
Lawrence Berkeley National Laboratory
LBL Publications

Title

A model for the fragmentation kinetics of crumpled thin sheets

Permalink

https://escholarship.org/uc/item/66r7c58d

Journal

Nature Communications, 12(1)

ISSN

2041-1723

Authors

Andrejevic, Jovana
Lee, Lisa M
Rubinstein, Shmuel M
et al.

Publication Date

2021

DOI

10.1038/s41467-021-21625-2
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66r7c58d
https://escholarship.org/uc/item/66r7c58d#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

A model for the fragmentation kinetics of crumpled
thin sheets
Jovana Andrejevic1, Lisa M. Lee1, Shmuel M. Rubinstein1,2 & Chris H. Rycroft 1,3✉

As a confined thin sheet crumples, it spontaneously segments into flat facets delimited by a

network of ridges. Despite the apparent disorder of this process, statistical properties of

crumpled sheets exhibit striking reproducibility. Experiments have shown that the total crease

length accrues logarithmically when repeatedly compacting and unfolding a sheet of paper.

Here, we offer insight to this unexpected result by exploring the correspondence between

crumpling and fragmentation processes. We identify a physical model for the evolution of

facet area and ridge length distributions of crumpled sheets, and propose a mechanism for re-

fragmentation driven by geometric frustration. This mechanism establishes a feedback loop in

which the facet size distribution informs the subsequent rate of fragmentation under repe-

ated confinement, thereby producing a new size distribution. We then demonstrate the

capacity of this model to reproduce the characteristic logarithmic scaling of total crease

length, thereby supplying a missing physical basis for the observed phenomenon.
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Crumpling is a complex, non-equilibrium process arising in
diverse systems across a wide range of length scales, from
the microscopic crumpling of graphene membranes1, to

the macroscopic folding of Earth’s viscoelastic crust2. Crumpled
structures are highly porous, providing function for applications
such as high-performance batteries and supercapacitors by
increasing the electrochemical surface area3,4. Controlled crumpling
has also been used to tune electronic, optical, and surface properties
in graphene films1. Further, understanding the mechanics of
crumpling is essential as flexibility and shape conformation become
integral considerations in the design of thin, wearable devices5,6.
Despite its ubiquity, a complete understanding of crumpling
dynamics remains elusive due to the complexity of the disordered
process. Nevertheless, statistical properties of crumpled geometries
are highly reproducible in experiment7–13 and confirmed via
simulation14,15, which suggests that this complex process is strongly
dictated by universal aspects of thin sheets such as topology and
self-avoidance13.

Similarly adopting a coarse-grained perspective, Gottesman et al.16

revealed an unexpected order to ridge network evolution in
crumpled sheets. By performing a protocol of repeated compac-
tion and unfolding, as in the schematic of Fig. 1a, they demon-
strated that the intricate details of ridge networks in crumpled
sheets could be reduced to a single collective quantity, the total
crease length, which evolves robustly as a logarithm in the
number of crumpling repetitions across varying degrees of
compaction. Notably, the incremental damage added upon re-
crumpling the sheet was found to be independent of the sheets’
crumpling history -the sequence of prior compactions performed
to produce the current crease network. Rather, the added crease
length is determined only by the current total crease length and
the new compaction depth. While processes that evolve loga-
rithmically in time are readily observed in a variety of disordered
physical systems, including stress or strain relaxation of a com-
pacted sheet17–19, conductance relaxation of disordered electronic
systems20, and creep dynamics of granular suspensions21, the
emergence of a logarithmic model in the specific context of
damage evolution in crumpled sheets is clearly distinct, and has
had limited physical justification thus far.

In this work, we take a novel approach to characterize crum-
pling and offer explanation for the logarithmic model by drawing
a correspondence between crumpling and fragmentation pro-
cesses. Fragmentation models have a rich history of theoretical
development22–24 as well as industrial applications22,25 and use in
modeling collision and fracture phenomena26. Here we con-
centrate on a theoretical, physically based rate equation for
modeling time-dependent fragmentation detailed by Cheng and
Redner27, which provides a general framework for processes that
may be treated as successive, homogeneous breakups instigated
by non-local stresses. The model has been flexibly applied to
describe polymer degradation28 and volcanic fragments expelled
in an eruption29, for example, though to the best of our knowl-
edge this is the first application of such concepts to describe
crumpling.

