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Animalsin the natural world constantly encounter geometrically complex landscapes.
Successful navigation requires that they understand geometric features of these
landscapes, including boundaries, landmarks, corners and curved areas, all of which
collectively define the geometry of the environmen
of the geometric layout of natural environments are concave and convex features,

t'"12, Crucial to the reconstruction

such as corners and protrusions. However, the neural substrates that could underlie
the perception of concavity and convexity in the environment remain elusive. Here
we show that the dorsal subiculum contains neurons that encode corners across
environmental geometriesin an allocentric reference frame. Using longitudinal
calciumimagingin freely behaving mice, we find that corner cells tune their activity to
reflect the geometric properties of corners, including corner angles, wall height and
the degree of wall intersection. A separate population of subicular neurons encode
convex corners of both larger environments and discrete objects. Both corner

cells are non-overlapping with the population of subicular neurons that encode
environmental boundaries. Furthermore, corner cells that encode concave or convex
corners generalize their activity such that they respond, respectively, to concave or
convex curvatures within an environment. Together, our findings suggest that the
subiculum contains the geometric information needed to reconstruct the shape and
layout of naturalistic spatial environments.

Neurons that contribute to building a ‘cognitive map’ for an environ-
ment, including hippocampal place cells** and entorhinal grid cells”,
integrateinformation from geometric environmental features to shape
their spatial representations'®2*. To accomplish this integration, the
brainneedstorepresent the explicit properties of geometric features
in the environment, such as boundary distances and corner angles.
However, itis stillunclear which geometric properties are encodedin
the brain at the single-cell level, outside of egocentric (self-centred)
and allocentric (world-centred) boundary codingin the hippocampal
formation and associated regions®*°. Unlike traditional laboratory
conditions, which often have straight walls, natural environments are
full of concave and convex shapes, from networks of tree branches
to winding burrow tunnels. Given that the combination of straight
lines and curves can give rise to any shape, we hypothesized that the
brain encodes the concave and convex curvatures of an environment
(forexample, corners and curved protrusions), inaddition to straight
boundaries®**%. One brain region that could play a role in encod-
ing concave and convex environmental features is the subiculum, a
structure that receives highly convergent inputs from both the hip-
pocampal subregion CAl and the entorhinal cortex®* Earlier work
has demonstrated that neuronsin the subiculumencode thelocations
of environmental boundaries and objects in an allocentric reference
frame, as well as the axis of travel in multi-path environments®3*%,
Here, we describe single-cell neural representations for concave and

convex environmental corners and curvaturesin the dorsal subiculum,
which reside interspersed with single-cell neural representations for
environmental boundaries.

Subiculum neurons encode environmental corners

Torecord from large numbers of neurons in the subiculum, we per-
formed in vivo calciumimaging using a single photon (1P) miniscope in
freely behaving mice (Fig.1a, b). We primarily used Camk2a-Cre; Ai163
(ref. 36) transgenic mice, which exhibited stable GCaMPé6s expres-
sioninsubiculum pyramidal neurons (Extended DataFig.1a) and thus
facilitated longitudinal tracking of individual neurons¥ (Fig. 1c). Cal-
cium signals were extracted with CNMF*® and OASIS* deconvolution,
and subsequently binarized to estimate spikes for all cells (Fig.1d and
Extended DataFig.1b). We treated these deconvolved spikes as equiva-
lent to electrophysiological spikes and for calculating spike rates in
downstream analyses.

We placed animals in one of four open field arenas, including a cir-
cle, an equilateral triangle, a square and a hexagon. On each day, we
recorded subiculum neurons from two of these four arenas (20 min
per session) (Fig. 1e,f). Many subicular neurons exhibited place cell-like
firing patterns that were spatially modulated but not geometry-specific
across the different environments (Extended DataFig. 1c), as previously
reported*®*!, However, we also observed a subset of subicular neurons
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Fig.1| The subiculum contains neurons that exhibit corner-associated
activity. a, Schematic of miniscope calciumimaging in the subiculum.

b, Maximum intensity projections of subiculumimaging fromarepresentative
mouse.c,Anenlargedregion of interest fromb across days. d, Extracted
neurons fromb. e, Openarenaenvironment shapes. Orange barsindicate local
visual cues. f, Four representative corner cells from three mice. Each column
isacellwithitsactivity tracked across sessions. Raster plot (left) indicates
extracted spikes (red dots) ontop of the animal’s running trajectory (grey lines)
andthespatialrate map (right) is colour coded for maximum (red) and minimum
(blue) values. g, Proportion of corner cellsin each environment (arena shapes,
x-axis). Each dot represents amouse, with amaximum of two sessions averaged
withineach mouse (mean + standard error of the mean (s.e.m.); n =9 mice).

h, Positional spike rates plotted relative to the distance to the nearest corner
(n=9 mice).Solid line, mean; shaded area, s.e.m.1i, Proportion (prop.) of corner

that were active near the boundaries of the circle (Fig. 1f). Following
the activity of these neurons in all the other non-circle environments
revealed that they exhibited increased spike rates specifically at the
corners of the environments (Fig. 1f). To ensure that these neurons
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cell decoder

cellsacrosssessions (mean +s.e.m.; two-tailed Wilcoxon signed-rank test against
zero: P=0.0039; n =9 mice).j, Cross-session stability (Pearson’s correlation) of
across-session corner cellsinifor each environment.k, Three-dimensional (3D)
embedding of the subiculum populationactivity in the triangle, square and
hexagon fromarepresentative mouse. Uniform manifold approximationand
projection (UMAP) plots shown. Each dotis the population state atone time
point. Time points within 5 cmof the corners are colour coded as shownin the
inset. 1, Left,an example of decoding the animal’s quadrantlocation over time
usingadecoder trained on corner cell activity. Black line, true quadrantlocation;
red dotted line, decoded quadrantlocation. Right, quadrant decodingaccuracy
versus shuffle (mean +s.e.m.: decoder versus shuffle, 0.35 + 0.02 versus

0.26 £ 0.006; two-tailed Wilcoxon signed-rank test: P=0.0039; n =9 mice).
y-axisindicates the probability (prob.) that the animal’s location was decoded
inthe correct quadrant.Scalebars,100 pm (b), 10 pm (c), 5s (I).

were anatomically located in the subiculum, we used a viral strategy
torestrict GCaMP expression to the subiculum (Extended Data Fig.1d)
and observed the same corner-associated neural activity (Extended
DataFig.1e).



Toclassify neurons that exhibited corner-specificactivity patterns,
we devised a corner score that measures how close a given spatial field is
tothe nearest corner (Extended DataFig. 1f). The score ranged from -1
for fields situated at the centroid of the arena, to +1for fields perfectly
located at a corner (Extended Data Fig. 1f and Methods). We defined
acorner cell asacell with: (1) acorner score greater than the 95th per-
centile of a distribution of shuffled scores generated by shuffling the
spike times along the animal’s trajectory (Extended Data Fig. 1g-i,
Extended Data Fig. 2a-d and Methods); (2) a distance between any
two fields (major fields, if number of fields greater than number of
corners) greater than half the distance between the corner and centroid
of the environment (Extended Data Fig. 1g,j and Methods); and (3) a
within-session spatial stability value greater than 0.3 (Extended Data
Fig. 1k and Methods). Using this definition, we classified 7.2 + 0.9%
(mean £s.e.m., n=9 mice) of neurons as corner cells in the triangle,
7.0 £ 0.7% in the square and 4.2 + 0.8% in the hexagon (Fig. 1g and
Extended Data Fig. 3). Notably, this method classified almost no neu-
rons as corner cells in the circle when four or three equally spaced
points on the wall were assigned as the ‘corners’ for the environment
(Fig. 1g: 0.04 + 0.03%, four points; Extended Data Fig. 11: 0.0 + 0.0%,
three points). Applying the same procedure to all other environments,
we confirmed that no more than 0.5% of neurons were classified as
corner cells when we manually moved the corner location to the walls
(Extended Data Fig. 1l). Furthermore, weimaged 5,212 CAl neurons from
12 miceinasquareenvironment. Only 0.6 + 0.1% of CAl neurons were
classified as corner cells (Extended Data Fig. 1m), asignificantly lower
proportion than the number of subiculum cells classified as corner cells
inthe square (Fig. 1g; Mann-Whitney test: P < 0.0001).

To verify that neurons classified as corner cells encode locations
near corners, we plotted the spike rate for eachbinontheratemapasa
function of the distance to the nearest corner. As expected, corner cells
showed ahigher spike rate near the corners than the centroid, whichwas
not observedinnon-corner cells from the same animal (Fig. 1h). Second,
adecoding analysis revealed that subicular neurons provided signifi-
cantinformation regarding the animal’s spatial location (Extended Data
Fig.2e,f). Removing corner cells from this decoder resulted in higher
decodingerrors near the cornersthan at the centre of the environment,
compared to the full decoder (Extended DataFig. 2g,h). Accounting for
the animal’s behaviour, as measured by a corrected peak spike rate at
each corner (Extended Data Fig. 4a—-fand Methods), we did not observe
abiasinthe corner cell population activity towards encoding specific
corners (Extended Data Fig. 4f). Finally, across all non-circle geom-
etries, 1.7 + 0.4% of neurons were consistently classified as corner cells
(referred to as ‘across-session corner cells’, Fig. 1i). These across-session
corner cells exhibited stable corner-associated activity in all environ-
ments (Fig.1j) (mean cross-session stability from 0.57-0.67, Pearson’s
correlation). Of note, the neural population classified as corner cellsin
oneenvironment continued to show activity at cornersin later sessions/
conditions in which they were not classified as corner cells (Extended
DataFig. 4g,h), indicating corner activity generally persisted across
different geometries when considering the neurons as a population
rather than only single cells classified based on their corner score.

To visualize the representation of corners in the low-dimensional
neural manifold of the subiculum, we performed three-dimensional
(3D) embedding* of the population activity of all recorded neurons in
thetriangle, square and hexagon (Fig. 1k, Extended Data Fig. 5a-c and
Methods). Across different mice, we found that the representation of
each corner for agiven environment was distinct from other corners
and the rest of the space and that the sequential order of corners was
effectively preservedin the low-dimensional neural manifold (Fig. 1k
and Extended Data Fig. 5a-c). On the other hand, corner representa-
tions also converged at a specific point on the manifold (as indicated
by theblackcirclesin Extended Data Fig. 5a-c). This convergence sug-
gests that subiculum neurons also generalize the concept of corners,
inadditionto representing their distinct locations. A prediction of this

‘separated yet connected’ corner representation is that corner cells
more generally encode the presence of a corner and only modestly
encode the precise allocentric location of corners (for example, the
northwest versus the southwest corner). To test this idea, we first
trained a decoder on corner cell activity and used this decoder to
predict the animal’s quadrant location in the square environment
(Fig.11). While decoding performance significantly exceeded chance
levels, the accuracy of the decoding was only moderate (approximately
35%, Fig.1l), consistent with the idea that corner cells generalize their
codingtoall corners. Next, we implemented adecoder to predict the
geometry (that is, identity) of the environment and compared the
prediction accuracy of the decoder when using data from locations
near versus away from the geometric features of the environment
(thatis, corners, boundaries). Thisapproachrevealed that subiculum
neurons carried more information about the overall environmental
geometry when the animal was closer to ageometric feature (Extended
DataFig. 5d-f). Together, these results point to the subiculum as a
regionthatencodesinformationrelated to corners and the geometry
of the environment.

Corner coding is specific to environmental corners

To investigate the degree to which corner cells specifically encode
environmental corners, we considered three properties that comprise a
corner: (1) theangle of the corner, (2) the height of the walls and (3) the
connection between two walls. First, we imaged as animals explored
two asymmetric environments: a right triangle (30-60-90° corners)
or a trapezoid (55-90-125° corners) (Fig. 2a). In these asymmetric
environments, corner cells composed 3.6 £ 0.3% and 2.1+ 0.3% of all
neuronsrecordedintherighttriangle and the trapezoid, respectively
(Fig.2b,c; n = 8 mice). By comparison, there were essentially no neurons
classified as corner cells when points on the wall were assigned as the
‘corners’ of these environments (Extended Data Fig. In). In the right
triangle, corner cell peak spike rates were significantly higher for the
30°(2.32 + 0.14, mean * s.e.m.) corner compared to the 60° (1.67 + 0.16)
and 90° (1.76 + 0.16) corners, but did not differ between the 60° and
90° corners (Fig. 2b,d). To rule out the possibility that this was due to
thelimited angular range of these acute angles, we compared the peak
spike rates atthe corners of the trapezoid and found that the peak spike
rates of corner cellsincreased from125°(1.49 + 0.12, mean + s.e.m.) to
90°(1.90 + 0.10) t0 55° (2.23 + 0.12) (Fig. 2e). We also compared the peak
spike rates at the corners using the aforementioned across-session
corner cellsinthe triangle (60°,1.76 £ 0.12, mean + s.e.m., n =9 mice),
square (90°,1.47 + 0.11) and hexagon (120°,1.44 + 0.13), and found the
peak spike rate was higher in the triangle compared to the square and
hexagon (Fig. 2f). Together, these results suggest that corner cells
encode information regarding corner angles, particularly within
asymmetric environments.

