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Abstract. Let q be a prime power and V ∼= Fdq . A t-(d, k, λ)q design, or simply a subspace
design, is a pair D = (V,B), where B is a subset of the set of all k-dimensional subspaces
of V , with the property that each t-dimensional subspace of V is contained in precisely λ
elements ofB. Subspace designs are the q-analogues of balanced incomplete block designs.
Such a design is called block-transitive if its automorphism group Aut(D) acts transitively
on B. It is shown here that if t > 2 and D is a block-transitive t-(d, k, λ)q design then D is
trivial, that is, B is the set of all k-dimensional subspaces of V .
Keywords. Subspace designs, q-analogue, block-transitive
Mathematics Subject Classifications. 05E18, 05B99

1. Introduction and preliminaries

Tits [28] suggested that combinatorics of sets could be regarded as the limiting case q → 1
of combinatorics of vector spaces over the finite field Fq. Taking a combinatorial property ex-
pressed in terms of sets and rephrasing its definition in terms of Fq-vector spaces gives rise to
what has become known as the q-analogue of the original property. A t-(d, k, λ) design is a pair
(P ,B) where P is a set of size d and the elements of B are k-subsets of P , called blocks, satis-
fying the condition that every t-subset of P is contained in precisely λ blocks. The q-analogue
of a t-(d, k, λ) design is a t-(d, k, λ)q design. A precise definition of t-(d, k, λ)q designs is given
in Definition 1.2. For brevity we often refer to t-(d, k, λ) designs and t-(d, k, λ)q designs sim-
ply as block designs and subspace designs, respectively. Subspace designs were first referenced
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in the literature by Cameron [9]. See the recent survey of Braun et al. [5] for more in-depth
background on subspace designs. A block or subspace design is block-transitive if it admits a
group of automorphisms that acts transitively on its set of blocks (see Definition 1.3 for a precise
definition of the automorphism group of a subspace design).

Automorphism groups of block designs have been studied since the mid-twentieth century
(see, for example, [14, 23]). There are many examples of block designs having large automor-
phism groups and restricting attention to a subclass of block designs with a high degree of sym-
metry can be a useful tool for studying designs (for example [17, 18]); classification of such a
subfamily may even be possible (for example [19]). Block-transitive block designs have been
studied since the 1980s (see [10, 11]) and are a vast enough class of designs that authors often
restrict their study to designs satisfying additional conditions (see [8, 16, 22]).

In contrast to the situation with block designs, there are not any known examples of block-
transitive subspace designs. Moreover, the known subspace designs do not have particularly
large automorphism groups. For instance, the automorphism groups of the subspace designs in
[4, 21, 24, 25, 27] are all normalisers of Singer cycles. Furthermore, if a binary q-analogue of
the Fano plane exists then its automorphism group has size at most 2 [20]. Indeed, our main
result, Theorem 1.1, shows that non-trivial block-transitive subspace designs do not exist.

Theorem 1.1. There exist no non-trivial block-transitive t-(d, k, λ)q designs for 2 6 t < k < d
and q a prime power.

Theorem 1.1 also rules out the existence of subspace designs having stronger forms of sym-
metry that are often studied for block designs, such flag-transitivity, that is, transitivity on in-
cident point-block pairs. However, most of the known subspace designs (in particular, those
mentioned above that are invariant under a Singer cycle) do satisfy the weaker symmetry con-
dition that they are point-transitive, that is, their automorphism groups act transitively on the
1-dimensional subspaces of the underlying vector space.

The proof of Theorem 1.1 relies on work of Bamberg and Penttila [3, Theorem 3.1], who
determined all linear groups having orders with certain divisors. Their result in turn relies on
Guralnick et al. [13], who make use of the Aschbacher classification of maximal subgroups of
classical groups [1] and the classification of finite simple groups. We consider in Section 3 each
of the cases determined by [3, Theorem 3.1] in order to obtain Theorem 1.1. The majority of
cases involve a simple analysis, with the exception of those treated separately in Section 2. In
particular, the case treated in Lemma 2.5 involves an exhaustive computer search.

In Section 1.1 we introduce notation and preliminary results for subspace designs. In Sec-
tion 1.2 we discuss the concept of a primitive divisor and set up the application of [3]. Section 2
deals with several specific cases. Finally, in Section 3 we prove Theorem 1.1.