Our work is organized as follows: we derive a scaling solution
to the rate equation presented in Cheng and Redner27 which
decomposes into a time-invariant distribution of scaled facet area
and a time-dependent evolution of mean facet size. We demon-
strate that the derived area distribution effectively reproduces key
statistical features of experimental crumpled patterns. Fragment
distributions are a natural point of comparison between theory
and experiment; however, in this work we go a step further to
draw additional correspondence in the temporal evolution of the
patterns. The temporal parameter that chronicles the evolution of
mean facet size serves as an intrinsic clock measuring the
maturity of the fragmentation process. We connect this to

experimental parameters driving fragmentation forward, namely
the number of crumpling iterations and compaction strength
which characterize the experiments of Gottesman et al.16. To do
so, we construct a simple geometric model that likens crumpling
to a random walk and is informed by the statistical properties of
the derived area distribution. We derive an analytical relation for
how geometric frustration occurring in a confined random walk
instigates new damage and advances the temporal measure of
fragmentation maturity. We demonstrate how this approach
allows one to recover the logarithmic evolution of damage in
ridge networks observed in Gottesman et al.16 and explain the
history independence of damage formation, thereby furnishing a
missing physical basis for this unexpected result.

The key idea behind our model is the extension of fragmen-
tation theory to incorporate a feedback loop: as facets become
smaller, they make the sheet more compliant and therefore lower
the rate of subsequent fragmentation. This idea may extend to
many physical systems where the accumulation of damage inhi-
bits further damage from occurring. Our work therefore shows
how fragmentation theory could be applied more generally, and
suggests that the universal damage evolution seen in crumpling
may have analogs in other physical systems.

Fig. 1 Data processing. a An L0 × L0 Mylar sheet is uniaxially compressed
to a compaction ratio ~Δ ¼ L=L0, unfolded, and its height profile scanned
using a laser profilometer, for n iterations. b The mean curvature obtained
from the height profiles of two distinct sheets at different ~Δ. Red and blue
colors denote folds in opposite directions. c The facet segmentation of b,
colored randomly to visually discern facets.
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Results
The collection and processing of experimental crumpling data
used to verify analytical results presented in this work is fully
detailed in the Methods section. Crease patterns obtained from
uniaxially compressed Mylar sheets as shown in Fig. 1b are
carefully segmented into individual facets as in Fig. 1c. The
samples collected vary in compaction ratio ~Δ, the ratio of final to
initial height, and in the number of successive crumples of the
same sheet, n. A total of 24 segmented crease patterns is analyzed
spanning 7 different compaction ratios and including n= 1, 2, 3,
and 24 crumpling iterations.

Throughout this work, we will refer to fragmentation in the
context of crumpling as the successive partitioning of a thin sheet
into smaller, flat facets separated by ridges or creases. To facilitate
the construction of a model for this process, we begin with the
general theory of fragmentation kinetics outlined in Cheng and
Redner27. Let x represent facet area and c(x, t) the concentration
of facets of area x at time t; then the linear integro-differential
equation describing the evolution of c(x, t) is given by

∂cðx; tÞ
∂t

¼ �rðxÞcðx; tÞ þ
Z 1

x
cðy; tÞrðyÞf ðxjyÞdy; ð1Þ

where the effective time t measures the progress or maturity of
the fragmentation process, r(x) is the overall rate at which a facet
of area x fragments, and f(x∣y) is the conditional probability that x
is produced from the breakup of y, with y ≥ x. Inferred from this
formulation are the assumptions that fragmentation occurs via a
homogeneously applied external force, and independently of a
facet’s shape.

Breakup rates. In order to assess the correspondence between
crumpling and a fragmentation process as described by Eq. (1),
two relationships must be specified: the overall breakup rate r(x),
and conditional breakup probability f(x∣y), which characterize
fragmentation at the scale of an individual facet. Two principles
help shape our formulations of the two: firstly, a common choice
of r(x) consistent with physical breakup processes is the
homogeneous kernel r(x)= xλ27. Furthermore, the conditional
probability f(x∣y) must satisfy area conservation:Z y

0
xf ðxjyÞdx ¼ y: ð2Þ

We use the collection of facets within each sheet as representative
samples from which breakup rates may be determined.
Figure 2a–c shows a typical example over three crumpling repe-
titions and traces the progressive fragmentation of selected facets.
From such sequences, we estimate r(x) by determining the frac-
tion of facets which fragment between two successive crumples as
a function of their area x. The rates are computed separately for
each sheet to ensure the same change in t elapses for all facets
considered at a time. Without loss of generality, the values of x in
all results are scaled so that 10 cm × 10 cm, the size of one sheet,
corresponds to unit area. A breakup rate of the form r(x)= xλ

appears consistent with experimental breakup data, as shown in
Fig. 2d. Results for samples at other compaction ratios ~Δ are
provided in Supplementary Fig. 6. We note one limitation of this
analysis: sheets crumpled at a low compaction ratio may have too
few facets for a robust sample size from which to infer a strong
statistical trend; in the opposing extreme, sheets at high com-
paction likely undergo a cascade of multiple fragmentation events
in a single crumpling iteration, and thus obscure the statistics of
single breakup events. The power law relationship is motivated
both by its consistency predominantly at low compaction, as well
as the simplicity it affords later in our model.