Next, we imaged as animals explored the normal square environ-
ment (as in Fig. 1) with 30 cm high walls (normal square), followed
by alow-wall square environment with 15 cm high walls (Fig. 2g,h).
Quantitative analysis revealed the proportion of corner cells signifi-
cantly decreased from the normal (7.2 £ 0.8%, mean + s.e.m.) to the
low-wallsquare (3.3 + 0.6%) (Fig. 2i). The remaining corner cellsin the
low-wall square had corner spike rates similar to their corner spike
rates in the normal square (1.72 + 0.04 versus 1.74 + 0.08; n=9 mice)
(Fig. 2j). However, for neurons classified as corner cells in the normal
squarebutnotinthelow-wall square, their spike rates near the corners
of the low-wall square were still higher than those in non-corner cells
(Fig. 2h,k), indicating that their corner-related activity decreased by
lowing the wall but was not completely lost. Finally, in comparison to
corner cells, the proportion of subiculum place cells did not change
between the normal (68.5 + 2.6%) and low-wall squares (66.4 + 4.5%)
(Fig. 21). Together, these resultsindicate that the tuning of corner cells
is sensitive to the height of the walls that constitute the corner.
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P=0.0004;30°versus 60°:P=0.016;30°versus 90°: P=0.0078; 60° versus
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ANOVA: F(1.85,12.97) =23.94, P<0.0001; 55° versus 90°: P= 0.023; 55° versus
125°:P=0.0078;90° versus125°: P=0.0078; n =8 mice). f, Corrected peak
spike rates of across-session corner cells in different environments (arena
shapes, x-axis; repeated measures ANOVA: F(2,16) = 3.88, P= 0.042; triangle

Finally, we imaged as animals explored a large square environment
inwhichweinserted adiscrete corner and gradually separated its two
connected walls (1.5,3 or 6 cm separation) (Fig. 3a). We identified cor-
ner cells in the baseline session and tracked their activity across all
manipulations (Fig. 3b). Despite the insertion of the discrete corner,
corner cells identified in baseline did not change their average peak
spike rates at the corners of the square environment (Fig. 3b,c). Upon
theinsertion of the discrete corner, corner cells developed anew field
neartheinserted corner (Fig.3b). As the distance between the walls of
the discrete cornerincreased, the peak spike rate of corner cells at that
corner decreased (Fig. 3d). Even at the largest gap of 6 cm, however,
corner cell peak spike rate at the discrete corner was still significantly
higher than at baseline (1.21 + 0.12 versus 0.40 + 0.05, mean + s.e.m.)
(Fig.3d), indicating that the animal may still perceive the inserted walls
asacorner. Furthermore, the peak spike rates of corner cellsat 1.5 cm
(1.40+0.16),3 cm (1.34 £ 0.14) and 6 cm (1.21 + 0.12) gap were signifi-
cantly attenuated compared to the 0 cm (1.86 + 0.19) gap condition
(Fig. 3d), suggesting that corner cells are sensitive to the connection

824 | Nature | Vol 627 | 28 March 2024

e _ " f_ .
385 5 T35
sa0f T S sop
S 25 ® 25
% 2.0 % 2.0
5 s §15
g 10 8 10
8 05 3 05
<] S
© 55 90 125 S oo

Corner angles (°)

Cel

2 Hz

30cm v,15¢cm =
0.5 Other non-corner cells

I

1]

s NS
3 08

f=

s 06

°

5

Q

o

o

N
<
o)
©
2 0.4
a
(7] 0.2
0
0 5 10 15 20 30 15

Distance to corners (cm) Wall height (cm)

versus square: P=0.0078; triangle versus hexagon: P= 0.039; square versus
hexagon: P=0.91; n =9 mice). g, Schematic of normal versus low-wall squares.
h, Threerepresentative corner cells from three mice, plottedasinb.
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of the walls that constitute the corner. In comparison, there was no
effect at the inserted corner when we performed the same analyses
using non-corner cells (Fig. 3e).

Decoupling corner coding from non-geometric features

We next investigated whether corner cells in the subiculum were
sensitive to non-geometric features of a corner. To test this, we placed
the animals in a shuttle box with two connected square compart-
ments that differed in colour and texture (Extended Data Fig. 6a).
Corner cells showed increased spike rates uniformly across all the
corners, regardless of the context (Extended Data Fig. 6b,c). Inaddi-
tion, their average peak spike rates at corners were comparable across
the two contexts regardless of the context in which the corner cell
was defined (Extended Data Fig. 6d-f). These results suggest that
corner cells in the subiculum primarily encode corner-associated
geometric features, rather than non-geometric properties, such as
colours and textures.
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Wethen placed the animalsin asquare arenain complete darkness. In
this condition, the representations of corners by corner cells persisted,
andthe proportion of corner cells remained unchanged (Extended Data
Fig. 6g-i). Similarly, trimming the animals’ whiskers did not signifi-
cantly affect the proportion of corner cells (Extended Data Fig. 6g-i).
However, compared to the baseline, there was a decrease in the peak
spike rates of corner cells in darkness, but not after whisker trimming
(Extended Data Fig. 6j). By contrast, recording in darkness or after
whisker trimming significantly decreased the number of place cellsin
the subiculum (Extended Data Fig. 6k). Together, our results suggest
that visualinformation plays a more significant role than tactile infor-
mationinthe corner coding of the subiculum.

Subiculum neurons encode convex corners

If corner sensitivity in the subiculumhasanimportant roleinencoding
environmental geometry, it would be reasonable to anticipate distinct
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F(1.99,13.99) =0.30, P=0.74; n = 8 mice). Black dots represent mean + s.e.m.;
grey linesrepresent each animal.d, Corrected peak spike rates of baseline-
identified corner cellsattheinserted corner acrossall the sessions, plotted as
inc(repeated measures ANOVA: F(2.42,16.96) =25.62, P< 0.0001; two-tailed
Wilcoxonsigned-rank test: baseline versus O cm, P=0.0078; baseline versus
1.5cm, P=0.0078; baseline versus 3 cm, P=0.0078; baseline versus 6 cm,
P=0.0078;0cmversus1.5cm,P=0.0078;0cmversus3 cm,P=0.0078;0cm
versus 6 cm, P=0.0078; n =8 mice).e,Same asd, but for non-corner cells
(repeated measures ANOVA: F(1.57,10.97) = 0.33,P=0.68; n=8 mice).

coding for concave versus convex corners, as these qualitative distinc-
tions are critical for defining geometry. We next examined whether
corner codinginthe subiculum extended to other corner geometries.
We designed more complex environments that included both con-
cave and convex corners. Weimaged as animals explored asquare and
rectangle environment (concave corners, 30 min), followed by three
environments with convex corners (convex-1, convex-2, convex-3)
(Fig. 4a). First, we identified corner cells in the square and followed
their activity across other environments. Asin our prior experiments,
we observed corner cells thatincreased their spike rate at the concave
corners, butlesssotothe convex corners (Fig.4b). Further investigation
of neurons imaged in the convex-1environment however, revealed a
small subset of neurons that increased their spike rate specifically at
the convex corners (Fig. 4c). By tracking the activity of these convex
corner cells to the convex-2 and -3 environments, we further found
that they responded to convex cornersregardless of the location of the
corners or the overall geometry of the environment (Fig. 4c). Similar
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to corner cells that encode concave corners, corner cells encoding
convex corners showed a higher spike rate near the convex corners
thanatthe centroid (Fig.4d, bottom three panels) (n =10 mice). Track-
ing the activity of convex corner cells retrogradely to the square and
rectangle environments, we observed that they had an overall lower
spike rate compared to other subicular neurons (Fig. 4d). This low level
ofactivity inthe absence of convex corners suggests these corner cells
respond specifically to convex corners. In environments with convex
corners, the proportion of convex corner cellswas1.4 + 0.2%, aslightly
smaller proportion than that of concave corner cells identified in the
square (2.6 + 0.7%) and rectangle (3.3 + 0.5%) in the same set of experi-
ments (Fig.4e). Corner cells encoding concave or convex corners were
non-overlapping neural populations (Fig. 4f,g), as they overlapped less
than expected by chance (Extended Data Fig. 7a). Corner cells encod-
ing concave or convex corners were distributed in the subiculumin a
salt and pepper pattern without clear clustering, as suggested by the
similar intergroup and intragroup anatomical distances (Fig. 4g,h).
Theactivity of corner cells encoding convex corners was not affected
by non-geometric changes to the corners, as they showed consist-
ent spike rates for the same corner regardless of its colour or texture
(Extended Data Fig. 7b-d). However, unlike corner cells that encode
concave corners, corner cells encoding convex corners showed
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Scalebar, 50 pm (g).

comparable spike rates for corners at various angles in an asymmet-
ric environment (315°,2.06 + 0.24;270°,2.10 + 0.27 and 2.09 + 0.13;
225°,2.12+ 0.20; mean + s.e.m.) (Fig. 4c,iand Extended Data Fig. 7e-g).
We then introduced a triangular and cylindrical object to the centre
of the environment. Corner cells encoding convex corners showed
higher spike rates at the vertices of the triangular object compared to
the faces (Extended Data Fig. 7h-k). Furthermore, most of the corner
cells encoding convex corners increased their spike rates around the
cylinder (Extended DataFig. 71). Together, these results demonstrate
that the subiculum encodes both concave and convex corners.

Corner codingin the subiculum is primarily allocentric

To determine whether the previously described corner cells encode
corners from an allocentric or egocentric reference frame, we first
trained a linear-nonlinear Poisson (LN) model with behavioural vari-
ables including the animal’s allocentric position (P), head direction
(H), running speed (S) and egocentric bearing to the nearest corner
(E) (Model 1, Extended Data Fig. 8a—-d). We used corner cells from the
square environment (40 cm) and the convex-1 environment for this
analysis. For both corner cells encoding concave and convex corners,
the majority (note, 15 concave and 12 convex corner cells could not
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be classified in the LN model) fell into the allocentric position only
category (P), which means that adding variables did not improve the
model performance (Extended Data Fig. 8e-h). A smaller number of
corner cellsencoded head direction, running speed and/or egocentric
corner bearing in conjunction with position (Extended DataFig. 8g,h),
indicating that corner cell coding in the subiculumis largely independ-
ent of modulation by the animal’s head direction, running speed and
egocentric corner bearing.

Inspired by recent studies of egocentric boundary or centre-bearing
cells!>2677304344 we expanded our investigation to consider egocentric
corner coding across the entire population of subiculum neurons.
We introduced additional LN models that incorporated egocentric
corner bearing and distance toidentify egocentric corner cells (Model 2,
Extended Data Fig. 9a,b and Methods) and filtered out neurons that
encoded egocentric boundaries or the centre of the environment
(Models 3 and 4, Extended Data Fig. 9c and Methods). Results from
bothrotationally symmetric and asymmetric (for example, 30-60-90
triangle) environments consistently revealed that asmall proportion of
subiculumneurons (less than or equal to 0.75%) encoded cornersinan
egocentricreferenceframe (Extended DataFig.9d,e). This corresponded
to 65 egocentric corner cells out of 12,550 total subiculum neurons,
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cellswereidentified in the square environment (two-tailed Wilcoxon signed-rank
testagainst zero: corner cells: P=0.0039; non-corner cells: P= 0.16; two-tailed
Wilcoxonsigned-rank test: corner cells versus non-corner cells: P=0.0039;
n=9mice, dataaveraged from day 2 and day 3 for eachmouse). g, Illustration
showing the high- versus low-convexity regions around the objects. h, Spike
ratedifferences between high- and low-convexity regions around the objects
forboth corner and non-corner cells. Convex corner cells wereidentified in
the convex-1environment (two-tailed Wilcoxon signed-rank test against zero:
corner cells, P=0.016; non-corner cells, P= 0.58; two-tailed Wilcoxon signed-
ranktest: corner cells versus non-corner cells, P=0.016; n =7 mice).

summed from 38 sessions (square, rectangle, rightTri and convex-1
combined, n =10 mice). Two-thirds of these egocentric corner cells
conjunctively encoded the animal’s head direction (Extended Data
Fig. 9d,e). These neurons minimally overlapped (2 out of 65) with
the allocentric corner cells classified in the corresponding session.
Together, our results suggest that corner coding in the subiculum is
primarily allocentric, areference frame consistent withboundary vec-
tor cell (BVC) and place cell coding in the subiculum?-333*,

Corner coding differs from boundary coding

We next examined the relationship between corner cells and previously
reported BVCs in the subiculum®. We observed BVCs in the square
(10.7 £ 0.9%, n =10 session from 10 mice) and rectangle (7.2 + 0.8%)
environments (Extended Data Fig. 10a,b). Tracking the activity of
BVCs identified in the square environment revealed stable bound-
ary coding across both concave and convex environments (Extended
Data Fig.10a). We observed a lower than chance overlap (3.5 + 1.1%
versus 12.5%) between BVCs and corner cells encoding concave corners
(Extended Data Fig.10c), reflective of neurons that were active at both
cornersand boundaries (Extended Data Fig.10d). However, we did not
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observe any overlap between BVCs and corner cells encoding convex
corners (Extended Data Fig.10c). Anatomically, BVCs and corner cells
did not form distinct clusters but instead showed a salt-and-pepper
distribution in the subiculum (Extended Data Fig. 10e,f). Together,
this suggests that corner cells are aseparate neuronal population from
BVCs in the subiculum.

