
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Differentiable Neural Motion Planning under Task Constraints

Permalink
https://escholarship.org/uc/item/66r592tr

Author
Qureshi, Ahmed Hussain

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66r592tr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Differentiable Neural Motion Planning under Task Constraints

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics and Control)

by

Ahmed H. Qureshi

Committee in charge:

Professor Michael C. Yip, Chair
Professor Henrik Christensen
Professor Vikash Gilja
Professor Sonia Martinez
Professor Nuno Vasconcelos

2021

Copyright

Ahmed H. Qureshi, 2021

All rights reserved.

The dissertation of Ahmed H. Qureshi is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2021

iii

DEDICATION

I dedicate this thesis to my family: My late father for his support towards my

education and for his countless survival tips and life-learned lessons. My mother

for her prayers and for always ensuring that I am doing well. My dear wife, for

her untiring support and care. In all trials and tribulations, she stood by me,

discussed my ideas, gave me hope and encouragement, and helped me rule out

several wrong turns during the process. My older brother for being a true friend

and for always having my back. My sisters for virtually engaging me in all

family gatherings and making me feel like I’m at home even though I was several

thousand miles away. My younger brother for always being a message away.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . xii

Acknowledgements . xiv

Vita . xvii

Abstract of the Dissertation . xix

Chapter 1 Introduction . 1
1.1 Task Constraints Learning . 3
1.2 Motion Planning . 4
1.3 Composition . 5
1.4 Task Planning . 6
1.5 Acknowledgements . 7

Chapter 2 Task Constraints Learning . 9
2.1 Preliminaries . 11
2.2 Variational Inverse Reinforcement Learning 15
2.3 Results . 19
2.4 Discussion . 22
2.5 Derivations . 24
2.6 Implementation Details . 28
2.7 Acknowledgements . 29

Chapter 3 Neural Motion Planning . 30
3.1 Collision Avoidance Constraints 30

3.1.1 Related work . 32
3.1.2 Motion Planning Networks (MPNet) 37
3.1.3 MPNet: Training . 39
3.1.4 MPNet: Online Planning 46
3.1.5 Implementation details . 52
3.1.6 Results . 54
3.1.7 Discussion . 63

3.2 Kinodynamic Constraints . 71

v

3.2.1 Related Work . 72
3.2.2 Model Predictive Motion Planning Networks 74
3.2.3 Implementation Details . 81
3.2.4 Results . 83
3.2.5 Discussion . 87

3.3 Kinematic Manifold Constraints 89
3.3.1 Preliminaries . 92
3.3.2 Related Work . 99
3.3.3 Neural Task Representations 102
3.3.4 Constrained Motion Planning Networks 105
3.3.5 Implementation details . 113
3.3.6 Results . 117
3.3.7 Discussion . 126

3.4 Acknowledgements . 129

Chapter 4 Policy Ensemble Composition . 131
4.1 Related Work . 132
4.2 Background . 133
4.3 Policy Ensemble Composition . 134
4.4 Results . 140
4.5 Implementation details . 150
4.6 Acknowledgements . 154

Chapter 5 Task Planning . 155
5.1 Related Works . 157
5.2 Problem Definition . 159
5.3 Neural Rearrangement Planner (NeRP) 159
5.4 Results . 168
5.5 Acknowledgements . 173

Chapter 6 Conclusions & Future Works . 174

Bibliography . 179

vi

LIST OF FIGURES

Figure 1.1: A development process includes understanding demonstrated concepts and
learning corresponding skills, and composing them into new skills for new
tasks. 1

Figure 1.2: This dissertation follows a bottom-up approach from learning concepts (e.g.,
task constraints or cost functions) and their behavioral skills to composing
them into new skills under a high-level task planner. 2

Figure 1.3: An abstract feasible and forbidden space within robot state space formed by
the task constraints. A motion planner determines a path in the feasible space
that connects the given start and goal. 5

Figure 2.1: Transfer learning problems: reward transfer from (a) a quadruped-ant to a
crippled-ant. (b) from a left-passage maze to a right-passage maze. 18

Figure 2.2: The performance of policies obtained from maximizing the learned rewards
in the transfer learning problems over five trials. 19

Figure 2.3: The top and bottom rows show the gait of standard and crippled ant, respectively. 20
Figure 2.4: The top and bottom rows show the path followed by a 2D point-mass agent

(yellow) to reach the target (green) in training and testing environment,
respectively. 21

Figure 2.5: Benchmark control tasks for imitation learning 22

Figure 3.1: MPNet greedily outputs a near-optimal path, whereas classical planning meth-
ods such as RRT* [KF11], Informed-RRT* [GSB14], and BIT* [GSB15]
need to expand their planning spaces through an exhaustive search. 30

Figure 3.2: RRT [LaV98] algorithm randomly sampling obstacle-free space to generate
a tree, and find a path connecting the given start and goal configurations. . 33

Figure 3.3: MPNet consists of encoder network (Enet) and planning network (Pnet). (a)
shows their end-to-end training under a continual learning setting. Fig (b)
shows the online execution of MPNet. 37

Figure 3.4: Online execution of MPNet: (a) global planning to output a coarse path. (b-c)
a neural replanning step. (d) lazy states contraction (LSC) method to prune
redundant states. (e) output feasible path. 46

Figure 3.5: Time comparison of MPNetPath:NP (Red, tm) and RRT* (Blue, tr) for com-
puting the near-optimal paths in environments such as simple 2D (a-b),
complex 2D (c-d), complex 3D (e-f), and rigid-body-SE2 (g-h). 54

Figure 3.6: MPNetSMP generating informed samples for RRT* to plan motions in simple
2D (a-b), complex 2D (c-d) and complex 3D (e-h). The number of samples
and time required to compute the path are denoted by n and t, respectively. 55

Figure 3.7: Mean computation time (log-scale) comparisons of MPNetPath:NP, MPNetSMP-
RRT*, Informed-RRT* (IRRT*) and BIT* on seen-Xobs dataset. 56

vii

Figure 3.8: Mean computation time (log-scale) comparisons of MPNetPath:NP and
MPNetSMP (with underlying RRT*) against Informed-RRT* (IRRT*) and
BIT* on unseen-Xobs dataset. 57

Figure 3.9: The number of training paths required by MPNet when trained with active
continual learning and traditional learning. 57

Figure 3.10: MPNetPath:NP plans motion for a Baxter robot in ten challenging environ-
ments, out of which four are shown. The left- and right-most indicate robot’s
initial and goal configurations, respectively, and the blue duck shows the target. 58

Figure 3.11: MPNetPath plans motion to pick up the blue object (duck), and move it to a
new target (yellow block) (Frame 8). Note that the stopwatch indicates the
execution time not the planning time. 62

Figure 3.12: Computational time (log-scale) and path length comparison of MPNet and
BIT* over ten challenging environments with 7DOF Baxter manipulator. . 63

Figure 3.13: MPNet plans the motion of a rigid-body in SE(3) in a cluttered home-like
environment with multiple narrow passages for randomly selected start and
goal poses. 63

Figure 3.14: Impact of sample selection methods for episode memory on the performance
of continual learning for MPNet in simple 2D test datasets seen-Xobs and
unseen-Xobs. 65

Figure 3.15: MPC-MPNetPath In each iteration, the neural generator predicts a batch
of next states from a given current and select a collision-free state with a
minimum estimated cost for the tree expansion using MPC. 76

Figure 3.16: MPC-MPNetTree The neural generator predicts a batch of next states from
nearest neighbors of random states inside a search tree. The parallelized
MPC finds the local controllers between them. 76

Figure 3.17: We consider the following robotic systems, (a) Acrobot, (b) Cartpole, (c) Car,
and (d) Quadrotor, with complex dynamics for our cluttered, kinodynamically
constrained environments. 81

Figure 3.18: The interquartile ranges of computation times and path qualities (time-to-
reach the target) for MPC-MPNetPath, MPC-MPNetTree, and SST in Ac-
robot, Cart-pole, Car and Quadrotor environments. 84

Figure 3.19: Acrobot environment: The workspace (left) and state-space (right) trajecto-
ries are shown in each subfigure. In this example, the start state is [0,0,0,0],
and goal states are randomly distributed around the vertical configuration. . 85

Figure 3.20: Cart-Pole environment: The workspace (left) and state-space (right) trajecto-
ries are shown in each subfigure. 85

Figure 3.21: Car environment: MPC-MPNet and SST finding paths under kinodynamic
constraints for a non-holonomic system in an example environment with
multiple narrow passages. 86

Figure 3.22: Quadrotor environment: The problem requires finding a kinodynamically
constrained motion of a 12 DOF quadrotor in challenging environments. In
these scenarios, our methods were at least 50 times faster than SST. 87

viii

Figure 3.23: CoMPNetX generalized in sphere environment from (a) small cubical ob-
stacles’ geometry to (b) multiple longitudinal obstacle strips and planned
near-optimal paths in sub-second computational times. 89

Figure 3.24: (a) A chart Ci operators comprising exponential ψi and logrithmic ψ
−1
i

functions for mapping between the tangent space at qi and the manifold. (b)
The parameters defining the chart validity region. 96

Figure 3.25: The Neural Task Representations for CoMPNetX are obtained by exploiting
a learning-based task programmer’s internal state Zd and program arguments a.102

Figure 3.26: CoMPNetX execution traces for the constrained door opening subtask. Our
method comprises a conditional neural generator and discriminator and a
planning algorithm. 104

Figure 3.27: K-Batch CoMPNetX: The process shows COMPNetX exploiting neural
networks parallelization to generate K = 2 informed manifold configurations
from randomly selected nodes in the tree towards the goal configuration(s). 105

Figure 3.28: Bidirectional CoMPNetX: (a)-(c) show the CoMPNetX bidirectional sample
generation, soliciting neural informed-trees from start and goal to quickly
march towards each. 105

Figure 3.29: Sphere Environment (Scenario 1): The paths found by CoMPNetX-FMT*
(red), FMT* (yellow) and RRTConnect (blue) with atlas operator in three
example scenes. 117

Figure 3.30: Sphere Environment: CoMPNetX stochastically generates samples in the
subset that potentially contains a path solution. It contrasts with traditional
approaches that randomly explore the entire space. 118

Figure 3.31: Bartender setup (SC1): Figs. (a-c) show CoMPNetX motion sequences of
moving juice can, soda can, and kettle to their targets in three different test
cases. 119

Figure 3.32: Kitchen setup: Figs. (a-c) show instances of CoMPNetX planned motions
for the juice can, red mug, and pitcher under constraints in three different
test scenarios. 120

Figure 3.33: The boxplots show the total computation times of CoMPNetX-RRTConnect
and RRTConnect with atlas, tangent-bundle, and projection-based constraint
operators in the bartender and kitchen environments. 121

Figure 3.34: A mutual symbiotic operation of a learning-based task programmer and
CoMPNetX in the Bartender scenario 2. The numbers in small boxes indicate
the order in which the procedures are executed. 126

Figure 3.35: CoMPNetX generating motion sequences to swap red mug and kettle in the
Bartender scenario 3. The task programmer follows the indicated program
hierarchy. 127

Figure 4.1: Policy ensemble composition model that takes the state information st and a
set of primitive policies’ output {âi}N

i=0 to compute a composite action at . . 135

ix

Figure 4.2: Benchmark control and manipulation tasks requiring an agent to reach or
move the object to the given targets (shown in red for pusher and green for
rest). 142

Figure 4.3: Comparison results of our composition method against standard RL methods
averaged over ten trials. The axes represents the distance of the agent/object
from the target and environment steps in millions. 143

Figure 4.4: Comparison of composition model trained with HIRO and three variants
of standard HIRO. The pretrained HIRO undergoes extra 4 million training
steps. The standard- and low-torque-Ant has 150 and 30 units torque limit. 144

Figure 4.5: Ablative Study: Performance comparison, averaged over ten trials, of our
composite model and its ablated variations that lack attention model, bidirectional-
RNN (BRNN) or both attention and BRNN (AttBRNN). 145

Figure 4.6: The attention weights: The blue and yellow colors show low and high values,
respectively . 145

Figure 4.7: Each path corresponds to its adjacent attention weight mapping. The weight-
ing “strength” of each primitive policy is depicted for each step (i.e. up (U),
down (D), left (L), and right (R)). 145

Figure 4.8: The depiction of attention weights for the halfcheetah-hurdle environment.
The weighting “strength” of each primitive policy (i.e., run and jump) for
each step is shown. 146

Figure 4.9: The depiction of attention weights for the pusher environment. The weighting
“strength” of each primitive policy (i.e., Bottom and Left) for each step is
shown. 147

Figure 4.10: The depiction of attention weights for the cross-maze environment. The
weighting “strength” of each primitive policy (i.e., up (U), down (D), left (L),
and right (R)) for each step is shown. 148

Figure 4.11: Missing skill. The composite model with a primitive policy for moving right
and a trainable policy function. The composition framework trained the new
function to move in the upward direction to reach the given goal. 149

Figure 5.1: NeRP finds a sequence of pick and place operations to rearrange unknown
objects to their target arrangement (shown in the top left), choosing both
which object to manipulate and where to place it. 157

Figure 5.2: NeRP’s model architecture overview. It comprises scene graph generation
and encoding. The encoding is used to select objects and compute their
relative translations for rearrangement planning tasks. 160

Figure 5.3: Examples of generated data. Objects are randomly placed on the table, and
we chose different random motions as well. 165

Figure 5.4: An example plan rollout showing how NeRP chose to move objects around
in order to get between two goal states with very different arrangements of
obstacles. In this case, it took 10 steps to get to the goal state. 167

x

Figure 5.5: Example of a planning sequence. The robot repeatedly selects which object
to move and either moves it to the appropriate goal position or to a storage
position to enable future execution. 170

Figure 5.6: Swapping an unseen mug and bowl using NeRP: For the given X(Start) and
X(End) arrangements, NeRP selects an object in the given scenarios (e.g., 1,
3 & 5) and predicts its next placement with a cost map cmap (e.g., 2, 4 & 6). 172

xi

LIST OF TABLES

Table 2.1: The evaluation of reward learning on transfer learning tasks. Mean scores
(higher the better) with standard deviation are presented over 5 trials. 20

Table 2.2: The evaluation of imitation learning on benchmark control tasks. Mean scores
(higher the better) with standard deviation are presented over 5 trials for each
method. 22

Table 3.1: Mean computation times with standard deviations are presented for MPNet
(M) (all variations), Informed-RRT* and BIT* on two test datasets, i.e., seen
and unseen (shown inside brackets), in four different environments. 56

Table 3.2: Success rates of all MPNet variants in the four environments on both test
datasets, seen and unseen (shown inside brackets). 56

Table 3.3: Computation time, path cost, and success rate comparison of MPNetPath:NP,
and BIT* on Baxter test dataset. BIT*’s times for finding the first path and
further optimizing it within 40% range of MPNet’s path cost are reported. . 62

Table 3.4: The total mean computation times with standard deviations in seen test envi-
ronments are presented for MPC-MPNetPath (MP-Path), MPC-MPNetTree
(MP-Tree), and SST in various kinodynamic planning problems. 81

Table 3.5: The total mean computation times with standard deviations in unseen test en-
vironments are presented for MPC-MPNetPath (MP-Path), MPC-MPNetTree
(MP-Tree), and SST in various kinodynamic planning problems. 82

Table 3.6: Ablation Study: The total mean computation time with and with out neural
discriminator is shown for MPC-MPNetPath, where the path quality, measured
by the time-to-reach, is presented in parentheses. 86

Table 3.7: The total mean success rates with standard deviations, over five trials, of
CoMPNetX-RRTConnect and traditional RRTConnect for solving all manipu-
lation problems in the bartender and kitchen environments. 123

Table 3.8: The computation time comparison of CoMPNetX-RRTConnect and RRTCon-
nect in solving manipulation problems for individual objects. The objects are
denoted by their first letter and grouped by their constraints. 123

Table 3.9: The total mean computation times with standard deviations and mean suc-
cess rates are presented for various sampling approaches with an underlying
RRTConnect and atlas-based integrator. 123

Table 3.10: The total computation times and mean success rates for CoMPNetX, solving
both unconstrained and constrained problems with underlying MPNet and
RRTConnect algorithms, respectively, in the Bartender scenarios 2 and 3. . . 126

Table 4.1: Performance comparison of presented composition model against SAC [HZAL18],
TRPO [SLA+15], and PPO [SWD+17] on benchmark control tasks in terms
of normalized distance (lower the better) of an agent from the given target. . 143

Table 4.2: Hyperparameters . 152
Table 4.3: Network Architectures.The right most column shows the hidden units per layer.153

xii

Table 5.1: Comparison between NeRP and several classical baselines. NeRP produces
shorter, more accurate plans than baseline methods. 169

Table 5.2: Generalization of NeRP to different number of objects. Note that NeRP is
trained on random rearrangements of 5 objects. 171

Table 5.3: Analysis of the effects of ablation of various components of the network.
Removing stochasticity, the object selection network or the goal selection
network has a significant negative effect on performance. 171

xiii

ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Prof. Michael Yip, for his expert mentoring and

continuous support throughout our association. He has been an immense source of motivation,

and I learned a great deal from him; which includes the technical, professional, and social skills

required to progress in the world of academia.

I would also like to thank my committee members Prof. Henrik Christensen, Prof. Sonia

Martinez, Prof. Vikash Gilja, and Prof. Nuno Vasconcelos for their support and for always taking

out time for me from their busy schedules.

Furthermore, I offer my acknowledgement and thanks to Prof. Byron Boots for his

profound guidance and technical support. He is also a co-author in two of my papers. I would

also like to express my deepest gratitude to Dr. Arsalan Mousavian, Dr. Chris Paxton, and Prof.

Dieter Fox. They are co-authors in one of my papers, and I thank them for their involvement

and assistance during every step of the way while I conducted research in their robotics research

group at NVIDIA. I would also like to acknowledge and thank Prof. Dmitry Berenson for his time

and insightful discussion over the kinematic constraints in motion planning and their practical

applications.

Moreover, I would also like to extend my gratitude to all the members of ARCLab, espe-

cially Dr. Ryan Orosco, Fei Liu, Nikhil Das, Florian Richter, Dimitri Schreiber, Jacob Johnson,

Yuheng Zhi, Zih-Yun Chiu, Jingpei Lu, Nikhil Shinde, Jiangeng Dong, Linjun Li, Yinglong Miao,

Asfiya Baig, Mrinal Verghese, Anthony Simeonov, Mayur Bency, Taylor Henderson, Harleen

Singh, Yuzhe Qin, and Ojash Neopane, for their valuable company and support. I am also

thankful to my colleagues and friends at Contextual Robotics Institute and UCSD, especially

Maryam Pourabedi, Anwesan Pal, Carlos Nieto, Ehsan Ziaeikajbaf, Priyam Parashar, Ruffin

White, Shengye Wang, Vikas Dhiman, Angelique Taylor, and Maria Harris, for their helpfulness.

Lastly, I am thankful to all members of the ECE student support office for aiding me in

navigating through the administrative requirements of my degree.

xiv

This dissertation, in part, is a reprint of this dissertation author’s publications. Chapter 1

and 6, in part, are reprint of dissertation author’s publications.

Chapter 2, in part, is a reprint of A.H.Qureshi, B. Boots, and M.C.Yip,“Adversarial

Imitation Via Variational Inverse Reinforcement Learning”, International Conference on Repre-

sentation Learning (ICLR), 2019. The dissertation author is the primary author of this paper.

Chapter 3.1, in part, is a reprint of the following papers. The dissertation author is the

primary author of these papers.

• A.H.Qureshi, Y.Miao, A.Simeonov, and M.C.Yip,“Motion Planning Networks: Bridging

the Gap Between Learning-based and Classical Motion Planners”, IEEE Transactions on

Robotics, vol. 37, no. 1, pp. 48-66, 2021.

• A.H.Qureshi, A.Simeonov, M.J.Bency, and M.C.Yip, “Motion Planning Networks”, IEEE

International Conference on Robotics and Automation (ICRA), pp. 2118-2124, Montreal,

Canada, 2019.

• A.H.Qureshi and Michael.C.Yip, “Deeply Informed Neural Sampling For Robot Motion

Planning”, IEEE International Conference on Intelligent Robot and Systems (IROS), pp.

6582-6588, 2018.

Chapter 3.2, in part, is a reprint of L. Li, Y. Miao, A. H. Qureshi and M. C. Yip,“MPC-

MPNet: Model-Predictive Motion Planning Networks for Fast, Near-Optimal Planning Under

Kinodynamic Constraints”, IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4496-4503,

July 2021, doi: 10.1109/LRA.2021.3067847. The dissertation author is the co-author of this

paper.

Chapter 3.3, in part, is a reprint of the following papers. The dissertation author is the

primary author of these papers.

• A.H.Qureshi, J.Dong, A.Baig, and M.C.Yip,“Constrained Motion Planning Networks X”,

IEEE Transactions on Robotics, 2021.

xv

• A.H.Qureshi, J.Dong, A.Choe, and M.C.Yip, “Neural Manipulation Planning on the

Constraint Manifolds”, IEEE Robotics and Automation Letters, 2020.

Chapter 4, in part, is a reprint of A.H.Qureshi, J. J. Johnson, Y. Qin, T. West, B. Boots, and

M.C.Yip. “Composing Task-Agnostic Policies via Deep Reinforcement Learning”, International

Conference on Representation Learning (ICLR), 2020. The dissertation author is the primary

author of this paper.

Chapter 5, in part, is a reprint of A.H.Qureshi, A.Mousavian, C.Paxton, M.C.Yip, and

D.Fox, “NeRP: Neural Rearrangement Planning for Unknown Objects”, Robotics: Science and

Systems 2021. The dissertation author is the primary author of this paper.

xvi

VITA

2010-2014 B. S. in Electrical Engineering, National University of Sciences and Tech-
nology, Pakistan.

2015-2017 M. S. in Engineering, Osaka University, Japan.

2017-2021 Ph. D. in Electrical Engineering (Intelligent Systems, Robotics and Con-
trol), University of California San Diego, USA.

PUBLICATIONS

A.H.Qureshi, J.Dong, A.Baig, and M.C.Yip, “Constrained Motion Planning Networks X”, IEEE
Transactions on Robotics, 2021.

A.H.Qureshi, A.Mousavian, C.Paxton, M.C.Yip, and D.Fox, “NeRP: Neural Rearrangement
Planning for Unknown Objects”, Robotics: Science and Systems, 2021.

L.Li, Y.Miao, A.H.Qureshi, and M.C.Yip, “MPC-MPNet: Model-Predictive Motion Planning
Networks for Fast, Near-Optimal Planning under Kinodynamic Constraints”, IEEE Robotics and
Automation Letters, 2021.

A.H.Qureshi, J.Dong, A.Choe, and M.C.Yip, “Neural Manipulation Planning on the Constraint
Manifolds”, IEEE Robotics and Automation Letters, 2020.

A.H.Qureshi, Y.Miao, A.Simeonov, and M.C.Yip, “Motion Planning Networks: Bridging the
Gap Between Learning-based and Classical Motion Planners”, IEEE Transactions on Robotics,
2020.

J.Johnson, L.Li, F.Liu, A.H.Qureshi, and M.C.Yip, “Dynamically Constrained Motion Planning
Networks for Non-Holonomic Robots”, IEEE International Conference on Intelligent Robot and
Systems (IROS), pp. 6937-6943, Las Vegas, USA (Virtual) 2020.

A.H.Qureshi, J. J. Johnson, Y. Qin, T. West, B. Boots, and M.C.Yip, “Composing Task-Agnostic
Policies with Deep Reinforcement Learning”, International Conference on Representation Learn-
ing (ICLR), 2020.

A.H.Qureshi, B. Boots, and M.C.Yip, “Adversarial Imitation Via Variational Inverse Reinforce-
ment Learning”, International Conference on Representation Learning (ICLR), 2019.

M.C.Yip, M.J.Bency, A.H.Qureshi, “Machine Learning based Fixed-Time Optimal Path Genera-
tion”, US Patent App. 16/222,706, 2019.

A.H.Qureshi, A.Simeonov, M.J.Bency, and M.C.Yip, “Motion Planning Networks”, IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 2118-2124, Montreal, Canada,
2019.

xvii

M.J.Bency, A.H.Qureshi, M.C.Yip. “Neural Path Planning: Fixed Time, Near-Optimal Path
Generation via Oracle Imitation”, IEEE International Conference on Intelligent Robot and
Systems (IROS), pp. 3965-3972, Macau, 2019.

A.H.Qureshi and Michael.C.Yip, “Deeply Informed Neural Sampling For Robot Motion Plan-
ning”, IEEE International Conference on Intelligent Robot and Systems (IROS), pp. 6582-6588,
2018.

xviii

ABSTRACT OF THE DISSERTATION

Differentiable Neural Motion Planning under Task Constraints

by

Ahmed H. Qureshi

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics and Control)

University of California San Diego, 2021

Professor Michael C. Yip, Chair

Autonomous robots will soon play a significant role in various domains, such as search-

and-rescue, agriculture farms, homes, offices, transportation, and medical surgery, where fast,

safe, and optimal response to different situations will be critical. However, to do so, these robots

need fast algorithms to plan their motion sequences in real-time with limited perception and

battery life. The field of motion planning and control addresses this challenge of coordinating

robot motions and enabling them to interact with their environments for performing various

challenging tasks under constraints.

Planning algorithms for robot control have a long history ranging from methods with

complete to probabilistically complete worst-case theoretical guarantees. However, despite

xix

having deep roots in artificial intelligence and robotics, these methods tend to be computationally

inefficient in high-dimensional problems. On the other hand, machine learning advancements

have led toward systems that can directly perform complex decision-making from raw sensory

information. This thesis introduces a new class of planning methods called Neural Motion

Planners that emerged from the cross-fertilization of classical motion planning and machine

learning techniques. These methods can achieve unprecedented speed and robustness in planning

robot motion sequences in complex, cluttered, and partially observable environments. They

exhibit worst-case theoretical guarantees and solve a broad range of motion planning problems

under geometric collision-avoidance, kinodynamic, non-holonomic, and hard kinematic manifold

constraints.

Another challenge towards deploying robots into our natural world is the tedious process

of defining objective functions for underlying motion planners and transferring and composing

their motion skills into new skills for a combinatorial outburst in robot’s skillset for solving

unseen practical problems. To address these challenges, this thesis introduces novel methods, i.e.,

variational inverse reinforcement learning and compositional reinforcement learning approaches.

These methods learn unknown constraint functions and their motion skills directly from expert

demonstrations for NMPs and compose them into new complex skills for solving more compli-

cated problems across different domains. Finally, this thesis also presents a model-free neural

task planning algorithm that works with never-before-seen objects and generalizes to real world

environments. It generates task plans for underlying motion planning and control approaches and

solves challenging rearrangement tasks in unknown environments.

xx

Chapter 1

Introduction

As an infant over time, their surrounding environments demonstrate them a variety of

concepts. For example, they observe people walking, talking, eating, and doing other social inter-

actions within their surroundings. These abstract concepts are translated into various behavioral

skills such as they learn to sit, crawl, stand, and walk.These skills are then transferred to new

domains such as crawling over flat ground to crawling upstairs and composed together into more

complex behaviors such as running, rock climbing, cycling, etc. In all such scenarios, our brain

also layouts a task plan and decomposes a given high-level objective into sub-goals and achieves

them by using over-the-time acquired skills.

Environment

Behaviors

ConceptsSkillset

Reward Learning

Skill LearningAggregation

Composition

Figure 1.1: A development process includes understanding demonstrated concepts and learning
corresponding skills, and composing them into new skills for new tasks.

Inspired from our cognitive and motor skill development process, this dissertation in-

troduces novel deep learning-based algorithms to enable robots to acquire their motion skills

1

from demonstrated concepts, and compose them together into complex, new skills (Fig. 1.1).

It also highlights that our learning-based algorithms naturally form a mutualistic relationship

with existing task planning methods that breaks a high-level task into a sequence of subtasks.

In addition, this dissertation also introduces a novel model-free neural task planner that can

find multi-step, long-horizon, intermediate sub-task sequences from high-dimensional sensory

information.

π0 π1 π2 πN

C0 C1 C2 CN

Policy Ensemble
Composition

Task Planning

Motion Policies

Cost functions

Figure 1.2: This dissertation follows a bottom-up approach from learning concepts (e.g., task
constraints or cost functions) and their behavioral skills to composing them into new skills under
a high-level task planner.

During execution, a task planner observes a high-level task and decomposes it into a

sequence of sub-tasks. The composition framework observes a given sub-task and achieves it by

composing available motion skills. These motion skills and their objective functions are learned

from behaviors demonstrated by an expert. This dissertation follows a bottom-up approach (Fig.

1.2):

• First, it introduces a novel technique to learn an optimizable objective function from

demonstrations, encapsulating concepts and task constraints.

• Second, given an optimizable objective function, it presents a new class of motion planning

2

methods called neural motion planners that operate efficiently under various task constraints.

• Third, it offers a novel composition framework that can transfer given motion skills to new

domains and combine them sequentially and concurrently to accomplish a given task.

• Fourth, it introduces a novel task planner to predict multi-step intermediate task sequences

from raw sensory information to solve rearrangement planning problems in real-world

environments.

1.1 Task Constraints Learning

Reinforcement learning (RL) has emerged as a promising tool for solving complex

decision-making and control tasks from predefined high-level reward functions [SB+98]. How-

ever, defining an optimizable reward function that inculcates the desired behavior can be

challenging for many robotic applications, which include learning social-interaction skills

[QNYI18, QNYI17], dexterous manipulation [FLA16], and autonomous driving [KGB15].

Inverse reinforcement learning (IRL) [NR+00] addresses the problem of learning con-

straint functions, also known as cost or reward functions, from expert demonstrations, and it is

often considered as a branch of imitation learning [ACVB09]. The prior work in IRL includes

maximum-margin [AN04, RBZ06] and maximum-entropy [ZMBD08] formulations. Currently,

maximum entropy (MaxEnt) IRL is a widely used approach towards IRL, and has been extended

to use non-linear function approximators such as neural networks in scenarios with unknown

dynamics by leveraging sampling-based techniques [BKP11, FLA16, KPRS13]. However, de-

signing the IRL algorithm is usually complicated as it requires, to some extent, hand engineering

such as deciding domain-specific regularizers [FLA16].

Chapter 2 of this dissertation presents a novel IRL approach known as Empowerment-

regularized Adversarial Inverse Reinforcement Learning (EAIRL) [QBY19]. EAIRL learns

both reward and policy functions directly from expert demonstrations. The recovered rewards,

3

encapsulating task constraints, are shown to be near-optimal and transferable to new environments

with different structures and agent dynamics.

1.2 Motion Planning

Motion planning is among the core research problems in robotics and artificial intelligence

with its application spanning from autonomous driving to space exploration. It aims to find a

collision-free, low-cost path connecting a start and goal states for an agent under task constraints

[LaV06] [Lat12]. These task constraints forms an abstract space within robot state-space that

comprises a forbidden space and a feasible space (Fig. 1.3). An ideal motion planning algorithm

finds a global solution in the feasible space for solving given problems and offers following key

features: (i) completeness and optimality guarantees - implying that a solution will be found

if one exists and that the solution will be globally optimal satisfying all given constraints, (ii)

computational efficiency - finding a solution in either real-time or in sub-second times or better

while being memory efficient, and (iii) insensitivity to environment complexity - the algorithm

is effective and efficient in finding solutions regardless of the constraints of the environment.

Decades of research have produced many significant milestones for motion planning include

resolution-complete planners such artificial potential fields [Kha86], sample-based motion plan-

ners such as Rapidly-Exploring Random Trees (RRT) [LaV06] and its optimal variant RRT*

[KF11], heuristically biased solvers such as [GSB15] and lazy search methods [HMP+18]. How-

ever, each planner and their variants have tradeoffs amongst the ideal features of motion planners

and often consider simple collision avoidance constraints. Thus, no single motion planner has

emerged above all others to solve a broad range of problems.

Chapter 3 of this dissertation presents a new class of motion planning methods called

Neural Motion Planners (NMPs) [QSBY19, QY18, QMSY20, QDCY20, QDBY21, LMQY21]

with all key features of an ideal planner. NMPs bridge the gap between machine learning and

4

Figure 1.3: An abstract feasible and forbidden space within robot state space formed by the task
constraints. A motion planner determines a path in the feasible space that connects the given
start and goal.

classical motion planning, leveraging advancement in the latter and the algorithm structures in

the former field to present methods that solve various problems under all sort of task constraints

at nearly real-time speed. These methods are shown to learn with high data efficiency from

streaming data, under a life-long learning setting, and solve a wide range of practical robot motion

planning problems in seconds where other traditional methods take up to several minutes.

1.3 Composition

Compositionality is the integration of primitive functions into new complex functions that

can further be composed into even more complex functions to solve novel problems [KLP17].

Evidence from neuroscience and behavioral biology research shows that humans and animals have

the innate ability to transfer their basic skills to new domains and compose them hierarchically into

complex behaviors [RFG01]. For instance, studies on the kicking motion of frogs in water and

the flapping motion of birds in flight revealed the composition of multiple muscle units to achieve

the overall complex behavior [MIB00]. In robotics and general-purpose artificial intelligence,

compositionality corresponds to the combinations of different motion policies/controllers, visual

representations or language models [LUTG17]. In robotics, the primary focus is on acquiring

5

new behaviors rather than composing and re-using the already acquired skills to solve novel,

unseen tasks [LUTG17].

Most real-world robotics control problems can efficiently be solved if there exists a

composition method that can compose primitive behaviors into complex behaviors. For instance,

instead of learning a single policy for robot locomotion, a neurologically motivated and simplistic

approach could be to acquire basic skills such as moving left, right, up, and down, and compose

those skills to solve complex locomotion tasks such as reaching a particular location. Similarly,

in the case of autonomous driving, the low-level policies could also include operations such as

braking, acceleration, obstacle avoidance, over-taking, etc. However, a fundamental problem

that emerges after basic skills acquisition is to build a system that can compose such skills to

achieve any given objective. Chapter 4 of this dissertation presents a novel deep reinforcement

learning-based approach [QJQ+20] for composing various, task-agnostic motion policies into

complex skills for solving new tasks.

1.4 Task Planning

Task planning is a crucial component in robotics, especially in unstructured environments

where robots would have to perform various intermediate tasks before achieving a given abstract

goal. For instance, our cognitive process decomposes a given task (e.g., cleaning) into subtasks

(e.g., moving objects to their designated places). It accomplishes them sequentially or concurrently

by sending motor commands to the body for physical interaction with the environment under

the task-specific constraints [CS00, ZSS+07]. In robotics, decomposing a high-level task, e.g.,

cleaning, into a sequence of sub-tasks, e.g., opening the cabinet, moving objects into the cabinet,

and closing the cabinet, is known as Task Planning. Formally, a task planner decomposes a given

task into a sequence of sub-tasks, and a motion planner achieves those sub-tasks by planning

feasible robot motion sequences. This dissertation shows that the NMPs form a mutual symbiotic

6

relationship with existing learning-based task planners. The learning-based task planners generate

intermediate task sequences and task representations for NMPs. NMPs directly leverage those

representations to quickly solve corresponding intermediate tasks, leading to a next environment

observation for the task planners.

A subset problem of task planning known as the rearrangement of unknown objects

has recently been identified as a major challenge problem for embodied AI, especially robotics

[BCC+20]. Since many real-world robotic tasks boil down to pick-and-place, but with a much

wider diversity of objects and scenarios than we typically see in the lab. Robots may also

encounter cluttered scenes and blocked goals, cases where typically we might need to perform

much longer horizon planning to clear objects and move things out of the way. Chapter 5 of this

dissertation addresses this challenge by introducing a new rearrangement task planner [AQF21]

that, unlike prior work, operates directly in high-dimensional spaces and solves long-horizon

rearrangement problems in never-seen-before, partially observable environments.

1.5 Acknowledgements

Chapter 1, in part, is a reprint of the following publications:

• A.H.Qureshi, B. Boots, and M.C.Yip,“Adversarial Imitation Via Variational Inverse Rein-

forcement Learning”, International Conference on Representation Learning (ICLR), 2019.

The dissertation author is the primary author of this paper.

• A.H.Qureshi, Y.Miao, A.Simeonov, and M.C.Yip,“Motion Planning Networks: Bridging

the Gap Between Learning-based and Classical Motion Planners”, IEEE Transactions on

Robotics, vol. 37, no. 1, pp. 48-66, Feb. 2021, doi: 10.1109/TRO.2020.3006716. The

dissertation author is the main of this paper.

• A.H.Qureshi, A.Simeonov, M.J.Bency, and M.C.Yip, “Motion Planning Networks”, IEEE

7

International Conference on Robotics and Automation (ICRA), pp. 2118-2124, Montreal,

Canada, 2019. The dissertation author is the primary author of this paper.

• A.H.Qureshi and Michael.C.Yip, “Deeply Informed Neural Sampling For Robot Motion

Planning”, IEEE International Conference on Intelligent Robot and Systems (IROS), pp.

6582-6588, 2018. The dissertation author is the primary author of this paper.

• L. Li, Y. Miao, A. H. Qureshi and M. C. Yip,“MPC-MPNet: Model-Predictive Motion

Planning Networks for Fast, Near-Optimal Planning Under Kinodynamic Constraints”,

IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4496-4503, July 2021, doi:

10.1109/LRA.2021.3067847. The dissertation author is the co-author of this paper.

• A.H.Qureshi, J.Dong, A.Baig, and M.C.Yip,“Constrained Motion Planning Networks X”,

IEEE Transactions on Robotics, 2021. The dissertation author is the primary author of this

paper.

• A.H.Qureshi, J.Dong, A.Choe, and M.C.Yip, “Neural Manipulation Planning on the

Constraint Manifolds”, IEEE Robotics and Automation Letters, 2020. The dissertation

author is the primary author of this paper.

• A.H.Qureshi, J. J. Johnson, Y. Qin, T. West, B. Boots, and M.C.Yip. “Composing Task-

Agnostic Policies via Deep Reinforcement Learning”, International Conference on Rep-

resentation Learning (ICLR), 2020. The dissertation author is the primary author of this

paper.

A.H.Qureshi, A.Mousavian, C.Paxton, M.C.Yip, and D.Fox, “NeRP: Neural Rearrange-

ment Planning for Unknown Objects”, Robotics: Science and Systems 2021. The disserta-

tion author is the primary author of this paper.

8

Chapter 2

Task Constraints Learning

Constraint or reward learning is challenging as there can be many optimal policies

explaining a set of demonstrations and many reward functions inducing an optimal policy [NR+00,

ZMBD08]. Rather than learning reward functions and solving the IRL problem, imitation learning

(IL) learns a policy directly from expert demonstrations. Prior work addressed the IL problem

through behavior cloning (BC), which learns a policy from expert trajectories using supervised

learning [Pom91]. Although BC methods are simple solutions to IL, these methods require

a large amount of data because of compounding errors induced by covariate shift [RGB11].

To overcome BC limitations, a generative adversarial imitation learning (GAIL) algorithm

[HE16] was proposed. GAIL uses the formulation of Generative Adversarial Networks (GANs)

[GPAM+14], i.e., a generator-discriminator framework, where a generator is trained to generate

expert-like trajectories while a discriminator is trained to distinguish between generated and

expert trajectories. Although GAIL is highly effective and efficient framework, it does not

recover transferable/portable reward functions along with the policies, thus narrowing its use

cases to similar problem instances in similar environments. Reward function learning is ultimately

preferable, if possible, over direct imitation learning as rewards are portable functions that

represent the most basic and complete representation of agent intention, and can be re-optimized

9

in new environments and new agents.

Recently, an Adversarial Inverse Reinforcement Learning (AIRL) framework [FLL17],

an extension of GAIL, was proposed that offers a solution to transferable reward learning by

exploiting the maximum entropy Inverse Reinforcement Learning (IRL) method [ZMBD08].

However, it learns transferable reward functions by modeling the reward as a function of state only

instead of both state and action. This makes AIRL fail to recover the ground truth reward when

the ground truth reward is a function of both state and action. For example, the reward function in

any locomotion or ambulation tasks contains a penalty term that discourages actions with large

magnitudes. This need for action regularization is well known in optimal control literature and

limits the use cases of a state-only reward function in most practical real-life applications. A

more generalizable and useful approach would be to formulate reward as a function of both states

and actions, which induces action-driven reward shaping that has been shown to play a vital role

in quickly recovering the optimal policies [NHR99].

In this work, we discuss our Variational IRL approach, i.e., Empowerment-regularized

Adversarial Inverse Reinforcement Learning (EAIRL) algorithm1 [QBY19]. Empowerment

[SGP14] is a mutual information-based theoretic measure, like state- or action-value functions,

that assigns a value to a given state to quantify the extent to which an agent can influence its envi-

ronment. Our method uses variational information maximization [MR15] to learn empowerment

in parallel to learning the reward and policy from expert data. Empowerment acts as a regularizer

to policy updates to prevent overfitting the expert demonstrations, which in practice leads to

learning robust rewards. Our experimentation shows that the proposed method recovers not

only near-optimal policies but also recovers robust, transferable, disentangled, state-action based

reward functions that are near-optimal. The results on reward learning also show that EAIRL

outperforms several state-of-the-art IRL methods by recovering reward functions that leads to

optimal, expert-matching behaviors. On policy learning, results demonstrate that policies learned

1Supplementary material is available at https://sites.google.com/view/eairl

10

https://sites.google.com/view/eairl

through EAIRL perform comparably to GAIL and AIRL with non-disentangled (state-action)

reward function but significantly outperform policies learned through AIRL with disentangled

reward (state-only) and GAN interpretation of Guided Cost Learning (GAN-GCL) [FCAL16].

2.1 Preliminaries

We consider a Markov decision process (MDP) represented as a tuple (S ,A ,P ,R ,ρ0,γ)

where S denotes the state-space, A denotes the action-space, P represents the transition probability

distribution, i.e., P : S ×A ×S → [0,1], R (s,a) corresponds to the reward function, ρ0 is the

initial state distribution ρ0 : S → R, and γ ∈ (0,1) is the discount factor. Let q(a|s,s′) be an

inverse model that maps current state s ∈ S and next state s′ ∈ S to a distribution over actions A ,

i.e., q : S×S×A→ [0,1]. Let π be a stochastic policy that takes a state and outputs a distribution

over actions such that π : S ×A → [0,1]. Let τ and τE denote a set of trajectories, a sequence of

state-action pairs (s0,a0, · · ·sT ,aT), generated by a policy π and an expert policy πE , respectively,

where T denotes the terminal time. Finally, let Φ(s) be a potential function that quantifies a utility

of a given state s ∈ S , i.e., Φ : S → R. In our proposed work, we use an empowerment-based

potential function Φ(·) to regularize policy update under MaxEnt-IRL framework. Therefore, the

following sections provide a brief background on MaxEnt-IRL, adversarial reward and policy

learning, and variational information-maximization approach to learn the empowerment.

MaxEnt-IRL

MaxEnt-IRL [ZMBD08] models expert demonstrations as Boltzmann distribution using

parametrized reward rξ(τ) as an energy function, i.e.,

pξ(τ) =
1

Z
exp(rξ(τ)) (2.1)

11

where rξ(τ) = ∑
T
t=0 rξ(st ,at) is a commutative reward over given trajectory τ, parameterized by

ξ, and Z is the partition function. In this framework, the demonstration trajectories are assumed

to be sampled from an optimal policy π∗, therefore, they get the highest likelihood whereas the

suboptimal trajectories are less rewarding and hence, are generated with exponentially decaying

probability. The main computational challenge in MaxEnt-IRL is to determine Z. The initial

work in MaxEnt-IRL computed Z using dynamic programming [ZMBD08] whereas modern

approaches [FLA16, FCAL16, FLL17] present importance sampling technique to approximate Z

under unknown dynamics.