To deduce f(x∣y), it is helpful to first examine the distribution
ρ(x/y) of the area fraction x/y that a child facet occupies relative to
its parent. That is, if x is the area of a facet at crumpling iteration
n, and y the area of its enclosing facet at iteration n−1, then
ρ(x/y)d(x/y) is the probability that a facet breaks to produce a
fragment that is between x/y and x/y+ d(x/y) of its initial area,
for a small differential element d(x/y). To account for minor
misalignment between successive scans, a child facet is identified
if at least half of its area lies within the contour of the candidate
parent facet. The area fractions display a power law distribution,
as shown in Fig. 2e, and suggest a fit to a probability density
function of the form

ρ
x
y

� �
¼ ðβþ 1Þ x

y

� �β

; ð3Þ

supported on x/y∈ [0, 1]. This formulation introduces the
assumption that fragmentation is a scale invariant process; while
this is consistent with the present data, we note that a physical
lower limit on facet area exists, and would expect deviation from

Fig. 2 Estimation of breakup rates. a Segmentation of a sample sheet crumpled once at compaction ~Δ ¼ 0:27, with four selected facets outlined and
emphasized in white. Shown in b are the new facets that subdivide those regions after crumpling a second time (n= 2). In c, the subdivision of the facets
highlighted in b is shown after n= 3. d For n= 1 (left), the proportion of facets r(x)Δt present in a as a function of their area x, which have fragmented into
at least two distinct facets in b over the elapsed Δt between n= 1 and n= 2. For n= 2 (right), the fraction of facets from b which have fragmented in
c. Error bars denote the standard deviation of the fragmentation probability if the fragmentation of each facet is regarded as a Bernoulli trial, with the
fraction of fragmented facets taken as the success probability within each histogram bin. The dashed line corresponds to

ffiffiffi
x

p
. e The probability density

function ρ(x/y) of facet areas x normalized by their parent facet’s area y from the previous crumpling iteration. The n= 1 (left) panel is the distribution of
area fractions for facets in b relative to their parent facets in a, and n= 2 the corresponding distribution for facets in c relative to b. The dashed line
corresponds to a fit of Eq. (3) with the fitted exponent β given.
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scale invariant behavior as facet areas become comparable to the
sheet thickness. Nevertheless, we observe clear indication of a
power law relationship within our data, as shown in Fig. 2e.
Extended results are provided in Supplementary Fig. 7; as
previously noted, samples at high compaction undergo a
succession of fragmentation events between crumples, and thus
their distributions begin to depart from the power law
dependence toward the more mature facet distributions of
repeatedly crumpled sheets we present later, in our discussion
of ridge length statistics. Taking f(x∣y) proportional to ρ(x/y) and
obtaining the appropriate normalization which satisfies Eq. (2),
we arrive at our final forms for the breakup rates:

rðxÞ ¼ xλ; ð4aÞ

f ðxjyÞ ¼ 1
y

βþ 2
βþ 1

� �
ρ

x
y

� �
¼ 1

y
ðβþ 2Þ x

y

� �β

: ð4bÞ

It will prove useful to express the free parameter β as

β ¼ a
2
� 1: ð5Þ

With this definition, we demonstrate in a following subsection
that the new free parameter a corresponds to the shape parameter
for the distribution of crease length.

Scaling solution. With r(x) and f(x∣y) specified, we pursue an
analytical solution to the fragmentation rate equation, Eq. (1).
Specifically, we seek a scaling solution independent of initial
conditions, a property that allows us to solve analytically and
proves compatible with the chosen form of homogeneous breakup
kernels27. We thereby test a scaling ansatz c(x, t)= ϕ(ξ)/s(t)2

as proposed in Cheng and Redner27, where ξ= x/s(t), and the mean
area, s(t), carries all explicit dependence on t. The scaling function
ϕ(ξ) satisfies

R1
0 ϕðξÞdξ ¼ 1 and

R1
0 ξϕðξÞdξ ¼ 1 such thatR1

0 cðx; tÞdx ¼ 1=sðtÞ gives the average number of fragments, andR1
0 xcðx; tÞdx ¼ 1 is the total area, conserved by construction. We

note that ϕ(ξ) is a valid probability density function and represents
the distribution of the scaled facet area ξ. The rate equation may be
solved following the procedure in Cheng and Redner27 as detailed
in Supplementary Note 1; by this approach we arrive at a solution
c(x, t)= ϕ(ξ)/s(t)2, valid at large t, with

ϕðξÞ ¼ λ

Γð a
2λ Þ

Gða; λÞðGða; λÞξÞa2�1e�ðGða;λÞξÞλ ; ð6aÞ

sðtÞ ¼ Gða; λÞt�1=λ; ð6bÞ
where Gða; λÞ ¼ Γð aþ2

2λ Þ=Γð a
2λ Þ, and Γ(z) is the gamma function.

