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ABSTRACT OF THE DISSERTATION

Fluctuation analysis of nonequilibrium limit cycle oscillators : Application to hair cells

by

Janaki Kirit Sheth

Doctor of Philosophy in Physics

University of California, Los Angeles, 2020

Professor Alexander Levine, Co-Chair

Professor Dolores Bozovic, Co-Chair

Mechanical detection of the auditory system displays exquisite sensitivity, with the inner ear

capable of detecting pressure waves that result in Ångstrom-scale displacements. Detection

in the inner ear is performed by mechanically sensitive hair cells, named for the bundles

of stereocilia that protrude from their surfaces. The inner ear is also highly nonlinear in

nature, exhibiting sharply tuned frequency selectivity and compression of dynamic range.

Several experiments have consistently shown that the hair cells and their hair bundles are

not just passive sensory detectors, rather underlying their exemplary behavior is an internal

active mechanical process which is also adaptive in nature. Furthermore, this active pro-

cess leads to an inherent mechanical instability manifested in the spontaneous limit cycle

oscillations of the hair bundles. A number of theories based on nonlinear dynamics have

described these active bundles using complex biophysical models as well as using a relatively

simple two-dimensional mathematical model that exhibits a supercritical Hopf bifurcation.

In this dissertation which is theoretical in nature, with the spontaneously oscillating inner

ear hair bundle as our model biological system, we study the effects of stochasticity on non-

linear oscillators driven by internal active processes. First, we develop a framework for the

general interpretation of such dynamical systems near a limit cycle. We demonstrate that

in the presence of noise the phase of the limit cycle oscillator diffuses while fluctuations in
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the directions locally orthogonal to the cycle display a Lorentzian power spectrum. Fur-

ther we identify two mechanisms that underlie the complex frequency dependence of the

diffusive dynamics. In the subsequent chapter, we detail how the effects of stochasticity

maybe observed with respect to the change in shape and size of the mean limit cycle as

well. In particular, we show that the noise-induced distortion of the limit cycle generically

leads to its rounding through elimination of sharp features. Conversely, using a theoretical

criterion one may identify limit cycle regions most susceptible to such distortion and obtain

more meaningful parametric fits of dynamical models from experimental data. In the third

chapter of this thesis we study fluctuation-dissipation relations in computationally-driven,

nonequilibrium limit-cycle oscillators. A computational drive is loosely analogous to the

adaptive internal activity that powers the spontaneous oscillations of the hair cells. It mea-

sures the current state of the system and modifies its power input accordingly. We observe

that computationally-driven systems not only violate the equilibrium fluctuation-dissipation

theorem (FDT) but also a generalized FDT. Thus in turn we propose that the breakdown

of this generalized theorem may be used as a tool to broadly identify the presence and effect

of such drives within biological systems. Lastly, by quantifying the computing ability of

these drives we seek to derive a new generalized fluctuation-dissipation theorem which can

be satisfied by complex computationally-driven biological systems such as the inner ear.
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CHAPTER 1

Dynamics of the inner ear

1.1 Hearing

The vertebrate ear is a remarkable product of evolution. Its frequency response ranges

from 20 - 20,000 Hz while at the same time allowing an untrained individual to distinguish

between two tones differing in frequency by 0.5% [2]. Similarly, it can effortlessly parse 0-120

dB of sound-pressure level (SPL) - corresponding to a millionfold range in input amplitude

- but is also sensitive to mechanical stimuli of picometer dimensions (as measured at the

eardrum) [44]. This extraordinary performance is a result of the acoustical interplay of its

three major components - the inner, middle, and if present, outer ear. The latter collects

airborne sounds that are funneled through to the eardrum whose vibrations in turn are

transmitted by the middle ear to the oval window, an elastic opening in the bony casing

of the inner ear - an organ that transduces this mechanical energy into electrical signals

suitable for neural analysis [26] Fig. 1.1(a). In humans, the inner ear plays a significant role

in both our auditory and vestibular functions and is further comprised of multiple organs -

the cochlea, utriculus, sacculus and three semicircular canals [1].

Amongst these, the cochlea is our primary auditory organ and owes its extraordinary

success to the bevy of specialized sensory receptors called hair cells which are situated a-

long the basilar membrane - one of the two elastic sheets that partitions the organ into

three fluid-filled compartments [44]. The other is the Reissner’s membrane (see Fig. 1.1(b)).