Corner coding generalizes to concavity and convexity

The observation of increased activity at the boundaries of the cir-
cular environment (Fig. 1e,f) and around the cylinder in corner cells
(Extended DataFig. 7h,i,l), led usto ask whether corner coding reflecta
broader coding scheme for concavity and convexity in the subiculum.
To test this idea, animals explored an oval environment to examine
concavity coding (Fig. 5a,b) and different sizes of cylinders (3 cm ver-
sus 9 cmin diameter) to examine convexity coding (Fig. 5c,d). Corner
cells, initially identified in the square environment, were examined
for their activity in the high- versus low-concavity regions of the oval
(Fig.5a,b,e,f).Indeed, corner cells encoding concave corners showed
higher spike rates at the high-concavity regions compared to the
low-concavity regions (oval high-low, 0.22 + 0.03, mean + s.e.m.)
(Fig. 5e,f). Similarly, corner cells encoding convex corners, identi-
fied in the convex-1 environment, showed higher spike rates around
the high-convexity cylinder compared to the low-convexity cylinder
(cylinder 3 cm-9 cm, 0.41+ 0.09) (Fig. 5c,d,g,h). These effects were
notobserved in non-corner cells (oval high-low, 0.03 + 0.02; cylinder
3 cm-9 cm,-0.05 + 0.04) and theincrease in the activity of corner cells
was higher than in that of non-corner cells (Fig. 5f,h). Together, our
results indicate that the subiculum encodes the concave and convex
curvature of the environment through distinct neuronal populations.

Discussion

Animals use boundaries and corners to orient themselves during navi-
gation' 8, These features define the geometry of an environment and
canserve aslandmarks orindicate locations associated with ethologi-
callyrelevant needs, suchas anest site or anentryway. Here, we report
that alongside neurons that encode environmental boundaries®?, the
subiculumalso contains distinct neural populations that encode con-
cave and convex corners. This encoding is consistent across environ-
ments, withthe activity of these neuronsreflecting specific geometric
properties of the corners, and generalized to a broader framework
for coding environmental concavity and convexity. Such coding may
have particular relevance to animals navigating natural environments,
in which features such as burrows or nesting sites are often high in
concavity or convexity.

Aremaining questionis how corner-specific firing patterns are gener-
ated. Given the dense CAl to subiculum connectivity*>** and recent
observations that CAl population codes can indicate the distance to
objects and walls®, one possibility is that corner cell firing patterns
arise fromthe convergentinputs of CAl place cells. Namely, they could
arise fromathresholded sum ofthe activity of place cells near environ-
mental corners. Thisideaaligns with the previously observed clustering
of place fields near environmental corners in CAl place cells**¢, and
could explain the sensitivity of corner cell firing rates to corner angles,
as hippocampal place fields may show more overlap in smaller corner
regions. Understanding how corner-specific patterns are generated
could provide important insight into the algorithms the brain uses
to construct asingle cell code for geometric features and future work
using targeted manipulations in the hippocampus may help resolve
this question®’.

Cells that explicitly encode geometric properties of an environment,
suchasthe corner cellsdescribed here, differ from cells that respond to
manipulations of an environment’s geometry. For example, entorhinal
grid cells transiently change the physical distance between their firing
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fields when a familiar box is stretched or compressed®*® and distort
in polarized environmental geometries’. These changes in grid cell
firing patterns represent alterations to either a familiar geometry or
the geometric symmetry of the environment, but the grid pattern
itselfis not encoding geometric properties or specific elements that
define the geometry. Likewise, changesin place cell firing rates, field
locations or field size are indicative of an alteration to environmental
geometry®but provide littleinformation about the specific elements
that compose the geometry. On the other hand, corner coding inthe
subiculumrepresents ageometric feature universally across environ-
mental shapes and tracks the explicit properties of corners, includ-
ing angle, height and the degree to which the walls were connected.
Thus, the subiculum may be well positioned to provide information
to other brain regions regarding the geometry of the environment
in an allocentric reference frame. To guide behaviour however, this
allocentric information needs to interface with egocentric informa-
tionregarding an animal’s movements®. One possibility is that corner
cellsin the subiculum provide a key input to the recently observed
corner-associated activity in the lateral entorhinal cortex (LEC)*.
Unlike corner coding in the subiculum, LEC corner-associated activ-
ity is largely egocentric and speed modulated, raising the possibility
that LEC integrates allocentric corner information with egocentric
and self-motion information to prepare an animal to make appropri-
ateactions when approachingacorneror curved areas (for example,
deceleration or turning).

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07139-z.

1. Lubyk, D. M. & Spetch, M. L. Finding the best angle: pigeons (Columba livia) weight angular
information more heavily than relative wall length in an open-field geometry task. Anim.
Cogn. 15, 305-312 (2011).

2. Tommasi, L. & Polli, C. Representation of two geometric features of the environment in
the domestic chick (Gallus gallus). Anim. Cogn. 7, 53-59 (2004).

3. Cheng, K. A purely geometric module in the rat’s spatial representation. Cognition 23,
149-178 (1986).

4.  Cheng, K. & Newcombe, N. S. Is there a geometric module for spatial orientation?
Squaring theory and evidence. Psychon. Bull. Rev. 12, 1-23 (2012).

5. Hermer, L. & Spelke, E. S. A geometric process for spatial reorientation in young children.
Nature 370, 57-59 (1994).

6. Keinath, A. T, Julian, J. B., Epstein, R. A. & Muzzio, I. A. Environmental geometry aligns the
hippocampal map during spatial reorientation. Curr. Biol. 27, 309-317 (2017).

7. Kelly, J. W., McNamara, T. P., Bodenheimer, B., Carr, T. H. & Rieser, J. J. The shape of human
navigation: how environmental geometry is used in maintenance of spatial orientation.
Cognition 109, 281-286 (2008).

8.  Poulter, S., Hartley, T. & Lever, C. The Neurobiology of mammalian navigation. Curr. Biol.
28, R1023-R1042 (2018).

9. Deshmukh, S. S. & Knierim, J. J. Influence of local objects on hippocampal representations:
landmark vectors and memory. Hippocampus 23, 253-267 (2013).

10. GoodSmith, D. et al. Flexible encoding of objects and space in single cells of the dentate
gyrus. Curr. Biol. 32,1088-1101.e1085 (2022).

1.  Heydal, @. A., Skyteen, E. R., Andersson, S. O., Moser, M.-B. & Moser, E. |. Object-vector
coding in the medial entorhinal cortex. Nature 568, 400-404 (2019).

12. LaChance, P. A., Todd, T. P. & Taube, J. S. A sense of space in postrhinal cortex. Science
365, eaax4192 (2019).

13. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from
unit activity in the freely-moving rat. Brain Res. 34, 171-175 (1971).

14. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, 1978).

15.  Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map
in the entorhinal cortex. Nature 436, 801-806 (2005).

16. Krupic, J., Bauza, M., Burton, S., Barry, C. & O’Keefe, J. Grid cell symmetry is shaped by
environmental geometry. Nature 518, 232-235 (2015).

17.  Derdikman, D. et al. Fragmentation of grid cell maps in a multicompartment environment.
Nat. Neurosci. 12, 1325-1332 (2009).

18.  Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing
of hippocampal complex-spike cells. J. Neurosci. 7, 1951-1968 (1987).

19. O'Keefe, J. & Burgess, N. Geometric determinants of the place fields of hippocampal
neurons. Nature 381, 425-428 (1996).

20. Nagelhus, A., Andersson, S. O., Cogno, S. G., Moser, E. |. & Moser, M.-B. Object-centered
population coding in CA1 of the hippocampus. Neuron 111, 2091-2104.e2014 (2023).


https://doi.org/10.1038/s41586-024-07139-z

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Gothard, K. M., Skaggs, W. E., Moore, K. M. & McNaughton, B. L. Binding of hippocampal
CA1 neural activity to multiple reference frames in a landmark-based navigation task.

J. Neurosci. 16, 823-835 (1996).

Lever, C., Wills, T., Cacucci, F., Burgess, N. & O’Keefe, J. Long-term plasticity in hippocampal
place-cell representation of environmental geometry. Nature 416, 90-94 (2002).

Barry, C., Hayman, R., Burgess, N. & Jeffery, K. J. Experience-dependent rescaling of
entorhinal grids. Nat. Neurosci. 10, 682-684 (2007).

Savelli, F., Yoganarasimha, D. & Knierim, J. J. Influence of boundary removal on the spatial
representations of the medial entorhinal cortex. Hippocampus 18, 1270-1282 (2008).
Lever, C., Burton, S., Jeewajee, A., O'Keefe, J. & Burgess, N. Boundary vector cells in the
subiculum of the hippocampal formation. J. Neurosci. 29, 9771-9777 (2009).

Wang, C. et al. Egocentric coding of external items in the lateral entorhinal cortex.
Science 362, 945-949 (2018).

Alexander, A. S. et al. Egocentric boundary vector tuning of the retrosplenial cortex. Sci.
AdVv. 6, eaaz2322 (2020).

Gofman, X. et al. Dissociation between postrhinal cortex and downstream parahippocampal
regions in the representation of egocentric boundaries. Curr. Biol. 29, 2751-2757.e2754
(2019).

Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B. & Moser, E. |. Representation of
geometric borders in the entorhinal cortex. Science 322, 1865-1868 (2008).

van Wijngaarden, J. B. G., Babl, S. S. & Ito, H. T. Entorhinal-retrosplenial circuits for
allocentric-egocentric transformation of boundary coding. eLife 9, €59816 (2020).
Witter, M. Connections of the subiculum of the rat: topography in relation to columnar
and laminar organization. Behav. Brain Res. 174, 251-264 (2006).

Sun, Y. et al. CA1-projecting subiculum neurons facilitate object-place learning. Nat.
Neurosci. 22, 1857-1870 (2019).

Poulter, S., Lee, S. A., Dachtler, J., Wills, T. J. & Lever, C. Vector trace cells in the subiculum
of the hippocampal formation. Nat. Neurosci. 24, 266-275 (2020).

Olson, J. M., Tongprasearth, K. & Nitz, D. A. Subiculum neurons map the current axis of
travel. Nat. Neurosci. 20, 170-172 (2016).

Lee, H.-W., Lee, S.-M. & Leg, |. Neural firing patterns are more schematic and less sensitive
to changes in background visual scenes in the subiculum than in the hippocampus.

J. Neurosci. 38, 7392-7408 (2018).

Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced
brain-cell-type targeting and functionality. Cell 174, 465-480.e422 (2018).

Sun, Y. & Giocomo, L. M. Neural circuit dynamics of drug-context associative learning in
the mouse hippocampus. Nat. Commun. 13, 6721(2022).

Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from
microendoscopic video data. eLife 7, 28728 (2018).

39. Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data.
PLoS Comput. Biol. 13, e1005423 (2017).

40. Sharp, P.E. & Green, C. Spatial correlates of firing patterns of single cells in the subiculum
of the freely moving rat. J. Neurosci. 14, 2339-2356 (1994).

41.  Sharp, P. E. Subicular cells generate similar spatial firing patterns in two geometrically
and visually distinctive environments: comparison with hippocampal place cells. Behav.
Brain Res. 85, 71-92 (1997).

42. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602,
123-128 (2022).

43. LaChance, P. A. & Taube, J. S. Geometric determinants of the postrhinal egocentric spatial
map. Curr. Biol. 33,1728-1743.e1727 (2023).

44, Hinman, J. R., Chapman, G. W. & Hasselmo, M. E. Neuronal representation of environmental
boundaries in egocentric coordinates. Nat. Commun. 10, 2772 (2019).

45.  Witter, M. & Amaral, D. in The Rat Nervous System (ed. Paxinos, G.) 637-703 (Elsevier,
2004).

46. Muir, G. M. & Bilkey, D. K. Instability in the place field location of hippocampal place cells
after lesions centered on the perirhinal cortex. J. Neurosci. 21, 4016-4025 (2001).

47. Robinson, N. T. M. et al. Targeted activation of hippocampal place cells drives memory-
guided spatial behavior. Cell 183, 1586-1599.€10 (2020).

48. Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72-78 (2012).

49. Wang, C. et al. Superficial-layer versus deep-layer lateral entorhinal cortex: coding of
allocentric space, egocentric space, speed, boundaries, and corners. Hippocampus 33,
448-464 (2023).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

oy 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Nature | Vol 627 | 28 March 2024 | 829


http://creativecommons.org/licenses/by/4.0/

Article

Methods

Subjects

Allprocedures were conducted according to the National Institutes of
Health guidelines for animal care and use and approved by the Institu-
tional Animal Care and Use Committee at Stanford University School of
Medicine and the University of California, Irvine. For subiculum imag-
ing, eight Camk2a-Cre; Ai163 (ref. 36) mice (four male and four female),
one Camk2-Cre mouse (female,JAX: 005359) and one C57BL/6 mouse
(male) were used. For the Camk2-Cre mouse, AAV1-CAG-FLEX-GCaMP7f
wasinjected intheright subiculumatanteroposterior (AP): -3.40 mm;
lateromedial (ML): +1.88 mm; and dorsoventral (DV): -1.70 mm. For
the C57BL/6 mouse, AAV1-Camk2a-GCaMPé6f was injected in the
right subiculum at the same coordinates. For CAlimaging, 12 Ai94;
Camk2a-tTA; Camk2a-Cre (JAX id: 024115 and 005359) mice (seven male
and five female) were used. Mice were group housed with same-sex
littermates until the time of surgery. At the time of surgery, mice were
8-12weeks old. After surgery mice were singly housed at 21-22°C and
29-41% humidity. Mice were kept on a12-hour light/dark cycle and had
adlibitum access to food and water in their home cages atall times. All
experiments were carried out during the light phase. Data from both
males and females were combined for analysis, as we did not observe
sex differencesin, forexample, corner cell proportions, spike rates to
different corners angles, and concavity and convexity.

