time representation shows excellent agreement with

MD time behavior at the cost of sacrificing direct atom representation. In this sense, our

model is complementary to existing tools for studying protein dynamics and testing energy

landscape models. For example, our real-time behavior can extend analytic dynamic models,
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such as the model of Zwanziget al”, who derive the equation for folding mean first-passage

time as approximately (1/Nko)(1 + k0/k1)N, where N is the number of bonds (dimensions in

our case) and k0 (k1) is the rate of entering (leaving) the native state for any dimension.

Zwanziget al”, who were mostly interested in resolving Levinthal's paradox, simply assert
"reasonable" microscopic rate constants for their calculation. Our model can be transformed

into their model by refitting our native space such that all twelve large dimensions are equal

(i.e. made hypercubic instead of hyperrectangular). Microscopic rate constants can be arrived

at numerically by one-dimensional random walk simulations as a function of overall

landscape bias, shape, and roughness. Such models could then be quantitatively compared to

MD to test for reasonable displacement behavior.

Generalization to other systems.

While these results derive entirely from one protein, we expect generalization of many model

features to other small single domain proteins. The shortest time dynamic features (collision

interval and path length) clearly reflect basic material properties of protein, not fold or

sequence, and should be constant for all proteins at room temperature. Preliminary MD

calculations on other systems uphold this assertion. We explain the total number of

dimensions of the lattice in terms of amino acid structure and so expect the -2N number of

dimensions to be transferable to other proteins. The number of large displacement modes

should scale with the number of secondary structural elements. The RMSD distribution in

the MD TAD function at times longer than 100 ns is similar to that of randomly folded

compact 36-mer polypeptides. A scheme for arriving at the total lattice size is iteratively

comparing distance distributions for randomly chosen lattice point-pairs with the RMSD

distribution of randomly folded conformations for the protein of interest. The least

understood aspect of our model is the appropriate roughness of conformational space. The

parameters for our local minima traps are largely influenced by a single semi-stable "folding
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intermediate" that persists for 150 ns in the Duan and Kollman3 trajectory. Despite this

dearth of long time data, we are comforted that on our trap-free lattice (set B parameters),

which is unrealistically smooth, folding times are only ~2 orders of magnitude faster than

our optimal lattice.

Finally, we try to put this work in context with the large-scale issues in protein folding. There

are two quite distinct challenges: modeling protein folding kinetics and predicting the most

stable protein geometry. This paper focuses on the first problem. In fact, we explicitly

remove knowledge of specific geometries by averaging coordinate displacements generated

during MD trajectories. In exchange for the loss of coordinate details, our approach appears

to yield a plausible time scale for folding events. It also establishes a protocol for using

molecular dynamics information to test diverse folding models.

The formulation of folding as a bounded, biased lattice walk suggests a set of basic variables

that differ in significant ways from other formulations. These variables include the number

and extent of the "conformational" dimensions; the fundamental time/displacement step on

the lattice; the trap depth and trap distribution; and the energy surface configuration and bias.

The ranges of these variables - the feasible "solution space" - are strongly bounded by

experimental data: experimental folding information, exponential vs. non-exponential kinetics,

equilibrium protein stability, kinetic rates as a function of temperature or denaturants.

In the future, approaches such as this one can be used to explore pathway and funnel models

of protein folding, the nature and effects of entropic transition states, and unfolding

phenomena. On the other hand, this method will most likely not be able to explore specific

geometric issues such as the effect of contact order modelsº, or the spatial compactness or

arrangement of native proteins. While it is too early to know whether a unique description of
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the folding of the villin headpiece can be developed, it is encouraging that the experimental

results currently available fit a simple lattice diffusion model.

