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PREFACE 

 

 Every dissertation has a background story. This one has too, and it would be incomplete 

without a brief exposition of that story. 

 For the longest time, I had wanted to discover new ideas and invent new techniques, to 

try to give back to the world in some measure of what I had received from it. Initially, I thought 

that the way to go would be to become a tech entrepreneur. But, after joining the computer 

science department at UC Irvine as graduate student, I decided that I wanted to stay in academia. 

I worked briefly with some professors in the CS department before I met John. It was pure 

accident that my random web browsing in the science library led me to John’s webpage. I saw 

that he did research in multivariate classifiers and Bayesian models for brain data, something that 

I had recently learnt in a machine learning course. Impulsive as I am, I sent him an email. We 

met. After a couple of weeks, he asked me if I wanted to do a PhD with him. Now, this was an 

unexpected and unconventional offer; he was in the cognitive science department, and even 

though his research involved computational elements, I had had no training in the brain sciences. 

In fact, I had not studied anything remotely biological since early high school. My friends and 

family were bemused by the idea that I would even try to get a PhD in psychology. John asked 

me to think carefully before I made the leap, and everyone else told me not to do it. What did I 

think? Well, I don’t recollect thinking hard about the consequences of my decision. It seemed like 

a big adventure, and the intense curiosity to see how it would turn out superseded any caution that 

I could have exercised. Besides, I told myself that if John thinks that I can do it then I probably 

can. Here was a guy who was probably as crazy as I am, and I wanted to work with him. I took 

the plunge. So, how did it turn out? 
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 It was every bit an adventure as I had hoped, and like every adventure there was joy and 

sorrow, victories and defeats. It was a joy to be exposed to psychology, neuroscience, cognitive 

science, and philosophy among other disciplines that I had known little about. I felt as if I had 

been only partly educated during my engineering/CS years, and now I was receiving the other 

half of my education. I got to do original research and got to publish scientific papers. The 

moments of pride and joy were intense; I vividly remember the times I solved a particularly 

gnarly technical problem, or when I had a deep insight into the mechanics of brain function, or 

when I had an inspiration for an experiment or a theoretical investigation. But all of this was 

facilitated by John. He provided the runway for my flights of imagination to take off, channeled 

them in the right direction, and consoled me when they crashed. I also found out that most 

interesting research is somewhat accidental, including mine. A technical problem posed by John 

to the entire lab led me to work with information theory. Then, John introduced me to the world 

of population codes (by assigning a long reading list on my first vacation). It led to chapter 2 of 

this dissertation. That in turn led to my qualifying paper, where I tried to theoretically assimilate 

the field of information theory, population codes and attention. Novel insights while writing the 

qualifying paper led to chapters 1 and 3 of this dissertation. During the winter-break of 2009, 

when I was working feverishly on what seemed like a chore (yes, I hated the qualifying paper), 

little did I know that I was laying the foundations of this dissertation and research work that 

would one day win me acclaim. Looking back, that was probably the best chore I ever did. 

During my PhD, I also learned to love. I found out that there probably isn’t an emotion more 

powerful than love, and it is what makes life worth living. It is good for science too. This 

dissertation is a testament to that.  

 The unpleasant parts of the adventure were primarily due to my teething problems with 

learning this brand new field of neuroscience. For a mind shaped by the perfection and 

concreteness of engineering and computer science, the messiness of the brain was bewildering 
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and overwhelming at times. The jargon, the verbosity of papers, the avalanche of experimental 

details, and the nuances of collected data, nauseated me. I had jumped into the deep end of a 

piranha infested pool, and now had to learn how to swim while being bitten. In fact, I now believe 

that the personality required to be a good computer scientist or an engineer doesn’t overlap much 

with the personality expected from a good experimental neuroscientist. Thankfully, I was neither 

a good computer scientist nor a good neuroscientist. I am still learning how to think like an 

experimentalist. The break-neck pace and indefatigable nature of John’s working style posed 

another challenge. I felt that I had to run just to be able to keep up with what looked like a 

leisurely walk for John. Sometimes I had to remind myself that my advisor was a human and not 

an android (although I have heard rumors to the contrary). To John’s credit, although he pushed 

me to excel, he never pushed me beyond the breaking point. Had he been a less patient and 

understanding man, I probably would have not been writing this preface. We bickered, argued, 

and sometimes outright fought over ideas and decisions, but I never felt that he was beating me 

down using his position of authority. He made me feel like an equal in his presence. Although, 

both John and I know that I could have achieved much more during my time with him, I hope he 

realizes, as I have, that given some of the circumstances whatever I did achieve – including this 

dissertation – is a monumental accomplishment and an ode to his worth as an advisor and a 

human being. I would also like to confess that there were more than a few times during the past 4 

years when I was on the verge of quitting. It was only due to the unwavering support of my 

family, friends, and most of all John, that I did not. They made me realize that quitting is not the 

answer to tough problems, and that persisting in the face of overwhelming odds is the only path to 

glory. I am immeasurably indebted to all of them.  

 They say that one does not finish one’s dissertation, one abandons it. Therefore, I 

abandon mine. Although it is an infinitesimally small contribution to human knowledge, it is still 

a contribution. I have succeeded in the aim that I had set out to accomplish 4 years ago. I don’t 
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know what the future holds for me, whether I will fail or succeed at life, or how I will cope with 

upcoming challenges, but what I know is that I am better prepared than I was 4 years ago and I 

look forward to what’s ahead. The end of one adventure can only be the beginning of another. 
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ABSTRACT OF THE DISSERTATION 

Dynamic Neural Coding: An Information-theoretic Account of Attention 

By 

Sameer Saproo 

Doctor of Philosophy in Psychology 

University of California, San Diego, 2012 

Professor John T. Serences, Chair 

 

 Visual attention facilitates faster and more accurate decision-making for 

behaviorally relevant stimuli. To understand the computational mechanism underlying 

attention, I investigated the impact of attention on population codes in early visual cortex. 

First, I lay the theoretical foundation of this investigation, whereby the known 

neuromodulatory activity of attention is examined within the context of information 

theory to propose a framework termed ‘Dynamic Neural Coding’.  The framework 

suggests that attention dynamically alters neural codes used to represent basic stimulus 

features so that behaviorally relevant stimuli are represented and communicated by 

population responses with higher fidelity than irrelevant stimuli. The framework also 
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suggests that attention and adaptation might jointly mediate neural codes to achieve 

metabolically efficient sensory information processing. The framework is supported by 

two experimental studies that use a combination of visual psychophysics, functional 

magnetic resonance imaging (fMRI), computational modeling, and information-theoretic 

data analysis, to show how attention modulates population codes to impact information 

processing. The first experiment reveals that attention increases the quality of sensory 

representations – measured by an increase in mutual information between population 

response and stimuli – as early as primary visual cortex. This increase in sensory 

representation is largely driven by multiplicative scaling of tuning function that forms the 

population code. According to dynamic neural coding framework, attention-induced 

improvement in population codes in upstream areas should also improve the transmission 

of encoded information to downstream areas. The second experiment tested this 

hypothesis, and found that attention improved the efficacy of communication between 

two cortical areas – V1 and MT – that interact with during motion processing. 

Furthermore, a simulation of the inter-cortical interaction between V1 and MT using a 

computational model reveals that attention-modulations in V1 dictate the fidelity of 

representations in MT as well as the synchrony between the two areas.  
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GENERAL INTRODUCTION

 Living organisms react to a dynamically changing environment by continuously 

gathering information from different sensory organs and then combining this information to 

produce a unified perceptual representation of the environment. Sensory information is 

represented in the cortex by patterns of neural activity in domain specific areas, and these 

representations require a protocol or a code for correct interpretation and transmission within and 

between brain regions. Current theories hold that populations of inherently noisy neurons encode 

information about basic stimulus features in early visual cortex using sophisticated population 

codes (Rieke et al., 1999; Pouget et al., 2003). These accounts implicitly assume that coding 

protocols remain static for a given perceptual domain; the quality of encoded information can 

only change with changes in the quality of incoming signals. However, neural signals are relayed 

over an essentially noisy channel during sensory processing due to stochastic synaptic activity, 

which can degrade the accuracy of neural computations (Manwani and Koch, 2001). Some codes 

are going to be more suitable for communication over a particular noisy channel over other codes, 

necessitating their tuning in order to optimize computations. Furthermore, the ‘data processing 

inequality’ – which states that data processing can only degrade or at best sustain the information 

contained in the raw sensory data (Cover and Thomas, 1991) – dictates that given fixed 

processing capacity, information about behaviorally-relevant inputs must be preferentially 

preserved during sensory processing, while information about behaviorally irrelevant inputs can 

be allowed to degrade as a consequence. Cognitive factors such as attention are known to 

prioritize information processing of behaviorally relevant sensory objects so that decisions 

regarding them are made more quickly and with better accuracy. Some models suggest that 

neurobiological modulations associated with attention can influence information processing by 

normalizing stimulus-driven neural response (Reynolds and Heeger, 2009; Carandini and Heeger, 

2011). However, the key functional role that attention plays in perception requires more 



2 

 

 

 

theoretical exploration. For instance, merely saying that attention leads to a 20-40% increase in 

neural gain does not tell us how attention affects the information contained in population 

responses or how attention facilitates the transmission of this information from one brain area to 

another, both of which are vital to understanding how attention affects neural computations. 

Although, a few attempts have been made to understand attention in the context of population 

codes and information processing (e.g. Pouget et al., 2001), this largely remains an unexplored 

territory. 

 Here I develop a novel account of how attentional modulations in neural gain and 

(co)variance gives rise to functionally meaningful changes in the quality of population codes 

based on the tenants of information theory. First, the quality of any code depends on the fidelity 

with which the building blocks of the code, or codewords, represent inputs (MacKay, 2004). For 

example: Gaussian tuning functions are the codewords used in V1 to communicate information 

about stimulus orientation. Second, information theory provides a principled way of evaluating 

changes in the representational capacity of any code, including population codes, using statistical 

properties of the codewords (Doya et al., 2007). Thirdly, different distributions of codewords are 

optimal for different stimulus statistics and noise statistics for efficient neural communication of 

sensory information (Latham and Roudi, 2009). These principles can be used to provide an 

information-theoretic interpretation of existing empirical data that describe the impact of 

attention, such as gain modulation of feature-tuning functions (McAdams and Maunsell, 1999; 

Martinez-Trujillo and Treue, 2004), noise reduction (Mitchell et al., 2007) and noise de-

correlation in population responses (Cohen and Maunsell, 2009; Mitchell et al., 2009). I 

hypothesize that attention can be thought as operating to dynamically tune population codes such 

that population responses carry relatively more information about behaviorally relevant stimuli as 

compared to behaviorally irrelevant stimuli, which leads to more accurate transfer of information 

regarding attended stimuli within the cortical processing hierarchy, ultimately facilitating more 
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accurate computations associated with attended objects. This hypothesis led to the development 

of a broad theoretical framework – termed ‘Dynamic Neural Coding’ - that attempts to formally 

link attention modulations directly with changes in the information content of perceptual 

representations.  The framework is outlined in Chapter 1. Dynamic neural coding framework can 

also be used to explain interactions between attention and adaptation towards facilitating 

information transmission between neural populations (Sharpee et al., 2006; Pestilli et al., 2007; 

Gutnisky and Dragoi, 2008) as well as how the dynamic capacity of codes might change to 

optimize perception given fundamental neurobiological constraints such as metabolic 

consumption and neural refractory periods (Levy and Baxter, 1996; Balasubramanian et al., 2001; 

Laughlin and Sejnowski, 2003). Although, I provide a brief exposition of the rather complex 

interaction between attention and adaptation in Chapter 1, future theoretical and empirical 

investigation to required to fully understand it. 

There are two important experimental investigations that are used to verify the 

framework. The first experiment shows that spatial attention increases quality of population codes 

encoding behaviorally relevant features – as measured by an increase in the mutual information 

between population responses and stimuli - through multiplicative scaling of voxel tuning 

functions (VTFs) in visual areas as early as primary visual cortex. The experimental design and 

results are presented in Chapter 2. In the course of this investigation, we realized that BOLD 

signal from all voxels in a region of interest (ROI) could not be compared on an equal footing. 

Some voxels – due to their more homogenous composition – were more reflective of underlying 

neural activity than others, and would therefore see more pronounced and accurate attention 

modulations in their VTFs. One manner of sifting such ‘pure’ voxels is to find voxels that carry 

more information about the stimulus and have sharper tuning, a methodological innovation 

presented in Chapter 2, along with some rudimentary concepts behind linking voxel tuning 

functions (VTFs) and neural tuning functions (NTFs).  
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Within the context of the theoretical framework, showing that neural codes increase their 

encoding capacity due to attention – such as found in the first experiment – has several 

implications, including one for inter-cortical communication. For instance, dynamically changing 

neural codes that represent basic features in upstream areas would theoretically make the 

transmission of this information to downstream areas more robust to intrinsic noise, thereby 

ensuring that relevant objects are represented with higher fidelity at each point along the sensory 

processing chain. The second experiment - detailed in chapter 3 - tested this prediction in the 

context of motion computation since it is well established that MT direction-selective cells derive 

their complex direction selectivity by pooling signals from V1 direction selective cells, thus 

forming a communication network. Since attention has been shown to improve encoding 

characteristics of population codes in V1 (as shown in Chapter 2), the transmission of signals 

from V1 and the resultant pooling by MT neurons should also improve as a result. Data from the 

experiment indeed show that attention to direction of motion increases the fidelity of 

communication between direction-selective neurons in V1 and MT. On methodological front, this 

experiment saw the first use of forward-modeling approach for decomposing voxel activation in 

response to motion (from a random dot kinetogram) into estimated response for underlying 

direction-selective neural populations. Forward-modeling approach has been previously used to 

model BOLD activation in response to color (Brouwer and Heeger, 2009) and orientation 

(Brouwer and Heeger, 2011).  

The experiment, however, threw up a paradoxical observation; we found that the 

modulation of cross-area correlation between neural populations was inversely proportional to the 

modulation of their mean response i.e. the neural populations that showed an increase in mean 

response in the two areas actually had a decrease in cross-area noise correlation. I simulated inter-

cortical interactions within a known model of MT computation (Rust et al., 2006), incorporating 

recent experimental observations regarding the relationship between neural gain and neural 
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correlations (Cohen and Maunsell, 2010), to show that the paradoxical results are derived from 

the inheritance of attentional modulations in V1 populations by MT population during motion 

computation. This simulation and modeling work, and the results thereof, is also presented in 

Chapter 3.  

 Overall, the goal of this research work has been to move beyond the established 

concepts, such as how attention modulations can increase neural signal-to-noise (SNR),  and take 

tentative next step towards developing a rigorous and formal treatment that accounts for how 

these neural changes due to attention might produce population codes capable of more efficiently 

processing sensory input, enhancing the quality of perception, and ultimately guiding more 

efficient behavioral interactions with the environment.  
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CHAPTER 1 

EFFICIENT SENSORY INFORMATION PROCESSING THROUGH DYNAMIC NEURAL CODING 

 Selective attention modulates the gain and the variability of sensory neurons in response 

to changing behavioral goals. These operations have a functional role: changing neural gain 

fundamentally alters the codes that are used to represent sensory information, which along with 

changes in variability regulates the transfer of sensory information from node to node in the 

cortical hierarchy. This preferential modulation of neural communication could underlie the broad 

based selective information processing that leads to performance improvements with attention. 

Furthermore, sensory adaptation might work in conjunction with attention to facilitate efficient 

information processing by dynamically adapting neural codes to changing stimulus statistics. 

1.1 INTRODUCTION 

 Perception relies on a continuous filtering process in which neural signals representing 

sensory stimuli undergo a series of transformations (Marcelja 1980; Olshausen and Field 1996a; 

b; van Hateren and van der Schaaf 1998). At each stage of filtering, the total information 

available in the neural signals is reduced due to stochastic synaptic activity. Therefore, perceptual 

acuity ultimately depends on the extent to which task-relevant information is preserved during 

processing. Selective attention refers to the collection of neural mechanisms that modulate neural 

activity to decrease the loss of information related to a behaviorally relevant stimuli, thereby 

ensuring that decisions regarding attended features, locations and objects can be made more 

rapidly and accurately.  

 Deploying spatial attention to a particular location in the visual field increases the firing 

rate of neurons irrespective of their feature-tuning (Connor et al. 1997; Reynolds et al. 2000), 

reduces the trial-by-trial variability in the firing rate of neurons (Bressler and Silver 2010; 
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Mitchell et al. 2007), and changes the co-variability across neurons that are responding 

simultaneously to the same sensory input (Cohen and Maunsell 2009; 2011a; Mitchell et al. 

2009). On the other hand, attending to a target-defining feature increases the response of neurons 

tuned to the attended feature while suppressing the response of neurons tuned to other features 

(Martinez-Trujillo and Treue 2004); these modulations occur even beyond the current focus of 

spatial attention (Cohen and Maunsell 2011a; Liu and Mance 2011; Martinez-Trujillo and Treue 

2004; Saenz et al. 2002; Serences and Boynton 2007; Treue and Maunsell 1999; White and 

Carrasco 2011). As in the case of spatial-attention, feature-based attention also leads to a 

reduction in trial-by-trial variability (Cohen and Maunsell 2011b) and a changes in the correlation 

structure of neural responses (Cohen and Maunsell 2011a). Therefore, selective attention operates 

via the action of three distinct mechanisms; enhancing neural gain, reducing neural variability, 

and changing the correlational relationship between neurons in a population (see Figure 1.1 for a 

graphic representation). These modulations are commonly thought to improve the signal to noise 

ratio of population-level neural responses (Reynolds and Heeger, 2009), yet we lack a complete 

understanding of the algorithmic mechanism through which attention impacts neural 

computations.  

 Here, we focus on understanding how attentional modulations dynamically alter firing 

statistics so that responses evoked by relevant stimuli are more efficiently represented and 

communicated within sensory systems. First, we use an information theoretic framework to 

understand how attention-related changes in the dynamic range of neural responses can influence 

the encoding capacity of population codes. Next, we discuss how attention-related changes in the 

magnitude and in the correlational structure of neural variability supplement the impact of gain 

changes in ensuring that signals related to relevant stimuli are more effectively relayed from one 

processing node to another. Finally, we discuss how neural modulations associated with selective 
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attention and bottom-up adaptation can jointly mediate gain and variability to achieve an optimal 

balance between the quality of stimulus encoding and the expenditure of energy.  

1.2 SENSORY CODING AND NEURAL COMMUNICATION 

 Neural codes are widely accepted as the building blocks of information representation 

and computation in the brain (see Appendix A). Although neural codes – especially population 

codes – have been well-described in the context of representing a specific stimulus feature, they 

are less appreciated in the role that they are intended for; neural communication. This disconnect 

is ironic since the two aspects of neural codes - representation and communication - are 

inextricably linked. If neurons communicate using spiking activity then neural codes are how 

neural responses can be interpreted, either at the source of spikes by the experimenter or at 

intended destination of these signals by receiving neurons. Therefore, any attention-induced 

modulation of neural codes is ultimately going to affect the communication of information 

between neural ensembles. Moreover, as with any code, there are two ways to make neural codes 

easier to decipher: the basic units of the code (codewords) can move farther apart so that there is 

less potential for confusability given noisy encoding, or the stimulus can be more reliability 

encoded. These two routes to improving a code amount to changes in the dynamic range and the 

(co)variability of a population code, respectively. We first focus on the role of gain changes since 

research has almost exclusively examined this domain until very recently. We then discuss how 

and why changes in neural variability interact with gain changes to synergistically increase in the 

quality of population codes.  