GRIN Iens implantation and baseplate placement

Mice were anesthetized with continuous 1-1.5% isoflurane and head
fixedinarodent stereotax. A three-axis digitally controlled microma-
nipulator guided by a digital atlas was used to determine bregma and
lambda coordinates. To implant the gradient refractive index (GRIN)
lens above the subiculum, a1.8-mm-diameter circular craniotomy was
made over the posterior cortex (centred at—3.28 mm anterior/posterior
and +2 mm medial/lateral, relative to bregma). For CAl imaging, the
GRIN lens was implanted above the CAl region of the hippocampus
centred at —2.30 mm anterior/posterior (AP) and +1.75 mm medial/
lateral (ML), relative to bregma. The dura was then gently removed
and the cortex directly below the craniotomy aspirated using a 27-
or 30-gauge blunt syringe needle attached to a vacuum pump under
constantirrigation with sterile saline. The aspiration removed the cor-
pus callosum and part of the dorsal hippocampal commissure above
theimaging window but left the alveus intact. Excessive bleeding was
controlled using a haemostatic sponge that had been torn into small
pieces and soaked in sterile saline. The GRIN lens (0.25 pitch, 0.55NA,
1.8 mm diameter and 4.31 mm in length, Edmund Optics) was then
slowly lowered with a stereotaxic arm to the subiculum to a depth of
-1.75 mm relative to the measurement of the skull surface at bregma.
The GRIN lens was then fixed with cyanoacrylate and dental cement.
Kwik-Sil (World Precision Instruments) was used to cover the lens at the
end of surgery. Two weeks after the implantation of the GRIN lens, a
small aluminium baseplate was cemented to the animal’s head on top
of the existing dental cement. Specifically, Kwik-Sil was removed to
expose the GRIN lens. A miniscope was then fitted into the baseplate
andlocked in position so that the GCaMP-expressing neurons and vis-
iblelandmarks, such asblood vessels, were in focus in the field of view.
After theinstallation of the baseplate, theimaging window was fixed for
long-term, inrespect to the miniscope used during installation. Thus,
eachmouse had adedicated miniscope for all experiments. When not
imaging, a plastic cap was placed in the baseplate to protect the GRIN
lens from dust and dirt.

Behavioural experiments with imaging

After mice had fully recovered from the surgery, they were handled
and allowed to habituate to wearing the head-mounted miniscope by
freely exploring an open arena for 20 min every day for one week. The
actual experimentstook place inadifferent room from the habituation.

Thebehaviour rig, an 80/20 built compartment, in this dedicated room
had two white walls and one black wall with salient decorations as distal
visual cues, which were kept constant over the course of the entire
study. For experiments described below, all the walls of the arenas
were acrylic and were tightly wrapped with black paper by default to
reduce potential reflections from the LEDs on the scope. Alocal visual
cuewas always available on one of the walls in the arena, except for the
oval environment. In each experiment, the floors of the arenas were
covered with corn bedding. All animals’ movements were voluntary.

Circle, equilateral triangle, square, hexagon and low-wall square.
This set of experiments was carried out in a circle, an equilateral tri-
angle, asquare, a hexagon and alow-wall square environment. The
diameter of the circle was 35 cm. The side lengths were 30 cm for the
equilateral triangle and square, and 18.5 cm for the hexagon. The height
ofallthe environments was 30 cm except for the low-wall square, which
was 15 cm. In total, we conducted 15, 18,17, 18 and 12 sessions (20 min
persession) from nine micein the circular, triangular, square, hexagonal
and low-wall square arenas, respectively. We recorded a maximum of
two sessions per condition per mouse. For each mouse, werecorded 1-2
sessions in each day. If two sessions were made from the same animal
onagivenday, recordings were carried out from different conditions
with at least a two-hour gap between sessions. For each mouse, data
from this set of experiments were aligned and concatenated, and the
activity of neurons was tracked across the sessions. As described above,
allthe walls of the arenas were black. A local visual cue (strips of white
masking tape) was present on one wall of each arena, covering the
top half of the wall. For CAlimaging, mice were placed into a familiar
25 x 25 cmsquare environment for asingle, 20 min session recording.

Trapezoid and 30-60-90 right triangle. This set of experiments was
carried outin aright triangle (30°, 60°,90°) and a trapezoid environ-
ment. Corner angles from the trapezoid were 55°,90°, 90° and 125°.
The dimensions of the mazes were 46 (L) x 28 (W) x 30 (H) cm. Intotal,
we conducted 16 sessions each (25 min per session) from eight mice
for theright triangle and trapezoid. Data from this set of experiments
were aligned and concatenated, and the activity of neurons was tracked
across the sessions for each mouse. Other recording protocols were
the same as described above.

Insertion of a discrete corner in a square environment. This set of
experiments was carried outinalarge square environment with dimen-
sions of 40 (L) x 40 (W) x 40 (H) cm. The experiments comprised a base-
line session followed by four sessions with the insertion of a discrete
corner into the square maze. In these sessions, the walls that formed the
discrete corner were gradually separated by 0,1.5,3 and 6 cm. Starting
from 3 cm, the animals were able to pass through the gap without dif-
ficulty. The dimensions of the inserted walls were 15 (W) x 30 (H) cm.
For each condition, we recorded eight sessions (30 min per session)
from eight mice by conducting a single session from each mouse per
day. Datafromthis set of experiments were aligned and concatenated,
and the activity of neurons was tracked throughout the sessions.

Square, rectangle, convex-1, convex-2, convex-3 and convex-mi1.
Thisset of experiments was carried outinalarge square, rectangle and
multiple convex environments that contained both concave and convex
corners. The dimensions of the square were 40 (L) x 40 (W) x40 (H) cm
and therectangle were46 (L) x 28 (W) x 30 (H) cm. The convex arenas
were all constructed based on the square environment using wood
blocks or PVC sheets that were tightly wrapped with the same black
paper. There convex corners had angles at 270° and 315° in the convex
environments. Note that, for four out of ten mice, their convex-2 and
-3 arenas were constructed in a mirrored layout compared to the are-
nas of the other six mice to control for any potential biases that could
arise from the specific geometric configurations in the environment



(Fig. 4c). For convex-ml (Extended Data Fig. 7b), the northeast convex
corner was decorated with white, rough surface masking tape from
thebottom all the way up to the top of the corner. For each condition,
we recorded ten sessions (30 min per session) from ten mice, asingle
session from each mouse per day. For each mouse, data from this set
of experiments were aligned and concatenated, and the activity of
neurons was tracked across all the sessions.

Convex environment with an obtuse convex corner. This set of experi-
mentswas carried outin a convex environment that contained two 270°
convex corners and one 225° convex corner (Extended Data Fig. 7e).
The arena was constructed in the same manner as the other convex
environments described above. For two days, werecorded atotal of 18
sessions (30 min per session) from nine mice, two sessions per mouse.
Please note, although the maze was rotated by 90°in the second session,
we combined the two sessions together for the analysis.

Triangular and cylindrical objects. This set of experiments was first
carried out in the convex-1 environment, followed by a40 cm square
environment containing two discrete objects (Extended Data Fig. 7h).
Thefirst object was anisosceles right triangle with the hypotenuse side
measuring 20 cmin length and 7 cm in height (occasionally, animals
climbed on top of the object). The second object was a cylinder with
a diameter of 3 cm and a height of 14 cm. For this experiment, we
recorded atotal of eight sessions (30 min per session) from eight mice
for each environment.

Shuttle box. The shuttle box consisted of two connected, 25 (L) x
25 (W) x 25 (H) cm compartments with distinct colours and visual cues
(Extended Data Fig. 6a). The opening in the middle was 6.5 cm wide,
so that the mouse could easily run between the two compartments
during miniscope recordings. The black compartment was wrappedin
black paper, but not the grey compartment. For two days, we recorded
atotal of 18 sessions (20 min per session) from nine mice, two sessions
per mouse.

Recordings in the dark or with trimmed whiskers. This set of experi-
ments was carried out in a square environment with dimensions of
30 (L) x 30 (W) x 30 x (H) cm. The animals had experience in the envi-
ronment before this experiment. The experiments consisted of three
sessions: a baseline session, asession recorded in complete darkness,
and asessionrecorded after the mice’s whiskers were trimmed. For the
darkrecording, the ambient light was turned offimmediately after the
animal was placed inside the square box. The red LED (approximately
650 nm) on the miniscope was covered by black masking tape. This
masking did not completely block the red light, so the behavioural
camera couldstill detect the animal’s position. Before the masking, the
intensity of thered LED was measured as approximately 12 lux from the
distance to the animal’s head. However, after the masking, the intensity
ofthe masked red LED was comparable to the measurement taken with
the light metre sensor blocked (complete darkness, approximately
2 lux). The blue LED on the miniscope was completely blocked from the
outside. For the whisker-trimmed session, facial whiskers were trimmed
(not epilated) with scissors until no visible whiskers remained on the
face 12 h before the recording. For each condition, we recorded nine
sessions (20 min per session) from nine mice by conducting a single
session from each mouse per day. For each mouse, datafromthis set of
experiments were aligned and concatenated, and the activity of neurons
was tracked across these sessions. Note that according to previous
reports®® %, the number of hippocampal place cells decrease in both
darkness and whisker trimming conditions.

Square and oval. This set of experiments was carried outinthe 30 cm
square environment (day 1) and an oval environment (days 2 and 3)
(Fig. 5a). The oval environment had an elliptical shape, with its major

axis measuring 36 cm and minor axis measuring 23 cm. Notably, the
oval experiment on day 3 was rotated 90° relative to day 2 (Fig. 5a). For
each condition, we recorded nine sessions (25 min per session) from
nine mice, asingle session from each mouse per day. For each mouse,
datafromthis set of experiments were aligned and concatenated, and
the activity of neurons was tracked across all the sessions. Data from
both the oval and rotated oval conditions were combined for analysis.

Two cylindrical objects. This set of experiments was first carried out
inthe convex-1environment, followedbya46 (L) x 28 (W) x 30 (H) cm
rectangle environment containing two cylindrical objects (Fig. 5¢c). The
first cylinder had a diameter of 3 cm and a height of 14 cm, while the
second cylinder had a diameter of 9 cm and a height of 14 cm. For this
experiment, we recorded a total of seven sessions (30 min per session)
for each environment from seven mice.

Miniscope imaging data acquisition and preprocessing

Technical details for the custom-constructed miniscopes and general
processing analyses are described in®*>*33 and at http://miniscope.org/
index.php/Main_Page. Inbrief, thishead-mounted scope had amass of
about 3 gand asingle, flexible coaxial cable that carried power, control
signals and imaging data to the miniscope open-source data acquisition
(DAQ) hardware and software. In our experiments, we used Miniscope
v.3, which had a 700 pm x 450 pm field of view with a resolution of
752 pixels x 480 pixels (approximately 1 um per pixel). For subiculum
imaging, we measured the effective image size (the area with detect-
able neurons) for each mouse and combined this information with
histology. The anatomical region where neurons were recorded was
approximately withina450-pm diameter circular area centred around
AP: -3.40 mm and ML: +2 mm. Owing to the limitations of 1-photon
imaging, we believe the recordings were primarily from the deep layer
of the subiculum. Images were acquired at approximately 30 frames
per second (fps) and recorded to uncompressed avi files. The DAQ soft-
ware also recorded the simultaneous behaviour of the mouse through a
high-definition webcam (Logitech) at approximately 30 fps, with time
stamps applied to both video streams for offline alignment.

For each set of experiments, miniscope videos of individual sessions
were first concatenated and down-sampled by a factor of two, then
motion corrected using the NoRMCorre MATLAB package**. To align
the videos across different sessions for each animal, we applied an
automatic two-dimensional (2D) image registration method (github.
com/fordanic/image-registration) with rigid x-y translations accord-
ing to the maximum intensity projectionimages for each session. The
registered videos for each animal were then concatenated together
in chronological order to generate acombined dataset for extracting
calcium activity.

To extract the calcium activity from the combined dataset, we used
extended constrained non-negative matrix factorization for endoscopic
data (CNMF-E)**, which enables simultaneous denoising, deconvolv-
ing and demixing of calciumimaging data. Akey featureincludes model-
lingthe large, rapidly fluctuating background, allowing good separation
of single-neuron signals from background and the separation of par-
tially overlapping neurons by taking a neuron’s spatial and temporal
informationintoaccount (seeref. 38 for details). A deconvolution algo-
rithm called OASIS* was then applied to obtain the denoised neural
activity and deconvolved spiking activity (Extended DataFig.1b). These
extracted calciumsignals for the combined dataset were then split back
into each session according to their individual frame numbers. As the
combined dataset was large (greater than 10 GB), we used the Sherlock
HPC cluster hosted by Stanford University to process the data across
8-12 cores and 600-700 GB of RAM. While processing this combined
dataset required significant computing resources, it enhanced our
ability to track cells across sessions from different days. This process
made it unnecessary to performindividual footprint alignment or cell
registration across sessions. The position, head direction and speed of
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the animals were determined by applying a custom MATLAB script to
the animal’s behavioural tracking video. Time points at which the speed
of theanimal was lower than 2 cm s™ were identified and excluded from
further analysis. We then used linear interpolation to temporally align
the position data to the calcium imaging data.