1.1. Subspace designs

In analogy with the binomial coefficient
(
n
k

)
we define the q-binomial coefficient,(

d

k

)
q

=
(qd − 1) · · · (qd−k+1 − 1)

(qk − 1) · · · (q − 1)
.
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The q-binomial coefficient is also sometimes referred to as the Gaussian coefficient. Similarly,
this time in analogy with the set

(
N
k

)
of all k-subsets of a set N , we denote the set of all k-

dimensional subspaces of a vector space V over Fq by
(
V
k

)
q
.

Definition 1.2. Given integers d, k, t, and λ, with 1 6 t < k 6 d − 1, a t-(d, k, λ)q design (or
briefly a q-design or subspace design) is a pair D = (V,B), where V = Fdq and B ⊆

(
V
k

)
q
, such

that each element of
(
V
t

)
q

is a subspace of precisely λ elements of B.

A q-Steiner system is a t-(d, k, λ)q design with λ = 1. A subspace design with t = 1 is
known as a k-covering or if additionally λ = 1 a k-spread. Since k-coverings and k-spreads
have been studied in their own right we always assume here that t > 2. Note that for a (classical)
t-(d, k, λ) design the case t > 2 also attracts the most interest. The t-(d, k, λ)q design with
B =

(
V
k

)
q

is the trivial design. The number of blocks in a t-(d, k, λ)q design D = (V,B) is
given by

|B| = λ

(
d
t

)
q(

k
t

)
q

= λ
(qd − 1) · · · (qd−t+1 − 1)

(qk − 1) · · · (qk−t+1 − 1)
.

Given a non-singular sesquilinear form f defined on V we obtain the dual design D⊥ =
(V,B⊥) of a subspace design D = (V,B), where B⊥ = {U⊥ | U ∈ B} and for each U 6 V we
have U⊥ = {v ∈ V | f(u, v) = 0,∀u ∈ U}. For more details on duality, see [5, Section 2.1].
The dual of a subspace design is indeed again a subspace design by [26, Lemma 4.2]. A subspace
design such that D = D⊥ is called self-dual.

Let V ∼= Fdq . The Grassmann graph Jq(d, k) is the graph having vertex set
(
V
k

)
q
, where two

vertices are adjacent precisely when they intersect in a (k − 1)-dimensional subspace (see [7,
Section 9.3]). The automorphism group of Jq(d, k) satisfies

• Aut(Jq(d, k)) ∼= PΓLd(q) when 1 < k < d and 2k 6= d,

• Aut(Jq(d, k)) ∼= PΓLd(q).C2 when 2k = d (cf. [7, Theorem 9.3.1]).

If D = (V,B) is a t-(d, k, λ)q design, then B is a subset of the vertex set of Jq(d, k), which
leads us to state Definition 1.3 in its present form. Note that this differs from the convention
used by some authors, where the automorphism group of D is defined to be a subgroup of the
automorphism group of the subspace lattice, that is, a subgroup of PΓLd(q) (see the discussion
in [5, Section 2.1]). In particular, viewing Aut(D) as a subgroup of Aut(Jq(d, k)) allows us to
consider outer automorphisms of PΓLd(q) (anti-automorphisms of the subspace lattice) to act as
automorphisms of D. Our approach is equivalent to considering the relationships of subspaces
via incidence (symmetrised inclusion), rather than inclusion; this being the weakest possible
structure to impose on the set of subspaces without losing the overall subspace structure. It
follows that there can be no further automorphisms than those in Aut(Jq(d, k)) that preserve the
desired structure. Note that Definition 1.3 implies that when D is not self-dual, in particular if
d 6= 2k, then we may assume the automorphism group of D is a subgroup of PΓLd(q), whilst
if d = 2k we must consider the larger group PΓLd(q).C2, where the group C2 is generated by a
duality.
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Definition 1.3. Let D = (V,B) be a t-(d, k, λ)q design. The automorphism group Aut(D) of
D is defined to be the setwise stabiliser of B inside the automorphism group of the Grassmann
graph Jq(d, k). Moreover, D is called block-transitive if Aut(D) acts transitively on B.

The following result shows that the dual of a block-transitive design is again block-transitive
and allows us to restrict our attention to the case where k 6 d/2 in Section 3.

Lemma 1.4. Let f be a non-singular sesquilinear form on V and D = (V,B) be a block-
transitive t-(d, k, λ)q design. Then the dualD⊥ ofD is a block-transitive t-(d, d−k, λ′)q design,
where λ′ = λ

(
d−t
k

)
q
/
(
d−t
k−t

)
q
.