Adversarial Inverse Reinforcement Learning

This section briefly describes Adversarial Inverse Reinforcement Learning (AIRL) [FLL17]

algorithm which forms a baseline of our proposed method. AIRL is the current state-of-the-art

IRL method that builds on GAIL [HE16], maximum entropy IRL framework [ZMBD08] and

GAN-GCL, a GAN interpretation of Guided Cost Learning [FLA16, FCAL16].

GAIL is a model-free adversarial learning framework, inspired from GANs [GPAM+14],

where the policy π learns to imitate the expert policy behavior πE by minimizing the Jensen-

Shannon divergence between the state-action distributions generated by π and the expert state-

action distribution by πE through following objective

min
π

max
D∈(0,1)S×A

Eπ[logD(s,a)]+EπE [log(1−D(s,a))]−λH(π) (2.2)

where D is the discriminator that performs the binary classification to distinguish between

samples generated by π and πE , λ is a hyper-parameter, and H(π) is an entropy regularization

term Eπ[logπ]. Note that GAIL does not recover reward; however, [FCAL16] shows that the

discriminator can be modeled as a reward function. Thus AIRL [FLL17] presents a formal

implementation of [FCAL16] and extends GAIL to recover reward along with the policy by

12

imposing a following structure on the discriminator:

Dξ,ϕ(s,a,s
′) =

exp[fξ,ϕ(s,a,s′)]

exp[fξ,ϕ(s,a,s′)]+π(a|s)
(2.3)

where fξ,ϕ(s,a,s′) = rξ(s)+ γhϕ(s′)− hϕ(s) comprises a disentangled reward term rξ(s) with

training parameters ξ, and a shaping term F = γhϕ(s′)−hϕ(s) with training parameters ϕ. The

entire Dξ,ϕ(s,a,s′) is trained as a binary classifier to distinguish between expert demonstrations

τE and policy generated demonstrations τ. The policy is trained to maximize the discriminative

reward r̂(s,a,s′) = log(D(s,a,s′)− log(1−D(s,a,s′))). Note that the function F = γhϕ(s′)−

hϕ(s) consists of free-parameters as no structure is imposed on hϕ(·), and as mentioned in

[FLL17], the reward function rξ(·) and function F are tied upto a constant (γ−1)c, where c ∈ R;

thus the impact of F , the shaping term, on the recovered reward r is quite limited and therefore,

the benefits of reward shaping are not fully realized.

Empowerment as Maximal Mutual Information

Mutual information (MI), an information-theoretic measure, quantifies the dependency

between two random variables. In intrinsically-motivated reinforcement learning, a maximal

of mutual information between a sequence of K actions a and the final state s′ reached after

the execution of a, conditioned on current state s is often used as a measure of internal reward

[MR15], known as Empowerment Φ(s), i.e.,

Φ(s) = max I(a,s′|s) = maxEp(s′|a,s)w(a|s)

[
log
(p(a,s′|s)

w(a|s)p(s′|s)

)]
(2.4)

where p(s′|a,s) is a K-step transition probability, w(a|s) is a distribution over a, and p(a,s′|s) is

a joint-distribution of K actions a and final state s′2. Intuitively, the empowerment Φ(s) of a state

2In our proposed work, we consider only immediate step transitions i.e., K = 1, hence variables s,a and s′ will be
represented in non-bold notations.

13

s quantifies an extent to which an agent can influence its future. Thus, maximizing empowerment

induces an intrinsic motivation in the agent that enforces it to seek the states that have the highest

number of future reachable states.

Empowerment, like value functions, is a potential function that has been previously

used in reinforcement learning but its applications were limited to small-scale cases due to

computational intractability of MI maximization in higher-dimensional problems. Recently,

however, a scalable method [MR15] was proposed that learns the empowerment through the

more-efficient maximization of variational lower bound, which has been shown to be equivalent

to maximizing MI [Aga04]. The lower bound was derived (for complete derivation see Section

2.5) by representing MI in term of the difference in conditional entropies H(·) and utilizing the

non-negativity property of KL-divergence, i.e.,

Iw(s) = H(a|s)−H(a|s′,s)≥ H(a)+Ep(s′|a,s)wθ(a|s)[logqφ(a|s′,s)] = Iw,q(s) (2.5)

where H(a|s) =−Ew(a|s)[logw(a|s)], H(a|s′,s) =−Ep(s′|a,s)w(a|s)[log p(a|s′,s)], qφ(·) is a varia-

tional distribution with parameters φ and wθ(·) is a distribution over actions with parameters θ.

Finally, the lower bound in Eqn. 2.5 is maximized under the constraint H(a|s) < η (prevents

divergence, see [MR15]) to compute empowerment as follow:

Φ(s) = max
w,q

Ep(s′|a,s)w(a|s)[−
1

β
logwθ(a|s)+ logqφ(a|s′,s)] (2.6)

where β is η dependent temperature term.

[MR15] also applied the principles of Expectation-Maximization (EM) [Aga04] to learn

empowerment, i.e., alternatively maximizing Eqn. 2.6 with respect to wθ(a|s) and qφ(a|s′,s).

Given a set of training trajectories τ, the maximization of Eqn. 2.6 w.r.t qφ(·) is shown to be a

supervised maximum log-likelihood problem whereas the maximization w.r.t wθ(·) is determined

14

through the functional derivative ∂I/∂w = 0 under the constraint ∑a w(a|s) = 1. The optimal

w∗ that maximizes Eqn. 2.6 turns out to be
1

Z(s)
exp(βEp(s′|s,a)[logqφ(a|s,s′)]), where Z(s) is a

normalization term. Substituting w∗ in Eqn. 2.6 showed that the empowerment Φ(s) =
1

β
logZ(s)

(for full derivation, see Section 2.5).

Note that w∗(a|s) is implicitly unnormalized as there is no direct mechanism for sampling

actions or computing Z(s). [MR15] introduced an approximation w∗(a|s) ≈ logπ(a|s)+Φ(s)

where π(a|s) is a normalized distribution which leaves the scalar function Φ(s) to account

for the normalization term logZ(s). Finally, the parameters of policy π and scalar function

Φ are optimized by minimizing the discrepancy, lI(s,a,s′), between the two approximations

(logπ(a|s)+Φ(s)) and β logqφ(a|s′,s)) through either absolute (p = 1) or squared error (p = 2),

i.e.,

lI(s,a,s′) =
∣∣β logqφ(a|s′,s)− (logπθ(a|s)+Φϕ(s))

∣∣p (2.7)

2.2 Variational Inverse Reinforcement Learning

We present an inverse reinforcement learning algorithm that learns a robust, transferable

reward function and policy from expert demonstrations. Our proposed method comprises (i) an

inverse model qφ(a|s′,s) that takes the current state s and the next state s′ to output a distribution

over actions A that resulted in s to s′ transition, (ii) a reward rξ(s,a), with parameters ξ, that

is a function of both state and action, (iii) an empowerment-based potential function Φϕ(·)

with parameters ϕ that determines the reward-shaping function F = γΦϕ(s′)−Φϕ(s) and also

regularizes the policy update, and (iv) a policy model πθ(a|s) that outputs a distribution over

actions given the current state s. All these models are trained simultaneously based on the objective

functions described in the following sections to recover optimal policies and generalizable reward

functions concurrently.

15

Inverse model qφ(a|s,s′) optimization

As mentioned in Section 2.1, learning the inverse model qφ(a|s,s′) is a maximum log-

likelihood supervised learning problem. Therefore, given a set of trajectories τ ∼ π, where a

single trajectory is a sequence states and actions, i.e., τi = {s0,a0, · · · ,sT ,aT}i, the inverse model

qφ(a|s′,s) is trained to minimize the mean-square error between its predicted action q(a|s′,s) and

the action a taken according to the generated trajectory τ, i.e.,

lq(s,a,s′) = (qφ(·|s,s′)−a)2 (2.8)

Empowerment Φϕ(s) optimization

Empowerment will be expressed in terms of normalization function Z(s) of optimal

w∗(a|s), i.e., Φϕ(s) =
1

β
logZ(s). Therefore, the estimation of empowerment Φϕ(s) is approxi-

mated by minimizing the loss function lI(s,a,s′), presented in Eqn. 2.7, w.r.t parameters ϕ, and

the inputs (s,a,s′) are sampled from the policy-generated trajectories τ.

Reward function rξ(s,a)

To train the reward function, we first compute the discriminator as follow:

Dξ,ϕ(s,a,s
′) =

exp[rξ(s,a)+ γΦϕ′(s′)−Φϕ(s)]

exp[rξ(s,a)+ γΦϕ′(s′)−Φϕ(s)]+πθ(a|s)
(2.9)

where rξ(s,a) is the reward function to be learned with parameters ξ. We also maintain the target

ϕ′ and learning ϕ parameters of the empowerment-based potential function. The target parameters

ϕ′ are a replica of ϕ except that the target parameters ϕ′ are updated to learning parameters ϕ

after every n training epochs. Note that keeping a stationary target Φϕ′ stabilizes the learning as

also mentioned in [MKS+15]. Finally, the discriminator/reward function parameters ξ are trained

16

via binary logistic regression to discriminate between expert τE and generated τ trajectories, i.e.,

Eτ[logDξ,ϕ(s,a,s
′)]+EτE [(1− logDξ,ϕ(s,a,s

′))] (2.10)

Policy optimization policy πθ(a|s)

We train our policy πθ(a|s) to maximize the discriminative reward and to minimize the

loss function lI(s,a,s′) which accounts for empowerment regularization. Hence, the overall policy

training objective is:

Eτ[logπθ(a|s)r̂(s,a,s′)]+λIEτ

[
lI(s,a,s′)] (2.11)

where policy parameters θ are updated using any policy optimization method such as TRPO

[SLA+15] or an approximated step such as PPO [SWD+17].

Algorithm 1: Empowerment-based Adversarial Inverse Reinforcement Learning
Initialize parameters of policy πθ, and inverse model qφ

Initialize parameters of target Φϕ′ and training Φϕ empowerment, and reward rξ

functions
Obtain expert demonstrations τE by running expert policy πE
for i← 0 to N do

Collect trajectories τ by executing πθ

Update φi to φi+1 with the gradient Eτ[5φilq(s,a,s
′)]

Update ϕi to ϕi+1 with the gradient Eτ[5ϕilI(s,a,s
′)]

Update ξi to ξi+1 with the gradient:

Eτ[5ξi logDξi,ϕi+1(s,a,s
′)]+EτE [5ξi(1− logDξi,ϕi+1(s,a,s

′))]

Update θi to θi+1 using natural gradient update rule (i.e., TRPO/PPO) with the
gradient:

Eτ

[
5θi logπθi(a|s)r̂ξi+1(s,a,s

′)
]
+λIEτ

[
5θi lI(s,a,s′)

]
After every n epochs sync ϕ′ with ϕ

Algorithm 1 outlines the overall training procedure to train all function approximators

17

(a) Ant environment (b) Pointmass-maze environment

Figure 2.1: Transfer learning problems: reward transfer from (a) a quadruped-ant to a crippled-
ant. (b) from a left-passage maze to a right-passage maze.

simultaneously. Note that the expert samples τE are seen by the discriminator only, whereas all

other models are trained using the policy generated samples τ. Furthermore, the discriminating

reward r̂(s,a,s′) boils down to the following expression, as shown in Section 2.5:

r̂(s,a,s′) = f (s,a,s′)− logπ(a|s)

where f (s,a,s′) = rξ(s,a)+ γΦϕ′(s′)−Φϕ(s). Thus, an alternative way to express our policy

training objective is Eτ[logπθ(a|s)rπ(s,a,s′)], where rπ(s,a,s′) = r̂(s,a,s′)−λIlI(s,a,s′), which

would undoubtedly yield the same results as Eqn. 2.11, i.e., maximize the discriminative reward

and minimize the loss lI . The analysis of this alternative expression is given in Section 2.5 to

highlight that our policy update rule is equivalent to MaxEnt-IRL policy objective [FCAL16]

except that it also maximizes the empowerment, i.e.,

rπ(s,a,s′) = rξ(s,a,s
′)+ γΦ(s′)+λĤ(·) (2.12)

where, λ and γ are hyperparameters, and Ĥ(·) is the entropy-regularization term depending on

π(·) and q(·). Hence, our policy is regularized by the empowerment which induces generalized

behavior rather than locally overfitting to the limited expert demonstrations.

18

(a) Ant environment (b) Pointmass-maze environment

Figure 2.2: The performance of policies obtained from maximizing the learned rewards in the
transfer learning problems over five trials.

2.3 Results

Our proposed method, EAIRL, learns both reward and policy from expert demonstrations.

Thus, for comparison, we evaluate our method against both state-of-the-art policy and reward

learning techniques on several control tasks in OpenAI Gym. In case of policy learning, we com-

pare our method against GAIL, GAN-GCL, AIRL with state-only reward, denoted as AIRL(s),

and an augmented version of AIRL we implemented for the purposes of comparison that has

state-action reward, denoted as AIRL(s,a). In reward learning, we only compare our method

against AIRL(s) and AIRL(s,a) as GAIL does not recover rewards, and GAN-GCL is shown

to exhibit inferior performance than AIRL [FLL17]. Furthermore, in the comparisons, we also

include the expert performances which represents a policy learned by optimizing a ground-truth

reward using TRPO [SLA+15]. The performance of different methods are evaluated in term of

mean and standard deviation of total rewards accumulated (denoted as score) by an agent during

the trial, and for each experiment, we run five randomly-seeded trials.

19

Table 2.1: The evaluation of reward learning on transfer learning tasks. Mean scores (higher the
better) with standard deviation are presented over 5 trials.

Algorithm States-Only Pointmass-Maze Crippled-Ant

Expert N/A −4.98±0.29 432.66±14.38
AIRL Yes −8.07±0.50 175.51±27.31
AIRL No −19.28±2.03 46.12±14.37
EAIRL(Ours) No −7.01±0.61 348.43±43.17

Figure 2.3: The top and bottom rows show the gait of standard and crippled ant, respectively.

Reward learning performance (Transfer learning experiments)

To evaluate the learned rewards, we consider a transfer learning problem in which the

testing environments are made to be different from the training environments. More precisely, the

rewards learned via IRL in the training environments are used to re-optimize a new policy in the

testing environment using standard RL. We consider two test cases shown in the Fig. 2.1.

In the first test case, as shown in Fig. 2.1(a), we modify the agent itself during testing. We

trained a reward function to make a standard quadruped ant to run forward. During testing, we

disabled the front two legs (indicated in red) of the ant (crippled-ant), and the learned reward is

used to re-optimize the policy to make a crippled-ant move forward. Note that the crippled-ant

cannot move sideways. Therefore, the agent has to change the gait to run forward. In the second

test case, shown in Fig 2.1(b), we change the environment structure. The agent learns to navigate

a 2D point-mass to the goal region in a simple maze. We re-position the maze central-wall during

20

Figure 2.4: The top and bottom rows show the path followed by a 2D point-mass agent (yellow)
to reach the target (green) in training and testing environment, respectively.

testing so that the agent has to take a different path, compared to the training environment, to

reach the target (see Section 2.5).

Fig. 2.2 compares the policy performance scores over five different trials of EAIRL,

AIRL(s) and AIRL(s,a) in the aforementioned transfer learning tasks. Fig .2.3 and Fig. 2.4

shows EAIRL execution traces in these scenarios. The expert score is shown as a horizontal line

to indicate the standard set by an expert policy. Table 2.1 summarizes the means and standard

deviations of the scores over five trials. It can be seen that our method recovers near-optimal

reward functions as the policy scores almost reach the expert scores in all five trials even after

transferring to unseen testing environments. Furthermore, our method performs significantly

better than both AIRL(s) and AIRL(s,a) in matching an expert’s performance, thus showing no

downside to the EAIRL approach.

Policy learning performance (Imitation learning)

Next, we considered the performance of the learned policy specifically for an imitation

learning problem in various control tasks. The tasks, shown in Fig. 2.5, include (i) making a

2D halfcheetah robot to run forward, (ii) making a 3D quadruped robot (ant) to move forward,

(iii) making a 2D swimmer to swim, and (iv) keeping a friction less pendulum to stand vertically

up. For each algorithm, we provided 20 expert demonstrations generated by a policy trained on

21

(a) HalfCheetah (b) Ant (c) Swimmer (d) Pendulum

Figure 2.5: Benchmark control tasks for imitation learning

a ground-truth reward using TRPO (Schulman et al., 2015). Table 2.2 presents the means and

standard deviations of policy learning performance scores, over the five different trials. It can be

seen that EAIRL, AIRL(s,a) and GAIL demonstrate similar performance and successfully learn

to imitate the expert policy, whereas AIRL(s) and GAN-GCL fails to recover a policy.

Table 2.2: The evaluation of imitation learning on benchmark control tasks. Mean scores (higher
the better) with standard deviation are presented over 5 trials for each method.

Methods
Environments

HalfCheetah Ant Swimmer Pendulum

Expert 2139.83±30.22 935.12±10.94 76.21±1.79 −100.11±1.32
GAIL 1880.05±15.72 738.72±9.49 50.21±0.26 −116.01±5.45
GCL −189.90±44.42 16.74±36.59 15.75±7.32 −578.18±72.84
AIRL(s,a) 1826.26±19.64 645.90±41.75 49.52±0.48 −118.13±11.33
AIRL(s) 121.10±42.31 271.31±9.35 33.21±2.40 −134.82±10.89
EAIRL 1870.10±17.86 641.12±25.92 49.55±0.29 −116.26±8.313

2.4 Discussion

This section highlights the importance of empowerment-regularized MaxEnt-IRL and

modeling rewards as a function of both state and action rather than restricting to state-only

formulation on learning rewards and policies from expert demonstrations.

In the scalable MaxEnt-IRL framework [FCAL16, FLL17], the normalization term is ap-

proximated by importance sampling where the importance-sampler/policy is trained to minimize

the KL-divergence from the distribution over expert trajectories. However, merely minimizing

22

the divergence between expert demonstrations and policy-generated samples leads to localized

policy behavior which hinders learning generalized reward functions. In our proposed work, we

regularize the policy update with empowerment i.e., we update our policy to reduce the divergence

from expert data distribution as well as to maximize the empowerment (Eqn.2.12). The proposed

regularization prevents premature convergence to local behavior which leads to robust state-action

based rewards learning. Furthermore, empowerment quantifies the extent to which an agent can

control/influence its environment in the given state. Thus the agent takes an action a on observing

a state s such that it has maximum control/influence over the environment upon ending up in the

future state s′.

Our experimentation also shows the importance of modeling discriminator/reward func-

tions as a function of both state and action in reward and policy learning under GANs framework.

The reward learning results show that state-only rewards (AIRL(s)) does not recover the action

dependent terms of the ground-truth reward function that penalizes high torques. Therefore, the

agent shows aggressive behavior and sometimes flips over after few steps (see the accompany-

ing video), which is also the reason that crippled-ant trained with AIRL’s disentangled reward

function reaches only the half-way to expert scores as shown in Table 2.1. Therefore, the reward

formulation as a function of both states and actions is crucial to learning action-dependent terms

required in most real-world applications, including any autonomous driving, robot locomotion

or manipulation task where large torque magnitudes are discouraged or are dangerous. The

policy learning results further validate the importance of the state-action reward formulation.

Table 2.2 shows that methods with state-action reward/discriminator formulation can success-

fully recover expert-like policies. Hence, our empirical results show that it is crucial to model

reward/discriminator as a function of state-action as otherwise, adversarial imitation learning fails

to learn ground-truth rewards and expert-like policies from expert data.

23

2.5 Derivations

For completeness, we present a derivation of presenting mutual information (MI) as

variational lower bound and maximization of lower bound to learn empowerment.

Variational Information Lower Bound

As mentioned in section 2.1, the variational lower bound representation of MI is computed

by defining MI as a difference in conditional entropies, and the derivation is formalized as follow.

Iw,q(s) = H(a|s)−H(a|s′,s)

= H(a|s)+Ep(s′|a,s)w(a|s)[log p(a|s′,s)]

= H(a|s)+Ep(s′|a,s)w(a|s)[log
p(a|s′,s)q(a|s′,s)

q(a|s′,s)
]

= H(a|s)+Ep(s′|a,s)w(a|s)[logq(a|s′,s)]+Ep(s′|a,s)w(a|s)[log
p(a|s′,s)
q(a|s′,s)

]

= H(a|s)+Ep(s′|a,s)w(a|s)[logq(a|s′,s)]+KL[p(a|s′,s)||q(a|s′,s)]

≥ H(a|s)+Ep(s′|a,s)w(a|s)[logq(a|s′,s)]

≥−Ew(a|s) logw(a|s)+Ep(s′|a,s)w(a|s)[logq(a|s′,s)]

Variational Information Maximization

The empowerment is a maximal of MI and it can be formalized as follow by exploiting

the variational lower bound formulation (for details see [MR15]).

Φ(s) = max
w,q

Ep(s′|a,s)w(a|s)[−
1

β
logw(a|s)+ logq(a|s′,s)] (2.13)

As mentioned in section 2.1, given a training trajectories, the maximization of Eqn. 2.13

w.r.t inverse model q(a|s′,s) is a supervised maximum log-likelihood problem. The maximization

24

of Eqn. 2.13 w.r.t w(a|s) is derived through a functional derivative ∂Iw,q/∂w = 0 under the

constraint ∑a w(a|s) = 1. For simplicity, we consider discrete state and action spaces, and the

derivation is as follow:

Îw(s) = Ep(s′|a,s)w(a|s)[−
1

β
logw(a|s)+ logq(a|s′,s)]+λ

(
∑
a

w(a|s)−1
)

= ∑
a

∑
s′

p(s′|a,s)w(a|s){−
1

β
logw(a|s)+ logq(a|s′,s)}+λ

(
∑
a

w(a|s)−1
)

∂Îw(s)

∂w
= ∑

a
{(λ−β)− logw(a|s)+βEp(s′|a,s)[logq(a|s′,s)]}= 0

w(a|s) = eλ−βeβEp(s′|a,s)[logq(a|s′,s)]

By using the constraint ∑a w(a|s) = 1, it can be shown that the optimal solution w∗(a|s) =

1

Z(s)
exp(u(s,a)), where u(s,a) = βEp(s′|a,s)[logq(a|s′,s)] and Z(s) = ∑a u(s,a). This solution

maximizes the lower bound since ∂2Iw(s)/∂w2 =−∑a

1

w(a|s)
< 0.

Empowerment-regularized MaxEnt-IRL Formulation.

In this section we derive the Empowerment-regularized formulation of maximum entropy

IRL. Let τ be a trajectory sampled from expert demonstrations D and

pξ(τ) ∝ p(s0)Π
T−1
t=0 p(st+1|st ,at)exprξ(st ,at) (2.14)

25

be a distribution over τ. As mentioned in Section 2.1, the IRL objective is to maximize the

likelihood:

max
ξ

J(ξ) = max
ξ

ED[log pξ(τ)]

Furthermore, as derived in [FLL17], the gradient of above equation w.r.t ξ can be written as:

max
ξ

J(ξ) = ED[
T

∑
t=0

∂

∂ξ
rξ(st ,at)]−Epξ

[
T

∑
t=0

∂

∂ξ
rξ(st ,at)]

=
T

∑
t=0

ED[
∂

∂ξ
rξ(st ,at)]−Epξ,t [

∂

∂ξ
rξ(st ,at)]

where rξ(·) is a parametrized reward to be learned, and pξ,t =
∫

st′ 6=t,at′ 6=t pξ(τ) denotes marginal-

ization of state-action at time t. Since, it is unfeasible to draw samples from pξ, [FCAL16]

proposed to train an importance sampling distribution µ(τ) whose varience is reduced by defining

µ(τ) as a mixture of polices, i.e., µ(a|s) =
1

2
(π(a|s)+ p̂(a|s)), where p̂ is a rough density estimate

over demonstrations. Thus the above gradient becomes:

∂

∂ξ
J(ξ) =

T

∑
t=0

ED[
∂

∂ξ
rξ(st ,at)]−Eµt [

pξ,t(st ,at)

µt(st ,at)

∂

∂ξ
rξ(st ,at)] (2.15)

We train our importance-sampler/policy π to maximize the empowerment Φ(·) for generalization

and to reduce divergence from true distribution by minimizing DKL(π(τ)‖pξ(τ)). Since, π(τ) =

p(s0)Π
T−1
t=0 p(st+1|st ,at)π(st ,at), the matching terms of π(τ) and pξ(τ) cancel out, resulting into

entropy-regularized policy update. Furthermore, as we also include the empowerment Φ(·) in the

policy update to be maximized, hence the overall objective becomes:

max
π

Eπ[
T−1

∑
t=0

rξ(st ,at)+Φ(st+1)− logπ(at |st)] (2.16)

26

Our discriminator is trained to minimize cross entropy loss as mention in Eqn. 2.10, and for the

proposed structure of our discriminator Eqn. 2.9, it can be shown that the discriminator’s gradient

w.r.t its parameters turns out to be equal to Equation 2.15 (for more details, see [FLL17]). On the

other hand, our policy training objective is

rπ(s,a,s′) = log(D(s,a,s′))− log(1−D(s,a,s′))− lI(s,a,s′) (2.17)

In the next section, we show that the above policy training objective is equivalent to Equation

2.16.

Policy Objective

We train our policy to maximize the discriminative reward r̂(s,a,s′) = log(D(s,a,s′)−

log(1−D(s,a,s′))) and minimize the information-theoretic loss function lI(s,a,s′). The discrim-

inative reward r̂(s,a,s′) simplifies to:

r̂(s,a,s′) = log(D(s,a,s′))− log(1−D(s,a,s′))

= log
e f (s,a,s′)

e f (s,a,s′)+π(a|s)
− log

π(a|s)

e f (s,a,s′)+π(a|s)

= f (s,a,s′)− logπ(a|s)

where f (s,a,s′) = r(s,a)+ γΦ(s′)−Φ(s). The entropy-regularization is usually scaled by the

hyperparameter, let say λh ∈ R, thus r̂(s,a,s′) = f (s,a,s′)− λh logπ(a|s). Hence, assuming

single-sample (s,a,s′), absolute-error for lI(s,a,s′) = | logqφ(a|s,s′)− (logπ(a|s)+Φ(s))|, and

27

li > 0, the policy is trained to maximize following:

rπ(s,a,s′) = f (s,a,s′)−λh logπ(a|s)− lI(s,a,s′)

= r(s,a)+ γΦ(s′)−Φ(s)−λh logπ(a|s)− logq(a|s,s′)+ logπ(a|s)+Φ(s)

= r(s,a)+ γΦ(s′)−λh logπ(a|s)− logq(a|s,s′)+ logπ(a|s)

Note that, the potential function Φ(s) cancels out and we scale the leftover terms of lI with a

hyperparameter λI . Hence, the above equation becomes:

rπ(s,a,s′) = r(s,a,s′)+ γΦ(s′)+(λI−λh) logπ(a|s)−λI logq(a|s,s′)

We combine the log terms together as:

rπ(s,a,s′) = r(s,a)+λIΦ(s′)+λĤ(·) (2.18)

where λ is a hyperparameter, and Ĥ(·) is an entropy regularization term depending on q(a|s,s′)

and π(a|s). Therefore, it can be seen that the Eqn. 2.18 is equivalent/approximation to Eqn. 2.16.

2.6 Implementation Details

Network Architectures

We use two-layer ReLU network with 32 units in each layer for the potential function

hϕ(·) and Φϕ(·), reward function rξ(·), discriminators of GAIL and GAN-GCL. Furthermore,

policy πθ(·) of all presented models and the inverse model qφ(·) of EAIRL are presented by

28

two-layer RELU network with 32 units in each layer, where the network’s output parametrizes

the Gaussian distribution, i.e., we assume a Gaussian policy.

Hyperparameters

For all experiments, we use the temperature term β = 1. We evaluated both mean-squared

and absolute error forms of lI(s,a,s′) and found that both lead to similar performance in reward

and policy learning. We set entropy regularization weight to 0.1 and 0.001 for reward and policy

learning, respectively. The hyperparameter λI was set to 1.0 for reward learning and 0.001 for

policy learning. The target parameters of the empowerment-based potential function Φϕ′(·) were

updated every 5 and 2 epochs during reward and policy learning respectively. Although reward

learning hyperparameters are also applicable to policy learning, we decrease the magnitude of

entropy and information regularizers during policy learning to speed up the policy convergence to

optimal values. Furthermore, we set the batch size to 2000- and 20000-steps per TRPO update

for the pendulum and remaining environments, respectively. For the methods [FLL17, HE16]

presented for comparison, we use their suggested hyperparameters. We also use policy samples

from previous 20 iterations as negative data to train the discriminator of all IRL methods presented

in this work to prevent the parametrized reward functions from overfitting the current policy

samples.

2.7 Acknowledgements

Chapter 2, in part, is a reprint of A.H.Qureshi, B. Boots, and M.C.Yip,“Adversarial

Imitation Via Variational Inverse Reinforcement Learning”, International Conference on Repre-

sentation Learning (ICLR), 2019. The dissertation author is the primary author of this paper.

29

Chapter 3

Neural Motion Planning

In this work, we discuss a new wave in Motion Planning called Neural Motion Planners

that have emerged from the cross-fertilization of motion planning and deep learning to solve

planning problems under various collision avoidance, kinodynamic, and manifold kinematic

constraints.

3.1 Collision Avoidance Constraints

This chapter introduces our initial work towards neural motion planners under collision

avoidance constraints [QSBY19, QY18, QMSY20] . We highlight that merging both machine

(a) MPNet (b) RRT* (c) Informed-RRT* (d) BIT*

Figure 3.1: MPNet greedily outputs a near-optimal path, whereas classical planning methods
such as RRT* [KF11], Informed-RRT* [GSB14], and BIT* [GSB15] need to expand their
planning spaces through an exhaustive search.

30

learning and classical motion planning techniques holds great potential to build motion planning

methods with all key features of an ideal planner ranging from theoretical guarantees to computa-

tional efficiency. In this respect, this chapter formally presents our Motion Planning Networks,

or MPNet, and its features corresponding to an ideal planner and its merits in solving complex

robotic motion planning problems. MPNet is a deep neural network-based bidirectional iterative

planning algorithm that comprises two modules, an encoder network and planning network. The

encoder network takes the environment information, such as the raw or voxelized output of a

depth camera or LIDAR, and embeds them into a latent space. The planning network takes the

environment encoding, robot’s current and goal state, and outputs a next state of the robot that

would lead it closer to the goal region. MPNet can very effectively generate steps from start to

goal that are likely to be part of the optimal solution with minimal-to-no branching required (Fug.

3.1). Being a neural network approach, we also propose three learning strategies to train MPNet:

i) offline batch learning which assumes the availability of all training data, ii) continual learning

with episodic memory which assumes that the expert demonstrations come in streams and the

global training data distribution is unknown, and iii) active continual learning that incorporates

MPNet into the learning process and asks for expert demonstrations only when needed. The

following are the major contributions of MPNet:

• MPNet can learn from streaming data which is crucial for real-world scenarios in which the

expert demonstrations usually come in streams, such as in semi self-driving cars. However,

as MPNet uses deep neural networks, it can suffer from catastrophic forgetting when given

the data in streams. To retain MPNet prior knowledge, we use a continual learning approach

based on episodic memory and constraint optimization.

• The active continual learning approach that asks for demonstrations only when needed,

hence improving the overall training data efficiency. This strategy is in response to practical

and data-efficient learning where planning problems come in streams, and MPNet attempts

to plan a motion for them. In case MPNet fails to find a path for a given problem, only then

31

an Oracle Planner is called to provide an expert demonstration for learning.

• MPNet plans paths with a low computational complexity and exhibits a mean computation

time of less than 1 second in all presented experiments.

• MPNet can generate informed samples, thanks to its stochastic planning network, for

sampling-based motion planners such as RRT* without incurring any additional computa-

tional load. The MPNet informed sampling based RRT* exhibits mean computation time

of less than a second while ensuring asymptotic optimality and completeness guarantees.

• A hybrid planning approach that combines MPNet with classical planners to provide worst-

case guarantees of our approach. MPNet plans motion through divide-and-conquer since it

first outputs a set of critical states and recursively finds paths between them. Therefore, it

is straightforward to outsource a segment of a planning problem to a classical planner, if

needed, while retaining the computational benefits of MPNet.

• MPNet generalizes to similar but unseen environments that were not in the training exam-

ples.

3.1.1 Related work

The quest for solving the motion planning problem originated with the development

of complete algorithms which suffer from computational inefficiency, and thus led to more

efficient methods with resolution- and probabilistic- completeness [LaV06]. The algorithms

with full completeness guarantees [SS83] [LPW79] find a path solution, if one exists, in a finite-

time. However, these methods are computationally intractable for most practical applications

as they require the complete environment information such as obstacle geometry which is not

usually available in real-world scenarios [Can88]. The algorithms with resolution-completeness

[Kha86] [BLP85] also find a path, if one exists, in a finite-time, but require tedious fine-tuning

32

of resolution parameters for every given planning problem. To overcome the limitations of

complete and resolution-complete algorithms, the probabilistically complete methods, also known

as Sampling-based Motion Planners (SMPs), were introduced [LaV06]. These methods rely on

sampling techniques to generate rapidly-exploring trees or roadmaps in robot’s obstacle-free

state-space. The feasible path is determined by querying the generated graph through shortest

path-finding methods such as Dijkstra’s method (Fig. 3.2). These methods are probabilistically

complete, since the probability of finding a path solution, if one exists, approaches one as the

number of samples in the graph approaches infinity [LaV06].

Figure 3.2: RRT [LaV98] algorithm randomly sampling obstacle-free space to generate a tree,
and find a path connecting the given start and goal configurations.

The prominent and widely used SMPs include single-query rapidly-exploring random trees

(RRT) [LaV98] and multi-query probabilistic roadmaps (PRM) [KL98]. In practice, single-query

methods are preferred since most multi-query problems can be solved as a series of single-query

problems [LaV98] [KF11]. Besides, PRM based methods require pre-computation of a roadmap

which is usually expensive to determine in online planning problems [KF11]. Therefore, RRT

and its variants have now emerged as a promising tools for motion planning that finds a path

irrespective of obstacles geometry. Although the RRT algorithm rapidly finds a path solution, if

one exists, they fail to find the shortest path solution [KF11]. An optimal variant of RRT called

RRT* asymptotically guarantees to find the shortest path, if one exists [KF11]. However, RRT*

33

becomes computationally inefficient as the dimensionality of the planning problem increases.

Furthermore, studies show that to determine a ε-near optimal path in d ∈ N dimensions, nearly

O(1/εd) samples are required. Thus, RRT* is no better than grid search methods in higher

dimensional spaces [Hau15]. Several methods have been proposed to mitigate limitations in

current asymptotically optimal SMPs through different heuristics such as biased sampling [QA16]

[QMI+13] [GSB14] [GSB15], lazy edge evaluation [HMP+18], and bidirectional tree generations

[QA15] [TQAN18].

Biased sampling heuristics adaptively sample the robot state-space to overcome limitations

caused by random uniform exploration in underlying SMP methods. For instance, P-RRT*

[QA16] [QMI+13] incorporates artificial potential fields [Kha86] into RRT* to generate goal

directed trees for rapid convergence to an optimal path solution. In similar vein, Gammell et al.

proposed the Informed-RRT* [GSB14] and BIT* (Batch Informed Trees) [GSB15]. Informed-

RRT* defines an ellipsoidal region using RRT*’s initial path solution to adaptively sample the

configuration space for optimal path planning. Despite improvements in computation time,

Informed-RRT* suffers in situations where finding an initial path is itself challenging. On

the other hand, BIT* is an incremental graph search method that instantiates a dynamically-

changing ellipsoidal region for batch sampling to compute paths. Despite some improvements in

computation speed, these biased sampling heuristics still suffer from the curse of dimensionality.

Lazy edge evaluation methods, on the other hand, have shown to exhibit significant

improvements in computation speeds by evaluating edges only along the potential path solutions.

However, these methods are critically dependent on the underlying edge selector and tend

to exhibit limited performance in cluttered environments [HS]. Bidirectional path generation

improves the algorithm performance in narrow passages but still inherits the limitations of baseline

SMPs [QA15][TQAN18].

Reinforcement learning (RL) [SB+98] has also emerged as a prominent tool to solve

continuous control and planning problems [LHP+15]. RL considers Markov Decision Processes

34

(MDPs) where an agent interacts with the environment by observing a state and taking an action

which leads to a next state and reward. The reward signal encapsulates the underlying task

and provides feedback to the agent on how well it is performing. Therefore, the objective of

an agent is to learn a policy to maximize the overall expected reward function. In the past,

RL was only employed for simple problems with low-dimensions [DNP+13] [KBP13]. Recent

advancements have led to solving harder, higher dimensional problems by merging the traditional

RL with expressive function approximators such neural networks, now known as Deep RL

(DRL) [MKS+15] [DCH+16]. DRL has solved various challenging robotic tasks using both

model-based [LFDA16] [LPK+18] [YLK+17] and model-free [CKY+17] [GHLL17] [PHL+17]

approaches. Despite considerable progress, solving practical problems which have weak rewards

and long-horizons remain challenging [QJQ+20].

There also exist approaches that apply various learning strategies such as imitation learning

to mitigate the limitations of motion planning methods. Zucker et al. [ZKB08] proposed to adapt

the sampling for the SMPs using REINFORCE algorithm [Wil92] in discretized workspaces.

Berenson et al. [BAG12] use a learned heuristic to store new paths, if needed, or to recall and

repair the existing paths. Coleman et al. [CŞM+15] store experiences in a graph rather than

individual trajectories. Ye and Alterovitz [YA17] use human demonstrations in conjunction

with SMPs for path planning. While improved performance was noted compared to traditional

planning algorithms, these methods lack generalizability and require tedious hand-engineering

for every new environment. Therefore, modern techniques use efficient function approximators

such as neural networks to either embed a motion planner or to learning auxiliary functions for

SMPs such as sampling heuristic to speed up planning in complex cluttered environments.

Neural Motion Planning has been a recent addition to the motion planning literature.

Bency et al. [BQY19] introduced recurrent neural networks to embed a planner based on its

demonstrations. While useful for learning to navigate static environments, their method does

not use environment information and therefore, is not meant to generalize to other environments.

35

Ichter et al. [IHP18] proposed conditional variational autoencoders that contextualize on envi-

ronment information to generate samples through decoder network for the SMPs such as FMT*

[JP16]. The SMPs use the generated samples to create a graph for finding a feasible or optimal

path for the robot to follow. In a similar vein, Zhang et. al [ZHL18] learns a rejection sampling

policy that rejects or accepts the given uniform samples before making them the part of the

SMP graph. The rejection sampling policy is learned using past experiences from the similar

environments. Note that a policy for rejection sampling implicitly learns the sampling distribution

whereas Icheter et. al [IHP18] explicitly generates the guided samples for the SMPs. Bhardwaj et

al [BCS17] proposed a method called SAIL that learns a deterministic policy which guides the

graph expansion of underlying graph-based planner towards the promising areas that potentially

contains the path solution. SAIL learns the guiding policy using the oracle Q-values (encapsulates

the cost-to-go function), argmin regression, and full environment information. Like these adaptive

sampling methods, MPNet can also generate informed samples for SMPs, but in addition, our

approach is also outputs feasible trajectories with worst-case theoretical guarantees.

There has also been attempts towards building learning-based motion planners. For

instance, Value Iteration Networks (VIN) [TWT+16] approximates a planner by emulating value

iteration using recurrent convolutional neural networks and max-pooling. However, VIN is only

applicable for discrete planning tasks. Universal Planning Networks (UPN) [SJA+18] extends

VIN to continuous control problems using gradient descent over generated actions to find a motion

plan connecting the given start and goal observations. However, these methods do not generalize

to novel environments or tasks and thus require frequent retraining. The most relevant approach

to our neural planner (MPNet) is L2RRT [IP19] that plans motion in learned latent spaces using

RRT method. L2RRT learns state-space encoding model, agent’s dynamics model, and collision

checking model. However, it is unclear that existence of a path solution in configuration space

will always imply the existence of a path in the learned latent space and vice versa.

36

(a) (b)

Figure 3.3: MPNet consists of encoder network (Enet) and planning network (Pnet). (a) shows
their end-to-end training under a continual learning setting. Fig (b) shows the online execution
of MPNet.

3.1.2 Motion Planning Networks (MPNet)

MPNet comprises of two neural networks: an encoder network (Enet) and a planning

network (Pnet). Enet takes the robot’s surrounding information such as a raw point-cloud or

point-cloud converted to voxel depending on the underlying neural architecture that could be a

fully-connected neural network or a 3D convolutional neural network (CNN), respectively. The

output of the Enet is a latent space embedding of the given information. Pnet takes the encoding

of the environment, the robot’s current state and goal state to output samples for either a path or

tree generation. In remaining section, we describe the notations necessary to outline MPNet.

Let robot configuration space (C-space) be denoted as C ⊂ Rd comprising of obstacle

space Cobs and obstacle-free space Cfree = C\Cobs, where d is the C-space dimensionality. Let

robot’s surrounding environment, also known as workspace, be denoted as X ⊂ Rm, where m is a

workspace dimension. Like C-space, the workspace also comprise of obstacle, Xobs, and obstacle-

free, Xfree = X \Xobs, regions. The workspaces could be up to 3-dimensions whereas the C-space

can have higher dimensions depending on the robot’s degree-of-freedom (DOF). Let robot initial

and goal configuration space be cinit ∈ Cfree and cgoal ⊂ Cfree, respectively. Let σ = {c0, · · · ,cT}

be an ordered list of length T . We assume σi corresponds to the i-th state in σ, where i = [0,T].

For instance σ0 corresponds to state c0. Furthermore, we consider σend corresponds to the

37

last element of σ, i.e., σend = cT . A motion planning problem can be concisely denoted as

{cinit,cgoal,Cobs} where the aim of a planning algorithm is to find a feasible path solution, if

one exists, that connects cinit to cgoal while completely avoiding obstacles in Cobs. Therefore, a

feasible path can be represented as an ordered list σ = {c0, · · · ,cT} such that c0 = cinit, cT = cgoal,

and a path constituted by connecting consecutive states in σ lies entirely in Cfree. In practice,

C-space representation of obstacles Cobs is unknown and rather a collision-checker is available

that takes workspace information, Xobs, and robot configuration, c, and determines if they are in

collision or not. Another important problem in motion planning is to find an optimal path solution

for a given cost function. Let a cost function be defined as J(·). An optimal planner provides

guarantees, either weak or strong, that if given enough running time, it would eventually converge

to an optimal path, if one exists. The optimal path is a solution that has the lowest possible cost

w.r.t. J(·).