1.2.1 DYNAMIC RANGE AND NEURAL CODES  

 To understand how changes in the dynamic range of neural responses can change the 

neural code, first consider a generic schema of communication over any noisy channel (Figure 
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1.2) (MacKay 2004) that consists of 3 steps: encoding, transmission and decoding. This schema is 

also applicable to neural communication given the unavoidable loss of information during spiking 

and synaptic transmission (Conti and Wanke 1975; Manwani and Koch 2001; Schneidman et al. 

1998; White et al. 2000). Since a noisy channel invariably limits the speed and accuracy of 

communication (Cover and Thomas 1991; MacKay 2004; Rieke et al. 1999), sensory systems 

should mitigate the deleterious effects of channel noise by adapting the neural encoding  scheme 

to channel’s noise characteristics by a technique known as the system solution (MacKay 2004). 

The system solution involves making structural changes to the communication protocol to 

overcome noise, and although this solution can be implemented in various ways depending on 

reliability, speed, and energy constraints, it invariably involves using more bits per message for 

communication than is necessary to communicate over a noiseless channel. 

One system solution would be to recruit additional sensory neurons in the communication 

network. For instance, an ensemble of similarly tuned neurons could encode and transmit the 

same information in parallel, which could then be averaged in real-time by receiving neuron(s) 

through dendritic summation before decoding. Any uncorrelated noise induced either at the 

source (while encoding) or during transit (through channel noise) could be effectively removed 

through averaging at the decoder. A recent study has suggested that sensory systems might 

employ efficient pooling of sensory neurons in addition to gain and noise reduction to improve 

behavioral performance (Pestilli et al, 2011; Serences, 2011). However, since each additional 

spike in the brain consumes ATP/O2, recruiting larger neural ensembles to improve 

communication efficacy may not be an optimal solution from a metabolic point of view, 

moreover such pooling does not mitigate any noise correlations.  

An arguably more efficient method to improve the error tolerance of the neural code via 

gain changes is by increasing the average statistical distance between individual codewords (the 
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basic units of a code). This method would entail changing the input-output relationship of the 

encoder and hence change the nature of the code itself. For instance, if a visual feature α is 

encoded with mean firing rate of 10 Hz and feature β is encoded as 12Hz, then a misfiring of 1 

Hz when either α or β was encoded would yield 11Hz as the message that is received by the 

decoder. Since this message is equidistant from both features, unambiguous decoding is not 

possible. However, if the neural code is changed such that β is now mapped to 15Hz, then a 

misfiring of 1Hz would not greatly influence the probability of correct decoding. Instead, it would 

take a misfiring in the rage of 3Hz to again cause decoding problems for the new code, but 

statistically speaking it is less probable than a misfiring of 1Hz given that neural noise generally 

follows a near-Poisson distribution (~7% vs ~11% chance). Furthermore, this method of 

dynamically changing the code to improve communication efficacy is more metabolically 

efficient solution to noisy neural communication compared to recruiting additional sensory 

neurons. 

Variability in neural signals (or noise) can be introduced during synaptic activity, 

biophysical activity in the cell body, or during the transit of an action potential over the axon. 

Therefore, at the level of a decoder that receives a set of signals, it is impossible to differentiate 

between variability introduced by the encoder from variability introduced by a noisy channel. 

Moreover, from the decoder’s perspective it is immaterial at what stage variability was introduced 

in the received message as long as the message is unambiguous. Thus, changing the code by 

increasing the distance between codewords (as in Figure 2) should generally improve decoding 

accuracy irrespective of how noise was introduced in the received message. Therefore for the 

sake of simplicity, we assume perfect encoding but assume the presence of a noisy channel that 

corrupts all neural signals.  
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1.2.2 SHANNON’S CHANNEL CODING THEOREM 

Formally, Shannon’s channel coding theorem shows how codes can be made more tolerant to 

channel noise in the pursuit of improving decoding accuracy (Latham and Roudi 2009; MacKay 

2004). As we discussed above, increasing the dynamic range of neural responses effectively 

increases separability of adjacent codewords that are used to represent different exemplars of an 

input set. This increase in separability is achieved because increasing the bit-depth of each 

codeword increases the number of unique codewords that are available to encode a set of stimulus 

features. Thus, if each codeword is an N bit binary string, then there are    possible codewords 

that can be used to represent an input set M. The ratio of the size of the feature set to be encoded 

(M) and the number of available codewords dictates the efficacy of communication across a noisy 

channel (i.e. the ratio           . Higher values will correspond to more efficient but error 

prone codes, as the number of codewords will be close to the number of features to be encoded. 

In contrast, lower values will correspond to less efficient but more error-tolerant codes, as the 

number of codewords will far exceed the number of possible input features. An optimal value of 

this ratio given a fixed input set M can be achieved if the distance between codewords is large 

enough to ensure correct decoding, without making the bit-depth of each codeword so large as to 

hamper either communication rate or the energy overhead. Note that the entropy of responses 

across a population of neurons is equivalent to the average bit depth of neural codewords, and 

therefore sets the upper limit on the amount of information that can be encoded using a code, 

which we term encoding capacity. Since spike trains can be modeled as a binary symmetric 

channel (Brenner et al. 2000b; Nemenman et al. 2004; Strong et al. 1998), this theorem is also 

applicable for spiking networks in the brain. 

Attention related changes in the dynamic range of neural responses will increase total 

entropy, and thus the encoding capacity, of a population code. This increase in encoding capacity 
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ultimately is used towards improving the error tolerance of the neural code. However, this 

increase in encoding capacity comes at a cost: metabolic consumption increases approximately 

linearly with the frequency of spiking (Laughlin, 2001), thereby placing biophysical constraints 

on how much gain can be used to improve the quality of neural codes (Balasubramanian et al. 

2001; Dayan and Abbott 2001; Laughlin and Sejnowski 2003; Levy and Baxter 1996). Therefore, 

the entropy of neural responses (or the coding quantity N) cannot be increased indiscriminately or 

sustained indefinitely. Instead, a flexible coding scheme could switch between ‘costly but 

accurate communication’ and ‘cheap but inaccurate communication’ by simply changing the 

entropy of neural response. 

The coding quantity M is functionally equivalent to the size of the feature set encoded by 

a sensory neuron. Thus, in addition to changing encoding capacity via dynamic gain, the 

reliability of neural communication can also be increased by decreasing the selectivity of neural 

responses (i.e. decreasing the bandwidth of neural tuning functions). However, there is a non-

monotonic relationship between the feature-selectivity of individual sensory neurons and the  

efficacy of population codes (Series et al. 2004) because a large decrease in feature selectivity 

will also dramatically reduce the range of inputs that can be encoded. Therefore, unless a subset 

of the full feature set is selected in advance based on behavioral goals or perceptual learning, 

changing M may not be a good general solution for improving encoding capacity.  

In sum, improving the efficacy of a neural code – and concurrently improving neural 

communication – can be achieved by dynamically changing either the dynamic range of 

responses (which affect N), or by changing the selectivity of neural responses (which affects M). 

An optimal choice of these two parameters is dictated by 3 independent factors: 1) the 

characteristics of neural noise, 2) the statistics of sensory input, and 3) the behavioral importance 
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of input being encoded. We posit that the operation of attention (and adaptation) can be 

formulated in these terms, i.e. they operate by dynamically changing M and N of the neural code. 

1.3 IMPACT OF ATTENTION ON NEURAL CODES: GAIN 

 Viewed through the lens of Shannon’s theorem, we can re-evaluate the functional 

consequences of attentional gain for neural coding and communication. Spatial attention 

modulates the tuning curves of orientation-selective neurons in mid-level visual areas like V4 by 

inducing multiplicative scaling (McAdams and Maunsell 1999), and similar effects have been 

found as early as primary visual cortex (or V1) using BOLD fMRI (Saproo and Serences, 2010). 

Multiplicative scaling increases the dynamic range of neural responses, which in turn should 

increase the entropy of the neural code or quantity N. According to Shannon’s theorem, this 

increase in N should increase the separability of neural codewords and the error tolerance of the 

neural code. To experimentally determine if the statistical distance between neural codewords 

measurably increases as a result of attentional modulation, an information-theoretic quantity - 

mutual information – can be computed between neural responses and stimulus inputs. Mutual 

Information assesses the amount of response variability (or entropy) that is associated with the 

stimulus rather than with other unknown factors that are not correlated with the stimulus (termed 

noise entropy), thereby providing a metric of the separability of neural codewords; for a review 

see (Quian Quiroga and Panzeri 2009).  Consistent with the observation of multiplicative gain 

across many regions of visual cortex, attention leads to an increase in the mutual information of 

population responses measured using BOLD fMRI as early as area V1 (Saproo and Serences, 

2010). Figure 1.3 shows intuitively how attention causes an increase the distance between 

encoded signals by increasing the dynamic range of neural responses. Given its importance as an 

early cortical relay station, an increase in mutual information in V1 should improve the 

transmission of incoming sensory information to all downstream visual and higher-order areas.   
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Therefore, spatial attention appears to fundamentally change the neural code so that information 

about behaviorally relevant objects or spatial locations can be relayed across the cortical 

hierarchy with greater fidelity. 

 Sensory codes can also be improved by reducing the effective range of the encoded 

feature set  , which is achieved by reducing the bandwidth of neural tuning function (see Fig 

3B). For instance, Spitzer, Moran and Desimone (1988) demonstrated a reduction in the 

bandwidth of single-unit tuning functions in V4 when monkeys performed a matching task on 

two oriented gratings. Extending these results, Martinez-Trujillo and Treue (2004) demonstrated 

that feature-based attention simultaneously increases the gain of cells that were tuned to an 

attended direction of motion and suppresses cells tuned away from the attended direction of 

motion. This combination of response enhancement and suppression at the single unit level gives 

rise to a corresponding increase in amplitude and reduction in bandwidth of the population-level 

response profile. The increase in amplitude mirrors similar changes in the dynamic range of 

responses that are observed with spatial attention, and the selective reduction in response 

bandwidth (decrease in M) may further enhance the efficiency of the code by down-regulating 

neurons that are tuned far from the attended feature and thus have little meaningful information to 

contribute. However, as mentioned earlier, a sustained reduction in the bandwidth of a population 

response profile would decrease sensitivity to stimuli that are being suppressed. Thus, there is 

some tradeoff between a reduction in the range of features that are encoded and the flexibility of 

sensory systems to react to unexpected stimuli that fall far from the attended stimulus in feature 

space. 

1.4 IMPACT OF ATTENTION ON NEURAL CODES: VARIABILITY 

 Although changing the neural code by increasing the dynamic range of responses is an 

efficient way of increasing the fidelity of information transmission, the upper limit on this 



15 

 

 

 

increase in fidelity will be determined by the variability and correlational structure of the data 

(Shadlen and Newsome 1994; 1998; Sompolinsky et al. 2001; White and Carrasco 2011). 

Instantaneous variability in spiking activity that is unrelated to the stimulus will almost always 

degrade encoding capacity because it will increase the probability of confusing adjacent neural 

codewords. Recently, many empirical studies have turned to measuring the variability of single 

unit and the correlations structure of population-level responses and found that attention reduces 

the deleterious effects of instantaneous variability and correlated variability in a highly optimal 

manner that may increase the fidelity of neural codes more vigorously than changes in gain alone. 

For example, attention reduces trial-by-trial variability in firing rates as quantified by the Fano 

factor (Mitchell et al. 2007). This reduction in variability increases the signal-to-noise ratio 

(SNR) of individual neural responses, and suggests that more of the overall entropy in a neural 

code is dedicated to representing task-relevant information as opposed to irrelevant factors, 

rendering neural responses more efficient from both a coding and a metabolic standpoint. 

Ultimately, a reduction in instantaneous variability over a population of redundant neurons will 

improve the precision of any message transmitted over a noisy neural channel because the 

individual codewords will be more easily separable when they are decoded. Furthermore, 

reducing the variability across many neurons may also reduce the amount of noise that is added to 

signal during the actual transmission process. For instance, if channel noise is positively 

correlated with the signal strength of transmitted messages as it is in many physical systems 

(Conti and Wanke 1975; Manwani and Koch 1999; 2001), then any noise in the encoded message 

would get amplified during transmission, thereby further decreasing the probability of correct 

decoding by the receiver.  

Ideally, a decoder could mitigate any neural variability by averaging over a set of 

similarly tuned neurons. However, correlated variability between neurons cannot be removed 

through simple averaging, and thus will limit the precision of point estimates based on a 
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population response profile (Abbott and Dayan 1999; Averbeck and Lee 2006; Panzeri et al. 

1999; Shadlen and Newsome 1994; 1998). Therefore, within decoding schemes based on 

response pooling, reducing correlated variability should improve the decodability of neural 

signals. Indeed, recent evidence suggests that attention-mediated decorrelation can predict 

behavioral performance on a trial-by-trial basis, and may lead to approximately 80% increase in 

the signal conveyed by the averaged population response, compared to approximately 20% 

increase in signal conferred by changes in gain (Cohen and Maunsell 2009; Mitchell et al. 2009).  

While decreasing noise correlations is intuitively productive in many situations, the 

relationship between correlated variability and the precision of population codes is highly 

dependent on the nature of the stimulus, neuron’s tuning and the behavioral task. In a now classic 

theoretical study, Abbott and Dayan (1999) showed that when performing a fine discrimination 

between two similar but spatially separated features, correlations between dissimilarly tuned 

neurons should not hamper task performance, and might even be beneficial to the information 

encoded by a neural population since correlations reduce noise entropy (Abbott and Dayan 1999; 

Ecker et al. 2011). A recent study (Cohen and Maunsell 2011a) found that while feature attention 

caused neural populations tuned to the attended feature to become decorrelated, those populations 

that were tuned away from attended feature became more correlated with attention. One can 

speculate the functional benefit of this perplexing observation; neural populations tuned away 

from attended feature also had a reduction in mean response and variability, thus decreasing the 

overall entropy of their response. Given that correlations lower noise entropy (Abbott and Dayan 

1999; Ecker et al. 2011), increasing correlations for neurons with lowered entropy, might 

conserve their capacity to encode task-relevant information.   

While not well understood, correlations between heterogeneous neural populations are 

thought to be introduced either through common inputs or through shared feedback connections 



17 

 

 

 

(Nienborg and Cumming 2010). Therefore, attention might attenuate shared afferents which 

results in the modulation of correlations between the single units that form a population code. 

When considering neurons that encode more than one feature, suppression of the irrelevant 

feature during a task would decorrelate neurons that were jointly encoding the suppressed feature. 

Such suppression of irrelevant feature would improve the quality of encoding for the relevant 

feature, since the removal of some information from a sensory signal improves detection of the 

information that is left behind (Barlow 2001). In support of this notion, Ghose and Maunsell 

(2008) found that attention either suppressed or enhanced inputs to neurons but did not affect how 

the inputs were integrated.  

 An outstanding question concerns the degree to which gain modulations, noise reduction, 

and noise decorrelation are independent mechanisms of attention. Cohen and Maunsell’s (2011a) 

recently demonstration that noise correlations across a population of neurons are inversely 

proportional to their mean response, with and without attention, suggests that modulation of 

correlational structure might simply be a byproduct of gain modulation; since a reduction in mean 

response would also reduce overall variability for a population of similarly tuned neurons (in 

spite of changes in Fano factor), an increase in correlations with attention is clearly expected but 

whether it is independent of gain modulation is not obvious.  

1.5 IMPACT OF ADAPTATION ON NEURAL CODES 

Thus far we discussed how attention related changes in the dynamic range and variability 

can make neural codes more robust to intrinsic noise, and thereby improve neural 

communication. However, the benefit derived from increasing dynamic range is offset by the 

increased metabolic cost of additional spikes. Furthermore, the increased dynamic range (which 

also increases encoding capacity of the neural code) is not used towards encoding additional 

information about the stimuli, and therefore represents wasted representational energy (also called 
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redundancy). Accordingly, some have argued that redundancy reduction is an important principle 

of information encoding by neural populations (Attneave 1954; Barlow 1961). Redundancy in 

neural codes is quantifiable; if the entropy of neural response H(R) is greater than the entropy of 

the encoded stimulus set H(S), the code is said have redundancy amounting to 
    

    
  . An 

efficient neural code should also be sensitive to input statistics, such that a change in input 

entropy dynamically leads to a corresponding change in code entropy, keeping the metabolic 

demands associated with increased firing rates (or redundancy in the code) to a minimum. A 

neural encoder that adapts its code based on the statistical nature of the inputs represents a 

regulatory mechanism that balances demands on communication efficacy and metabolic 

expenditure, known as adaptation (Fairhall et al. 2001; Rieke et al. 1999; Wark et al. 2007).  

 Neurons in different modalities - vision, audition, and somatosensation - adapt their 

response characteristics to reflect the statistical changes in the input, and this adaptation has been 

shown to maximize rate of information transfer while minimizing metabolic costs (Brenner et al. 

2000a; Fairhall et al. 2001; Gutnisky and Dragoi 2008; Laughlin 1981; Maravall et al. 2007; 

Muller et al. 1999; Sharpee et al. 2006; Wainwright 1999). For example, adaptation to high 

contrast stimuli produces a graded depression of the contrast response curve in the visual cortex 

of cats (Albrecht et al. 1984), monkeys (Sclar et al. 1989) and humans (Gardner et al. 2005). This 

reduction in the dynamic range of the contrast response function can be explained in terms code 

optimization. Repeated exposure to a stimulus should gradually change internal estimates of 

relative stimulus probabilities, which translates into a reduction in the entropy of the input set 

H(S). Therefore, the entropy of the evoked neural response H(R) should be lowered in order to 

minimize excessive firing rates, which can be achieved by reducing the dynamic range of neural 

responses. Neurons have also been found to optimize information coding by adapting to higher 

order statistics such as the power spectrum of natural stimuli by adapting their spatiotemporal 
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filtering properties (Sharpee et al. 2006). The improvement in coding efficiency is even more 

significant when considering information coded in population responses as compared to 

individual neurons, since adaptation also impact variability and correlations in neural populations 

(Cortes et al. 2011; Gutnisky and Dragoi 2008; Muller et al. 1999). This reduction in correlations 

should theoretically reduce the amount of redundancy in the population code, thereby improving 

its efficiency (Reich et al. 2001; Schneidman et al. 2003). Accordingly, this improvement in 

coding efficiency due to decorrelation was observed empirically in V1 by Gutnisky and Dragoi 

(2008), however they found that decorrelation was highly feature-specific i.e. orientation-

selective neurons undergoing the largest change in correlation coefficient preferred orientation 

that was quite far from the adaptor. Although, both feature-specific decorrelations with adaptation 

and with those with attention generally improve the efficiency of the population code, it is not 

clear whether they tap into a common mechanism.    

