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Abstract

The distinctly human ability to both represent number exactly
and develop symbolic number systems has raised the question of
whether such number concepts are culturally constructed
through symbolic systems. Although previous work with
innumerate and semi-numerate groups has provided some
evidence that understanding exact equality is related to
numeracy, it is possible that previous failures were driven by
pragmatic factors, rather than the absence of conceptual
knowledge. Here, we test whether such factors affect
performance on a test of exact equality in 3- to S-year-old
children by modifying previous methods to draw children’s
attention to number. We find no effect of highlighting exact
equality, either through framing the task as a “Number” game or
as a “Sharing” game. Instead, we replicate previous findings
showing a link between numeracy and an understanding of exact
equality, strengthening the proposal that exact number concepts
are facilitated by the acquisition of symbolic number systems.

Keywords: Number;
conceptual development

language; cognitive development;

Introduction

Human numerical capacities are unique in the animal
kingdom in two ways: Only we are capable of thinking
about large exact numbers (like 2021), and only we have
developed rich and varied symbolic systems with which to
express them (like “2021”). The presence of exact number
concepts and their symbolic expression in humans raises a
question: Are these concepts part of humanity's unique
cognitive endowment, with numerical language and notation
invented only to express them? Or is the ability to think
about exact numbers culturally constructed through our
unique, exact symbolic number systems?

There are several hypotheses about the relation between
exact number concepts and symbolic number systems. One
possibility is that humans who do not have symbolic number
language are not only unable to represent precise
magnitudes such as 2021, but also cannot recognize that
large magnitudes can be exactly equal to one another.
Instead, on this view, innumerate humans are limited to the
non-symbolic numerical systems they share with
non-human animals, such as the Approximate Number
System (Feigenson, Dehaene, & Spelke, 2004) and Parallel
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Individuation (Gordon, 2004), which are incapable of
supporting precise representations of large numerosities
(Carey & Barner, 2019). An alternative to this account,
however, is that large exact number representations are
innately available (Gelman & Butterworth, 2005; Gelman &
Gallistel, 2000), and are simply expressed by symbolic
number (Gelman & Gallistel, 1992). Finally, a third
possibility is that humans without symbolic number systems
lack representations of individual precise magnitudes, but
nevertheless understand that large magnitudes can be
exactly equal to one another.

This final possibility entails an understanding that any
two sets that have the same number of elements are
equinumerous if there is a one-to-one correspondence
between elements in the set—sometimes referred to as
“Hume’s Principle” (Boolos, 1986; Hume, 1739). While
equality is easily established by counting, it can also be
established through non-symbolic one-to-one procedures.
For example, by pairing off items in two sets such that each
item in one set corresponds to an item in the other (and vice
versa), it is possible to verify that two sets are equal without
counting or knowing exactly how many items are in each
set. Consequently, it is possible, at least in principle, that an
understanding of exact equality may be present even in
individuals who have little or no exposure to symbolic
number systems.

Previous work has tested whether innumerate individuals
can use one-to-one correspondence to establish exact
equality, using a measure known as the “set-matching task.”
In the simplest version of this task, the experimenter
presents a number of items in a row, and then asks the
participant to create a matching row. The experimenter’s
row stays visible, such that participants can create their row
by matching each element in the experimenter’s row
one-to-one, without using symbolic number. However, this
task has produced mixed results in work done with
innumerate adults, such as the Pirahd, an indigenous
Amazonian group. While two studies (Everett & Madora,
2012; Gordon, 2004) found that the Piraha failed to exactly



match sets greater than 3 items (see also Pica et al., 2004),
another found that Piraha participants succeeded for all set
sizes (Frank et al., 2008). In addition to being in conflict,
these findings are also limited in that they tested only
individuals who were fully innumerate. Numeracy consists
of many different components (such as access to a shared
count list, knowledge of number words, and counting) that
may be learned individually. While it is possible that
knowledge of a culturally shared count list or exposure to
number words is alone sufficient to support reasoning about
exact equality, another possibility is that additional
components of numeracy are required to support this ability.
To address these limitations, recent work has focused on
another group with limited symbolic number knowledge,
and in whom these components are sequentially acquired,
young children in the US.