We motivate a fixed choice of the breakup rate parameter λ= 1/2
both by its consistency with breakup statistics at low compaction,
which more accurately reflect single breakup events as discussed
earlier, as well as the simplification it provides to obtain an analy-
tically tractable model. We thereby obtain the final forms

ϕðξÞ ¼ aðaþ 1Þ
2ΓðaÞ ðaðaþ 1ÞξÞa2�1e�

ffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ1Þξ

p
; ð7aÞ

sðtÞ ¼ aðaþ 1Þ
t2

: ð7bÞ

Ridge length statistics. To facilitate comparison with ϕ(ξ) in
Eq. (7a), the area of individual facets is scaled by the mean area

Fig. 3 Facet area distributions for a sample sheet. a The map of mean curvature for iterations n= 1, 2, 3, and 24 of a sample sheet crumpled with
compaction ratio ~Δ ¼ 0:27, and b the corresponding facet segmentation. c Experimental distributions of scaled facet area ξ= x/s for each sample
(scattered points) and best fit curve to Eq. (7a) (solid line). The parameter a for each sample is obtained via self-consistent calculation by Eqs. (7b) and
(8), and only the universal parameter τ≈ 24.041 is collectively fit for all samples.
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for that sheet and plotted as a histogram using logarithmically
spaced bins. Figure 3 shows the mean curvature, hand segmen-
tation, and scaled area distributions for a typical example from
our dataset at four different crumpling iterations n. By our pre-
liminary observations from Fig. 2e, we notice sample-to-sample
variation in the parameter β (correspondingly a), which suggests
a is a function of t; however, we expect weak dependence on t
such that lim t!1da=dt ¼ 0, to uphold the assumptions made in
solving Eq. (1). Indeed, an individual fit of a to each distribution
of facet areas reveals a dependence of the form

aðtÞ ¼
ffiffiffiffiffiffiffi
t=τ

p
ð8Þ

with a universal parameter τ, as shown in Fig. 4a. Thus, Fig. 3c
additionally shows a best fit curve to Eq. (7a) with τ ≈ 24.041 as a
universal fitting parameter across all samples, and individual a
and t for each sample computed by solving Eqs. (7b) and (8) self-
consistently. The complete set of segmented crease patterns and
fitted area distributions for all data samples is provided in Sup-
plementary Figs. 1 and 2.

The close correspondence between Eq. (7a) and experimental
data supports the hypothesis that successive partitioning of the
sheet’s surface into facets during crumpling evolves according to
the fragmentation process described by Eq. (1). We can study the
further implications of this statistical description on attributes
such as the distribution of crease length, which has been explored

in previous studies7–10,14,15,30. Let X be the random variable
representing the area of a single facet. Following from Eq. (7a), X
is distributed as

f XðxÞ ¼
1

2θ2ΓðaÞ
x

θ2

� �a
2�1

e�
ffiffi
x

p
=θ; ð9Þ

with θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=aðaþ 1Þp ¼ 1=t by consequence of Eq. (7b), and

mean area s. Let Y be a random variable representing the edge
length of a facet in the ridge network. If Y scales as

ffiffiffiffi
X

p
, the

consequent distribution of Y is a gamma distribution,

f YðyÞ ¼
1

θΓðaÞ
y
θ

� �a�1
e�y=θ; ð10Þ

with θ the scale and a the shape parameter, alluded to in our
discussion of breakup rates, and with mean edge length aθ. The
distributions of facet area and edge length provided by Eqs. (9)
and (10) allow us to formulate an expression for the typical total
crease length as a function of t, in tandem with the evolution of
mean area s(t). First, we briefly restate the key empirical result of
Gottesman et al.16 to which we will compare our model. The total
crease length ℓ was found to vary according to a logarithm of the
number of crumpling and unfolding repetitions n:

‘empir: � ‘ðn; ~ΔÞ ¼ c1ð1� ~ΔÞlog 1þ c2n
~Δ

� �
; ð11Þ

with ~Δ the compaction ratio, and c1 and c2 fitting parameters. A
striking property of this model is its implication that the rate at
which new damage accumulates, as measured by added crease
length per crumpling iteration δℓempir.≡ ∂ℓ/∂n, is independent of
the details of the sheet’s preparation:

δ‘empir: ¼
c1c2ð1� ~ΔÞ

~Δ
exp � ‘

c1ð1� ~ΔÞ

� �
: ð12Þ

We observe from Eq. (12) that the added crease length δℓempir. is
uniquely determined by a sheet’s instantaneous state ð‘; ~ΔÞ;
moreover, the model is independent of the details of the crease
network, such as the spatial homogeneity of damage across the
sheet. The fitting parameters c1 and c2 are universal to all values
of n and ~Δ. The facet segmentation of each crease pattern
provides a second measurable quantity, d, equal to the sum of all
interior perimeters of facets; i.e., the total length of all edges
shared between two facets. We expect d and ℓ to be proportional,
with differences arising due to incomplete scarring around facet
perimeters as regions of the sheet restore elastically, particularly
for mild compression. We find that ð1� ~ΔÞd accomplishes the
desired proportionality, and define ‘meas: � ð1� ~ΔÞdmeas: to be
the measured total crease length obtained from our segmented
data. Next, working with the moments of our derived facet area
and edge length distributions, we can estimate d analytically as
the average length of an edge, aθ, times the average number of
edges. The latter may be expressed as the average number of
facets, or the total sheet area divided by the typical facet area s,
times the number of edges per facet ne, halved to account for
shared edges, which yields