There is an evolutionary basis for adaptive coding as organisms that adapt their neural 

codes to optimally represent the information in the external world will have a competitive 

advantage (Geisler and Diehl 2002; Niven and Laughlin 2008). Therefore, an optimal neural code 

should always try to balance two competing forces: robustness and efficiency. Robustness – due 

to added redundancy in the neural code – would lead to more accurate information processing, 

while efficiency – due to minimized redundancy in the neural code – would lead to less 

metabolically demanding information processing. Based on this principle, we argue that attention 

and adaptation are closely linked, and in fact arise from the interplay of these two competing 

forces whose ultimate aim is to process sensory information as reliably and cheaply as possible 

(See Appendix B for a rudimentary analysis).  
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1.6 DYNAMIC NEURAL CODING AND NEURAL COMPUTATION 

The framework of dynamic neural coding suggests that attention – by means of gain 

modulation and noise modulation – should increase the efficacy of neural communication, 

especially long range communication of sensory information. In particular, dynamically 

improving the neural codes that represent basic features of attended objects in early sensory areas 

should improve the transmission of sensory information to later sensory areas. For instance, there 

is a direct flow of motion information between visual areas V1 and MT; therefore, it is 

conceivable that this flow should be impacted by attention to motion. This is an important yet 

untested prediction, especially given robust connectivity between the two areas (Born and 

Bradley 2005) as well as a well established model of how MT derives its complex direction 

selectivity by collating information across tuned V1 populations (Rust et al. 2006; Simoncelli and 

Heeger 1998). Furthermore, since V1 and MT are physically separated by a significant cortical 

distance, the conduit of information between them can be modeled as a noisy channel. Shannon’s 

channel coding theorem provides a framework for empirically evaluating this hypothesis. The 

theorem  states that when communicating over a noisy channel, if T is the set of transmitted 

codewords and R is the corresponding set of received codewords, then mutual information I(T,R) 

provides a measure of how well that specific neural code is suited to the channel (Latham and 

Roudi 2009). Moreover, every channel has a fixed maximum rate of communication – called 

channel capacity                  -   that cannot be exceeded no matter what the coding 

scheme is, but more efficient coding schemes can bring the communication efficacy closer to the 

channel capacity. Therefore, an increase in the mutual information between two feature-selective 

neuronal populations in two distinct brain regions that are known to communicate directly, such 

as V1 and MT, would be direct empirical evidence that gain modulation of neural codes actually 

leads to more robust communication. Ideally, one would also find that the mutual information 
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between the response of feature-selective neuronal populations and stimuli increases for each 

brain region forming such a communication network, implying an improvement in sensory 

representations within each area. 

Theoretically, a “computation” is defined as the repeated transmission of information through 

space and time, guided by some algorithm (Hilbert and Lopez, 2011; Turing, 1937). Therefore, 

information loss during communication can limit the depth and accuracy of any computation, but 

especially for computations performed by a connectionist system such as neural networks. 

Furthermore, data-processing inequality (Cover and Thomas, 1991) ensures that information lost 

during feed-forward computations in early visual pathways would not be recovered in higher 

cortical areas involved in decision-making. Therefore, the functional importance of an 

improvement in neural communication in early sensory areas would be to effectively preserve 

more sensory information related to attended objects at each processing stage, leading to more 

accurate computations, while information related to unattended objects is allowed to decay. This 

improvement in accuracy of computations would also allow decision-making areas such as LIP to 

accumulate evidence in favor of right decision, more rapidly, leading to faster behavioral 

responses. Thus, selective processing of information related to relevant stimuli can be understood 

as attention-induced improvement in neural communication that facilitates the filtering and 

preservation of relevant information contained in sensory input to more efficiently guide decision 

making and behavior. 

 Summary: Neural codes are the protocol used for representing and communicating 

information in neural systems. Here, we attempted to understand how attention and adaptation 

dynamically change neural codes in response to rapidly changing behavioral demands and 

stimulus statistics so that information is more efficiently represented and transferred within 

sensory systems. This framework of dynamic neural coding can provide an algorithmic 
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understanding of how attention induced neural modulations leads to selective information 

processing of behaviorally relevant stimuli. 

Chapter 1, in part, is currently being prepared for submission for publication of the 

material. The dissertation author was the primary investigator and author of this material, while 

Reynolds J., Sharpee T., and Serences J. were co-authors. 
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1.7 APPENDIX A 

 Codes: Neural computation requires transferring information across a hierarchy of 

cortical areas, and like every communication system, a neural code is required that determines 

how information is physically represented and transferred between a sources and receivers 

(Huffman 1952). For instance, in a generic communication system (such as in Fig. 2), an encoder 

generates an output for every input it receives according to a code, such that the output is a 

systematic function of the input (Hamming 1950). The same code must then be used at the 

receiving end to decode the received information. Codes are ubiquitous, e.g. written and spoken 

languages (Pinker and Bloom 1990), road signs, and even physical gestures form codes. All of 

these codes consist of symbols and codewords that are used to convey information from a source 

(e.g. the speaker of a sentence) to a receiver (e.g. the person listening to the spoken sentence). 

Similarly, sensory neurons transform input from the external environment into patterns of neural 

activity in the central nervous system using neural codes. For instance, an orientation-selective 

neuron in primary visual cortex will fire at a rate that is monotonically related to the orientation 

of a stimulus in its receptive field (Hubel and Wiesel 1968; 1962), forming a code that can relay 

information about a low-level stimulus feature (Bialek and Rieke 1992). Neurons with feature-

selective tuning functions have been observed in many cortical areas suggesting common coding 

principles (Hubel and Wiesel 1968) (Albright et al. 1984; Maunsell and Van Essen 1983) (Perrett 

et al. 1985) (Galambos and Davis 1943; Recanzone et al. 2000) (Ivey et al. 1998). Furthemore, 

neural codes can be made more robust by using a distributed representation of the stimulus 

feature via the combined activity of neurons tuned to different feature values, known as a 

population code (Pouget et al. 2000; Seung and Sompolinsky 1993). However, in all cases, the 

ultimate use of codes is to facilitate the communication of information from a source to a 

destination.  

 Ideally, an efficient code should be communicated rapidly, accurately, and with the 

lowest possible energy overhead. However, since codes are used to communicate over a medium 

or channel, the properties of the channel play a vital role in determining the success of the 

information transfer. Any noise in the channel will corrupt a transmitted code and will contribute 

to ambiguity at the receiving end. This noise can have various sources such as the physical 

properties of the channel, the presence of unpredictable input from other channels (crosstalk), or 

the use of a channel by multiple senders. Moreover, the noise in a channel can take on many 

different forms (additive, Gaussian, Poisson, correlated, uncorrelated, etc.), with each having 

different effect on the efficacy of different codes. Therefore, the construction of a robust code has 

to account not only for statistical properties of the input being transmitted, but also for the form 

and distribution of noise over the communication channel.  
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1.8 APPENDIX B 

Joint mechanism of attention and adaptation: Adaptation and attention can interact to 

improve the efficiency of sensory encoding by dynamically modulating sensory gain in opposing 

directions. Assume an objective function G that the sensory system is trying to optimize using the 

operations of attention and adaptation. Let S be the set of all stimuli competing for attention, out 

of which stimulus s is being attended. G will depend on following 3 factors: 1) the behavioral 

relevance of stimuli in each spatial location (P), where P is a probability distribution over all 

stimuli S available in the visual field, with higher P(s) representing higher behavioral relevance. 

2) The entropy of the neural code used at each spatial location (I). 3) The entropy of the sensory 

input being encoded (J).  

Whenever J(s)  I(s), the neural code used for s has redundancy amounting to I(s) /J(s) - 

1. For behaviorally relevant stimuli, this redundancy is useful since it would facilitate robust 

neural communication. We assume that the introduction of redundancy would be the handiwork 

of selective attention via a modulation of dynamic range of neural responses e.g. multiplicative 

scaling of feature tuning functions. However, for behaviorally irrelevant objects, any attention-

induced redundancy would be un-necessary. Since added redundancy is metabolically costly, it 

should be matched across different stimulus statistics. For instance, a reduction in stimulus 

entropy J(s) – such as with adaptation – should necessitate a reduction in code entropy I(s) in 

order to maintain an adequate level of redundancy without being incurring unnecessary metabolic 

cost.  Therefore, the reduction in redundancy according to changing input statistics would be the 

handiwork of adaptation processes, since adaptation is known to reduce the dynamic range of 

neural responses. Therefore, attention and adaptation are affecting the dynamic range of neural 

responses in an opposing push-pull fashion, and it is this interaction that we suggest is critical to 

optimal information processing of incoming sensory data.  

Ideally, the sensory system should try to maximize the quantity P*I, i.e. maximize the 

representational capacity (e.g. bits) of neural codes devoted to behaviorally relevant objects. 

Suppose, the peak of P changes from s1 to s2 due to re-assignment of behavioral needs, then I 

should also change its distribution such that I(s2) > I(s1), since the product of P and I should be 

maximal at all times. Furthermore, the quantity I/J should be minimized since it reflects 

unwarranted redundancy over the ensemble of input stimuli. Suppose, due to repeated 

presentation J(s1) becomes lower than I(s1), then the neural code should be modified such that 

I(s1) is proportionately reduced given its behavioral importance P(s1).  We suppose that the 

operation of attention is to maximize P*I, and adaptation to minimize I/J, with higher brain areas 

trying to optimize these two operations, given some desired error tolerance of the code L, thereby 

producing an optimal neural code                        
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Figure 1.1 A graphical description of the three putative mechanisms of attention viz. gain 

modulation, noise reduction and decorrelation. Top left panel shows the joint encoding 3 distinct 

features (a, b and c) by 2 sensory neurons with shared tuning. The degree of overlap between 

response clouds provides a measure of decoding error. Top right panel depicts attention induced 

gain, which separates the response clouds and increases the accuracy of the population code. 

Bottom left panel depicts attention induced decorrelation of neurons; this also decreases the 

response cloud overlap and increases decoding accuracy. Other panels graphically show the 3 

putative mechanisms for attention. Bottom right panel shows a reduction in neural variability in 

each neuron, even without affecting the degree of direction of correlation, which still decreases 

the response cloud overlap and thus improves decoding error.  
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Figure 1.2 Schematic of the communication of codes over a noisy channel. The source input s is 

encoded by the encoder into codeword t using code t=g(s), which usually involves adding 

redundancy to make the coding scheme noise-resistant. Due to channel noise, the transmitted 

codeword t may be received by the decoder as codeword r such that t ≠ r. However, if the code is 

noise-resistant, such that mutual information I(t,r) is high, the decoded output s’ would be equal 

to the original input s. We assume that decoding is done using the inverse mapping function 

         by an optimal decoder. For example, consider a hypothetical noisy channel where the 

input  α is encoded as mean firing rate of 20Hz and the input β is encoded as 30Hz, by a neural 

encoder. The dotted lines give the probability distribution of signal received (rα and rβ) at the 

decoder, when α and β were input respectively. Here, the distribution of rα and rβ follow Poisson 

noise model. The area under the intersection of the two curves, gives the probability of incorrect 

decoding. If the code is changed such that the two inputs (α and β) are remapped to 25Hz and 

40Hz respectively, the probability of incorrect decoding, given by the area under the intersection 

of solid red and blue curves, is lower than before. This remapping of the code increased the 

distance between codewords (mean firing rate) for the two inputs, and led to more error tolerance 

during communication.    
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Figure 1.3 A) Hypothetical depiction of how multiplicative scaling of the tuning curve can 

increase robustness to noise by increasing the distance between codewords. Suppose the tuning 

curve (dotted line) encodes orientation and must distinguish between two orientations,   and  . 

Let   
  be the mean response (codeword) encoded for orientation  . Furthermore, due to channel 

noise  , the receiver receives codeword    when codeword     is transmitted. In this case, the 

receiver cannot decode it correctly as  , since    is equidistant from the encoded responses for   

and  . However, when the same tuning function undergoes multiplicative scaling (solid line), the 

distance between the encoded response of   and   is increased. For the same channel error  , the 

received codeword      can now be correctly decoded as the input  , since the received codeword 

is closer to     (the encoded response for  ) than     (the encoded response for   .  

B) Similar to panel A but shows how bandwidth reduction of the tuning curve can in increase 

robustness to noise by increasing the distance between codewords. 
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CHAPTER 2 

SPATIAL ATTENTION IMPROVES THE QUALITY OF POPULATION CODES 

IN HUMAN VISUAL CORTEX 

  Selective attention enables sensory input from behaviorally relevant stimuli to be 

processed in greater detail, so that these stimuli can more accurately influence thoughts, actions 

and future goals. Attention has been shown to modulate the spiking activity of single feature-

selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the 

combined output from many such neurons is required to form stable representations of relevant 

objects, and little empirical work has formally investigated the relationship between attentional 

modulations on population responses and improvements in encoding precision. Here, we used 

fMRI and voxel-based feature tuning functions to show that spatial attention induces a 

multiplicative scaling in orientation-selective population response profiles in early visual cortex. 

In turn, this multiplicative scaling correlates with an improvement in encoding precision, as 

evidenced by a concurrent increase in the mutual information between population responses and 

the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling 

of neural responses provides at least one mechanism by which spatial attention may improve the 

encoding precision of population codes. Increased encoding precision in early visual areas may 

then enhance the speed and accuracy of perceptual decisions computed by higher-order neural 

mechanisms.  

2.1 INTRODUCTION 

In many situations an observer must selectively enhance the perceived visual detail in a 

behaviorally relevant portion of the periphery at the expense of detail in other peripheral 

locations. The perceptual benefits obtained by covertly monitoring relevant para-foveal objects 



29 

 

 

 

depends on modulating the neural responses that encode basic visual features such as edge 

contours and colors, a phenomenon referred to as selective attention (Moran and Desimone, 1985; 

Desimone and Duncan, 1995; Connor et al., 1997).  The spatial component of selective attention 

(spatial attention) increases neural activity in retinotopically corresponding cortical regions for 

all features in that spatial location, much like a spotlight illuminating only a part of a theater stage 

(Posner et al., 1980; Koch and Ullman, 1985; Tsotsos et al., 1995; Boynton, 2005). But how 

exactly is the encoding of relevant features impacted by spatial attention and how might it 

enhance perception? Single-unit recording data collected in non-human primates suggests that 

spatial attention primarily acts to multiply feature tuning functions by a constant factor (referred 

to here as multiplicative scaling; see McAdams and Maunsell, 1999; Treue and Martinez Trujillo, 

1999; Fig. 1A). In addition to multiplicative scaling, spatial attention is also thought to induce a 

feature non-specific increase in response amplitudes, which can occur even in the absence of a 

stimulus (referred to here as additive scaling, also known as a baseline shift; Luck et al., 1997; 

Kastner et al., 1999; see Fig. 1B).  

Functionally, spatial attention is thought to improve the quality of perceptual 

representations in part by selectively increasing the firing rates of neurons tuned to the attended 

stimulus (assuming approximately Poisson neurophysiological noise; Shadlen and Newsome, 

1994; McAdams and Maunsell, 1999; Treue and Martinez Trujillo, 1999; Martinez-Trujillo and 

Treue, 2004). Even though single-unit recording studies have demonstrated such attentional 

modulations, coherent perceptual representations are thought to be based on populations of 

sensory neurons working in concert (Pouget et al., 2003; Averbeck et al., 2006; Butts and 

Goldman, 2006; Kang et al., 2004; Jazayeri and Movshon, 2006). Therefore, the goal of the 

present study was to explicitly examine the theoretical and empirical link between spatial 

attention and the encoding precision of population responses in early areas of human visual 

cortex.  
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We used fMRI to define feature-selective ‘voxel tuning functions, and then used 

information theoretic measures (Nevado et al., 2004; Panzeri et al., 2008) to infer changes in the 

encoding precision of population responses due to spatial attention. We find that spatial attention 

increases the amount of information encoded in early visual cortices about the features of an 

attended stimulus, primarily by modulating the multiplicative scaling of population response 

profiles. Since the quality of a population code can be assessed using information theory (Doya, 

2007; Mackay 2003), the observed multiplicative scaling provides a mechanism by which spatial 

attention improves encoding precision of population codes. In turn, the improved quality of 

stimulus representations in early visual areas should facilitate the read-out of information by 

higher brain areas during perceptual decision making (Ditterich et al., 2003; Jazayeri and 

Movshon, 2006; Newsome et al., 1989; Shadlen and Newsome, 2001). 

2.2 METHODS 

 Subjects: Eight neurologically healthy subjects between the age of 18 and 30 were 

recruited from the University of California, Irvine (UCI) community to participate in the 

experiment. Data from one subject were subsequently discarded because of an inability to obtain 

robust retinotopic maps. Each subject gave written informed consent as per Institutional Review 

Board requirements at UCI, and completed 1hr of training outside the scanner before completing 

two 1.5 hr scanning sessions held on separate days. Thus, the data presented here represent a total 

of 14 scanning sessions. 

 Selective attention scans: Subjects were instructed to maintain fixation on a central 

fixation point (white in color, subtending 0.5 of visual angle) that persisted on the screen for the 

duration of each scan (where a ‘scan’ refers to a single fMRI data collection run lasting 410s). 

Each scan consisted of several trials; on each 10s trial, a full contrast grayscale sinusoidal annular 

grating (0.5 cycles/degree) was flickered at 2 Hz (250ms on, 250ms off) in one of 8 possible 
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orientations (0, 22.5, 45, 67.5, 90, 112.5, 135, and 157.5, where 0 is horizontal, see Fig. 

2A), which defined a single stimulus. The spatial phase of the stimulus grating was randomly 

shifted every 250ms within each trial to attenuate adaption and apparent motion. The entire 

stimulus (left-to-right) subtended 22.5 of visual angle with a central circular aperture (11.2 

diameter) removed around fixation; the annulus was disconnected at top and bottom so that each 

semi-circular stimulus grating only occupied one visual hemi-field (each stimulus ‘wedge’ 

occupied 40% of the full annulus). The order of stimulus orientations was randomized on each 

scan with the constraint that the same orientation could not be presented on successive trials. 

Stimulus gratings in both hemi-fields had the same orientation to ensure that any effects of 

global-feature-based attention remained constant throughout the task (Treue and Martinez 

Trujillo, 1999; Saenz et al., 2002; Serences and Boynton, 2007). Subjects attended to the stimulus 

grating presented in either the left or the right hemi-field in response to a horizontal cue extending 

1 of visual angle from the central fixation point (Fig. 2B). This cue remained on the screen for 

the duration of each trial. Subjects were instructed to respond when the contrast of the stimulus 

grating in the attended hemi-field decreased slightly, which is henceforth referred to as a target 

event (subjects were to ignore equally frequent contrast changes that occurred in the unattended 

hemifield, which was done to equate sensory factors between the attended and unattended 

stimuli). The contrast reduction that defined a target was titrated on an individual basis so that the 

hit rate remained at approximately 75-80% over the course of all scanning sessions (a ‘hit’ was 

defined as a response that occurred up to 1s after the presentation of a target; subjects false 

alarmed infrequently on only 1.9%0.7% S.E.M. of contrast changes in the distractor stimulus). 

Each target was presented for a single 250ms frame, and there were 4 targets in each trial. The 

timing of each target was pseudo-randomly determined with the following constraints: each target 

was separated from the previous one by at least 1.5s, and targets were restricted to a temporal 

window of 1-9s following the onset of the trial. Each trial was separated from the next by a blank 
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500ms inter-trial-interval of passive fixation. Observers completed five or six attention scans per 

1.5 hour scanning session; each scan lasted 410s and contained 4 presentations of each stimulus 

orientation (32 in total) along with 6 pseudo-randomly interleaved ‘null’ trials in which only the 

central fixation point was visible for the entire 10s trial interval. These null trials were presented 

to provide a common baseline for comparison of responses evoked by attended and unattended 

stimuli.  