Corner cell analyses

Calculation of spatial rate maps. After we obtained the deconvolved
spiking activity of neurons, we binarized it by applying athreshold using
ax3standard deviation of all the deconvolved spiking activity for each
neuron. The position datawas sorted into 1.6 x 1.6 cm non-overlapping
spatial bins. The spatial rate map for each neuron was constructed by
dividing the total number of calcium spikes by the animal’s total occu-
pancy inagiven spatial bin. The rate maps were smoothed using a 2D
convolutionwitha Gaussian filter that had astandard deviation of two.

Corner score for each field. To detect spatial fieldsin a given rate map,
we firstapplied athreshold tofilter the rate map. After filtering, each
connected pixel region was considered a place field, and the xand y
coordinates of the regional maxima for each field were the locations of
the fields. We used afiltering threshold of 0.3 times the maximum spike
rate foridentifying corner cells insmaller environments (for example,
thecircle, triangle, square and hexagon), and afiltering threshold of 0.4
foridentifying corner cellsin larger environments (for example, 40 cm
square, rectangle and convex environments, Fig. 4). These thresh-
olds were determined from a search of threshold values that ranged
from 0.1-0.6. The threshold range that resulted in the best corner
cell classification, as determined by the overall firing-rate difference
betweenthe corner and the centroid of an environment (forexample,
Fig.1h), was 0.3-0.4 across different environments. The coordinates
of the centroid and corners of the environments were automatically
detected with manual corrections. For each field, we defined the corner
score as:

dl-d2

COrnerscorege g = m

where dlis the distance between the environmental centroid and the
field,and d2isthe distance between the field and the nearest environ-
mental corner. The score ranges from -1 for fields situated at the cen-
troid of the arenato +1for fields perfectly located at a corner (Extended
DataFig. 1f).

Corner score for each cell. There were two situations that needed to
be considered when calculating the corner score for each cell (Extended
Data Fig. 1g). First, if a cell had n fields in an environment that had k
corners (n < k), the corner score for that cell was defined as:

Y, cornerscore
n field i (n S k);

COrnerscore g = 3

Second, if a cell had more fields than the number of environmental
corners (n > k), the corner score for that cell was defined as the sum of
the top kth corner scores minus the sum of the absolute values of the
corner scores for the extra fields minus one, and divided by k. Namely,

2 top(n,k) COTNETSCOTEfejq ~ Lexira| COTNErsCOrepeq—1|
k

COrnerscore e, = ,(n>k)

wheretop(n,k) indicates the fields (also termed ‘major fields’) that have
the top kth cornerscoreg, out of the n fields, and ‘extra’ refers to the
corner scores for the remaining fields (Extended Data Fig. 1g). In this
case, the absolute values of the corner scores for the extra fields were
used to penalize the final corner score for the cell, so that the score
decreased ifthe cell had too many fields. The penalty for agiven extra

field ranged from O to 2, with O for the field at the corner and 2 for the
field at the centre. As a result, as the extra field moves away from a
corner, the penalty for the overall corner score gradually increases.
Note, among all the corner cells identified in the triangle, square and
hexagon environments, only 7.8 + 0.5% (mean + s.e.m.; n =9 mice) of
them were classified under this situation.

Final definition of corner cells. To classify a corner cell, the timing of
calcium spikes for each neuron was circularly shuffled 1,000 times. For
each shuffle, spike times were shifted randomly by 5-95% of the total
datalength, rate maps were regenerated and the corner score for each
cell was recalculated. Note, for the recalculation of corner scores for
the shuffled rate maps, we did not use the aforementioned penalization
process. This is because shuffled rate maps often exhibited a greater
number of fields than the number of corners, and thus applying the
penalization lowers the 95th percentile score of the shuffled distribu-
tion (that is, more neurons would be classified as corner cells). Thus,
notusingthis penalization processin calculating shuffled corner scores
kept the 95th percentile of the shuffled distribution as high as possible
for each cell to ensure a stringent selection criteria for corner cells
(Extended DataFig. 2a-d). Alternatively, we also attempted to generate
the null distribution by shuffling the locations of place fields directly on
the original rate map. Although the two methods gave similar results
interms of characterizing corner cells, the latter approach tended to
misclassify neurons with few place fields as a corner cell (for example,
aneuron has only one field and the field is in the corner). Therefore,
we used the former shuffling method to generate the null distribution.
Finally,wedefinedacornercellasacell: (1) whose cornerscore passedthe
95th percentile of the shuffled score (Extended Data Fig. 1h,i), (2) whose
distance between any two fields (major fields, if the number of fields is
greater than the number of corners) was greater than half the distance
between the corner and centroid of the environment (Extended
DataFig. 1j) and (3) whose within-session (two halves) stability was
higher than 0.3 (Extended Data Fig. 1k), as determined by the 95th
percentile of the random within-session stability distribution using
shuffled spikes.

Identification of convex corner cells. Toidentify convex corner cells,
we used similar methods as described above for the concave corner
cells, with a minor modification. Namely, after the detection of the
field locations on a rate map, we applied a polygon mask to the map
using the locations of convex corners as vertices. This polygon mask
was generated using the build-in function poly2mask in MATLAB. We
then considered only the extracted polygon region for calculating
corner scores and corresponding shuffles. The reason for using the
polygon mask is to avoid nonlinearity in corner score calculation in
the convex environment, in particular, when the distance between
the location of a field (for example, a field at a concave corner in the
convex-lenvironment) and the environment centreis greater thanthe
distance between the centre and the convex corner.

Measuring the peak spike rate at corners. To measure the peak spike
rate at each corner of an environment, we firstidentified the area near
the corner using a 2D convolution between two matrices, Mand V. M
is the same size as the rate map, containing all zero elements except
for the corner bin, which is set to one. Vis a square matrix containing
elements of ones and can be variable in size. For our analysis, we used
al2 x12matrix V,whichisolated a corresponding corner region equal
toapproximately 10 cm around the corner. We then took the maximum
spike rate in the region as the peak spike rate at the corner. For some
specificanalyses, dueto the unique position or geometry of the region
of interest (for example, the inserted discrete corner and objects), we
decreased the size of the matrix V'to obtain a more restricted region
ofinterest for measurement. Specifically, we measured approximately
5 cmaround the discrete corner (Fig. 3), approximately 5 cm around



the vertices and faces of the triangular object (Extended Data Fig. 7)
and approximately 5 cm outside of the cylinders (Fig. 5). Toensure the
robustness of our findings, we tried various sizes of the 2D convolution
inour analyses, and found that the results were largely consistent with
those presented in the manuscript.

Corrections of spike rates on the rate map. When comparing spike
ratesacross different corners, itisimportant to consider the potential
impact of the animal’s occupancy and movement patterns on the meas-
urements (Extended Data Fig. 4a-f). Toaccount for any measurements
that might have been associated with the animal’s behaviour, we gener-
ated asimulated rate map using asimulated neuronthat fired along the
animal’s trajectory using the animal’s measured speed at the overall
mean spike rate observed across all neurons of agiven mouse (Extended
DataFig. 4c). We then used the raw rate map divided by the simulated
rate map to obtain the corrected rate map (Extended DataFig. 4e). This
method ensured that behaviour-related factors were present in both
the raw and simulated rate maps, and therefore were removed from
the corrected rate map (Extended Data Fig. 4a-f).

Measuring paired-wise anatomical distances. To measure the
pairwise anatomical distances between neurons, we calculated the
Euclidian distance between the centroid locations of each neuron pair
under the imaging window for each mouse. We then quantified the
average intragroup and intergroup distances for each neuronbased on
its group identity (for example, concave versus convex corner cells).
The final result for each group was averaged across all the neurons.
We hypothesized that if functionally defined neuronal groups were
anatomically clustered, the intergroup distance would be greater than
theintragroup distance.

Boundary vector cell analyses

Rate maps of all the neurons were generated by dividing the open arena
into1.6 cm x 1.6 cmbins and calculating the spike rate ineach bin. The
maps were smoothed using a 2D convolution with a Gaussian filter
that had a standard deviation of 2. To detect boundary vector cells
(BVCs), we used amethod based onborder scores, which we calculated
as described previously®*¢:

CM-DM

borderscore = CM+DM

where CMis the proportion of high firing-rate bins located along one of
thewallsand DMis the normalized mean productof the firing rate and
distance of a high firing-rate bin to the nearest wall. We identified BVCs
as cells with aborder score above 0.6 and whose largest field covered
more than 70% of the nearest wall and whose within-session stability
was higher than 0.3. Additionally, BVCs needed to have significant
spatialinformation (thatis, asin place cells, described below). Of note,
our conclusion regarding BVCs and corner cells remained the same
when we varied the wall coverage from 50% to 90% for classifying BVCs.

Place cell analyses

Spatial information and identification of place cells. To quantify the
information content of agiven neuron’s activity, we calculated spatial
information scores in bits per spike (that is, calcium spike) for each
neuron according to the following formula®,

. oo i A
bits per spike= ) P5tlog,~l,
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where P;is the probability of the mouse occupying the ith bin for the
neuron, A;is the neuron’s unsmoothed event ratein the ith bin, while A
isthemeanrate of the neuronacross the entire session. Bins with total
occupancy time of less than 0.1 s were excluded from the calculation.

Toidentify place cells, the timing of calcium spikes for each neuron was
circularly shuffled 1,000 times and spatial information (bits per spike)
recalculated for each shuffle. This generated a distribution of shuffled
information scores for each individual neuron. The value at the 95th
percentile of each shuffled distribution was used as the threshold for
classifyingagiven neuron as aplace cell, and we excluded cells with an
overall mean spike rate less than the 5th percentile of the mean spike
rate distribution (that is, approximately 0.1 Hz) of all the neurons in
thatanimal.

Position decoding using a naive Bayes classifier

We used a naive Bayes classifier to estimate the probability of animal’s
location given the activity of all the recorded neurons. The method
is described in detail in our previous publication®. In brief, the bina-
rized, deconvolved spike activity from all neurons was binned into
non-overlapping time bins of 0.8 s. The M x Nspike data matrix, where M
isthe number of timebinsand Nis the number of neurons, was then used
to train the decoder with an M x 1 vectorized location labels (namely,
concatenating each column of positionbins vertically). The posterior
probability of observing the animal’s position Y given neural activity X
could then be inferred from the Bayes rule as:

PG Xy, - Xy Y =))P(Y=y)
P(Y=yX, X;..., Xy) = POG, Xy o) Xo) ,
where X = (X,, X,, ... X)) is the activity of all neurons, y is one of the spa-
tial bins that the animal visited at a given time, and P(Y =) is the prior
probability of the animal being in spatial bin y. We used an empiri-
cal prior as it showed slightly better performance than a flat prior.
P(X,, X,, ..., Xy) is the overall firing probability for all neurons, which
can be considered as a constant and does not need to be estimated
directly. Thus, the relationship can be simplified to:

N

Y= argmax P(Y=y) [1 PXIY=2),
i=1

where yis the animal’s predicted location, based on which spatial bin
has the maximum probability across all the spatial bins for agiven time.
Toestimate P(X]|Y =y), we applied the built-in function fitcnbin MATLAB
to fit a multinomial distribution using the bag-of-tokens model with
Laplace smoothing.

Toreduce occasional erraticjumpsin position estimates, we imple-
mented atwo-step Bayesian method by introducing a continuity con-
straint®®, which incorporated information regarding the decoded
position in the previous time step and the animal’s running speed to
calculate the probability of the current locationy. The continuity con-
straint for allthe spatial bins Yat time ¢ followed a 2D gaussian distribu-
tion centred at positiony,_;, which can be written as:

-y, ~ VI
2y _ 1
N, at)—c><exp{t20t2 ,

o,=av,

where cis ascaling factor and v, is the instantaneous speed of the ani-
mal between time ¢ —1and ¢. v, is scaled by a, which is empirically
selected as 2.5. The final reconstructed position with two-step Bayes-
ian method can be further written as:

N
Vistep = argmax N, o)P(Y=y) [1 P(XIY=Y).
i=1

Decoded vectorized positions were then mapped back onto 2D space.
Thefinal decoding error was averaged from ten-fold cross-validation.
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Foreachfold, the decodingerror was calculated as the mean Euclidean
distance between the decoded position and the animal’s true position
across all time bins.