dmodel ¼
aθðtÞ
sðtÞ ´

ne
2
¼ net

2ðaþ 1Þ : ð13Þ

Thus, we obtain that

‘
ðtÞ
model � ‘ðt; ~ΔÞ ¼ ð1� ~ΔÞ net

2ðaþ 1Þ : ð14Þ

Here, the superscript (t) denotes the explicit dependence of ℓmodel

on t; in a following subsection, we develop a connection between t
and n that allows ℓmodel to be expressed in terms of n and ~Δ,

Fig. 4 Model parameters and preliminary comparison to empirical result.
a Individual fits of the shape parameter a from Eq. (7a) for each facet
distribution (scattered points) alongside the best fit to Eq. (8) (dashed
line), corresponding to τ≈ 24.041. b The measured total crease length
ℓmeas. of each segmented sheet plotted against the quantity ð1� ~ΔÞt=ðaþ 1Þ
(scattered points). By Eq. (14), we expect the slope of this plot to
correspond to ne/2, or half the average number of facets per facet. A best
fit line reveals ne/2≈ 2.1, or ne≈ 4.2 (dashed line). c With the results of
a and b, we can make a comparison of ‘ðtÞmodel � ‘ðt; ~ΔÞ as given by the
derived relation Eq. (14), with the experimental model ‘empir: � ‘ðn; ~ΔÞ of Eq.
(11). The parameters of Eq. (11) are set to c1= 52 (normalized by 100mm
sheet size) and c2= 0.1, comparable to the best fit values reported in
Gottesman et al.16: c1= 5200mm, c2= 0.063. A 1:1 reference line (dashed)
is provided as a guide to the eye, and shows good agreement between the
two models. Marker colors in all panels correspond to different values of ~Δ,
as indicated by the colorbar.
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mirroring Eq. (11). A fit of Eq. (14) to the measured length ℓmeas.

reveals a value of ne ≈ 4.2 as shown in Fig. 4b, which suggests an
average of 4–5 sides per facet. Finally, Fig. 4c demonstrates the

agreement between ‘
ðtÞ
model of Eq. (14), and ℓempir. of Eq. (11).

Numerical evidence for the insensitivity to initial preparation.
Now that the connection between the statistical model of facet
area and total crease length has been presented, we briefly note on
the insight that may be gained by additionally solving Eq. (1)
numerically. A numerical integration scheme is implemented
using second-order composite trapezoid rule for discretization in
x, and second-order implicit multi-step discretization in t. The
sample numerical result in Fig. 5 reveals a rapid convergence to
the steady state analytical solution given by Eqs. (7a) and (7b),
and thereby relative insensitivity to the initial state. To demon-
strate the significance of this behavior, we reiterate the observed
history independence of total crease length. As discussed in
Gottesman et al.16, sheets with different loading histories—one
hand-crumpled and another deliberately folded along straight
lines—yet nearly equal total crease lengths exhibited the same
subsequent accumulation of damage when subjected to the pro-
tocol of Fig. 1a. Such sheets had clearly distinct initial facet area
distributions: The facet areas of the deliberately folded sheet were
sharply peaked near two different values, while those of the hand-
crumpled sheet were broadly distributed. Thus, signatures of
initial preparation appear to be quickly eclipsed by the strong
attractor of the crumpled state, echoed in the rapid convergence
to steady state seen numerically.

Thus far, we have established that an estimate of total crease
length constructed from moments of the derived facet area and
ridge length distributions shows consistency with the logarithmic
scaling of Eq. (11). In the following section, we propose a simple
mechanism for how the geometric incompatibility of a folded
sheet and its confinement leads to further fragmentation, driving
t forward. This argument establishes the evolution of t in

accordance with n, and thus supplies the missing link to a
physically based model that corroborates experimental findings.

One-dimensional model. To offer an explanation for the
observed logarithmic scaling, we develop a simple one-
dimensional model that proposes how additional fragments
may form when a crumpled sheet is re-crumpled, relying on the
statistical descriptions of facet area and segment length for-
mulated in the previous sections. Our goal can be summarized by
the following two questions: (1) Given its current state and pre-
scribed confinement, with what probability does a sheet undergo
further fragmentation? (2) How does this probability relate to the
continuous variables in the fragmentation model of Eq. (1)? First,
we appeal to the axial symmetry of our confinement to simplify
our view of crumpling to a 1D strip of length L0, as shown in
Fig. 6. The strip is characterized by a sequence of folds in alter-
nating directions which divide the strip into random segments.
The lengths r of the segments, which are equal to the cross-
sections of the intercepted facets, are distributed according to the
derived gamma distribution of Eq. (10), weighted by the hor-
izontal facet width, which increases the likelihood of a facet’s

Fig. 5 Numerical validation of the analytical solution to Eq. (1). a Selected
snapshots of the numerically calculated ϕnum(ξ) with initial condition
c(x, 0)= δ(x− 1) and with a= 1, revealing a rapid convergence to the
steady state distribution. The dashed line corresponds to the analytical
form of Eq. (7a) valid at large t. b The corresponding evolution of mean area
s(t), with the analytical solution at large t given by Eq. (7b) shown by the
dashed line. c The mean area of the experimental samples as a function of t
computed from Eq. (7b) (scattered points). The dashed line corresponds to
Eq. (7b) with a(t) as given by Eq. (8). Marker colors correspond to different
values of ~Δ, as indicated by the colorbar.