 Independent functional localizer scans: Two independent functional localizer scans were 

run during each scanning session to identify voxels within each retinotopically-organized visual 

area that responded to the spatial position occupied by the stimuli in the left and right hemi-fields 

during the attention scans. The stimuli used during localizer scans were identical to the stimuli 

used during attention scans; however, only one hemi-field was stimulated on each trial (Fig. 2C). 

Subjects were asked to fixate on the central fixation point and direct their attention to the 

presented stimulus. There was a blank inter-trial-interval of 10s following each stimulus 

presentation and each of the 8 orientations was presented twice during each localizer scan (total 

scan duration: 320s). 

 Retinotopic mapping procedures: Retinotopic mapping data were obtained in one to two 

scans per subject, using a checkerboard stimulus and standard presentation parameters (stimulus 

flickering at 8 Hz and subtending 60° of polar angle; Engel et al., 1994; Sereno et al., 1995). This 

procedure was used to identify ventral visual areas V1, V2v, V3v, and hV4. Our high-resolution 

scanning protocol did not provide sufficient coverage to acquire data from dorsal occipital areas 

V2d, V3d and V3a or visual areas in parietal and frontal cortex. To aid in the visualization of 

early visual cortical areas, we projected the retinotopic mapping data onto a computationally 

inflated representation of each subject’s gray/ white matter boundary. 
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 fMRI data acquisition and analysis: MRI scanning was carried out on a Philips Achieva 

3-Tesla scanner equipped with an 8-channel SENSE head coil at the John Tu and Thomas Yuen 

Center for Functional Onco-Imaging, University of California, Irvine. Anatomical images were 

acquired using a MPRAGE T1-weighted sequence that yielded images with a 1mm
3
 resolution 

(TR/TE=11/3.3 ms, TI=1100ms, 150 slices, flip angle=18
0
 with no SENSE acceleration). 

Functional images were acquired using a gradient echo planar imaging (EPI) pulse sequence, 

which covered the occipital lobe with 25 oblique transverse slices. Slices were acquired in 

sequential order with 1.5mm thickness and 0.5mm gap to avoid slice crosstalk; thus a 50mm thick 

slab was acquired (TR = 2500 ms, TE = 30ms, flip angle = 70°, image matrix = 120 (AP) × 92 

(RL), with FOV = 240mm (AP) × 180mm (RL), SENSE factor = 2, voxel size = 2mm × 2mm × 

1.5mm). 

Data analysis was performed using BrainVoyager QX (v 1.86; Brain Innovation, 

Maastricht, The Netherlands) and custom time-series analysis routines written in Matlab (version 

7.1; The Math Works, Natick, Massachusetts). All EPI images were slice-time corrected, motion-

corrected (both within and between scans) and high-pass filtered (3 cycles/run) to remove low 

frequency temporal components from the time-series. 

 Region of interest selection procedure: To identify voxels that responded to the 

retinotopic position of the stimulus aperture, data from the functional localizer scans were 

analyzed using a GLM that contained two regressors marking each 10s epoch of stimulation in 

the left and right hemifields (a boxcar convolved with a standard double-gamma function as 

implemented in Brain Voyager: time to peak 5s, undershoot ratio 6, time to undershoot peak 15s; 

Boynton et al., 1996). Voxels within each visual area that responded more to one epoch of 

stimulation compared to the other were retained for further analysis if they passed a threshold of 

p<.01, corrected for multiple comparisons using the False Discovery Rate (FDR) algorithm 
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implemented in BrainVoyager QX (see Genovese et al., 2002). See Table 1 for the number of 

voxels within each visual area that passed this threshold.  

 Voxel tuning functions: We used voxel tuning functions (VTFs) to evaluate feature-

selective BOLD responses in early areas of visual cortex. The feature selectivity is thought to be 

indirectly determined by biases in the distribution of orientation-selective neurons (e.g. columns 

in V1) that are idiosyncratically sampled within each voxel (Haynes and Rees, 2005; Kamitani 

and Tong, 2005; Sasaki et al., 2006; Kay et al., 2008; Serences et al., 2009; Swisher et al., 2010). 

In turn, if a voxel has a bias in the number of neurons that prefer a particular feature, then that 

voxel should exhibit a weak but detectable feature-selective response bias. 

 Estimating orientation-specific responses: First, the time series from each voxel was 

normalized by subtracting the mean activation level for that voxel on a scan-by-scan basis. Next, 

the magnitude of the BOLD response in each voxel was estimated using a GLM that contained 

regressors for attended and unattended stimuli rendered in each of the 8 possible orientations 

(boxcar model of stimulus sequence convolved with standard difference-of-two gamma 

functions). For example, on a trial where the subject was attending to the stimulus in the left 

hemi-field, an ‘attended’ response would be measured from all voxels in the contralateral right 

hemisphere, and an ‘unattended’ response would be measured in the ipsilateral left hemisphere.  

 Assigning orientation preference to each voxel: The orientation preference of each voxel 

was assigned using a leave-one-out procedure to ensure that the resulting tuning functions reflect 

reliable changes in signal as opposed to idiosyncratic noise. First, each voxel from a visual area 

was assigned to one of eight orientation-preference bins based on data from all scans except one; 

orientation preference was heuristically established by determining the orientation that evoked the 

largest response after removing the mean response across all voxels in response to each 

orientation (see Supplemental Figure 7 for an alternate heuristic). This mean-subtraction was 
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performed to correct for main effects of stimulus orientation that had a common influence on the 

response of every voxel, thereby emphasizing the differential pattern of responses across voxels 

(see e.g., Haxby et al., 2001). Supplemental Figure 11 shows the mean response amplitude to 

each orientation in each visual area, as well as the distribution of orientation preferences with and 

without this correction. Supplemental Figure 8 shows the fully analyzed data without removing 

the main effect of orientation: qualitatively similar results are observed.  

 After determining the orientation preference of each voxel, we used data from the held-

out scan to compute the response of voxels in each bin to both attended and unattended stimuli 

rendered in all eight possible orientations (thus producing a VTF). This hold-one-out procedure 

was then repeated using all unique permutations of holding one scan out, and the final VTF for a 

given visual area in a given subject reflects the average across all permutations. Finally, VTFs 

from each visual area were averaged across left and right hemispheres as no systematic 

asymmetries were observed.  

 Characterizing VTFs using a circular Gaussian: Voxel tuning functions were 

mathematically characterized as   

B(Θ) = α + β * ƒ(κ,Θ)       1a.  

 ƒ(κ,Θ) = exp(-([(π/2 + Θ - Θpref) mod π] - π/2)
2
 / κ

2
)   1b.  

where ƒ(.) is a circular Gaussian function (Dayan and Abbott, 2001; Pouget et al., 2003; Nevado 

et al.,2004), α is the additive scaling parameter, β is the multiplicative scaling parameter, and k is 

the concentration parameter or bandwidth. Once the distribution for B(Θ) had been estimated 

using above-mentioned procedure, an iterative curve-fitting algorithm was used to derive best-fit 

values for α, β and k. Thus, voxel tuning curves were constructed reflecting BOLD activation 

under attention Ba(Θ) and without attention Bu(Θ) such that 
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 Ba(Θ) = αa + βa * ƒ(κa ,Θ)      2a. 

 Bu(Θ) = αu + βu * ƒ(κu ,Θ)      2b. 

The effect of spatial attention was then characterized as 

 Additive scaling (α')   =  αa - αu    3a. 

 Multiplicative scaling (β')  =  βa - βu    3b. 

 Bandwidth scaling (κ')   =  κa - κu    3c. 

 The model was fit to data from each visual area in each subject using a gradient descent 

algorithm implemented in the Matlab Optimization Toolbox (built around the “fminsearch” 

function that employs Nelder-Mead Simplex Direct Search; Lagarias, 1998). Because the starting 

value assigned to each parameter can influence the final outcome of gradient descent algorithms 

(in case of many local minima), each fit was performed 60 times with a new seed for each of the 

three free parameters drawn randomly from a normal distribution in an attempt to find the 

globally optimal parameter values. The mean of each normal distribution used to generate the 

seeds was set as follows: (1) the minimum of the data for the additive scaling parameter, (2) the 

maximum response minus the minimum response for the multiplicative scaling parameter, and (3) 

.5 for the bandwidth parameter. The standard deviation of the seed distribution was set to the 

square root of the respective mean for that distribution. The iteration with the lowest overall root 

mean square error (RMSE) across all 60 iterations in a given subject was then used in the final 

analysis (mean RMSE: 0.02157, ±SEM: 0.002162, indicating that the fits were excellent overall). 

A validation procedure in which 500 iterations of the analysis were run with randomized labels 

was also carried out: this resulted in a more than 2-fold increase in RMSE, further supporting the 

significance of the observed Gaussian shape of the VTFs (mean RMSE with randomized labels: 

0.049).  
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 Since all stimuli had the same luminance contrast, we could not model the tuning 

function with contrast as a free parameter. Thus, we cannot rule out the possibility that the values 

of α, β and k have some dependence on stimulus contrast, and hence these parameters could be a 

function of contrast.  

 We also investigated the appropriateness of an alternate model B(Θ) = β*(ƒ(κ, Θ)+α) 

where the multiplicative scaling parameter also operates on the additive scaling parameter. When 

reasonable constraints on allowable parameter values are imposed (e.g. non-negative additive 

scaling factor), then the model described in 2a and 2b proved to be a better fit to the data 

(Supplemental Fig. 4). 

 Mutual information measures: In the present paper, we use an information-theoretic 

quantity Mutual Information (MI) to both rank order voxels based on the theoretical homogeneity 

of comprising neural populations, as well as to evaluate the influence of attention on the quality 

of neural codes (the methods described here follow those described in Serences et al., 2009). MI 

has the advantages that it indexes the information conveyed by a voxel about the stimulus, and 

makes no a priori assumptions about the precise shape of the response distribution (Fuhrmann 

Alpert et al., 2007; Panzeri et al., 2008; Serences et al., 2009). MI is based on Shannon’s entropy 

of the BOLD responses in each voxel, which is a measure of response uncertainty across all 

stimulus orientations. 

  



Bb

bpbpBH )(log)()( 2       4. 

To compute Shannon’s entropy, we converted the continuous BOLD response into a discrete 

variable (B) by dividing the range of responses into a set of equidistant bins (b) of sufficiently 

small size (Cover and Thomas, 1991). In this formulation, p(b) is the frequency with which a 

response falls into bin b divided by the total number of responses measured from a given voxel. 
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The bins were statically defined i.e. fixed for all data sets, and spanned the entire range of values 

encountered in the data. Before discretizing BOLD responses for a given voxel, we collapsed data 

collected in response to both attended and unattended stimuli after subtracting out the mean 

activation levels of ‘attended’ and ‘unattended’ conditions. This subtraction was done because 

additive shifts due to attention would have induced error in the process of binning BOLD 

responses during the computation of p(b). Next, we computed conditional entropy p(b|θ), which 

yields a measure of response uncertainty given the knowledge of stimulus orientation (θ). If there 

is a dependence between stimulus orientation and observed BOLD responses, the introduction of 

Θ as a conditional random variable should reduce the uncertainty and hence the entropy of the 

random variable B 

 



Bb

bpbppBH )|(log)|()()|( 2 


   5. 

The information content carried by each voxel can then be defined as the reduction in uncertainty 

for each voxel’s BOLD response given the stimulus orientation, or mutual information (MI). 

Since we are using logarithm to the base 2 in our calculations, the unit of measure is bit. 

 )|()();(  BHBHBI        6. 

Bayes’ rule ensures that the equation is symmetric, so that I(B|Θ) is equal to I(Θ|B), or the 

reduction in uncertainty about stimulus orientation given a distribution of BOLD responses. 

Therefore, if there is a strong dependence of the distribution of BOLD responses (B) and stimulus 

orientation (θ) for a particular voxel, then that voxel will yield a high MI value. If they are 

completely dependent – such that knowing one gives complete information about the other – then 

MI would be equal to the entropy of either one of them. On the other hand, if the distribution of 

BOLD responses and stimulus orientation are completely independent, then that voxel will yield a 
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MI value of zero. In the present experiment, where 8 different stimulus orientations were 

employed, the maximum value of MI is 3 (log28).  

 Normalized MI: For the analysis of modulation in MI with attention (Fig. 9), we used the 

normalized version of mutual information (Kojadinovic, 2005) to normalize the values of voxel 

MI derived from different subjects to range between 0 and 1 before the data were averaged. 

)();();(* BHBIBI        7. 

A value of 1 for I
*
 means that knowing B gives complete information about the value of Θ, or 

vice versa. Conversely, a value of 0 implies that knowing B provides no information about Θ, or 

complete independence between the distributions of B and Θ.   

 Relationship between the shape of a VTF and M: MI depends on the difference between 

overall response variability (total entropy or H(B) ) and response variability that is attributable to 

factors uncorrelated with the stimulus (noise entropy or H(B|Θ) ). The difference between total 

entropy and noise entropy thus represents how much variability in the BOLD responses is 

attributable to changes in the stimulus, which indicates how much signal, or useful information, is 

present in the data. For an informative voxel, entropy H(B) should be high, implying that the 

magnitude of the BOLD response changes substantially as a function of stimulus orientation. 

Thus a voxel that has a peaked tuning function would be more informative than a voxel that has a 

flat tuning function, all else being equal (although the relationship between MI and tuning 

function bandwidth is non-monotonic, such that flat or overly peaked voxels both have a lower 

MI than voxels with some optimal intermediate bandwidth). Conditional entropy H(B|Θ) for an 

informative voxel should be relatively low (with respect to the entropy H(B)) because that voxel 

should yield similar BOLD responses on each successive presentation of the same orientation, 

implying low noise.  
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 Using MI as a criterion to select representative voxels: We hypothesized that the 

magnitude of MI in a voxel should be directly proportional to the underlying distribution of 

feature-selectivity at the neural level, making only the assumption that there is a monotonic 

relationship between neural activity and the magnitude of the BOLD response (Logothetis et al., 

2001; Logothetis, 2003). Consider two hypothetical and extreme types of voxel: (1) a voxel with 

very weak orientation selectivity, and (2) a voxel with strong selectivity and a robust VTF. In the 

first case, weak selectivity might be caused either by poor SNR (e.g. if the voxel partially samples 

white matter), or by a relatively heterogeneous distribution of orientation-selective neurons within 

the voxel, which would result in a null orientation preference because the voxel would respond 

equally well to all orientations. In turn, this non-selective response profile would have low 

entropy and correspondingly low MI. Therefore, we argue that voxels with weak VTFs 

(characterized by low MI) are difficult to interpret as multiple factors may contribute to poor 

orientation tuning and consequently denature the observable effects of attention. The opposite is 

true in a relatively homogenous voxel containing many neurons tuned to a specific orientation. 

Such a voxel should have a highly selective and peaked VTF, high total entropy, and a 

correspondingly high MI (assuming near-Poisson or additive noise). Therefore, voxels with high 

MI should contain a relatively homogeneous sample of orientation-selective neurons and hence 

provide the best insight into the operating characteristics of attention on specific neural 

populations (see Supplemental Figures 1 and 2 for a more formal description of this model, as 

well as Nevado et al., 2004).  

 

Based on this logic, voxels were rank ordered based on their MI score and orientation 

preference within all scans save one, and then the VTFs were generated based on data from the 

remaining scan (rank ordering always done separately for each visual area, session, and subject). 

Different quartiles out of this rank-ordered list were then selectively analyzed because quartiles 
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were large enough intervals to provide an adequate number of voxels in each bin to compute 

reliable tuning curves (see e.g. Figs. 6 and 7, Supplemental Fig. 3). Note that the mutual 

information measure suffers from the problem of bias in estimated values when data are limited 

(Panzeri et al., 2007). However, since we used MI values only to rank-order voxels derived from 

the same dataset, the exact MI value of each voxel becomes immaterial as long as it gives an 

accurate representation of the relative information content of that voxel vis-à-vis other voxels in 

its orientation-preference bin (and visual area, session, and subject). 

 

 Relationship between attentional gain and MI: Spatial attention can impact a Gaussian 

tuning function in 3 ways: additive scaling, multiplicative scaling and bandwidth scaling. 

Multiplicative scaling should increase MI since it increases the dynamic range of mean responses, 

which in turn increases the entropy of responses H(B). Even under the assumption of Poisson 

noise, multiplicative scaling will cause the entropy of responses to increase faster than the 

corresponding increase in noise entropy, leading to an overall increase in MI. This also holds for 

additive Gaussian noise, as long as the variance increases by a factor smaller than the increase in 

the mean BOLD response. In contrast, additive scaling of a tuning function will not increase 

entropy because it simply translates the tuning curve up or down without increasing the dynamic 

range of mean responses.  If the noise scales with mean response, e.g. Poisson noise, additive 

scaling might actually lower MI because the noise entropy will increase while the overall entropy 

will remain constant. Finally, the relationship between MI and the bandwidth of a tuning function 

is non-monotonic. A decrease in bandwidth would increase MI if the bandwidth was non-

optimally wide (e.g. a flat tuning function). However a decrease in bandwidth beyond an optimal 

intermediate point would also lower MI because the tuning function would only convey 

information about a highly restricted range of stimulus values. Thus, an increase in bandwidth – 

to a point – would help if the bandwidth was overly narrow. 
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 Using MI of BOLD responses to evaluate the quality of population codes: If BOLD 

responses are approximately linearly related to changes in underlying neuronal firing (Heeger et 

al. 2000; Logothetis et al., 2001; Logothetis, 2003), then an increase in a voxel’s MI with 

attention implies an increase in information conveyed by the population of neurons that are 

contained within that voxel. This relationship holds even if we allow a non-linear relationship 

between neural activity and the BOLD response, as long as the relationship remains monotonic 

(i.e., if an increase in neural spiking activity leads to some increase in BOLD amplitude; Nevado 

et al., 2004). Under this relaxed assumption of monotonicity, the BOLD response profile can be 

thought of as a filtered version of the neural population response profile, filtered through some 

monotonic mapping function, forming a Markov Chain. The data inequality theorem (Cover and 

Thomas, 1991) mandates that for such a Markov chain, the MI of a voxel must be equal or less 

than the MI of the neural population. Therefore, even the most informative voxel can never have 

higher information in its BOLD responses than the MI that exists in the underlying neural 

population activity, and thus provides an upper bound on any estimates of the information content 

of population responses. As a result, the absolute value of the increase in MI with attention 

exhibited at the voxel level is not expected to be equal to the actual increase in MI at the neural 

level; however, the qualitative relationship between changes in MI at the neuronal and voxel level 

should be preserved. 

 Eye tracking: Eye tracking data were acquired with an ASL-LRO MR compatible system 

that tracked the right pupil of three subjects during scanning (one subject in both sessions, and the 

others in a single session each) at 60Hz. Data were analyzed offline using the ILAB analysis 

toolbox implemented in Matlab (Gitelman, 2002). First, the raw data were binned into epochs 

corresponding to the 10s stimulus presentation interval from each trial. Blinks (periods when the 

pupil disappeared), as well as 5 samples on either side of each blink, were then marked and 

removed from the epoched data. Saccadic eye movements were then identified when the velocity 
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of the eye exceeded 30°/s for at least 2 samples; a minimum saccade distance of 1° was also 

imposed, as this is the manufacturer-stated resolution of the eye-tracker. Supplemental Figure 5 

shows the mean X,Y position of the saccade endpoints for each of the eight stimulus orientations; 

no systematic differences as a function of the attended location were observed. 