Conclusions

We show that a random walk, lattice-diffusion model explains many features of

conformational evolution in MD. While individual motions may be oscillatory in nature, they

sum into a diffusive motion through conformation space. It is possible to interpret RMSD

dependence on time separation using this model up to microsecond time scales for a folding

protein by introducing a hierarchical energy landscape. A simple funnel landscape with an

energy difference between native and unfolded of ~28 kcal/mol, with 15 kcal/mol spread over

the compact unfolded state and 13 kcal/mol at the unfolded/native transition, gives reasonable

folding times and thermodynamics.
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Abstract

We show that much of the structural variations among the liganded human immunodeficiency

virus type 1 protease crystal structures is simply correlated with space group. Structures

solved in the same space group are reproducibly similar to each other, while structures of

different space groups are different. The pattern of main-chain disorder, as measured by B

factors, is also strongly crystal form dependent. Most of the differences across space groups

are in the surface loops (residues 15-19, 36-41, and 67-71) as well as the active site \■ -loop

(residues 78-84). Structural variation in the Uy-loop is largely independent of mutations to

this substructure. The hinges of the flap (residues 45-56) covering the active site show

space-group-associated displacement while the ligand-contacting tips of the flap do not.

Across the ensemble of structures, variations between the A and B chains of the homodimer

are of the same order as variations between the same chain in different space groups.

Regardless of whether these observations arise from crystal packing forces, refinement

artifacts or some combination of such factors, it is clear that structural inferences made from

comparisons from differing space groups or between crystallographic and NMR results must

be done with caution.

Keywords: HIV, proteinase, lattice packing effects, comparison of X-ray structures, B-factors
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Introduction

Human immunodeficiency virus type 1 protease (HIV-1 PR) protease proved a valuable

target of structure-based drug design in the early 1990s!. Crystal structures of the inhibited

protease were pursued both for hypothesis generation and testing of inhibitor binding modes.

From these efforts, many tens of crystal structures solved in multiple space groups, and an

NMR solution structure, of the liganded protease were deposited in the Protein Data Bank

(PDB)2. This ensemble provides a test set for measuring the relative roles played by

variations in ligand, space group, mutations, and experimental conditions in perturbing

Structure.

Differences in structure within this ensemble are presumed to result primarily from

differences in the ligand?.4. The many liganded wildtype crystal structures of HIV-1 PR are
structurally very similar to each other, with Co. RMSDs between structures generally less

than 1 A. By some analyses, similarities between structures break down near the level of

errors with any real differences presumed to result from plastic deformations unique to each

inhibitor&4, variations in experimental conditions, and experimental error and different model

building biases. On the assumption that variation among structural models has physical

meaning, Van Aalten et al4 proceeded to extract concerted motions implied by this ensemble

which resemble those seen in a molecular dynamics trajectory. In summary, the published

literature suggests that while the magnitude of structural divergence is not large, the changes

may not be random.

Lange-Savage et alò solved the crystal structure of the S37N mutant of HIV-1 PR bound to
HOE/BAY 793 in two crystal forms. Significant structural differences are seen between the

two crystal forms. Here we have further investigated lattice packing effects by analyzing a
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large number of HIV-1 PR crystal structures. The PDB and National Cancer Institute's HIV

Protease Databank were searched for liganded structures of HIV-1 PR. A data set of 63

high-resolution (resolution < 2.5 Å) structures was created. These structures display a
number of mutations (See Table 1) and a variety of ligands. A distinguishing feature of the

HIV-1 PR ensemble is the presence of many structures from each of several packing

environments. This characteristic allows us to study the effects of crystal packing in more

detail than previous studies. There is a one-to-one correspondence between space group and

crystal type among the structures in this ensemble, which can be seen by rebuilding the unit

cells using the crystal parameters given in the PDB files and checking for proper overlay.