We consider a practical scenario, where MPNet plans feasible, near-optimal paths using

raw point-cloud/voxel data of obstacles xobs ⊂ Xobs. However, like other planning algorithms, we

do assume an availability of a collision-checker that verifies the feasibility of MPNet generated

paths based on Xobs. Precisely, Enet, with parameters θe, takes the environment information xobs

and compresses them into a latent space Z,

Z← Enet(xobs;θ
e) (3.1)

Pnet, with parameters θp, takes the environment encoding Z, robot’s current or initial configura-

tion ct ∈ Cfree, and goal configuration cgoal ⊂ Cfree to produce a trajectory through incremental

generation of states ĉt+1 (Fig. 3.3 (b)),

ĉt+1← Pnet(Z,ct ,cgoal;θ
p) (3.2)

38

3.1.3 MPNet: Training

In this section, we present three training methodologies for MPNet neural models, Enet

and Pnet: i) offline batch learning, ii) continual learning, and iii) active continual learning.

Offline batch learning method assumes the availability of complete data to train MPNet

offline before running it online to plan motions for unknown/new planning problems. Continual

learning enables MPNet to learn from streaming data without forgetting past experiences. Active

continual learning incorporates MPNet into the continual learning process where MPNet actively

asks for an expert demonstration when needed for the given problem. Further details on training

approaches are presented as follow.

Offline batch learning

The offline batch learning requires all the training data to be available in advance for

MPNet [QSBY19] [QY18]. As mentioned earlier, MPNet comprises of two modules, Enet and

Pnet. In this training approach, both modules can either be trained together in an end-to-end

fashion using planning network loss function or separately with their individual loss functions.

To train Enet and Pnet together, we back-propagate the gradient of Pnet’s loss function

in Equation 3.4 through both modules. For the standalone training of Enet, we use an encoder-

decoder architecture whenever there is an ample amount of environmental point-cloud data

available for unsupervised learning. There exist several techniques for encoder-decoder training

such as variational auto-encoders [KW13] and their variants [HMP+17] or the class of contractive

autoencoders (CAE) [RVM+11]. For our purpose, we observed that the contractive autoencoders

learn robust feature spaces desired for planning and control, and give better performance than other

available encoding techniques. The CAE uses the usual reconstruction loss and a regularization

39

over encoder parameters,

lAE
(
θ

e,θd)= 1

Nobs
∑

x∈Dobs

||x− x̂||2 +λ∑
i j
(θe

i j)
2 (3.3)

where θe, θd are the encoder and decoder parameters, respectively, and λ denotes regularization

coefficient. The variable x̂ represents reconstructed point-cloud. The training dataset of obstacles’

point-cloud x ⊂ Xobs is denoted as Dobs which contains point cloud from Nobs ∈ N different

workspaces.

The planning module (Pnet) is a stochastic feed-forward deep neural network with param-

eters θp. Our demonstration trajectory is a list of waypoints, σ = {c0,c1, · · · ,cT}, connecting the

start and goal configurations such that the fully connected path lies in obstacle-free space. To train

Pnet either end-to-end with Enet or separately for the given expert trajectory, we consider one-step

look ahead prediction strategy. Therefore, MPNet takes the obstacles’ point-cloud embedding Z,

robot’s current state ct and goal state cT as an input to output the next waypoint ĉt+1 towards the

goal-region. The training objective is a mean-squared-error (MSE) loss between the predicted

ĉt+1 and target waypoints ct+1, i.e.,

lPnet(θ) =
1

Np

N̂

∑
j

Tj−1

∑
i=0
||ĉ j,i+1− c j,i+1||2, (3.4)

where Tj is the length of j-th trajectory, N̂ ∈ N is the total number of training trajectories, and

Np is the averaging term. Although we use MSE loss, one can consider other choices such as

adversarial loss function [GPAM+14]. In rigid body planning, such as planning in SE(3), if the

rotations are represented as quaternions, we use the following loss:

lPnet(θ) = lp +βlq, (3.5)

where lp and lq correspond to the MSE loss between positional p and quaternion q components

40

of the waypoints in σ, and β is a scaling factor. Since quaternion needs to be in a unit sphere the

loss lq is defined as (for more details refer to [KC17]):

lq =
1

Np

N̂

∑
j

T−1

∑
i=0

∥∥∥∥∥∥∥
q̂ j,i+1

||q̂ j,i+1||
−q j,i+1

∥∥∥∥∥∥∥
2

(3.6)

Continual Learning

In continual learning settings, both modules of MPNet (Enet and Pnet) are trained in an

end-to-end fashion, since both neural models need to adapt to the incoming data (Fig. 3.3(a)). We

consider a supervised learning problem. Therefore, the data comes with targets, i.e.,

(s1,y1, · · · ,si,yi, · · · ,sN ,yN)

where s = (ct ,cT ,xobs) is the input to MPNet comprising of the robot’s current state ct , the goal

state cT , and obstacles information xobs. The target y is the next state ct+1 in the expert trajectory

given by an oracle planner. Generally, continual learning using neural networks suffers from

the issue of catastrophic forgetting since taking a gradient step on a new datum could erase the

previous learning. The problem of catastrophic forgetting is also described in terms of knowledge

transfer in the backward direction.

To describe backward transfer, we introduce few new notations as follow. Let a mean

model success rate on a dataset M after learning from an expert example at time t− 1 and t

be denoted as AM ,t−1 and AM ,t , respectively. A metric described as a backward transfer can

be written as B = AM ,t −AM ,t−1. A positive backward transfer B ≥ 0 indicates that after

learning from a new experience, the learning-based planner performed better on the previous

tasks represented as M . A negative backward transfer B < 0 indicates that on learning from new

experience the model on previous tasks deteriorated.

To overcome negative backward transfer leading to catastrophic forgetting, we employ the

41

Gradient Episodic Memory (GEM) method for lifelong learning [LPR17]. GEM uses the episodic

memory M that has a finite set of continuum data seen in the past to ensure that the model update

doesn’t lead to negative backward transfer while allowing only the positive backward transfer.

For MPNet, we adapt GEM for the regression problem using the following optimization objective

function.

min
θ

l(f t
θ(s),y) s.t

Ê(s,y)∼M [l(f t
θ(s),y)]≤ Ê(s,y)∼M [l(f t−1

θ
(s),y)] (3.7)

where l = ‖ f t
θ
(s)−y‖2 is a squared-error loss, f t

θ
is the MPNet model at time step t (see Fig. 3.3).

Furthermore, note that, if the angle between proposed gradient (g) at time t, and the gradient over

M (gM) is positive, i.e., 〈g,gM 〉 ≥ 0, there is no need to maintain the old function parameters

f t−1
θ

because the above equation can be formulated as:

〈g,gM 〉 :=
〈
5θ l

(
fθ(s),y

)
, Ê(s,y)∼M 5θ l

(
fθ(s),y

)〉
(3.8)

where Ê denotes empirical mean.

In most cases, the proposed gradient g violates the constraint 〈g,gM 〉 ≥ 0, i.e., the

proposed gradient update g will cause increase in the loss over previous data. To avoid such

violations, David and Razanto [LPR17] proposed to project the gradient g to the nearest gradient

g′ that keeps 〈g′,gM 〉 ≥ 0, i.e,

min
g′

1

2
‖g−g′‖2

2 s.t 〈g′,gM 〉 ≥ 0 (3.9)

The projection of proposed gradient g to g′ can be solved efficiently using Quadratic

42

Algorithm 2: Continual Learning
Initialize memories: episodic M and replay B∗
Set the replay period r
Set the replay batch size NB
Initialize MPNet fθ with parameters θ.
for t = 0 to T do
{Xobs,cinit,cgoal}t ← GetPlanningProblem()
σ← GetExpertDemo(Xobs,cinit,cgoal)
M ← UpdateEpisodicMemory(σ,M)
B∗← B∗∪σ

g← Ê(s,y)∼σ5θ l
(

fθ(s),y
)

gM ← Ê(s,y)∼M 5θ l
(

fθ(s),y
)

Project g to g′ using QP based on Equation 3.9
Update parameters θ w.r.t. g′

if B∗.size()> NB and not t mod r then
B ← SampleReplayBatch(B∗)
g← Ê(s,y)∼B5θ l

(
fθ(s),y

)
gM ← Ê(s,y)∼M 5θ l

(
fθ(s),y

)
Project g to g′ using QP based on Equation 3.9
Update parameters θ w.r.t. g′

Programming (QP) based on the duality principle, for details refer to [LPR17].

Various data parsing methods are available to update the episodic memory M . These sam-

ple selection strategies for episodic memory play a vital role in the performance of continual/life-

long learning methods such as GEM [IC18]. There exist several selection metrics such as surprise,

reward, coverage maximization, and global distribution matching [IC18]. In our continual learn-

ing framework, we use a global distribution matching method to select samples for the episodic

memory. For details and comparison of different sample selection approaches, please refer to

Section 3.17 (Sample Selection Strategies). The global distribution matching method, also known

as reservoir sampling, uses random sampling techniques to populate the episodic memory. The

aim is to approximately capture the global distribution of the training dataset since it is unknown

in advance. There are several ways to implement reservoir sampling. The simplest approach

43

accepts the new sample at i-th step with probability
|M |

i
to replace a randomly selected old

sample from the memory. In other words, it rejects the new sample at i-the step with probability

1−
|M |

i
to keep the old samples in the memory.

In addition to episodic memory M , we also maintain a replay/rehearsal memory B∗.

The replay buffer lets MPNet rehearse by learning again on the old samples (Line 14-19). We

found that rehearsals further mitigate the problem of catastrophic forgetting and leads to better

performance, as also reported by Rolnick et al. [RAS+19] in reinforcement learning setting. Note

that replay or rehearsal on the past data is done with the interval of replay period r ∈ N≥0.

Finally, Algorithm 2 presents the continual learning framework where an expert provides

a single demonstration at each time step, and MPNet model parameters are updated according to

the projected gradient g′.

Active Continual Learning

Active continual learning (ACL) is our novel data-efficient learning strategy which is

practical in the sense that the planning problem comes in streams and our method asks for expert

demonstrations only when needed. It builds on the framework of continual learning presented

in the previous section. ACL introduces a two-level of sample selection strategy. First, ACL

gathers the training data by actively asking for the demonstrations on problems where MPNet

failed to find a path. Second, it employs a sample selection strategy that further prunes the

expert demonstrations to fill episodic memory so that it approximates the global distribution from

streaming data. The two-level of data selection in ACL improves the training samples efficiency

while learning the generalized neural models for the MPNet.

Algorithm 3 presents the outline of ACL method. At every time step t, the environment

generates a planning problem (cinit,cgoal,Xobs) comprising of the robot’s initial cinit and goal cgoal

configurations and the obstacles’ information Xobs (Line 7). Before asking MPNet to plan a

44

Algorithm 3: Active Continual Learning
Initialize memories: episodic M and replay B∗
Initialize MPNet fθ with parameters θ.
Set the number of iterations C to pretrain MPNet.
Set the replay period r
Set the replay batch size NB
for t = 0 to T do
{Xobs,cinit,cgoal}t ← GetPlanningProblem()
σ← ϕ \\ an empty list to store path solution
if t > Nc then

xobs ⊂ Xobs
σ← fθ(xobs,cinit,cgoal)

if not σ then
σ← GetExpertDemo(Xobs,cinit,cgoal)
B∗← B∗∪σ

M ← UpdateEpisodicMemory(σ,M)

g← Ê(s,y)∼σ5θ l
(

fθ(s),y
)

gM ← Ê(s,y)∼M 5θ l
(

fθ(s),y
)

Project g to g′ using QP based on Equation 3.9
Update parameters θ w.r.t. g′

if B∗.size()> NB and not t mod r then
B ← SampleReplayBatch(B∗)
g← Ê(s,y)∼B5θ l

(
fθ(s),y

)
gM ← Ê(s,y)∼M 5θ l

(
fθ(s),y

)
Project g to g′ using QP based on Equation 3.9
Update parameters θ w.r.t. g′

motion for a given problem, we let it learn from the expert demonstrations for up to Nc ∈ N≥0

iterations (Line 9-10). If MPNet is not called or failed to determine a solution, an expert-planner

is executed to determine a path solution σ for a given planning problem (Line 13). The expert

trajectory σ is stored into a replay buffer B∗ and an episodic M memory based on their sample

selection strategies (Line 14-15). MPNet is trained (Line 16-19) on the given demonstration using

the constraint optimization mentioned in Equations 3.7-3.9. Finally, similar to continual learning,

we also perform rehearsals on the old samples (Line 20-25).

45

(a) (b) (c) (d) (e)

Figure 3.4: Online execution of MPNet: (a) global planning to output a coarse path. (b-c) a
neural replanning step. (d) lazy states contraction (LSC) method to prune redundant states. (e)
output feasible path.

3.1.4 MPNet: Online Planning

MPNet can generate both end-to-end collision-free paths and informed samples for the

SMPs. We denote our path planner and sample generator as MPNetPath and MPNetSMP,

respectively. MPNet uses two trained modules, Enet and Pnet.

Enet takes the obstacles’ information xobs and encodes them into a latent-space embedding

Z. Enet is either trained end-to-end with Pnet or separately with encoder-decoder structure. Pnet,

is a stochastic model as during execution it uses Dropout in almost every layer. The layers with

Dropout [SHK+14] get their neurons dropped with a probability p ∈ [0,1]. Therefore, every time

MPNet calls Pnet, due to Dropout, it gets a sliced/thinner model of the original planning network

which leads to a stochastic behavior. The stochasticity helps in recursive, divide-and-conquer

based path planning, and also enables MPNet to generate samples for SMPs. The input to Pnet is

a concatenated vector of obstacle-space embedding Z, robot current configuration ĉt , and goal

configuration cT . The output is the robot configuration ĉt+1 for time step t +1 that would bring

the robot closer to the goal configuration. We iteratively execute Pnet (Fig. 3.3(b)), i.e., the

new state ĉt+1 becomes the current state ĉt in the next time step and therefore, the path grows

incrementally.

46

Path Planning with MPNet

Path planning with MPNet uses Enet and Pnet in conjunction with our iterative, recursive,

and bi-directional planning algorithm. Our planning strategy has the following salient features.

Forward-Backward Bi-directional Planning: Our algorithm is bidirectional as we run

our neural models to plan forward, from start to goal, as well as to plan backward, from goal to

start, until both paths meet each other. To connect forward and backward paths we use a greedy

RRT-Connect [KL00] like heuristic.

Recursive Divide-and-Conquer Planning: Our planner is recursive and solves the given

path planning problem through divide-and-conquer. MPNet begins with global planning (Fig. 3.4

(a)) that results in critical, collision-free states that are vital to generating a feasible trajectory.

If any of the consecutive critical nodes in the global path are not connectable (Beacon states),

MPNet takes them as a new start and goal, and recursively plans a motion between them (Figs.

3.4 (b-c)). Hence, MPNet decomposes the given problem into sub-problems and recursively

executes itself on those sub-problems to eventually find a path solution.

In the remainder of this section, we describe the essential components of MPNetPath

algorithm followed by the overall algorithm execution and outline.

Bidirectional Neural Planner (BNP): In this section, we formally outline our forward-

backward, bidirectional neural planning method, outlined in Algorithm 4. BNP takes the envi-

ronment representation Z, the robot’s initial cinit and target cgoal configurations as an input. The

bidirectional path is generated as two paths, from start to goal (σa) and from goal to start (σb),

incrementally march towards each other. The paths σa and σb are initialized with the robot’s

start configuration cinit and goal configuration cgoal, respectively (Line 1). We expand paths in an

alternating fashion, i.e., if at any iteration i, a path σa is extended, then in the next iteration, a path

σb will be extended, and this is achieved by swapping the roles of σa and σb at the end of every

47

iteration (Line 10). Furthermore, after each expansion step, the planner attempts to connect both

paths through a straight-line, if possible. We use steerTo (described later) to perform straight-line

connection which makes our connection heuristic greedy. Therefore, like RRT-Connect [KL00],

our method makes the best effort to connect both paths after every path expansion. In case both

paths σa and σb are connectable, BNP returns a concatenated path σ that comprises of states from

σa and σb (Line 8-9).

Algorithm 4: BidirectionalNeuralPlanner(cinit,cgoal,Z)

σa←{cinit},σb←{cgoal}
σ←∅
for i← 0 to N do

cnew← Pnet
(
Z,σa

end,σ
b
end
)

σa← σa∪{cnew}
Connect← steerTo

(
σa

end,σ
b
end
)

if Connect then
σ← concatenate(σa,σb)
return σ

SWAP(σa,σb)

return ∅

Replanning: The bidirectional neural planner outputs a coarse path of critical points σ (Fig.

3.4 (a)). If all consecutive nodes in σ are connectable, i.e., the trajectories connecting them are in

obstacle-free space then there is no need to perform any further planning. However, if there are

any beacon nodes in σ, a replanning is performed to connect them (Fig. 3.4 (b-c)). The replanning

procedure is presented in Algorithm 5. The trajectory σ consists of states σ = {c0,c1, · · · ,cT}

given by BNP. The algorithm uses steerTo function and iterates over every connective state pairs

σi and σi+1 in a given path σ to check if there exists a collision-free straight trajectory between

them. If a collision-free trajectory does not exist between any of the given consecutive states,

a new path is determined between them through replanning. To replan, the beacon nodes are

presented to the replanner as a new start and goal pair together with the obstacles information.

We propose two replanning methods:

48

Algorithm 5: Replan(σ,Z,plan oracle)
σnew←∅
for i← 0 to size(σ)−1 do

if steerTo(σi,σi+1) then
σnew← σnew∪{σi,σi+1}

else
if plan oracle then

σ′← OraclePlanner(σi,σi+1,Xobs)

else
σ′← BNP(σi,σi+1,Z)

if σ′ then
σnew← σnew∪σ′

else
return ∅

return σnew

(i) Neural replanning (NP): NP takes the beacon states and makes a limited number of

attempts (Nr) to find a path solution between them using BNP. In case of NP, the plan oracle in

Algorithm 5 is set to False.

(ii) Hybrid replanning (HP): HP combines NP and oracle planner. HP takes beacon states

and tries to find a solution using NP. If NP fails after a fixed number of trials Nr, an oracle planner

is executed to find a solution, if one exists, between the given states (Line 9). HP is performed if

boolean plan oracle is set True in Algorithm 5.

Lazy States Contraction (LSC): This process is often known as smoothing or shortcutting

[HNTH10]. The term contraction was coined in graph theory literature [Ski]. We implement

LSC as a recursive function that when executed on a given path σ = {c0,c1, · · · ,cT}, leaves no

redundant state by directly connecting, if possible, the non-consecutive states, i.e., ci and c>i+1,

where i ∈ [0,T −1], and removing the lousy/lazy states (Fig. 3.4 (d)). This method improves the

computational efficiency as the algorithm will have to process fewer nodes during planning.

49

Steering (SteerTo): The steerTo function, as it name suggests, walks through a straight

line connecting the two given states to validate if their connecting trajectory lies entirely in the

collision-free space or not. To evaluate the connecting trajectory, the steerTo function discretize

the straight line into small steps and verifies if each discrete node is collision-free or not. The

discretization is done as σ(δ) = (1−δ)c1+δc2;∀δ ∈ [0,1] between nodes c1 and c2 using a small

step-size. In our algorithm, we use different step-sizes for the global planning, replanning, and

for final feasibility checks.

isFeasible: This function uses the steerTo to check whether the given path σ= {c0, · · · ,cT}

lies entirely in collision-free space or not.

Algorithm 6: MPNetPath(cinit,cgoal,xobs)

Z← Enet(xobs)
σ← BNP(cinit,cgoal,Z)// BidirectionalNeuralPlanner
σ← LazyStatesContraction(σ)
if IsFeasible(σ) then

return σ

else
plan oracle = False// use NeuralReplanning
for i← 0 to Nr do

σ← Replan(σ,Z,plan oracle)
σ← LazyStatesContraction(σ)
if IsFeasible(σ) then

return σ

plan oracle = True// use OraclePlanner
σ← Replan(σ,Z,plan oracle)// HybridReplanning
σ← LazyStatesContraction(σ)
if IsFeasible(σ) then

return σ

return ∅

MPNetPath Execution Summary: Algorithm 6 outlines our MPNetPath framework. Enet

encodes the raw point-cloud xobs into latent embedding Z (Line 1). BNP takes the given planning

problem (cinit,cgoal,Z) and outputs a coarse path σ (Line 2). The LSC function takes σ to remove

50

the redundant nodes and leaves only critical states crucial for finding a feasible path solution

(Line 3). If a path constituted by connecting the consecutive nodes in σ does not belong to the

collision-free region, a neural replanning (NP), followed by LSC, is performed for a fixed number

of iterations Nr (Line 8-12). The neural-replanning recursively gets deeper and finer in connecting

the beacon states whereas LSC function keeps on pruning out the redundant states after every

replanning step. In most case, the neural replanner is able to compute a path solution. However,

for some hard cases, where neural replanner fails to find a path between beacon states in σ, we

employ hybrid planning (HP) using an oracle planner (Line 13-14). Note that, in case of hybrid

replanning, the oracle planner is executed only for a small segment of the overall problem which

helps MPNetPath retains its computational benefits while being able to determine a path solution

if one exists.

Informed Sampling with MPNet

As mentioned earlier, our planning network (Pnet) is a stochastic model as it has Dropout

in almost every layer during the execution. We exploit the stochasticity of Pnet to generate

multiple informed samples that would be used as a sample generator for a classical SMP. Because

samples are informed in such a way that has high probability to be part of a connectable and

near-optimal path, it allows the underlying SMP to find solutions efficiently and quickly.

Algorithm 7 outlines the procedure to integrate our MPNetSMP with any SMP. MPNet’s

BNP performs one-step-ahead prediction, i.e., given obstacles representation Z, robot current

state ĉt , and goal state cT , it predicts a next state ĉt+1 closer to the goal than previous state ĉt .

We execute MPNetSMP to incrementally generate samples from start to goal in a loop for a

fixed number of iterations Nsmp before switching to uniform random sampling (Line 5-8). The

underlying SMP takes the informed samples (Line 9) and builds a tree starting from an initial

configuration. Due to informed sampling, the tree, in the beginning, is biased towards a subspace

that potentially contains a path solution and after certain iterations, the tree begins to expand

51

Algorithm 7: MPNetSMP(cinit,cgoal,xobs)

Initialize SMP(cinit,cgoal,Xobs)
crand← cinit
Z← Enet(xobs)
for i← 0 to n do

if i < Nsmp then
crand← BNP

(
Z,crand,cgoal

)
else

crand← RandomSampler()

σ← SMP
(
crand

)
if crand ∈ cgoal then

crand← cinit

if σend ∈ cgoal then
return σ

return ∅

uniformly. Hence, our MPNetSMP perform both exploitation and exploration. Once a path

solution σ is found, it is either returned as a solution or further optimized for a given cost function.

We also propose that our MPNetSMP can be adapted to generate samples for bidirectional

SMPs [QA15]. MPNetSMP generates informed samples incrementally between the given start

and goal, and just like the bidirectional heuristic of MPNetPath, it can be queried to generate

bidirectional samples. A simple modification for bidirectional sampling in Algorithm 7 would

be to initialize two random variable crandS and crandG with start and goal states, respectively, in

place of Line 2. Then use crandG instead of cgoal and swap the roles of crandS and crandG at the end

of every iteration. The proposed modification would allow informed bidirectional generation of

trees that are crucial for solving the narrow passage planning problems.

3.1.5 Implementation details

Data Collection:

Environment settings: In the case of point-mass and rigid-body-SE2, we randomly place

52

several quadrilateral blocks in the operating region of 40× 40 and 40× 40× 40 to generate

different 2D and 3D workspaces, respectively. Each random placement of the obstacle blocks

leads to a different environment/workspace. By following this procedure, 110 unique workspaces

were generated for point-mass and rigid-body-SE2 cases, i.e., simple 2D (s2D), rigid-body-

SE2, complex 2D (c2D) and complex 3D (c3D). The rigid-body-SE3 environment is a standard

OMPL’s [ŞMK12] home-like scenario. For Baxter robot, we created an L-shaped table top on

which 5 different objects representing obstacles were randomly placed to constitute 10 different

challenging environments in ROS Gazebo.

Point Cloud Generation: Since in point-mass and rigid-body-SE2 settings, the envi-

ronments contained quadrilateral blocks as obstacles, we generate the point-cloud for each

environment by randomly sampling points within those blocks. The point cloud for simple 2D,

complex 2D and rigid-body-SE2 contained 1400 points in 2D space obstacles, i.e., 2× 1400.

The point cloud for complex 3D environment also contained 1400 points but in 3D space, i.e.,

3×1400. These points were flattened to feed into the feed-forward neural encoder. For real-world

complex scenarios, like in Baxter cases and rigid-body-SE3 home-like environment, we get a raw

point-cloud using KINECT depth camera with the PCL [RC11] and pclros (http://wiki.ros.org/pcl).

The point-cloud dimensions for Baxter and rigid-body-SE3 were 3×5351 and 3×150008, re-

spectively. These point clouds can either be flattened or voxelized if Enet is a feed-forward neural

network or a 3D convolutional neural network (CNN), respectively. For 3D CNN, we voxelize

the point-cloud to 32×32×32 dimensions.

Demonstration Trajectories: To create trajectories, we randomly sample a fixed number

of obstacle-free states to create a list of start and goal pairs without repetition. We then use

an oracle planner, in our case RRT*, to generate feasible near-optimal trajectories between the

given start and goal pairs which forms the expert data for training and testing. In case of 2D/3D

point-mass and rigid-body-SE2, the training dataset comprised 4000 paths per workspace with a

total of 100 workspaces. We also created two test datasets, seen-Xobs and unseen-Xobs, to evaluate

53

our models. The seen-Xobs dataset comprised of 100 environments that were seen by the model

during training but with 200 unseen start and goal pairs per environment. The unseen-Xobs dataset

contained 10 unseen environments each of which contained 2000 unseen start and goal pairs.

For Baxter robot, we run RRT* to collect 900 training and 100 testing paths for each of the ten

environments between a fixed start configuration and a randomly selected goal configuration near

the table top. For rigid-body-SE3, we collect 2000 training and 500 testing trajectories between

randomly selected, unique collision-free poses of the rigid-body in the home environment.

(a) tr = 4.96s, tm = 0.02s (b) tr = 5.35s, tm = 0.02s (c) tr = 6.83s, tm = 0.03s (d) tr = 6.22s, tm = 0.04s

(e) tr = 8.37s, tm = 0.07s (f) tr = 9.70s, tm = 0.08s (g) tr = 26.61s, tm = 0.38s (h) tr = 27.81s, tm = 0.37s

Figure 3.5: Time comparison of MPNetPath:NP (Red, tm) and RRT* (Blue, tr) for computing
the near-optimal paths in environments such as simple 2D (a-b), complex 2D (c-d), complex 3D
(e-f), and rigid-body-SE2 (g-h).

3.1.6 Results

In this section, we present results evaluating MPNet against state-of-the-art classical

planners: RRT* [KF11], Informed-RRT* [GSB14], and BIT* [GSB15]. We use standard and

efficient OMPL [ŞMK12] implementations for classical planners. MPNet models were trained

54

(a) t = 0.13s,c = 32.46 (b) t = 0.13s,c = 38.02 (c) t = 0.25s,c = 27.57 (d) t = 0.21s,c = 37.23

(e) t = 0.22s,c = 40.73 (f) t = 0.18s,c = 36.48 (g) t = 0.29s,c = 39.51 (h) t = 0.21s,c = 40.26

Figure 3.6: MPNetSMP generating informed samples for RRT* to plan motions in simple 2D
(a-b), complex 2D (c-d) and complex 3D (e-h). The number of samples and time required to
compute the path are denoted by n and t, respectively.

with the PyTorch Python API, exported using TorchScript 1 so that they could be loaded in OMPL

for execution. Furthermore, for MPNet, we present the results of MPNetPath and MPNetSMP

trained with offline batch learning (B), continual learning (C), and active continual learning (AC).

The MPNetPath:NP and MPNetPath:HP uses neural and hybrid replanning, respectively. The

hybrid replanning exploits neural replanner for a fixed number of iterations Nr. The system used

for experiments has 3.40GHz× 8 Intel Core i7 processor with 32 GB RAM and GeForce GTX

1080 GPU.

Training & Testing Environments

We consider problems requiring the planning of 2D/3D point-mass robot, rigid-body-

SE2, rigid-body-SE3, and a 7DOF Baxter robot manipulator. We used encoder-decoder based

1https://pytorch.org/tutorials/advanced/cpp export.html

55

Table 3.1: Mean computation times with standard deviations are presented for MPNet (M) (all
variations), Informed-RRT* and BIT* on two test datasets, i.e., seen and unseen (shown inside
brackets), in four different environments.

Methods Environments

Simple 2D Complex 2D Complex 3D Rigid-body-SE2

IRRT* 1.06±0.33 (1.10±0.09) 1.60±0.47 (1.49±0.16) 2.99±0.82 (2.76±0.20) 15.58±2.85 (14.80±2.83)
BIT* 0.59±0.28 (0.65±0.30) 1.79±1.35 (1.61±0.53) 0.19±0.12 (0.20±0.04) 7.16±1.95 (6.52±1.65)

MSMP (B) 0.13±0.01 (0.13±0.00) 0.29±0.05 (0.23±0.07) 0.25±0.05 (0.23±0.06) 0.49±0.05 (0.39±0.04)
MPath:NP (C) 0.02±0.00 (0.02±0.00) 0.05±0.01 (0.05±0.01) 0.07±0.01 (0.08±0.01) 0.41±0.08 (0.39±0.07)

MPath:NP (AC) 0.03±0.01 (0.03±0.01) 0.06±0.01 (0.06±0.01) 0.08±0.01 (0.08±0.01) 0.53±0.12 (0.42±0.08)
MPath:NP (B) 0.02±0.00 (0.02±0.00) 0.04±0.00 (0.04±0.01) 0.06±0.01 (0.07±0.01) 0.38±0.04 (0.37±0.02)
MPath:HP (B) 0.04±0.03 (0.07±0.04) 0.13±0.07 (0.14±0.09) 0.09±0.03 (0.12±0.04) 0.42±0.30 (0.41±0.40)

0 20 40 60 80 100
Environments

8

6

4

2

0

2

Ti
m

e
(s

ec
),

lo
g-

sc
al

e

Complex 2D

0 20 40 60 80 100
Environments

3

2

1

0

1

Ti
m

e
(s

ec
),

lo
g-

sc
al

e

Complex 3D

0 20 40 60 80 100
Environments

4

3

2

1

0

Ti
m

e
(s

ec
),

lo
g-

sc
al

e

Simple 2D

0 20 40 60 80 100
Environments

6

4

2

0

2

Ti
m

e
(s

ec
),

lo
g-

sc
al

e

Rigid Body SE(2)

MPNetSMP (B) MPNetPath (B) MPNetPath (C) MPNetPath (AC) BIT* IRRT*

Figure 3.7: Mean computation time (log-scale) comparisons of MPNetPath:NP, MPNetSMP-
RRT*, Informed-RRT* (IRRT*) and BIT* on seen-Xobs dataset.

unsupervised learning in the case of point-mass robots, and rigid-body-SE2. In Baxter and

rigid-body-SE3 settings, we train Enet and Pnet together in an end-to-end setting.

In planning of 2D/3D point-mass and rigid-body-SE2, we train MPNet over one hundred

workspaces with each containing four thousand trajectories, and it is evaluated on two test datasets,

i.e., seen-Xobs and unseen-Xobs. The seen-Xobs comprises of one hundred workspaces seen by

MPNet during the training but two hundred unseen start and goal pairs in each environment.

Table 3.2: Success rates of all MPNet variants in the four environments on both test datasets,
seen and unseen (shown inside brackets).

Methods Environments

Simple 2D Complex 2D Complex 3D Rigid-body-SE2

MPNetPath:NP (C) 93.33 (93.18) 83.44 (83.78) 89.88 (90.86) 83.770 (86.18)
MPNetPath:NP (AC) 96.70 (97.83) 84.36 (84.08) 96.60 (95.28) 87.08 (87.64)
MPNetPath:NP (B) 99.30 (98.30) 99.71 (98.80) 99.11 (97.76) 94.21 (95.18)
MPNetPath:HP (B) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

MPNetSMP 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

56

0 2 4 6 8
Environments

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Ti
m

e
(s

ec
),

lo
g-

sc
al

e
Complex 2D

0 2 4 6 8
Environments

3

2

1

0

1

Ti
m

e
(s

ec
),

lo
g-

sc
al

e

Complex 3D

0 2 4 6 8
Environments

4

3

2

1

0

Ti
m

e
(s

ec
),

lo
g-

sc
al

e

Simple 2D

0 2 4 6 8
Environments

3

2

1

0

1

2

3

Ti
m

e
(s

ec
),

lo
g-

sc
al

e

Rigid Body SE(2)

MPNetSMP (B) MPNetPath (B) MPNetPath (C) MPNetPath (AC) BIT* IRRT*

Figure 3.8: Mean computation time (log-scale) comparisons of MPNetPath:NP and MPNetSMP
(with underlying RRT*) against Informed-RRT* (IRRT*) and BIT* on unseen-Xobs dataset.

simple 2D complex 2D complex 3D rigid-body
0

50

100

150

200

250

300

350

400

no
. o

f t
ra

in
in

g
pa

th
s (

x1
00

0)

Active Continual Learning
Batch/Continual Learning

Figure 3.9: The number of training paths required by MPNet when trained with active continual
learning and traditional learning.

The unseen-Xobs consists of ten new workspaces, not seen by MPNet during training, with each

containing two thousand start and goal pairs. For the 7DOF Baxter manipulator, our training

dataset containing ten cluttered environments with each having nine hundred trajectories, and

our test dataset contained the same ten workspaces as in training but one hundred new start

and goal pairs for each scenario. In rigid-body-SE3 planning, we consider OMPL’s [ŞMK12]

home-like environment, with training and testing dataset comprising two thousand trajectories

and five-hundred unseen start and goal 3D poses of the rigid-body, respectively. For all planners

presented in our experiments, we evaluate multiple trials on the given test dataset, and their mean

performance metrics are reported.

57

En
vi

ro
nm

en
t 4

En
vi

ro
nm

en
t 3

En
vi

ro
nm

en
t 2

En
vi

ro
nm

en
t 1

Goal configurationStart configuration Intermediate configurations

Figure 3.10: MPNetPath:NP plans motion for a Baxter robot in ten challenging environments,
out of which four are shown. The left- and right-most indicate robot’s initial and goal configura-
tions, respectively, and the blue duck shows the target.

MPNet Comparison with its Expert Demonstrator (RRT*)

We compare MPNet against its expert demonstrator RRT*. Fig. 3.5 shows the paths gen-

erated by MPNetPath (red), and its expert demonstrator RRT* (blue). The average computations

times of MPNetPath and RRT* are denoted as tR and tMP, respectively. The average Euclidean

path cost of MPNetPath and RRT* solutions are denoted as cR and cMP, respectively. It can be

seen that MPNet finds paths of similar lengths as its expert demonstrator RRT* while retaining

consistently low computational time. Furthermore, the computation times of RRT* are not only

higher than MPNetPath computation time but also grows exponentially with the dimensionality of

the planning problems. Overall, we observed that MPNetPath is at least 100× faster than RRT*

and finds paths that are within a 10% range of RRT*’s paths cost.

58

Fig. 3.6 presents informed trees generated by MPNetSMP with an underlying RRT*

algorithm. We report average path computation times and Euclidean costs denoted as t and c,

respectively. The generated trees by MPNetSMP are in a subspace of given configuration space

that most of the time contains path solutions. It should be noted that MPNetSMP paths are

almost optimal and are observed to be better than MPNetPath and its expert demonstrator RRT*

solutions. Moreover, our sampler not only finds near-optimal/optimal paths but also exhibit a

consistent computation time of less than a second in all environments which is much lower than

the computation time of RRT* algorithm.

MPNet Comparison with Advanced Motion Planners

We further extend our comparative studies to evaluate MPNet against advanced classical

planners such as Informed-RRT* [GSB14] and BIT* [GSB15].

Table 3.1 presents the comparison results over the four different scenarios, i.e., simple 2D

(Fig. 3.5 (a-b)), complex 2D (Fig. 3.5 (c-d)), complex 3D (Fig. 3.5 (e-f)) and rigid-body-SE2

(Fig. 3.5 (g-h)). Each scenario comprises of two test datasets, seen-Xobs and unseen-Xobs. We let

Informed-RRT* and BIT* run until they find a solution of Euclidean cost within 5% range of the

cost of MPNetPath solution. We report mean computation times with standard deviation over five

trials. In all planning problems, MPNetPath:NP (with neural replanning), MPNetPath:HP (with

hybrid replanning), and MPNetSMP exhibit a mean computation time of less than a second. The

state-of-the-art classical planners, Informed-RRT* and BIT*, not only exhibit higher computation

times than all versions of MPNet but, just-like RRT*, their computation times increase with the

planning problem dimensionality. In simplest case (Fig. 3.5 (a-b)), MPNetPath:NP stand out to

be atleast 80× and 30× faster than BIT* and Informed-RRT*, respectively. On the other hand,

MPNetSMP provides about 8× and 5× computation speed improvements compared to BIT*

and Informed-RRT*, respectively, in simple 2D environments. Furthermore, it can be observed

that the speed gap between classical planner and MPNet (MPNetPath and MPNetSMP) keeps

59

increasing with planning problem dimensions.

Fig. 3.7 and Fig. 3.8 present the mean computation time, in log-scale, of all MPNet

variants, Informed-RRT* (IRRT*), and BIT* on seen-Xobs and unseen-Xobs test datasets, respec-

tively. Note that MPNetPath trained with offline batch learning (B), continual learning (C), and

active continual learning (AC) show similar computation times as can be seen by their plots

in all planning problems. Furthermore, in Figs. 3.7-3.8, it can be seen that MPNetPath and

MPNetSMP computation times remain consistently less than one second in all planning problems

irrespective of their dimensions. The computation times of IRRT* and BIT* are not only high but

also lack consistency and exhibits high variations over different planning problems. Although the

computation speed of MPNetSMP is slightly lower than that of MPNetPath, it performs better

than all other methods in terms of path optimality for a given cost function.

MPNet Data Efficiency & Performance Evaluation

Fig. 3.9 shows the number of training paths consumed by all MPNet versions and Table

3.2 presents their mean success rates on the test datasets in four scenarios- simple 2D, complex

2D, complex 3D, and rigid-body-SE2. The success rate represents the percentage of planning

problems solved by a planner in a given test dataset. The models trained with offline batch

learning provides better performance in term of a success rate compared to continual/active-

continual learning methods. However, in our experiments, the continual/active-continual learning

frameworks required about ten training epochs compared to one hundred training epochs of

the offline batch learning method. Furthermore, we observed that continual/active-continual

learning and offline batch learning show similar success rates if allowed to run for the same

number of training epochs. The active continual learning is ultimately preferred as it requires less

training data than traditional continual and offline batch learning while exhibiting considerable

performance.

60

MPNet on 7DOF Baxter

Since BIT* performs better than Informed-RRT* in high dimension planning problems,

we consider only BIT* as our classical planner in our further comparative analysis. We evaluate

MPNet against BIT* for the motion planning of 7DOF Baxter robot in ten different environments

where each environment comprised of one hundred new planning problems. Fig. 3.10 presents

four out of ten environment settings. Each planning problem scenario contained an L-shape table

of half the Baxter height with randomly placed five different real-world objects such as a book,

bottle, or mug as shown in the figure. The planner’s objective is to find a path from a given

robot configuration to target configuration while avoiding any collisions with the environment, or

self-collisions. Table 3.3 summarizes the results over the entire test dataset. MPNet on average

find paths in less than a second with about 80% success rate. BIT* also finds the initial path in

less than a second with similar success rate as MPNet. However, the path costs of BIT* initial

solution are significantly higher than the path cost of MPNet solutions. Furthermore, we let BIT*

run to improve its initial path solutions so that the cost of the paths are not greater than 140%

of MPNet path costs. The results show that BIT* mostly fails to find solutions as optimal as

MPNet solutions but demonstrate about 56% success rate in finding solutions that are usually

40% larger in lengths/costs than MPNet path costs. Furthermore, the computation time of BIT*

also increases significantly, requiring an average of about 9 seconds to plan such paths. Fig.

3.12 shows the mean computation time and path cost comparison of BIT* and MPNet over ten

individual environments. It can be seen that MPNet computes paths in less than a second while

giving incredibly optimized solutions and is much faster compared to BIT*.

Fig. 3.11 shows a multi-goal planning problem for 7 DOF Baxter robot. The task is to

reach and pick up the target object while avoiding any collision with the environment and transfer

it to another target location, shown as yellow block. Note that in previous experiments we let

BIT* run until it finds paths within 40% of MPNet path costs. Now, we let BIT* run until it finds

a path within 10% cost of the cost of MPNet path solution. Our result shows that MPNetPath:NP

61

1 2 3 4

5 6 7 8

Figure 3.11: MPNetPath plans motion to pick up the blue object (duck), and move it to a new
target (yellow block) (Frame 8). Note that the stopwatch indicates the execution time not the
planning time.

Table 3.3: Computation time, path cost, and success rate comparison of MPNetPath:NP, and
BIT* on Baxter test dataset. BIT*’s times for finding the first path and further optimizing it
within 40% range of MPNet’s path cost are reported.

Methods Baxter

Time Path cost Success rate(%)

BIT* (Initial Path) 0.94±0.20 13.91±0.60 83.0
BIT* (±40% MPNet cost) 9.20±7.61 10.78±0.31 56.0

MPNetPath (C) 0.81±0.08 6.98±0.18 78.6
MPNetPath (B) 0.59±0.08 7.86±0.20 87.8

plans the entire trajectory in less than a second whereas BIT* took about 3.01 minutes to find a

path of similar cost as our solution. Note that MPNet is never trained on trajectories that connect

two configurations on the table. However, thanks to MPNet ability to generalize that it can solve

completely unseen problems in no time compared to classical planners that have to perform an

exhaustive search before proposing any path solution.

MPNet planning in SE (3)

To further extend our comparison of MPNet and BIT*, we also consider planning in SE (3)

for a rigid-body in a cluttered home-like environment with multiple narrow passages [ŞMK12],

as shown in the Fig. 3.13. Our test dataset comprised 500 randomly sampled start and goal poses

(not seen by MPNet during training), and the Fig. 3.13 shows two of those test cases. In these

settings, MPNet exhibits a success rate of about 85%. The mean computation time to find an

initial path solution for MPNet (B), MPNet (C), and BIT* were 0.96, 1.61, and 2.84 seconds,

62

0 2 4 6 8
Environments

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ti

m
e

(s
ec

),
lo

g-
sc

al
e

Average Planning Times For Baxter
MPNetPath (B)
MPNetPath (C)
BIT* (initial path)
BIT* (Within 40% MPNet cost)

0 2 4 6 8
Environments

7

8

9

10

11

12

13

14

15

Pa
th

 c
os

t

Average Path Costs For Baxter
MPNetPath (B)
MPNetPath (C)
BIT* (initial path)
BIT* (Within 40% MPNet cost)

Figure 3.12: Computational time (log-scale) and path length comparison of MPNet and BIT*
over ten challenging environments with 7DOF Baxter manipulator.

Figure 3.13: MPNet plans the motion of a rigid-body in SE(3) in a cluttered home-like environ-
ment with multiple narrow passages for randomly selected start and goal poses.

respectively. We also observed that MPNet paths’ cost were significantly lower than the cost of

BIT* solutions. The mean path costs of MPNet (B), MPNet (C), and BIT* were 457.80, 512.73,

and 836.85, respectively. Furthermore, we noticed that BIT* takes up to several minutes to find a

path of similar cost as MPNet’s solution.