 We could acquire eye-tracking data from only 3 subjects because of various technical 

impediments that made it difficult to acquire steady measurements from several subjects. In such 

cases where data could not be acquired consistently, subject fixation was monitored manually by 

both authors (using the eye-tracker camera) to ensure that subjects did not make systematic 

saccades with the attentional cues and were fixating consistently on the central fixation spot. 

2.3 RESULTS 

 To characterize the impact of spatial attention on population response profiles, we used 

the spatial attention task shown in Fig. 2. We first generated voxel tuning functions (VTFs) with 

and without spatial attention within each visual area (Fig. 3, see Materials and Methods – Voxel-

based tuning functions).  One-way repeated measures ANOVAs revealed significant orientation 

selectivity of the VTFs in all areas (after collapsing across attended and unattended trials, V1: 

F(7,42)=18.3, p<.001; V2v: F(7,42)=19.4, p<.001; V3v: F(7,42)=5.9, p<.001; hV4: F(7,42)=3.7, 

p<.005). 

When considering all spatially selective voxels identified using the independent 

functional localizer scans, we found that spatial attention primarily produced an additive scaling 

of VTFs that was highly significant in all four visual areas. This magnitude of the additive scaling 

also increased modestly from V1 to hV4 (Fig. 4, F(3,18)=3.13, p=.051, marginally significant 

one-way repeated measures ANOVA). This monotonic rise in additive scaling along the ventral 

pathway is consistent with previous reports in human visual cortex (Kastner et al., 1998; Ress et 
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al., 2000; O'Connor et al., 2002) and might be driven by increasing receptive field size and a 

corresponding increase in the amount of within-receptive field competition, which is thought to 

play a critical role in determining the magnitude of attentional modulations (Desimone and 

Duncan, 1995; Kastner et al., 1998; Kastner and Ungerleider, 2001).  

We next used an information-theoretic measure mutual information (MI) to identify those 

voxels that are theoretically most representative of changes within specific subsets of orientation-

selective neurons (see Methods: Using MI as a criterion to select representative voxels; Cover 

and Thomas, 1991; Borst and Theunissen, 1999; Fuhrmann Alpert et al., 2007; Panzeri et al., 

2008; Serences et al., 2009). A three-way repeated measures ANOVA with visual area (V1-hV4), 

attention (attended, unattended) and MI bin (1st-4th quartile) revealed an overall increase in the 

additive scaling parameter with attention (F(1,6)=28.5, p<0.002), and an increase in the additive 

scaling parameter with increasing MI (F(3,18)=16.9, p<0.001); this later modulatory effect of MI 

on additive scaling was more pronounced in later visual areas (e.g. V3v, hV4) compared to earlier 

areas (three-way interaction between attention, MI bin, and visual area: F(9,54)=3.01, p<0.01, see 

Fig. 6). In addition, attention led to significant multiplicative scaling in high-MI voxels (two-way 

interaction between attention and MI bin: F(3,18)=7.00, p<0.005, see Fig. 7);  however, the three-

way interaction between attention, MI bin and visual area did not approach significance 

(F(9,54)=1.14, p=0.35), suggesting a qualitatively similar pattern in all regions. Finally, no 

significant changes in bandwidth scaling was observed with attention (Supplemental Fig. 3, 

attention by MI interaction, collapsed across visual areas F(3,18)=1.45, p=0.26), which is perhaps 

not surprising given similar results in previous single unit recording studies (e.g. McAdams and 

Maunsell, 1999) and the notion that a decrease in bandwidth does not always benefit the quality 

of a population code (Series et al., 2004).   

When considering high-MI voxels, which we hypothesize are the most representative of 
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underlying neural activity, the effect of multiplicative scaling becomes more pronounced as 

compared to additive scaling (~34% vs. ~21% change in respective parameter estimates with 

attention, averaged across all visual areas). This change in the multiplicative scaling parameter is 

roughly comparable to that found by a classic single-unit study of spatial attention (McAdams 

and Maunsell, 1999a,b) where a 23% average increase in multiplicative scaling was observed in 

V4 neurons.  

Although we sorted the data into four equinumerous MI bins for the main analysis  so 

that enough voxels would be in each bin to yield reliable VTF estimates  the magnitude of 

additive and multiplicative scaling with attention seems to approximately increase monotonically 

with increasing MI (Fig. 8 and Supplemental Figs. 6, 12), which we posit is due to the fact that 

more homogeneous voxels (indexed by higher MI values) should more accurately reflect 

attention-induced scaling in underlying neuronal tuning functions (see simulations in 

Supplemental Fig. 2).  

The observed multiplicative scaling of responses with attention should theoretically 

increase MI by increasing the dynamic range of the BOLD response (see Methods: Relationship 

between attentional gain and MI). However, it is important to directly evaluate whether or not MI 

actually increases with attention, because an increase in MI is not only influenced by 

multiplicative scaling but also by the noise characteristics of the responses. Thus, we next used 

MI to evaluate the amount of information conveyed by the population response profiles. First, MI 

was estimated in each voxel using only responses evoked by unattended stimuli, and then the 

voxels were rank-ordered by their respective value of MI. As outlined previously, voxels with 

high MI are postulated to be more homogenous and hence representative of underlying neural 

populations (see Methods: Using MI as a criterion to select representative voxels). When we 

computed the ratio between each voxel’s normalized MI for attended stimuli and unattended 
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stimuli (see Methods: Normalized MI); this ratio was greater than 1 for the most representative 

voxels, indicating that spatial-attention increases the amount of information carried by BOLD 

responses (~25% increase, see Fig. 9 and Supplemental Fig. 13 for a more conservative cross-

validated version of the same analysis). Supplemental Figure 9 shows where in cortex the most 

informative voxels were found in a set of representative subjects. 

2.4 DISCUSSION 

In the present study, we used fMRI and feature-selective VTFs to show that spatial 

attention increases the MI of population response profiles within regions of early visual cortex, 

primarily by inducing a multiplicative scaling of feature-selective neural tuning functions. If early 

visual cortex can be thought of as a representational screen on which external visual stimuli get 

projected and encoded by millions of tiny sensors, then the implication of our finding is that 

attention effectively increases the bit-depth of the information encoded about the stimulus. This 

increase in bit-depth with attention in early visual areas should enable later areas that integrate 

this information to operate more efficiently, thereby supporting faster and more accurate 

perceptual decisions (Ditterich et al., 2003; Jazayeri and Movshon, 2006; Newsome et al., 1989; 

Shadlen and Newsome, 2001).  

MI fulfills two main roles in current study: A) MI is used to identify the most informative 

voxels, which we posit are also the most homogenous and hence representative of underlying 

neural populations. B) MI provides a means of evaluating how cognitive manipulations, such as 

spatial deployments of attention, can systematically influence the amount of information encoded 

about behaviorally relevant stimuli. Since we use MI for the dual purpose of selecting highly 

representative voxels as well as for observing changes in the information content of these voxels 

with attention, we were careful to avoid non-independence errors. This is especially important in 

the present context because MI is positively correlated with the multiplicative scaling parameter 
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of a VTF. To avoid issues of circularity, we used independent selection and evaluation phases to 

first select high MI voxels and then to evaluate the influence of attention on their response 

profiles. The MI score of a voxel was calculated using data from all scans save one (selection 

phase) and the VTFs were computed using data from the remaining scan (evaluation phase), and 

this process was iterated through all unique combinations of holding-one-scan-out. Similarly, for 

the analysis of the change in MI with attention (Fig. 9), we rank-ordered voxels based on MI 

derived from unattended stimuli only, and then computed the relative increase in MI due to 

attention (a further split-half analysis was done as well, see Supplemental Fig. 13). The use of a 

cross-validation procedure ensures that task-independent machine noise was not responsible for 

the observed attentional effects.  Given these measures and the fact that machine noise cannot 

systematically and significantly vary between attended and unattended perceptual states, we 

conclude that the data presented here reflect attentional modulations of BOLD signals and are not 

due to any selection bias or non-independence errors in our methodology.  

The observation of multiplicative scaling in the most informative voxels is consistent 

with previous single-unit studies in primates (McAdams and Maunsell, 1999). On the other hand, 

the extremely large additive scaling factors we report (see Fig.6) are not typically observed at the 

single-unit level, where such effects are generally modest. However, our data and simulations 

suggest a resolution to this apparent discrepancy. Consider a hypothetical voxel that contains a 

heterogeneous distribution of orientation-selective neurons. Such a voxel will have poor 

selectivity and should produce a relatively flat tuning function. Here, a purely multiplicative 

scaling at the single unit level would manifest as a feature non-specific (additive) increase in 

BOLD activation. For example, attending to 45° should primarily boost the firing rate of neurons 

tuned to 45°, which will produce heightened activation in the voxel. However, because the voxel 

contains an equal number of neurons that prefer every other orientation, attending to a different 

orientation (e.g. 90°, 135°, etc.) should produce an equivalent increase in the activation level. 
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Thus, when measured at the coarse spatial resolution afforded by fMRI, multiplicative scaling in 

a VTF will likely be underestimated and, more importantly perhaps, translated into a response 

that appears additive. The magnitude of this ‘smearing’ should increase as the distribution of 

neural tuning preferences within a voxel becomes more uniform (see simulation results, 

Supplemental Fig. 2). Note that we are not disputing the existence of additive scaling per se, but 

simply suggesting that estimates based on fMRI might be generally skewed in favor of additive 

over multiplicative scaling. In contrast, using an information-theoretic methodology allowed us to 

distill a subset of voxels that likely captured changes in a more homogeneous distribution of 

orientation-selective neurons, thereby providing a better window into the nature of attentional 

modulations in neuronal populations.  Accordingly, the more informative voxels showed clear 

signs of multiplicative scaling, in line with most single-unit studies. Therefore, we stress that 

choosing the most representative voxels is key to improving the precision of inferences based on 

fMRI data, and MI provides such a criterion for voxel selection. 

The role of multiplicative scaling in increasing the precision of population codes is 

relatively straightforward: it increases the mean dynamic range of responses to the feature set, 

thereby increasing the information content of neural representation (Butts and Goldman, 2006; 

Doya et al., 2007). However, the role of additive scaling is not immediately apparent. From an 

information-theoretic perspective, a uniform translation of a tuning function (without any other 

accompanying changes in signal characteristics) should not affect the coding precision of that 

tuning function (Cover and Thomas, 1991). Neuronal noise in visual cortex is typically thought to 

be near-Poisson in nature (Shadlen and Newsome, 1994; Averbeck et al., 2006). This implies that 

if there was a feature non-specific increase in signal (additive scaling), noise would not increase 

proportionately (Noise  Signal), leading to an increase in SNR of the individual responses 

(Mitchell et al., 2007).  However, there is a disconnect when analyzing SNR of single responses 
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and the MI of population response profiles. MI of a tuning curve, be it neural or voxel-based, not 

only depends on the noise characteristics of single responses (noise entropy) but also on the mean 

dynamic range of responses (total entropy) (See Methods). Thus a pure additive scaling that 

increases the SNR of single-unit responses would ultimately increase the noise entropy without 

increasing the mean dynamic range (yielding no net improvement in information content). On the 

other hand, multiplicative scaling of tuning curves would simultaneously increase the mean 

dynamic range of responses as well as increase the noise in responses, the benefit of the former 

outweighing the detriment of the latter.   

When comparing figures 8 and 9, the observed increase in MI with attention within high 

MI voxels seems almost equally well-correlated with additive scaling as it is with multiplicative 

scaling. However, it is unlikely that additive scaling caused the observed attention-related 

increase in MI on theoretical grounds (see above), and because there was no attention-related 

increase in the information content of the lowest MI voxels, even though these same voxels 

showed significant additive scaling (compare Figs. 8 and 9 as well as supplemental figs. 12 and 

13). Thus, additive scaling alone is not sufficient to induce a relative increase in MI with 

attention. Instead, the ratio of attended-to-unattended MI does not go above 1 until multiplicative 

gain becomes evident in the higher-MI voxels (towards the left-hand side of Figure 9). Therefore, 

the observed increase in MI is more likely related to multiplicative scaling as opposed to additive 

scaling, and our data do not appear to shed light on the functional role of additive scaling in 

influencing the information content of population codes per se.  

MI possesses the property that it is directly proportional to the amplitude, or the 

multiplicative scaling parameter, of the VTFs (or any Gaussian tuning function). However, even 

though we observed a multiplicative scaling that accompanied an increase in MI with attention, 

we cannot conclude that the increase in MI was entirely due to the multiplicative scaling of the 
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tuning function. First, the noise entropy component H(B|) of MI can also independently 

influence the overall value of MI, so it is possible that part of the increase in MI is related to an 

attention-related reduction in trial-by-trial noise within single units, as well as an attention-related 

decorrelation across neurons on a within trial basis (Mitchell et al., 2007; Mitchell et al., 2009; 

Cohen and Maunsell, 2009). Since we cannot make precise measurements of neural noise using 

our methodology, we cannot separate the proportion of MI attributable to an increase in total 

entropy with multiplicative scaling and the proportion attributable to changes in noise entropy. 

Second, Connor et al. (1996, 1997) has shown that spatial attention can shift the spatial receptive 

field of neurons towards a relevant stimulus, effectively increasing the number of responsive cells 

(Womelsdorf et al., 2006, 2008; Hamker et al., 2008). Given certain conditions – such as when 

opposite tuned neurons are correlated – an increase in the number of responsive neurons can 

increase the quality of encoding (Abbott & Dayan, 1999; Shamir & Sompolinsky, 2006). Thus, 

although multiplicative gain is one factor that should increase MI, noise decorrelation and shifting 

of spatial receptive fields may play an important role as well. 

A source of continuing controversy regards the nature of attentional modulation of 

contrast response functions (CRFs, e.g. Reynolds and Heeger, 2009). Based on our results, our 

assertion that spatial attention induces both multiplicative scaling and additive scaling seems to 

be in direct conflict with previous studies that found only additive scaling of the CRF (Buracas 

and Boynton, 2007). One might also interpret multiplicative scaling in VTFs to be evidence that 

spatial attention induces response gain or activity gain on the CRF (Williford and Maunsell, 

2006). However, the present experiment was conducted at a single contrast level, and even 

though we found a significant multiplicative scaling, we cannot determine if the magnitude of this 

multiplicative scaling remains constant across all contrast levels. If it remains constant or 

increases, then a response gain of the CRF would be expected; otherwise, either an additive gain, 
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activity gain or a contrast gain of the CRF might be induced, depending on the exact nature of the 

relationship between multiplicative scaling and contrast (and other factors as well, such as the 

relationship between stimulus size and the size of neural receptive fields; see Reynolds and 

Heeger, 2009). Thus, our results do not directly address this issue and further experiments will be 

required to specify the exact relationship between attentional gain at the level of VTFs and 

attentional modulations in CRFs. 

 General conclusions: Here, we provide evidence that spatial attention improves the 

information content of population responses by inducing multiplicative scaling of population 

response profiles, which was hitherto un-documented in human visual cortex. This multiplicative 

scaling should theoretically improve the encoding precision of population codes that represent the 

features of a relevant stimulus, and our data provide empirical support for this role of spatial 

attention in perception.  

Chapter 2, in full, is a reprint of the material as it appears in “Spatial attention improves 

the quality of population codes in human visual cortex”, Saproo S., Serences J., Journal of 

Neurophysiology, 2010 Aug;104(2):885-95. The dissertation author was the primary investigator 

and author of this paper. I thank John Serences for his contribution. I thank Ymkje Anna De 

Vries, Geoff Boynton, Craig McKenzie and Ed Awh for helpful discussions towards this material. 
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Figure 2.1. Schematic depiction of the possible types of attention-induced scaling in the neuronal 

tuning function and consequently in population response profiles; (A) Multiplicative scaling, or 

feature-dependent increase in response amplitude where the increase depends on the proximity of 

the attended stimulus feature to the preferred feature of the neuron, (B) Additive scaling, or 

feature non-specific increase in response amplitudes, and (C) Bandwidth scaling, or change in 

standard deviation of response profile. 
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Figure 2.2. (A) Schematic of the task performed by subjects during fMRI scanning. Subjects 

attended to a flickering (2Hz) sinusoidal grating that was rendered in one of eight possible 

orientations [0°, 22.5°, 45°,…, 157.5°]. Subjects were required to continuously fixate on the spot 

at the center of the display, and to attend to either the left or the right stimulus based on a small 

central cue (figure panel B). Subjects pressed a button whenever they detected a slight dimming 

of the attended stimulus and ignored an equally probable dimming of the unattended stimulus. 

Target contrast decrements were titrated to maintain detection accuracy at approximately 75-80%. 

Stimuli in both hemi-fields were rendered in the same orientation to negate the influence of 

global feature-based attentional modulations (see Methods). (C) Independent localizer scans were 

used to identify the most spatially selective voxels in V1-hV4. The stimulus was similar to that 

used in the attention task (above) except that it was visible in only one hemi-field, to which the 

subject had to direct his/her attention. 
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 Figure 2.3. Voxel tuning functions (VTFs) with attention (solid curve) and without attention 

(dashed curve) based on responses in V1, V2v, V3v and hV4. These mean tuning functions were 

produced by centering all VTFs (for a visual area) at their preferred orientation and then 

averaging across subjects (lines represent best fitting circular Gaussian, see Methods). Error bars 

reflect ±1 S.E.M. across subjects. 
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Figure 2.4. Additive scaling parameter of best fitting Gaussian function in areas (V1-hV4). Error 

bars reflect ±1 S.E.M. across subjects. 
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Figure 2.5. (A) Tuning functions for top 25% (red) and bottom 25% (blue) of voxels in V1 

ranked by MI score, with attention (solid curves) and without attention (dotted curves). Tuning 

functions of high MI voxels (red lines, see also panel B) show significant multiplicative and 

additive scaling, whereas low MI voxels show primarily additive scaling (blue lines, see also 

panel C and Figures 6 and 7). Y-axis refers to the magnitude of the fit coefficients (beta weights) 

estimated using the GLM (see Methods), and note that panels B and C have been derived from 

panel A to better highlight the difference in shape between the VTFs from high MI and low MI 

voxels (with y-axis of both panels B and C covering equal range to permit a direct comparison). 

Error bars reflect ±1 S.E.M. across subjects. 
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Figure 2.6.  Additive scaling with attention for each MI quartile in V1, V2v, V3v, and hV4. Left 

panels show additive scaling parameter derived separately from attended data and unattended 

data. Right panels show the net change (attended minus unattended) in the parameter with 

attention. Top row shows data averaged across all visual areas, remaining rows show data from 

each visual area. Error bars reflect ±1 S.E.M. across subjects. 
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Figure 2.7. Multiplicative scaling with attention for each MI quartile in V1, V2v, V3v, and hV4. 