Proof. By [26, Lemma 4.2], we have that D⊥ is a t-(n, n − k, λ′)q design. Let G = Aut(D).
Now, the dual map U 7→ U⊥ induces a bijection between

(
V
k

)
q

and
(
V
d−k

)
q

and a corresponding
automorphism τ of PΓLd(q) which together define a permutational isomorphism between the
action of G on B and the conjugate group Gτ acting on B⊥. It thus automatically follows thatD
is block-transitive if and only if D⊥ is block-transitive.

The next result is simply a special case of [26, Lemma 2.1] and allows us to assume that
t = 2 in Section 3.

Lemma 1.5. IfD = (V,B) is a t-(d, k, λ)q design, for some t > 2, thenD is also a 2-(d, k, λ2)q
design, where

λ2 = λ

(
d−2
t−2

)
q(

k−2
t−2

)
q

is an integer, and

|B| = λ

(
d
t

)
q(

k
t

)
q

= λ2

(
d
2

)
q(

k
2

)
q

= λ2
(qd − 1)(qd−1 − 1)

(qk − 1)(qk−1 − 1)
.

1.2. Primitive divisors and linear groups

A divisor r of qe − 1 that is coprime to each qi − 1 for i < e is said to be a primitive divisor.
The primitive part of qe − 1 is the largest primitive divisor, and we denote the primitive part of
qe− 1 by Φ∗e(q). Note that, since Φ∗1(q) = q− 1 is even when q is odd and qe− 1 itself is odd if
q is even, we have that Φ∗e(q) is always odd. We then have the following.

Lemma 1.6. Let D = (V,B) be a block-transitive 2-(d, k, λ)q design with k 6 d/2 and let
G = Aut(D) ∩ PΓLd(q). Then Φ∗d(q) · Φ∗d−1(q) divides the order of G.

Proof. First, note that either G is actually equal to Aut(D), or D is self-dual and G has index 2
inside Aut(D). Since Aut(D) acts transitively on B, it follows that |B| divides |Aut(D)|, and
hence also divides 2|G|. By definition we have that

gcd
(
Φ∗d(q),Φ

∗
d−1(q)

)
= 1.
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Moreover, Φ∗i (q) is always odd. Thus, it suffices for us to prove that Φ∗i (q) divides 2|G| for each
i = d, d− 1. Now

|B| = λ
(qd − 1)(qd−1 − 1)

(qk − 1)(qk−1 − 1)
.

Since 2 < k and k 6 d/2, we have that k < d− 1. Thus, for i = d, d− 1, we have that Φ∗i (q) is
coprime to each of qk − 1 and qk−1 − 1. Hence Φ∗d(q)Φ

∗
d−1(q) divides |B|, and therefore |G|, as

required.

The significance of Lemma 1.6 is that it allows [3, Theorem 3.1] to be applied in Section 3.
Note that the original statement of [3, Theorem 3.1] spans 3 pages and includes tables of viable
parameters. We provide an abridged version of the theorem, and refer the reader to [3] for finer
details. Note that we write Vd(q) ∼= Fdq .
Remark 1.7. Before stating the abridged [3, Theorem 3.1], we note that there is a very small error
in the statement of the extension field case. In particular, case (a) of the extension field case does
not require that b be a non-trivial divisor of gcd(d, e); see [13, Example 2.4] for clarification
regarding the conditions in this case.

Theorem 1.8 ([3, Theorem 3.1]). Let q = pf where p is a prime, let d and e be integers greater
than 2 and satisfying d/2 < e 6 d. If a subgroup G of GLd(q) has order divisible by Φ∗ef (p),
and Φ∗ef (p) > 1, then one of the following occurs.

Classical Examples: G preserves a nondegenerate sesquilinear form on Vd(q) and one
of the following holds: (a) SLd(q) E G; (b) Spd(q) E G; (c) q is a square, SUd(q) E G,
and e is odd; (d) Ωε

d(q) E G where ε = ± for d even, and ε = ◦ when dq is odd.

Reducible Examples: G fixes a subspace or quotient space U of Vd(q) and dim(U) =
m > e. So G 6 qm(d−m) · (GLm(q)×GLd−m(q)) and Φ∗ef (p) divides |GU |.

Imprimitive Examples: Here q = p, Φ∗e(p) = e+1, andG preserves a direct sum decom-
position V = U1⊕· · ·⊕Ud, where each Ui has dimension 1. Moreover,G 6 GL1(q) o Sd
in product action, and G induces a primitive group on the factors {U1, . . . , Ud}. There
are a finite number of possible values that q, e, and d take.

Extension Field Examples: Here we have that there is a non-trivial divisor b of d, such
thatG preserves on Vd(q) a field extension structure of a vector space Vd/b(qb). Therefore
G 6 ΓLd/b(q

b). Two subcases occur, according to whether Φ∗ef (p) is coprime to b or not.