Fig. 6 A folded cross-section considered as a one-dimensional random
walk. a A sample segmented sheet with dashed line indicating a vertical
cross section. b The distribution of segment lengths from all such cross-
sections of the sheet in a (filled points), with Eq. (15) plotted as a solid
curve. No additional fit is performed; the value of the shape parameter a
which appears in Eq. (15) is uniquely determined from Eq. (8) and the best
fit τ to the facet area distributions. c A schematic of the analog between the
folding of a one-dimensional strip in an axially confined sheet and a one-
dimensional random walk whose time axis is extended vertically for clarity.
The filled curve represents the distribution of the walker’s final
displacement, with darker shaded regions denoting the fraction of walks
which lie outside a given confinement. d Simplified illustration of one-
dimensional folding which facilitates a geometric estimate of the critical
confinement w, further detailed in Supplementary Note 4.
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occurrence within a randomly selected vertical strip. For facets of
~1:1 aspect ratio, the distribution of segment length is thereby

f RðrÞ ¼
1

θΓðaþ 1Þ
r
θ

� �a
e�r=θ; ð15Þ

with the average segment length given by (a+ 1)θ. A comparison
of Eq. (15) with experimental data is provided for a strongly
compacted sample in Fig. 6a, b, with extended results for all
samples presented in Supplementary Fig. 5.

As a preliminary step, we derive the final displacement of the
strip when folded at each break, in the absence of confinement.
This problem can be mapped to the displacement of a walker
performing a one-dimensional random walk with gamma-
distributed steps. To enforce the concept of folding, the walker’s
steps occur in alternating directions. The distribution fZ(z) of
position Z after 2k steps accurate for all k is derived in full in
Supplementary Note 2. However, the salient trends may be
likewise observed by applying the central limit theorem and
considering the position Z valid for large k, or small step size,
which gives

f Zðz; θÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2πL0θ

p exp � z2

2L0θ

� �
; ð16Þ

and describes a normal distribution of zero mean and variance L0θ.
If a confinement is now introduced at the locations ∣z∣=w, we

next ask with what likelihood the walker steps beyond this
confinement. One approach to approximate this probability is to
integrate Eq. (16) for all ∣z∣ >w, producing a two-sided survival
function of Eq. (16). Although this is not equivalent to our initial
question, as intermediate steps may also have landed past ∣z∣ >w,
it proves an acceptable estimate as the last step has the greatest
variance. A more accurate calculation would be to evaluate the

likelihood that a given walk escapes the confinement at any step;
however, looking at the last step is useful for its simplicity in
analytical form, and still captures the anticipated behavior. A
comparison to the more accurate formulation is made numerically
and provided in Supplementary Fig. 9. Once again, we pursue here
the simpler form of the survival function valid for large k, and
refer to Supplementary Note 2 for the exact derivation valid at all
k. The survival function of Eq. (16), SZ(w; θ)= P(∣Z∣ >w;w≥0), for
a threshold confinement w, is given by

SZðw; θÞ ¼ 1� erf
wffiffiffiffiffiffiffiffiffiffi
2L0θ

p
 !

; ð17Þ

where erf(z) is the error function. In order for walkers at ∣z∣ >w to
be restored within the limits of confinement, one or more of their
steps must fragment, thereby increasing the number of steps taken
and decreasing the overall average, which drives the evolution of
fragmentation. This articulates our key claim: considering our
original, cylindrically shaped sheets as a statistical ensemble of
one-dimensional random walks, we suggest that the progression of
fragmentation measured by a change dt, over a single crumpling
iteration dn, should be proportional to the fraction of walks in the
ensemble which leave the confinement imposed at ∣z∣=w: dt/dn
~ SZ(w; θ). Equivalently, this is the likelihood that a single random
walk leaves the critical confinement. We note that this resulting
fragmentation rate describes an average fragmentation likelihood
given only a confinement w and current temporal parameter t=
1/θ describing the maturity of the fragmentation process thus far;
it does not enforce direct correlations between successive
crumpling iterations, whereby new folds should occur preferen-
tially along previous ones. Instead, the decrease in fragmentation
rate with n is encoded through the decreasing mean facet area