Schneider and Barner (2020) used a modified version of
the set-matching task to test 3- to S-year-old children with
varying levels of symbolic number knowledge and found
that their ability to exactly match sets was related to their
level of numeracy. Although US children are unlike the
Pirahd in that they receive linguistic number input almost
from birth, it takes years for them to acquire its meaning,
making them effectively semi-numerate for several years.
Critically, components of numeracy emerge individually in
children over the first few years of life, making them an
ideal case-study of how each component might support
reasoning about exact equality. Starting around 2.5 years of
age, children begin to sequentially learn the meanings of
one, two, and three, but do not yet understand how the
meanings of these words are related to the logic of counting
(Wynn, 1992). During this phase, children are called
“subset-knowers,” as they have meanings for only a subset
of the number words in their count list. It is not until around
3.5-4 years of age that they become “Cardinal Principle,” or
CP-knowers, meaning that they know that the last word said
while counting indicates the cardinality of a set (Gelman &
Gallistel, 1978).

Schneider and Barner (2020) asked whether subset- and
CP-knowers could use one-to-one correspondence to
generate numerically equal sets for both small (3, 4) and
large (6, 8, 10) sets. To do this, they framed the
set-matching task as a “matching game” with fish in a pond,
where children were instructed to make their pond “look
like” the experimenter’s, which was presented directly
above the child’s, as in Gordon (2004). Using this measure,
they found that, like some Pirahd participants,
subset-knowers—who have limited knowledge of counting
and number words—failed to create exact matches for sets
>3. In contrast, CP-knowers—who can use counting to
generate large sets—were significantly more likely to
generate exact matches despite not being allowed to count
during the task. On the basis of these results, Schneider and
Barner argued that learning how to generate sets through
counting, rather than knowledge of number language in
general (as tested by work with innumerate populations), is
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implicated in supporting the ability to reason about exact
equality non-symbolically.

Although these findings suggest a link between exact
equality and one component of numeracy—specifically,
acquiring the cardinal principle—it is possible that
Schneider and Barner underestimated children’s
competence. Previous work has shown that when asked to
establish equivalence between two sets, children frequently
use perceptual properties other than number (such as color,
shape, length, density, or size), leading to failures that
appear numerical in nature. Children may have failed in
Schneider and Barner’s task due to the ambiguously phrased
instruction to “make your pond look like mine,” which
could be compatible with dimensions other than number.
Importantly, other work has found that, when instructed to
attend to number, children are able to do so, though on
different tasks. For example, Negen and Sarnecka (2015)
found that subset-knowers who had failed to determine
which of two dot arrays “had more” were interpreting the
question in terms of surface area rather than numerosity.
When children were trained that the word “more” referred to
the number of dots, they succeeded. A similar pragmatic
failure may also explain failures sometimes observed in
innumerate  groups (Laurence & Margolis, 2007).
Individuals who fail the task may possess an understanding
of exact equality, but fail to demonstrate it if the goal of the
set-matching task is not made sufficiently clear. On this
account, previously reported differences between
innumerate/semi-numerate and numerate populations may
reflect differences in how participants perceive the
relevance of number when instructions are ambiguous.