Symplectic Type Examples: Here q = p, Φ∗e(p) = e+ 1, and G normalises an extraspe-
cial 2-group. Specifically, we have one of the following: (a) p = 3, e = d = 4, and
G 6 (21+4

− · O−4 (2)) ◦ 2; (b) p = 3, d = 8, e = 6 and G 6 (21+6
+ · O+

6 (2)) ◦ 2; (c) p = 5,
d = 8, e = 6 and either G 6 ((4 ◦ 21+6) · Sp6(2)) ◦ 4) or G 6 (21+6

+ ·O+
6 (2)) ◦ 4.

Nearly Simple Examples: In this case, S 6 G 6 Aut(S), where S is a finite nonabelian
simple group. The following subcases occur: (a) the alternating group case; (b) the spo-
radic simple group case; (c) the cross-characteristic case; (d) the natural-characterisic
case. In each subcase, possible parameters belong to a finite list of values.
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2. Special cases

In the next section we deal with some special cases that either do not satisfy the conditions
required in Section 3 in order to apply Theorem 1.8, or otherwise require particular attention.

Lemma 2.1. Suppose D = (V,B) is a block-transitive 2-(6, 3, λ)2 design, for some λ > 1, and
let G ∼= Aut(D) ∩ PΓL6(2). Then both the size of B and the order of G are divisible by 93.

Proof. Note that if D is self-dual, then G has index 2 in Aut(D), and otherwise G = Aut(D).
Since D is block-transitive, it follows that |B| divides |Aut(D)|. Hence, |B| divides 2|G|. Now,

|B| = 63 · 31

7 · 3
λ = 3 · 31 · λ.

Thus 3 · 31 = 93 divides the order of G.

Lemma 2.2. Suppose D = (V,B) is a block-transitive 2-(6, 3, λ)2 design, for some λ > 1, and
let G ∼= Aut(D) ∩ PΓL6(2). Then G does not stabilise a 5-dimensional subspace of V .

Proof. Since Aut(D) acts transitively on B, and eitherG = Aut(D) orD is self-dual andG has
index 2 in Aut(D), it follows that B is either a single G-orbit or the union of two equal-sized
G-orbits. Now, by Lemma 2.1, |B| must be divisible by 93. In the first case, the length of the
singleG-orbit must thus be divisible by 93. In the latter case, the length of eachG-orbit must be
|B|/2, and since gcd(93, 2) = 1, it follows that the size of each G-orbit must also be divisible
by 93.

Let v1, . . . , v6 be a basis for V and assume for a contradiction that G stabilises the subspace
W = 〈v2, . . . , v6〉. Furthermore, let H = N o K ∼= AGL5(2) be the stabiliser of W inside
SL6(2) ∼= PSL6(2) ∼= PΓL6(2). In particular, for each w ∈ W we obtain an element ηw ∈ N
given by the linear transformation defined by ηw : v1 7→ v1 +w and ηw : vi 7→ vi for each i 6= 1.
Moreover, K is given by the natural action of SL5(2) on W extended to all of V . Note that K
acts on N , and that action is transitive on the non-identity elements of N .

Consider the projection P of G into H/N ∼= SL5(2) via the homomorphism nσ 7→ σ for
n ∈ N and σ ∈ K. Since 93 is coprime to the order of N , it follows that 93 divides the order
of P . By [6, Table 8.24], there are no maximal subgroups of SL5(2) having order divisible
by 93, and hence also no proper subgroups of SL5(2) having order divisible by 93. Therefore,
P ∼= SL5(2). Since the Schur multiplier of SL5(2) is trivial and there is only one conjugacy
class of groups isomorphic to SL5(2) inside H , we may assume that G contains K. If G ∩N is
the trivial group then G = K. IfG∩N is non-trivial then, since the action ofK is transitive on
the non-identity elements of N , it follows that G ∩ N = N and G = H . We now consider the
G-orbits on

(
V
3

)
2

for each possibility of G.
SupposeG = K. Then

(
W
3

)
2

is oneG-orbit. Note that if we consider V to be the underlying
vector space of PG5(2) then W is the underlying vector space of a subgeometry PG4(2) and
the points not in this subgeometry can be considered to form an affine space AG5(2), with N
acting as the group of translations of this affine space. A 3-dimensional subspace of V that is
not in

(
W
3

)
2

decomposes into a 2-dimensional subspace X of W and a 2-flat of AG5(2) lying in
the parallel class corresponding to X . Since K is also transitive on

(
W
2

)
2
, it follows that K has
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25/22 = 8 orbits on the 2-flats of AG5(2), corresponding to a further 8 orbits on
(
V
3

)
2
. Each

orbit has length has length 155, which is not divisible by 93, giving a contradiction.
Now supposeG = H . Then there are just two orbits ofG on

(
V
3

)
2
, the first being

(
W
3

)
2
, with

length 155, and the second being the set of all 3-dimensional subspaces that intersect W in a
2-dimensional subspace, with length 1240. Neither length is divisible by 93, a contradiction.