Fig. 7 Validation of empirical and derived models for crease length evolution with measurement. a Predicted change in total crease length δℓempir. given
by Eq. (12) plotted against the measured change in crease length between two successive crumples, δ‘meas: � ‘ðnÞmeas: � ‘ðn�1Þ

meas: . Open markers correspond to
manually segmented data consistent with prior results presented in this work, while filled circles correspond to data which was processed using the
automated segmentation as detailed in the Supplementary Methods. A 1:1 reference line (dashed) is provided as a guide to the eye. b The total crease
length ℓempir. given by Eq. (11) plotted against the measured total crease length ℓmeas.. c The change in total crease length δℓmodel as predicted by Eq. (20),
and d the total crease length ‘ðnÞmodel obtained from Eqs. (14) and (21), against their corresponding measured values, in direct comparison to a and b. Marker
colors in all panels correspond to different values of ~Δ, as indicated by the colorbar. We see that both the empirical and derived relations for δℓ and ℓ serve
as strong models of measured data, and affirm the suitability of a logarithmic relationship to describe damage evolution in this system.
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with t. Moreover, while stronger correlation is expected between
walks representing nearby transects of the sheet, here we consider
the statistical behavior of the sheet as a whole, and account for the
increased fragmentation likelihood for facets with larger hor-
izontal extent through the weighting introduced in Eq. (15). At
present, Eq. (17) gives the likelihood that new creases will form;
however, it does not yet describe how much new damage is
created, for which two additional factors should be considered: (1)
When the sheet is strongly confined in closely packed layers, the
layers tend to collectively fragment, as alluded to by Sultan and
Boudaoud15 and Gottesman et al.16, thus contributing a factor p ~
1/L such that halving the final height doubles the number of
additional ridges. (2) In the opposite limit of low compaction,
facets are not in close proximity and need not behave
cooperatively; thus, new damage scales linearly with the amount
of compression L0−L, as argued in Gottesman et al.16. With these
additional considerations, we propose that the evolution of the
fragmentation process with crumpling iteration behaves as

δt � ∂t
∂n

¼ α
1� ~Δ
~Δ

SZðw; tÞ; ð18Þ

where α is a fitted constant of proportionality. We indicate the
explicit dependence on t here, as t and θ are inversely related. The
critical width w is determined by the geometry of the imposed
confinement, as illustrated in Fig. 6d; a complete derivation is
provided in Supplementary Note 4:

wð~ΔÞ � Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~Δ

2
p ; ð19Þ

where R is the radius of the container. By consequence of Eq. (14)
we can directly relate Eqs. (18) and (12) as

δ‘model ¼
d‘ðtÞmodel

dt
δt ¼ ð1� ~ΔÞne

2ðaþ 1Þ δt ð20Þ

and obtain a fit to the proportionality constant α. By performing
an asymptotic approximation in the limit of large t, detailed in
Supplementary Note 3, Eq. (18) may be analytically integrated to
provide a scaling relation tðn; ~ΔÞ which bears similarity to ‘ðn; ~ΔÞ
of Eq. (11):

tðn; ~ΔÞ ¼ ~c1ð1� ~Δ
2Þlog 1þ ~c2n

~Δð1þ ~ΔÞ

� �
; ð21Þ

where ~c1 ¼ 2L0=R
2, ~c2 ¼ αR2=L0

ffiffiffiffiffi
2π

p
, and L0 and R are the

sheet length (equivalently the confining container height) and
container radius, respectively. Taken together, Eqs. (14) and (21)

thereby provide a theoretically motivated expression ‘
ðnÞ
model �

‘ðtðn; ~ΔÞ; ~ΔÞ based on properties of fragmentation kinetics and a
simple mechanism for re-fragmentation formulated as a random
walk. Figure 7 compares the agreement of the empirical relations
δℓempir. and ℓempir., as well as the derived models δℓmodel and

‘
ðnÞ
model , with the measured quantities δ‘meas: � ‘ðnÞmeas: � ‘ðn�1Þ

meas: and
ℓmeas. for various n. Collectively, the results of Figs. 4 and 7
demonstrate clear consistency of the fragmentation model with
the anticipated logarithmic growth.

Discussion
By pursuing a correspondence between the crumpling of a thin
sheet and a general fragmentation process, we have derived a
physically based framework for the evolution of statistical prop-
erties of intricate crumpled patterns. Equipped with theoretical
models in close agreement with experimental data, we have
proposed a simple model of one-dimensional folding in which
further fragmentation ensues due to a geometric incompatibility
between the sequence of folds and the imposed confinement,

likened to a random walk exceeding a critical allowed displace-
ment. The predicted accrual of damage, quantified by added
crease length, shows strong consistency with the logarithmic
model of Gottesman et al.16, and thereby supplies a possible
physical basis for the puzzling origin of logarithmic scaling in
repeated crumpling experiments. Furthermore, our model
explains the history independence of the logarithmic scaling,
since the area distribution of the crumpled state is such a strong
attractor in the fragmentation process.