3.1.7 Discussion

This section presents a discussion on various attributes of MPNet, sample selection meth-

ods for continual learning, and a brief analysis of its completeness, optimality, and computational

guarantees.

63

Stochastic Neural Planning & Replanning

In MPNet, we apply Dropout [SHK+14] to almost every layer of the planning network,

and it remains active during path planning. The Dropout randomly selects the neurons from its

preceding layer with a probability p ∈ [0,1] and masks them so that they do not affect the model

decisions. Therefore, at any planning step, Pnet would have a probabilistically different model

structure that results in stochastic behavior.

Yarin and Zubin [GG16] demonstrate the application of Dropout to model uncertainty

in the neural networks. We show that the Dropout can also be used in learning-based motion

planners to approximate the subspace of a given configuration space that potentially contains

several path solutions to a given planning problem. For instance, it is evident from the trees

generated by MPNetSMP (Fig. 3.6) that our model approximates the subspace containing path

solutions including the optimal path.

The perturbations in Pnet’s output, thanks to Dropout, also play a crucial role during

our neural replanning (Algorithm 5). In neural replanning, MPNet takes its own global path

and uses its stochastic neural planner (Algorithm 6) to replan a motion between any beacon

states. Replanning is a crucial component of our planning algorithm. Although the global plan

comprises collision-free nodes, the straight-line connection between those nodes might not be

collision-free (Fig. 3.4 (b)). We observed that without replanning, MPNet exhibits a low success

rate of about 60−70%. Since global planning decomposes a given problem into sub-problems,

the replanning between beacon nodes to solve sub-problems through our stochastic neural planner

helps our method to recover from any failures leading to a high success rate in complex, cluttered

environments.

Sample Selection Strategies

In continual learning, we maintain an episodic memory of a subset of past training data

to mitigate catastrophic forgetting when training MPNet on new demonstrations. Therefore,

64

it is crucial to populate the episodic memory with examples that are important for learning a

generalizable model from streaming data. We compare four MPNet models trained on a simple

2D environment with four different sample selection strategies for the episodic memory. The

four selection metrics include surprise, reward, coverage maximization, and global distribution

matching. The surprise and reward metrics give higher and lower priority to examples with

large prediction errors, respectively. The coverage maximization maintains a memory of k-

nearest neighbors. The global distribution matching, as described earlier, uses random selection

techniques to approximate the global distribution from streaming data. We evaluate four MPNet

models on two test datasets, seen-Xobs and unseen-Xobs, from simple 2D environment, and their

mean success rates are reported in Fig. 3.14. It can be seen that global distribution matching

exhibits slightly better performance than reward and coverage maximization metrics. The surprise

metric gives poor performance because satisfying the constraint in Equations 3.9 becomes nearly

impossible when the episodic memory is populated with examples that have large prediction

losses. Since global distribution matching provides the best performance overall, we have used it

as our sample selection strategy for the episodic memory in the continual learning settings.

0 50 100 150 200 250 300 350 400
Evaluation iterations

65

70

75

80

85

90

95

Su
cc

es
s r

at
e

(%
)

Performance on seen test environments

Distribution matching
Surprise
Reward
Coverage maximization

0 50 100 150 200 250 300 350 400
Evaluation iterations

70

75

80

85

90

95

Su
cc

es
s r

at
e

(%
)

Performance on unseen test environments

Distribution matching
Surprise
Reward
Coverage maximization

Figure 3.14: Impact of sample selection methods for episode memory on the performance of
continual learning for MPNet in simple 2D test datasets seen-Xobs and unseen-Xobs.

65

Batch offline & Active Continual Learning

In this section, we briefly highlight the merits of our training approaches. A batch offline

learning is preferred when plenty of data is available for offline training, especially in cases where

existing planners can be used to generate data. However, in cases where data is expensive to

make, an active continual learning approach is preferable as it asks for demonstration only when

needed leading to data-efficient training of our models. For instance, in semi-autonomous driving,

the planning problems would usually come in streams, and our neural planner will only ask for a

human demonstration when needed. Also, to realize classical life-long learning one can combine

both batch offline and active continual learning where models are pre-trained with the former and

further refined with the latter whenever needed.

Completeness

In this section, we discuss the completeness guarantees of MPNet, formally proposed as

follow:

Proposition 3.1 (Feasible Path Planning): Given a planning problem {cinit,cgoal,xobs},

and a collision-checker, MPNet finds a path solution σ : [0,T], if one exists, such that σ0 = cinit,

σT ∈ cgoal, and σ⊂ Cfree.

Proposition 3.1 implies that for a given planning problem, MPNet will eventually find a feasible

path, if one exists. We show that the worst-case completeness guarantees of our approach rely

on the underlying SMP for both path planning (MPNetPath) and informed neural sampling

(MPNetSMP). In our experiments, we use RRT* as our oracle SMP that exhibits probabilistic

completeness.

The probabilistic completeness is described in Definition 3.1 based on the following

notations. Let T AL
n be a connected tree in obstacle-free space, comprising of n vertices, generated

by an algorithm AL. We also assume T AL
n always originates from the robot’s initial configuration

66

cinit. An algorithm is probabilistically complete if it satisfies the following definition.

Definition 3.1 (Probabilistic Completeness): Given a planning problem {cinit,cgoal,Xobs}

for which there exists a solution, an algorithm AL with a tree T AL
n that originates at cinit is

considered probabilistically complete iff limn→∞P(T AL
n ∩ cgoal 6=∅) = 1.

RRT* algorithm exhibits probabilistic completeness as it builds a connected tree origi-

nating from initial robot configuration and randomly exploring the entire space until it finds a

goal configuration. Therefore, as the number of samples in the RRT* approach to infinity the

probability of finding a path solution, if one exists, gets to one, i.e.,

lim
n→∞

P(T RRT ∗
n ∩ cgoal 6=∅) = 1 (3.10)

In remainder of the section, we present a brief analysis showing that MPNetPath and

MPNetSMP also exhibit probabilistic completeness like their underlying RRT*.

Probabilistic completeness of MPNetPath: To justify MPNetPath worst-case guarantees, we

introduce the following assumptions that are crucial to validate a planning problem.

Assumption 3.1 (Feasibility of States to Connect): The given start and goal pairs

(cinit,cgoal), for which an oracle-planner is called to find a path, lie entirely in obstacle-free

space, i.e., cinit ∈ Cfree and cgoal ⊂ Cfree.

Assumption 3.2 (Existence of a Path Solution) Under Assumption 1, for a given problem

(cinit,cgoal,Xobs), there exists at least one feasible path σ that connects cinit and cgoal, and σ 6⊂Xobs.

Based on Definition 3.1 and Assumptions 3.1-3.2, we propose in Theorem 3.1, with a

sketch of proof, that MPNetPath also exhibits probabilistic completeness, just like its underlying

oracle planner RRT*.

Theorem 3.1 (Probabilistic Completeness of MPNetPath): If Assumptions 1-2 hold, for a

given planning problem {cinit,cgoal,Xobs}, and an oracle RRT* planner, MPNetPath will find a

67

path solution, if one exists, with a probability of one as the underlying RRT* is allowed to run till

infinity if needed.

Sketch of Proof: Assumption 3.1 puts a condition that the start and goal states in the given

planning problem lie in the obstacle-free space. Assumption 3.2 requires that there exist at least

one collision-free trajectory for the given planning problem. During planning, MPNetPath first

finds a coarse solution σ that might have beacon (non-connectable consecutive) states (see Fig.

3.4). Our algorithm connects those beacon states through replanning. Assumption 3.1 holds for

the beacon states as each generated state of MPNetPath is evaluated by an oracle collision-checker

before making it a part of σ. In replanning, we perform neural replanning for a fixed number

of trials to further refine σ, and if that fails to conclude a solution, we connect any remaining

beacon states of the refined σ by RRT*. Hence, if Assumption 3.1-3.2 hold for beacon states,

MPNetPath inherits the convergence guarantees of the underlying planner which in our case is

RRT*. Therefore, MPNetPath with an underlying RRT* oracle planner exhibits probabilistic

completeness.

Probabilistic completeness of MPNetSMP MPNetSMP generates samples for SMPs such

as RRT*. Our method performs exploitation and exploration to build an informed tree. It

begins with exploitation by sampling a subspace that potentially contains a solution for a limited

time and switches to exploration via uniform sampling to cover the entire configuration space.

Therefore, like RRT*, the tree of MPNetSMP is fully connected, originates from the initial robot

configuration, and eventually expands to explore the entire space. Hence, the probability that

MPNetSMP tree will find a goal configuration, if possible, approaches one as the samples in the

tree reaches a large number, i.e.,

lim
n→∞

P(T MPNetSMP
n ∩ cgoal 6=∅) = 1 (3.11)

68

Optimality

MPNet learns through imitating the expert demonstrations which could come from either

an oracle motion planner or a human demonstrator. In our experiments, we use RRT* for

generating expert trajectories, hybrid replanning in MPNetPath, and as a baseline SMP for our

MPNetSMP framework. Optimal SMPs such as RRT* exhibits asymptotic optimality, i.e., a

probability of finding an optimal path, if one exists, approaches one as the number of random

samples in the tree approaches infinity (for proof, refer to [KF11]). RRT* gets weak-optimality

guarantees from its rewiring heuristic. The rewiring incrementally updates the tree connections

such that over the time, each node in the tree would be connected to a branch that ensures lowest

cost path to the root state (initial robot configuration) of the tree.

In our experiments, we show that MPNetPath imitates the optimality of its expert demon-

strator. In Fig. 3.5, it can be seen that MPNet path solutions are of similar Euclidean costs as its

expert demonstrator RRT* path solutions. Therefore, the quality of the MPNet paths relies on the

quality of its training data.

In the case of MPNetSMP, there exists optimality guarantees depending on the underlying

SMP. Since we use RRT* as a baseline SMP for MPNetSMP, we formally propose in Proposition

3.2 that our method exhibits asymptotic optimality.

Proposition 3.2 (Optimal Path Planning): Given a planning problem {cinit,cgoal,xobs}, a

collision-checker, and a cost function J(·), MPNet can adaptively sample the configuration space

for an asymptotic optimal SMP such that the probability of finding an optimal path solution, if

one exists, w.r.t. J(·) approaches one as the number of samples in the graph approaches infinity.

In our sampling heuristic, MPNetSMP generates informed samples for a fixed number of

iterations and performs uniform random sampling afterward. Therefore, RRT* tree formed by

the samples of MPNetSMP will explore the entire C-space and will be rewired incrementally to

ensure asymptotic optimality. Since MPNetSMP only performs intelligent sampling and does

not modify the internal machinery of RRT*, the optimality proofs will exactly be the same as

69

provided in [KF11]. Hence, provided that MPNetSMP performs exploitation for fixed steps and

pure exploration afterward, and the underlying SMP is RRT*, the optimality of our method is

asymptotically guaranteed .

Computational Complexity

In this section, we present the computational complexity of our method. Both MPnetPath

and MPNetSMP take the output of Enet and Pnet, which is only a forward-pass through a neural

network. The forward pass through a neural network is known to have a constant complexity

since it is a matrix multiplication of a fixed size input vector with network weights to generate

a fixed size output vector. Since MPNetSMP produces samples by merely forward passing a

planning problem through Enet and Pnet, it does not add any complexity to the underlying SMP.

Therefore, the computational complexity of MPNetSMP with underlying RRT* is the same as

RRT* complexity, i.e., O(n logn), where n is the number of samples [KF11].

On the other hand, MPNetPath has a crucial replanning component that uses an oracle

planner in the cases where neural replanning fails to determine an end-to-end collision-free path.

The oracle planner in the presented experiments is RRT*. Therefore, in the worst-case, MPNetPath

operates with complexity of O(n logn). However, we show empirically that MPNetPath succeeds,

without any oracle planner, for up to 90% of the cases in a challenging test dataset. For the

remaining 10% cases, oracle planner is executed only for a small segment of the overall path

(see Algorithm 6). Hence, even for hard planning problems where MPNetPath fails, our method

reduces a complicated problem into a simpler problem, thanks to its divide-and-conquer approach,

for the underlying oracle planner. Thus, the oracle planner operates at a complexity which is

practically much lower than its worst-case theoretical complexity, as is also evident from the

results of MPNetPath with hybrid replanning (HB) in Table 3.1.

70

3.2 Kinodynamic Constraints

As mentioned earlier, the motion planning problem is to find a path connecting the given

start and goal states while satisfying all the desired constraints on the robot motion. Geometric

motion planning is a simple instance that considers only collision-avoidance constraints with

states representing the robot’s kinematic variables (e.g., position, joint-angles) [LaV06]. However,

in KMP, the state comprises position, velocity, and sometimes acceleration. The robot motions

are required to satisfy both kinematic (e.g., collision-avoidance) and dynamics (e.g., velocity

and acceleration) constraints, which makes the problem PSPACE-hard and computationally

demanding [LaV06].

The KMP has a broad range of applications from torque-constrained robot manipulation

to speed racing [AYYS16] and performing acrobatic motions [KLR+20]. The existing state-

of-the-art methods solve KMP through Sampling-based Motion Planners (SMPs) [LaV06] by

constructing a tree that originates from a start state and expands by searching the entire state space

to reach the given goal state. The edges of the tree, connecting any two intermediate states, are

formed by a local steering function. The local steering often requires solving a boundary-value

problem (BVP) through trajectory optimization, which is known to be NP-hard [Kac02] and fails

when the boundary constraints are not satisfied. A recent development led to another sampling-

based KMP approach [LLB16], called Stable Sparse-RRT (SST), that circumvents solving BVPs

by using a random shooting method for steering and achieves asymptotic optimality. However, it

still takes long computation times from tens of seconds to minutes due to uniform exploration of

state and control spaces as environments become more complicated.

To overcome the limitation of prior methods and utilize strengths of neural motion

planners, we propose an imitation learning-based approach named Model-Predictive Motion

Planning Networks (MPC-MPNet)2 [LMQY21] . It has a deep neural networks-based generator

and discriminator, which, once trained using expert data, outputs feasible paths that satisfy the

2Supplementary videos and code release details are available at https://sites.google.com/view/mpc-mpnet

71

given kinodynamic constraints. Our approach extends the Motion Planning Networks (MPNet)

[QMSY20] and leverages collision-aware Model Predictive Control (MPC) methods in the plan-

ning loop for parallelizable local steering. Note that the original MPNet framework [QMSY20]

considered only geometric planning problems and relied on bidirectional path expansions and

re-planning steps for finding path solutions to given problems. In KMP, the bidirectional path

extensions and re-planning steps to repair in-collision path segments often lead to discontinuity

and infeasible paths. Therefore, in MPC-MPNet, we propose novel planning algorithms that

perform only forward path expansion and avoid re-planning by building a set of informed possible

paths. We evaluate our approach in challenging under-actuated robotics problems in complex,

cluttered environments. Our results show that MPC-MPNet outperforms state-of-the-art planning

algorithms in computational speed and generalizes to unseen planning problems with high success

rates.

3.2.1 Related Work

This section presents a brief overview of related work done in the past for solving KMP

problems. KMP algorithms depend on the local steering function to satisfy the motion constraints

between any two given states. The local steering methods are usually implemented either as

(i) random shooting methods which uniformly samples control sequences [DXCR93] [LKJ01]

[LLB16], (ii) predefined motion primitives [SBFP19], or (iii) local trajectory optimization solvers

[XvdBPA15] [PPK+12] [GPPK13] [TMTR10].

Sampling random control sequences for shooting method has the advantage of worst-case

theoretical guarantees. For instance, the SST approach [LLB16] leverages random exploration

of control and state spaces to provide the worst-case asymptotic completeness and optimality

guarantees. However, these methods struggle in higher-dimensional and cluttered planning spaces

since uniform exploration takes large computation times to determine a feasible path solution. In

contrast, the motion primitives methods generate a local database of optimal controllers in their

72

offline stage [SBFP19] and use them for steering under KMP algorithms. However, as the motion

primitive set is finite, it usually does not capture the entire control space and lacks completeness

guarantees.

The trajectory optimization methods formulate local steering as an optimization problem

and iteratively solve them for computing action sequences connecting the given states. For

instance, [WVDB13] [GPPK13] locally linearize the system and obtain Linear Quadratic Regula-

tors’ (LQR) parameters using optimization for steering. Tedrake et. el [TMTR10] extend LQR

methods to construct a tree connecting states within stability regions defined by LQR funnels.

However, these methods add a substantial computational burden when constructing trees and

do not apply to online planning problems. In a similar vein, Xie et. el [XvdBPA15] formulated

local steering as BVP and used optimization to find their solutions. These BVP solvers operate in

conjunction with traditional SMPs [LaV06] for finding solutions to KMP problems. However,

their approach often collapse when the boundary constraints are not satisfied.

Another class of methods in KMP learn local controllers for steering through reinforce-

ment and imitation learning. For instance, [CHF+19] uses reinforcement learning (RL) to acquire

local policy for steering within SMP methods. Similarly, [OSJ+20] [OJO+20] constructs high-

level landmarks, which are later connected by local RL policies. However, these methods inherit

RL limitations such as requiring exhaustive interactions with their environments for learning.

In the imitation learning paradigm, [WBMW18] and [AP19] use expert demonstrations to learn

local policies for connecting given states, but they still rely on classical planners to generate those

state sequences.

Recent developments overcome the limitations of classical motion planning by incorpo-

rating learned planning distributions into their algorithms [QSBY19] [QMSY20] [IHP18] [IP19].

These learning-based planners quickly generate feasible motion sequences online for finding path

solutions but mostly consider geometric planning problems. Among them, MPNet [QSBY19]

[QMSY20] generates end-to-end paths by exploiting learned distributions in a bidirectional man-

73

ner throughout its planning and replanning process. MPNet has also been extended to consider

kinematic [QDCY20] and non-holonomic [JLL+20] constraints. However, these extensions still

rely on bidirectional planning, which often leads to discontinuities and infeasible paths in KMP

problems.

3.2.2 Model Predictive Motion Planning Networks

In this section, we formally present MPC-MPNet, an end-to-end learning-based KMP

algorithm. Let C denote a configuration space (C-space) of a mechanical system, where collision

and collision-free regions are represented as Cobs and C f ree = C\Cobs, respectively. Let X denote

the state space in which a state, x = (c, ċ) ∈ X , contains a configuration c ∈ C and the time

derivative ċ. Like C-space, the state space also contains the collision Xobs and collision-free

X f ree state spaces. The system’s dynamics model, represented by an implicit set of equations,

can be formulated as ẋ = f (x,u), where u denotes the control input to a system from a feasible

control set U. In general, the objective of KMP for the given initial state xinit and goal region

Xgoal ⊂ X f ree is to find a collision-free trajectory σ = [(x,u,τ)t]
T
t=0, comprising a sequence of

states [xt]
T
t=0 7→ X f ree and controls [ut]

T
t=0 7→U with their corresponding durations [τt]

T
t=0, such

that x(0) = xinit , x(T) ∈ Xgoal .

MPC-MPNet iteratively generates waypoints and local steering trajectories to construct

collision-free paths connecting the start and goal states under kinodynamic constraints. It includes

a neural generator, discriminator, and two novel planning algorithms named MPC-MPNetPath

and MPC-MPNetTree. The main components of our approach are described as follows.

Observation Encoder

The observation encoder embeds the workspace information, represented as voxel maps v,

into latent features Z containing critical anchor points for the underlying neural generator and

discriminator. The voxel maps are volumetric with dimensions L×W ×H×C, corresponding

74

to length, width, height, and number of channels, respectively, and are usually processed by 3D

convolutional neural networks (CNNs). However, we convert the voxel maps into voxel patches

with dimensions L×W ×Ĉ, where Ĉ = HC, and use the 2D-CNNs for learning the embeddings.

This is because 3D-CNNs are known to be computationally inefficient as their representations are

inherently cubic and usually contain empty volumes [ZLU18].

Neural Generator

The neural generator G, with parameters θg, is a stochastic neural model that outputs

intermediate waypoints x̂t+1 for the given environment encoding Z, robot’s current state xt ∈ X f ree

and goal state xgoal ∈ Xgoal , i.e.,

x̂t+1← G(Z,xt ,xgoal;θg) (3.12)

The neural generator adopts Dropout [SHK+14] in almost every layer to generate stochastic

samples. The Dropout randomly selects neurons in each trained network layer, resulting in a

sliced model in every forward pass. This operation leads to randomness adapted from expert

data. In contrast, other techniques, such as input Gaussian noise, are agnostic of underlying data

distribution and incurs difficulty in training deep neural models [CWD+18].

Our neural generator is trained end-to-end with the observation encoder by optimizing the

following mean square error between the predicted states x̂ and the demonstration trajectories’

states x∗, i.e.,

LGθg
=

1
Np

N

∑
i=0

1
Ti

Ti−1

∑
j=0
‖x̂i, j+1− x∗i, j+1‖2 (3.13)

where Np is the total number of paths and Ti is the length of each path i in the dataset.

75

Search tree Predict next states
and their associated

costs

Select a collision-free
state with minimum cost-

to-go

Steer with MPC

MPNet
Path MPC

Figure 3.15: MPC-MPNetPath In each iteration, the neural generator predicts a batch of next
states from a given current and select a collision-free state with a minimum estimated cost for
the tree expansion using MPC.

Search tree

... ...MPNet
Tree MPC

Predict batch of next
states

Generate random
samples and find their

nearest nodes

Steer with parallelized
MPC

...

Figure 3.16: MPC-MPNetTree The neural generator predicts a batch of next states from nearest
neighbors of random states inside a search tree. The parallelized MPC finds the local controllers
between them.

Neural Discriminator

Due to stochasticity in the neural generator, the predictions are usually scattered towards

the given target. To select the best state from the given set, we introduce a neural discriminator

network that predicts a given state’s time-to-reach the desired target. Our planning procedures

leverage the time-to-reach predictions as a cost to prune outputs of the neural generator.

Hence, the discriminator D, with parameters θd , takes environment embedding Z, the

robot state xt and xgoal as input, and predicts the cost as:

d̂t ← D(Z,xt ,xgoal;θd) (3.14)

The neural discriminator is trained to minimize the mean square error between the predicted costs

and the real costs:

LDθd
=

1
Np

N

∑
i=0

1
Ti

Ti−1

∑
j=0
‖d̂i, j+1− (

Ti

∑
k= j+1

d∗i,k)‖2 (3.15)

where d∗i,k is the cost to goal at waypoint k in the path i.

76

To balance the positive and negative training samples and enhance the discriminator’s

performance, we augment the training data by assigning large penalties to in-collision waypoints

and unreachable transition pairs. As a result, the trained discriminator predicts high costs for

invalid states and eliminates anomalous waypoints.

Model Predictive Control

To satisfy the kinodynamic constraints during tree/path expansion, we utilize MPC as a

steering function, a strategy widely used for optimal control problems. We use MPC for several

reasons, including implementation simplicity, lower computational complexity, and parallel

computation potential. Furthermore, compared to BVP solvers, MPC models the trajectory

generation process as an initial-value problem. Therefore, MPC does not collapse when the

terminal state is unreachable and instead returns a nearest, valid terminal state. In contrast, BVP

solvers fail in such situations because boundary conditions are not satisfied.

MPC takes a current xt , a target state x̂t+1, and generates an optimized trajectory σt =

[(x,u,τ)t] minimizing the cost between the propagated terminal state and x̂t+1. Our MPC solver

is implemented with Cross Entropy Method (CEM) [BKRE] and time-elastic-band approach to

optimize both control and their duration sequences [RHB15]. CEM takes advantage of the Monte

Carlo method and importance sampling to estimate the optimal trajectories distribution iteratively.

Algorithm 8 outlines our MPC approach. Using sampled controls and durations from

a parameterized distribution (u,τ)i ∼ D(u,τ;θmpc), we propagate and generate the steering

trajectory σi, from the given starting state xt . These propagations are ranked through a cost

function defined as ds = d(σi, x̂t+1)+dc(σi), where d(·) is the distance metrics between given

states and dc(·) is a collision penalty function. The cost function selects the elite samples, i.e., the

propagated states with the lowest scores. These elite states are used to update MPC parameters

θmpc by minimizing the cross-entropy loss between the distributions of steered terminal states and

the target state x̂t+1. Note that, the collision penalty discourages in-collision trajectory expansions.

77

Furthermore, in our implementation, we assume the distribution D(u,τ;θmpc) of controls and

their durations at each time step to be Gaussian distributions.

Algorithm 8: Model Predictive Control (xt , x̂t+1)
initialize parameters θmpc;
for iter← 1 to Niter do

for ui,τi ∼D(u,τ;θmpc) do
Propagate xt with ui,τi to generate σi;
Evaluate dsi = d(σi, x̂t+1)+dc(σi);
Select elite samples based on their scores;
Update θmpc with elite samples;
Update optimal trajectory with the best σ∗i

return σ∗i ;

Parallelization

We use neural networks to process multiple waypoints as a batch to improve performance

and implement our MPC algorithm using tensors on Graphic Processing Units (GPUs) for parallel

processing. With parallel computation, the neural networks and MPC are accelerated to process

up to NB ∈ N samples simultaneously. To represent batch parallel processing, we introduce new

notations denoting all vectorized inputs in batch form using the symbol B, i.e.,

Bt =



x1
t

x2
t
...

xNB
t


,Bgoal =



xgoal

xgoal

...

xgoal


,BZ =



Z

Z
...

Z


, (3.16)

where Bt , Bgoal , and BZ correspond to the batch of current states, desired states, and observation

encodings.

During execution, our stochastic generator outputs a variety of next states Bt+1, and the

78

discriminator predicts their associated costs Bdt+1 as:

B̂t+1← G(BZ,Bt ,Bgoal;θg) (3.17)

Bdt+1 ← D(BZ, B̂t+1,Bgoal;θd) (3.18)

For the given start Bt and target B̂t+1 states, our parallelized MPC generates their corresponding

local kinodynamic trajectories as:

Bσt ←MPC(Bt , B̂t+1) (3.19)

where Bσt = [(xi,ui,τi)t]
NB
i=1 is a batch of local trajectories at time t.

Algorithm 9: MPC-MPNetPath (Z,xinit ,xgoal)

T ←{xinit}, Bt ← xinit ;
BZ ← Z, Bgoal ← xgoal;
for i← 1 to n do

B̂t+1← G(BZ,Bt ,Bgoal;θg);
x̂t+1←x̂t+1 D(BZ, B̂t+1,Bgoal;θd);
σt ←MPC(xt , x̂t+1);
if Invalid(σt) then

Bt ← randomNode(T);

else
addToTree(σt ,T);
set batch Bt with a terminal state of σt ;

if Reached(T,xgoal) then
return ExtractPath(T);

return ∅;

79

Algorithm 10: MPC-MPNetTree (Z,xinit ,xgoal)

T ←{xinit};
BZ ← Z, Bgoal ← xgoal;
for i← 1 to n do

Brand ← RandomSample();
Bt ← NearestNeighbor(Brand,T);
B̂t+1← G(BZ,Bt ,Bgoal;θg);
Bσt ←MPC(Bt , B̂t+1);
addToTree(Bσt ,T);
if Reached(T,xgoal) then

return ExtractPath(T);

return ∅;

Planning Algorithms

In this section, we present our planning algorithms that balance exploration-exploitation

in their different ways for quickly finding a path solution with a unidirectional tree expansion.

MPC-MPNetPath: Figure 3.15 and Algorithm 9 outline our MPC-MPNetPath algorithm. The

procedure begins by generating a batch of new samples using the neural generator G. The discrim-

inator D prunes the generated batch Bt by selecting a sample x̂t+1 with a minimum cost d̂ to reach

the given target xgoal . The MPC module takes the current node xt and selected next state x̂t+1 to

perform the kinodynamic steering, leading to a local trajectory σt . The terminal state of σt is the

resulting valid state xt+1 (as close as possible to x̂t+1 while satisfying constraints) after the execu-

tion of u on state xt for time duration τ. The local trajectory is added to the tree if it is valid. In the

case of invalid local trajectory, i.e., not collision-free, a random node is selected from the tree and

is treated as new current state xt for the next planning iteration. Once, the goal is reached, an end-

to-end path is extracted connecting the given start and goal states under kinodynamical constraints.

MPC-MPNetTree: This method leverages (i) the innate capacity of neural networks to pro-

cess batches, and (ii) our parallelized MPC framework to expand multiple nodes of the search

80

tree simultaneously, directed towards the given target states Bgoal . The algorithm is summarized

in Figure 3.16 and Algorithm 10. In each iteration, MPC-MPNetTree samples a set of random

states Brand using the RandomSample function and finds their corresponding nearest neighbors

in the tree by calling the NearestNeighbor function. These nearest nodes are treated as current set

of states Bt for the underling MPC-MPNet procedures, i.e., the generator outputs the next batch

of samples and MPC computes their local trajectories Bσt . The valid local trajectories are added

to the search tree, and the final path is extracted once the tree reaches to the given goal state.

(a) (b) (c) (d)

Figure 3.17: We consider the following robotic systems, (a) Acrobot, (b) Cartpole, (c) Car,
and (d) Quadrotor, with complex dynamics for our cluttered, kinodynamically constrained
environments.

3.2.3 Implementation Details

Table 3.4: The total mean computation times with standard deviations in seen test environments
are presented for MPC-MPNetPath (MP-Path), MPC-MPNetTree (MP-Tree), and SST in various
kinodynamic planning problems.

Methods Planning Tasks

Acrobot Cart-Pole Quadrotor Car-like

MP-Path 5.09±6.87 4.74±7.37 0.46±2.12 8.96±12.33
MP-Tree 4.19±6.03 4.43±6.07 2.26±3.26 7.51±8.72

SST 28.32±20.53 14.99±14.29 143.69±143.43 41.69±70.31

This section describes the necessary implementation details of our frameworks with their

training and testing environments. We implement our neural modules using Pytorch and export

81

Table 3.5: The total mean computation times with standard deviations in unseen test environ-
ments are presented for MPC-MPNetPath (MP-Path), MPC-MPNetTree (MP-Tree), and SST in
various kinodynamic planning problems.

Methods Planning Tasks

Acrobot Cart-Pole Quadrotor Car-like

MP-Path 9.88±8.70 7.93±9.13 0.41±1.12 19.10±21.25
MP-Tree 6.13±7.90 4.36±5.55 1.78±2.45 8.40±11.48

SST 21.37±23.02 12.21±10.11 251.03±197.83 28.16±40.00

them to C++ with Torchscript. Our parallelized MPC algorithm follows standard GPU program-

ming. For the training and testing environments, we consider the following kinodynamically

constrained, cluttered environments with schematics shown in Fig. 3.17.

Acrobot

We use the acrobot dynamics as specified in [Spo98]. The state space is defined as

[θ1,θ2.θ̇1, θ̇2] ∈ [−π,π]2× [−6,6]2. The control space is defined as [−4,4]. We generate four

rectangular obstacles and restrict the center of the obstacles to lie inside the annulus that affects

the acrobot movement.

Cartpole

The cartpole dynamics are used as specified in [PKP14]. The state space is defined

as: [x, ẋ,θ, θ̇] ∈ [−30,30]× [−40,40]× [−π,π]× [−2,2]. and the control space is defined as

[−300,300]. We randomly place seven rectangular obstacles in the environment to challenge and

restrict the cartpole motion.

Car

This is a 2D first-order car system, where the state space is of 3DOF, including position and

orientation. The control inputs are the position velocity and angular velocity. The state space is

defined as [x,y,θ]∈ [−25,25]× [−35,35]× [−π,π] and control space bound as [0,2]× [−0.5,0.5].

82

We randomly place five rectangular obstacles in the workspace, and limit the distance between

obstacles to ensure narrow passages.

Quadrotor

We define the quadrotor dynamics as in [AOJJ13]. The state space is defined as:

[p,q, ṗ,ω], where p and q denote the position and orientation of the quadrotor, respectively,

with their corresponding time derivatives, indicating velocity, represented as ṗ and ω. The control

space is 4 dimensional with bound [−15,−5]× [−1,1]3. We randomly place 10 obstacles in the

workspace space and ensure the scene is cluttered.

In each of the cases mentioned above, we set up 10 environments by random placement

of the obstacles, each with 1000-2000 randomly sampled start and goal state pairs. The 10−20%

of data is used for testing, and the remaining for the training. In our test dataset, we also include

two unseen environments for each problem, created by random placement of obstacles. We

ensure these environments to be different from the ten seen settings, and for each, we randomly

sample 100-200 valid start and goal pairs for evaluation. Hence, in total, our test dataset contains

12 environments for the given setups. The demonstration trajectories for the training data are

obtained using the SST algorithm. Furthermore, we obtain the point-cloud of the environments,

by randomly sampling the obstacle space and processing them into voxel v of size 32×32×32.

3.2.4 Results

We present a set of experiments to compare the computation time, path quality, and success

rate of MPC-MPNetPath, MPC-MPNetTree, and SST planning algorithms. All experiments were

performed on the same system with 32GB RAM, GeForce GTX 1080 GPU, and 3.40GHz×8

Intel Core i7 processor.

83

(a) Computational time (in seconds) comparison for Acrobot, Cart-pole, Car and Quadrotor in seen and
unseen environments

(b) Path cost comparison for Acrobot, Cart-pole, Car and Quadrotor in seen and unseen environments

Figure 3.18: The interquartile ranges of computation times and path qualities (time-to-reach
the target) for MPC-MPNetPath, MPC-MPNetTree, and SST in Acrobot, Cart-pole, Car and
Quadrotor environments.

Comparative Studies

This study compares the computation time, success rate, and path quality (measured by

time-to-reach) of MPC-MPNetPath, MPC-MPNetTree, and SST algorithms in Cart-Pole, Acrobot,

Car, and Quadrotor environments. All evaluation planning problems were unique and not seen

during the training, presenting non-trivial and cluttered environments with underactuated systems.

Table 3.4-3.5 presents the mean computation times with standard deviations across dif-

ferent scenarios in both seen and unseen environments. Figs. 3.18 show the box-plots of all

methods comparing their computation time and path quality inter-quartile ranges for solving all

kinodynamic planning problems. Fig. 3.19 to Fig. 3.22 show example qualitative results from

MPC-MPNet and SST. In all these problems, including unseen scenarios, MPC-MPNetTree and

MPC-MPNetPath success rates were between 90−100% and 85−95%, respectively, comparable

to the SST success rates in the given time limit.

It can be seen that compared to SST, MPC-MPNet methods take significantly lower

computation times to find similar quality path solutions with comparable success rates. Our

experiments also show that for environments with high-dimensional state and control spaces such

84

(a) MPC-MPNet: t = 5.5s, c = 10.9 (b) SST: t = 52.4s, c = 11.2

Figure 3.19: Acrobot environment: The workspace (left) and state-space (right) trajectories
are shown in each subfigure. In this example, the start state is [0,0,0,0], and goal states are
randomly distributed around the vertical configuration.

(a) MPC-MPNet: t = 2.8s, c = 4.2 (b) SST: t = 29.4s, c = 7.9

Figure 3.20: Cart-Pole environment: The workspace (left) and state-space (right) trajectories
are shown in each subfigure.

as in Quadrotor, SST’s computation times increase exponentially. In contrast, MPC-MPNet still

retains its computational benefits from informative waypoint sampling and outperforms SST by a

large margin.

Among MPC-MPNetTree and MPC-MPNetPath, we observed that the former method

achieves higher success rates and finds better quality path solutions by exploiting GPU-accelerated,

parallel computation. Nevertheless, we present CPU-based MPC-MPNetPath and GPU-based

MPC-MPNetTree to highlight that both approaches perform better than traditional gold-standard

planning methods. Moreover, our algorithms balance exploration and exploitation through ran-

domly sampling current configurations within trees to provide better completeness and comparable

success rates as conventional methods.

85

(a) Ours: t = 12.3s, c = 57.0 (b) SST: t = 27.2s, c = 63.8

Figure 3.21: Car environment: MPC-MPNet and SST finding paths under kinodynamic con-
straints for a non-holonomic system in an example environment with multiple narrow passages.

Table 3.6: Ablation Study: The total mean computation time with and with out neural discrimi-
nator is shown for MPC-MPNetPath, where the path quality, measured by the time-to-reach, is
presented in parentheses.

Setup Planning Tasks

Acrobot Cart-Pole Quadrotor Car-like

w/o D 8.14±10.37(7.23±4.91) 5.43±8.59(7.67±3.37) 0.81±4.11(8.45±4.11) 13.29±13.36(47.72±37.36)
w/ D 5.09±6.87(5.18±3.82) 4.47±7.37(6.25±3.13) 0.46±2.12(6.49±2.71) 8.96±12.33(47.68±20.44)

Ablation Studies

To show the impact of the neural discriminator in the planning pipeline, we present an

ablation study, comparing the planning time and path quality between (i) MPC-MPNetPath

without neural discriminator, which predicts only one state at every iteration, and (ii) MPC-

MPnetPath, which generates a batch of waypoints with the neural generator, and selects the best

based on an estimated cost by the neural discriminator. All experiments are conducted in the

same environmental setup as in the comparative studies.

From the results shown in Table 3.6, we can observe that the neural discriminator con-

tributes to reducing the mean and standard deviation of planning time. It also helps with generating

trajectories with a better cost quality. In MPC-MPNet, stochasticity is introduced by dropout

86

(a) Ours: t = 1.5s c = 7.6 (b) SST: t = 162.3s c = 9.9

Figure 3.22: Quadrotor environment: The problem requires finding a kinodynamically con-
strained motion of a 12 DOF quadrotor in challenging environments. In these scenarios, our
methods were at least 50 times faster than SST.

layers in the neural generator. This operation generates a variety of samples, some of which

might require replanning for the connections. Our process eliminates those cases using the neural

discriminator by selecting a state with the minimum time to reach the given target, also resulting

in fewer planning iterations and better path quality.

3.2.5 Discussion

In this section, we highlight the worst-case properties of our proposed algorithms named

MPC-MPNetPath and MPC-MPNetTree. The former operates MPC without GPU processing

and uses discriminator to remove unnecessary states to save computational resources. The latter

builds on GPU programming and parallelly computes various nodes for simultaneous local

extensions with MPC. Our methods plan without relying on bidirectional tree generation or any

replanning as was required in the original MPNet and its variants. However, similar to MPNet,

our neural generator does explore the sub-space of given state-space that potentially contains a

path solution, thanks to Dropout, that implants randomness into our neural generator adapted

87

from expert demonstrations. Since our generated state-spaces are confined to a subspace, the

resulting informed tree also grows in that region due to directed extensions with MPC. To enable

our methods to explore the state-space outside the generator’s learned state-spaces, we propose a

notion of stage-wise exploration.

Our stage-wise exploration strategy balances global exploitation-exploration in three

phases. In the first phase, our proposed algorithms are operated for a fixed number of planning

iterations N1. In the second phase, i.e., after N1 iterations and until N2 iterations, our algorithm

replaces the MPC-based local controller with a random shooting method. This phase allows

exploration in the action-spaces while still keeping state-spaces informed as given by the neural

generator. Finally, after N2 steps and beyond in the third phase, our approach performs full

exploration by randomly sampling both state and action spaces, like the SST algorithm. These

three phases allow our trees to expand from an inner region, potentially containing a path solution,

to an outer region in the worst-case for finding a solution if one exists. In our experimentation,

we validated that, similar to MPNet, incorporating staged-wise exploration ensures 100% success

rate while still retaining the computational benefits and performing better than classical planning

approaches.

Since our methods perform stage-wise exploration of the state and action spaces and

eventually explore them entirely over a large number of planning iterations, the resulting approach

exhibits probabilistic-completeness. It implies that MPC-MPNet finds a path, if one exists, with

the probability approaching to one as the number of planning iterations reaches infinity. The

formal proofs can be derived in the same way as reported in [LLB16]. Furthermore, note that our

MPC-MPNetTree method also uses the nearest neighbor search for extending trees. This method is

adopted from SST, which selects the best neighbors in terms of their cost from the given start/root

state and removes tree edges with relatively higher costs. Based on this nearest-neighbor selector

and the random exploration, the SST method [LLB16] also guarantees asymptotic-optimality, i.e.,

over a large number of planning iterations, their planner will eventually find a minimum cost path

88

(a) (b)

Figure 3.23: CoMPNetX generalized in sphere environment from (a) small cubical obstacles’
geometry to (b) multiple longitudinal obstacle strips and planned near-optimal paths in sub-
second computational times.

solution, if one exists. Since MPC-MPNetTree also does exploration, though in stages, and uses

SST’s like nearest node selector and pruner, it also exhibits asymptotic-optimality with proofs

being similar to as presented in [LLB16].

3.3 Kinematic Manifold Constraints

Constrained Motion Planning (CMP) has a broad range of robotics applications for solving

practical problems emerging in domains such as assistance at home, factory floors, disaster sites,

and hospitals [CHL+05]. In our daily life, most of our activities involve a large number of CMP

tasks. For example, at our home, we interact with various objects to perform usual household

chores such as cleaning and cooking, including opening doors, carrying a tray or a glass filled

with water, and lifting boxes. Likewise, skilled workers manipulate their tools to solve a wide

variety of tasks such as assembly at factory floors and advanced-level surgery in the hospitals.

In the last decade, Sampling-based Motion Planning (SMP) methods have surfaced as

prominent motion planning tools in robotics [LaV06]. These algorithms randomly sample the

robot joint-configurations to build a collision-free graph, which eventually connects the given

start and goal configurations leading to a path solution [LaV06]. However, in CMP, the constraint

89

equations implicitly define a configuration space comprising zero-volume constraint manifolds

embedded in a higher-dimensional ambient space of the robot’s joint variables [JP13b]. Therefore,

the probability of generating random robot configurations on those manifolds is not just low

but zero, which makes the state-of-the-art gold standard SMP methods [KL00, KF11, GSB14]

[GSB15, QA15, JSCP15, QA16, TQAN18] fail in such problems [KMK18].

Recently, constraint-adherence methods that generate samples on the manifolds have been

incorporated into existing SMP algorithms for CMP [KMK18]. These methods include projection

and continuation-based approaches. The former uses Jacobian-based gradient descent to project a

given configuration to the manifold. The latter takes a known constraint-adhering configuration

to compute a tangent space using which new samples are generated closer to the manifold for

projection. These advanced planning methods solve a wide range of tasks, but they often exhibit

high computational time complexity with high variance, making them frequently impractical for

real-world manipulation problems.

To overcome limitations of classical planners in CMP, we extended MPNet to solve CMP

problems and proposed Constrained Motion Planning Networks (CoMPNet) [QDCY20]. CoMP-

Net is a deep neural network-based approach that takes the environment perception information,

text-based task specification defining the constraints (e.g., open the door), and robot’s start and

goal configurations as an input and outputs a feasible path on the constraint manifolds. CoMPNet

connects any two given configurations using a projection-based constraint-adherence operator,

and like MPNet, it also performs a divide-and-conquer through bidirectional expansion. However,

it avoids replanning, which is a computationally expensive process in CMP, and instead builds an

informed tree of possible paths.