Herein we use the space group to distinguish between the crystal types.
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Table 1: Mutations in Test Set

PDB i.d. Space Group Mutations
pdb1hih P212 121
pdb1hpx P212121
pdb1hvi P212121
pdb1hvi P212121
pdb1hvk P212121
pdb1hvl P212121
pdb1dif P212121
pdblohr P212121
pdb1hiv P212121 I3V
pdblodw P212121 I3V
pdb1hvs P212121 V82A
pdblytg P212121 Q7K K14R S37N R41K L63PI64V
pdb.1mtr P212121 Q7K K14R L331 S37N R41K L63PI64V C67B C95B *
pdblyth P212121 Q7K K14R S37N R41K L63P I64V
pdb2aid P212121 Q7K K14R S37N R41K L63P I64V
pdb.4hvp P212121 K14R S37N R41K L63P I64V C67B C95B *
pdb7hvp P212121 K14R S37N R41K L63PI64V C67B C95B *
pdb1cpi P212121 K14R S37N R41K L63P I64V C67B C95B *
pdb1 hos P61
pdb1htf P61
pdb1 hps P61
pdblhpv P61
pdb1hbv P61
pdb1gno P61
pdb1sbg P61 S37N
pdb1 pro P61 S37N
pdblvij P61 S37N
pdblaxa P61 A28S
pdb1gnm P61 V82D
pdb1gnn P61 V82N
pdb1hxb P61 I3V
pdb.1mer P61 I3V I84V
pdb.1mes P61 I3V I84V
pdb1bv9 P61 I3V I84V
pdb1bv7 P61 I3V V82F
pdb.1met P61 I3V V82F
pdb.1meu P61 I3V V82F I84V
pdb1bwa P61 I3V V82F I84V
pdb1bwb P61 I3V V82F I84V
pdb.1qbr P61 I3V C95A
pdb1abt P61 I3V C95A
pdb.1qbu P61 I3V C95A
pdb1hvh P61 I3V C95A
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pdblhvr P61 I3V C95A
pdblodz P61 A71T V82A
hiv10msd P21212
hiv1.1msd P21212
hiv%msd P21212
pdb1htg P21212
pdb1hsg P21212
pdb7upj P21212
pdblajv P21212
pdblajx P21212
pdb1tcx P21212 V32II47V V82I
pdb1hxw P21212 S37N
pdb5hvp P21212 S37N
pdb.4phv P21212 S37N
pdblvik P21212 S37N
pdb1a20 P21212 Q7K L331 L63I
hiv.22ulk P21212 Q7K L331 L63I
hiv.21ulk P21212 Q7K L331 R41G L63I
pdblaid P41 K14IY S37N R41 K L63P I64V
pdb1a2m I222 G48H

* - "B" symbolizes alpha-aminobutyric acid.

Results

Structure Comparison

Figure 1 shows a Co. overlay of all structures in the ensemble. PDB structure 1HIH is used

as the reference molecule. Using different structures as the reference molecule gives a

qualitatively similar picture. The greatest variation is seen in the surface loops, namely in the

vicinity of residues 18, 40 and 68. Less variation is seen in the position of the flap residues

which clamp down over the ligand. 1AID, which has a haloperidol-based ligand in a binding

mode not commonly observed?, is the obvious exception. The flaps of the non-liganded

structure (3HVP -- not shown) are similarly open. Flap opening appears necessary for

protease activity and has been studied extensively89.
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Figure 1b

Figure 1 Structural variation within ensemble. The COs of all structures in our test
set are superimposed onto 1HIH. Structures of space group P212121 are colored red, P61 are
green, and P2.1212 are blue. Perspective A looks through the active site. Perspective B is
looking down onto the active site flaps.
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The structures in Figure 1 are color coded by space group. Structures clearly cluster by

space group in several of the loop regions, including the Uy-loop (78-84), which forms

pseudo-symmetrically opposed walls of the active site. To quantitate this observation, Co.

RMSDs for all structure pairs were calculated and the results are displayed in Figure 2.

Most structures show the most similarity to other structures solved in the same space group

(Figure 2, above diagonal). Surprisingly, this is also true for buried residues (Figure 2, below

diagonal).

Figure 2 (next page) Pairwise Co. RMSD. Pair-wise Co. RMSDs are color-coded by the
scale indicated. For values in the above-diagonal region, all Co. receptor atoms are included
in the calculation. In contrast, Cots of surface residues were excluded from both the
superpositioning and RMSD calculation of values displayed below the diagonal. Excluded
residues are: 1-4, 6–8, 10, 12, 14, 16–21, 29–30, 34–46, 51-55, 57-58, 60–61, 63, 65, 67–70, 72
74, 79-82, 87-88, 92–94, and 98–99.
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We probed for the location of differences along sequence by examining internal coordinates.