To test the contribution of corner cells to spatial coding, we first
trained the decoder using all neurons and then replaced the neural
activity of corner cells with vectors of zeroes from the test databefore
making predictions. It is important to note that this activity removal
procedure was only applied to the data used for predicting locations
and not for training, as ablating neurons directly from the training data
will resultinthe model learning to compensate for the missing informa-
tion*”. We performed this analysis using ten-fold cross-validation for
each mouse. To compare the performance of the corner cell removed
decoder to the full decoder, we first calculated the 2D decoding error
map of asession for each condition, and then obtained amap for error
ratio by dividing the error map from the corner cell removed decoder
by the error map from the full decoder (Extended Data Fig. 2g). We
then compared the error ratio at the corners of the environment to
the centre of the environment. For quadrant decoding in the square
environment (Fig. 1I), we trained and tested the decoder using only
the identified corner cells without the two-step constraint using
ten-fold-cross-validation. For the shuffled condition, the decoder
wastrained and tested for 100 times using circularly shuffled calcium
spikes over time. The probability in the correct quadrant was compared
between the corner cell trained and shuffled decoders. For decoding
the geometry of different environments (Extended Data Fig. 5d-f), we
concatenated the data (time bin =400 ms) with neurons tracked from
circle, triangle, square and hexagon environments for each animal. The
datawasthenresampled froman8 cmdiameter circularareaeitherin
the centre or near the corner/boundary of the environment. The data
length was matched between the two areas and the decoding labels for
eachenvironment wereidentical (numerical, 1for circle, 2 for square,
3fortriangle, 4 for hexagon). Thenthe decoder was trained and tested
for each mouse using 10-fold-cross-validation.

Visualization of low-dimensional neural manifold
Weimplemented a two-step dimensionality reduction method based
onaprior publication*. First, we took the binarized, deconvolved spike
activity from all neurons for each session (time bin size = 67 ms) and
convolved it with a Gaussian filter with 0 =333 ms. As a result, each
column of the matrix represents the smoothed firing rate of each cell
overtime. Then, we z-scored the smoothed firing rate of each cell. Next,
we proceeded with dimensionality reductions on this smoothed and
z-scored datamatrix (number of time bins x number of neurons). First,
toimprove robustness to noise, we performed a principal component
analysis (PCA) on the data matrix. Next, we selected the top ten princi-
pal components from the PCA results to carry out Uniform Manifold
Approximation and Projection (UMAP), reducing the ten principal
componentsinto a3D visualization. The parameters for this UMAP were
setasfollows: min_dist = 0.1, n_neighbors =100 and n_components = 3.
Note that the general structure of the low-dimensional neural manifold
remained largely the same when we varied the number of principal
components from 5to 30 and adjusted the parameters for UMAP.

Linear-nonlinear Poisson (LN) model

Calculation of allocentric and egocentric corner bearing. For each
time pointintherecordingsession, the allocentric bearing of the animal
tothenearest corner (Extended Data Fig. 8b) was calculated using the
X,y coordinates of the corners and the animal as follows:

cornerbearingallocentric =arctan 2(ycorner ™ Yanimal’ Xcorner _Xanimal)

Similarly, allocentric bearings to the nearest walls or centre of the
environment was calculated as:

wallbearing, . .cic = arctan 20y, .y ~ Yinimarr Xwall ~ Xanimal)

centerbear"‘lgallocentric =arctan 2(-){:enter ™ Yanimal’ Xcenter ~ Xanimal)

We then derived the egocentric corner bearing of the animal
(Extended Data Fig. 8a—c) by subtracting the animal’s allocentric head
direction from the allocentric corner bearing;:

cornerbearing =cornerbearing —head direction

egoocentric allocentric

Note thatacornerbearing of O degreesindicates that the corner was
directly in front of the animal, as illustrated in Extended Data Fig. 8c.
Similarly, egocentric bearing to the nearest walls or centre were cal-
culated as follows:

wallbearing =wallbearing - head direction

egoocentric allocentric

centerbearing = centerbearing —head direction

egoocentric allocentric

Implementation of the linear-nonlinear Poisson (LN) model. The
LN modelisageneralized linear model (GLM) framework which allows
unbiased identification of functional cell types encoding multiplexed
navigational variables. This framework was described in a previous
publication®® and here, we applied the same method to our calcium
imaging data in the subiculum. Briefly, for Model 1in Extended Data
Fig.8,15models were builtin the LN framework, including position (P),
head direction (H), speed (S), egocentric corner bearing (E), position &
head direction (PH), position & speed (PS), position & egocentric corner
bearing (PE), head direction & speed (HS), head direction & egocentric
bearing (HE), speed & egocentric bearing (SE), position & head direction
&speed (PHS), position & head direction & egocentric bearing (PHE),
position & speed & egocentric bearing (PSE), head direction & speed
& egocentric bearing (HSE) and position & head direction & speed &
egocentric bearing (PHSE). For each model, the dependence of spik-
ingonthe corresponding variable(s) was quantified by estimating the
spike rate (r,) of aneuron during time bin ¢ as an exponential function
of the sum of variable values (for example, the animal’s position at
time bin ¢, indicated through an ‘animal-state’ vector) projected onto
a corresponding set of parameters (Extended Data Fig. 8d). This can
be mathematically expressed as:

exp(X; X/w)
r=————
de

whereris a vector of firing rates for one neuron over T time points,
iindexes the variable (i € [P, H, S, E]), X;is the design matrix in which
each columniis an animal-state vector x;for variable i at one time bin,
w;isacolumn vector of learned parameters that converts animal-state
vectors into a firing-rate contribution and dt is the time bin width.
We used the binarized deconvolved spikes as the neuron spiking
data with a time bin width equal to 500 ms. The design matrix con-
tained the animal’s behavioural state, in which we binned position
into 2 cm?bins, head direction and egocentric corner bearing into
20-degree bins, and speed into 2 cm s bins. Each vector in the design
matrix denotes a binned variable value. All elements of this vector are
0, except for asingle element that corresponds to the bin of the current
animal-state. Tolearn the variable parameters w;, we used the built-in
fminuncfunctionin MATLAB to maximize the Poisson log-likelihood
of the observed spike train (n) given the model spike number (r x d¢)
and under the prior knowledge that the parameters should be smooth.
Model performance for each cell is computed as the increase in
Pearson’s correlation (between the predicted and the true firing rates)
ofthe model compared to the 95th percentile of shuffled correlations
(true firing rate was circularly shuffled for 500 times). Performance
was quantified through ten-fold cross-validation, where each fold
isarandom selection of 10% of the data. To determine the best fit



modelfor agiven neuron, we used a heuristic forward-search method
that determines whether adding variables significantly improved
model performance (P < 0.05 for a one-sided sign-rank test, n =10
cross-validation folds).

Using LN models to identify egocentric corner cells. To identify
egocentric corner coding in an unbiased manner, we replaced the
allocentric position (P) in Model 1 with egocentric corner distance
(D, binsize =2 cm) tofacilitate theidentification of egocentric corner
cells (Model 2, Extended Data Fig. 9a). However, encoding for egocen-
tric corner bearing, particularly in rotationally symmetric environ-
ments, could potentially be confounded by other correlated variables,
such as egocentric wallbearing (circular correlation with corner bear-
ing = 0.43)”* or egocentric centre bearing (circular correlation with
corner bearing = -0.73)"2. Torule out the possibility that the observed
encoding for egocentric corner bearingin Model 2 was actually due to
encoding for egocentric wall or centre bearing, we next trained two
separate LN models in which egocentric corner bearing and corner
distance was replaced by egocentric wall bearing and wall distance
(Model 3, Extended Data Fig. 9¢), or with egocentric centre bearing
and centre distance (Model 4, Extended Data Fig. 9c). As Models 2,3
and 4 were trained and tested using the same data, we compared the
model fitting of neurons with egocentric corner modulationin Model 2
to the fitting of the same neurons in Model 3 and Model 4. Neurons
that exhibited a significantly better fit (higher increased correlation,
n=10-fold) in Model 2 compared to Model 3 or 4 were considered as
potential neurons encoding egocentric corner bearing. Finally, torule
out the possibility that egocentric corner coding could artifactually
result from the conjunction of position and head direction’, we also
compared the neurons’ fittings in Model 2 to the position and head
directiongroups (P, H, PH, PHS) in Model 1 (Extended Data Fig. 8). Neu-
rons that met these criteria were considered as significantly encoding
cornersinanegocentric reference frame.

To further disentangle the correlations among egocentric bearing
variables in rectilinear environments, we repeated the same analysis
(as described above) in the right triangle environment. In the right
triangle, the circular correlation between corner and wall bearings
decreased to 0.09, and the correlation between corner and centre
bearingsshifted to —0.38. Correlations between egocentric distances
also shifted by 0.2 to 0.4 towards zero. Thus, in theright triangle envi-
ronment, tuning between corner versus wall/centre becomes suf-
ficiently distinct.

Histology

After the imaging experiments were concluded, mice were deeply
anesthetized with isoflurane and transcardially perfused with
10 ml of phosphate-buffered saline (PBS), followed by 30 ml of 4%
paraformaldehyde-containing phosphate buffer. The brains were
removed and left in 4% paraformaldehyde overnight. The next day,
samples were transferred to 30% sucrose in PBS and stored in 4°C. At
least 24 h later, the brains were sectioned coronally into 30-um-thick
samples using a microtome (Leica SM2010R, Germany). All sections
were counterstained with 10 puM DAPI, mounted and cover-slipped
with antifade mounting media (Vectashield). Images were acquired
by an automated fluorescent slide scanner (Olympus VS120-S6 slide
scanner, Japan) under x10 magnification.

Datainclusion criteria and statistical analysis

Afteracertain period postsurgery, the imaging quality began to decline
insome animals, and this thus led to slight variationsin the number of
mice used in each set of experiments, ranging from 7 to 10. We evalu-
ated the imaging quality for each mouse before executing each set of
experiments. No mice were excluded from the analyses as long as the
experiments were executed. For experiments with two identical ses-
sionsforagiven condition (forexample, Figs.1and 2), sessions with less

than3identified corner cells were excluded to minimize measurement
noisein spikerates. This criterion only resulted in the exclusion of one
session from one mouse in Fig. 2e.

Analyses and statistical tests were performed using MATLAB (2020a)
and GraphPad Prism 9. Data are presented as mean * s.e.m. For normal-
ity checks, different test methods (D’Agostino and Pearson, Anderson-
Darling, Shapiro-Wilk and Kolmogorov-Smirnov) indicated only
a portion of the data in our statistical analyses followed a Gaussian
distribution. Thus, a two-tailed Wilcoxon signed-rank test was used
for two-group comparisons throughout the study. We also validated
that conducting statistical analyses with a two-tailed paired ¢-test
yielded consistent results and did not alter any conclusions. For sta-
tistical comparisons across more than two groups, repeated measures
analysis of variance (ANOVA) was used before pairwise comparisons.
All statistical tests were conducted on a per-mouse basis. In cases
where an experiment involved two sessions, the data were averaged
across these sessions, asindicated inthe corresponding text or figure
legend. For example, in Fig. 1g, the proportion of corner cells was
determined by averaging the proportions of corner cells in session 1
(asingle number) and session 2 (asingle number). Similarly, in Fig. 1,
the decoding accuracy for each mouse was averaged using the mean
decodingaccuracy of session1 (asingle number) and session 2 (asingle
number). In all experiments, the level of statistical significance was
defined as P< 0.05.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Calciumimaging datagenerated in this study are available on Mendeley
Data: https://doi.org/10.17632/5sj8d5vtg2.1. Source data are provided
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Extended DataFig.1|Histology and the development ofascore to classify
corner cells. (a) Histology of GRIN lens implantationin the dorsal subiculum of
an example Camk2a-Cre; Ail63 mouse. Green: GCaMP6, Blue: DAPI. Right,
enlarged view of GCaMP6-expressing subiculum neurons. The experiment was
replicated in 8 mice with similar results. (b) Representative de-noised calcium
signaltraces (dark blue) and de-convolved inferred spikes (red bars) extracted
from CNMF-E. (c) Raster plots and rate maps of arepresentative place cellin the
subiculum. Raster plot (left) indicates extracted spikes (red dots) on top of the
animal’s running trajectory (grey lines) and the spatial rate map (right) is
colour-coded for maximum (red) and minimum (blue) values. Activity was
tracked across different environments. (d) Same as (a), but from a Camk2a-Cre
mouse with AAV-DIO-GCaMP7finjected in the subiculum. GCaMP expression
wasrestricted to the subiculum. PrS: presubiculum. (e) Anexample corner cell
from the animalin (d), plotted asin (c). (f) Left, the definition of corner score for
agivenspatial field (cornerscorey,,). d1: distance from the centre of the arena
tothefield; d2: distance from the field to the nearest corner; dc: the mean
distance fromthe cornerstothe centre of the arena. Right, the distribution of
cornerscoreg,qinasquare environment. Thisrepresents the expected corner
scoreifaneuronwereactiveinagiven pixel of this plot. Note that the
cornerscore canrange from -1 (blue) to1(green). (g) The definition of the

corner score foragiven cell (cornerscore,;, see Methods). (h) Anexample
corner cell with cornerscore values for each field labeled inred, the final corner
score for this cellis shown below. (i) Shuffling of cornerscore,., to determinea
threshold for classifying aneuron asacorner cell. Thisexampleis fromthe
same cellasin (h). See also Extended Data Fig.2a-d and Methods. (j) To be
classified asacorner cell, the distance between any two fields (major fields, if
the number of fields > number of corners) needed to be greater than half of the
dcvalue, asindicated by the bluelinein (f). (k) Asan additional criterion, tobe
classified asacorner cell, within-session stability needed to be greater than 0.3
(Pearson’s correlation between the two halves of the data). The distribution
shows the within-session stability of all corner cells from the triangle, square,
and hexagon sessions before applying this criterion (n =1018 cells from 9 mice).
(I) Proportion of neurons that passed the definition for a corner cellwhen
corners of the environments were manually assigned to the walls. Red dots in
thebottomschematic denote thelocations that were assigned as ‘corners’.