Left panels show multiplicative scaling parameter derived separately from attended data and 

unattended data. Right panels show the net change (attended minus unattended) in the parameter 

with attention. Top row shows data averaged across all visual areas, remaining rows show data 

from each visual area. Error bars reflect ±1 S.E.M. across subjects. 
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Figure 2.8. (A) Additive scaling, (B) Multiplicative scaling, and (C) Bandwidth scaling (attended 

minus unattended) for voxels in V1 ranked by their MI score. Each point on x-axis depicts an 

aggregation of top x% of voxels ranked by their MI score. Corresponding y-axis depicts the mean 

additive scaling, multiplicative scaling and bandwidth scaling with attention for mean voxel 

tuning function of that group. Red color indicates data points that reached significance by 

repeated measures t-test (p<0.05). Data points for which mean RMSE of fit (across subjects) 

deviated more than 2 standard deviations from overall RMSE mean (across all subjects and 

datapoints), were excluded; this was only an issue for the smallest aggregation of high Mutual 

Information voxels (< top 3%). 
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Figure 2.9. Ratio of normalized MI (see Methods) for voxels in V1, V2v, V3v and hV4 for 

attended and unattended stimuli. Voxels were sorted by normalized MI based on unattended 

responses only. The abscissa marks different groups of top voxels (by percentage of the total 

voxels ranked by their MI score). /* refers to normalized MI (see Methods) derived from 

unattended responses and attended responses, respectively. Ordinate refers to their ratio. Shaded 

gray patch around data points highlights the standard deviation of values between subjects. High 

MI voxels showed higher increase in overall information content with attention. 
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Table 2.1  Average size across subjects for each visual area 

Visual area Mean Voxels Std Deviation 

V1 551.43 163.68 

V2v 251.79 105.12 

V3v 233.29 81.93 

hV4 237.57 113.25 
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2.5 SUPPLEMENTAL MATERIAL 

 

 

 

Supplemental Figure 2.1 Results of a simulation showing how the distribution of feature 

preferences in the neural population comprising a voxel affects the expected shape of the 

corresponding voxel tuning function (VTF). (A) The distribution of orientation preferences in 3 

synthetic voxels (black = uniform distribution, blue = slightly biased distribution, and red = 

highly biased distribution). (B) Assuming for the sake of simplicity that neural activity is linearly 

related to the BOLD response, then the black, blue, and red lines depict the corresponding VTFs 

predicted for each distribution shown in panel A. While the precise shape of the VTFs predicted 

for each voxel will depend on the exact function that maps neural activity and the BOLD 

response, the qualitative relationship between the lines should hold even under nonlinear (but 

monotonic) mappings. 
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Supplemental Figure 2.2 Results of a simulation showing how the distribution of feature 

preferences in the neural population comprising a voxel affects the expression of attentional 

scaling in the corresponding VTF. (A) The distribution of orientation preferences in 2 synthetic 

voxels (blue = slightly biased distribution, and red = highly biased distribution). (B) Dashed blue 

and red lines depict VTFs for the two synthetic voxels, in the absence of attention. Solid blue and 

red lines depict VTFs for the same voxels under attention. Model neurons comprising the two 

synthetic voxels shared the same tuning characteristics when simulating the condition of 

inattention. Subsequently, the neurons comprising the two synthetic voxels received the same 

amount of additive scaling (20:1) and multiplicative scaling (1.5:1), simulating the hypothetical 

effects of attention. The resulting multiplicative scaling in the red VTF was larger than that in the 

blue VTF. However, additive scaling was marginally higher in the blue VTF because the 

relatively uniform distribution of neural tuning preferences within the synthetic voxel caused 

some of the multiplicative scaling to be translated into additive scaling (confirmed by fitting the 

VTF model described in Methods to the simulated data points). 
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Supplemental Figure 2.3 Effects of attention on bandwidth scaling (or concentration parameter, 

κ) of best fitting circular Gaussians (attended minus unattended) for each MI quartile in V1, V2v, 

V3v and hV4. No significant changes were observed. Top row shows data averaged across all 

visual areas, remaining rows show data from each visual area. Error bars reflect ±1 S.E.M. across 

subjects. 
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Supplemental Figure 2.4 Voxel tuning function with attention (solid curve) and without 

attention (dashed curve) based on responses in V1 when fit using activity gain model (see 

Methods). These mean tuning functions were produced by centering all VTFs (for a visual area) 

at their preferred orientation and then averaging across subjects (lines represent best fit of activity 

gain model). As can be seen, the model fit the data poorly when fit parameter values were 

constrained to be positive (i.e. non-negative additive scaling parameter values were disallowed 

because negative activation levels are not plausible in the present context). Because of the 

relatively poor fit, the model was dropped from further consideration. Error bars reflect ±1 

S.E.M. across subjects. 
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Supplemental Figure 2.5 Mean X and Y position of saccade endpoints (in degrees of visual 

angle from the center fixation spot, see Fig. 2) binned based on the orientation of the stimuli: 

green bars indicate mean eye position on trials where the left stimulus was attended, and red bars 

indicate mean eye position when the right stimulus was attended. No systematic differences in 

eye position were observed as a function of the attended location (left vs. right). 
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Supplemental Figure 2.6 Additive scaling, Multiplicative scaling, and Bandwidth scaling 

(attended minus unattended) for voxels in V2v, V3v and hV4 ranked by their MI score. Red 

datapoints indicate significance by repeated measures t-test (p<0.05). Multiplicative scaling 

sometimes could not be plotted for groups of high MI voxels because aggregation across a small 

number of voxels made the parameter estimates for the associated voxel tuning functions very 

unreliable, causing the model to fail to converge or to have an unusually high RMSE (see 

Materials and Methods). Also, there were approximately ½ as many voxels in areas V2v, V3v, 

and hV4 as in area V1, so the scatterplots shown here are inherently less stable than those based 

on data from V1 (Figure 8). 
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Supplemental Figure 2.7 In the main analysis, the feature preference of each voxel was assigned 

based on the orientation preference that produced the maximum response in that voxel. However, 

we also adopted another approach in which we used a GLM to fit a series of circular Gaussians 

with different preferred orientations and bandwidths (using a set of Gaussian reference functions 

that peaked at each orientation and a set of bandwidths that ranged from.1: .1: 1, for a total of 8 

preferred orientations * 10 possible bandwidths = 80 different GLMs). Then, we selected the 

scaled Gaussian from this set of 80 that accounted for the most variance in the response of the 

voxel, and used the parameters of that Gaussian to estimate orientation preference (specifically, 

the central tendency of this best fitting Gaussian). While this approach is slower than using a 

simple MAX rule, it is still computationally expedient and it provides a more principled way of 

assigning orientation preference. However, this new method did not yield a qualitatively different 

pattern of data compared to the max rule. Shown here are additive scaling, multiplicative and 

bandwidth scaling with attention, collapsed across all visual areas; note the similarity between 

these patterns and those shown in Figures 6, 7, and Supplemental Figure 3. As in the main data 

set, additive scaling increased with MI (F(3,18)=16.27, p<0.001), as did multiplicative scaling 

(F(3,18)=5.59, p<0.007). No significant changes in bandwidth were observed with attention. 

Error bars reflect ±1 S.E.M. across subjects. 
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Supplemental Figure 2.8 Additive, Multiplicative and Bandwidth scaling – collapsed across all 

visual areas – when assigning orientation preference without correcting for main effects of 

stimulus orientation that had a common influence on the response of every voxel. As in the main 

data set, additive scaling increased with MI (F(3,18)=16.1, p<0.001), as did multiplicative scaling 

(F(3,18)=4.9, p<0.02). No significant changes in bandwidth were observed with attention. Error 

bars reflect ±1 S.E.M. across subjects. 
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Supplemental Figure 2.9 Cortical location of high MI voxels (top 25%) in V1 for 3 subjects, 

projected onto computationally inflated representations of each subjects cortical surface. Color 

legend denotes normalized MI for voxels (which can range between 0 and 1). 
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Supplemental Figure 2.10 Voxel Tuning functions in V1, V2v, V3v and hV4 for top 25% of 

voxels (ranked by overall MI) for attended stimuli (solid) and unattended stimuli (dashed) after 

removing additive scaling (α) from both raw data and fitted curves. Error bars reflect ±1 S.E.M. 

across subjects. 
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Supplemental Figure 2.11(A) Average BOLD response across all orientations. B) Distribution 

of orientation selectivity of voxels after correcting for main effects of stimulus orientation that 

had a common influence on the response of every voxel. C) Distribution of orientation selectivity 

without correction for main effects. Error bars reflect ±1 S.E.M. across subjects. 
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Supplemental Figure 2.12 (A) Additive scaling, (B) Multiplicative scaling, (C) Bandwidth 

scaling (attended minus unattended), and (D) overall BOLD response magnitude for voxels in V1 

ranked by their MI score. Each point on x-axis depicts an independent bin of voxels within top 

x% of voxels ranked by their MI score. Corresponding y-axis depicts the mean additive scaling, 

multiplicative scaling and bandwidth scaling with attention for mean voxel tuning function of that 

group. Red color indicates data points that reached significance by repeated measures t-test 

(p<0.05). Error bars reflect ±1 S.E.M. across subjects. 
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Supplemental Figure 2.13 Ratio of normalized MI (see Methods) for voxels in V1, V2v, V3v 

and hV4 for attended and unattended stimuli. (A) Voxels were sorted into independent bins based 

on their normalized MI score computed only from unattended responses. (B) Same as A, but 

voxels were sorted into independent bins based on the unattended data using only ½ of the data, 

and the ratio between attended and unattended MI was then evaluated in the other half of the data 

(and then this procedure was repeated using the other half of the data set to sort voxels into MI 

bins and to evaluate the effects of attention). The abscissa marks different groups of voxels based 

on their MI bin.  refers to normalized MI (see Methods) derived from unattended responses and 

attended responses, respectively. Ordinate refers to the ratio . High MI voxels showed higher 

increase in overall information content with attention. Error bars reflect ±1 S.E.M. across 

subjects. 



78 

 

 

 

2.6 APPENDIX 

Analysis relating voxel tuning function and neural tuning function. 

The sole intention of the following theorems is to establish a link between the neural tuning 

function of a hypothetical homogenous voxel composed of neurons selective for the same feature 

and that voxel’s tuning function, or VTF. Given this link, the rest of the assumptions underlying 

our simulations (Supplemental Figures 1 and 2), i.e. that a heterogenous voxel with Gaussian 

orientation selectivity will still have a Gaussian VTF, follow (and these assumptions also follow 

from the work of Nevado et al., 2004). By no means are we suggesting that any real voxel that we 

empirically measured using fMRI was comprised of neurons that all prefer the same orientation. 

However, previous work by Nevado et al. (2004) assumed a linear relationship between neural 

responses and BOLD responses. Next, they derived the quantitative relationship between neural 

MI and voxel level MI. Here, we wanted to relax the assumption of linearity and to show that if 

we only assume a monotonic relationship between neural responses and BOLD responses 

(consistent with most available data: e.g. Logothetis et al., 2001; Logothetis, 2003), that a VTF 

with a Gaussian profile is still possible from a homogenous voxel comprised of underlying neural 

populations with Gaussian tuning function. Once this relationship has been established, we can 

also infer that voxels with heterogeneous composition would have a Gaussian VTF as long as the 

distribution of orientation selectivity remains unimodal (see next paragraph for more on this 

point). This general model forms the backbone of simulations done to produce Supplemental 

Fig.1 and Supplemental Fig. 2, where VTFs of voxels with different neuronal compositions were 

produced by linear addition of homogenous neural tuning functions from each comprising neural 

population accompanied by divisive normalization (similar to Nevado et al., 2004).  

While the assumption of unimodality in the neural response profile underlying a VTF is 

certainly idealized and strictly unrealistic, there is a large body of neurophysiological literature 

that suggests that feature selective columns in visual cortex are arrayed in a roughly continuous 

manner across the cortical sheet (e.g., Albright, 1984; Britten, 1998; Mountcastle, 1997; Hubel 

and Wiesel, 1969). Therefore, since adjacent neural clusters do not differ substantially in their 

orientation preference, a situation where a voxel contains 2 or more populations of neurons that 

differ substantially in their orientation preference, without any neuronal populations with 

intermediate selectivity, should only rarely arise. Voxels should thus generally have a near 

Gaussian distribution of orientation selectivity, with the spread of selectivity governed by the size 

of the voxel and heterogeneity of the comprising neurons (see also Nevado et al., 2004). Again, 

though it is possible that neural population response profiles with two or more distinct peaks may 

sometimes arise within a single voxel, but we posit that this is an exception rather than a rule. 

Moreover, such voxels would tend to be excluded from our analyses since they would not have 

sharp VTFs and consequently also have lower MI. In either case, the proofs below represent a 

first step towards a more formal characterization between the activity of feature-selective neurons 

and their projection onto the relatively coarse spatial scale of BOLD fMRI.  

 

Theorems 

Let N(θ0,θ) represent the average neural tuning function of a population of analogously tuned 

neurons, all having θ0 as the preferred orientation. Let B(θ0,θ) represent the corresponding voxel 

tuning function derived by sampling the neural population represented by N(θ0,θ). 

We propose transformation function ƒT: NB that expresses the relationship between neural 

activity and BOLD activation, such that B(θ0,θ) = ƒT(N(θ0,θ)). 
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From previous reports of the monotonic relationship between BOLD response and Neural 

response (Logothetis et al., 2001; Logothetis, 2003), we assume that ƒT bears the property of 

monotonicity i.e. ƒT(α) > ƒT(β) iff α > β . 

 B(θ0,θa) > B(θ0,θb)  N(θ0,θa) > N(θ0,θb), a,b s.t. {θa, θb}  set of all possible orientations, Θ     

           I. 

Note: In the following proofs, notation for functions B and N will omit preferred orientation θ0 for 

simplicity. 

Theorem 1. Voxel tuning function B will have maxima at the same angle as neural tuning 

function N. 

Proof: 

Let N have a maxima at θ = θm. 

 N(θm-1) < N(θm) > N(θm+1), where θm-1< θm< θm+1     II. 

From I, N(θm) > N(θm+1)  B(θm) > B(θm+1),  and      IIIa.  

N(θm) > N(θm-1)  B(θm) > B(θm-1)      IIIb. 

From II, IIIa and IIIb, B(θm-1) < B(θm) > B(θm+1) 

 θ = θm is the maxima of B 

Theorem 2. If neural tuning function N is unimodal then voxel tuning function B will also be 

unimodal. 

Proof by refutation: 

Let N be unimodal and have maxima at θm. 

 N(θm-i) < N(θm) > N(θm+i) i s.t. θm±i  Θ      IVa.  

And, N(θφ-1) < N(θφ) < N(θφ+1) φ s.t. θφ< θm and θφ  Θ     IVb.  

And, N(θφ-1) > N(θφ) > N(θφ+1) φ s.t. θφ> θm and θφ  Θ     IVc.  

Let B be bimodal and have maxima at θm and θp, with θm ≠ θp.    Va. 

 B(θm-1) < B(θm) > B(θm+1)          

And, B(θp-1) < B(θp) > B(θp+1)         
  

 N(θp-1) < N(θp) > N(θp+1)        Vb. 

However, if θp < θm then IVb  N(θp) < N(θp+1), which contradicts Vb  

And, if θp > θm then IVc  N(θp-1) > N(θp) , which contradicts Vb  
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 θp = θm and this contradicts Va 

Hence, the assumption of B being bimodal is invalid. This can also be extended by analogy (or 

induction) to the assumption of B being multimodal. 

Therefore, if N is unimodal then B has to be unimodal as well. 

Theorem 3. If neural tuning function N is Gaussian having preferred orientation θ0, then voxel 

tuning function B is also going have preferred orientation θ0 . 

Proof: 

If N is a Gaussian then N is going to be unimodal. Therefore from theorem 2, since N is unimodal 

B is also going to be unimodal.        VIa. 

Since N has θ0 as its preferred orientation then N has maxima at θ0. Therefore from theorem 1, B 

is also going to have maxima at θ0.       VIb. 

 B is going to have θ0 as its preferred orientation {From VIa and VIb } 

Note: We did not infer analytically that B will also be an exact Gaussian if N has a Gaussian 

distribution. However, it can be inferred that B will have a Gaussian-like monotonic fall-off on 

either side if its mode { From I, IVa, IVb and IVc }.  
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CHAPTER 3 

ATTENTION IMPROVES INFORMATION TRANSMISSION BETWEEN V1 AND MT 

 The efficiency of visual processing depends on precise neural communication between 

cortical areas. Using fMRI and an encoding model that estimates responses in populations of 

feature-selective, we investigated the impact of selective attention on communication between 

two areas – V1 and MT – that synergistically process motion information. Consistent with 

previous single-unit recording studies, we observed that attention modulates direction-selective 

populations in both V1 and MT in a similar manner; there are enhanced responses in neural 

populations tuned to the attended direction, and an attenuation of responses in neural populations 

tuned away from the attended direction. Furthermore, the modulation in cross-area correlation 

between similarly-tuned populations of V1 and MT neurons is inversely related to the modulation 

in their mean response. A computational model suggests that this pattern of response modulation 

and cross-area correlation is an outcome of motion computation in MT and attention-related 

modulations of local neuronal correlations within V1. Most importantly, these attentional 

modulations have a constructive functional role; they lead to an increase in the efficacy of neural 

communication – as measured by mutual information – between direction-selective populations 

of V1 and MT neurons. 

3.1 INTRODUCTION 

 Sensory systems have a limited information-processing capacity. To mitigate this 

limitation, a subset of incoming sensory information is selectively processed based on relative 

behavioral relevance. This mechanism, referred to as selective attention, modulates the response 

characteristics of neurons encoding relevant stimuli. For instance, attending to a particular spatial 

location or visual feature modulates multiple aspects of neural firing: gain is increased (Martinez-
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Trujillo and Treue 2004; McAdams and Maunsell 1999), the overall variability of neural 

responses decreases (Bressler and Silver 2010; Mitchell et al. 2007), and  the structure of noise 

correlations changes (Cohen and Maunsell 2009; 2011; Mitchell et al. 2009). Collectively, these 

modulations should improve the signal-to-noise ratio of neural representations for attended 

stimuli in early visual areas such as V1 or MT (Desimone and Duncan 1995; Reynolds and 

Heeger 2009). More recently, attention has also been shown to increase the information contained 

in population responses in V1, thereby implying an improvement in the encoding capacity of 

population codes (Saproo and Serences 2010). 

 Although informative, this framework is based on attention research that has focused 

predominately on neural activity within a single visual area such as V1, V4, or MT. However, 

isolated activity in a single visual area is not sufficient to support perception as distinct areas 

communicate and co-ordinate during information processing. For instance, neurons in MT are 

thought to pool input from neurons in V1 to gain their complex direction-selective receptive 

fields (Beck and Neumann 2011; Nishimoto and Gallant 2011; Rust et al. 2006; Simoncelli and 

Heeger 1998). Therefore, an accurate formation of neural representation for stimulus direction in 

MT is facilitated by the quality of the neural representation in V1 as well as the accurate transfer 

of this information to MT. Motion perception is also critically facilitated by feedback information 

from MT to V1 (Pascual-Leone and Walsh 2001; Silvanto et al. 2005).  

Importantly, the quality of information transfer between distinct neural populations, such 

as between neural populations in V1 and MT, is impacted by the stochastic nature of neural 

communication due to unreliable synaptic signaling and other biological processes that introduce 

channel noise (Conti and Wanke 1975; Manwani and Koch 2001; Schneidman et al. 1998; Vinje 

and Gallant 2002; White et al. 2000). According to Shannon’s channel coding theorem for 

communication networks (Cover and Thomas 1991; Latham and Roudi 2009; MacKay 2004), an 



83 

 

 

 

improvement in encoding capacity of codes in upstream areas – such as found in V1 (Saproo and 

Serences 2010) – should improve the decoding of information when received by a downstream 

area – such as MT – after being transmitted over a hypothetical noisy channel. Therefore, given 

the ubiquity of such inter-cortical interactions and given their importance in perception (Felleman 

and Van Essen 1991), it is important to understand the impact of selective attention on the 

dynamics of information transmission between sensory areas.  