We address this possibility in the current work. Using the
set-matching task from Schneider and Barner (2020), we
tested whether motivational and pragmatic factors, rather
than numeracy, accounted for children’s ability to establish
exact set matches. In Experiment 1, we explicitly
disambiguate number as the dimension of interest by telling
children that this is a number matching game, and that they
should match the two rows without counting. In Experiment
2, we framed the set-matching task as a “sharing” game, in
which each row was given to a character, and children had
to ensure that the distribution of resources was “fair” and
“the same.” Historically, human concerns for fairness and
equitable distribution of resources motivated some of the
earliest creations of symbolic number systems, often
including one-to-one tallies to represent goods and trading
(Ifrah, 2000; Schmandt-Besserat, 1978). In addition,
children develop expectations for equitable resource
distribution as early as 19 months (Sloane, Baillargeon, &
Premack, 2012), and by 3 years of age believe that equal
resource distribution carries normative force (Rakoczy,
Kaufman, & Lohse, 2016). Moreover, CP-knowers have
been shown to favor ‘fair’ (equal) distributions more often
than subset-knowers in cases where the quantities were
small enough that equality could be established by
approximation or subitizing, without deploying one-to-one
correspondence (Chernyak, Harris, & Cordes, 2019),



suggesting that having greater knowledge of symbolic
number can support establishing exact equality when
fairness is at stake. This may even be true for
subset-knowers; because Chernyak et al. did not include a
non-sharing condition, it is unknown whether concerns for
fairness might motivate subset-knowers to generate
numerically equal distributions, despite doing so less often
overall than CP-knowers. Given these considerations, we
hypothesized that fairness concerns may motivate children
to attend to exact numerical equality in this task.

Experiment 1: Number Matching

Methods

This study was not pre-registered. Data collection was
halted in March, 2020 due to COVID-19.

Participants Our current sample includes 32 children (M,
= 4.11 years, SD,,. = 0.64 years) out of a planned sample of
80 recruited from local preschools and the surrounding area
in San Diego, CA. In this sample, 20 children were
identified as CP-knowers (M,,=4.41 years, SD,,.=0.45
years), and 12 as subset-knowers (M,,=3.61 years,
SD,,=0.65 years) by the Give-N task.

Procedure

All children were tested individually in a small room set
apart from the classroom, museum, or lab. All children were
tested first on the Number Matching Task, and then their
knower-level (subset-/CP-knower) was determined using the
Give-N task.

Number matching task We minimally modified the
set-matching task from Schneider and Barner (2020).
Children were presented with two 47x30” blue rectangular
boards placed about .5” apart, with one board directly above
the other, and a set of 15 identical plastic fish. The
experimenter then told the child, “This is a number
matching game. In this game, I want you to make sure that
your pond has the exact same number of fish as my pond
without counting.” The experimenter then placed one fish in
the center of the top board and said, “Using your fish, can
you make your pond have the same exact number of fish as
my pond without counting?” If the child provided the
correct number of fish, the experimenter said “Great job!
Our ponds have the exact same number of fish because there
is one fish here and one fish here!” If the child did not
provide the correct number of fish, the experimenter said,
“Hmm, I don’t think that’s the same exact number of fish,
because I have only one fish here, and there are [number of
fish] in your pond. Let’s try again!” Unlike Schneider and
Barner, we used number language in our feedback to
emphasize that children should be generating exact matches.
After the child passed a training trial with one fish, they
received a second training trial with two fish. Only children
who could pass both trials and understood the purpose of the
task were included in the study.
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After training trials, children received test trials with sets
of 3, 4, §, and 10. The experimenter’s set was always placed
on the center of one board with about .25” separation
between each fish. Although the experimenter used number
language while introducing the task, they did not use any
number language while conducting the test trials, and
children were not permitted to count. If the experimenter
observed a child counting, they quickly covered both boards
and said, “This isn’t a counting game! This is just a number
matching game!” and restarted the trial, removing fish from
the child’s board if necessary. Counting was prohibited both
to be consistent with other work (Gordon, 2004; Schneider
& Barner, 2020), and also so that any differences between
CP- and subset-knowers did not simply reflect the
application of a symbolic tool (counting) that only
CP-knowers could deploy. Counting attempts were
extremely rare: CP-knowers attempted counts on 5/78 trials,
and no subset-knowers attempted to count. Because
Schneider and Barner (2020) found evidence that
CP-knowers were not covertly counting to solve this task,
we did not use additional measures to prevent counting,
such as verbal interference.