We further extend CoMPNet and presents a unified framework called Constrained Mo-

tion Planning Networks X (CoMPNetX)3 [QDBY21], which extends CoMPNet and generates

informed implicit manifold configurations to speed-up any SMP algorithm equipped with their

3The project videos and other supplementary material are available at
https://sites.google.com/view/compnetx/home

90

constraint-adherence approach for solving CMP problems. CoMPNetX comprises the conditional

neural generator, discriminator, a neural gradient-based projection operator, and sampling heuris-

tics to propose samples for all kinds of SMP methods. Furthermore, compared to our previously

proposed CoMPNet, this new approach, i.e., CoMPNetX, has the following novel features:

• CoMPNetX plans in implicit manifold configuration spaces, whereas CoMPNet only

considers the robot configuration space. The implicit manifold configuration spaces are

formed by the robot configuration and the constraint function. For instance, in the door

opening task, the door, represented as a virtual-link manipulator using Task Space Regions

(TSRs), and the robot arm forms an implicit manifold planning space for CoMPNetX.

• CoMPNet only considers the projection operator for constraint adherence. In contrast, in

this work, we extend CoMPNet, naming it CoMPNetX, to operate with both projection-

and continuation-based constraint adherence approaches for enhancing any SMP method,

including batch and bidirectional techniques.

• In our previous work, the task sequences were defined by an expert as a text, e.g., open

the cabinet and then move an object into the cabinet. CoMPNet sequentially takes the

latent embeddings of those text-based task specifications to generate the motion sequences.

However, text-based representations are agnostic of the given workspace and the overall

planning objective. Therefore, this work introduces a strategy to combine CoMPNetX with

the deep neural network-based task planning approaches that relieve an expert from provid-

ing task sequences during execution and provide context-aware neural task representations

for CMP.

• Unlike CoMPNet, the proposed approach also comprises a discriminator function that

predicts the distances of generated configurations from the constraint manifold and provides

gradients to project them to the manifold if needed.

91

In summary, CoMPNetX can generate robot configurations for a wide range of SMP algorithms

while retaining their worst-case theoretical guarantees. Our generator and discriminator are

conditioned on the neural task representation and the environment observation encoding. The

conditional generator takes the desired start and goal configurations to output intermediate implicit

manifold configurations, and the conditional discriminator predicts their geodesic distances from

the underlying manifold. We use the discriminator’s predictions and their gradients as the operator

to project the given configurations towards the constraint manifold if needed. CoMPNetX naturally

forms a mutual symbiotic relationship with learning-based task programmers and exploits their

inner states, representing tasks, to transverse multiple constrained manifolds for finding their path

solutions. We show that these task representations from a learning-based task planner can lead to

better performance in motion planning than human-defined text-based task representations (as

in [QDCY20]). We test CoMPNetX with various SMP algorithms using both continuation and

projection-based constraint-adherence methods on challenging problems and benchmark them

against the state-of-the-art classical CMP algorithms. We also evaluate our models’ generalization

capacity to new planning problems and environment structures, such as in the sphere environment

from being trained on settings with small obstacle blocks and generalizing to the environment

with multiple obstacle strips forming various narrow passages (Fig. 3.23).

3.3.1 Preliminaries

In this section, we describe the problem of constrained motion planning with its basic

terminologies. We also outline a brief overview of constrained-adherence operators employed by

CMP methods for local planning under hard kinematic constraints.

Problem Definition

In the classical problem of motion planning, the robot system is defined by a configuration

space (C-space) Q ∈Rn with n ∈N dimensions. The axis of C-space corresponds to the system’s

92

variables that govern their motion, such as robot joint-angles, and hence, the dimension n is

equivalent to the robot’s degree-of-freedoms (DOF).

The robot’s surrounding environment is usually described as task-space X ∈ Rm with

m ∈ N dimensions, comprising obstacle Xobs ⊂ X and obstacle-free X f ree = X \Xobs spaces. In

the C-space terminology, the spaces Xobs and X f ree are represented as Qobs and Q f ree = Q \Qobs,

respectively. In motion planning, a collision-checker InCollision(·) is assumed to be available

that takes a robot configuration q ∈ Q and Xobs, and outputs a boolean indicating if a given

configuration lies in Qobs or not.

We consider a setup where for a given current xt ∈ X f ree and target xT ∈ X f ree workspace

observations, the high-level task planner, πH , at time t, outputs an achievable sub-task representa-

tion Zc for the low-level agent πL. For each subtask, Zc, we also assume there exist a constraint

function F. The agent, πL, finds motion sequences in Q f ree to achieve the given subtask, Zc, under

constraints F, leading to a next observation xt+1. This work considers deep neural networks-based

state-of-the-art task planners as high-level agents, πH , and proposes a novel low-level agent, πL,

i.e., CoMPNetX, that leverages {Zc,F} for motion planning under task-specific constraints.

A fundamental unconstrained motion planning problem for a given start configuration

qinit ∈ Q f ree, a goal region Qgoal ⊂ Q f ree, environment obstacles Xobs, and a collision-checker, is

defined as:

Problem 1 (Unconstrained Motion Planning): Given a planning problem {qinit ,Qgoal,Xobs},

and a collision-checker, find a collision-free path solution σ : [0,1], if one exists, such that

σ0 = qinit , σ1 ∈ Qgoal , and σ[0,1] 7→ Q f ree.

In the constrained motion planning, a planner also has to satisfy a set of hard constraints

defined by a function F(q) : Q 7→ Rk, such that F(q) = 0. The k ∈ N denotes the number of

constraints imposed on the robot motion, which induces an (n− k)-dimensional space embedded

93

in the robot’s unconstrained ambient C-space, comprising one or more manifolds M , i.e,

M = {q ∈ Q |F(q) = 0}

In practice, a configuration q is assumed to be on the manifold if ‖F(q)‖2 < ε, where ε > 0 is

a tolerance threshold. Furthermore, the obstacle and obstacle-free spaces on the manifolds are

denoted as M f ree = M ∩Q f ree and Mobs = M \M f ree, respectively. A CMP problem for a given

start qinit configuration, goal region Qgoal ⊂ Q f ree, environment obstacles Xobs, function F, and a

collision-checker, is defined as:

Problem 2 (Constrained Motion Planning): Given a planning problem {qinit ,Qgoal,Xobs,F},

and a collision-checker, find a collision-free path solution σ : [0,1], if one exists, such that

σ0 = qinit , σ1 ∈ Qgoal , and σ[0,1] 7→M f ree.

In our work, we show that CoMPNetX solves both unconstrained (Problem 1) and

constrained (Problem 2) planning problems. Furthermore, for the latter problem, we only consider

kinematic constraints, i.e., the function F solely depends on robot configuration q ∈ Q , not on

other robot properties such as dynamics representing velocity or acceleration. Moreover, we

define F(q) as distance to the constraint manifold with domain s, i.e.,

F(q) = Distance to the constraint manifold

For instance, if the constraint is on the robot’s end-effector to maintain a particular position,

then F(q) can be defined as the distance of the robot’s end-effector to that specific position with

domain s ∈ [0,1], spanning an entire or a fraction of a motion trajectory. Likewise, when the

robot is moving, balancing constraints are usually imposed on the whole robot motion trajectory

with s = [0,1].

94

Algorithm 11: Projection Operator: Proj (q)
for i← 0 to N do

∆x← F(q)
if ‖∆x‖2 < ε then

return q

else
q← q−J(q)+∆x

In the remaining section, we describe the two main types of classical constraint-adherence

operators that ensure a given configuration or a motion between two configurations lies on the

constraint manifold defined by F.

Projection-based Constraint-Adherance Operator

The projection operator (Proj) maps a given configuration q ∈ Rn to the manifold M . It

can be formulated as a constraint optimization problem [KMK19]

min
q′

1

2
‖q−q′‖2 subject to F(q′) = 0,

with its dual as:

L(q′,λ) =
1

2
‖q−q′‖2−λF(q′),

where λ corresponds to Lagrange multipliers. The above system is solved using gradient descent

as summarized in Algorithm 11, where J+(q) is the pseudoinverse of the Jacobian at configuration

q ∈ Q . Algorithm 12 outlines the local planning procedure using a projection operator [KMK19,

BSK11]. This procedure outputs all the intermediate configurations on the manifold in the given

conditions and loop limit N, when transversing from a given start configuration (qs) towards the

end configuration (qe) in small incremental steps γ ∈ R. The projection-based steering stops

if any of the following happens: (i) The loop limit is reached. (ii) The resulting configuration

95

ψi ψ−1

i

Ci

qi

qi
j

M

ui
j

qj

(a)

ε

Ci

M

ρ

α

(b)

Figure 3.24: (a) A chart Ci operators comprising exponential ψi and logrithmic ψ
−1
i functions

for mapping between the tangent space at qi and the manifold. (b) The parameters defining the
chart validity region.

qi+1 is in a collision. (iii) The stepping distance is diverging rather than converging to prevent

overshooting the target configuration, i.e., either d2 > d1 or d > λ1γ. (v) The progress in manifold

space D becomes greater than a scalar λ2 times the progress in the ambient space dw = ‖qe−qs‖.

Algorithm 12: Projection Integrator (qs,qe)
i← 0; D← 0
dw←‖qe−qs‖; qi← qs
while i < N do

qi+1← Proj(qi + γ(qe−qi))
d←‖qi+1−qi‖2
D← D+d
d1←‖qi−qe‖2; d2←‖qi+1−qe‖2
if InCollision(qi+1) or d2 > d1 or d > λ1γ or D > λ2dw then

break

i← i+1
return {q j}i

j=0

Continuation-based Constraint-Adherence Operator

The continuation-based approaches [KMK19, JP17, KUSP16] represent the manifold

through a set of local parameterizations, known as charts C , forming an atlas A .

A chart Ci = (qi,Φi(qi)), with an index i ∈ N, locally parameterizes a manifold through a

tangent space and its orthonormal basis Φi at a known constraint-adhering configuration qi ∈M .

The orthonormal basis Φi ∈ R(n−k)×n is used to define an exponential map ψi : Rk 7→ Rn and its

inverse, i.e., a logarithmic map ψ
−1
i : Rn 7→ Rk, between the parameter ui

j on the tangent space

96

Algorithm 13: Atlas Integrator (qs,qe,AM)

i← 0; D← 0
dw←‖qe−qs‖
qi← qs
Ci← GetChart(qi,AM)

ui← ψ
−1
i (qi)

ue← ψ
−1
i (qe)

while ‖ui−ue‖2 > γ do
ui+1← ui + γ(ue−ui)/‖ue−ui‖2
qi+1← ψi(ui+1)
d←‖qi+1−qi‖2
D← D+d
d1←‖qi−qe‖2; d2←‖qi+1−qe‖2
if InCollision(qi+1) or d2 > d1 or d > λ1γ or d < ε or D > λ2dw or i > N then

break

i← i+1
if not RegionValidity(ui,qi) or ui /∈ Pi−1 then

Ci← GetChart(qi,AM)

ui← ψ
−1
i (qi)

ue← ψ
−1
i (qe)

return {q j}i
j=0

and the manifold around configuration qi (Fig. 3.24 (a)). The basis Φi ∈ Rn×k is computed by

solving a following system of equations:

 J(qi)

Φ>i

Φ
>
i =

 0

I

 , (3.20)

where J(qi) ∈ Rk×n is the Jacobian of F at the configuration qi, 0 ∈ Rk×k, and I ∈ Rk×k is the

identity matrix.

The exponential mapping ψi is a two step process. The first step determines a configuration

qi
j in the ambient space using the mapping φi, i.e.,

qi
j = φi(ui

j) = qi +Φiui
j (3.21)

97

The second step takes the qi
j and orthogonally projects it to the manifold resulting in q j, by

solving the following system:

F(q j) = 0

Φ
>
i (q j−qi

j) = 0

 (3.22)

The above equations are usually solved iteratively by a Newton method until the error ‖(q j−

qi
j)‖2 < ε is tolerable or the maximum iteration limit is reached.

The inverse logarithmic mapping ψ
−1
i from the manifold to the tangent space is straight-

forward to compute, i.e.,

ui
j = ψ

−1
i (q j) = Φ

>
i (q j−qi) (3.23)

Note that each chart Ci has a validity region Vi in which it properly parameterizes

the manifold and exceeding that region could lead to divergence when orthogonaly projecting

configurations to the manifold during the exponential mapping process. This validity region is

governed by the following conditions:

‖qi
j−q j‖ ≤ ε;

‖ui
j‖2

‖qi−q j‖
< cos(α); ‖ui

j‖ ≤ ρ (3.24)

where ε and α indicate the maximum allowable distance and curvature, respectively, between the

chart Ci and the underlying manifold M , and ρ defines the radius of sphere around qi (Fig. 3.24

(b)). Furthermore, the validity region Vi can have a complex shape and is usually approximated

by a convex polytope Pi ⊂Vi, represented as a set of linear inequalities defined in a tangent space

of chart Ci.

To realize the local planning using continuation operator, there exist two types of methods

naming atlas integrator (Algorithm 13) and tangent bundle integrator (Algorithm 14). The

latter, in contrast to the former, is less strict about the intermediate configurations being on the

manifold and performs projections only when needed and does not separate the tangent spaces

98

into half-spaces to prevent overlaps. In our implementations, these integrators assume both start

(qs) and end (qe) configurations to be on the manifold. The procedure RegionValididty in the

atlas integrator returns False if any of the above-mentioned region validity conditions are violated.

Algorithm 14: Tangent Bundle Integrator (qs,qe,AM)

i← 0; D← 0
dw←‖qe−qs‖
qi← qs
Ci← GetChart(qi,AM)

ui← ψ
−1
i (qi)

ue← ψ
−1
i (qe)

while ‖ui−ue‖2 > γ do
ui+1← ui + γ(ue−ui)/‖ue−ui‖2
qi+1← φi(ui+1)
d←‖qi+1−qi‖2
D← D+d
d1←‖qi−qe‖2; d2←‖qi+1−qe‖2
if InCollision(qi+1) or d2 > d1 or d > λ1γ or d < ε or D > λ2dw or i > N then

break

i← i+1
if ‖φi−1(ui)−qi‖2 > ε or ui /∈ Pi−1 then

qi← ψi−1(ui)
Ci← GetChart(qi,AM)

ui← ψ
−1
i (qi)

ue← ψ
−1
i (qe)

return {q j}i
j=0

3.3.2 Related Work

In this section, we present the existing methods that address the problem of CMP, ranging

from relaxation-based methods for trajectory optimization and control to strict approaches such

as projection and continuation for sampling-based planning algorithms.

The relaxation-based methods represent the hard-constraints as soft-constraints by incor-

porating them as a penalty into the cost function. The cost function is optimized to get the desired

99

robot behavior. For instance, the IK-based reactive control method [ABB+15, JSB+15] used at

the DARPA Robotics Challenge operates in the workspace and finds constrained robot motion

through convex optimization of the given cost function. However, these approaches often provide

incomplete solutions as they are susceptible to local minima. The trajectory optimization meth-

ods [RZBS09, SDH+14] also optimize the given cost function over the entire trajectory to find a

feasible motion plan. However, due to the relaxation, they weakly satisfy the given constraints

and are typically only effective on short-horizon problems. Recently, Bonalli et al. [BCB+19]

proposed a trajectory optimization method for implicitly-defined constraint manifolds, but their

approach is yet to be explored and analyzed in practical CMP robotics problems.

To satisfy hard-constraints without relaxation on the robot motion, the SMP algorithms

[LaV06], such as multi-query Probabilistic Road Maps (PRMs) [KL98], and single-query Rapidly-

exploring Random Trees (RRTs) [LaV98] with its bidirectional variant [KL00], have been

augmented with constraint-adherence methods, such as projection and continuation, to solve a

wide range of CMP problems.

The projection-based method was first utilized with a variant of PRMs for parallel ma-

nipulators under specialized loop-closure constraints [Han00]. The parallel manipulators were

treated as active/passive links and were composed into a constraint-adhering configuration us-

ing projection. Yakey et. el [YLK01] introduced the Randomized Gradient Descent (RGD)

method for closed-chain kinematics constraints that generates C-space samples and projects

them to the constraint manifold. However, their approach required a significant parameter

tuning and was later extended to a generalized framework using RRTs and a Jacobian pseudo-

inverse based projection method [Sti07]. In a similar vein, Berenson. et al. [BSK11] proposed

the Constrained Bidirectional RRT (CBiRRT) with an intuitive constraint representation ap-

proach called Task Space Regions (TSRs). TSRs represent general end-effector pose constraints

and allow a quick computation of geodesic distances from the constraint manifolds. Another

class of sampling-based methods that use projection operators and plan in the task-space in-

100

clude [KKKL94, YKH04, YG05]. These methods find a task-space motion plan and find their

corresponding configurations in the C-space, which limits their exploration and thus does not

yield completeness guarantees.

The continuation-based methods compute tangent-spaces at a known constraint-adhering

configuration to generate new nearby samples for quick projections to the constraint manifold.

Yakey et. el [YLK01] used continuation to generate new configuration samples within tangent

space, which were projected to the manifold using RGD for closed-chain kinematic constraints.

The continuation methods have also been used for general end-effector constraints [WFS07,

Sti10]. Inspired by the definition of differentiable manifolds [Spi99], recent approaches do not

discard tangent spaces. Instead, they compose them using data-structures into an atlas for a

piece-wise linear approximation of the constraint manifold [Hen02]. These methods include

Atlas-RRT [JP17] and TangentBundle(TB)-RRT [KUSP16] with an underlying single-query

bidirectional RRTs algorithm [KL00]. Atlas-RRT ensures all samples to be on the manifold

and separates tangent spaces into tangent polytypes using half-spaces for uniform coverage. In

contrast, TB-RRT lazily projects the configurations for constraint-adherence, i.e., only when

switching the tangent spaces, and has overlapping tangent spaces, which sometimes lead to invalid

states. There also exist variants of Atlas-RRT that allow asymptotic optimality [JP13a, JP13b]

and kinodynamic planning [BRP18] under constraints.

Recently, Kingston et. el [KMK19] introduced Implicit MAnifold Configuration Spaces

(IMACS) to decouple the choice of constraint-adherence methods from the underlying selection

of SMP planners. IMACS highlights that any SMP method equipped with the following two

components can solve CMP problems. First, a uniform sampling technique to generate samples

on the manifold. Second, a constraint integrator function to connect two configurations on

the manifold. IMACS incorporates the constraint function into C-Space, presenting an implicit

manifold space to an underlying SMP method. These SMP methods, augmented with a constrained

integrator, are shown to solve various CMP problems. Despite these advancements, existing

101

Object State Encoder
 Program

 Planner

Graph Encoder

 API Decoder

G

arrange_table

pick_place

Output program

End-of-program
probability

Is API
Program

?

Append to list G
No

Yes

Zd

Zp,xt xT

 input program
e.g., arrange_table

 current & goal
 observations

Api argument
a

Neural Task
Representations

Zd

a

Figure 3.25: The Neural Task Representations for CoMPNetX are obtained by exploiting a
learning-based task programmer’s internal state Zd and program arguments a.

SMP methods are computationally inefficient and take up to several minutes for solving practical

problems not just in CMP but also in unconstrained planning problems.

CoMPNetX extends IMACS and our previously proposed CoMPNet [QDCY20] and also

introduces neural-gradient-based projections to generate informed implicit manifold configura-

tions for underlying SMP methods equipped with any constrained integrator. Our approach can

also be interpreted as Neural Informed Implicit MAnifold Configuration Spaces (NIIMACS),

which replaces the abstraction layer of IMACS with neural-learned sampling distributions to

prioritize sampling in the subsets of a contraint manifold that potentially contains a path solution

for a given problem.

3.3.3 Neural Task Representations

This section describes the process to obtain the neural task representations, utilized

by CoMPNetX to define task-specific constraints in a scalable and generalizable way. These

representations come from the internal state of a learning-based task planner. Although various

learning-based task planners can be utilized for acquiring these representations, we adapt a variant

[TKH19] of the Neural Task Programming (NTP) [XNZ+18] in our framework.

This variant, which we name NTP2, extends original NTP by relieving the need for task

demonstration at the test time. NTP2 uses the goal xT and current xt observations of the environ-

102

ment to decompose a given high-level task into a feasible sequence of intermediate sub-tasks. We

use NTP2 to obtain the neural task representations and the sub-task sequences for CoMPNetX. It

comprises the following modules:

Program Planner: It is a deep neural network-based iterative program predictor that

takes a high-level symbolic task pt , the environment’s current xt and goal xT observations as an

input and outputs a next sub-program pt+1 and the end-of-program probability r, indicating the

accomplishment of a given task.

API Decoder: A program is defined as an API program if it requires arguments for the

execution. Given an api program p predicted by the program planner, the neural networks based

API Decoder predicts their required arguments a. The inputs to the API decoder are the current xt

and goal xT observations, the API program p, and a fixed size graph encoding representing the

program hierarchy.

The overall flow of the algorithm is shown in the Fig. 3.25. The current and goal observa-

tions are encoded into latent embeddings using their encoders. The program planner, conditioned

on observation encodings, iteratively decomposes the given program (e.g., arrange table) into

subprograms by generating a probability distribution over a set of predefined program instances

(e.g., pick and place). The program with maximum probability is selected, which becomes the

input to the program planner in the next iteration. This process is repeated until an API-program is

selected. For instance, the given program, arrange table, can lead to the selection of a pick place

program which subsequently results in the selection of either pick or place programs. The pick

and place are defined as API programs requiring arguments from the API decoder. This API

decoder, conditioned on observation encodings and graph embeddings, predicts the API program’s

arguments indicating the object that needed to be grasped (pick) and moved (place). The graph

103

Scene Encoder
q̂ next

q̂ next

qnext

Zc

Zo

qtarg

qcurr

Zc

Zo

Neural Projection

▽q̂ next

dM

Scene
observation

Neural
Generator

Neural
Discriminator

▽q̂ nextq̂ next

qnext
Manifold

Implicit manifold start
and goal configurations

Distance

qinit

qi

qgoal

input_program
(e.g., arrange_table)

 Neural Task
 Representationsstart and goal

workspace observation
xt xT

SMP with Constrained
Integrator

Figure 3.26: CoMPNetX execution traces for the constrained door opening subtask. Our method
comprises a conditional neural generator and discriminator and a planning algorithm.

embeddings are given by the graph encoder that takes a list of non-API programs (Fig. 3.25) and

encodes them into a fixed-size latent representation. In our implementation of NTP2, the current

observation contains the current poses of the given objects in the environment and the robot

end-effector pose. The goal observation includes the final poses of all objects at the end of the task.

Furthermore, the program planner and the API decoder were trained using the cross-entropy loss

for the given expert demonstration. For more details on the implementations, refer to [TKH19].

To generate a neural task representation for the CoMPNetX, we take the latent inner

embedding Zd of API Decoder and their corresponding arguments a (Fig. 3.25). The internal state

Zd comprises current and goal encodings, graph embedding representing the given task hierarchy,

and an API program embedding. Note that the latent state Zd and arguments a contain sufficient

information, i.e., a given high-level task, their sub-task hierarchy, and workspace representation,

for the CoMPNetX to effectively plan the feasible robot motion path respecting the task constraints

at any instant. This is in contrast to the original CoMPNet framework [QDCY20] that relied on

hand-engineered task plans, and sub-tasks were represented as text-descriptions, making them

oblivious of given high-level tasks, their hierarchical structure, and overall workspace setup.

104

q2
curr

q1
curr

qgoal

qinit

CoMPNetX

q2
curr

q1
curr

qinit

q
2

nex
t

q1

next

qgoal

Integerator

qinit

qgoal

Figure 3.27: K-Batch CoMPNetX: The process shows COMPNetX exploiting neural networks
parallelization to generate K = 2 informed manifold configurations from randomly selected
nodes in the tree towards the goal configuration(s).

qgoal

q
a
curr

q
b
targ

q
a
next

Tb

qinit

Ta

(a) Informed Sample Generation

q
a
next

q
b
near

q
a
near

qinit qgoal

Ta

Tb

(b) Ta and Tb extension

q
b
next

q
b
currqa

targ

qinit

Ta

qgoal

Tb

(c) Swapping Roles

Figure 3.28: Bidirectional CoMPNetX: (a)-(c) show the CoMPNetX bidirectional sample
generation, soliciting neural informed-trees from start and goal to quickly march towards each.

3.3.4 Constrained Motion Planning Networks

This section formally presents CoMPNetX (Fig. 3.26), comprising a conditional gener-

ator, discriminator, neural projection operator, and neural samplers. The neural generator and

discriminator are conditioned on the task and scene observation encodings to generalize across

different environments and planning problems. Our method with a constrained integrator and an

underlying SMP algorithm generates feasible motion plans on the constraint manifolds for the

given CMP problems.

Task Encoder

The task-encoder processes the neural task representations given as Zs = [Zd,a]. As

mentioned earlier, the Zd is a fixed-sized vector comprising the workspace current and goal

observation encodings, the API program embeddings, and the graph encoding (representing the

program hierarchy). Our task encoder takes Zs, comprising Zd and a, as an input and composes

105

them into a fixed-size latent embedding Zc ∈ Rd1 of size d1 using a neural network.

Scene Encoder

The scene encoder takes the raw environment perception as a 3D depth point-cloud

processed into voxels and transforms them to an embedding Zo ∈ Rd2 of dimension d2. The 3D

voxel grids of dimensions L×W× H× C are converted into 2D voxel patches as L×W× (HC),

where L, W, H, and C correspond to length, width, height, and the number of channels, respectively.

The voxel patches are encoded into Zo using a 2D convolutional neural network (CNN). We

process 3D voxels into 2D voxel patches as 3D maps require 3D-CNNs, which are known to be

computationally intensive and their representations often contain empty volumes [ZLU18]. The

scene embedding is passed as a fixed-size feature vector describing the environmental obstacles to

a subsequent generator and discriminator. Although neural task representations Zc contain poses

of manipulatable objects in their embeddings, scene observation Zo also includes information

about static non-movable objects acting as obstacles in the environment.

Conditional Neural Generator

CoMPNetX’s generator Gφ, with parameters φ, is a stochastic neural model that outputs

a variety of implicit manifold configurations leading to a constrained path solution (Fig. 3.26).

Because the generator is trained on both unconstrained and constrained path demonstration data,

the output distribution of the neural model tend to fall on or near the constraint manifolds when

conditioned on task-specific constraints. Our generator derives its stochastic behavior from

using Dropout [SHK+14] during inference, which instantly slices Gφ in a probabilistic manner,

inculcating variations in the generated samples. Although other techniques such as input Gaussian

noise can be used to foster stochasticity, they require a reparametrization trick and are often

hard to train end-to-end [CWD+18]. In contrast, Dropout helps capture stochastic behavior from

demonstration data, which we observed to be consistently better than hand-crafted input noise

106

distributions in our planning problems.

The generator’s input is the task-observation encodings (Zc and Zo) that encode the given

neural task representations and scene observation, respectively, and the current qcurr and target

qtarg manifold configurations. The output is the next configuration q̂next on/near the constraint

manifold that will take the system closer to the given target, i.e.,

q̂next ← Gφ(Zc,Zo,qcurr,qtarg) (3.25)

Given the demonstration trajectories σ∗ = {q∗0, · · · ,q∗T} from an oracle planner, we train the

generator together with the task and observation encoders in an end-to-end manner using the

mean-square loss function, i.e.,

1

NB

N

∑
i=0

Ti−1

∑
j=0
||qi, j+1−q∗i, j+1||2, (3.26)

where i and j iterates over the number of given paths and the number of nodes in each path,

respectively, and NB is the averaging term.

Conditional Neural Discriminator

CoMPNetX’s discriminator Dθ, with parameters θ, is a deterministic neural model that

predicts the distance dM ∈ R of a given configuration q̂ from an implicit constraint manifold M

conditioned on the task Zc and observation Zo encodings, i.e.,

dM ← Dθ(q̂,Zc,Zo) (3.27)

CoMPNetX uses the discriminator predictions and their gradients as the operator, named

NProj, to project the given configurations to the constraint manifold if their predicted distances

are greater than a threshold ν, thus discriminating samples based on their distances from the

107

manifold and fixing them accordingly as,

q← q̂− γ∇q̂Dθ(q̂,Zc,Zo), (3.28)

where γ ∈ R+ is a hyperparameter denoting a step size.

To train the discriminator network Dθ, we minimize the mean-square loss between its

predictions and the true labels. The true labels are the geodesic distances of demonstration

trajectories from the constraint manifolds. Furthermore, we introduce a trick to create negative

training samples with relatively larger distances from the manifold. The negative training samples

comprise the robot configuration from the unconstrained tasks (e.g., reach a given object) and the

virtual-link configuration from positive training samples and their corresponding distances are

computed by querying F.

Algorithm 15: COMPNetX (Zs,v,qcurr,qtarg)

Zc← GetTaskEncoding(Zs)
Zo← GetObsEncoding(v)
q̂next ← Gφ(Zc,Zo,qcurr,qtarg)

dM ← Dθ(q̂next ,Zc,Zo)
if dM > ν then

q̂next ← q̂next− γ∇q̂next Dθ(q̂next ,Zc,Zo)

return q̂next

Neural Samplers

Once trained, CoMPNetX can be used in a number of ways to generate informed neural

samples for the underlying SMP algorithms equipped with a constrained adherence method. Fig.

3.26 and Algorithm. 15 present an overall flow of information between different neural modules of

CoMPNetX. For a given current qcurr and target qtarg configuration(s), COMPNetX, conditioned

on encodings Zc and Zo, generates the next configuration(s) q̂next and projects them towards

the constraint manifold using neural gradients if needed. Thanks to CoMPNetX’s informed but

108

stochastic sampling and built-in parallelization capacity of neural networks, our method can be

adapted to most of underlying SMP methods. For case studies, we present two sampling strategies

named K-Batch CoMPNetX and Bidirectional CoMPNetX, which together cover a wide range of

SMP methods.

Algorithm 16: K-Batch COMPNetX
T ← InitializeSMP(qinit ,qgoal)

Kqtarg ← KReplicas(qgoal)

for i← 0 to Nmax do
if i < Nismp then

Kqcurr ← SelectNodes(T ,K)
Kqnext ← CoMPNetX(KZs,Kv,Kqcurr ,Kqtarg)

else
Kqnext ← TraditionalSMP()

goal reached← SMP(Kqnext ,T)
if goal reached then

σ← ExtractPath(T)

if σ is not empty then
ExecutePlan(σ)

else
return Failure or AskExpert

return ∅

K-Batch CoMPNetX: Our approach exploits the neural networks’ innate parallelization

capacity to generate a batch of samples with size K ∈ N≥1 using CoMPNetX for the underlying

unidirectional (K = 1) and batch (K > 1) SMP methods. In this setup, the input to CoMPNetX

is in the form of batches of size K. The K target configurations qtarg are a set of samples from

goal region Ggoal . The voxel map v and neural task representation Zs are simply replicated K

times. The K current configurations qcurr are obtained by randomly selecting K nodes in the

109

graph leading to their corresponding next output configurations as follows:

Kqnext = CoMPNetX
(

KZs ,Kv,Kqcurr ,Kqtarg

)
,

where Kqnext =


q1

next
...

qK
next

 , · · · ,Kqtarg =


q1

targ
...

qK
targ

 (3.29)

At the beginning of planning, the graph T might have only one sample, i.e., qinit . In that case, an

initial set of Kqcurr can be created by randomly sampling the manifold M f ree or replicating qinit

for K times. Fig. 3.27 shows a case with K = 2, and Algorithm. 16 presents K-Batch CoMPNetX

algorithm with an underlying SMP. This approach is not just for batch sampling methods such as

FMT* [JSCP15] and BIT* [GSB15] but can also be applied to any unidirectional SMP method

like RRT [LaV98, KL00] and PRMs [KL98] by setting K = 1. Furthermore, our procedure

shifts to traditional sampling techniques, introduced in IMACS [KMK19], after generating neural

informed implicit manifold configurations using CoMPNetX for Nsmp iterations. This allows our

framework to explore the entire space in worst-case, leading to theoretical guarantees expected

from a planning algorithm.

Bidirectional CoMPNetX: This approach incorporates Bidirectional SMP (BiSMP)

methods into CoMPNetX that generate bidirectional trees Ta = (V,E) and Tb = (V,E) originating

from the start qinit and goal qgoal configurations, respectively, with vertices V and edges E.

Although the following approach can be formulated as K-Batch bidirectional CoMPNetX, we

consider K = 1 and drop down the K notations introduced in the previous section for brevity.

Furthermore, we also show that our approach can be combined with learning-based task planners

such as NTP2 that generate neural task representations and intermediate subtasks for CoMPNetX,

which in return accomplishes those subtasks, forming a mutually symbiotic relationship.

110

Algorithm 17: Bidirectional COMPNetX
t← 1; p0← input program
while not end of program do

xt ,vt ← GetObservation()
pt ,Zs,end of program← NTP2(xt ,xT , pt−1)
qinit ,qgoal ← GetConfigs(pt,Zs)

Ta,Tb← InitializeBiSMP(qinit ,qgoal)

qa
curr,q

b
targ← qinit ,qgoal

for i← 0 to Nmax do
if i < Nismp then

qa
next ← CoMPNetX(Zs,vt ,qa

curr,q
b
targ)

else
qa

next ← TraditonalSMP()

qa
next ,path found← BiSMP(qa

next ,Ta,Tb)
if path found then

σt ← ExtractPath(Ta,Tb)

qa
curr← qa

next
Swap(Ta,Tb)
Swap(qcurr,qtarg)

if σt is not empty then
ExecutePlan(σt)

else
return Failure or AskExpert

t← t +1

return ∅

In this procedure, CoMPNetX alternatively generates samples for both trees and greedily

expands them towards each other by having current and target configurations in the opposite trees

(Fig. 3.28), i.e.,

Forward: qa
next ← CoMPNetX

(
Zs,v,qa

curr,q
b
targ

)
Backward: qb

next ← CoMPNetX
(

Zs,v,qb
curr,q

a
targ

)
where configurations with superscript a and b corresponds to the tree Ta and Tb, respectively.

111

Algorithm 17 presents an overall framework using NTP2 and CoMPNetX with an un-

derlying bidirectional SMP algorithm, like RRTConnect [KL00], and a constrained-adherence

method. NTP2 takes the current environment observation xt , previous task program pt−1, and

the desired goal observation xT and generates the next program pt with their representation

Zs. The procedure GetConfigs takes the generated task information (pt ,Zs) and obtains their

corresponding start and goal configurations. These configurations and task-scene representations

are given to CoMPNetX-BiSMP to accomplish the given subtask by generating a feasible motion

plan.

Fig. 3.28 illustrates the internal process of a BiSMP, such as RRTConnect, using CoMP-

NetX generated samples. Let’s assume tree Ta current configuration being used to generate the

next sample (Fig. 3.28 (a)). The underlying BiSMP begins by extending Ta towards the next

configuration qa
next and updates qa

next with the last state reached by constrained integrator towards

the target qb
targ (Fig. 3.28 (b)). The process then extends Tb towards the qa

next and the extension

process ends by returning updated qa
next and a boolean path found. The path found is true when

trees Ta and Tb are connected, depending on trees’ connection strategy of an underlying BiSMP,

and there exists a path between start and goal that satisfies all the desired constraints. To solicit

bidirectional path generation using CoMPNetX, the roles of current and target configurations are

also swapped along with planning trees’ roles at the end of each planning iteration (Fig. 3.28

(c)). Our CoMPNetX-BiSMP quickly finds a path solution by exploiting the moving targets

from its own distribution which improves the stability of the generator to find connectable paths

as satisfying the two-point boundary value problem becomes easier when the two goal states

are iteratively sampled from a distribution encoded by the generator, rather than one defined

arbitrarily during the problem definition.

Note that the constraint function F is used only by an underlying SMP method. Further-

more like CoMPNet, CoMPNetX (batch and bidirectional) also extends the planning graph from

the nearest node of the newly generated next node since all underlying SMP algorithms rely on

112

the nearest neighbor for their graph extension towards the given configuration sample [LaV06].

It is also in contrast to the MPNet algorithm [QSBY19, QMSY20] that greedily finds a path by

extending from qcurr to qnext in an overall planning method and repairs any non-connectable nodes

via stochastic re-planning. Although the MPNet approach works extremely fast in unconstrained

planning problems, re-planning becomes computationally expensive in CMP due to projections

performed by the constrained integrator. Moreover, the constraint manifolds are non-euclidean in

topography, and extension from nearest neighbors becomes convenient for geodesic interpola-

tion. This is evident from the experimentation in our previous work [QDCY20], showing that

leveraging MPNet’s greedy path-finding approach, without replanning, often fails in finding a

connectable path solution on the manifolds. However, in our extended analysis presented in this

work, we show that CoMPNetX, in addition to CMP, can still be used with the MPNet planning

algorithm for efficiently solving unconstrained planning problems with low computation times

and high success rates in high-dimensional planning problems.

3.3.5 Implementation details

This section describes the data generation pipeline from setting up scenarios to obtaining

expert demonstrations and observation data. We also describe training, and testing data splits for

all scenarios considered in this work.

Scene setup

We setup the following cluttered environments imposing various hard kinematic con-

straints on the robot motion:

Sphere Environment: This environment requires the motion planning of a point-mass

on the sphere with constraint F(q) = ‖q‖−1, forming a two-dimensional manifold on a three-

dimensional ambient space. In this setup, we create two scenarios:

• Scenario 1 - We generate 50 unique scenes by randomly placing 500 small obstacle blocks

113

over the sphere (Fig. 3.23 (a)). For each scene, we randomly sample 2000 start and goal

pairs on the obstacle-free space of the sphere.

• Scenario 2 - This setup requires transversing multiple narrow passages between the ran-

domly selected start and goal configurations (Fig. 3.23 (b)). We randomly sample the

unique 500 start and goal pairs from the obstacle-free space, each of which constitutes a

CMP problem. This setup is only used to test our model’s generalization capacity, trained

on sphere - scenario 1, to an entirely different environment.

Bartender Environment: A dataset, named Bartender environment, containing three

different scenarios was created to fully capture the complexities of the real-world task and

constrained motion planning problems. The environment includes two tables placed perpendicular

to each other. The table contains seven objects placed at random, and only five are movable

under pre-specified motion constraints. The five movable/manipulatable items include a juice

can (green), fuze bottle (purple), soda can (red), kettle, and red mug. The two stationary objects

include a tray and a recycling bin that form the movable objects’ goal locations. The juice can,

soda can, and fuze bottle are to be placed into the recycling bin with only collision-avoidance

constraints. The kettle and the red mug are to be placed on the tray with both stability and

collision-avoidance constraints, i.e., no tilting is allowed during the robot motion. The three

different scenarios are described as follow.

• Scenario 1 - In this scenario, the objects can be moved to their targets in any order. In other

words, in most cases, all objects start, and goal configurations are reachable. We generate

about 2000 unique scenes through the random placement of the movable and non-movable

objects on the tables at the robot’s right arm’s reachable locations. Each scene contains a

total of ten (five unconstrained and five constrained) planning problems.

• Scenario 2 - In this scenario, the goal location of either the red mug or the kettle contains

an obstacle. The obstacles are formed by placing either juice bottle, fuze bottle, or soda

114

can, at the goal location of the kettle or the red mug. For example, if the red mug’s goal

location contains the juice bottle, the task planner needs to account for this information

during the planning process. That is, the juice bottle needs to be moved into the recycling

bin before the red mug is attempted to be moved onto the tray. This enforces a constraint

on the task planner to account for obstacles. We created 700 scenes in this setup, each with

at least two constrained and two unconstrained planning problems.

• Scenario 3 - In this setup, the kettle and red mug are placed on the tray, and the task is to

swap their start locations. In other words, the goal locations of both the kettle and the red

mug are occupied by the red mug and the kettle, respectively. Therefore, there is a need for

a sub-goal generation for one of the objects. For example, the tea kettle should be moved to

a temporary location on the table. This is followed by the pick-place of the plastic mug to

its goal location. Finally, the goal location of the tea kettle is now free for its pick-place

operation. For this problem, we created 300 unique cases by random placement of the tray,

and each case contained atleast six planning problems, i.e., three constrained and three

unconstrained.

Kitchen Environment: In this scenario we have seven manipulatable objects: soda can,

juice can, fuze bottle, cabinet door, black mug, red mug, and pitcher. The objective is to move

the cans and bottle to the trash bin, open the cabinet door from any starting angle to a fixed final

angle (π/2.7), transfer (without tilting) the black and red mugs from the cabinet to the tray, and

move the pitcher from the table into the cabinet. We construct 2000 unique scenarios by the

random placement of the trash bin, tray, and manipulatable objects (excluding door) on the table

and by randomly selecting the cabinet’s door starting angle between 0 to π/4. Each scenario

contains a total of 14 planning problems, i.e., seven unconstrained (reach) and seven constrained

(manipulation) problems.

115

Training & testing data splits

In the sphere (scenario 1), we use 40 environments for training and 10 for testing. The

sphere (scenario 2) is used for testing only. In the bartender (scenario 1), and kitchen environments,

we use 10% data for testing, and the remainder is used for training. All training paths were

generated by an oracle planner, i.e., Atlas-RRTConnect. To train neural task programmer on all

bartender (scenarios 1, 2 & 3) and kitchen environments, we use the same data split ratio, i.e.,

10% is kept for testing. Note that the CoMPNetX is never trained on the sphere (scenario 2) and

Bartender scenarios 2 and 3. We use them to evaluate CoMPNetX generalization capacity across

different environment structures and planning problems.

Observation data

In the sphere environment, the observation data is a point-cloud converted into a voxel

map of size 40×40×40. However, for the other high-dimensional robot environments (Bartender

and Kitchen), there exist workspace and entire scene observations at any time instant t. The

workspace observation includes the current xt ∈ X and the target xT ∈ X . The current workspace

observation xt at a given time is represented by each objects’ poses and the robot end-effector

pose. The target xT is represented by the objects’ target poses at the completion of the entire

task. The scene observation is also a function of time represented as a voxel map vt at instant t.

We obtain raw point-cloud data from multiple Kinect sensors and process into voxel maps. The

Kinect sensors are placed in the bartender and kitchen environments leading to voxel maps of

dimensions 33×33×33 and 32×32×32, respectively.

NTP2: Programs and API Arguments Set

In our NTP2 setup, the list of initial programs includes arrange table and swap tray objs.

The Bartender (setup 1 and 2) and Kitchen tasks begin with the former, whereas the Bartender

setup 3 begins with the latter program. The initial program can call either pick place, subgoal gen,

116

(a) (b) (c)

Figure 3.29: Sphere Environment (Scenario 1): The paths found by CoMPNetX-FMT* (red),
FMT* (yellow) and RRTConnect (blue) with atlas operator in three example scenes.

return arm, or no op programs followed by their underlying API-programs named pick and place.

The API-programs pick and place represent an unconstrained planning problem, requiring a robot

to reach a given target/object, and a constrained planning problem, demanding manipulation

under manifold constraints, respectively. An API-program also gets an argument, predicted by the

API-decoder, which in our cases, is one of the objects (e.g., juice can, fuze bottle, soda can, etc.)

to be picked or placed in the given scenario. Furthermore, the program return arm requires a robot

to return to its initial default configuration from any starting state, and the program no op means

no operation needed. Finally, the subgoal gen is executed to move objects acting as obstacles out

of the way through pick-place procedures to achieve the desired sub-task.

3.3.6 Results

In this section, we present the results and analysis of the following evaluation studies:

(i) A comparison study evaluating CoMPNetX and state-of-the-art classical SMP planning

methods with an underlying constraint-adherence approach (projection, atlas, or tangent bundle)

on unseen challenging problems in environments named Sphere, Bartender, and Kitchen. (ii)

An ablation study comparing CoMPNetX with its ablated models and our previous method

117

(a) Planning Problem (b) CoMPNetX Sampling (c) Uniform Sampling

Figure 3.30: Sphere Environment: CoMPNetX stochastically generates samples in the subset
that potentially contains a path solution. It contrasts with traditional approaches that randomly
explore the entire space.