The space group associated positional variance seen in the CO overlay was not readily

apparent from an analysis of the torsion angles. The structural features that did emerge from

torsion angle analysis include: space group independent variation in the main chain torsion

angles of Ile 50 and Gly 51, which NMR experiments show to undergo microsecond time

scale conformational changes in solution 10, as well as mainchain torsion variation in some

turns (Gly 16-Gly 17 and Cys 67-Gly 68). The side chains of Val 11, Leu 24, and Leu 97,

which are well-defined, buried, and spatially contiguous, populate multiple rotomer types in

correlation with space group. Crystal packing associated differences seen in the Co. overlay

are spread over several torsions. To capture these differences, we measured angles defined

by vectors Co.(i-1) to Co.(1-3) and Co.(i+1) to Co.(i+3) (Figure 3). A plot of the deviation

from the average angle value shows regions of substructure-level hinging which is associated

with crystal type. Centers of space group associated hinging are seen at residues 14-15, 36

40, and 69-72. In the y-loop region, hinging centers around residues 83 and 84.

Figure 3 (next page) Co. vector angle deviations. For residue i, an angle defined by vectors
Co(i-1) to Co.(1-3) and Co.(i+1) to Co.(i+3) was calculated. Deviation from the average
angle for residue i across all structures for both chains is color coded in the figure. Positive
deviations 3" or greater are colored blue, negative deviations 3" or greater are colored red.
Green is neutral. The structures are listed in the same order as in Table 1. '(A)' and '(B)
denote chain letter.
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B-factor correlations associated with space group

The Co. disorder along sequence in HIV-1 PR is strongly space group dependent. We

calculated correlation coefficients between Co. factors plotted as a function of residue number

for pairs of structures (See Figure 4, above diagonal). The calculation was repeated, this time

excluding residues which make crystal contacts in any of the three packing environments.

The maintenance of class segregation when crystal contacting residues are excluded (Figure

4, below diagonal) points to the extensive impact of crystal packing on the protein's dynamic

environment. The spread in B-factors averaged across the space groups (see Figure 5)

exceeds 10A2 at residues 14-21A,43-46A, 63-71A, 14-20B,40-46B and 52-53B and

exceeds 20A2 at residues 17-19A, 17–18B and 41–42B.

Figure 4 (next page) CO. B-factor correlation coefficients. Correlation coefficients
between each pair of structures' set of Co B-factors over the whole dimer are displayed by
color code. In the below-diagonal data, residues making crystal contacts in either of the three
main crystal types were not considered in the correlation calculation. For the crystal contact
calculation, three representative structures were used: 1HVI (P212121), 1HPV (P61), and
1HTG (P21212). A contact distance of 4.5 Å was employed. Ninety-five of 198 residues
were thus excluded in the correlation calculation.
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Figure 5 Co. B-factors averaged across each space group. Both average Co.
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Discussion

Clearly, HIV-1 PR crystal structures segregate into classes that correlate with space group

both with respect to geometry and B-factors. The first critical question is to what extent this

clustering arises from physical properties of the crystal packing arrangements or if it is, at

least in part, an artifact of the refinement procedures. The most decisive way to answer this

question is to solve structures of closely related or identical systems independently using

isomorphous replacement, anomalous phases or ab initio methods. This experiment has not

been carried out for HIV-1 PR to the best of our knowledge. Figure 6 shows the connections

among most of the structures discussed in this paper. There are no MIR solutions. All

liganded structures were developed using molecular replacement techniques.

If we assume, for purposes of discussion, that the HIV-1 protease structures reflect true

physical variability, we are struck by the smallness of the geometric perturbations associated

with changing space group, with mutated sequences or by changing ligation. In fact, neither

sequence nor inhibitor decisively fixes the space group since liganded wild-type HIV-1 PR

has been repeatedly crystallized in three well-populated crystal types. Lange-Savage et al'sé

results and results of others anecdotally rule out the importance of ligand. Among structures

of this data set, HIV-1 PR inhibited by SB203386 has been solved in both P21212

(1TCX11) and P61 space groups(1SBG12). HIV-1 PR inhibited by U89360E has been

solved in both P61 (1GNM13, 1GNN13, 1GNO13 and 1AXA14) and I222 (1A9M15).