To test the effect of drawing children’s attention to
number, we compared -children’s performance to a
previously-collected dataset in which the set-matching task
was presented only as a “matching” game (N = 144, M,,. =
3.94 years, SD,, = 0.53 years; n CP-knowers = 70, n
subset-knowers = 74). The matching task was identical to
the number matching task, with the following exceptions:
children were told that it was a “matching game,” and that
the goal of the game was to make their pond “look like” or
“look the same” as the experimenter’s; there were no stuffed
animals; fish were glued to the experimenter’s board; and
children were given their own set of 15 fish to generate sets.

Give-N We assessed children’s knowledge of the CP using a
titrated version of the Give-N task (Wynn, 1992). Children
were given a small plate and 10 plastic items (e.g., bananas),
and were asked to place some number of bananas on the
plate. After the child finished generating the set the
experimenter asked, “Is that N? Can you count and make
sure?” If the child noticed any errors they were permitted to
fix the set. If the child correctly generated a set for a
requested &, the next number queried was N+1; otherwise,
the next number queried was N-1.

All children were first asked to generate a set of one. Any
child who was able to generate a set of 6 (the maximum
number tested) at least 2 out of 3 times was classified as a
CP-knower. If children could not meet this criterion, they
were classified as subset-knowers.

Results and Discussion

In Experiment 1 we asked whether set-matching
performance improved relative to a neutral matching
condition of the set-matching task when number was
verbally highlighted. Due to the small sample size, no
meaningful statistical analysis within CP- or subset-knowers



was possible in Experiment 1. Instead, we first explored an
overall effect of verbally highlighting number by combining
both CP- and subset-knower data from Experiment 1 and
testing whether overall accuracy or absolute error differed
from the matching task (also with combined CP- and
subset-knower data). We then report summary statistics for
set-matching accuracy and error for CP- and subset-knowers
relative to the matching condition.

In terms of accuracy, explicitly drawing children’s
attention to number in the set-matching task did not produce
significantly more exact matches overall. A generalized
linear mixed effects model constructed with combined CP-
and subset-knower data predicting accuracy (1/0) from
condition (matching/number), set size, and age, with a
random intercept of participant indicated no effect of
condition (x’q, = 2.57, p = .11), as shown in Figure 1.
Subset-knowers’ mean accuracy was not substantially
different in the number condition for either small (M = .71,
SD=.46) or large (M=0.21, SD=0.42) numerosities in
comparison to the matching condition (small: M = .60, SD =
A49; large: M = .13, SD = .33). Although accuracy for small
numerosities was slightly higher for subset-knowers in the
number condition, this effect is inconclusive due to the
small sample size. CP-knowers’ matching behavior was
similarly unaffected by the experimenter highlighting
number: mean performance for small (M = .88, SD = .34)
and large sets (M = .38, SD = .49) in the number condition
was comparable to performance in the matching condition
(small: M = .89, SD = .32; large: M = .42, SD = .50).

We also investigated differences in the magnitude of error
between the two conditions as a less conservative measure
of whether framing the task as a number game encouraged
children to attempt exact matches. To do this, we calculated
the absolute error of incorrect trials (|Target item -
Response|), and again combining CP- and subset-knower
data built a linear mixed effects model predicting absolute
error from condition (matching/number), set size, and age,
with a random intercept of participant, and again found no
effect of condition ()*;, = .03, p = .86). Subset-knowers’
mean absolute error in the number condition for both small
(M=1.71, SD=1.25) and large (M=2.89, SD=2.31)
numerosities was similar to the matching condition (small:
M = 156, SD = 1.00; large: M = 3.39, SD = 2.44).
CP-knowers’ absolute error was also not greatly impacted
by explicitly highlighting number, with roughly equivalent
mean absolute error for both small (M=1.2, SD= 0.45) and
large (M=3.8, SD= 4.04) numerosities in comparison to the
matching condition (small: M = 1.31, SD = 0.60; large: M =
2.36, SD =1.67).