 Using BOLD fMRI and a forward encoding model (Brouwer and Heeger 2011; 2009; 

Nishimoto and Gallant 2011; Serences and Saproo 2011), we investigated the impact of selective 

attention on: 1) the mean response of direction-selective populations within V1 and MT, 2) noise 

correlations between similarly tuned populations in V1 and MT, and ultimately, and 3) overall 

mutual information between V1 and MT. The pattern of modulation of mean response was found 

to be similar to previous single-unit studies (Martinez-Trujillo and Treue 2004; Treue and 

Maunsell 1999), but the pattern of cross-area correlations was found to be inversely related to 

mean response.  This result can be explained using a linear- nonlinear cascade model of motion 

computations (Rust et al., 2006) that is constrained by recent empirical observations about the 

influence of attention on pair-wise noise correlations (Cohen and Maunsell 2011). Finally, the 

data suggest that these attention-related modulations in response amplitude and cross-area 

correlation lead to an overall increase in bidirectional information coupling between V1 and MT, 

suggesting a role of attention in promoting efficient communication between anatomically 

segregated populations of sensory neurons that synergistically encode basic sensory features.  

3.2 METHODS 

 Stimulus and Task: The stimulus consisted of an annulus of white dots moving on a gray 

background (Figure 1), also known as a random dot kinetogram. In each 5 second trial, the dots 

moved in one of 9 possible direction (0, 40, 80, …, 320) with 100% coherence and constant 
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speed (6 pixels per second). The contrast of each dot was sampled from a normal distribution 

with a mean and variance of 0.41 and 0.1 respectively. There were 2 types of trials: one where 

subjects were instructed to respond to a transient change in the mean contrast (0.05-0.2, 

mean~0.12) of moving dots (attend contrast), and the other where subjects had to respond to a 

transient change (5-20, mean~15) in the direction of moving dots (attend motion). The timing 

of the target onset was randomized for each trial. Note that each trial contained both targets (brief 

change in direction as well as brief change in contrast), however subjects were to only respond to 

one and ignore the other based on the instructions given at the start of the scan (a scan was a 

block of 36 trials). There were 4 scans for each trial type, with 4 trials per scan for each direction 

of motion. Task difficulty for two trial types was matched for each subject (average accuracy 

~65%). 

 Data acquisition and post-processing: BOLD fMRI data was collected from 12 

neurologically healthy subjects having age between 18 and 35 years and who were affiliated with 

University of California, San Diego. Each subject trained on both task types for at least an hour 

prior to the actual fMRI scanning session.  

 MRI scanning was carried out on a GE MR750 3-Tesla scanner equipped with an 8-

channel SENSE head coil at the Center for Functional Magnetic Resonance Imaging (CFMRI), 

University of California, San Diego. Anatomical images were acquired using a MPRAGE T1-

weighted sequence, which yielded images with a 1mm
3
 resolution (TR/TE = 11/3.3ms, TI = 

1100ms, 150 slices, flip angle=18
0
, with no SENSE acceleration). Functional images were 

acquired using a 2D gradient echo planar imaging (EPI) pulse sequence, which covered the whole 

brain with 33 oblique transverse slices. Slices were acquired in sequential order with 3mm 

thickness and 1mm gap to avoid slice crosstalk; thus a 50mm thick slab was acquired (TR/TE = 
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1000/30ms, flip angle = 90°, image matrix = 64 (AP) × 64 (RL), with FOV = 240mm (AP) × 

240mm (RL), SENSE factor = 2, voxel size = 3mm × 3mm × 3mm, IF =128Hz). 

Data analysis was performed using BrainVoyager QX (v 1.86; Brain Innovation, 

Maastricht, The Netherlands) and custom time-series analysis routines written in Matlab (version 

10.1; The Math Works, Natick, Massachusetts). All EPI images were slice-time corrected, 

motion-corrected (both within and between scans) and high-pass filtered (3 cycles/run) to remove 

low frequency temporal components from the time-series. 

 Independent Region of Interest (ROI) localizer scans: Two independent ROI localizer 

scans were run for each subject to identify voxels in V1 and MT that responded to the spatial 

position occupied by the stimuli. The stimuli used in localizer scans were similar to the stimuli 

used in main experiment scans, however with following key differences: A) Rather than having 1 

annulus of moving dots, there were two annuli (outer and inner) that taken together covered the 

same spatial region as the annulus used in main experiment scans. However, on any trial, either 

the inner annulus or the outer annulus was displayed. The dots in the outer annulus were slightly 

bigger in size compared to the inner annulus. B) In a given trial, the dots either moved coherently 

in one direction (motion trials) or they randomly flickered at their static positions (snow trials). C) 

Subjects task was to respond to a change in speed of moving dots or to a change in contrast of 

flickering dots, as the case may be. D) There were multiple targets (change in speed, or change in 

contrast) within each trial and subjects were asked to respond to each. 

 To identify voxels that responded to the retinotopic position of the stimulus aperture, data 

from the functional localizer scans were analyzed using a general linear model (GLM) that 

contained two regressors; one marking motion trials and other marking snow trials. Voxels that 

responded more to motion compared to snow within each visual area were retained for further 
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analysis if they passed a statistical threshold of p<.01, corrected for multiple comparisons using 

the False Discovery Rate (FDR) algorithm implemented in BrainVoyager QX.  

 Retinotopic mapping procedures: Retinotopic mapping was obtained in one to two scans 

per subject, using a checkerboard stimulus and standard presentation parameters (stimulus 

flickering at 8 Hz and subtending 60° of polar angle; Engel et al., 1994; Sereno et al., 1995). This 

procedure was used to identify ventral visual areas V1, V2v, and V3v. To aid in the visualization 

of early visual cortical areas, we projected the retinotopic mapping data onto a computationally 

inflated representation of each subject’s gray/ white matter boundary. Visual areas were then 

defined manually according to visual markers of hemi-field and quarter-field reversals (Wandell 

et al. 2007). 

 Data Analysis:. Hemodynamic response function was estimated using a finite impulse 

response (FIR) model based de-convolution of BOLD time series across all voxels in an ROI 

(Kay et al. 2008). The magnitude of the event-related BOLD response in each voxel of ROI was 

estimated using a GLM and a design matrix that modeled the response in each trial as the scalar 

multiplier (beta weight) of a canonical double-gamma function. 

Encoding model: BOLD responses have been shown to be indirectly but linearly related 

to neural activity (Heeger et al. 2000; Kahn et al. 2011). However, BOLD response from a voxel 

at current resolutions would be a linear mixture of responses from many sub-populations of 

neural with different feature-selectivity and response profiles (Boynton 2005; Saproo and 

Serences 2010). In order to get the most accurate response estimate for direction-selective neural 

populations in V1 and MT, we decomposed voxel responses into direction-selective channel 

responses using a forward encoding model (Brouwer and Heeger, 2009, 2011; Serences and 

Saproo, 2011). Each voxel response was modeled as a linear sum of weighted responses of 

different direction-selective channels. A set of 9 channels was used, with the direction selectivity 
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of channels linearly spaced between 0 and 360 degrees (0, 40, 80, …, 320), and each 

channel’s tuning function was modeled either using a sin
4
 function or a Kronecker delta function 

(we present results from both analysis, which are qualitatively similar). The sin
4
 is a steerable 

filter while a delta function forms an orthonormal basis set; the latter being relevant when 

computing cross-area correlations. A general linear model was set up:  B = (W)C, where B is a 

matrix of voxel responses for all trials, C is a matrix of channel responses for all trials and W is a 

matrix that provides channel weights for each voxel. BOLD data was divided into two parts; 

training set Btrain and testing set Btest. Training set was used to compute ordinary least-squares 

estimate of W from the model equation (1), assuming unit channel responses Cu, using equation 

(2) Afterwards, testing set Btest was used to compute channel responses Ctest using previously 

computed weights W, using equation (3). Data was partitioned into training and testing set 

iteratively and using hold-2 scans-out principle (one attend motion scan and one attend contrast 

scan on each iteration). 

           (1) 

          
      

     (2) 

        
             (3) 

 

Multivariate Mutual Information: Shannon’s channel coding theorem provides a method 

of assessing the efficacy of different codes in a noisy communication system (such as in Figure 

6A). The theorem states that for any coding scheme that is used to transfer information over a 

noisy channel, the probability of correct decoding by the receiver depends on the Mutual 

Information (MI) between sent codewords and received codewords (Cover and Thomas 1991; 

Latham and Roudi 2009). Therefore, an increase in mutual information across a channel would 

imply an increase in the efficacy of the coding scheme used for communication over that channel. 
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. Given a robust model of motion computation that depends on communication between V1 and 

MT (Rust et al. 2006)  and the fact that the majority of projections into MT are directly from V1 

(Born and Bradley 2005), we modeled V1 to MT communication systems as a noisy channel with 

unknown but fixed noise characteristics. Given, this assumption, the efficacy of neural 

communication about the attended feature between V1 and MT can be measured by mutual 

information between the responses of direction-selective neural populations in the two areas. We 

used a multi-variate measure of mutual information (Chai et al. 2009) that computed total mutual 

information between all direction-selective channel responses in V1 and those in MT. A 

multivariate measure has an advantage over univariate measure that it would account for any 

synergistic encoding of information by channels (Schneidman et al. 2003), and provide a more 

accurate picture of cross-area information coupling. The equation for multi-variate Mutual 

Information between two d-dimensional response vectors X and Y with n observations is  

         
 

 
     

            

         
 

 

   

 (4) 

        
 

   
 
        

 
 
  

  
 

      
 
  (5) 

   

Here,  is the gamma function, xi is the i
th
 observation in X, and rk(xi) is the distance of between xi 

and its k
th
 nearest neighbor (similarly for yi). We set k equal to n in our analysis since k should 

scale with the size of data (Misra et al. 2010; Mnatsakanov et al. 2008). Dimensionality d was set 

equal to the number of channels i.e. 9, and n was set equal to the number of trial responses. Bias 

correction on mutual information estimates was done by randomly shuffling data labels a 

thousand times, computing mutual information each time, and finally averaging mutual 

information derived from each shuffled data to yield an estimate of bias. 
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 Model simulation of cross-area correlation for MT motion computation: We set up 60 

neural pools consisting of >100 neurons each (N). All neurons had a canonical circular Gaussian 

tuning function with bandwidth (full width half maximum) of 90°, however each pool of neurons 

had a unique direction preference chosen from the set of 60 possible directions (6°, 12°, 18°, …, 

360°). The variance of neurons in each pool (  
 ) was set equal to their mean firing rate in 

response to a stimulus (Poisson distribution). The correlations among each pool of neurons was 

set to be inversely proportional to their mean firing rate (Cohen and Maunsell, 2011) (e.g. a firing 

rate of 40Hz yielded a correlation coefficient (ci) of 0.15, 60Hz yielded c = 0.1375, and 20 Hz 

yielded c = 0. 1625). Thereafter, we set the trial-by-trial variance of the average of each pool   
   

to cσ
2
 since N>>1/c (Abbot and Dayan, 1999). The covariance matrix for the pool of neurons was 

then constructed according to the limited range correlation model (Snippe and Koenderinck, 

1992; Abbot and Dayan, 1999); here covariance between i
th
 and j

th
 neuronal pool is given as 

         
     

          where              . Here,  is the distance between tuning 

preference of neural pools (6°), and L is the correlation length, which isset to 4 keeping L< 

(Snippe and Koenderink 1992). Using the above expression of covariance matrix and a mean 

neural response based on Gaussian tuning function, the averaged response of each neural pool 

was computed for each stimulus presentation in the simulation using matlab function mvnrnd. 

 The response profile of direction-selective MT neurons was computed as follows:  First, 

for each stimulus direction (6°, 12°, …, 360°), the averaged response of each V1 direction 

selective neural pool is computed. Thereafter, these pooled responses for each stimulus direction 

were passed through the Linear-Nonlinear MT motion computation (Rust et al., 2006), with 
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following model parameters; MT scaling non-linearity = 1, MT exponent nonlinearity = 2, V1 

untuned normalization factor = 0.1, V1 self-tuned normalization factor = 0.1. 

 The effect of attention on V1 cells was simulated by changing the baseline (β) and 

amplitude (α) of their tuning function; R() = β+α*f(;κ), where R is the response of a cell for a 

stimulus of direction . The bandwidth (κ ) was kept unchanged. Parameters for unattended ( 

baseline = 20Hz, amplitude = 40Hz)  and attended condition (baseline = 10Hz, amplitude = 

70Hz) were chosen to reflect the observations of suppression and enhancement at population 

level responses in our BOLD-based dataset. We computed V1 neural pool responses and MT 

responses over 100,000 trials and computed correlation between V1 responses and MT responses 

for neurons tuned to similar direction, as well as mean response profile for MT neurons. We find 

the results of the simulation to be consistent with empirical observations; we find an enhancement 

of mean response for MT neurons tuned to attended direction while a suppression in mean 

response for neurons tuned away from attended direction but more importantly we find that cross-

area correlations between V1 and MT neurons with tuning similar to attended direction (low-

offset tuning) had a decrease in cross-correlation whereas neurons with high-offset tuning had an 

increase in cross-correlation. 

 Analytical Examination: According to cascade model of MT motion computation (Rust et 

al. 2006; Simoncelli and Heeger 1998), the response of MT cell is given by          , where 

Mp is the response of MT cell tuned to direction p, Vi is the response of V1 cell tuned to direction 

i and wi is the weighted scaling for Vi. Therefore, correlation between any two MT and V1 

neurons tuned to the same direction p is given by 

            
          

   
    

   (6) 
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where,            is the covariance between the cells,    
 is the variance of MT cell, and    

 is 

the variance of the V1 cell. The terms can be expanded to 

 

            
              

       
    

  
              

    
    

 
                          

 
 (7) 

 According to eq.6 above, a change in correlation can be affected by 3 variables; the 

weights wi , the covariance matrix for V1 cells           , or the variance of V1 cells     
 . In the 

model simulation, we assumed that the linear weights wi do not get affected by short-term 

changes in attentional state, since they might be a functional of synaptic strength and probably are 

affected by longer term cognitive factors such as perceptual learning. Since approximately an 

equal number of neurons undergo an increase in mean response as well as a decrease, the term 

   
    

 
 might remain largely unchanged, assuming Poisson firing statistics, but also since it is 

smaller in magnitude compared to other components. Cohen and Maunsell (2011) found that a 

change in correlation for neural populations was inversely related to a change in mean firing with 

attention. Given Poisson firing statistics, a changed in variance is also expected with a change in 

mean firing rate, therefore the relative magnitude that a change in covariance contributes to 

correlation is unclear. This observation is also applicable for cross-area correlations such in we 

found between V1 and MT. If we assume that the covariance matrix for V1 cells            

does not get affected by the modulation of tuning functions, then only factor that affects cross-

area correlation given eq.6 above is the variance of V1 cells. Specifically, it can be inferred that 

            
 

   
  i.e. the change in correlation between similarly tuned V1 and MT cells is 

inversely proportional to change in the variance of the V1 cell. Since variance of neural response 

is largely a function of its mean firing rate, the implication of this analysis is that the change in 
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cross-area correlation we observe could simply be a consequence of the gain modulation of V1 

cells. The observation that within area correlation modulation is a function of gain modulation 

might also be explained away as a consequence of a large change in variance with changing mean 

response levels, with marginal change in covariance between neurons. However, we cannot 

answer this broader question using our dataset. 

3.3 RESULTS 

 We concurrently recorded BOLD activation levels from areas V1 and MT in 12 human 

subjects. In each 5 second trial, subjects viewed a circular annulus comprised of small dots that 

moved coherently at constant speed in one of 9 possible directions (see Figure 1). Subjects were 

asked to deploy attention to the entire annulus while maintaining fixation at the center of the 

annulus. Stimulus directions were linearly spaced between 0 and 360 degrees (0°, 40°, … , 320°), 

and there were an equal number of trials for each direction. At the start of a block of trials (which 

we call a ‘scan’), the subjects were instructed to perform one of two distinct tasks in each trial; 

one task was to respond to small changes in the direction of motion of the dots (attend-motion 

condition), and the second task was to respond to small changes in mean contrast of the display 

(attend contrast or ignore-motion condition). After preprocessing fMRI data, we selected voxels 

within each ROI that showed significant direction-selectivity in independent localizer trials 

(p<0.01, corrected for multiple comparisons using False Discovery Rate algorithm). The selected 

voxels were used for further analysis, which involved comparison of BOLD activation between 

attend-motion trials and ignore-motion trials; since the displays were physically identical, any 

differences in the BOLD signal were attributed to feature-based attention. 

 First, we computed the average hemodynamic response function (HRF) for all selected 

voxels (see Methods section entitled ‘Data Analysis’ for details). Comparing HRFs between 

attend-motion and ignore-motion trials, we find a relative increase in hemodynamic response 
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after stimulus presentation, in both V1 and MT, when directing attention to motion direction (Fig. 

2). The modulation was more pronounced in MT as compared to V1, consistent with a previous 

fMRI study (O'Craven et al. 1997). Furthemore, attentional modulation in V1 precedes similar 

modulation in MT by 2-3s; whereas V1’s HRF had an increase during 1-2s post-stimulus ‘initial 

dip’ (p<0.05 at 2s), MT’s HRF had an increase during 5-10s post-stimulus ‘late rise’ (p<0.05 at 

all time-points). This precedence effect suggests a casual nature of attention-related modulations 

in our data, consistent with the notion that MT cells pool inputs from V1 to derive their motion 

selectivity (Movshon and Newsome 1996; Rust et al. 2006; Simoncelli and Heeger 1998).  

 We next assessed attention-induced modulation in different direction-selective 

populations of areas V1 and MT. To do so, we decomposed voxel responses into direction-

selective channel responses using a forward encoding model (Brouwer and Heeger 2011; 2009; 

Serences and Saproo 2011), which involved modeling the response of each voxel as a linear 

combination of weighted responses from nine direction-selective channels, each having a 

canonical tuning function with a different direction preference (0, 40, 80, …, 320°). We 

experimented with two different tuning functions for the basis set; Sine function (Figure 

3)(Freeman et al. 1991) as well as Kronecker delta function (Figure 4A), see method section 

entitled ‘Encoding model’ for details. Using this forward encoding model, we converted the 

BOLD activation levels across the set of approximately 200-400 voxels that were measured on 

each trial to a set of 9 channel responses that represent the relative activation level in each 

hypothetical direction-selective channel. Attending to the direction of motion led to increase in 

the mean response for channels tuned to the stimulus direction (0, 40° offset)  while those 

channels that were tuned away from the stimulus direction  (120, 160° offset) were attenuated 

(Fig. 3 and Fig. 4A). This observation is in agreement with the previous reports of feature-based 

attentional modulations of firing rates of single direction-selective neurons in MT (Martinez-
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Trujillo and Treue 2004). However, we found the magnitude of suppression to be more 

pronounced in V1 as compared to MT. This difference in the observed suppression between V1 

and MT may further explain the rather small modulation of V1 HRF compared to MT HRF (in 

Figure 2), since approximately similar amounts of enhancement and suppression in distinct neural 

populations in V1 would not change an average measure of BOLD activity such as HRF.  