CoMPNet [QDCY20]. (iii) An extended evaluation to highlight the mutualistic relationship of

learning-based task programmers and CoMPNetX and their capacity to generalize across different

planning domains.

Comparative analysis

This section compares SMP methods augmented with batch and bidirectional CoMPNetX

against their classical setups in solving CMP problems. In the batch method, we select FMT*

[JSCP15], a state-of-the-art classical SMP algorithm, and it is proven to perform better than

standard approaches like RRT* and PRM* [KF11]. FMT* begins with an initial batch of Ninit

uniform samples, including a goal configuration. In case, the initial set of samples does not

yield a path solution, FMT* continues to expand the tree by generating a new random sample

in every planning iteration. We choose FMT* to highlight the flexibility offered by CoMPNetX

in generating sample batches with different K ≥ 1 according to the given SMP method. In

CoMPNetX-FMT*, we generate an initial batch of Ninit samples with K << Ninit . The initial

K configurations are randomly sampled from an obstacle-free space, to form Kqcurr , which are

passed to CoMPNetX to obtain the next set of configurations Kqnext . In the next step, the Kqnext

118

(a) Move juice can to the trash bin.

(b) Move soda can to the trash bin.

(c) Carefully place the kettle, i.e., without tilting, onto the tray.

Figure 3.31: Bartender setup (SC1): Figs. (a-c) show CoMPNetX motion sequences of moving
juice can, soda can, and kettle to their targets in three different test cases.

becomes Kqcurr , and the process of sample generation with CoMPNetX is repeated until it gathers

an initial batch of size Ninit , which also includes a goal state. Furthermore, in case, the initial

batch does not yield a path solution, in every subsequent planning step, we randomly select a

node in the FMT* tree as an input to CoMPNetX to generate a new informed sample towards

the given target (see Algorithm 16). In the bidirectional CoMPNetX, we merge CoMPNetX into

RRTConnect, as reported in Algorithm 17.

In the sphere environment, we evaluate both batch and bidirectional CoMPNetX. In the

first scenario (Fig. 3.29), CoMPNetX-FMT* with atlas, tangent-bundle, and projection exhibit

similar performances with over 99% success rates, computation times of about 0.89± 0.13

seconds, and the path lengths of about 2.18±0.014 units. In contrast, FMT* with atlas, tangent-

bundle, and projection appeared to have 1.22±0.034, 1.34±0.061, and 1.14±0.027 seconds

computation times, around 95%, 89% and 98% success rates, respectively, and somewhat similar

119

(a) Move the juice can to the trash.

(b) Carefully place, without tilting, the red mug from cabinet onto the tray.

(c) Carefully move pitcher into the cabinet.

Figure 3.32: Kitchen setup: Figs. (a-c) show instances of CoMPNetX planned motions for the
juice can, red mug, and pitcher under constraints in three different test scenarios.

path lengths as CoMPNetX. Overall, COMPNetX-FMT* finds near-optimal paths with lower

computation times and higher success rates than classical FMT*. On the other hand, CoMPNetX-

RRTConnect and RRTConnect exhibits similar computation times of about 0.01-0.02 seconds.

However, the former’s path lengths appeared to be significantly better than the latter approach, as

shown in Fig. 3.29.

The second sphere scenario, is entirely an unseen environment for CoMPNetX as it was

only trained on scenario 1. In this case, CoMPNetX-FMT* with all types of constraint-adherence

operators demonstrate performances with around 96% success rates, computation times of about

120

CoMPNetX-RRTConnect RRTConnect
0

25

50

75

100

125

150

175

200
tim

e
(s

ec
on

ds
)

Bartender

CoMPNetX-RRTConnect RRTConnect
0

100

200

300

400

500

600

tim
e

(s
ec

on
ds

)

Kitchen

Atlas Tangent-Bundle Projection

Figure 3.33: The boxplots show the total computation times of CoMPNetX-RRTConnect
and RRTConnect with atlas, tangent-bundle, and projection-based constraint operators in the
bartender and kitchen environments.

0.55±0.11 seconds, and the path lengths of about 3.13±1.8 units. The classical FMT* with

atlas, tangent-bundle, and projection takes 1.93± 1.34, 2.05± 1.44, and 0.95± 0.34 seconds

computation times with success rate of around 89%, 87% and 100%, respectively. Generally,

COMPNetX-FMT* found better quality paths, in terms of path lengths, with lower computation

times and generalized to this new environment with high success rates comparable to classical

FMT*. CoMPNetX-RRTConnect and RRTConnect performed similarly in terms of computation

times but the latter provides poor quality path solutions. Fig. 3.30 depicts the exploration by

CoMPNetX and uniform sampling for a given problem. It can be seen that our method explores

the space that potentially contains a path solution, thus leading to better performance, and this

becomes even more significant in high-dimensional problems, as presented in the remainder of

this section.

In the Bartender (scenario 1) and Kitchen environments, to solve constrained manipu-

lation tasks, we focus on bidirectional SMP methods only since they have become a standard

tool for solving high-dimensional CMP problems, and other methods such as unidirectional

SMP algorithms struggle in such cases and exhibit high computational times with low success

rates [JP17, KUSP16, BSK11]. We evaluate CoMPNetX-RRTConnect and traditional RRTCon-

121

nect with Atlas, Tangent Bundle, and Projection-based constrained-adherence methods, resulting

in Atlas-RRT [JP17], TB-RRT [KUSP16], and CBiRRT [BSK11] algorithms. Figs. 3.31 (a-c)

show instances of CoMPNetX-RRTConnect generating motions in the Bartender (Scenario 1)

for manipulating juice can (Fig. (a)), soda can (Fig. (b)), and kettle (Fig. (c)) in three different

test scenarios. Likewise, Figs. 3.32 (a-c) shows CoMPNetX-RRTConnect motion sequences for

moving juice can, red mug, and pitcher in three different kitchen scenarios. Furthermore, Fig.

3.26 displayed waypoints generated by our approach for the cabinet’s door opening task.

In these high-dimensional CMP scenarios, Fig. 3.33 provides the box plots of the total

computational time to solve all the manipulation tasks. Table 3.7 presents the mean success

rates with their standard deviations of all methods. Furthermore, Table 3.8 compares the mean

computation times with standard deviations for the individual objects, grouped by their constraint

types, in each of the scenarios.

It can be seen that our method exhibits significantly lower inter-quartile computational time

ranges with a narrow spread than other methods while retaining similar success rates. Moreover,

the results also show that with the increasing complexity of the planning problems from sphere to

kitchen environment, the computation times of traditional methods increase significantly with

large standard deviations compared to our approach. For instance, between bartender and kitchen

task (Table 3.8), the planning times of manipulation under collision-avoidance and stability

constraints increase from ∼ 1 to ∼ 7 seconds for CoMPNetX-RRTConnect and from ∼ 1 to ∼ 40

seconds for traditional RRTConnect. blue Furthermore, in these experiments, we randomize

the positioning of objects in the environments, so the models are shown to generalize to new,

unseen objects’ positioning. However, these models can also generalize to new objects if trained

accordingly with a variety of different items.

122

Table 3.7: The total mean success rates with standard deviations, over five trials, of CoMPNetX-
RRTConnect and traditional RRTConnect for solving all manipulation problems in the bartender
and kitchen environments.

Algorithms Type of Bartender Kitchen
Constraint-Adherence (%) (%)

RRTConnect
Projection 98.3±1.1 87.7±4.8

Atlas 99.2±0.6 95.4±3.8
Tangent-bundle 97.8±2.4 90.1±5.7

CoMPNetX- Projection 98.3±0.6 88.4±1.8
Atlas 99.8±0.1 95.3±1.3

RRTConnect Tangent-bundle 97.8±2.3 90.4±2.7

Table 3.8: The computation time comparison of CoMPNetX-RRTConnect and RRTConnect
in solving manipulation problems for individual objects. The objects are denoted by their first
letter and grouped by their constraints.

Algorithms Type of Bartender Kitchen

Constraint-Adherence J/F/S R/K J/F/S C R/B/P

Traditional
Projection 12.64±8.21 1.06±0.87 32.64±22.40 0.05±0.04 49.79±22.96

Atlas 10.86±11.08 0.93±0.82 24.87±19.81 0.04±0.03 41.28±24.02
Tangent-bundle 16.23±14.78 1.68±0.82 27.54±21.47 0.05±0.03 46.61±26.06

CoMPNetX
Projection 4.59±2.75 1.17±1.21 8.02±3.34 0.04±0.01 7.70±3.63

Atlas 4.51±2.24 0.77±0.38 6.26±3.44 0.02±0.01 5.84±2.78
Tangent-bundle 6.32±3.14 1.21±1.09 8.68±3.34 0.04±0.02 9.62±3.37

Ablative analysis

In this analysis, we ablate various components of CoMPNetX to highlight their signif-

icance in solving complex CMP problems. Table 3.9 summarizes the results with mean total

computation time and their standard deviation, and mean success rates for solving all manipulation

problems in the Bartender (scenario 1) and Kitchen environments.

The first alteration is to remove the NProj, i.e., the neural discriminator’s gradient-based

Table 3.9: The total mean computation times with standard deviations and mean success rates
are presented for various sampling approaches with an underlying RRTConnect and atlas-based
integrator.

Tasks Algorithms with Atlas Integrator and an underlying RRTConnect

CoMPNetX CoMPNetX (w/o NProj) CoMPNet Continuation-based Sampling

Bartender 15.05±06.86 (99.8%) 17.31±09.10 (98.1%) 19.77±10.84 (94.3%) 33.34±33.16 (99.2%)
Kitchen 36.47±14.16 (95.4%) 42.57±14.94 (93.0%) 46.93±15.79 (90.8%) 194.17±96.39 (95.4%)

123

projections (Eqn. 3.28), from CoMPNetX. Note that in Algorithm 15, we use NProj only when

the distance of generated configurations from the manifold is greater than ν. The value of ν is

selected to be a positive scalar multiple of the tolerance ε so that to fix those configurations that

are an order of magnitude distance away from the manifold than the allowed tolerance. It can be

seen that there are only a fraction of cases (2-3 %) where generated configurations by the Neural

Generator were not close to the manifold in constrained planning problems and fixing them with

NProj led to performance gains.

The second ablation is to evaluate the impact of neural task representations on CoMPNetX.

In our previous work [QDCY20], we show that task-representations are crucial for CoMPNet. In

that setting, text-based task representations led to significant improvements in performance than

CoMPNet without any task-representations. Moreover, the results also highlighted that text-based

representations become better than simple one-hot encoding when the number of tasks increases,

e.g., from bartender to kitchen environments. It is because one-hot representations become very

limited in practice with a growing set of multi-task and multimodal constraints. In this study, we

now compare the neural task and text-based task representations for constrained neural motion

planning. Table 3.9 presents the comparison of CoMPNetX (with neural task representations

and without NProj) and CoMPNet [QDCY20] (with text-based task representation and without

NProj) in solving all the manipulation problems in the bartender and kitchen environments. The

results indicate that the former, i.e., neural task representations, leads to better performance

than the latter in computation times and success rates. Moreover, the statistical paired testing of

these two methods resulted in p-values of 1.13×10−06 and 4.84×10−07 in the bartender and

kitchen environments, which validates that CoMPNetX outperforms CoMPNet [QDCY20] by

a significant margin. The reason is that the neural task representations consider the workspace

observation and the overall program hierarchy, whereas the text-representations are agnostic of

underlying task semantics. Furthermore, the learning-based task programmer not just provide

task representations but also generate a task plan that saves lot of effort in hand-engineering

124

sub-task sequences. Nevertheless, despite all ablations of CoMPNetX, it can be seen that our

method performs significantly better than classical sampling techniques.

Extended Analysis: Mutual Symbiotic Relationship

In our comparative analysis, we show that CoMPNetX generalizes to new locations of the

objects (i.e., not seen during training) and solves those practical problems in few seconds where

gold standard SMP methods take up to several minutes to obtain comparable success rates. In this

extended analysis, we show the joint operation of learning-based task programmer and CoMPNetX

and evaluate our models, trained on bartender (scenario 1), for further generalization to new

problems, such as in bartender scenarios 2 and 3, to simultaneously solve both unconstrained and

constrained planning problems. Note that our trained model on bartender scenario 1 never had

cases where either start, goal, or both states of the given sub-task object were occupied by other

objects, acting as obstacles. Therefore, the planner needs to move them out of the way before

accomplishing the desired sub-task.

Table 3.10 presents the total mean computation times with mean success rates of CoMP-

NetX for solving all unconstrained (pick) and constrained (place) tasks in the bartender scenarios

2 and 3. In these scenarios, the NTP2 success rate was about 95% and 89%, and from those

successful cases, CoMPNetX achieves around 90% and 80% success rate, respectively, in solving

given motion planning problems. In unconstrained planning problems, CoMPNetX calls an

underlying MPNet algorithm [QMSY20], solving problems in 2-3 seconds computation time, i.e.,

the computational gains over gold-standard SMPs are retained for unconstrained problems as

well. In constrained planning problems, CoMPNetX uses RRTConnect, and their computation

times for individual tasks were similar to reported for Bartender scenario 1.

Fig. 3.34 and Fig.3.35 show the joint execution of NTP2 and CoMPNetX in one of the

cases in bartender scenarios 2 and 3, respectively. In this particular case of scenario 2, the task

is to move the soda can out of the red mug’s target location and then move the red mug to its

125

CoMPNetX

CoMPNetX

CoMPNetX

Return

Intermediate configurations

Env. Observation Input Task Spec.

P_in: arrange_table EOP: False

P_out: pick_and_place Output Task Spec.

Env. Observation Input Task Spec.

P_in: pick_and_place EOP: False

P_out: place Args: soda_can

Env. Observation Input Task Spec.

P_in: pick_and_place EOP: False

P_out: pick Args: red_mug

Env. Observation Input Task Spec.

P_in: pick_and_place EOP: False

P_out: place Args: red_mug

Start configuration Goal configuration

Environment observation

1

5

9

10

6

2

11

7

3

8

4

12

Figure 3.34: A mutual symbiotic operation of a learning-based task programmer and CoMPNetX
in the Bartender scenario 2. The numbers in small boxes indicate the order in which the
procedures are executed.

Table 3.10: The total computation times and mean success rates for CoMPNetX, solving both
unconstrained and constrained problems with underlying MPNet and RRTConnect algorithms,
respectively, in the Bartender scenarios 2 and 3.

Datasets Planning times and success rates

Pick (Unconstrained) Place (Constrained)

Bartender-SC2 8.57±5.18 (88.7%) 17.47±10.07 (93.1%)
Bartender-SC3 6.42±3.21 (79.3%) 10.23±3.17 (81.2%)

desired place. Likewise, in this scenario 3 example, the robot has to swap both red mug and

kettle locations, which represents a situation where both start and goal locations of the objects are

occupied. It can be seen that cross-fertilization of neural task programmers and neural motion

planners are crucial for solving challenging practical problems, and CoMPNetX with neural task

representation exhibits generalization to problems outside the domain of its training set.

3.3.7 Discussion

In this section, we briefly discuss the CoMPNetX stochastic behavior and its benefits in

learning-based motion planning and the way our approach retains the completeness and optimality

guarantees of an underlying SMP planner.

CoMPNetX, like its predecessors, uses Dropout [SHK+14], with fifty percent probability,

126

CoMPNetX

CoMPNetX

CoMPNetX

CoMPNetX

Return

CoMPNetX

Return

Env. Observation Input Task Spec.

P_in: swap_tray_objs EOP: False

P_out: sub_goal Output Task Spec.

Env. Observation Input Task Spec.

P_in: sub_goal EOP: False

P_out: place Args: Kettle

Env. Observation Input Task Spec.

P_in: pick_and_place EOP: False

P_out: place Args: red_mug

Env. Observation Input Task Spec.

P_in: pick_and_place EOP: False

P_out: pick Args: kettle

Env. Observation Input Task Spec.

P_in: swap_tray_objs EOP: False

P_out: pick_and_place Output Task Spec.

Env. Observation Input Task Spec.

P_in: pick_and_place EOP: False

P_out: pick Args: red_mug

Env. Observation Input Task Spec.

P_in: pick_and_place EOP: False

P_out: place Args: kettle

6

9

12

15

2

1

4

5

8

11

14

16

13

10

7

3

swap_tray_objects

pick_and_place sub_goal

pick place pick place

Intermediate configurationsStart configuration Goal configuration

Task Program
Hierarchy

Figure 3.35: CoMPNetX generating motion sequences to swap red mug and kettle in the
Bartender scenario 3. The task programmer follows the indicated program hierarchy.

to skip some neurons in the generator network Gφ during a forward pass for planning. This

process induces a stochastic behavior as in each forward pass, the underlying SMP planner gets a

randomly sliced version of CoMPNetX’s neural generator. In [GG16], it is shown that Dropout-

based slicing of neural networks can model uncertainty in the estimation of their parameters. And

our studies show that Dropout can help generate a variety of samples in the subspace of a given

configuration space that potentially contains a path solution (Fig. 3.30). Thus, our framework

exploits CoMPNetX stochastic behavior to generate informed trees for any underlying SMP

planner in the region that potentially contains a path solution for a given problem through our

bidirectional and batch planning methods.

An SMP algorithm AL is probabilistically complete if the probability of finding a path

solution, if one exists, approaches to 1 as the number of samples n in their graph Tn approaches

to ∞. The primary reason for SMP methods to exhibit such completeness is based on their

127

configuration-space sampling strategies that explore the entire space as the number samples n

in their graph grows to a large value. There exist a wide range of SMP algorithms that exhibit

probabilistic completeness and can be merged with projection and continuation-based constraint-

adherence approaches for CMP. In conjecture 3.1, we propose that any SMP method that has

probabilistic completeness guarantees with their traditional sampling techniques will still retain

them with our CoMPNetX sampling strategies, i.e.,

Conjecture 3.1 (Probabilistic Completeness) Given a planning problem {qinit ,Qgoal,Xobs,F},

and a collision-checker, CoMPNetX will generate samples for an underlying SMP method AL,

leading to a tree T AL
n originating at qinit with number of nodes n, such that the probability

of finding a path solution σ : [0,1] 7→M f ree, if one exists, approaches to one as n→ ∞, i.e.,

Pn→∞(T AL∩Qgoal 6=∅) = 1.

In addition to probabilistic completeness, some SMP algorithms also demonstrate asymptotic

optimality, i.e., as the number of nodes n in the tree Tn approaches a large value/infinity, the

algorithm will find an optimal path with respect to a given cost function J(·), if one exists, with a

probability of 1. In the following proposition 2, we claim that with CoMPNetX, the underlying

SMP planner will continue to have their asymptotic optimality guarantees, i.e.,

Conjecture 3.2 (Asymptotic Optimality) Given a planning problem {qinit ,Qgoal,Xobs,F,J},

and a collision-checker, CoMPNetX adaptively generates configuration samples for an asymp-

totic optimal SMP algorithm such that the solution, if one exists, asymptotically converges to

an optimal path solution, σ∗ : [0,1] 7→M f ree, w.r.t J(·), as the number of generated samples n

approaches to infinity.

Justifications for Conjectures 3.1 & 3.2 In algorithms 16 and 17, our procedures to merge

128

CoMPNetX into any SMP planner consist of exploitation and exploration stages. In the former

stage, the procedure uses CoMPNetX to adaptively sample the subspace of an implicit manifold

configuration space that potentially contains a path solution. And in the latter, it leverages classical

sampling techniques that guarantee uniform coverage of the underlying manifolds. These two

stages are balanced through a hyperparameter Nismp, which defines the number iterations for

which our process relies on exploitation before switching to the exploration stage. Therefore,

CoMPNetX with underlying SMP methods do explore the entire configuration spaces as n→ ∞,

i.e., n >> Nismp. Since CoMPNetX does not alter the internal mechanism of an underlying SMP

algorithm and explore the entire state-space over time, it inherits the characteristics of that SMP

method, including their probabilistic completeness and asymptotic optimality and the proofs for

our claims remain almost the same as derived in [KMK19].

3.4 Acknowledgements

Chapter 3.1, in part, is a reprint of the following papers. The dissertation author is the

primary author of these papers.

• A.H.Qureshi, Y.Miao, A.Simeonov, and M.C.Yip,“Motion Planning Networks: Bridging

the Gap Between Learning-based and Classical Motion Planners”, IEEE Transactions on

Robotics, vol. 37, no. 1, pp. 48-66, Feb. 2021, doi: 10.1109/TRO.2020.3006716.

• A.H.Qureshi, A.Simeonov, M.J.Bency, and M.C.Yip, “Motion Planning Networks”, IEEE

International Conference on Robotics and Automation (ICRA), pp. 2118-2124, Montreal,

Canada, 2019.

• A.H.Qureshi and Michael.C.Yip, “Deeply Informed Neural Sampling For Robot Motion

Planning”, IEEE International Conference on Intelligent Robot and Systems (IROS), pp.

6582-6588, 2018.

129

Chapter 3.2, in part, is a reprint of L. Li, Y. Miao, A. H. Qureshi and M. C. Yip,“MPC-

MPNet: Model-Predictive Motion Planning Networks for Fast, Near-Optimal Planning Under

Kinodynamic Constraints”, IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4496-4503,

July 2021, doi: 10.1109/LRA.2021.3067847. The dissertation author is the co-author of this

paper.

Chapter 3.3, in part, is a reprint of the following papers. The dissertation author is the

primary author of these papers.

• A.H.Qureshi, J.Dong, A.Baig, and M.C.Yip,“Constrained Motion Planning Networks X”,

IEEE Transactions on Robotics, 2021.

• A.H.Qureshi, J.Dong, A.Choe, and M.C.Yip, “Neural Manipulation Planning on the

Constraint Manifolds”, IEEE Robotics and Automation Letters, 2020.

130

Chapter 4

Policy Ensemble Composition

In this work, we propose a novel policy ensemble composition method1 [QJQ+20] that

takes the basic, task-agnostic robot policies, transfers them to new complex problems, and ef-

ficiently learns a composite model through standard- or hierarchical-RL [SLA+15, SWD+17,

HZAL18, VOS+17, FDA17, NGLL18]. This composition model has an encoder-decoder archi-

tecture. The encoder is a bidirectional recurrent neural network that embeds the given skill set into

latent states. The decoder is a feed-forward neural network that takes the given task information

and latent encodings of the skills to output the mixture weights for skill set composition. This

dissertation shows that the proposed composition framework can combine the given skills both

concurrently (and -operation) and sequentially (or -operation) as per the need of the given task.

The proposed model is evaluated in challenging scenarios including problems with sparse rewards

and benchmark it against the state-of-the-art standard- and hierarchical- RL methods. The results

show that the proposed composition framework is able to solve extremely hard RL-problems

where standard- and hierarchical-RL methods are sample inefficient and either fail or yield

unsatisfactory results.

1Supplementary material and videos are available at https://sites.google.com/view/compositional-rl

131

4.1 Related Work

In the past, robotics research has been primarily focused on acquiring new skills such as

Dynamic Movement Primitives (DMPs) [SPNI05] or standard reinforcement learning policies.

A lot of research in DMPs revolves around learning compact, parameterized, and modular

representations of robot skills [SPNI05, INH+13, PDPN13, MHM11]. However, there have been

quite a few approaches that address the challenge of composing DMPs in an efficient, scalable

manner. To date, DMPs are usually combined through human-defined heuristics, imitation

learning or planning [KKGB12, MKP10, AAST12, VV08]. Likewise, RL [SB18] research

is also centralized around learning new policies [LHP+15, SLA+15, SWD+17, HZAL18] for

complex decision-making tasks by maximizing human-defined rewards or intrinsic motivations

[SHM+16, QNYI17, QNYI18, LFDA16].

To the best of the authors’ knowledge, there hardly exists approaches that simultaneously

combine and transfer past skills into new skills for solving new complicated problems. For

instance, [Tod09], [HPZ+18] and [SKTI17] require humans to decompose high-level tasks into

intermediate objectives for which either Q-functions or policies are obtained via learning. The

high-level task is then solved by merely maximizing the average intermediate Q-functions or

combining intermediate policies through temporal-logic. Note that these approaches do not

combine task-agnostic skills thus lack generalizability and the ability to transfer skills to the

new domains. A recent and similar work to the proposed method is a multiplicative composition

policies (MCP) framework [PCZ+19]. MCP comprises i) a set of trainable Gaussian primitive

policies that take the given state and proposes the corresponding set of action distributions and

ii) a gating function that takes the extra goal information together with the state and outputs the

mixture weights for composition. The primitive policies and a gating function trained concurrently

using reinforcement learning. In their transfer learning tasks [PCZ+19], the primitive polices

parameters are kept fixed, and the gating function is trained to output the mixture weights

132

according to the new goal information. In the ablation studies, we show that training an MCP

like-gating function that directly outputs the mixture weights without conditioning on the latent

encoding of primitive actions gives inferior performance compared to the proposed method. The

proposed method utilizes all information (states, goals, and primitive skills) in a structured way

through attention framework, and therefore, leads to better performance.

Recent advancements lead to Hierarchical RL (HRL) that automatically decomposes

the complex tasks into subtasks and sequentially solves them by optimizing the given objective

function [VOS+17, NGLL18]. In a similar vein, the options framework [SPS99, Pre00] is

proposed that solves the given task through temporal abstraction. Recent methods such as

option-critic algorithm [BHP17] simultaneously learns a set of sub-level policies (options), their

termination functions, and a high-level policy over options to solve the given problem. Despite

being an exciting step, the option-critic algorithm is hard to train and requires regularization

[VMO+16, HBKP18], or else it ends up discovering options for every time step or a single option

for the entire task. In practice, the sub-level options or objectives obtained via HRL are inherently

task-specific and therefore cannot be transferred to new domains.

4.2 Background

We consider a standard RL formulation based on Markov Decision Process (MDP)

defined by a tuple {S ,A ,P ,R }, where S and A represent the state and action space, P is the set

of transition probabilities, and R denotes the reward function. At time t ≥ 0, the agent observes

a state st ∈ S and performs an action at ∈ A . The agent’s action at transitions the environment

state from st ∈ S to st+1 ∈ S with respect to the transition probability P (st+1|st ,at) and leads to a

reward rt ∈ R .

For compositionality, we extend the standard RL framework by assuming that the agent

has access to the finite set of primitive policies Π = {πi}N
i=0 that could correspond to agent’s skills,

133

controller, or motor-primitives. The presented composition model is agnostic to the structure

of primitive policy functions, but for the sake of this work, we assume that each of the sub-

policies {πi}N
i=0 solves the MDP defined by a tuple {Ŝ ,A , P̂ , R̂ i}. Therefore, Ŝ , P̂ and R̂ i are

the state-space, transition probabilities and rewards of the primitive policy πi, respectively. Each

of the primitive policies πi : Ŝ×A → [0,1], ∀i ∈ [0,1, · · · ,N], takes a state ŝ ∈ Ŝ and outputs a

distribution over the agent’s action space A . The presented composition model is defined as a

composite policy πc
θ

: S ×AN+1×A → [0,1], parameterize by θ, that outputs a distribution over

the action space conditioned on the environment’s current state s ∈ S and the primitive policies

{âi ∈ A}N
i=0 ∼ Π. The state space of the composite model is S = [Ŝ ,G]. The space G could

include any task specific information such as target locations. Hence, the state inputs to the

primitive policies Π and composite policy πc
θ

need not to be the same.

In remainder of this section, the experiments show that the composition model solves an

MDP problem. To avoid clutter, it is assumed that both primitive policy ensemble and composite

policy have the same state space S , i.e., G = /0. The composition model samples an action

from a distribution parameterized by the actions of sub-level policies and the state s ∈ S of

the environment. Therefore, we can augment the given state space S as S c : AN+1×S , where

AN+1 : {A i}N
i=0 are the outputs of sub-level policies. Hence, compositional MDP is defined

as {S c,A ,P c,R } where S c = AN×S is the new composite state-space, A is the action-space,

P c : S c×S c×A → [0,1] is the transition probability function, and R is the reward function for

the given task.

4.3 Policy Ensemble Composition

This section presents the policy ensemble composition framework, shown in Fig. 4.1. The

composition model consists of i) the encoder network that takes the outputs of primitive policies

and embeds them into latent spaces; ii) the decoder network that takes current state st of the

134

𝑎𝑡 ∼ ෍

𝑖=0

𝑁

𝑤𝑖𝒩(𝜇𝑖 , 𝜎𝑖)

Decoder

Encoder

Attention

Ƹ𝑠𝑡 Ƹ𝑠𝑡

ℎ𝑓

ℎ𝑏

𝑎0 𝑎1

ℎ𝑁−1
𝑏ℎ𝑁

𝑏

ℎ1
𝑓

ℎ0
𝑓

𝜋0 𝜋1

Primitive Policies

𝑎𝑁

Ƹ𝑠𝑡

ℎ0
𝑏

ℎ𝑓ℎ𝑁
𝑓

𝜋𝑁𝑠𝑡: [Ƹ𝑠𝑡 𝑔𝑡]

ℎ𝑑

…

…

…

[𝑤0, 𝑤1, … , 𝑤𝑁]

Figure 4.1: Policy ensemble composition model that takes the state information st and a set of
primitive policies’ output {âi}N

i=0 to compute a composite action at .

environment and the latent embeddings from the encoder network to parameterize the attention

network; iii) the attention network that outputs the probability distribution over the primitive

low-level policies representing their mixture weights. The remainder of the section explains the

individual models of the composition framework and the overall training procedure.

Encoder Network

The encoder is a bidirectional recurrent neural network (BRNN) that consists of Long

Short-Term Memory units [HS97]. The encoder takes the outputs of the policy ensemble {âi}N
i=0

and transform them into latent states of forward and backward RNN, denoted as {h f
i }

N+1
i=0 and

{hb
i }

N+1
i=0 , respectively, where h f

i ,h
b
i ∈ Rd;∀i ∈ [0,1, · · · ,N +1]. The N +1 states of forward and

backward RNN corresponds to their last hidden states denoted as h f and hb, respectively, in Fig.

4.1.

Decoder Network

The decoder is a simple feed-forward neural network that takes the last hidden states of

the forward and backward encoder network, i.e., {h f ,hb}, and the current state of the environment

s to map them into a latent space h ∈ Rd . The state input to the decoder network is defined as

135

s : [ŝ,g], where ŝ ∈ Ŝ is the state input to the low-level policy ensemble and g ∈ G could be any

additional information related to the given task, e.g., goal position of the target to be reached by

the agent.

Attention Network

The composition weights (see Fig. 4.1) {wi ∈ [0,1]}N
i=0 are determined by the attention

network as follows:

qi =W T · tanh(Wf ·h f
i +Wb ·hb

i +Wd ·h);∀i ∈ [0,N] (4.1)

where Wf ,Wb,Wd ∈ Rd×d and W ∈ Rd . The weights {wi}N
i=0 for the composite policy are

computed using gumbel-softmax denoted as softmax(q/T), where T is the temperature term

[JGP16].

Composite policy

Given the primitive policy ensemble Π = {πi}N
i=0, the composite action is the weighted

sum of all primitive policies outputs, i.e., πc
θ
= ∑

N
i wiπi. Since, we consider the primitive policies

to be Gaussian distributions, the output of each primitive policy is parameterized by mean µ and

variance σ, i.e., {âi ∼N (µi,σi)}N
i=0←{πi}N

i=0. Hence, the composite policy can be represented

as πc
θ
= ∑

N
i wiN (µi,σi), where N (·) denotes Gaussian distribution, and ∑i wi = 1. Given the

mixture weights, other types of primitive policies, such as DMPs [SPNI05], can also be composed

together by the weighted combination of their normalized outputs.

Composite model training objective

The general objective of RL methods is to maximize the cumulative expected reward,

i.e., J(πc
θ
) = Eπc

θ
[∑∞

t=0 γtrt], where γ : (0,1] is a discount factor. The policy gradient methods is

136

used to update the parameters θ of the composite model, i.e., θ← θ+η5θ J(πc
θ
), where η is

the learning rate. The composite policy can be trained through standard RL and HRL methods,

described as follow.

Standard Reinforcement learning

In standard RL, the policy gradients are determined by either on-policy or off-policy up-

dates [LHP+15, SLA+15, SWD+17, HZAL18] and any of them could be used to train composite

model. However, in this work, the off-policy soft-actor critic (SAC) method [HZAL18] is used

for the training of the policy function. SAC maximizes the expected entropy H (·) in addition to

the expected reward, i.e.,

J(πc
θ) =

T

∑
t=0

Eπc
θ
[r(st ,at)+λH (πc

θ(·|st))] (4.2)

where λ is a hyperparameter. We use SAC as it motivates exploration and has been shown to

capture the underlying multiple modes of an optimal behavior. Since there is no direct method to

estimate a low-variance gradient of Eqn (4.2), we use off-policy value function-based optimization

algorithm. Since, the composite policy is a tractable function πc
θ
(at |st ,{πi}N

i=0) parameterized

by θ. The composite policy update through SAC requires the approximation of Q- and value-

functions. The parametrized value- and Q-function are denoted as Vφ(st) with parameters φ,

and Qξ(st ,at) with parameters ξ, respectively. Since, SAC algorithm build on the soft-policy

iteration, the soft value-function Vφ(st) and soft Q-function Qξ(st ,at) are learned by minimizing

the squared residual error JV (φ) and squared Bellman error JQ(ξ), respectively, i.e.,

JV (φ) = Est∼M [
1

2
(Vφ(st)−V̂ (st))

2] (4.3)

137

JQ(ξ) = E(st ,at)∼M [
1

2
(Qξ(st ,at)− Q̂(st ,at))

2] (4.4)

where M is a replay buffer, V̂ (st) = Eat∼πc
θ
[Qξ(st ,at)− logπc

θ
(at |st)] and Q̂ is the Bellman target

computed as follows:

Q̂(st ,at) = r(st ,at)+ γEst+1∼p[Vφ′(st +1)] (4.5)

The function Vφ′(st) is the target value function with parameters φ′. The parameters φ′ are

the moving average of the parameters φ computed as τφ+(1− τ)φ′, where τ is the smoothing

coefficient. Finally the policy parameters are updated by minimizing the following expected

KL-divergence.

Jπc(θ) = Est∼M

[
DKL

(
π

c
θ(·|st)

∣∣∣∣ exp(Qξ(st , ·))
Zξ(st)

)]
(4.6)

where Zξ is a partition function that normalizes the distribution. Since, just-like SAC, the

Q-function is differentiable, the above cost function can be determined through a simple reparam-

etization trick, see [HZAL18] for details. Like SAC, we also maintain two Q-functions that are

trained independently, and we use the minimum of two Q-functions to compute Eqn. 4.3 and Eqn.

4.6. This way of using two Q-function has been shown to alleviate the positive biasness problem

in the policy improvement step. The overall training procedure is summarized in Algorithm 1.

Hierarchical Reinforcement Learning

In HRL, there are currently two streams - task decomposition through sub-goals [NGLL18]

and option framework [BHP17] that learns temporal abstractions. In the options framework, the

options can be composite policies that are acquired with their termination functions. In task

decomposition methods that generate sub-goal through high-level policy, the low-level policy can

be replaced with composite policy. In this work, the latter approach [NGLL18], known as HIRO

138

Algorithm 18: Composition model training using SAC
Initialize parameter vectors φ, φ′, θ, ξ

Input: Primitive policies Π = {πi}N
i=0

for each iteration do
for each environment step do

Compute primitive policies state ŝt ← st\gt

Sample primitive actions {âi,t}N
i=0 ∼Π(ŝt)

Sample composite action at ∼ πc
θ
(at |st ,{âi,t}N

i=0)
Sample next state st+1 ∼ p(st+1|st ,at)

M ←M ∪{(st ,at ,{âi,t}N
i=0,rt ,st+1)}

for each gradient step do
Update value function φ← φ−η5φ JV (φ)
Update Q-function ξ← ξ−η5ξ JQ(ξ)

Update policy θ← θ−η5θ Jπc(θ)
φ′← τφ+(1− τ)φ′

algorithm, is used to train our policy function.

Like, standard HIRO, we use two level policy structure. At each time step t, the high-level

policy πhi
θ′ , with parameters θ′, observes a state st and takes an action by generating a goal gt ∈ S

in the state-space S for the composite low-level policy πc:low
θ

to achieve. The πc:low
θ

takes the

state st , the goal gt , and the primitive actions {âi}N
0 to predict a composite action at through

which an agent interacts with the environment. The high-level policy is trained to maximize the

expected task rewards given by the environment whereas the composite low-level policy is trained

to maximize the expected intrinsic reward defined as the negative of distance between current

and goal states, i.e., ‖st +gt − st+1‖2. To conform with HIRO settings, we perform off-policy

correction of the high-level policy experiences and we train both high- and low-level policies via

TD3 algorithm [FvHM18]. The algorithm to train composite policy through HIRO that employs

the two level policy structure is outlined as follows.

The high-level policy generates the sub-goals for the low-level composite policy to

achieve. The low-level composite policy also have access to the primitive policy actions. Like

HIRO, we use TD3 algorithm [FvHM18] to train both high-level and low-level policies with their

139

corresponding Q-functions, Qhi and Qlo, respectively. The low-level policy πc:low
θ

, with parameters

θ, is trained to maximize the Q-values from the low-level Q-function Qlo for the given state-goal

pairs. The Q-function (Qlo) parameters ξ are optimized by minimizing temporal-difference error

for the given transitions, i.e.,

Jlo
Q (ξ) =

(
rlo(st ,gt ,st+1)+ γQlo

ξ
(st+1,gt+1,π

c:lo
θ (st+1,gt+1,{â}N

0))−Qlo
ξ
(st ,gt ,at)

)2 (4.7)

where rlo(st ,gt ,st+1) =−‖st +gt− st+1‖ and gt+1 ∼ πhi
θ′(st+1).

The high-level policy πhi
θ′ , with parameters θ′, is trained to maximize the values of Qhi.

The Q-function (Qhi) parameters ξ′ are trained through minimizing the following loss for the

given transitions.

Jhi
Q (ξ′) =

(c−1

∑
t=0

Rt(st ,at ,st+1)+ γQhi
ξ′(st+c,π

hi
θ′(st+c))−Qhi

ξ
(st , ĝt)

)2 (4.8)

During training, the continuous adaptation of low-level policy poses a non-stationery problem

for the high-level policy. To mitigate the changing behavior of low-level policy, [NGLL18]

introduced off-policy correction of the high-level actions. During correction, the high-level policy

action g is usually re-labeled with ĝ that would induce the same low-level policy behavior as was

previously induced by the original high-level action g (for details, refer to [NGLL18]). Algorithm

2 presents the procedure to train the composite policy with HIRO.

4.4 Results

The proposed method is evaluated and compared against standard RL, and HRL ap-

proaches in challenging environments (shown in Fig. 4.2) that requires complex task planning and

motion control. The implementation details of all presented methods and environment settings are

provided in Appendix C of supplementary material. We also do an ablative study in which we take

140

Algorithm 19: Composition model training using HIRO
Initialize parameter vectors φ, φ′, θ, ξ

Input: Primitive policies Π = {πi}N
i=0

for each iteration do
for each environment step do

Compute primitive policies state ŝt ← st\gt

Sample primitive actions {âi,t}N
i=0 ∼Π(ŝt)

Sample high-level action gt ∼ πhi(ŝt)

Sample composite action at ∼ πc
θ
(at |st ,gt ,{âi,t}N

i=0)
Sample next state st+1 ∼ p(st+1|st ,at)

M ←M ∪{(st ,gt ,at ,{âi,t}N
i=0,rt ,st+1)}

for each gradient step do
Sample mini-batch with c-step transitions
{(gk,sk

t:t+c,a
k
t:t+c−1,{âk

j,t:t+c−1}N
j=0,r

k
t:t+c−1)}B

k=1 ∼M
Compute rewards for low-level policy {rlo

i }B
i=0←{rlo(si,gi,si+1)}B

i=0
Update πc:lo w.r.t Qlo using {(sk,gk,ak,{âi,k}N

i=0,r
lo
k ,sk+1)}B−1

k=0 [NGLL18]
Update πhi w.r.t Qhi using {(sk, ĝk,∑

c−1
i=k rk,sk+c)}B−1

k=0 [NGLL18]

away different components of our composite model to highlight their importance. Furthermore,

we depict attention weights of our model in a navigation task to highlight its ability of concurrent

and sequential composition.

We consider the following seven environments for our analysis: (1) Pusher: A simple

manipulator has to push an object to a given target location. (2) Ant Random Goal: In this

environment, a quadruped-Ant is trained to reach the randomly sampled goal location in the

confined circular region. (3) Ant Cross Maze: The cross-maze contains three target locations.

The task for a quadruped Ant is to reach any of the three given targets by navigating through a 3D

maze without collision. (4) HalfCheetah Hurdle: In this problem, the task for a halfcheetah is to

run and jump over the three barriers to reach the given target location. (5) Ant Maze: A⊃-shaped

maze poses a challenging navigation task for a quadruped-Ant. In this task, the agent is given

random targets all along the maze to reach while training. However, during the evaluation, we test

the agent for reaching the farthest end of the maze. (6) Ant Push: A challenging environment

141

(a) Ant Random Goal (b) Ant Cross Maze (c) Pusher (d) HalfCheetah Hurdle

(e) Ant Maze (f) Ant Push (g) Ant Fall

Figure 4.2: Benchmark control and manipulation tasks requiring an agent to reach or move the
object to the given targets (shown in red for pusher and green for rest).

that requires both task and motion planning. The environment contains a movable block, and

the goal region is located behind that block. The task for an agent is to reach the target by first

moving to the left of the maze so that it can move up and right to push the block out of the way

for reaching the target. (7) Ant Fall: A navigation task where the target is located across the rift

in front of the agent’s initial position. There also happen to be a moveable block, so the agent

has to move to the right, push the block forward, fill the gap, walk across, and move to the left to

reach the target location. (8) Multi-goal Point Mass: In this scenario, the task is to navigate a

point-mass to one of the four goals located diagonally to agent initial position.

In all tasks, the primitive skills of the agent are obtained for the composite policy. For Ant,

the four basic policies for moving left, right, up, and down. The pusher uses two primitive policies

that are to push an object to the left and down. In HalfCheetah hurdle environment, the low-level

policies include jumping and running forward. Finally for the point-mass robot, the composition

model takes four policies for moving in the up, down, left and right directions. Furthermore, in

all environments, except pusher, the primitive policies were agnostic of high-level tasks (such

as target locations) that were therefore provided separately to the composite model via decoder

network. This highlights the ability of this model to transfer basic robot skills to novel problems.

142

Table 4.1: Performance comparison of presented composition model against SAC [HZAL18],
TRPO [SLA+15], and PPO [SWD+17] on benchmark control tasks in terms of normalized
distance (lower the better) of an agent from the given target.