While limited by a small sample size, these results
nevertheless suggest that even when children are explicitly
told to match by number, they are no more likely to make
exact matches. However, one possible explanation for this
failure to find an effect was that while the experimenter
prompted children to focus on number, it was possible
children could have interpreted this as referring to
approximate, rather than exact, number. To address this
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concern, we framed the matching game as a sharing game to
specifically highlight the importance of exact equality and
one-to-one correspondence.

Experiment 2: Sharing

Methods

This study was pre-registered on OSF (https://osf.io/3wta2),
and all methodological and analytical choices were
pre-registered, unless stated otherwise.

Participants Our final analyzable sample included 86
children (M,, = 4.13 years, SD,,. = 0.56 years) recruited
from local preschools and the surrounding area in San
Diego, CA. In this sample, 53 children were identified as
CP-knowers (M,,.= 4.30 years, SD,,.= 0.56 years), and 33 as
subset-knowers (M,,.= 3.86 years, SD,,.= 0.42 years) by the
Give-N task (described below).

Procedure

Sharing task To test whether fairness concerns motivate
children to generate exact matches for both large and small
numerosities, we modified the set-matching task used by
Schneider and Barner (2020) by framing it as a game about
sharing. Children were again presented with two 47x30”
blue rectangular boards placed about .5” apart and two
stuffed animals of the same kind directly next to each board
(e.g., penguins). The experimenter showed children a bowl
with identical plastic fish, and said, “These penguins
worked together to catch these fish, but they need our help
to share them in their ponds. Do you know what sharing
means?” Regardless of how children responded, the
experimenter said, “Sharing means to make things fair so
that people have the same. Because these penguins both
worked hard to catch these fish, they should have the same,
because that’s fair, right?” Based on previous research, we
emphasized equal collaboration to encourage children to
distribute resources equitably (Heyman, Ng, & Barner,
2011).

To ensure that children understood what a fair/unfair
share looked like, all children received two demonstrations
prior to a training trial. To demonstrate a fair share, the
experimenter placed one fish in each penguin’s “pond,” and
said “Let’s ask the penguins if this is fair!” The
experimenter made each penguin say, “Yay! That’s fair!”
and then told the child, “This is fair, because there is a fish
in this penguin’s pond and a fish in this penguin’s pond, so
they have the same.” To demonstrate an unfair share, the
experimenter placed one fish in one pond and no fish in the
other pond, and said, “Now, let’s ask the penguins if this is
fair.” The experimenter made both penguins protest, saying
“That’s not fair!” and then told the child, “This isn’t fair,
because there’s a fish in this penguin’s pond, but no fish in
this penguin’s pond. Let’s try again, and this time you can
help me make it fair.”



For the training trial, the experimenter removed all fish,
and then added two fish to the center of one penguin’s board
before offering the bowl to the child and saying, “Now it’s
your turn to share with the other penguin. Remember to
make it fair!” After the child was done, the experimenter
said, “Let’s ask the penguins if this is fair,” making the
penguins say “Yay! It’s fair!” if the child placed two fish in
the pond, or “Hey! That’s not fair!” if they had not. If the
child failed the training trial, the experimenter repeated it a
second time. Only children who could pass the training trial
and demonstrated an understanding of the purpose of the
task were included in the study.

After the training, children received five test trials with
neutral feedback for sets of 3, 4, 6, 8, and 10. Order of trials
(3,4, 10, 6, and 8; or 4, 3, 8, 6, and 10) was counterbalanced
across participants. To emphasize that fish were a common
resource to be shared between the two penguins, both the
experimenter and the child drew fish from the same bowl,
before each trial the experimenter covertly added or
subtracted fish to the bowl so that it always contained 15
fish when the child generated their set. As in Experiment 1,
children were not allowed to count. If the experimenter
observed a child counting they covered both boards and
said, “This isn’t a counting game, it’s a sharing game!”
Counting attempts were rare: CP-knowers attempted to
count on 8/265 trials, while subset-knowers attempted
counts on 9/170 trials.