Lemma 2.3. No non-trivial block-transitive 2-(d, k, λ)q design exists with qd = 26.

Proof. Suppose, for a contradiction, that such a subspace design D = (V,B) exists. By defini-
tion we have that k > 3 and by Lemma 1.4 we may assume that k 6 d/2. Since qd = 26, so that
d 6 6, it follows that k = 3, q = 2 and d = 6. Let G = Aut(D)∩PSL6(2). By Lemma 2.1, we
then have that 3 · 31 divides the order of G.

Now, D non-trivial implies that B is not the set of all 3-dimensional subspaces of V , from
which it follows thatGmust be a proper subgroup of PΓL6(2) ∼= PSL6(2) and is thus contained
in some maximal subgroup of PSL6(2). By [6, Tables 8.24 and 8.25], there are two conjugacy
classes of such maximal subgroups that have order divisible by 31, a representative of each
class being isomorphic to 25 : GL5(2) as the stabiliser of a 1-dimensional subspace or a 5-
dimensional subspace of V , respectively. By Lemma 2.2 there is no block-transitive design such
that G stabilises a 5-dimensional subspace. Moreover, if G were to stabilise a 1-dimensional
subspace, then Aut(D⊥) ∩ PSL6(2) would stabilise a 5-dimensional subspace. However, by
Lemma 1.4, D⊥ has the same parameters as D, and hence there is no such design where G
stabilises a 1-dimensional subspace.

Lemma 2.4. No non-trivial block-transitive 2-(d, k, λ)q design exists with qd−1 = 26.

Proof. Suppose that such a subspace design D = (V,B) exists and let G = Aut(D). By def-
inition we have that k > 3 and by Lemma 1.4 we may assume that k 6 d/2. Since d 6 7
we have that k = 3, q = 2 and d = 7. Note that d odd implies D is not self-dual and
G 6 PΓL7(2) ∼= PSL7(2). If G ∼= PSL7(2) then G acts transitively on

(
V
3

)
2
, which implies

that B =
(
V
3

)
2
. However this is not the case, asD is non-trivial, and hence we deduce thatG is a

proper subgroup of PSL7(2). It follows from this thatG is contained in some maximal subgroup
of PSL7(2). Now, Lemma 1.5 implies that |B| = 3 ·127 ·λ. SinceD is block-transitive it follows
that |B| must divide |G|. By [6, Tables 8.35 and 8.36], the only maximal subgroup of PSL7(2)
that has order divisible by 127 is the normaliser of a Singer cycle. However, this group does not
have order divisible by 3, giving a contradiction.

Lemma 2.5. There does not exist a 2-(11, 5, 5)2 design having automorphism group isomorphic
to ΓL1(2

11).

Proof. Note that the dimension of V is odd here, which implies that D is not self-dual, and
hence Aut(D) 6 PΓL11(2) ∼= SL11(2). By [6, Table 8.70], there is a unique conjugacy class
of subgroups isomorphic to ΓL1(2

11) in SL11(2). Thus, without loss of generality, we may
construct G ∼= PΓL1(2

11) as the normaliser of 〈g〉 in PΓL11(2), for a randomly found element
g ∈ PΓL11(2) with |g| = 2047. If a 2-(11, 5, 5)2 design were to exist with automorphism group
isomorphic to G, then it must be a single orbit of G on 5-spaces of F11

2 . By computer, it was
found that none of the 157607 orbits of G on 5-spaces of F11

2 yield a 2-(11, 5, 5)2 design; see
Remark 2.6 for more information.
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Remark 2.6. The computation required to prove Lemma 2.5 was performed in GAP [12] with
the package FinInG [2]. Note that a 2-(11, 5, 5)2 design can equivalently be described as a set
of projective 4-spaces of PG10(2) such that every projective 1-space is contained in precisely
5 elements. This formulation lends itself more naturally to construction in FinInG. Since there
are too many (specifically, 3548836819) projective 4-spaces to reasonably fit in memory we
instead constructed orbits ofG by finding suitably many distinct and unique representatives from
each orbit. Representatives were determined uniquely by choosing them to be lexicographically
least in their orbits. These representatives, as well as GAP code, are made available for ease of
verification at [15].