HIV-1 PR inhibited by BMS-182193 has been solved in both P212121 (1ODW16) and P61

(1ODX16). Rather, the literature suggests that electrostatics is the primary determinant of

crystal packing among nearly identical systems. Jelsch et all? show that crystal type can be
modulated by changing the charge distribution on the surface of cutinase via mutations and

ligand changes. Gallagher and Croker18 varied pH to elucidate a "trigger" mechanism in
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bovine pancreatic trypsin inhibitor where the protonation state of a particular residue

determines crystal type. There are not such clear results for HIV-1 PR. The determinants of

crystal type have not been heavily explored. A pH dependent crystal phase transition was

observed between pH 4.8 and 5.0. Small tetragonal rods (unusable for data collection) grow

below this range and orthorhombic plates (space group P21212) grow above this range for a

particular set of conditions!9. Jordan Tang's group13,14 has reported on searches for

optimal crystal conditions in terms of pH and salt concentrations (ammonium sulfate), but do

not report conditions associated with crystal type transitions.

An intriguing question is whether the different crystal packing arrangements generate forces

which perturb the protein into conformations not significantly populated in solution or do the

conformations preferred in each space group correspond to true conformational minima?

Kossiakoff et al’s’0 comparisons of BPTI molecular dynamics trajectories to crystal
structures of different crystal types suggest that crystal packing stabilizes conformations

found in solution. The average pairwise Co. RMSD between the HIV-1 PR NMR ensemble

members (PDB code: 1BVE) is 1.14+0.35 Å. This is much more than the average inter
space group Co. RMSD for structures in the ensemble here (0.66 Å # 0.08 Å; excluding

1AID and 1A9M), and much more than the average intra-space group Co. RMSD of 0.38 +

0.11A. If each NMR ensemble member is taken to correspond to a region of the solutions
structure's accessible conformational space, we can speculate that any crystal environment will

restrict the protein to a particular region of conformational space and particular crystal

environments will further differentiate possible conformations.

To put these RMSD values in perspective it is worth comparing with other retro-virus

proteases. The average Co. RMSD between HIV-1 PR of space groups P212121, P61, and

P21212 and a representative high resolution (1.7 Å) HIV-2 PR liganded structure, 1DA, is
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0.98 + 0.06 A. IYTI, a simian immunodeficiency virus structure of 2.2 Å resolution has an
average Co. RMSD with HIV-1 PR of 1.12+ 0.06 Å. These numbers agree well with the

Chothia and Lesk?! expression for relating sequence identity to crystal structure backbone

RMSD: 1IDA, with 49% sequence identity to wild-type HIV-1 PR is predicted to differ by

1.05 Å backbone RMSD. 1YTI, of 51% sequence identity, is predicted to have 1.01 Å

RMSD With HIV-1 PR.

From comparing crystal packing associated differences with those associated with mutation,

we conclude that mutations do not greatly influence the global structure of the protease as

revealed by crystallography. However, the structural consequences of mutations are

undoubtedly of great importance in solution. Cross space group analysis adds proper

perspective for interpreting crystallographic structures, particularly mutant structures, many of

which come from studies aimed at understanding drug resistance. Hypotheses for the

mechanism of resistance generally consider perturbations to the shape of the active site and/or

to dynamics as it relates to enzyme function. The degree of each argument invoked depends

on the particular mutation at hand. To explain mutations distal from the active site, Rose et

alº found five rigid domains in the dimer by comparing an open, unliganded SIV protease

crystal structure with liganded and unliganded HIV-1 PR crystal structures. Many

resistance-inducing mutations cluster at the inter-domain interfaces allowing them to alter the

dynamics of domain motions. They propose that these domain interface mutations change

substrate and inhibitor binding kinetics in favor of the substrate. This theory does not

necessarily predict changes to the static structure by domain interface mutations.
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Figure 6 Molecular replacement evolution tree. The history of molecular replacement, º,
where accessible from the literature, is here listed for the ensemble. Structures higher in the
hierarchy were used to aid in phase determination of those below. We use the term
'molecular replacement' in the liberal sense of using a previously solved model to aid in 7 ºf G 1.