Results and Discussion

Does concern for fairness motivate children to generate
exact numerical matches for both small and large
numerosities? Overall, the general pattern of children’s
responses was similar in both the sharing and matching
conditions (Figure 2). To test this, we compared data from
the sharing task and the previously-collected matching task
data, using a generalized linear mixed effects model to
predict a correct match (1/0) from condition
(sharing/matching), set size, CP-knower status, and age,
with a random intercept of participant. A Likelihood Ratio
Test indicated that the presence of the condition
(sharing/matching) term significantly improved the fit of the
model (’;, = 9.15, p = .002). However, this effect was in
the opposite direction of our prediction, with /ess accurate
performance overall for the sharing, relative to matching,
condition (f =-0.62, p = .003), as shown in Figure 1. A set
of follow-up #-tests comparing mean accuracy between
conditions for CP- and subset-knowers by numerosity
revealed that the effect of condition was primarily driven by
subset-knowers’ poorer performance for small numerosities
(3,4) in the sharing condition in comparison to the matching
condition (#105) = -237, p = .02); CP-knowers’
performance did not differ significantly for either small or
large numerosities (ps > .10). Consistent with Chernyak, et
al. (2019), we found a significant effect of numeracy, with
CP-knowers significantly = more  accurate  than
subset-knowers (f =1.35, p <.001), even controlling for age
(B =0.53, p =.002) and set-size (f =-1.06, p < .001). Still,
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while CP-knowers were more accurate than subset-knowers,
their performance remained below adult levels (Frank,
Fedorenko, Lai, Saxe, & Gibson, 2012). We return to this
finding in the General Discussion.

Framing the task as a sharing game also did not impact
the magnitude of children’s errors. A linear mixed effects
model predicting absolute error from condition, set size,
CP-knower status, and age, with a random intercept of
participant indicated a significant effect of condition (3, =
5.2, p = 02), with higher absolute error for the sharing
condition in comparison to matching (f =0.46, p = .02),
opposite from our predictions. Once again, however,
follow-up t-tests of mean performance between conditions
indicated that this difference was due to significantly higher
absolute error in subset-knowers for small numerosities in
the sharing task (#(67) = 2.22, p = .03); there was no
difference in overall absolute error for CP-knowers between
the two conditions (ps > .3).

Together, these results provide evidence that children’s
failures to establish exact matches in the set-matching task
are not improved by a sharing manipulation. Despite
emphasizing the importance of generating fair shares,
children were not more likely to create exact matches in
comparison to a condition that did not draw their attention
to numerical equality. In fact, subset-knowers were
significantly less likely to equally distribute resources
equally for small numerosities in the sharing condition, in
line with other findings that the ability to distribute
resources equitably for even small sets is linked to CP
acquisition (Chernyak, Harris, & Cordes, 2019). Instead, we
replicate the finding that an understanding of exact equality
is significantly related to numeracy: as in previous work, we
found that while subset-knowers struggled to create exact
matches for sets >3 items, CP-knowers were significantly
more likely to do so for all set sizes. This suggests that,
while numerical competence improves the ability to share
fairly, being in a context that requires sharing fairly may not
make children any more likely to establish exact equality
between the shares.
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Figure 1. Mean accuracy on the set-matching task for CP-
and subset-knowers, grouped by condition. Error bars
represent 95% confidence intervals computed by
nonparametric bootstrap.
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knowledge.