(m) Left: Proportion of corner cellsin CA1(n =12 mice). Right: Rate maps of two
example CAlcorner cells. Peak spike rates (fr) and corner scores (c) for the cells
areindicated at the bottom. (n) Same as (), but for the right triangle and
trapezoid environments.
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Extended DataFig.2|Cornerscore shuffling and spatial decoding.

(a) Distributions of corner scores calculated without applying the penalty
(Methods) for all subiculum neuronsrecorded inthe triangle (n = 4774 cells
from 18 sessions of 9 mice), square (n =4685 cells from 17 sessions of 9 mice),
and hexagon (n =4774 cells from 18 sessions of 9 mice) environments. The

red linesrepresent the 95" percentile of the distributions in (b). Note: This
calculationis for display purposes only and was not used for the analysesin
this paper, also see Methods for details. (b) Distributions of corner scores
calculated with penalty applied (Extended Data Fig. 1g), whichwas used in the
analyses. Theredlines represent the 95" percentile of the corresponding
distributions. (c) Distributions of shuffled corner scores calculated without
applying the penalty, which wasusedin the analyses. Each cell was shuffled
1000 times. Thered linesrepresent the 95 percentile of the distributionsin
(b). Thered box over (b) and (c) indicates the method used in corner score
calculationand shuffling proceduresin the current work, which resulted in the
most stringent corner score criteria for defining corner cells. (d) Same as ¢, but
distributions of shuffled corner scores calculated with penalty applied. The
redlines represent the 95" percentile of the distributionsin (b). Note: this

method was not used in this paper. (e) Anexample of the true vs. decoded
spatial x-y position using the full decoder (all recorded subiculum neurons).

(f) Decoding performance of the full decoder in different environments.
Thedecoderwastrained and tested within each session using 10-fold cross-
validation. Each dotis asession, black lines represent the median. Decoding
errors were compared with the corresponding shuffle within each condition
(two-tailed Wilcoxon signed-rank test: allp <0.0001;n=15,18,17,and 18
sessions for circle, triangle, square, and hexagon, respectively, from 9 mice).
(g) Decodingerror ratio fromatriangle (top) or square (bottom) session, color-
coded forlarger (white) and smaller (black) error ratios. The error ratio was
obtained by taking the error map from the corner cell removed decoder and
dividingit by the error map ofthe full decoder. Corner areas (orange boxes)
showed higher error ratios than the center area (blue box). (h) Quantitative
comparisons of the decodingerror ratios between the corner and the center
areas (showning) forall sessions. Eachlineis asession (two-tailed Wilcoxon
signed-ranktest: triangle: p < 0.0001; square: p < 0.0001; hexagon: p = 0.0004;
n=18,17,and 18 sessions for triangle, square, and hexagon, respectively, from 9
mice).



cell 10

e )
4
«
&

fr:0.46Hz c:0.58
cell 55

4
&

fr:1.49Hz c:0.53
cell 86

4
*

fr:0.4Hz c: 046
cell 144

d

<
L)

fr: 1.52Hz c:0.46
cell 196

«

fr:0.67Hz c¢:0.29

fr: 0.16Hzc: 0.34
cell 54

fr: 1.81Hzc: 0.71

cell 91

fr: 0.28Hzc: 0.37
cell 142

fr: 0.63Hzc: 0.52
cell 192

i

fr: 0.82Hzc: 0.27
cell 7

Elw
fr: 0.56Hz c: 0.69

cell 107

=
fr: 1.31Hz ¢: 0.71
cell 182

=
fr:1.14Hz c: 0.49

Extended DataFig. 3 | Rate map examples of identified corner cells. Rate maps of identified corner cellsin the triangle, square, and hexagon environments

cell 13

fr:0.92Hz c:0.49
cell 58

5
fr:0.35Hz ¢:0.78
cell 99

fr: 0.94Hz c:0.55
cell 149

fr:0.91Hz ¢:0.35
cell 205

*
-

fr:0.56Hz c: 0.56

cell 10
-

-
fr: 0.46Hzc: 0.38
cell 55

fr: 1.03Hzc: 0.4
cell 92

fr: 0.41Hzc: 0.31
cell 143

fr: 1.27Hzc: 0.31

cell 203

fr: 0.44Hzc: 05
cell 13

i
fr: 1.51Hz c: 0.67
cell 123

fr: 0.74Hz c: 0.59
cell 193

fr: 2.49Hz c: 0.54

cell 28

fr:0.75Hz ¢:0.58
cell 60

fr:0.65Hz c:0.58
cell 105

4
4

%

fr: 1.25Hz ¢:0.49
cell 155

fr:1.3Hz ¢ 0.56

cell 222

r

fr:0.96Hz c: 0.57
cell 13

fr: 1.71Hzc: 0.31
cell 57
&

fr: 0.32Hzc: 0.35
cell 99
'

LB
A

fr: 0.82Hzc: 0.39
cell 161

fr:1.01Hze: 0.22

cell 218

fr: 0.86Hzc: 0.37
cell 21

fr: 0.53Hz c: 0.51
cell 144

fr: 0.49Hz c: 0.51
cell 222
.

fr: 0.57Hz c: 0.62

cell 39

fr: 0.96Hz c: 0.38
cell 67

)
4

fr: 0.53Hz c¢: 0.62
cell 108

fr: 0.85Hz ¢:0.35
cell 156

o]

»

fr0.43Hz c:0.35

cell 224

fr:0.62Hz c:0.55
cell 40

fr: 0.33Hzc: 0.55
cell 60

fr: 0.83Hzc: 0.2
cell 112

i
‘
™

fr: 1.34Hzc: 0.25
cell 181

fr: 0.79Hzc: 0.26

cell 222

‘

fr: 1.01Hzc: 0.58
cell 47

-
fr: 0.98Hz c: 0.79
cell 150
8

fr: 1.32Hz c: 0.46

cell 40

L

h §

fr:0.49Hz c¢: 0.39
cell 71

fr:1.16Hz ¢:0.32
cell 111

fr:0.76Hz c:0.35
cell 182

fr: 1.25Hz c: 0.42
cell 227

<
.|

P

fr: 2.5Hz

c:0.32
cell 41

fr: 0.74Hzc: 0.63
cell 76

[ =
fr: 0.64Hzc: 0.3
cell 119

fr: 1.44Hzc: 0.39
cell 182

fr: 0.49Hzc: 0.31
cell 232

fr: 0.69Hzc: 0.48
cell 50
-

fr: 1.03Hz c: 0.51

cell 161

»:

fr: 0.78Hz c: 0.51

cell 47

fr:2.17Hz ¢:0.73
cell 74

fr:1.42Hz ¢:0.48
cell 117

fr: 0.65Hz c: 0.6
cell 186

[
fr:1.1Hz ¢ 0.28
cell 241

fr: 0.76Hz c: 0.51
cell 45
]

-

fr:0.6Hz c:0.44
cell 77

fr: 0.67Hzc: 0.65
cell 126

fr: 0.65Hzc: 0.49
cell 183

el
fr: 1.42Hzc: 0.24
cell 239

fr: 0.91Hzc: 0.27
cell 54

fr: 1.07Hz ¢: 0.51
cell 167

fr: 0.58Hz c: 0.47

cell 50

L
4

fr: 1.49Hz c: 0.49
cell 76

>
.

fr: 0.64Hz c:0.42
cell 123

4
o~

fr: 0.94Hz c: 0.57
cell 187

o
oo

fr: 1.31Hz ¢: 0.63
cell 263

fr: 0.25Hz ¢: 0.53
cell 47

fr: 1.35Hzc: 0.71
cell 78

0.35
cell 129
-

fr: 0.71Hzc: 0.31
cell 189

-
fr: 0.77Hzc: 0.27
cell 253

g i
fr: 0.34Hzc: 0.4
cell 77

:
!l -

fr0.9Hz ¢ 0.7
cell 176

i

fr: 0.92Hz c: 0.49

from arepresentative mouse. Corresponding peak spike rate (fr) and corner score (c) are labeled under each rate map.

cell 54

fr:1.19Hz ¢:0.78
cell 77

fr: 1.66Hz c: 0.69
cell 139

fr: 1.59Hz c:0.36
cell 194

fr: 1.33Hz ¢:0.52
cell 272

o

fr:1.13Hz ¢:0.34
cell 48

fr: 0.83Hzc: 0.63
cell 79

1 0.6Hz ¢:0.25
cell 131

2 0.97Hzc: 0.28
cell 190

fr: 0.59Hzc: 0.57

cell 256

fr:0.28Hz ¢: 0.5
cell 181

fr:0.3Hz c:047



Article

0.71H
L 'II ’
l

e
P

2

|1

: 0

rate map

simulated rate map

fold

corrected rate map =

spike rate (Hz)

rate map

simulated map

0.5
0.4
0.3
0.2
0.1

triangle1 v/, triangle2

spike rate (Hz) spike rate (Hz)

corrected spike rate (fold)

12+ ns
1.0
0.8}
0.6
04

0.2

0_0 S S S—

1 2 3
corners in triangle

0.8 ns

0.6

0.4}

0.2

1 2 3
corners in triangle

o
1 2 3
corners in triangle

triangle v/, square x

ns

1 2 3 4 5 6
corners in hexagon

ns

12+ p=0.01 12+
__ 1.0t __ 1.0t
N N
L o8} L o8l
2 2
S 06} S 06}
2 2
S 041 S 041
" "
0.2} 0.2}
00— . 0.0
12 4
corners in square
0.8} p=002 0.8}
~ 06 N 06}
z T
[} [}
® 04} ® 041
2 2
& 02t & 02t
00— : 0.0
12 4
corners in square
3 - ns 3 .
) )
S S
[0} [0}
s 2t 5 2}
[0} [0}
A X
o o
" ]
3 3 1
5 3
0 )
5] 5]
° 0 ° 0

1 2
corners in square

triangle v/, hex x

0 10 20 0 10 20 10 20
distance to corners distance to corners distance to corners
(cm) (cm) (cm)

Extended DataFig. 4 |See next page for caption.

1 2 3 4 5 6
corners in hexagon

ns

4

cells classified as a
corner cell in the
previous session (),
but not in the current (*)

other non-corner cells
in the current session

1 2 3 4 5 6
corners in hexagon

squarel v/, square2 x

0.5
0.4
0.3
0.2

spike rate (Hz)

*k

0.1

0 10 20

distance to corners
(cm)



Extended DataFig.4|Corrected rate map and persistent activity of corner
cells. (a) Raster plotand the corresponding rate map of an example corner cell.
Theraster plot (top) indicates extracted spikes (red dots) on top of the animal’s
running trajectory (grey lines) and the spatial rate map (bottom) is color-coded
for maximum (red) and minimum (blue) values. (b) Spike rates of corner cells at
each cornerofthetriangle, square, and hexagon, respectively, calculated using
therate mapsof corner cells. Eachline represents amouse. Thereis asignificant
differenceinthe corner spike rates across different cornersin the square
(repeated measures ANOVA:F(2.24,12.92) =5.76, p= 0.010; n =9 mice). ns: not
significant. (c) Raster plotand the corresponding rate map of a simulated cell.
The simulated rate map was generated using a simulated neuron that fires
alongthe animal’s trajectory using the animal’s own speed at the overall mean
spike rate observed across all neurons of a given mouse (Methods). (d) Same as
(b), but calculated using simulated rate maps for each mouse. The difference
incorner spikeratesinthesquare persistsevenin the simulated rate maps
(repeated measures ANOVA: F(2.56,20.48) =4.24,p =0.022; n =9 mice),

indicating this effect is due to animals’ behavior. () An example of corrected
rate map, by dividing the original rate map (i.e., a) by the simulated rate map
(i.e.,c). Therefore, the spike rates on the corrected rate map were automatically
converted to fold changesrelative to the simulated rate map. This method was
used to correct for any measurements that might have been associated with the
animal’s movement or occupancy, as purely behavior-related changes should
beevidentinboththe original and simulated rate maps. (f) Same as (b), but
calculated using the corrected rate maps of corner cells. Eachlinerepresentsa
mouse (repeated measures ANOVA: all p > 0.05; n = 9 mice). (g-h) Spike rates
plottedrelative to the distance to the nearest corner. Blue curvesindicate
neurons that were corner cellsin the first session (green check) but notinthe
second session (red cross). The plots were generated based on the activity of
neuronsinthesecondsession. Grey curvesindicate other non-corner cells.
Solid line: mean; Shaded area: SEM. Statistical tests were carried outasin

Fig. 2k (two-tailed Wilcoxon signed-rank test: * p < 0.05, **p < 0.01; n =9 mice
foreachplot).
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Extended DataFig. 5| Neural manifold embedding and geometry decoding.
(a) Three-dimensional (3D) embedding of the population activity of recorded
subiculum neuronsinthetriangle from four different mice. We applied a
sequential dimensionality reduction method using PCA and UMAP to obtain
this neural manifold embedding (Methods). Each dot represents the population
state atone time point. Time points within 5 cmofthe corners are color-coded,
with the color graded to grey as afunction of the distance away from the corner
(toprow). Theexample from mouselis the same as Fig. 1k but fromarotated
view. Theblackcircle denotes the place that corner representations converged
oneach manifold. (b) same as (a), butin the square environment. (c) same as (a),

butinthe hexagon environment.For a-c, analyses werereplicatedin 9 mice
with similar results. (d) Left: Schematic of using the data from the environmental
centre (8 cmdiameter) to decode the environmental identity (geometry).
Right: Adecoding example to predict the geometry of the environment.