3. Main results

In this section we prove Theorem 1.1 by applying Theorem 1.8 (referring to [3, Theorem 3.1]
for finer details). We frequently reference the cases, which are related to the Aschbacher classes
as in [1], in the manner that they are listed in [3]. These cases are organised according to the
following categories: classical, reducible, imprimitive, extension field, symplectic, and nearly
simple. For information regarding specific groups see, for instance, [29].

The next result splits the treatment of 2-(d, k, λ)q designs into three cases.

Lemma 3.1. Let q = pf , where p is prime, let D = (V,B) be a block-transitive 2-(d, k, λ)q
design, and let G be the setwise stabiliser of B inside ΓLd(q). Then one of the following holds:

1. At least one of Φ∗df (p) or Φ∗(d−1)f (p) is trivial.

2. Both Φ∗df (p) and Φ∗(d−1)f (p) are non-trivial and divide the order ofG whereG 6 ΓL1(q
d).

3. Both Φ∗df (p) and Φ∗(d−1)f (p) are non-trivial and divide the order of Ĝ = G∩GLd(q), and
Ĝ is as in one of the classical, reducible, imprimitive, symplectic, or nearly simple cases
of Theorem 1.8.

Proof. If either Φ∗df (p) = 1 or Φ∗(d−1)f (p) = 1 then part 1 holds. Suppose both Φ∗df (p) and
Φ∗(d−1)f (p) are non-trivial. Let H = G/ (G ∩ Z(GLd(q))). Note that if D is self-dual then G
has index 2 inside Aut(D), and hence it is possible that G, and thus also H , has 2 equal-sized
orbits on B. Since H is a quotient of G, it follows from Lemma 1.6 that Φ∗d(q) ·Φ∗d−1(q) divides
the order of G. Now, for any integer e > 1 we have that Φ∗ef (p) divides Φ∗e(q), and hence both
Φ∗df (p) and Φ∗(d−1)f (p) divide the order of G. Hence Theorem 1.8 applies. Note that Fq and
Ffp are isomorphic as Fp-vector spaces, and so V may also be considered to be a vector space
over Fp of dimension df . Thus, when applying Theorem 1.8 we consider G to be a subgroup of
GLdf (p).

If G 6 ΓL1(q
d) as in the extension field case a) of [3, Theorem 3.1], then part 2 holds.

Suppose that G falls under extension field case b), so that G 6 ΓLdf/s(p
s) for some integer

s, with 1 < s < df and s dividing both df and (d − 1)f . This implies that s divides f . By
assumption, we have that G 6 ΓLd(q), and hence s = f . If f = 1, this gives a contradiction,
and hence G is a classical, reducible, imprimitive, symplectic, or nearly simple example, as in
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part 3. If f > 2 then the conditions of the extension field case imply that Φ∗df (p) and Φ∗(d−1)f (p)

divide the order of Ĝ = G∩GLd(q), and Ĝ is as in one of the classical, reducible, imprimitive,
symplectic, or nearly simple cases of Theorem 1.8, treated now as a subgroup of GLd(q), and
part 3 holds.

Next we consider the case that part 2 of Lemma 3.1 holds.

Lemma 3.2. Let q = pf , letD = (V,B) be a 2-(d, k, λ)q design, and letG be the stabiliser of B
inside ΓLd(q). Moreover, suppose thatG 6 ΓL1(q

d) and both Φ∗df (p), Φ∗(d−1)f (p) are non-trivial
and divide the order of G. Then D is not block-transitive.

Proof. Suppose that D is block-transitive. Then, since Φ∗df (p) and Φ∗(d−1)f (p) are non-trivial
and divide the order of G, and G is a subgroup of GLdf (p), we may apply [3, Theorem 3.1],
in which case G falls under the extension field case a). Since d > 6, we have that q = p and
pd = 211, 213, 219, 37 or 57. Note that, since d is odd in each of these cases, we have thatD is not
self-dual and, in particular Aut(D) is a subgroup of PΓLd(p). Hence Aut(D) is the quotient
of G by G ∩ Z(GLd(p)), where Z(GLd(p)) is the centre of GLd(p). Thus |Aut(D)| divides
d(pd − 1)/(p− 1). Since Aut(D) acts transitively on B, the size of B must divide the order of
Aut(D). Now,

|B| = λ
(pd − 1)(pd−1 − 1)

(pk − 1)(pk−1 − 1)
,

for some integers λ and k with λ > 1 and 3 6 k 6 d/2. Hence the following is an integer:

λ
|Aut(D)|
|B|

=
d(pd − 1)

(p− 1)

(pk − 1)(pk−1 − 1)

(pd − 1)(pd−1 − 1)
=
d(pk − 1)(pk−1 − 1)

(pd−1 − 1)(p− 1)
.