General Discussion

Are failures to establish non-symbolic exact equality in
semi-numerate individuals due to pragmatic failures to
understand the goals of set matching tasks? Previous work
addressing this question in children has suggested that
learning how to generate sets through counting is implicated
in learning how one-to-one correspondence is related to
knowledge of exact numerical equality (Schneider &
Barner, 2020). While this work found that children with
limited counting knowledge did not establish exact matches
for large sets, it left open why, and whether learning to
count might simply have made number more salient to
children. For example, other work has found that
low-numeracy individuals (including children) frequently
fail numerical tasks not because they lack the appropriate
concepts, but because they either do not understand that
they are being asked to deploy them, or because they are
less likely to privilege number as the relevant dimension for
solving these tasks (Mix, 1999; Negen & Sarnecka, 2015).

In the current work we investigated whether additional
pragmatic and motivational cues affected the ability of 3- to
5-year-old children to create exactly equal sets at varying
stages of symbolic number development. We did this by
adapting the set-matching task previously used with both
innumerate adults (Gordon, 2004) and semi-numerate
children (Schneider & Barner, 2020). In Experiment 1, we
explicitly told children to match sets on the basis of number.
In Experiment 2 we built on previous findings showing
early-developing concerns for equitable resource
distribution (Sloane et al., 2012), and that symbolic number
knowledge supports fair (equal) sharing (Chernyak et al.,
2019), and framed the set-matching task as a sharing game
between two stuffed animals.

Across these experiments we found that neither explicit
instructions to attend to number nor a concern for fairness
increased children’s likelihood of establishing exact
matches. Instead, related to the hypothesis that numeracy
plays a pivotal role in facilitating representations of exact
number (Gordon, 2004; see Nuiiez, 2017, for discussion),
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we replicated previous findings that subset-knowers
appeared to approximate, rather than exactly match, sets
greater than 3 items. Subset-knowers’ failures to establish
exact numerical equality in these two experiments suggest
that their struggles lie not in insufficient motivation or
pragmatic difficulties in understanding the purpose of the
task. Instead, subset-knower’s failures are compatible with
other research showing that they do not understand the
numerical significance of one-to-one correspondence in
establishing equality (Izard, Streri, & Spelke, 2014).

We also found further evidence that the acquisition of
symbolic systems plays an important role in learning to
reason about exact equality. While subset-knowers struggled
to create exact set matches for sets >3, children who had
learned how to generate larger sets through counting — i.e.,
CP-knowers — were significantly more likely to exactly
match sets, even when controlling for age. However, despite
the motivational and pragmatic manipulations, many
CP-knowers struggled on this task, indicating that
previously-observed failures in this group (Schneider &
Barner, 2020) were likely not due to failure to understand
the task. Instead, these results suggest that even proficient
counters may not fully understand the logical basis of exact
equality, and that additional learning is required.

Together with previous work (Schneider & Barner, 2020),
these findings are compatible with the hypothesis that
children’s initial understanding of the CP is procedural
rather than conceptual (Barner, 2017); that is, CP-knowers
may understand what the count routine is doing (i.e., blindly
deploying one-to-one correspondence in the count routine to
answer the question “How many?”’) before they fully grasp
what it is accomplishing (i.e., creating a summary set
representation which is dependent on the one-to-one
correspondence between items and number labels; Heck,
2000). This account is in line with a growing body of
evidence which has shown that children demonstrate full
knowledge of other properties of the natural numbers —
such as the successor function (Cheung, Rubenson, &
Barner, 2017; Spaepen et al., 2019) — several years after
acquiring the CP and using the count routine in numeric
contexts. It is possible that learning the numerical



significance of one-to-one correspondence may be similarly
protracted, requiring further conceptual development or
experience with numerical routines.

The current work addresses key limitations in previous
research showing set-matching failures in innumerate and
semi-numerate individuals, strengthening the hypothesis
that numeracy may be implicated in reasoning about
exactness. Future work should investigate the processes
through which children abstract one-to-one correspondence
from using the count routine, and whether this abstraction is
implicated in the acquisition of later numerical knowledge.
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