phasing another set of data. The top structure (3HVP28) was itself solved using a Rous º/”
sarcoma virus protease-based homology model of HIV-1 PR29. 'Yes' indicates that the PDB
accession number for that parent structure is not available, either because it was not reported )) 2–
or because the coordinates were not deposited.
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Ala et al.22 studied differences in binding to DMP323 by the active site mutants: V82F, I84V

and the double mutant, V82F/I84V. Structure based energy calculations are consistent with

the hypothesis that the inhibitor is less potent against resistance mutants due to loss of van

der Waals's interactions. In the V82A mutant”, contacts predicted to be lost are partially

compensated for by local backbone plasticity. This type of plasticity should not be confused

with the variation associated with crystal packing. Compared to other structures of space

group P212121, the Co. positions of Pro81 and Asn 83 in the V82A mutant are within the

spread. The mainchain of Ala82 is at the edge of the spread. The average pairwise Co.

displacement (i.e. the distance between corresponding Coºs after optimal pairwise fitting over

all Cos) at 82A across all pairs of P212121 structures is 0.43 Å and for 82B is 0.61 Å. For

1HVI (WT) fitted to 1HVS (V82A), 82B is 0.56 Å shifted and for 82B is 0.58 Å shifted.

The average inter space group shift for the Co. of 82A is 0.48 Å and 82B is 0.65 Å. For
1HVI fitted to 1HVS, the Co. of neighboring residue 81 is shifted by 0.35 Å (chain A) and

0.68 (chain B). The inter space group spread of residue 81's Co. is generally larger: the

average Co. shifts between P212121 and P61 at residue 81 are 0.63 A (chain A) and 1.27 Å

(chain B); between structures of P212121 and P2.1212 are 0.80 Å (chain A) and 1.71 Å

(chain B). Compared to crystal packing associated conformation changes, point mutation

induced atomic shifts are small and localized.

Energy calculations which involve inhibitors that contact the y-loop could be very sensitive to

crystal type. Both Ala et al” and Baldwin et al” compared structures solved in the same

space group (Ala et al22 compared structures of P61 and Baldwin et al23 compared

structures of P212121). Clearly, the removal of sidechain atoms via mutation will reduce

inhibitor-protein contact. Just as clear, overall backbone position is associated with space

group and will modulate the importance of a reduction in sidechain surface area. The fact that

crystal environment plays such a large role in determining the y-loop conformation speaks to
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the relative instability of the loop, even in the bound form of the protease. The hinging

centered around residues 83 and 84 suggests that mutations in this area could act to modulate

loop dynamics or stability.

Conclusions

The basic observation in this paper is the strong clustering of the HIV-1 protease structures

and B-factors with space group. This clustering demonstrates that the molecular replacement

refinement procedures are responsive to crystal packing. However, it is difficult to assess

whether the current practice of obtaining a large number of similar structures using only one

set of independent phases has led to a significantly over constrained structural ensemble.

This unexpectedly strong clustering by space group raises important caveats that should be

resolved before these structures are routinely used for general biophysical investigations.

Methods

RMSDs were calculated by fitting the structures using the McLachlan algorithm24 aS

implemented in the program ProFit?5 followed by taking the root-mean of the squared atom

displacements. Crystal contacts were calculated using the program Crispack26, which

rebuilds neighboring structures in the crystal by using symmetry operations based on space

group and crystal dimensions given in the PDB file. Contact is threshold based, and a cut-off

distance of 4.5 Å between non-hydrogen atoms was employed herein. Pairwise RMSD plots,

angle plots and molecular images were produced using MidasPlus27.
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