 We next investigated the impact of attention on cross-area correlations; we computed 

correlation between response vectors of like-tuned channels in V1 and MT, e.g. between the 

channel tuned to 0° in V1 and the channel tuned to 0° in MT. Figure 4B shows these cross-area 

correlations as a function of the distance between the direction preference of each channel and the 

direction of the stimulus that evoked the response on a given trial. We collapsed across negative 

and positive offset to improve power because the mean response profile (in Fig. 4A) was 

symmetrical around attended direction (i.e. around offset 0°). The results suggest that when 

motion-direction is attended, cross-area correlations decrease for channels tuned to the direction 

of the stimulus while cross-area correlations increase for channels tuned away from the direction 

of the stimulus. A comparison of the data in figures 4A and 4B reveals that attention modulation 

of cross-area correlation is inversely proportional to the modulation of mean response for the 

corresponding channels.  

To understand this pattern of cross-area correlations, we simulated a well-known model 

of V1-to-MT information transfer during motion processing, and constrained the model based on 

recent empirical observations about attention modulation of within-area correlations. We 

simulated MT motion computation using the linear-nonlinear cascade model (Rust et al. 2006; 

Simoncelli and Heeger 1998); here, the response of a MT direction-selective cell is modeled as a 

probabilistic non-linear function of the sum of weighted responses from a population of V1 

direction-selective cells (see Fig 5A and methods). However, the model was constrained in 3 
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ways: First, we assumed limited-range correlations between direction-selective cells in V1, i.e. 

the strength of correlations between any two direction selective cells was a function of the 

difference in their direction selectivity (see Fig 5B for an example and see Methods for a 

mathematical description)(Abbott and Dayan 1999; Jazayeri and Movshon 2006; Snippe and 

Koenderink 1992). Second, we made variance in trial-by-trial responses of V1 cells scale 

proportionally to their mean response according to the Poisson noise model (White et al. 2000).  

Third, noise correlations between similarly tuned V1 cells were scaled negatively with the mean 

response of those cells. This last constraint was kept in accordance with the recent observation by 

Cohen and Maunsell (2011) who showed that attention causes neural populations tuned to the 

attended feature to become less correlated while populations tuned away from the attended 

feature become more correlated. Moreover, they show that the magnitude of mean response of a 

like-tuned neural population is inversely correlated to the magnitude of pair-wise correlations 

within that population, both with and without spatial or feature attention.  

To simulate effects of attention on cross-area correlation between V1 and MT, we 

modulated the mean responses of V1 direction-selective cells according to the modulation pattern 

observed empirically with attention (Figure 5C, contrast with figure 3) and derived the response 

of MT direction selective cells from the model. We simulated a large number (~10000) of trails 

with and without attention to direction of motion.  The simulation produced a pattern of attention-

induced modulation of MT’s mean response profile that is similar to the pattern observed 

empirically (Figure 5D). Furthermore, the pattern of cross-area correlations output by the 

simulation (Figure 5E) is also qualitatively similar to the empirically-observed pattern. Attention 

produced a decrease in the cross-area correlation between direction-selective populations tuned to 

the attended feature in V1 and MT, while cross-area correlations increased for populations tuned 

away from the attended feature.  
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 Finally, we investigated whether the observed attention-induced modulations of 

amplitude and cross-area correlation increased the overall efficiency of information transfer 

between V1 and MT. According to Shannon’s channel coding theorem (Cover and Thomas 1991; 

Latham and Roudi 2009; MacKay 2004), if we assume that the conduit of information between 

V1 and MT forms a noisy channel of unspecified noise characteristics, then the efficacy of neural 

communication would be proportional to mutual information between direction-selective channel 

responses in V1 and MT (Fig. 6A,B). Accordingly, we measured mutual information between all 

direction-selective channels of V1 and MT for attend-motion and ignore-motion conditions. 

Furthermore,  it has been suggested that neural populations employing population codes can 

increase efficiency by encoding information synergistically (Brenner et al. 2000).  Therefore, we 

measured mutual information using a multivariate method of computation (Chai et al. 2009) since 

it would account for any latent synergy between channels within the same area, thereby providing 

a more accurate picture of the overall coupling between V1 and MT. We observe that when 

attention is directed towards the direction of motion, mutual information between V1 direction-

selective channels and MT direction-selective channels undergoes a significant increase (p<0.01, 

Figure 6C). This result suggests a significant role of attentional modulations towards promoting 

efficient communication of task-relevant information between distinct cortical regions.  

3.4 DISCUSSION 

 Survival critically depends on the ability to effectively react to a dynamic environment. 

This requires gathering information about the environment continuously via various sensory 

organs, and then combining this multi-modal information to produce an internal perceptual model 

of the environment. In this cortical hierarchy, usually the neural activity in one visual area 

depends upon input from another area, such as motion computation in MT being facilitated by 

information received from V1. Here, we provide data suggesting that attention not only 
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modulates the quality of neural representations within individual visual areas but also facilitates 

accurate communication of information between distant neural populations. Improving 

communication efficacy between such cortical nodes should improve the accuracy of internal 

perceptual model and therefore the speed and accuracy of perceptual decisions.  

 The disparity between the magnitude of hemodynamic response function (HRF) 

modulation in MT and V1 might have several plausible explanations. This disparity might be a 

consequence of summing small attention modulations in V1 to produce a large effect in MT since 

each MT direction-selective neuron is thought to pool the activity of a large group of V1 neurons 

(Rust et al. 2006; Simoncelli and Heeger 1998). On the other hand, it could simply be an attribute 

of MT’s robust direction-selectivity as compared to V1; since BOLD response is proportional to 

the pooled activity of many neurons in each voxel; BOLD response in V1 – with its more 

heterogeneous population of feature-selective neurons as compared to MT – might under-

represent the modulations due to direction-selective neurons. Alternatively, since HRF is a 

measure of average response from all neural subpopulations in an ROI, the observed disparity of 

HRF modulation between V1 and MT could be a consequence different pattern of modulations in 

neural subpopulations in the two areas. For instance, there is almost an equal number of neural 

populations that undergo enhancement and suppression in V1 (Figure 3), which may lead to little 

effect on HRF from V1. However, the magnitude of suppression in MT is almost negligible as 

compared to the magnitude of enhancement, leading to the large modulation of HRF we observe 

there.  

 Shannon’s channel coding theorem states that for any given noisy channel, there is an 

upper bound on the achievable efficacy of communication using any coding scheme; this bound is 

called channel capacity. For a given noisy communication system, an optimal code should 

achieve a communication rate that equals channel capacity. We modeled V1 and MT as an 
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isolated communication system, with the channel between them having unknown but fixed noise 

properties. In this system, the measured pattern of direction-specific channel responses in V1 and 

MT form the sent and received messages respectively. Therefore, a measurement of mutual 

information between them should provide a measure of the efficacy of the communication model 

(Fig 6). The assumed communication model between V1 and MT is grounded in having both a 

well established motion-computation model that relies on transfer of information between V1 and 

MT (Rust et al. 2006; Simoncelli and Heeger 1998) as well as the fact that most direct anatomical 

projections into MT come from V1 (Born and Bradley 2005). Furthermore, conscious perception 

of motion has also been found to be critically facilitated by feedback information from MT to V1 

(Pascual-Leone and Walsh 2001; Silvanto et al. 2005). In spite of evidence of predominantly 

direct connection between V1 and MT, even if we assume that some of the motion-relevant 

information is communicated indirectly from V1 to MT, our abstract communication model 

would subsume that special case, and our conclusions would still hold. The case where our 

conclusions would lose some of their relevance would be a scenario wherein a third anatomical 

structure is causing most of the correlated direction-specific activity in both V1 and MT. We view 

such a possibility unlikely because although there are direct thalamic connections to both V1 and 

MT, they are dwarfed by the numerosity of direct connections between V1 and MT. Moreover, 

the agreement of our model simulation – which does not assume any thalamic interference – with 

empirical observations suggests that MT cells get most of their functional selectivity by pooling 

information directly from V1. 

 Although, attention modulation of mean response profile (or tuning functions) in V1 and 

MT as well as the modulation of cross-area correlations might be equally contributing factors 

towards the increase in mutual information, we believe – based on our simulations – that the 

increase in cross-area mutual information might be largely driven by the modulation of mean 

response in V1. The simulation shows that the nature of MT computation – as modeled by 
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cascade linear-non-linear pooling of V1 responses – can give rise to both the observed attention 

modulation of MT mean response as well as the modulation of cross-area correlations. Therefore, 

it is likely that MT cells largely inherit attention modulations from V1, which is in agreement 

with the conclusions of another study that found that MT cells inherited modulations in V1 cells 

due to sensory adaptation (Kohn and Movshon 2003). A quantitative analysis of the cascade 

model (see Methods) also points towards similar conclusion, but under 2 assumptions; that the 

amount of suppression and enhancement across different V1 populations is roughly equal, and 

that covariance matrix does not get impacted by attention. The first assumption (equal amount of 

suppression and enhancement) is supported by our data (Fig 3,4), however the second assumption 

is more nuanced. Under a Poisson noise model, an increase or decrease in mean response should 

lead to an increase or decrease in the variance of a sensory neuron respectively. Therefore, an 

attention-induced modulation of mean response would have a direct impact on the observed 

attention-induced modulations of local correlations – if there is no change in covariance between 

cells – in a manner similar to that observed by Cohen and Maunsell (2011). If local correlations 

are indeed byproduct of gain modulation, then our analysis suggest that the modulation of cross-

area correlation would also be a direct outcome of gain modulation in V1. 

 It has been suggested that neurons can communicate or exchange information by 

synchronizing their native oscillations with each other, typically in gamma band (Engel et al. 

2001; Fries 2005). There is emerging consensus that attention enhances synchrony between 

distinct neural populations in different cortical regions (Womelsdorf and Fries 2007), such as 

between FEF and V4 as found recently (Gregoriou et al. 2012). If attention led to an increase in 

synchrony between direction-selective neurons in V1 and MT in our experimental task, it would 

also lead to similar empirical observations as we found. For instance, due to increased synchrony, 

distinct V1 and MT direction-selective neurons might functionally behave as a single pool of 

neurons. This would not only cause an increase in mutual information between V1 and MT, but 
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would also produce the same pattern of cross-area noise correlations as within-area noise 

correlations. However, since BOLD signal is in an indirect measure of neural activity at best, it is 

not clear whether a direct comparison between our results and those derived from single-unit 

recordings is useful or even appropriate. Nevertheless, given the slower dynamics of BOLD 

signal, any synchrony underlying our results would probably be due to synchronization in slower 

bands such as alpha (8-14Hz) and beta (14-30Hz), which are also known to be modulated by 

attention (Courtemanche et al. 2003; Gross et al. 2004; Palva et al. 2005; Palva and Palva 2007; 

Sauseng et al. 2005; Suffczynski et al. 2001; Tallon-Baudry 2004; Thut et al. 2006). 

 Data processing inequality (Cover and Thomas 1991) states that any information 

processing should mostly reduce overall information contained in a signal (or data). In the context 

of neural systems, this inequality suggests that successive stages of sensory filtering should 

diminish the overall information in sensory signals. For instance, although V1 contains both 

orientation information and motion information, MT mostly contains motion information. 

However, this filtering is necessary for extracting relevant information required for decision-

making. Ultimately, the aim of all successive stages of filtering of sensory information is the 

generation of a behavioral output. Therefore, accurate behavior would require preserving more 

information about behaviorally relevant stimuli at each data processing stage along visual 

hierarchy. Our results suggest that attention achieves this in part by changing neural 

representations for certain features and objects such that they might become more robust to 

channel noise during inter-cortical communication, and lead to more accurate downstream 

representations. This is a new direction towards explaining the functional role of attention-

induced gain modulation, which so far has been primarily considered to enhance the signal to 

noise ratio of neural representation of attended features, while diminishing the same for 

unattended features. In the larger perspective, the recent impetus towards understanding 

consciousness as a result of simultaneous broad-based dialogue between multiple brain areas 
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(Boly et al. 2011; van Gaal and Lamme 2011) underscores the importance of future investigations 

into how within-area modulations due to cognitive factor such as attention and adaptation impact 

cross-area communication throughout visual hierarchy towards the ultimate aim of uncovering 

the nature of perception. 

Chapter 3, in part, is currently being prepared for submission for publication of the 

material. The dissertation author was the primary investigator and author of this material, while 

Serences J. was co-author. 
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Figure 3.1. Shows a static snapshot of stimulus during a trial. On each trial, all white dots (with 

mean contrast c but a small variance in individual contrast) moved coherently at a constant speed 

in direction  (0°, 40°, 80°, … , 320°). On ‘attend motion’ trials, subjects had to detect a brief 

and transient change in direction, given by .   was titrated to yield an average task accuracy 

of 75%. On ‘attend contrast’ trials, subjects had to detect a brief and transient change in mean 

contrast (c) of the display. c was chosen to yield an average accuracy of 75%. Note that in 

each trial, both targets were present i.e. the display changed direction as well as changed mean 

contrast at random and mutually independent times. However, subjects were instructed to respond 

to one target but ignore the other depending on the instructions provided at the beginning of a 

block of trials. 
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Figure 3.2 Shows hemodynamic response function (HRF) computed from ‘attend motion’ (red 

curve) and ‘attend contrast’ (blue curve) trials in V1 and MT. Gray portion in each panel shows 

time-points post stimulus that had a significant increase with attention; 2s for V1 and 6-10s for 

MT (p<0.05). The attention modulation of HRF in MT is preceded by similar modulation in V1, 

suggesting a largely sequential flow of information from V1 to MT. Shaded region around the 

curves depicts SEM. 
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Figure 3.3 Normalized BOLD response for direction-selective neural populations in V1 and MT 

tuned to a direction offset (indexed by x-axis) with respect to stimulus direction. Blue curve 

depicts response profile when attention was directed away from stimulus direction (to contrast), 

and red curve depicts response profile when attention was directed towards stimulus direction. 

Response profiles here were generated using forward model (see Methods) with Sine^4 basis 

functions. Bottom Panels depict the difference between ‘attend motion’ and ‘ignore motion’ 

condition, highlighting the effect of attention in neural response profiles. 
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Figure 3.4 A) Similar to figure 3 but with Kroneckar delta basis function used in forward model. 

Normalized BOLD response for direction-selective neural populations in V1 and MT tuned to a 

direction offset (indexed by x-axis) with respect to stimulus direction. B) Panel shows correlation 

between similarly tuned direction-selective populations (channels) from V1 and MT, as shown in 

panel A. X-axis indexes the distance of the channel from stimulus direction; channels with same 

negative and positive offset were averaged to increase statistical power.  
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Figure 3.5 A) Cascade model of MT motion computation (Rust et al. 2006; Simoncelli and 

Heeger 1998): Direction-selective cells undergo divisive normalization consisting of tuned and 

untuned components. Afterwards, the response of each cell is weighted with a linear weighting 

scheme and thereafter all weighted responses are summed. Finally, the response of MT direction-

selective cell is determined by passing the summed responses through a non-linear function. B) 

The example of covariance matrix of V1 cells in the simulations. The covariance depended on 

two factors; first, the variance of cells was proportional to their mean response, and second the 

correlation between cells was a function of the difference between their tuning preference (i.e. 

limited range correlation). Panel shows covariance when attended stimulus is moving in 180 

degrees, and covariance matrix would depend on stimulus direction. C-E) The results of 

simulation run on cascade model of MT motion computation to ascertain the effect of attention on 

cross-area correlations. C) Mean population response profile for V1 direction selective cells, both 

with and without attention, manually set by the experimenter according to observed pattern of 

modulation in BOLD data. D) Mean population response profile for V1 direction selective cells, 

both with and without attention, as output by simulation of cascade model. This is similar to the 

pattern observed in the experimental data. E) Shows cross-area correlation profile between V1 

and MT direction selective cells as output by the simulation; cross-area correlation decreases for 

populations that have an increase in mean response with attention, whereas the opposite effect is 

observed for populations that have a decrease in mean response. This is qualitatively similar to 

the pattern observed in our experimental BOLD data. 
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Figure 3.6 A) Shows a generic communication model, and the probability of error based on 

Shannon’s channel coding theorem. B) Shows our communication model for V1 and MT. The 

efficacy of communication here would be estimated by measuring mutual information between 

direction-selective channels between the two areas when responding to the same stimulus. C) 

Shows the mutual information between direction-selective channels of V1 and MT for ‘Ignore 

Motion’ trials, ‘Attend motion’ trials, and the difference between the two that estimates the net 

increase in communication efficacy as a result of feature attention. There is a significance 

increase in communication efficacy with attention to direction of motion (p<0.01). 
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FUTURE SCOPE 

 The theoretical framework, empirical data and model simulations have thrown up a host 

of interesting questions that require future theoretical and empirical investigations to answer. 

Firstly, trying to fully uncover the nature and mechanism underlying inter-neuronal correlations 

and understanding the effect of attention and adaptation on those correlations is currently an open 

challenge. The preliminary work with MT motion computation model in Chapter 3 hints at the 

possibility that attention modulation of correlations might simply be a byproduct of gain 

modulation and not an independent functional mechanism in itself. However, more biophysically 

accurate simulations and/or novel experiments at single-unit level would be needed to confirm or 

deny this hypothesis.  

Secondly, the neural modulations for attention and adaptation have been researched 

extensively but in isolation. Understanding how attention and adaptation can jointly mediate 

sensory information processing is an avenue of investigation that is both important and 

interesting. Although, I attempted to reconcile the two cognitive phenomena within the 

framework of dynamic neural coding, a more thorough and rigorous analysis is required, perhaps 

supplemented with experimental investigations. For instance, although attention and adaptation 

modulate neural gain in diametrically opposite ways, the dissociation can be simplistically 

understood as a push-pull mechanism for maintaining a metabolically efficient neural code. 

However, the modulation of covariance with attention and adaptation is nuanced since the 

relationship of gain modulation with modulation of covariance is not consistent between attention 

and adaptation. Understanding this complex interaction might prove to be important in future.  

Thirdly, although we found an increase in information coupling between V1 and MT, given 

the indirect nature of BOLD signal it is not clear how neural populations get synchronized across 

distal regions of cortical networks. It has been suggested that neurons communicate through 
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synchronization of their oscillatory activity. Furthermore, recent empirical evidence has 

suggested that attention may lead to enhanced synchrony in multiple frequency bands. Although, 

it is likely that an increase in oscillatory synchronization led to the observed increase in coupling 

of BOLD signals between V1 and MT, however, we cannot ascertain whether the increase in 

synchrony occurred in higher frequency bands (such as gamma frequency) or lower frequency 

bands (such as alpha or beta) or both. To answer these questions might require similar 

experiments but using EEG or MEG as measurement modality. 

 Finally, aforementioned investigations have shown exciting possibilities for using more 

computationally sophisticated methods to analyze BOLD data and thereby facilitate 

investigations that previously lay outside the ambit of fMRI. One promising direction is to exploit 

the inherent multiplicity of neural composition across voxels to better assess the modulations at 

neural level by different cognitive factor such as attention and adaptation. In this regard, the two 

successful methods that were used to extract more accurate estimates of neural modulations than 

available in raw voxels – forward model and mutual information – could be combined in novel 

ways to create even more powerful investigatory tools for fMRI analyses. 
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