This is true only if pd = 211 with k = 5 and λ = 1 or 5; or pd = 37 with k = 3 and λ = 1.
By [5, Theorem 2], the derived design of a 2-(11, 5, 1)2 design would be a 1-(10, 4, 1)2 design.
However, by [5, Lemma 4], no 1-(10, 4, 1)2 design exists, in particular, such a design would
be a spread and k = 4 does not divide n = 10. For the case of a 2-(7, 3, 1)3 design, the
divisibility condition above implies that Aut(D) = PΓL1(p

d), in which case we may assume
that G = ΓL1(3

7). However, by [21, Theorem 2 (3)], no 2-(7, 3, 1)3 design with G acting
transitively on V \ {0} exists. Thus q = 2, d = 11 and k = λ = 5. However, Lemma 2.5 rules
out the existence of such a design.

We now move to consider part 3 of Lemma 3.1 holds. The classical cases are excluded by
the following, Lemma 3.3.

Lemma 3.3 (Classical Examples). Let q = pf and let D = (V,B) be a 2-(d, k, λ)q design
with stabiliser Ĝ of B inside GLd(q). Moreover, suppose that both Φ∗df (p) and Φ∗(d−1)f (p) are
non-trivial and divide the order of Ĝ. If Ĝ is a classical example of Theorem 1.8 then D is not
block-transitive.
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Proof. For (a), SLd(q) acts transitively on the set of all k-spaces of V , for any choice of k, so
that in this case the only subspace design invariant under Ĝ is the trivial design.

For case (b) we have that Ĝ contains Spd(q) as a normal subgroup but does not contain any
field automorphisms. Since d > 6, the only automorphisms of Spd(q) we need to consider are
those induced by the centre of GLd(q), and hence the order of Ĝ is at most twice the order of
Spd(q) (see [29, Section 3.5.5]). Hence |Ĝ| divides 2qd

2/4
∏d/2

i=1(q
2i − 1); we claim that this

implies that |Ĝ| is not divisible by Φ∗(d−1)f (p). Recall that Φ∗e(p) is odd for all e > 1 so that the
factor of 2 is inconsequential. Moreover, qd2/4 is coprime to Φ∗(d−1)f (p). Thus, we need only be
interested in the factors (qi − 1) of |Ĝ| and these only appear for even i. Since d− 1 is odd, the
claim holds and this case does not occur.

Consider now case (c). By Theorem 1.8, we have that Φ∗e(p) divides the order of the nor-
maliser of SUd(q

1/2) only when e is odd, but e must be able to take both the values df and
(d− 1)f here, at least one of which is even.

For case (d), we have that if d is even then Ĝ 6 GOε
d(q) where ε = + or −, and if d is odd

then Ĝ 6 GOd(q). Referring to Table 3.1, we see that Φ∗(d−1)f (p) does not divide the order of
GOε

d(q) (it should be noted here though that Φ∗df (p) divides qd + 1, and hence does divide |Ĝ|).
Also, Φ∗df (p) does not divide the order of GOd(q). Hence this case does not occur.

group order
GO2m+1(q) 2qm

2
(q2 − 1)(q4 − 1) · · · (q2m − 1)

GO+
2m(q) 2qm(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm − 1)

GO−2m(q) 2qm(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm + 1)

Table 3.1: Orders of orthogonal groups.

The reducible cases are excluded by the following, Lemma 3.4.

Lemma 3.4 (Reducible Examples). Let q = pf and let D = (V,B) be a 2-(d, k, λ)q design
with stabiliser Ĝ of B inside GLd(q). Moreover, suppose that both Φ∗df (p) and Φ∗(d−1)f (p) are
non-trivial and divide the order of Ĝ. If Ĝ is a reducible example of Theorem 1.8 then D is not
block-transitive.

Proof. In this case we require Ĝ 6 H ∼= qm(d−m) · (GLm(q)×GLd−m(q)) for somem such that
0 < m < d. By definition, Φ∗df (p) is coprime to each factor qi− 1 dividing |H|, that is, for each
i 6 max{m, d−m} < d. Since Φ∗df (p) divides qd − 1, it follows that Φ∗df (p) is also coprime to
qm(d−m), and hence does not divide the order of Ĝ.