The consistency of crumpling with fragmentation theory hints
at the possibility of universal behavior uniting more diverse
fragmenting systems. For example, the activation of defects in the
fragmentation of ceramics can locally slow down subsequent
fracture, and may bear semblance to the slowing of damage
accumulation as a re-crumpled sheet exploits its existing folds31.
Thus, studies of crumpled systems might offer a new lens through
which to interpret other complex processes. An immediate
extension of this work would be a validation of the results on
sheets of varied thicknesses and material parameters, as well as
those prepared according to different compaction protocols. One
simplifying assumption of our analysis is that fragmentation of
facets is a scale invariant process over the range of areas con-
sidered; however, this assumption starts to break down particu-
larly for large crumpling iterations n. The work of Lechenault
et al.32 offers a compelling approach for identifying this limit by
considering the energetic competition between bending of facets
and rigid folding along existing creases, with energy cost of the
former proportional to the sheet’s bending rigidity, and the latter
proportional to crease stiffness. The energy balance of these
competing deformations provides a characteristic length scale
which varies in proportion to the sheet thickness. This
improvement to the current work would strongly benefit from
further studies over a range of material parameters. Length scales
of folds in crumpled systems have also been studied in the context
of thermally driven dynamics, and it may thus be useful to draw
possible connections to statistical mechanical models of crum-
pling33–35. Moreover, it may be of value to explore slight gen-
eralizations of proposed functional forms introduced in this
study, such as the breakup rates; this could allow variations across
other experimental results to be explained, such as those arising
between low and high compaction regimes12,15, thereby providing
a unifying framework for such observations.

Additionally, deeper understanding of crumpling dynamics
can assist data-driven approaches to predicting damage network
formation. Though machine learning methods are capable of
unveiling hidden structure in complex, disordered systems36,37,
prior work has demonstrated the importance of preserving
physical properties in making faithful predictions: for example,
preserving vertex angle constraints in synthetic fold patterns to
assist the task of ridge network reconstruction in crumpled
sheets38. In addition to encoding physical rules implicitly
through data, future machine learning approaches may explicitly
enforce constraints such as facet area and crease length statistics
in predicting ridge network evolution. Strategies which couple
detailed spatial data with coarse-grained theoretical insight could
thus enable more comprehensive predictions of crumpling
dynamics in future studies.

Methods
The data analyzed in this work was collected for the study of Gottesman et al.16;
here, we briefly summarize the experimental protocol for reference. In total, 10
cm × 10 cm Mylar sheets are rolled into a 3-cm diameter cylindrical container and
compressed uniaxially to a specified compaction ratio ~Δ ¼ L=L0, the ratio of final
to initial height, with L0= 10 cm (Fig. 1a). The resulting ridge network inscribed on
each sheet is extracted by carefully unfolding and scanning the sheet using a
custom laser profilometer, which produces a height map of the sheet. A two-
dimensional map of mean curvature is determined from the spatial gradients of the
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height profile; sharp peaks in curvature mark the signature of a ridge (Fig. 1b).
Successive re-crumpling and scanning of a single sheet is performed n times up to
n= 24. Individual facets, characterized as contiguous regions of near-zero curva-
ture, are delineated as shown in Fig. 1c. Due to noise and artifacts in data col-
lection, not all facets are completely enclosed by a contour of ridges; breaks along a
ridge, or smoothing out and softening of ridges, occur inevitably during re-
crumpling and unfolding. Automated methods of crease detection and facet
labeling were initially tested to perform the segmentation; however, these methods
proved sensitive to noise and thus were prone to over-fragmenting the sheets. Each
sample presented and analyzed in this work was digitally labeled by hand. Addi-
tional details of automated segmentation are provided in the Supplementary
Methods, and resulting segmentations and facet area distributions are shown in
Supplementary Figs. 3 and 4. With manual segmentation, care was taken to
identify not only the dominant lines of each pattern as seen in the examples, but
also the less pronounced softer scarring. The segmentation was performed for
sheets after iterations n= 1, 2, and 3 at seven different compaction ratios:
~Δ ¼ 0:63; 0:45; 0:36; 0:27; 0:18; 0:09, and 0.045. Each series of successive crumples
was compared across all iterations n for consistency, to ensure that labeled facets
from earlier iterations persist in later ones. Samples with ~Δ ¼ 0:63; 0:45, and 0.27
were also labeled after n= 24 crumples, for a total of 24 samples overall. We
acknowledge that samples at n= 24 are more prone to missing detail as older
scarring is obscured by newer ridges, but are nonetheless valuable to the study. The
results of manual segmentation and corresponding facet area distributions are
provided in Supplementary Figs. 1 and 2.

Data availability
No new experimental data was produced for this study; all data analyzed was previously
collected and reported in Gottesman et al.16. The subset of data from Gottesman et al.16

used in this article is provided in post-processed form with our analysis codes.

Code availability
The data processing and analysis codes are available on GitHub at https://github.com/
jandrejevic12/fragmentation_model39.
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