(e) Left: Schematic of using the data near (within 8 cm) ageometric feature
ofthe environment (e.g., acorner) to decode the environmental identity
(geometry). Right: Adecoding example to predict the geometry of the
environment. (f) Comparison of decodingaccuracyin (d) and (e) (mean + SEM:
centervs.corner:0.79 +0.02vs. 0.85 + 0.02; two-tailed Wilcoxon signed-rank
test: p=0.019; n=9 mice).
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Extended DataFig. 6| Theresponse of corner cells tonon-geometric and
sensory manipulations. (a) Schematic of ashuttle box composed of two
compartments that differed in their visual and tactile cues. (b) Two example
corner cells from two different mice recorded in the shuttle box shownin (a).
Raster plot (left) indicates extracted spikes (red dots) on top of the animal’s
running trajectory (grey lines) and the spatial rate map (right) is color-coded
for maximum (red) and minimum (blue) values. (c) Proportion of neurons
classified as corner cellsin the grey vs. black compartments of the shuttle box
(two-tailed Wilcoxon signed-rank test: p = 0.91; n = 9 mice). ns: not significant.
(d) Average corrected peak spike rates of corner cells at the cornersinthe grey
vs.black compartments (two-tailed Wilcoxon signed-rank test:p=0.43;n=9
mice). Corner cellsincluded in this quantification were defined as corner cells
inboth grey and black compartments. (e) Same as (d), but using corner cells
that defined in the grey compartment (two-tailed Wilcoxon signed-rank test:
p=0.07).(f) Same as (d), but using corner cells that defined in the black
compartment (two-tailed Wilcoxon signed-rank test: p = 0.91). (g) Schematic

ofimaginginthedarkor after trimming the whiskers. Orange barsindicate the
location of local visual cues. (h) Raster plots and the corresponding rate maps
of three corner cells from three different mice, asin (b). Each columnisa
neuronwith activity tracked across all the conditions indicated on the left.

(i) Left: Proportion of corner cells compared between baseline and dark
(two-tailed Wilcoxon signed-rank test: p = 0.50; n = 9 mice). Right: Proportions
of corner cellscompared between baseline and whisker trimming (two-tailed
Wilcoxonsigned-rank test: p=0.46, n =9 mice). (j) Left: Comparison of the
corrected peak spike rates of corner cells at square corners between baseline
and dark (two-tailed Wilcoxon signed-rank test: p = 0.019; n = 9 mice). Right:
Comparisonofthe corrected peak spike rates of corner cells at square corners
betweenbaseline and whisker trimming (two-tailed Wilcoxon signed-rank test:
p>0.99; n=9mice). (k) Same as (i), but for neurons classified as place cells in
the subiculum (two-tailed Wilcoxon signed-rank test: left: p = 0.0039; right:
p=0.019; n =9 sessions from 9 mice).
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Extended DataFig.7|Convex corner cells are not sensitive to non-geometric
changes or corner angles butrespond to certain properties of discrete
objects. (a) Related to Fig. 4f: comparing the overlap of corner cells with the
chance. Left: overlap of corner cells (both concave) between square and
rectangle environments (red bar). Middle: overlap of corner cells (concave vs.
convex) between square and convex-1environments (red bar). Right: overlap of
corner cells (concave vs. convex) betweenrectangle and convex-1environments
(redbar). The gray histogramillustrates the corresponding distribution of
overlap expected by chance, with the black bar denotes the 95" percentile of
eachdistribution. This distributionis generated by randomly selecting the
same number of neurons, asindicated above for each environment, 1000 times
ineach mouse (n =9 mice). Corner cellsinthesquare and rectangle showed an
overlap thatis higher than chance (left), while the overlap between corner cells
encoding concave or convex corners was minimal and below the chance level.
(b) Schematic of the normal (convex-1) and the modified (convex-m1) convex
environments. In convex-ml, one of the convex corners (in pink) was composed
of walls of adifferent color and texture from the other three. Orange bars
indicate thelocation oflocal visual cues. (c) Two representative corner cells
encoding convex corners from two different mice. Each columnis aneuronin
whichitsactivity was tracked across the two conditionsindicated in (b). Raster
plot (left) indicates extracted spikes (red dots) on top of the animal’s running
trajectory (grey lines) and the spatial rate map (right) is color-coded for
maximum (red) and minimum (blue) values. Pink circles delineate the location
ofthe modified cornerinthe convex-mlarena. (d) Corrected peak spike rates
of corner cells (convex) at the location of the modified cornerin the convex-1

vs.convex-mlarenas (two-tailed Wilcoxon signed-rank test: p=0.85;n=10
mice). Corner cellswere defined in each session. (e) Schematic of aconvex
environment containing 270° and 225° corners, asin (b). The second session
wasalsorotated 90 degrees counterclockwise, but was combined with the first
session for analysis. (f) Raster plots and the corresponding rate maps of two
corner cellsencoding convex corners from two different mice, asin (c). Each
columnisaneuroninwhichitsactivity was tracked across the two sessions.

(g) Corrected peak spike rates of corner cells (convex) at 270° and 225° corners
(two-tailed Wilcoxon signed-rank test: p = 0.73; n =9 mice). (h) Schematic of the
experiments, asin (b). Corner cells (convex) were identified in the convex-1
environmentonday 1, then their activity was tested with inserted objects
(atriangle and acylinder) on day 2. (i) Raster plots and the corresponding rate
mapsof three corner cells encoding convex corners from three different mice.
Each columnisaneuroninwhichitsactivity was tracked across the two
sessions. (j) [llustration showing vertex and face locations for the triangular
object. (k) Differences between spike rates at the vertices and faces of the
triangular objectin corner (convex) and non-corner cells (two-tailed Wilcoxon
signed-rank test against zero: corner cells: p = 0.0078; non-corner cells:

p =0.95; two-tailed Wilcoxon signed-rank test: corner cells vs. non-corner cells:
p=0.0078; n=8mice). (I) Differences between spike rates at the cylinder and
the facesof the triangular objectin corner (convex) and non-corner cells
(two-tailed Wilcoxon signed-rank test against zero: corner cells: p = 0.016;
non-corner cells: p = 0.74; two-tailed Wilcoxon signed-rank test: corner cells vs.
non-corner cells: p=0.016; n =8 mice).
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Extended DataFig. 8| Corner cells primarily correspond to an allocentric
referenceframe. (a) Schematic for calculating egocentric corner bearing (red)
using head direction (green) and allocentric corner bearing (blue) (Methods).
(b) Behavioral data ofallocentric corner bearing in square and convex-1
environments from one representative mouse. Each positionis color-coded for
theallocentricbearing of the nearest corner relative to the animal. Note the
discrete color shiftsrepresent changesinthe closest corner to the animal (e.g.
the northwest versus southwest corner). (c) A corner cell example with spikes
color-coded according to the egocentric corner bearingin square and convex-1
environments. O degreesindicates the animalis directly facing the nearest
corner. (d) Schematic of thelinear-non-linear Poisson (LN) model framework
with behavioral variablesincluding allocentric position (P), allocentric head
direction (H), linear speed (S) and egocentric corner bearing (E) (Model 1,
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see Methods). (e) True tuning curves (top) and model-derived response profiles
(bottom) froman example corner cell. (f) An example of evaluating the model
performance and selecting the best model using a forward search method.
Thisexampleis fromthe cornercellin (e) and the best fit model (red dot) is the
position (P) only model. (g) Number of corner cells (concave or convex) that
were classified ineach cell type category. This plot combined all the corner
cells fromall mice identified from the large square or convex-lin Fig. 4 (atotal
of 77 corner cells (concave) and 44 corner cells (convex) from 10 mice). Some
corner cells could not be classified potentially due to low spike rates (NaN).

(h) Same as (g), but plotted using the proportion of total corner cellsineach
animal. For thebox plots, the centerindicates median, and the box indicates
25th and 75th percentiles. The whiskers extend to the most extreme data points
without outliers (+).
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Extended DataFig.9|See next page for caption.



Extended DataFig.9|Asmallnumber of subiculumneurons encode
egocentricbearing from corners. (a) Schematic of the linear-non-linear
Poisson (LN) model framework with behavioral variablesincluding egocentric
cornerbearing (E), egocentric corner distance (D), allocentric head direction
(H) andlinear speed (S) (Model 2). (b) Proportion of subiculum neurons that were
classified by Model 2 inlarge square (green) or convex-1(orange) environments
(n=10 mice). Neurons combined from all model groups featuring egocentric
corner-bearing (E, highlighted inred) account for 6.24 +1.20 % (n =10 mice) of
thetotalrecorded subiculum neuronsin the square environment. Similarly,
3.1+ 0.6 % of neurons featuring egocentric corner bearing for convex corners
inthe convex-1environment. For the box plots, the center indicates median,
theboxindicates25thand 75th percentiles. The whiskers extend to the most
extreme data points without outliers (+). (c) Schematics of LN model 3and 4.

Model 3 contains egocentric wall bearing (E), egocentric wall distance (D),
allocentric head direction (H) and linear speed (S). Model 4 contains egocentric
center bearing (E), egocentric center distance (D), allocentric head direction (H)
and linear speed (S) (see Methods). (d) Left: Proportion of egocentric corner
cellsinthe subiculum from the square (mean + SEM; n =10 mice), rectangle
(n=10), right triangle (n = 8), and convex-1(bearing to convex corners; n =10)
environments. Right: pie chart showing the conjunctive coding of egocentric
corner cellswith other behavioral variables. (e) Representative egocentric
corner cells fromthe square, rectangle, right triangle, and convex-1 (bearing to
convex corners) environments. Each columnrepresentsaneuron. The first row
shows spike raster plots color-coded with egocentric corner bearing on top of
theanimal’s runningtrajectory (grey lines). Similarly, the second row is color-
codedwithallocentrichead direction. The third row shows positional rate maps.
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Extended DataFig.10| Corner coding differs fromboundary vector coding
inthe subiculum. (a) Raster plots and rate maps of three boundary vector cells
(BVCs) fromthree different mice, plotted asin Fig. 1f. BVCs were identified in
thesquare environment. Each columnisacellin whichitsactivity was tracked
across sessions. (b) Proportion of neurons classified asBVCsin the square and
rectangle sessions. Each dot representsasession (n =10 mice). Histogram and
errorbarsindicate mean + SEM. (c) Venn diagram showing the overlap between
BVCs and corner cells (concave or convex). BVCs and corner cells encoding
concave corners were identified in the square environment, while corner cells
encoding convex corners were identified in the convex-1arena. Allnumbers
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were normalized to the number of BVCs. The overlap between corner cellsand
BVCs (3.5 £1.1%) was not higher than the threshold above the random overlap
level (12.5%) (d) Anexample neuron classified asbothaBVC and corner cell
based onitsactivity in the square environment. (e) Anatomical locations of
BVCsand corner cells (concave or convex) fromarepresentative mouse. Color
codesarethesameasin (c). Unfilled grey circles represent other subicular
neurons. A: anterior; P: posterior; L: lateral; M: medial. (f) Pairwise intra- vs.
inter-group anatomical distances for BVCs and corner cells (concave + convex)
(repeated measures ANOVA:F(1.37,12.36) = 0.30, p = 0.66; n =10 mice).
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sessions for a given condition (e.g., Fig. 1 and 2), sessions with less than 3 identified corner cells were excluded to minimize measurement
noise in spike rates. This criterion only resulted in the exclusion of one session from one mouse in Fig. 2e.

Replication Up to six mice were used as a cohort for each batch of experiments. All experiments were repeated with at least two different cohorts of mice
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Laboratory animals For subiculum imaging, 8 Camk2a-Cre; Ai163 mice (Ref 43, 4 male and 4 female), 1 Camk2-Cre mouse (female, JAX: 005359), and 1
C57BL/6 mouse (male) were used. For CA1 imaging, 12 Ai94; Camk2a-tTA; Camk2a-Cre (JAX id: 024115 and 005359) mice (7 male
and 5 female) were used. Mice were group housed with same-sex littermates until the time of surgery. At the time of surgery, mice
were 8 -12 weeks old. After surgery mice were singly housed at 21 -22°C and 29 - 41% humidity. Mice were kept on a 12-hour light/
dark cycle and had ad libitum access to food and water in their home cages at all times.

Wild animals No wild animals were used in this study

Reporting on sex Data from both males and females were combined for analysis, as we did not observe sex differences in, for example, corner cell
proportions, spike rates to different corners angles, or concavity and convexity.

Field-collected samples  No field collected samples were used in this study.

Ethics oversight All procedures were approved by the Institutional Animal Care and Use Committee at Stanford University School of Medicine and the
University of California, Irvine.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks NA

Novel plant genotypes  NA

Authentication NA




	Subicular neurons encode concave and convex geometries

	Subiculum neurons encode environmental corners

	Corner coding is specific to environmental corners

	Decoupling corner coding from non-geometric features

	Subiculum neurons encode convex corners

	Corner coding in the subiculum is primarily allocentric

	Corner coding differs from boundary coding

	Corner coding generalizes to concavity and convexity

	Discussion

	Online content

	Fig. 1 The subiculum contains neurons that exhibit corner-associated activity.
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	Fig. 3 Corner cell coding is sensitive to the proximity of the walls that constitute a corner.
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