Lemma 3.5 (Imprimitive Examples). Let q = pf and let D = (V,B) be a 2-(d, k, λ)q design
with stabiliser Ĝ of B inside GLd(q). Moreover, suppose that both Φ∗df (p) and Φ∗(d−1)f (p) are
non-trivial and divide the order of Ĝ. If Ĝ is an imprimitive example of Theorem 1.8 then D is
not block-transitive.
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Proof. In this case the values of q, d and e for which Φ∗ef (p) divide Ĝ are given in the relevant
table of [3]. Since we require that e take both values d and d − 1, and all given values of e are
even, these cases do not occur.

Lemma 3.6 (Symplectic Type Examples). Let q = pf and let D = (V,B) be a 2-(d, k, λ)q
design with stabiliser Ĝ of B inside GLd(q). Moreover, suppose that both Φ∗df (p) and Φ∗(d−1)f (p)

are non-trivial and divide the order of Ĝ. If Ĝ is a symplectic type example of Theorem 1.8 then
D is not block-transitive.

Proof. In this case the values of q, d and e for which Φ∗ef (p) divide Ĝ are given in [3, Theo-
rem 3.1]. Since we require that e take both values d and d − 1, and in each case there is only a
single value for e, these cases do not occur.

Lemma 3.7 (Nearly Simple Examples). Let q = pf and let D = (V,B) be a 2-(d, k, λ)q design
with stabiliser Ĝ of B inside GLd(q). Moreover, suppose that both Φ∗df (p) and Φ∗(d−1)f (p) are
non-trivial and divide the order of Ĝ. If Ĝ is a nearly simple example of Theorem 1.8 then D is
not block-transitive.

Proof. We consider for Ĝ the groups as in the nearly simple case of Theorem 1.8 (see [3, pages
2507–2508] for the details of each case and the tables we refer to in this proof). First, suppose Ĝ
is a permutation module example under the alternating group sub-case, so that q = 2, 3 or 5. If
q = 2 then, since Φ∗d(2) must divide the order of Ĝ, we have that d = 4, 10, 12 or 18. However,
we also have that Φ∗d−1(2) must divide the order of Ĝ, from which it follows that d = 5, 11, 13
or 19. This gives a contradiction. If q = 3 then, similarly, we have that d = 4 or 6, and at the
same time d = 5 or 7, a contradiction. If q = 5 then we again reach a contradiction, requiring
this time that d is equal to 6 and 7 at the same time.

Consider now the other examples of the alternating group sub-case and the corresponding
table of [3]. Recall that d is at least 6, and notice that every entry in the table with d > 6 also
has d 6= e. Hence Φ∗d(q) does not divide the order of Ĝ, contradicting Lemma 1.6.

In the sporadic simple group sub-case, and the corresponding table of [3], each pair (G′, d)
that does occur appears in precisely one entry of the table. Hence there is a unique value of e in
each case. Thus it is impossible for both Φ∗d(q) and Φ∗d−1(q) to divide |Ĝ|.

Consider the table of [3] corresponding to the cross-characteristic sub-case. The only group
appearing in the table having multiple values of e for a given q is Sp6(2) with d = 7 and q = 3,
in which case e takes the values 4 and 6, neither of which are equal to d.

Finally, in the table corresponding to the natural-characteristic sub-case, each group has only
one value for e with a given d. This rules out all of the groups in the nearly simple cases.

We are now able to provide the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose D = (V,B) is a non-trivial block-transitive t-(d, k, λ)q design,
where V = Fdq , and let q = pf , where p is prime. By Lemma 1.5, we may assume that t = 2,
and hence that k > 3. By Lemma 1.4, we may assume that k 6 d/2, so that d > 6. LetG be the
setwise stabiliser of B inside ΓLd(q). We may then apply Lemma 3.1. For part 1 of Lemma 3.1,
Zsigmondy’s theorem [30] states that if Φ∗e(p) = 1 then pe = 26. However, Lemmas 2.3 and 2.4
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rule out the existence of any 2-(d, k, λ)q design with qd or qd−1 equal to 26. Lemma 3.2 rules
out the occurrence of part 2 of Lemma 3.1. Part 3 of Lemma 3.1 is ruled out by Lemma 3.3,
Lemma 3.4, Lemma 3.5, Lemma 3.6, Lemma 3.7. This completes the proof of Theorem 1.1.

References

[1] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent. Math.,
76(3):469–514, 1984.

[2] J. Bamberg, A. Betten, P. Cara, J. De Beule, M. Lavrauw, and M. Neunhöffer. FinInG –
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