Methods Environments

Ant Random Goal Ant Cross Maze Pusher HalfCheetah Hurdle

SAC 0.21±0.08 0.78±0.06 0.17±0.02 0.79±0.01
TRPO 1.09±0.15 0.85±0.15 0.64±0.09 0.87±0.05
PPO 1.06±0.11 0.95±0.07 0.71±0.06 0.88±0.04

Our Method 0.11±0.05 0.11±0.02 0.14±0.02 0.27±0.22

Comparative study

In the comparative studies, the test environments are divided into two groups. The

first group includes Pusher, Random Goal Ant, Ant Cross Maze, and HalfCheetah-Hurdle

environments, whereas the second group comprises the remaining environments that require task

and motion planning under weak reward signals.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (Million)

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 fr
om

 g
oa

l

HalfCheetah Hurdle

0.0 0.2 0.4 0.6 0.8 1.0
Steps (Million)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Di
st

an
ce

 fr
om

 g
oa

l

Pusher

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (Million)

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

 fr
om

 g
oa

l

Ant Random Goal

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (Million)

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 fr
om

 g
oa

l

Ant Cross Maze

PPO TRPO Composition-SAC SAC

Figure 4.3: Comparison results of our composition method against standard RL methods
averaged over ten trials. The axes represents the distance of the agent/object from the target and
environment steps in millions.

In the first group of settings, the composite model trained with SAC [HZAL18] against

the standard Gaussian policies obtained using SAC [HZAL18], PPO [SWD+17], and TRPO

[SLA+15]. The HRL methods are excluded in these cases as the environment rewards sufficiently

represent the underlying task, whereas HRL approaches are applicable in cases that have a weak

reward signal or require task and motion planning. Table 4.1 presents the mean and standard

deviation of the agent’s final distance from the given targets after the end of an evaluation rollout

over the ten trials. Fig. 4.3 shows the mean learning performance over all trials during the three

million training steps. In these set of problems, TRPO and PPO entirely fail to reach the goal, and

143

SAC performs reasonably well but only in simple Ant Random Goal and Pusher environments as

it fails in other cases. The composite policy obtained using SAC successfully solves all tasks and

exhibit high data-efficiency by learning in merely a few thousand training steps.

0 2 4 6 8
Steps (Million)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Di
st

an
ce

 fr
om

 g
oa

l

Ant Maze

0 2 4 6 8
Steps (Million)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Di
st

an
ce

 fr
om

 g
oa

l

Ant Push

0 2 4 6 8 10
Steps (Million)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 fr
om

 g
oa

l

Ant Fall

Composition-HIRO-Standard-Ant HIRO-Standard-Ant HIRO-Low-Torque-Ant HIRO-Low-Torque-Ant-Pretrained

Figure 4.4: Comparison of composition model trained with HIRO and three variants of standard
HIRO. The pretrained HIRO undergoes extra 4 million training steps. The standard- and
low-torque-Ant has 150 and 30 units torque limit.

In the second group of environments, the distance-based rewards are used that are weak

signals as greedily following them does not lead to solving the problem. Furthermore, in these

environments, policies trained with standard RL, including the composite policy, failed to solve the

problem even after 20 million training steps. Therefore, the composite policy trained with HIRO

[NGLL18] and compared its performance against standard HIRO formulation [NGLL18]. We

also tried to include option-critic framework [BHP17], but we were unable to get any considerable

results with their online implementation despite several attempts with the parameter tuning. One

of the reasons option-critic fails is because it relies purely on task rewards to learn, which makes

them inapplicable for cases with weak reward signals [NGLL18].

[NGLL18] use a modified Ant in their paper that has 30 units joint torque limit (low-

torque-Ant). For our composition method, we use Mujoco standard Ant that has a torque limit of

150 units which makes the learning even harder as the Ant is now more prone to instability than a

low-torque-Ant. For standard HIRO formulation, we trained three variants i) HIRO trained on

standard Mujoco Ant, ii) HIRO trained on low-torque Ant (as in [NGLL18]); iii) HIRO pretrained

for the equal number of training steps as used to train the primitive policies of our composition

method on a low-torque-Ant (For more details, refer to Appendix C.1).

Fig. 4.4 shows the learning performance, averaged over ten trials, during 10 million steps.

144

0.0 0.2 0.4 0.6 0.8 1.0
Steps (Million)

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

 fr
om

 g
oa

l

Pusher

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (Million)

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

 fr
om

 g
oa

l

Ant Random Goal

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (Million)

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 fr
om

 g
oa

l

Ant Cross Maze

Composition Composition-Without-Attention Composition-Without-AttBRNN Composition-Without-BRNN

Figure 4.5: Ablative Study: Performance comparison, averaged over ten trials, of our composite
model and its ablated variations that lack attention model, bidirectional-RNN (BRNN) or both
attention and BRNN (AttBRNN).

Figure 4.6: The attention weights: The blue and yellow colors show low and high values,
respectively

It can be seen that the composite policy with HIRO outperforms standard HIRO [NGLL18] by a

significant margin. It also certifies the utility of solving RL tasks using composition by leveraging

basic pre-acquired skills. Furthermore, HIRO performs poorly with standard Ant, even pretraining

did not improve the performance, as it imposes a harder control problem.

Figure 4.7: Each path corresponds to its adjacent attention weight mapping. The weighting
“strength” of each primitive policy is depicted for each step (i.e. up (U), down (D), left (L), and
right (R)).

145

Figure 4.8: The depiction of attention weights for the halfcheetah-hurdle environment. The
weighting “strength” of each primitive policy (i.e., run and jump) for each step is shown.

Ablative study

We remove bidirectional RNN (BRNN) (similar to [PCZ+19]), attention-network, and

both attention-network and BRNN (AttBRNN) from our composition model to highlight their

importance in the proposed architecture in solving complex problems. We train all models with

SAC [HZAL18]. The first model is our composite policy without attention in which the decoder

network takes the state information and last hidden states of the encoder (BRNN) to directly

output actions rather than mixture weights. The second model is without attention network and

BRNN, it is a feed-forward neural network that takes the state information and the primitive

actions and predicts the action to interact with the environment. The third model is without

BRNN, it is a feed-forward neural network that takes the state and goal information, and output

the mixture weights. The mixture weights are then used to combine the actions from primitive

policies. This setting is same as [PCZ+19] for their transfer learning problems. Fig. 4.5 shows the

mean performance comparison, over ten trials, of our composite model against its ablated versions

on a Ant Random Goal, Cross Maze Ant, and Pusher environment. We exclude remaining test

environments in this study as ablated models completely failed to perform or show any progress.

Note that the better performance of our method compared to ablated versions highlight

the merits of our architecture design. Intuitively, BRNN allows the dynamic encoding of a skill

146

set that could be of variable lengths2. And our decoder network uses the encoded skills together

with given state and goal information (states, goals, and primitive skills) in a structured way using

attention framework and provides significantly better performance than other ablated models,

including [PCZ+19].Furthermore, another merit of using the attention network is that it bypasses

the complex transformation of action embeddings (composition-without-attention) or actions

and state-information (composition-without-AttBRNN) directly to action space. Hence, the

proposed architecture is crucial for the composition of task-agnostic sub-level policies to solve

new problems.

Depiction of attention weights

Figure 4.9: The depiction of attention weights for the pusher environment. The weighting
“strength” of each primitive policy (i.e., Bottom and Left) for each step is shown.

In order to further assess the merit of utilizing an attention network, we apply our model

to a simple 2D multi-goal point-mass environment as shown in Fig. 4.7. The point-mass is

initialized around the origin (with variance σ2 = 0.1) and must randomly choose one of four goals

to reach. For this experiment we use dense rewards with both a positional and actuation cost.

Primitive policies of up (+y), down (−y), left (−x), and right (+x) were trained and composed to

reach goals, represented here as red dots, in the “diagonal” directions where a combination of

two or more primitive policies are required to reach each goal.

The four mappings in the figure give us insight into how the attention network is utilizing

the given primitives to achieve the desired task. At each step in a given path, the weights {wi}N
i=0

2However, in this work, we only consider a primitive skill set of fixed size

147

for each low-level policy are assigned and composed together to move the point-mass in the

desired direction. We see here that even with some noise and short-term error, the attention

weights are strongest for primitive policies that move the point-mass to its chosen goal. We also

see that multiple policies are activated at once to achieve more direct movements toward the

goal, as opposed to “stair-stepping” where only one primitive is activated at a time. Both of these

observations point to the concurrent and sequential nature of this composition model.

We further illustrate the attention weights of our composite policy in halfcheetah-hurdle

(Fig. 4.8), pusher (Fig. 4.9), and cross-maze-ant (Fig. 4.10) environments. Our results highlight

the ability of our model to compose a given set of primitive polices, both sequentially and

concurrently, to solve the given problem. Fig. 4.6 shows the color-coding for the scale of attention

weight value given by the composite policy.

Figure 4.10: The depiction of attention weights for the cross-maze environment. The weighting
“strength” of each primitive policy (i.e., up (U), down (D), left (L), and right (R)) for each step is
shown.

Apart from compositionality, another research problem in the way of building intelligent

machines is the autonomous acquisition of new skills that were lacking in the system and therefore,

hindered it from the solving the given task [LUTG17]. In this section, we demonstrate that our

composition model holds the potential for building such a system that can simultaneously learn

148

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps (Million)

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

 fr
om

 g
oa

l

Composition-SAC
SAC

Figure 4.11: Missing skill. The composite model with a primitive policy for moving right and a
trainable policy function. The composition framework trained the new function to move in the
upward direction to reach the given goal.

new missing skills and compose them together with the existing skill set to solve the given

problem.

Fig. 4.11 shows a simple ant-maze environment in which the 3D quadruped-Ant has to

reach the target, indicated as a green region. In this problem, we equip our composition model

with a single primitive policy for walking in the right direction and a trainable, parametric policy

function. The trainable policy function takes the state without goal information and outputs the

parameters for Gaussian distribution to model the robot’s action space. Note that the composite

model requires a skill of walking upward in addition to moving in the right direction to reach

the given goal. To determine if our composition model can teach the new parametric policy

function to move upward, we trained our composition model along with the new policy using the

shared Q- and value-functions. Once trained, we observed that our composition model learned the

parametric policy function for walking in an upward direction with slight right-turning behavior.

The plot in Fig. 4.11 shows the performance of our composition model and standard RL

policy obtained with SAC in this environment. The vertical axis indicates the distance from the

target location averaged over five randomly seeded trials. The horizontal axis shows the number of

environment steps in millions. It can be observed that our method converged faster than standard

RL policy. It shows that our approach is also utilizing the existing skills and therefore learns

faster than a standard policy function that solves the entire task from scratch. Furthermore, in

current settings, we do not impose any constraint on the new policy function that would make

149

it learn only the missing skills rather than replicating existing skills or solving the given task

entirely by itself. We leave the formulation of such constraint for autonomous acquisition of new,

missing skills to our future works.

4.5 Implementation details

Pretraining Benchmark Method

In our results, we also consider the pretraining of benchmark methods for an equivalent

amount of time as used to train the primitive policies for our composition model for a better

analysis. The total number of steps needed to train primitive skills of Ant (up, down, left, and

right), halfcheetah (run and jump), and pusher (down and left) were 1, 0.5, and 0.1 million,

respectively. In Fig. 4.4, HIRO was pretrained for both standard (30 units) and low-torque-ant

(150 units). The results of HIRO standard-ant are excluded in Fig.4.4 to avoid clutter as they led

to no improvement in the performance. For the non-hierarchical tasks presented in Fig. 4.3, the

benchmark methods are not pretrained. However, to account for pretraining, the performance

of other methods (TRPO, PPO, SAC) can be accessed after 1, 0.5, and 0.1 million for the ant,

halfcheetah, and pusher environments, respectively. Also, notice that in Fig. 4.3, the pretraining

will have no significant effect on the performance of TRPO and PPO in all environments and SAC

in half-cheetah hurdle and cross-maze-ant environments. Furthermore, since pusher and random-

goal-ant are relatively simple environments (due to no obstacles or maze around), pretrained SAC

can perform similar to our composition method.

Environment Details

In this section, we present the environment details including reward functions, primitive

policies, and state space information. The reward functions are presented in the Table 4.3 together

with the overall reward scaling values. For Ant and halfcheetah-hurdle environments, the primitive

150

policies were trained in a free-space that had no mazes, hurdle or fixed targets in the surrounding.

Ant environments: In these environments, we use 8 DOF four-legged Ant with 150 units

torque limit. The primitive policies of moving left, right, down and up were shared across all

these tasks. These sub-level-policies were obtained using SAC and each policy was trained for

about 0.25 million steps. In these environments, the information g in the state s : [ŝ,g] corresponds

to the target location. Let us introduce the notation to defined reward function. Let rxy, gxy,

u, and fc denote xy-position of the robot’s torso, xy-position of the goal, joint torques, and

contact-cost, respectively. The scaling factors are defined as λ. The reward function for the

following environments is defined as with reward scaling of 5 units:

−λg||rxy−gxy||2 +λvvxy +λsI(IsAlive)−λct ||u||2−λc fc (4.9)

Ant Random Goal: In this environment, the ant has to navigate to any randomly sampled

target within the confined circular region of radius 5 units. The goal radius is defined to be 0.25

units. The reward function coefficients λg, λv, λs, λct , and λc are 0.3, 0.0, 0.05, 0.01, and 0.001,

respectively.

Ant Cross Maze: In this environment, the ant has to navigate through the 3D maze to

reach any of the target sampled from the three targets. The goal radius is defined to be 1.0 units.

The reward function parameters are same as for the random-goal ant environment.

For the remaining environment (Ant Maze, Ant Push and Ant Fall), we use the following

reward function with no reward scaling:

λg||rxyz−gxyz||2−λct ||u||2−λc fc (4.10)

where coefficients λg, λct , and λc are set to be 1.0, 0.05, and 0.5×10−4.

Ant Maze: In this environment, we place the Ant in a ⊃-shaped maze for a navigation

task between given start and goal configurations. The goal radius is defined to be 5 units. During

151

training, the goal is uniformly sampled from [−4,20]× [−4,20] space, and the Ant initial location

is always fixed at (0,0). During testing, the agent is evaluated to reach the farthest end of the

maze located at (0,19) within L2 distance of 5.

Ant Push: In this environment, the Ant is initially located at (0,0) coordinate, the

moveable block is at (0,8), and the goal is at (0,19). The agent is trained to reach randomly

sampled targets whereas during testing, we evaluate the agent to reach the goal at (0,19) within

L2 distance of 5.

Ant Fall: In this environment, the Ant has to navigate in a 3D maze. The initial agent

location is (0,0), and a movable block is at (8,8) at the same elevation as Ant. Their is a rift in

the region [−4,12]× [12,20]. To reach the target on the other side of the rift, the Ant must push

the block down into the rift, and then step on it to get to the goal position.

Table 4.2: Hyperparameters

Parameters SAC HIRO TRPO PPO

Learning rate (η) 3×10−4 1×10−4 - -
Discount factor (γ) 0.99 0.99 0.99 0.99
Nonlinearity in feedforward networks ReLU ReLU ReLU ReLU
Minibatch samples size 256 128 - -
Replay buffer size 106 2×105 - -
Batch-size - - 1000 1000
Target parameters smoothing coefficient (τ) 0.005 0.005 - -
Target parameters update interval 1 2 - -
Gradient steps 1 1 0.01 0.01
Gumbel-softmax temperature (T) 0.5 0.5 - -

Pusher: In pusher environment, a simple manipulator has to move an object to the

target location. The primitive policies were to push the object to the bottom and left. These

low-level policies were obtained via SAC after 0.1 million training steps. In this environment, the

state information for both primitive policies and the composite policy include the goal location.

Therefore, G , in this case, is null. The reward function is given as:

−λg||oxy−gxy||2−λo||rxy−oxy||2−λct ||u||2 (4.11)

where oxy, gxy, rxy, and u are xy-position of object, xy-position of goal, xy-position of arm, and

152

Table 4.3: Network Architectures.The right most column shows the hidden units per layer.

Model Architectures Hidden units

Composition-HIRO

High-level Policy: Three layer feed forward network 300

Encoder Network: Bidirectional RNN with LSTMs 128

Decoder Network (Single layer feed forward network) 128

Attention Network: Wf ,Wb,Wd ∈ Rd×d ;W ∈ Rd 128

Composition-SAC

Encoder Network: Bidirectional RNN with LSTMs 128

Decoder Network (Single layer feed forward network) 128

Attention Network: Wf ,Wb,Wd ∈ Rd×d ;W ∈ Rd 128

HIRO
High-level Policy: Three layer feed forward network 300

Low-level Policy: Three layer feed forward network 300

Standard RL policy Two layer feed forward network 256

joint-torques. The coefficients λg, λo, and λct are 1.0, 0.1, and 0.1, respectively.

Halfcheetah-hurdle: In halfcheetah-hurdle environment, a 2D cheetah has to jump over

the three hurdles to reach the target. The primitive policies include run forward and jump where

each poilcy was trained with SAC for 0.25 million steps. Furthermore, in this environment, the

information g in the state s : [ŝ,g] corresponds to the x-position of the next nearest hurdle in front

of the agent as well as the distance from that hurdle. The reward function is defined as:

−λg||rxy−gxy||2−λhchc(·)+λrgI(goal)+λz|vz|+λvvx−λccc(·) (4.12)

where rxy, gxy, vz, and vx are xy-position of robot torso, xy-position of goal, velocity along z-axis,

and velocity along x-axis, respectively. The function hc(·) returns a count indicating the number

of hurdles in front of the robot. The indicator function I(goal) returns 1 if the agent has reached

the target otherwise 0. The function cc(·) is a collision checker which returns 1 if the agent

collides with the hurdle otherwise 0. The reward function coefficients λg, λhc, λrg, λz, λv, and λc

are 0.1, 1.0, 1000, 0.3, 1.0 and 2, respectively.

153

Hyperparameters and Network Architectures

Table 4.2 summarizes the hyperparameters used to train policies with SAC [HZAL18],

TRPO [SLA+15], PPO [SWD+17], and HIRO [NGLL18]. Table 4.3 summarizes the network

architectures.

4.6 Acknowledgements

Chapter 4, in part, is a reprint of A.H.Qureshi, J. J. Johnson, Y. Qin, T. West, B. Boots, and

M.C.Yip. “Composing Task-Agnostic Policies via Deep Reinforcement Learning”, International

Conference on Representation Learning (ICLR), 2020. The dissertation author is the primary

author of this paper.

154

Chapter 5

Task Planning

Many solutions exist that can solve rearrangement planning problems, particularly through-

out the sub-field of task-and-motion planning (TAMP) [GCH+20], these often come with a wide

range of significant limitations that restrict their utility in the real world. In particular, these

approaches often rely on having known object models.

However, recent advances in deep learning have provided ways for us to weaken these

assumptions. Work on deep learning for grasping gives us the ability to grasp unknown ob-

jects [MML+17, MEF19], including in cluttered scenes [MME+20, SMTF21]. A growing

body of work also looks at using learned representations for robotic task or motion plan-

ning [SJA+18, HLF+19, PBK+19, ISL20]. Others have learned samplers for integration into

traditional motion planners, e.g. [QMSY20, QDCY20]. We can also more accurately segment

unknown objects from the world, giving us ways to identify and pick up objects that we have

never seen before [XXMF20a, XXMF20b]. Recently, graph neural networks have also been used

to represent 3D scenes [BFM+20].

One question that remains, though, is how we can plan to execute sequences of actions in-

cluding grasps and placements, in order to perform long-horizon rearrangement tasks in unknown

environments. Multiple objects might block one another or prevent things from being moved into

155

new positions. In particular, we need to make decisions about which objects to grasp or move

when there are multiple options that are viable at any given time.

In this work, we describe Neural Rearrangement Planning (NeRP) [AQF21], an approach

for rearranging unknown objects from perceptual data in the real world, as shown in Fig. 5.2.

NeRP represents a scene as a graph over segmented objects. Given a current and the goal scene

and object segmentation, it finds an alignment between the two sets of unknown objects in the

goal and current image using pre-trained ResNet50 [HZRS15] features, and use them to output

multi-step rearrangement actions. NeRP is trained using the synthetically generated data in

simulation for random object rearrangement.

It uses learned neural networks for choosing the object that needs to be picked and the

distribution of possible placements in terms of relative transforms from the current position of the

object in the point-cloud space. These operations can be sequenced over time via a sampling-

based planning algorithm, which allows us to choose sequences of manipulations in order to

perform rearrangement tasks with unknown objects. At execution time, we use model-free

grasping [SMTF21] to pick and use MPPI controller [DMEF21] to place objects and thereby

achieve the specified goal. After each placement action, NeRP observes the scene and re-plans

the best course of actions to account for inaccuracies in execution. Fig 5.1 shows execution of

object rearrangement on unseen objects with real robot using NeRP.

To our knowledge, this is the first system for end-to-end rearrangement planning for

unknown objects. Specifically our contributions are:

• a graph neural network approach for computing which objects to move and estimating

where they can be placed to complete a rearrangement task,

• an algorithm for planning and execution that will reactively select where to place these

unknown objects in order to complete the rearrangement task.

In addition, we show results both on a simulated object rearrangement task and via real-world

156

Segmented Point-cloud Objects Selection Placement PredictionScene Arrangements
Target (Desired)

Target (Achieved)

1

4

7

2

5

8

3

6

9

Figure 5.1: NeRP finds a sequence of pick and place operations to rearrange unknown objects
to their target arrangement (shown in the top left), choosing both which object to manipulate
and where to place it.

robot execution.

5.1 Related Works

Perhaps the most relevant area of work to rearrangement planning is the field of task

and motion planning (TAMP). TAMP is a broad area of study that looks at integrating discrete

high-level planning (which objects to grab, which actions to execute) with continuous low level

planning (like which positions in which to place objects) [GCH+20]. This area generally relies

on model-based methods, using known objects and fully-observable domains, although work

has been done to weaken these assumptions, particularly in recent years. For example, recent

work has looked at task and motion planning with partial observability [GPLP+20], enabling

re-arrangement even if certain objects are not fully visible, and others have used learning to guide

task and motion planning [KWKLP19].

Rearrangement planning is a common subset of task and motion planning [CHES11,

KRS17, NLC+19, LZK+20, GCH+20]. It has recently been identified as an interesting challenge

area for robotics research [BCC+20]. It is interesting in part because it involves long-term

planning; recent methods often use Monte Carlo Tree Search or similar methods to explore

157

multiple future possibilities, e.g. [KRS17, LZK+20]. Partial observability is a serious issue,

as in many cases objects are partly or wholly occluded [NLC+19], which necessitates special

considerations [GPLP+20].

One possible route to building on these is via Motion Planning Networks (MPNet)

[QMSY20], which predict a set of waypoints that you can use for classical planning based on

sensor data. Neural Task Graphs [HNX+19] propose a way to perform multi-step planning with

known objects, but require a demonstration of the correct action sequence. Another approach

is via Deep Affordance Foresight [XMMM+20], which learns predictive affordance models to

allow completion of longer horizon tasks.

Visual Robot Task Planning [PBK+19] learns an autoencoder style representation for

multi-step task planning, but does not generalize to different goals. Similarly, PlaNET works

via deep visual predictions, showing what the possible consequences are for near-horizon ac-

tions [HLF+19]. Universal Planning Networks use a learned latent space for motion planning

together with a simple gradient descent planner [SJA+18]. Other work like Q-MDP net for

planning under partial observability [KHL17], focusing on navigation instead of placement and

rearrangement.

Broadly Exploring Local Policy Trees break up task planning into many different learned

high level tasks [ISL20], and use an RRT-like approach to navigate between these via a latent

space. However, this approach is not applied to the real world in the same way as our approach

is, and as it uses a learned latent space it is most likely less general. Simeonov et al. [SDK+20]

propose a method that might be most similar to ours, which looks at a whole sequence of

manipulation skills to do task and motion planing with unseen rigid objects. However, they

assume a high level task skeleton is given.

158

5.2 Problem Definition

Let X = {x1,x2, · · · ,xn} ∈ X denote an unordered set of n points each of dimension d. Let

M ∈Rn be a point-wise selection operator, i.e., M ×X 7→X ′, over a given set, where X ′⊂X , and

∆∈Rd be a set action operator such that X ×∆ 7→X . Therefore, a set-based planner can be defined

as a new class of function Π : X 7→M ×∆ that determines a sequence of set operators in M ×∆

space to point-wise transform a given set to another desired set. In this work, we propose NeRP, a

set-based planner that outputs a sequence of actions {(M0,δ0),(M1,δ1), · · · ,(MH ,δH)} ∈M ×∆

for the initial X(t) and target X(T) unordered sets such that X(t)×M×δ 7→ X(T), where M ∈M

and δ ∈ ∆. We demonstrate the application of our method to rearrangement planning problems

for robotics.

Let Q and A be the robot configuration and action spaces, respectively. A low-level agent

can be defined as a function πL : Q 7→ A that achieves the given robot configurations q ∈ Q by

executing a sequence of actions a{m} = {a1,a2, · · · ,am} ∈A . In our case, we consider the general

robot interaction setting, where for a given current X(t) and target X(T) sets, the high-level agent,

πH ∈Π, at time t, outputs a set action (M(t),δ(t)) ∈M ×∆, leading to an achievable sub-goal

set qδ ⊂ Q for the low-level agent. The low-level agent πL executes a sequence of actions a ∈ A

to achieve (M0,δ0) in the environment and return the control to task planner where it gets new set

of observation X(t +1) and replans accordingly.

5.3 Neural Rearrangement Planner (NeRP)

This section formally presents our approach for Neural Rearrangement Planning (NeRP),

which comprises four main components: the object alignment network, the object selection and

objects placement prediction networks, and the collision detection network. Fig. 5.2 shows an

overview of this model architecture. We use these networks to perform multi-step planning in

order to perform object rearrangement in unknown scenes.

159

rΨ

uξ

fΘ

qζ

T

a

c

t
a

b

b

c

Scene
Graph

Generation
pb

t
pb

T
pa

t pa
T

pc
t pc

T

Graph
Encoder

fΘ

Object Selection Network

Goal Satisfaction Network

 - Proposal Network Collision Network

Planning Algorithm

t + 1

b

c

a

MPPI Controller

Neural Rearrangement Planner (NeRP)

hΦ

πΩ uξ

rΨ

δ

Figure 5.2: NeRP’s model architecture overview. It comprises scene graph generation and
encoding. The encoding is used to select objects and compute their relative translations for
rearrangement planning tasks.

Neural Networks

Objects Alignment and Graph Generation: The objects alignment module determines

the individual objects’ correspondence in the current X(t) and target X(T) scene point-clouds

for the graph generation. We use Unknown Objects Instance Segmentation (UCN) [XXMF20a]

to extract specific object, i, RGB-information from the given scene and it’s corresponding

point clouds X i ⊂ X . The RGB information for each individual objects are passed through

pre-trained Resnet model [HZRS15] to extract their latent features w ∈W for computing L2 norm

based objects similarity scores s, an N×N matrix with N ∈ N denoting the number of instance

segmentations in the current and target scenes.

The graph generator takes the current and target scene point clouds with their segmentation

labels and the similarity matrix s as an input and generates an undirected graph G = (V,E) ∈ G .

Each vertex V i ∈V of the graph is computed as follows. Objects in the current observation and

target observation are assigned to each other by minimizing the assignment cost using Hungarian

method. For instance, in Fig 5.2, object at from the current scenario (at time t) is paired with

object aT from the target scenario (at time T) using their feature-based similarity scores s(at ,aT).

Once object assignment is computed, the center of observed object point cloud pt ∈ R3 and

pT ∈ R3 are concatenated to represent V i ∈ R6, the features for graph vertex.

Graph Encoder Network: Our graph encoder network is based on a Higher-order

160

Algorithm 20: NeRP
(
X(t), X(T)

)
K← InstanceSegmentation(X(t),X(T))
if at t = 0 then

h← 2×|K| //set planning horizon

else if h == 0 then
report out-of-planning-budget

s← ObjsAlignment(X(t),X(T),K)
G = (V,E)← GraphGen(X(t),X(T),K,s)
X(t),G← X(t),G //make a backup copy
rollouts← []
for 1 to n rollouts do

rollout← []

X(t)← X(t)
G← G
while h > 0 do

z{N}← fΘ(G) //graph encodings
ρ{N}← hΦ(z{N})
i∼Mult(ρ{N}) //graph node sampling
δ{B}← πΩ(zi

{B}) //set action generation

X̂ i
{B}(t) = X i

{B}(t)+δ{B}

N′ = N\i //unselected node indices
X̂N′
{B}(t) = XN′

{B}(t)

x{N′×B} ∼ {(X̂ i
{B},0)∪ (X̂

j
{B},1)} ∀ j ∈ N′

ids← uξ(x{N′×B})> ε

δ{B′} = δ{B}[ids] //collision-free actions
v{B′}← rΨ(zi

{B′},δ{B′}) //set-action scores
j← argmax v{B′} //best action
V i(t)←V i(t)+δ j //update graph vertex
X i(t)← X i(t)+δ j //update point-cloud
e← ComputeError(V)
rollout ∪ (i,δ{B′}, j,e)

rollouts∪ rollout

(i,δ{B′}, j)← BestRollout(rollouts)
h← h−1
X i

best ← X i(t)+δ j //best placement
pbest ← ComputeMean(X i

best)

X i
all ← X i

{B′}(t)+δ{B′} //all placement points
X i

B ← k-Neighbors(pbest ,X
i
all)

cmap← ComputeCost
(

pbest ,X
i
B
)

return X i
B ,cmap

Graph Neural Networks [MRF+19], known as k-GNNs, that takes the graph G = (V,E) and

hierarchically learns the objects’ latent embeddings, {zi; ∀i ∈ [0,N]}. We use local k-GNNs,

161

more precisely 1-2-3-GNNs with max-pooling aggregation operator, where each graph layer

performs message-passing between individual vertices and local subgraph structures, denoted as

g⊂ G, along the hierarchy from k = 1 to k = 3, i.e.,

f t
k(g) = σ

(
f t−1
k (g) ·Θt

1 + max
g∈NL(s)

(
f t−1
k (g) ·Θt

2
))

(5.1)

where NL denotes the local-neighborhood of subgraph g (for more details, refer to [MRF+19]),

Θt
1 and Θt

2 are the learnable weight parameters, and σ is the component-wise non-linear function

ReLU. In our problem setting, k-GNNs with max-pooling operators outperformed vanilla GNNs

[WPC+20], as the former captures the fine to coarse level structure of the given current-target

aligned scene graph which is crucial to have scene-aware node embeddings. Note that our object

alignment network captures across the scene correspondence between objects, whereas our graph

encoder network captures the overall current and target placement structure (Fig. 5.2).

Object Selection Network: Our Object Selection Network, hΦ : G 7→M , is an object-

centric neural model, with parameters Φ, that takes the individual graph node embeddings z{N},

representing current-target scene graph, and predicts their selection scores ρ{N}, where ρi ∈ [0,1],

i.e.,

ρ{N}← h(z{N};Φ) (5.2)

We convert all selection scores ρ{N} into probabilities to parameterize a multinomial distribution.

A graph node index i is sampled from this distribution during planning which denotes a particular

object-pairs embedding in the scene graph. Note that the index i also maps to the instance

segmentation label, thus resulting into a subset selection operator Mi ∈M . The selected object

pair’s graph node embedding zi is then used to predict the next relative transformation for the

subset Mi×X(t) 7→ X i(t). Furthermore, we train this module using the binary-cross entropy loss

162

as:

lΦ,Θ =−
1

N ∑
i

yi · log(hΦ(zi)+(1− yi) · log(1−hΦ(zi)) (5.3)

where yi is the binary label from demonstrations indicating a graph node to be selected.

δ-Proposal Network: The δ-Proposal Network πΩ : X 7→ ∆, with parameters Ω, is a

stochastic neural model that takes the selected node embeddings zi
{B} and outputs a variety of

candidate translations δi
{B} ∈ ∆ that would move the object to a potential new placement region,

i.e.,

δ
i
{B}← π(zi

{B};Ω) (5.4)

where δi
{B} contains a variety of δ actions of size B and zi

{B} contains B replicas of zi. These δi
{B}

actions are applied to B replicas of selected object’s current point-cloud X i
{B}(t) which leads to its

next placement in the point-cloud space, i.e.,

X i
{B}(t +1) =


X i

1(t)
...

X i
B(t)

+


δi
1
...

δi
B

 (5.5)

Furthermore, our generator model obtains its stochasticity from Dropout layers [SHK+14]

applied to the networks’ linear layers with probability p ∈ [0,1] during execution. For the given

Graph G = (V,E) and the true next step delta δ from demonstrations, this module is trained by

minimizing the following:

lΩ,Θ(M, fΘ(G),δ) =
∥∥ρΩ

(
M ◦ fΘ(G)

)
−δ
∥∥

2 (5.6)

where M is a mask operator which selects the graph node embedding that corresponds to the

given true delta δ label only.

Goal Satisfaction Network: Our goal satisfaction network is a value function that scores

163

the given actions for their ability to accomplish the given target arrangements. It is a neural

function rΨ : G ×∆ 7→ [0,1], with parameters Ψ, that takes a selected graph node embedding and

the given action δ as an input and outputs goal satisfaction scores, i.e.,

ŷr← σ
(
rΨ(M ◦ fΘ(G),δ)

)
(5.7)

where ŷr ∈ [0,1], M is a mask operator that selects a graph node embedding corresponding to

the given action δ, and σ is a sigmoid function to squash predicted scores to [0,1]. The ŷr = 1

indicates that the given action δ can take the selected object to its target location, and ŷr = 0

indicates otherwise. Furthermore, this function is optimized through binary-cross entropy loss as

follows:

lΨ,Θ(M, fΘ(G),yr) =−yr · log(ŷr)− (1− yr) · log(1− ŷ) (5.8)

where yr denotes the true label.

Collision Network: Our collision detection network uξ : X 7→ [0,1], with parameters ξ,

uses a number of PointNet++ set-abstraction layers [QYSG17] to detect the intersection between

any two given sets X0,X1 ⊂ X . In our setting, X0 and X1 can be any arbitrarily selected object

point-clouds with their feature labeled as Y0 = 0 and Y1 = 1, respectively. Our collision network’s

input is a subset sampled from a joint-set of given point-clouds and their feature masks, i.e.,

x⊂ (X0,Y0)∪ (X1,Y1). The feature mask indicates element-wise point-cloud correspondence to

the given sets. The network predicts scores ρc ∈ [0,1] indicating degeree of sets’ intersections.

We train our collision-checker independently from other NeRP models using the BCE loss with

training samples containing both intersecting and disjoint point-cloud sets.

NeRP Training

We train our core models, i.e., graph encoder fΘ(·), node selector hΦ(·), δ-proposal net-

work πΩ(·), and goal satisfaction evaluator rΨ(·), jointly in an end-to-end manner by optimizing

164

Figure 5.3: Examples of generated data. Objects are randomly placed on the table, and we
chose different random motions as well.

the following objective:

1

NM
∑

τ∼M
lΦ,Θ(z{N},y{N})+ lΩ,Θ(zi,δ

i
)+ lΨ,Θ(zi,δ

i
,yr), (5.9)

where τ = (G,y{N},δ
i
,M,yr) denotes a training sample from demonstration data M , comprising

a current-target paired scene graph G with its node embeddings z{N} = fΘ(G). It also includes

the node selection labels as y{N}, and a differentiable mask M operator to select a desired node

embedding zi = M ◦ z{N}. Furthermore, we also provide a desired next action δ
i

and its goal

satisfaction value yr for the selected node. The graph encoder is learned end-to-end with other

core models to capture scene embedding useful for the overall rearrangement planning process

whereas the collision network is trained independently.

165

NeRP Planning Algorithm

Algorithm 20 describe our multi-step planning algorithm for efficiently solving tabletop

rearrangement tasks. For the given observations, X(t) and X(T), our method begins by computing

their instance segmentation K using UCN [XXMF20a]. A current-target aligned scene graph G is

then instantiated using those segmented observations and the objects similarity scores s (Lines

6-7).

Given an observation graph G = (V,E), our multi-step predictive planning approach

imagines n action sequences out to horizon h, stores them into a buffer rollouts, and executes the

first action through a low-level controller of the best-selected planning sequence. In our approach,

we use a Model Predictive Path Integral (MPPI) controller based on learned collision avoidance

models [DMEF21] to perform the given placement actions leading to the next observation graph

for the planning. After each pick-and-place action is executed, the horizon h is decremented and

we replan. If controller fails to execute an action (e.g. it fails to grasp or drops the object early)

the plan horizon is incremented again to give another opportunity to the planner for re-planning.

In a planning sequence, the graph encoder, fΘ, outputs the graph nodes’ embeddings z{N}.

The function hΦ takes graph embeddings and predicts ρ{N} which parametrize a Multinomial

distribution for sampling an index i ∈ [0,N]. For a selected graph node’s embedding zi, multiple

replicas are fed to our stochastic δ-proposal network, πΩ, to determine the various next step

actions δ{B} for the placements of the object i (Line 15-18).

Each of the candidate placements of the selected object in X̂ i
{B}(t) forms a new scenario.

To determine the best next-step scene arrangement, we translate the object point cloud according

to the sampled δ and use our collision and goal-satisfaction networks. The collision-network,

uξ, takes all possible next step objects point-clouds and returns action indices, ids, leading to all

collision-free next-step arrangements (Line 22-24). The goal satisfaction network takes these

collision-free placement actions, δ{B′}, and provides the scores, v{B′}, to select the best move for

simulating the next-step using the graph G and current point-cloud X(t +1) (Line 25-28).

166

Furthermore, for each planning step, we compute a L2 norms based error e between the

updated graph vertices V (t) and V (T), indicating difference between current simulated scene

and the final arrangement. All this planning step information, including error e, is stored in the

rollout buffer. Once all sequences are unrolled, the first step of the best-unrolled sequence, based

on minimum error e, is selected to determine best object i and the placement points, X i
all , and a

placement cost map cmap for the object i. To select X i
all and compute their cost-map cmap, we

calculate the centroid, pbest , of the next best placement point-cloud X i
best , and select all points in

X i
all that are within a ball of radius of pbest .

The cost values are calculated based on the distance between pbest and all placement

locations X i
B (Line 38). These placement locations with cost map are given to the MPPI low-level

controller for robot execution. The controller generates grasps for object i using [SMTF21] and

executes the motions using [DMEF21]. Once the object is lifted, it chooses the placement with

minimum cmap for which there is a collision-free, kinematically feasible path.

2 3 4 51

6 7 8 9 10

Start

Target (Desired)

Target (Achieved)

Figure 5.4: An example plan rollout showing how NeRP chose to move objects around in order
to get between two goal states with very different arrangements of obstacles. In this case, it took
10 steps to get to the goal state.

Data Generation

To train the NeRP models, we generate random synthetic scene data rendered with variable

camera poses. All scenes contained randomly selected five objects, initially scattered all over

the tabletop of changing dimensions (as shown in Fig. 5.3). Each scenario’s target arrangement

was determined by randomly swapping the objects’ placements in the initial scene, so that

each object’s goal location is blocked by a random other object. Hence, transitioning from an

167

initial to target scene requires some items to be moved to another empty location, which we call

storage, to vacate the occupied position. We generate the intermediate placement action using

a model-based expert rearrangement planner (as described in Section 5.4). The expert planner

generates intermediate scene sequences from which we determine the step-wise relative scene

transformations (M,δ) ∈M ×∆ for training our model-free, set-based rearrangement planner.

Following this procedure, we gathered a dataset comprising seven thousand re-arrangement task

problems with their intermediate planning sequences.

5.4 Results

We performed four sets of experiments. First, we tested our method on unseen synthetic

data against various classical baselines. Second, we show generalization of our method on object

rearrangement for unseen number of objects. Third, we do ablation study to evaluate effect of

each component of NeRP and finally we demonstrate our method’s sim-to-real generalization

performance on real-world object rearrangement tasks with different sets of unseen objects and

for unseen rearrangement tasks. We use the following metrics for quantitative comparison of

different methods:

• Success Rate indicates the percentage of successfully solved unseen arrangement problems;

an object arrangement is considered successful if the maximum displacement for each

object does not exceed 5mm.

• Planning Steps measures the number of steps required to rearrange the objects from source

configuration to target configuration.

• Final Error measures the average L2 distance between the desired target arrangement and

the actual arrangement achieved by a given planner.

168

Note that success rate is computed over all the rearrangement scenarios whereas planning steps

and final error are computed only on successful rearrangements.

Table 5.1: Comparison between NeRP and several classical baselines. NeRP produces shorter,
more accurate plans than baseline methods.

Algorithms
Performance Metrics

Success rate (%) ↑ Planning steps ↓ Final error ↓

Expert 90.67±0.60 8.41±2.61 0.0±0.0
NeRP (Ours) 94.56±0.73 7.01±2.10 0.019±0.013

Classical (greedy, parallelized) 68.20±0.79 13.60±5.99 0.023±0.017
Classical (random, parallelized) 59.23±1.32 42.80±60.63 0.019±0.011

Algorithm Comparison

To validate our approach, we first tested on 500 simulated unseen object rearrangement

problems that were generated with 5 objects following the procedure in Section 5.3 (Data

Generation). Table 5.1 shows how our method compares to multiple baseline methods. These

baselines include:

Expert: The expert planner is a model-based planning approach that uses objects’ unique

ids, transformations, table mesh, object meshes, and FCL [PCM12] collision-checker for planning.

For this model, we set the same step length limit as NeRP, i.e., 2×|K|. It randomly selects an

object to move that is not at its goal position, and then checks to see if its target location is empty

or occupied. If the target location is occupied, it will move the occupying object to free space,

chosen by randomly sampling a feasible storage location on the table. If the target location is

free, it will instead move the object to the goal. This process is repeated until all the objects are at

their goal positions.

Classical (greedy, parallelized): This is a model-free version of the “Expert” planner. It

uses instance segmentation and our object alignment model to match objects between the current

and target scenes. Once objects pair are computed, it randomly selects an object, checks if its

target location is occupied or empty, and moves the occupying object to storage by sampling

169

multiple placements in parallel and rejecting colliding placement positions using our collision-net

uξ instead of using FCL. Once the target location is free, it moves the selected object to its target,

and proceeds by randomly selecting another object and repeating the process.

Start

Target
(Desired)

Target
(Achieved)

1 2 3

4 5 6

Figure 5.5: Example of a planning sequence. The robot repeatedly selects which object to move
and either moves it to the appropriate goal position or to a storage position to enable future
execution.

Classical (random, parallelized): The random baseline plans along multiple sequences,

and executes the first action of the best selected sequence, following the algorithm given by

Alg. 20. The best sequence is selected based on minimum error, e, from the target arrangement.

However, unlike, NeRP, this baseline randomly chooses an object and performs a sequence

execution like a classical (greedy, parallelized) approach mentioned above.

Comparison to classical methods: Table 5.1 shows how NeRP out-performs all baseline

methods, including the model-based expert that uses all environment state information. This is for

several reasons. First, the random placements can often be in-collision, especially in cases with

a small tabletop area. Second, model-free baselines diverge in cases with noisy feature-based

objects’ pairing, which is inevitable with learning-based feature matching approaches. Third, in

the multi-step, multi-sequence classical planning cases, executing the first action and replanning

the sequences again instead of greedily utilizing each action step takes a longer time to converge.

Generalization to different numbers of objects: Table 5.2 shows NeRP performance

over 500 scenarios with a number of objects ranging from two to eight, whereas NeRP training

170

Table 5.2: Generalization of NeRP to different number of objects. Note that NeRP is trained on
random rearrangements of 5 objects.

Number of Objects
Performance Metrics

Success rate (%) ↑ Planning steps ↓ Final error ↓

3 Objects 98.25±0.57 4.58±0.82 0.039±0.036
4 Objects 97.60±1.20 5.70±1.38 0.027±0.025
6 Objects 98.09±0.40 8.69±2.15 0.013±0.013
7 Objects 90.62±1.03 9.47±2.23 0.011±0.008
8 Objects 87.50±2.50 10.72±2.08 0.010±0.008

Table 5.3: Analysis of the effects of ablation of various components of the network. Removing
stochasticity, the object selection network or the goal selection network has a significant negative
effect on performance.

Algorithms
Performance Metrics

Success rate (%) ↑ Planning steps ↓ Final error ↓

NeRP 94.56±0.73 7.01±2.10 0.019±0.013
w/o Dropout 36.87±0.24 8.23±3.07 0.019±0.012
w/o OS hΦ 30.12±1.10 11.82±3.30 0.025±0.021
w/o GS rΨ 48.21±0.68 14.84±1.14 0.016±0.010

dataset contained scenes with only five objects. Fig. 5.4 shows the NeRP execution in a scene

arrangement task with eight objects. From these results, we can see that NeRP’s object-centric

planning is robust to scene clutter and can efficiently sample multiple storage locations along the

planning sequence for achieving a complex target arrangement setup.

Ablation Studies

We then performed a set of experiments ablating various components of our method. In

particular, we look at the importance of the stochastic Dropout added to our δ-proposal network

πΩ, the object selection network hΦ, and the goal satisfaction network rΨ.

The results are shown in Table 5.3. We can see that all of these components are quite

important. Without Dropout [SHK+14], the architecture cannot find storage positions to place an

object if the goal is blocked, making it challenging to swap two objects – a deterministic network

171

Start

Target (Desired)

Target (Achieved)

1 2 3

4 5 6

Figure 5.6: Swapping an unseen mug and bowl using NeRP: For the given X(Start) and X(End)
arrangements, NeRP selects an object in the given scenarios (e.g., 1, 3 & 5) and predicts its next
placement with a cost map cmap (e.g., 2, 4 & 6).

could potentially learn this behavior, but it would be a much more difficult and less generalizable

solution, and perhaps harder to learn from random imitation data. Without rΨ, we see much

longer plans as the model makes numerous small adjustments without terminating, as evidenced

by the lower final error. Without object selection, we select random objects that are not at their

final positions, also leading to more inefficiency.

Real Robot Experiments

Finally, we performed a set of real-world experiments using a Franka Panda robot arm

with an externally mounted Intel Realsense L515 camera. We set up the two types of testing

scenarios i) swapping objects to achieve a given target arrangement and ii) sorting objects into

different categories similar to the given target observation. Fig. 5.1 shows the robot sorting bowls

and mugs, Fig. 5.5 shows the swapping of two objects and Fig. 5.6 demonstrates the swapping

tasks based on NeRP’s predicted actions. However, the major limiting factors in real-robot tasks

were noisy scene segmentation and feature extractions, which often led to rearrangement failure

due to incorrect object correspondences, as also highlighted in the supplementary video.

We see in all these different planning setups that despite being trained on synthetic

data with only five object categories, NeRP generalizes to novel problem settings with high

performance. In sim-to-real transfer, it generates actions for the low-level controller to move the

object, while in other scenarios, the objects were directly teleported to their best placement.

172

5.5 Acknowledgements

Chapter 5, in part, is a reprint of A.H.Qureshi, A.Mousavian, C.Paxton, M.C.Yip, and

D.Fox, “NeRP: Neural Rearrangement Planning for Unknown Objects”, Robotics: Science and

Systems 2021. The dissertation author is the primary author of this paper.

173

Chapter 6

Conclusions & Future Works

This dissertation presents deep learning-based methods inspired by the human devel-

opment process that learn constraint or cost functions and their motion policies from expert

demonstrations and compose them into new complex skills to solve new problems across different

domains. It also highlights that proposed methods form a mutualistic relationship with existing

learning-based task planning approaches. In addition, it presents a novel rearrangement task

planning approach that operates in unknown environments from raw sensory information.

In constraint learning, also known as cost or reward learning, this dissertation presents an

approach to adversarial reward and policy learning from expert demonstrations by regularizing the

maximum-entropy inverse reinforcement learning through empowerment. The proposed method

learns the empowerment through variational information maximization in parallel to learning

the reward and policy. The policy is trained to imitate the expert behavior as well to maximize

the empowerment of the agent over the environment. The proposed regularization prevents

premature convergence to local behavior and leads to a generalized policy that in turn guides

the reward-learning process to recover near-optimal reward. The results show that the proposed

method successfully learns near-optimal rewards, policies, and performs significantly better

than state-of-the-art IRL methods in both imitation learning and challenging transfer learning

174

problems. The learned rewards are shown to be transferable to environments that are dynamically

or structurally different from training environments. A possible future extension to this approach

can be to learn rewards and policies from diverse human/expert demonstrations as the proposed

method assumes that a single expert generates the training data. Another exciting direction would

be to build an algorithm that learns from suboptimal demonstrations that contains both optimal

and non-optimal behaviors.

In learning robot motion skills for given task objectives, this thesis presents a learning-

based approach to motion planning using deep neural networks called Neural Motion Planning

(NMP). For a given planning problem, NMP is capable of i) finding collision-free near-optimal

paths under various kinodynamic, and manifold kinematic constraints; ii) they can also generate

samples for underlying sampling-based motion planners in a subset of a given configuration

space that potentially contains solutions including the optimal path. The dissertation also presents

an active continual learning strategy to train NMP models with a significant improvement in

training data-efficiency compared to naive training approaches. The experimentation shows that

the neural motion planners consistently find collision-free paths under given constraints much

faster than other planners. The modular structure of NMPs naturally allow their coupling with

learning-based task planners, forming a mutual symbiotic relationship to efficiently solve task and

motion planning problems. In our future works, one of the primary objectives can be to tackle the

environment encoding problem for motion planning. Environment encoding is one of the critical

challenges in real-world robotics problems. Current perception approaches consider encoding

of individual objects rather than the entire scene that retains the inter-object relational geometry

which is crucial for motion planning. Henceforth, a possible research avenue is learning motion

planning oriented environments’ encoding from raw point-cloud data. Another future objective

would be to fully harness NMPs potential, i.e., their fast computational speed, to address motion

planning problems in robot surgery under contact dynamics and safety constraints.

To reuse existing motion skills and transfer them to new domains, this dissertation presents

175

a novel policy ensemble composition method that combines a set of independent and task-agnostic

primitive policies through reinforcement learning to solve the given new tasks. This method can

transfer the given skills to novel problems and can compose them both sequentially (or -operation)

and concurrently (and -operation) to find a solution for the task in hand. The experiments

highlight that composition is vital for solving problems requiring complex motion skills and

decision-making where standard reinforcement learning and hierarchical reinforcement learning

methods either fail or need a massive number of interactive experiences to achieve the desired

results. An exciting future work could be to extend this composition method to automatically

acquire the missing skills in the given skillset that are necessary to solve the specific problems.

It is also imperative to investigate deep hierarchies of these composition models by combining

primitive policies into complex policies that are further composed together for a combinatorial

outburst in the agent’s skillset.

Apart from learning robot objective functions, motion skills, and composite models,

another important area of research is task planning that decomposes a given task into a sequence

of achievable subtasks for underlying motion planners. Recently, rearrangement task planning has

been highlighted as an important research direction as real-world robots would have to re-arrange

things in unstructured environments. This dissertation presents a novel Neural Rearrangement

Planning (NeRP), a deep neural network-based rearrangement approach for unknown objects.

NeRP can rearrange unseen objects without models, and works in an end-to-end fashion, given

segmented point-clouds from an RGB-D camera. NeRP is evaluated on challenging problems

and results demonstrate its sim-to-real generalizations. NeRP relies on scene segmentation and

correspondence matching techniques to generate a scene graph between the current and target

observations. The scene graph is used to generate a sequence of intermediate object selection and

their placement actions for reaching the given target arrangement. However, in the sim-to-real

transfer experiments, it is observed that existing scene segmentation and feature-based object

correspondence techniques often fail in the real-setup. This results in an incorrect scene graph

176

and, therefore, NeRP behavior. Hence, an important future direction would be to augment NeRP

with robust segmentation and feature matching algorithms to enhance its real-world settings’

performance. Another future objective would be to extend NeRP for model-free planning in SE-3

space to compute both relative translation and rotations for transforming point sets into complex

shapes and arrangements.

Acknowledgements

This chapter, in part, is a reprint of the following publications:

• A.H.Qureshi, B. Boots, and M.C.Yip,“Adversarial Imitation Via Variational Inverse Rein-

forcement Learning”, International Conference on Representation Learning (ICLR), 2019.

The dissertation author is the primary author of this paper.

• A.H.Qureshi, Y.Miao, A.Simeonov, and M.C.Yip,“Motion Planning Networks: Bridging

the Gap Between Learning-based and Classical Motion Planners”, IEEE Transactions on

Robotics, vol. 37, no. 1, pp. 48-66, Feb. 2021, doi: 10.1109/TRO.2020.3006716. The

dissertation author is the main of this paper.

• A.H.Qureshi, A.Simeonov, M.J.Bency, and M.C.Yip, “Motion Planning Networks”, IEEE

International Conference on Robotics and Automation (ICRA), pp. 2118-2124, Montreal,

Canada, 2019. The dissertation author is the primary author of this paper.

• A.H.Qureshi and Michael.C.Yip, “Deeply Informed Neural Sampling For Robot Motion

Planning”, IEEE International Conference on Intelligent Robot and Systems (IROS), pp.

6582-6588, 2018. The dissertation author is the primary author of this paper.

• L. Li, Y. Miao, A. H. Qureshi and M. C. Yip,“MPC-MPNet: Model-Predictive Motion

Planning Networks for Fast, Near-Optimal Planning Under Kinodynamic Constraints”,

177

IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4496-4503, July 2021, doi:

10.1109/LRA.2021.3067847. The dissertation author is the co-author of this paper.

• A.H.Qureshi, J.Dong, A.Baig, and M.C.Yip,“Constrained Motion Planning Networks X”,

IEEE Transactions on Robotics, 2021. The dissertation author is the primary author of this

paper.

• A.H.Qureshi, J.Dong, A.Choe, and M.C.Yip, “Neural Manipulation Planning on the

Constraint Manifolds”, IEEE Robotics and Automation Letters, 2020. The dissertation

author is the primary author of this paper.

• A.H.Qureshi, J. J. Johnson, Y. Qin, T. West, B. Boots, and M.C.Yip. “Composing Task-

Agnostic Policies via Deep Reinforcement Learning”, International Conference on Rep-

resentation Learning (ICLR), 2020. The dissertation author is the primary author of this

paper.

A.H.Qureshi, A.Mousavian, C.Paxton, M.C.Yip, and D.Fox, “NeRP: Neural Rearrange-

ment Planning for Unknown Objects”, Robotics: Science and Systems 2021. The disserta-

tion author is the primary author of this paper.

178

Bibliography

[AAST12] Hiroaki Arie, Takafumi Arakaki, Shigeki Sugano, and Jun Tani. Imitating others
by composition of primitive actions: A neuro-dynamic model. Robotics and
Autonomous Systems, 60(5):729–741, 2012.

[ABB+15] Christopher G Atkeson, Benzun P Wisely Babu, Nandan Banerjee, Dmitry Beren-
son, Christoper P Bove, Xiongyi Cui, Mathew DeDonato, Ruixiang Du, Siyuan
Feng, Perry Franklin, et al. No falls, no resets: Reliable humanoid behavior in the
darpa robotics challenge. In 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), pages 623–630. IEEE, 2015.

[ACVB09] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483, 2009.

[Aga04] David Barber Felix Agakov. The im algorithm: a variational approach to informa-
tion maximization. Advances in Neural Information Processing Systems, 16:201,
2004.

[AN04] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the twenty-first international conference on
Machine learning, page 1. ACM, 2004.

[AOJJ13] Muhannad AR Ai-Omari, Mohammad A Jaradat, and Mohammad Jarrah. In-
tegrated simulation platform for indoor quadrotor applications. In 2013 9th
International Symposium on Mechatronics and its Applications (ISMA), pages
1–6. IEEE, 2013.

[AP19] Ross E Allen and Marco Pavone. A real-time framework for kinodynamic plan-
ning in dynamic environments with application to quadrotor obstacle avoidance.
Robotics and Autonomous Systems, 115:174–193, 2019.

[AQF21] Chris Paxton Michael Yip Ahmed Qureshi, Arsalan Mousavian and Dieter Fox.
Nerp: Neural rearrangement planning for unknown objects. In Proceedings of
Robotics: Science and Systems, 2021.

179

[AYYS16] Aliasghar Arab, Kaiyan Yu, Jingang Yi, and Dezhen Song. Motion planning
for aggressive autonomous vehicle maneuvers. In 2016 IEEE International
Conference on Automation Science and Engineering (CASE), pages 221–226.
IEEE, 2016.

[BAG12] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. A robot path planning
framework that learns from experience. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 3671–3678. IEEE, 2012.

[BCB+19] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, Thomas Lew, and Marco
Pavone. Trajectory optimization on manifolds: A theoretically-guaranteed em-
bedded sequential convex programming approach. In Proceedings of Robotics:
Science and Systems, FreiburgimBreisgau, Germany, June 2019.

[BCC+20] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng,
Vladlen Koltun, Sergey Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mot-
taghi, et al. Rearrangement: A challenge for embodied ai. arXiv preprint
arXiv:2011.01975, 2020.

[BCS17] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. Learning heuristic
search via imitation. arXiv preprint arXiv:1707.03034, 2017.

[BFM+20] Daniel M Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li, Seth Alter, Aran
Nayebi, Jeremy Schwartz, Li Fei-Fei, Jiajun Wu, Joshua B Tenenbaum, et al.
Learning physical graph representations from visual scenes. arXiv preprint
arXiv:2006.12373, 2020.

[BHP17] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[BKP11] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse rein-
forcement learning. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pages 182–189, 2011.

[BKRE] Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubinstein, and Faculty Of Industrial
Engineering. The cross-entropy method for optimization.

[BLP85] Rodney A Brooks and Tomas Lozano-Perez. A subdivision algorithm in configu-
ration space for findpath with rotation. IEEE Transactions on Systems, Man, and
Cybernetics, (2):224–233, 1985.

[BQY19] Mayur J Bency, Ahmed H Qureshi, and Michael C Yip. Neural path planning:
Fixed time, near-optimal path generation via oracle imitation. arXiv preprint
arXiv:1904.11102, 2019.

180

[BRP18] Ricard Bordalba, Lluı́s Ros, and Josep M Porta. Randomized kinodynamic
planning for constrained systems. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 7079–7086. IEEE, 2018.

[BSK11] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. Task space regions:
A framework for pose-constrained manipulation planning. The International
Journal of Robotics Research, 30(12):1435–1460, 2011.

[Can88] John Canny. The complexity of robot motion planning. MIT press, 1988.

[CHES11] Akansel Cosgun, Tucker Hermans, Victor Emeli, and Mike Stilman. Push planning
for object placement on cluttered table surfaces. In 2011 IEEE/RSJ international
conference on intelligent robots and systems, pages 4627–4632. IEEE, 2011.

[CHF+19] Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Aleksandra
Faust. Rl-rrt: Kinodynamic motion planning via learning reachability estimators
from rl policies. IEEE Robotics and Automation Letters, 4(4):4298–4305, 2019.

[CHL+05] Howie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram
Burgard, Lydia E Kavraki, and Sebastian Thrun. Principles of robot motion:
theory, algorithms, and implementation. MIT press, 2005.

[CKY+17] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and
Sergey Levine. Path integral guided policy search. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 3381–3388. IEEE, 2017.

[CS00] Richard Cooper and Tim Shallice. Contention scheduling and the control of
routine activities. Cognitive neuropsychology, 17(4):297–338, 2000.

[CŞM+15] David Coleman, Ioan A Şucan, Mark Moll, Kei Okada, and Nikolaus Correll.
Experience-based planning with sparse roadmap spanners. In Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pages 900–905.
IEEE, 2015.

[CWD+18] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa
Sengupta, and Anil A Bharath. Generative adversarial networks: An overview.
IEEE Signal Processing Magazine, 35(1):53–65, 2018.

[DCH+16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking deep reinforcement learning for continuous control. In International
Conference on Machine Learning, pages 1329–1338, 2016.

[DMEF21] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter Fox. Object
rearrangement using learned implicit collision functions. International Conference
on Robotics and Automation, 2021.

181

[DNP+13] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy
search for robotics. Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

[DXCR93] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic motion
planning. Journal of the ACM (JACM), 40(5):1048–1066, 1993.

[FCAL16] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection
between generative adversarial networks, inverse reinforcement learning, and
energy-based models. arXiv preprint arXiv:1611.03852, 2016.

[FDA17] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for
hierarchical reinforcement learning. arXiv preprint arXiv:1704.03012, 2017.

[FLA16] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep
inverse optimal control via policy optimization. In International Conference on
Machine Learning, pages 49–58, 2016.

[FLL17] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial
inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[FvHM18] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[GCH+20] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom
Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and
motion planning. arXiv preprint arXiv:2010.01083, 2020.

[GG16] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In international conference on
machine learning, pages 1050–1059, 2016.

[GHLL17] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforce-
ment learning for robotic manipulation with asynchronous off-policy updates. In
2017 IEEE international conference on robotics and automation (ICRA), pages
3389–3396. IEEE, 2017.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Advances in neural information processing systems, pages 2672–2680, 2014.

[GPLP+20] Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack Kaelbling,
and Dieter Fox. Online replanning in belief space for partially observable task
and motion problems. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 5678–5684. IEEE, 2020.

182

[GPPK13] Gustavo Goretkin, Alejandro Perez, Robert Platt, and George Konidaris. Optimal
sampling-based planning for linear-quadratic kinodynamic systems. In 2013 IEEE
International Conference on Robotics and Automation, pages 2429–2436. IEEE,
2013.

[GSB14] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed
rrt*: Optimal sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic. In Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on, pages 2997–3004. IEEE, 2014.

[GSB15] Jonathan D Gammell, Siddhartha Srinivasa, and Timothy D Barfoot. Batch
informed trees (bit*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages 3067–3074. IEEE, 2015.

[Han00] Li Han. A kinematics-based probabilistic roadmap method for closed chain
systems. In In Proc. Int. Workshop on Algorithmic Foundations of Robotics
(WAFR, 2000.

[Hau15] Kris Hauser. Lazy collision checking in asymptotically-optimal motion planning.
In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 2951–2957. IEEE, 2015.

[HBKP18] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting
is not an option: Learning options with a deliberation cost. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[HE16] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Advances in Neural Information Processing Systems, pages 4565–4573, 2016.

[Hen02] Michael E Henderson. Multiple parameter continuation: Computing implicitly
defined k-manifolds. International Journal of Bifurcation and Chaos, 12(03):451–
476, 2002.

[HLF+19] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. Learning latent dynamics for planning from
pixels. In International Conference on Machine Learning, pages 2555–2565.
PMLR, 2019.

[HMP+17] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learn-
ing basic visual concepts with a constrained variational framework. In Interna-
tional Conference on Learning Representations, volume 3, 2017.

[HMP+18] Nika Haghtalab, Simon Mackenzie, Ariel D Procaccia, Oren Salzman, and Sid-
dhartha S Srinivasa. The provable virtue of laziness in motion planning. In

183

Twenty-Eighth International Conference on Automated Planning and Scheduling,
2018.

[HNTH10] Kris Hauser and Victor Ng-Thow-Hing. Fast smoothing of manipulator trajecto-
ries using optimal bounded-acceleration shortcuts. In 2010 IEEE international
conference on robotics and automation, pages 2493–2498. IEEE, 2010.

[HNX+19] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei,
Silvio Savarese, and Juan Carlos Niebles. Neural task graphs: Generalizing to
unseen tasks from a single video demonstration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8565–8574, 2019.

[HPZ+18] Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, and
Sergey Levine. Composable deep reinforcement learning for robotic manipulation.
arXiv preprint arXiv:1803.06773, 2018.

[HS] Brian Hou and Siddhartha Srinivasa. Deep conditional generative models for
heuristic search on graphs with expensive-to-evaluate edges.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290, 2018.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. Computer Vision and Pattern Recognition, 2015.

[IC18] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[IHP18] Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions
for robot motion planning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7087–7094. IEEE, 2018.

[INH+13] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. Dynamical movement primitives: learning attractor models for motor
behaviors. Neural computation, 25(2):328–373, 2013.

[IP19] Brian Ichter and Marco Pavone. Robot motion planning in learned latent spaces.
IEEE Robotics and Automation Letters, 2019.

[ISL20] Brian Ichter, Pierre Sermanet, and Corey Lynch. Broadly-exploring, local-policy
trees for long-horizon task planning. arXiv preprint arXiv:2010.06491, 2020.

[JGP16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

184

[JLL+20] Jacob J Johnson, Linjun Li, Fei Liu, Ahmed H Qureshi, and Michael C Yip.
Dynamically constrained motion planning networks for non-holonomic robots.
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020.

[JP13a] Léonard Jaillet and Josep M Porta. Asymptotically-optimal path planning on
manifolds. Robotics: Science and Systems VIII, pages 145–152, 2013.

[JP13b] Leonard Jaillet and Josep M Porta. Efficient asymptotically-optimal path planning
on manifolds. Robotics and Autonomous Systems, 61(8):797–807, 2013.

[JP16] Lucas Janson and Marco Pavone. Fast marching trees: A fast marching sampling-
based method for optimal motion planning in many dimensions. In Robotics
Research, pages 667–684. Springer, 2016.

[JP17] Léonard Jaillet and Josep M Porta. Path planning with loop closure constraints
using an atlas-based rrt. In Robotics Research, pages 345–362. Springer, 2017.

[JSB+15] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu, Daniel
Duran, Marshall Floyd, Peter Abeles, Douglas Stephen, Nathan Mertins, Alex
Lesman, et al. Team ihmc’s lessons learned from the darpa robotics challenge
trials. Journal of Field Robotics, 32(2):192–208, 2015.

[JSCP15] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. The International journal of robotics research,
34(7):883–921, 2015.

[Kac02] Bolesław Kacewicz. Complexity of nonlinear two-point boundary-value problems.
Journal of Complexity, 18(3):702–738, 2002.

[KBP13] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238–1274,
2013.

[KC17] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose re-
gression with deep learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5974–5983, 2017.

[KF11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846–894,
2011.

[KGB15] Markus Kuderer, Shilpa Gulati, and Wolfram Burgard. Learning driving styles for
autonomous vehicles from demonstration. In Robotics and Automation (ICRA),
2015 IEEE International Conference on, pages 2641–2646. IEEE, 2015.

185

[Kha86] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[KHL17] Peter Karkus, David Hsu, and Wee Sun Lee. Qmdp-net: Deep learning for
planning under partial observability. arXiv preprint arXiv:1703.06692, 2017.

[KKGB12] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot
learning from demonstration by constructing skill trees. The International Journal
of Robotics Research, 31(3):360–375, 2012.

[KKKL94] Yoshihito Koga, Koichi Kondo, James Kuffner, and Jean-Claude Latombe. Plan-
ning motions with intentions. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 395–408, 1994.

[KL98] Lydia E Kavraki and Jean-Claude Latombe. Probabilistic roadmaps for robot path
planning. 1998.

[KL00] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to
single-query path planning. In 2000 IEEE international conference on robotics
and automation, volume 2, pages 995–1001. IEEE, 2000.

[KLP17] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Learning composable mod-
els of parameterized skills. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 886–893. IEEE, 2017.

[KLR+20] Elia Kaufmann, Antonio Loquercio, René Ranftl, Matthias Müller, Vladlen
Koltun, and Davide Scaramuzza. Deep drone acrobatics. arXiv preprint
arXiv:2006.05768, 2020.

[KMK18] Zachary Kingston, Mark Moll, and Lydia E Kavraki. Sampling-based methods
for motion planning with constraints. Annual review of control, robotics, and
autonomous systems, 1:159–185, 2018.

[KMK19] Zachary Kingston, Mark Moll, and Lydia E Kavraki. Exploring implicit spaces
for constrained sampling-based planning. The International Journal of Robotics
Research, 38(10-11):1151–1178, 2019.

[KPRS13] Mrinal Kalakrishnan, Peter Pastor, Ludovic Righetti, and Stefan Schaal. Learning
objective functions for manipulation. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 1331–1336. IEEE, 2013.

[KRS17] Jennifer E King, Vinitha Ranganeni, and Siddhartha S Srinivasa. Unobservable
monte carlo planning for nonprehensile rearrangement tasks. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 4681–4688.
IEEE, 2017.

186

[KUSP16] Beobkyoon Kim, Terry Taewoong Um, Chansu Suh, and Frank C Park. Tangent
bundle rrt: A randomized algorithm for constrained motion planning. Robotica,
34(1):202–225, 2016.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[KWKLP19] Beomjoon Kim, Zi Wang, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Learning to guide task and motion planning using score-space representation. The
International Journal of Robotics Research, 38(7):793–812, 2019.

[Lat12] Jean-Claude Latombe. Robot motion planning, volume 124. Springer Science &
Business Media, 2012.

[LaV98] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
1998.

[LaV06] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[LFDA16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Research,
17(1):1334–1373, 2016.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[LKJ01] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning.
The international journal of robotics research, 20(5):378–400, 2001.

[LLB16] Yanbo Li, Zakary Littlefield, and Kostas E Bekris. Asymptotically optimal
sampling-based kinodynamic planning. The International Journal of Robotics
Research, 35(5):528–564, 2016.

[LMQY21] Linjun Li, Yinglong Miao, Ahmed H Qureshi, and Michael C Yip. Mpc-mpnet:
Model-predictive motion planning networks for fast, near-optimal planning under
kinodynamic constraints. IEEE Robotics and Automation Letters, 6(3):4496–4503,
2021.

[LPK+18] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and
large-scale data collection. The International Journal of Robotics Research,
37(4-5):421–436, 2018.

[LPR17] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for
continual learning. In Advances in Neural Information Processing Systems, pages
6467–6476, 2017.

187

[LPW79] Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles. Communications of the ACM, 22(10):560–
570, 1979.

[LUTG17] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gersh-
man. Building machines that learn and think like people. Behavioral and Brain
Sciences, 40, 2017.

[LZK+20] Yann Labbé, Sergey Zagoruyko, Igor Kalevatykh, Ivan Laptev, Justin Carpentier,
Mathieu Aubry, and Josef Sivic. Monte-carlo tree search for efficient visu-
ally guided rearrangement planning. IEEE Robotics and Automation Letters,
5(2):3715–3722, 2020.

[MEF19] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Variational
grasp generation for object manipulation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2901–2910, 2019.

[MHM11] Takamitsu Matsubara, Sang-Ho Hyon, and Jun Morimoto. Learning parametric
dynamic movement primitives from multiple demonstrations. Neural networks,
24(5):493–500, 2011.

[MIB00] Ferdinando A Mussa-Ivaldi and Emilio Bizzi. Motor learning through the combi-
nation of primitives. Philosophical Transactions of the Royal Society of London
B: Biological Sciences, 355(1404):1755–1769, 2000.

[MKP10] Katharina Muelling, Jens Kober, and Jan Peters. Learning table tennis with
a mixture of motor primitives. In Humanoid Robots (Humanoids), 2010 10th
IEEE-RAS International Conference on, pages 411–416. IEEE, 2010.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[MME+20] Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Chris Paxton, and
Dieter Fox. 6-dof grasping for target-driven object manipulation in clutter. In
2020 IEEE International Conference on Robotics and Automation (ICRA), pages
6232–6238. IEEE, 2020.

[MML+17] Jeffrey Mahler, Matthew Matl, Xinyu Liu, Albert Li, David Gealy, and Ken
Goldberg. Dex-net 3.0: computing robust robot vacuum suction grasp targets
in point clouds using a new analytic model and deep learning. arXiv preprint
arXiv:1709.06670, 2017.

[MR15] Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximi-
sation for intrinsically motivated reinforcement learning. In Advances in neural
information processing systems, pages 2125–2133, 2015.

188

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[NGLL18] Ofir Nachum, Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierar-
chical reinforcement learning. arXiv preprint arXiv:1805.08296, 2018.

[NHR99] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML, volume 99,
pages 278–287, 1999.

[NLC+19] Changjoo Nam, Jinhwi Lee, Younggil Cho, Jeongho Lee, Dong Hwan Kim, and
ChangHwan Kim. Planning for target retrieval using a robotic manipulator in
cluttered and occluded environments. arXiv preprint arXiv:1907.03956, 2019.

[NR+00] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, pages 663–670, 2000.

[OJO+20] Kei Ota, Devesh K Jha, Tadashi Onishi, Asako Kanezaki, Yusuke Yoshiyasu,
Yoko Sasaki, Toshisada Mariyama, and Daniel Nikovski. Deep reactive planning
in dynamic environments. In 4th Conference on Robot Learning (CoRL 2020),
Cambridge MA, USA., 2020.

[OSJ+20] Kei Ota, Yoko Sasaki, Devesh K Jha, Yusuke Yoshiyasu, and Asako Kanezaki.
Efficient exploration in constrained environments with goal-oriented reference
path. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6061–6068. IEEE, 2020.

[PBK+19] Chris Paxton, Yotam Barnoy, Kapil Katyal, Raman Arora, and Gregory D Hager.
Visual robot task planning. In 2019 international conference on robotics and
automation (ICRA), pages 8832–8838. IEEE, 2019.

[PCM12] J. Pan, S. Chitta, and D. Manocha. Fcl: A general purpose library for collision
and proximity queries. In 2012 IEEE International Conference on Robotics and
Automation, pages 3859–3866, 2012.

[PCZ+19] Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine.
Mcp: Learning composable hierarchical control with multiplicative compositional
policies. arXiv preprint arXiv:1905.09808, 2019.

[PDPN13] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann.
Probabilistic movement primitives. In Advances in neural information processing
systems, pages 2616–2624, 2013.

189

[PHL+17] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-
Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin
Riedmiller. Data-efficient deep reinforcement learning for dexterous manipulation.
arXiv preprint arXiv:1704.03073, 2017.

[PKP14] Georgios Papadopoulos, Hanna Kurniawati, and Nicholas M Patrikalakis. Anal-
ysis of asymptotically optimal sampling-based motion planning algorithms for
lipschitz continuous dynamical systems. arXiv preprint arXiv:1405.2872, 2014.

[Pom91] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous
navigation. Neural Computation, 3(1):88–97, 1991.

[PPK+12] Alejandro Perez, Robert Platt, George Konidaris, Leslie Kaelbling, and Tomas
Lozano-Perez. Lqr-rrt*: Optimal sampling-based motion planning with automat-
ically derived extension heuristics. In 2012 IEEE International Conference on
Robotics and Automation, pages 2537–2542. IEEE, 2012.

[Pre00] Doina Precup. Temporal abstraction in reinforcement learning. University of
Massachusetts Amherst, 2000.

[QA15] Ahmed Hussain Qureshi and Yasar Ayaz. Intelligent bidirectional rapidly-
exploring random trees for optimal motion planning in complex cluttered en-
vironments. Robotics and Autonomous Systems, 68:1–11, 2015.

[QA16] Ahmed Hussain Qureshi and Yasar Ayaz. Potential functions based sampling
heuristic for optimal path planning. Autonomous Robots, 40(6):1079–1093, 2016.

[QBY19] Ahmed H. Qureshi, Byron Boots, and Michael C. Yip. Adversarial imitation
via variational inverse reinforcement learning. In International Conference on
Learning Representations, 2019.

[QDBY21] Ahmed H Qureshi, Jiangeng Dong, Asfiya Baig, and Michael C Yip. Constrained
motion planning networks x. IEEE Transactions on Robotics, 2021.

[QDCY20] A. H. Qureshi, J. Dong, A. Choe, and M. C. Yip. Neural manipulation planning
on constraint manifolds. IEEE Robotics and Automation Letters, 5(4):6089–6096,
2020.

[QJQ+20] Ahmed H. Qureshi, Jacob J. Johnson, Yuzhe Qin, Taylor Henderson, Byron Boots,
and Michael C. Yip. Composing task-agnostic policies with deep reinforcement
learning. In International Conference on Learning Representations, 2020.

[QMI+13] Ahmed Hussain Qureshi, Saba Mumtaz, Khawaja Fahad Iqbal, Badar Ali, Yasar
Ayaz, Faizan Ahmed, Mannan Saeed Muhammad, Osman Hasan, Whoi Yul
Kim, and Moonsoo Ra. Adaptive potential guided directional-rrt. In 2013 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pages 1887–
1892. IEEE, 2013.

190

[QMSY20] Ahmed Hussain Qureshi, Yinglong Miao, Anthony Simeonov, and Michael C
Yip. Motion planning networks: Bridging the gap between learning-based and
classical motion planners. IEEE Transactions on Robotics, 2020.

[QNYI17] Ahmed. H Qureshi, Yutaka Nakamura, Yuichiro Yoshikawa, and Hiroshi Ishiguro.
Show, attend and interact: Perceivable human-robot social interaction through
neural attention q-network. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 1639–1645. IEEE, 2017.

[QNYI18] Ahmed Hussain Qureshi, Yutaka Nakamura, Yuichiro Yoshikawa, and Hiroshi
Ishiguro. Intrinsically motivated reinforcement learning for human–robot interac-
tion in the real-world. Neural Networks, 107:23–33, 2018.

[QSBY19] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip.
Motion planning networks. In 2019 International Conference on Robotics and
Automation (ICRA), pages 2118–2124. IEEE, 2019.

[QY18] Ahmed H Qureshi and Michael C Yip. Deeply informed neural sampling for
robot motion planning. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6582–6588. IEEE, 2018.

[QYSG17] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems, pages 5099–5108, 2017.

[RAS+19] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gre-
gory Wayne. Experience replay for continual learning. In Advances in Neural
Information Processing Systems, pages 350–360, 2019.

[RBZ06] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum mar-
gin planning. In Proceedings of the 23rd international conference on Machine
learning, pages 729–736. ACM, 2006.

[RC11] Radu B Rusu and S Cousins. Point cloud library (pcl). In 2011 IEEE international
conference on robotics and automation, pages 1–4, 2011.

[RFG01] Giacomo Rizzolatti, Leonardo Fogassi, and Vittorio Gallese. Neurophysiological
mechanisms underlying the understanding and imitation of action. Nature reviews
neuroscience, 2(9):661, 2001.

[RGB11] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635, 2011.

191

[RHB15] C. Rösmann, F. Hoffmann, and T. Bertram. Timed-elastic-bands for time-optimal
point-to-point nonlinear model predictive control. In 2015 European Control
Conference (ECC), pages 3352–3357, 2015.

[RVM+11] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
Contractive auto-encoders: Explicit invariance during feature extraction. In
Proceedings of the 28th International Conference on International Conference on
Machine Learning, pages 833–840. Omnipress, 2011.

[RZBS09] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In 2009 IEEE
International Conference on Robotics and Automation, pages 489–494. IEEE,
2009.

[SB+98] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[SBFP19] Basak Sakcak, Luca Bascetta, Gianni Ferretti, and Maria Prandini. Sampling-
based optimal kinodynamic planning with motion primitives. Autonomous Robots,
43(7):1715–1732, 2019.

[SDH+14] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Brad-
low, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with
sequential convex optimization and convex collision checking. The International
Journal of Robotics Research, 33(9):1251–1270, 2014.

[SDK+20] Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois R Hogan, Joshua Tenen-
baum, Pulkit Agrawal, and Alberto Rodriguez. A long horizon planning frame-
work for manipulating rigid pointcloud objects. arXiv preprint arXiv:2011.08177,
2020.

[SGP14] Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment–an in-
troduction. In Guided Self-Organization: Inception, pages 67–114. Springer,
2014.

[SHK+14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of machine learning research, 15(1):1929–1958, 2014.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484, 2016.

192

[SJA+18] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Universal planning networks. arXiv preprint arXiv:1804.00645, 2018.

[Ski] S Skiena. Implementing discrete mathematics: combinatorics and graph theory
with mathematica1991.

[SKTI17] Himanshu Sahni, Saurabh Kumar, Farhan Tejani, and Charles Isbell. Learning to
compose skills. arXiv preprint arXiv:1711.11289, 2017.

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on Machine
Learning, pages 1889–1897, 2015.

[ŞMK12] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012.
http://ompl.kavrakilab.org.

[SMTF21] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox.
Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes. In 2021
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.

[Spi99] Michael Spivak. A comprehensive introduction to differential geometry. A
Comprehensive Introduction to Differential Geometry. Publish or Perish, (3),
1999.

[SPNI05] Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. Learning movement
primitives. In Robotics research. the eleventh international symposium, pages
561–572. Springer, 2005.

[Spo98] Mark W Spong. Underactuated mechanical systems. In Control problems in
robotics and automation, pages 135–150. Springer, 1998.

[SPS99] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[SS83] Jacob T Schwartz and Micha Sharir. On the “piano movers” problem. ii. gen-
eral techniques for computing topological properties of real algebraic manifolds.
Advances in applied Mathematics, 4(3):298–351, 1983.

[Sti07] Mike Stilman. Task constrained motion planning in robot joint space. In 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3074–3081. IEEE, 2007.

[Sti10] Mike Stilman. Global manipulation planning in robot joint space with task
constraints. IEEE Transactions on Robotics, 26(3):576–584, 2010.

193

http://ompl.kavrakilab.org

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[TKH19] Takayoshi Takayanagi, Yusuke Kurose, and Tatsuya Harada. Hierarchical task
planning from object goal state for human-assist robot. In 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE), pages
1359–1366. IEEE, 2019.

[TMTR10] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. Lqr-trees:
Feedback motion planning via sums-of-squares verification. The International
Journal of Robotics Research, 29(8):1038–1052, 2010.

[Tod09] Emanuel Todorov. Compositionality of optimal control laws. In Advances in
Neural Information Processing Systems, pages 1856–1864, 2009.

[TQAN18] Zaid Tahir, Ahmed H Qureshi, Yasar Ayaz, and Raheel Nawaz. Potentially guided
bidirectionalized rrt* for fast optimal path planning in cluttered environments.
Robotics and Autonomous Systems, 108:13–27, 2018.

[TWT+16] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value
iteration networks. In Advances in Neural Information Processing Systems, pages
2154–2162, 2016.

[VMO+16] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol
Vinyals, John Agapiou, et al. Strategic attentive writer for learning macro-actions.
In Advances in neural information processing systems, pages 3486–3494, 2016.

[VOS+17] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical
reinforcement learning. arXiv preprint arXiv:1703.01161, 2017.

[VV08] Harini Veeraraghavan and Manuela Veloso. Teaching sequential tasks with rep-
etition through demonstration. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems-Volume 3, pages 1357–
1360. International Foundation for Autonomous Agents and Multiagent Systems,
2008.

[WBMW18] Wouter J Wolfslag, Mukunda Bharatheesha, Thomas M Moerland, and Martijn
Wisse. Rrt-colearn: towards kinodynamic planning without numerical trajectory
optimization. IEEE Robotics and Automation Letters, 3(3):1655–1662, 2018.

[WFS07] Mike Vande Weghe, Dave Ferguson, and Siddhartha S Srinivasa. Randomized
path planning for redundant manipulators without inverse kinematics. In 2007
7th IEEE-RAS International Conference on Humanoid Robots, pages 477–482.
IEEE, 2007.

194

[Wil92] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[WPC+20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. A comprehensive survey on graph neural networks. IEEE transactions
on neural networks and learning systems, 2020.

[WVDB13] Dustin J Webb and Jur Van Den Berg. Kinodynamic rrt*: Asymptotically optimal
motion planning for robots with linear dynamics. In 2013 IEEE International
Conference on Robotics and Automation, pages 5054–5061. IEEE, 2013.

[XMMM+20] Danfei Xu, Ajay Mandlekar, Roberto Martı́n-Martı́n, Yuke Zhu, Silvio Savarese,
and Li Fei-Fei. Deep affordance foresight: Planning through what can be done in
the future. arXiv preprint arXiv:2011.08424, 2020.

[XNZ+18] Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and
Silvio Savarese. Neural task programming: Learning to generalize across hierar-
chical tasks. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1–8. IEEE, 2018.

[XvdBPA15] Christopher Xie, Jur van den Berg, Sachin Patil, and Pieter Abbeel. Toward
asymptotically optimal motion planning for kinodynamic systems using a two-
point boundary value problem solver. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 4187–4194. IEEE, 2015.

[XXMF20a] Yu Xiang, Christopher Xie, Arsalan Mousavian, and Dieter Fox. Learning rgb-d
feature embeddings for unseen object instance segmentation. arXiv preprint
arXiv:2007.15157, 2020.

[XXMF20b] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. The best of
both modes: Separately leveraging rgb and depth for unseen object instance
segmentation. In Conference on robot learning, pages 1369–1378. PMLR, 2020.

[YA17] Gu Ye and Ron Alterovitz. guided motion planning. In Robotics research, pages
291–307. Springer, 2017.

[YG05] Zhenwang Yao and Kamal Gupta. Path planning with general end-effector con-
straints: Using task space to guide configuration space search. In 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1875–1880.
IEEE, 2005.

[YKH04] Katsu Yamane, James J Kuffner, and Jessica K Hodgins. Synthesizing animations
of human manipulation tasks. In ACM SIGGRAPH, pages 532–539, 2004.

[YLK01] Jeffery Howard Yakey, Steven M LaValle, and Lydia E Kavraki. Randomized
path planning for linkages with closed kinematic chains. IEEE Transactions on
Robotics and Automation, 17(6):951–958, 2001.

195

[YLK+17] Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebotar, and Sergey Levine.
Collective robot reinforcement learning with distributed asynchronous guided
policy search. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 79–86. IEEE, 2017.

[ZHL18] Clark Zhang, Jinwook Huh, and Daniel D Lee. Learning implicit sampling
distributions for motion planning. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3654–3661. IEEE, 2018.

[ZKB08] Matt Zucker, James Kuffner, and J Andrew Bagnell. Adaptive workspace biasing
for sampling-based planners. In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pages 3757–3762. IEEE, 2008.

[ZLU18] Chris Zhang, Wenjie Luo, and Raquel Urtasun. Efficient convolutions for real-
time semantic segmentation of 3d point clouds. In 2018 International Conference
on 3D Vision (3DV), pages 399–408. IEEE, 2018.

[ZMBD08] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008.

[ZSS+07] Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R
Reynolds. Event perception: a mind-brain perspective. Psychological bulletin,
133(2):273, 2007.

196

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Task Constraints Learning
	Motion Planning
	Composition
	Task Planning
	Acknowledgements

	Task Constraints Learning
	Preliminaries
	Variational Inverse Reinforcement Learning
	Results
	Discussion
	Derivations
	Implementation Details
	Acknowledgements

	Neural Motion Planning
	Collision Avoidance Constraints
	Related work
	Motion Planning Networks (MPNet)
	MPNet: Training
	MPNet: Online Planning
	Implementation details
	Results
	Discussion

	Kinodynamic Constraints
	Related Work
	Model Predictive Motion Planning Networks
	Implementation Details
	Results
	Discussion

	Kinematic Manifold Constraints
	Preliminaries
	Related Work
	Neural Task Representations
	Constrained Motion Planning Networks
	Implementation details
	Results
	Discussion

	Acknowledgements

	Policy Ensemble Composition
	Related Work
	Background
	Policy Ensemble Composition
	Results
	Implementation details
	Acknowledgements

	Task Planning
	Related Works
	Problem Definition
	Neural Rearrangement Planner (NeRP)
	Results
	Acknowledgements

	Conclusions & Future Works
	Bibliography