There lie nearly 16,000 hair cells in each of our cochleae; from the surface of each cell pro-

trudes a cluster of 20-300 cylindrical processes or stereocilia - collectively called the hair

bundle. These cilia are arranged in rows of increasing height, and coupled to their neigh-

1



Figure 1.1: Structure of the ear and sound excitation in the human cochlea.

(a) Sound propagating through air is funneled onto the eardrum by the external ear. The

middle ear conveys the eardrums resulting vibration (arrow) to the cochlea, where it oscil-

lates the elastic oval window (OW). Motion of the fluids inside this organ causes a second

elastic opening, the round window (RW), to oscillate [44]. (b) A transverse section of the

cochlea shows its two separating membranes: the basilar membrane (BM) and the Reissner’s

membrane (RM) which partition the organ into three compartments (scala vestibuli (SV),

scala media (SM) and scala tympani (ST)) [29]. Also depicted are mechanotransductive hair

cells in red atop the BM. (c) Simultaneous movement of BM and the tectorial membrane,

deflect the hair bundles toward the taller stereocilia stretching some of their extracellular

links and other components of transduction apparatus, causing ion channels to open which

admits K+ and Ca2+ into the somatic body [44].
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bors via extracellular links. Furthermore, similar stereociliary hair bundles can be found in

multiple other vertebrate auditory and vestibular organs and are often mechanically coupled

using overlying structures such as the tectorial membrane in human cochleae, and otolithic

membrane in the bullfrog sacculi [1].

In the cochlea, air-borne vibrations induced by an incoming sound causes a traveling wave

along the basilar membrane. Its up-and-down motion combined with that of the tectorial

membrane results in a back-and-forth movement of the hair bundles and consequently opens

mechanosensitive ion channels that reside within each stereocilium (Fig. 1.1(c)). This leads to

an inward ionic current of K+ and Ca2+, which depolarizes the hair cell membrane potential,

and further triggers action potentials in connecting auditory nerve fibers through the release

of the neurotransmitter glutamate. The entry of these ions through mechanotransduction

channels is ensured by the unique configuration of the cells chemical environment, with

their apical side bathed in endolymph, a K+ rich solution and their basal side contacting

perilymph, whose ionic composition is dominated by Na+. The subsequent endocochlear

potential difference provides the primary driving force for the inward current. Thus while

the basilar membrane transfers mechanical energy, the Ressiner’s membrane functions as the

electrical isolator that sustains this endocochlear potential [44].

However there are several crucial subtleties associated with the former. Its mechanical

properties vary continuously along the cochlear length, tuning each point on the membrane

to a different frequency in its wide tonotopic range. Apart from frequency selectivity, the

basilar membrane also exhibits exquisite compressive nonlinearity, that characterized by a

one-third power law: while sounds as soft as those with an amplitude of 0.3 nm - smaller than

surrounding thermal fluctuations - evoke in it mechanical vibrations, those six times larger

only cause 10 nm displacements [45]. These impressive dynamic ranges in the presence of

severe hydrodynamic drag-induced dissipation indicate that the inner ear is both active and

highly nonlinear [18]. Such properties however are not restrictive to the membrane, they

have also been extensively shown to be exhibited by the inner ear hair cells and hair bundles.

In fact, interplay between the active motilities of the basilar membrane and its hair bundles
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has been proposed to be one of the mechanisms underlying the remarkable sensitivity and

robustness of the inner ear [29].

1.2 Bullfrog Sacculus

As is evident from the foregoing discussion, in order to understand the basic principles of

mechanotransduction aka how incoming sound is eventually converted to neural signals,

one must necessarily study the mechanics of hair cells and their stereocilia. However, due to

sensitivity of the mammalian hair cells, experiments aimed at detailed probing of mechanical

properties have utilized other epithelia. For example, much of our present knowledge of the

bundle dynamics comes from auditory and vestibular systems of lower vertebrates such

as chickens, turtles and frogs [58]. While significant differences do exist between species,

fundamental similarities can be found such as in the active, non-linear nature of the inner

ear manifested in its frequency selectivity, compressive nonlinearity and its ability to parse

sounds with amplitudes smaller than the noise floor. In this manuscript, we will be mainly

focusing on the bullfrog sacculus (Fig. 1.2(a)), which is an auditory/vestibular organ in the

American Bullfrog (Rana Catesbiana) and is capable of detecting low frequency air-borne

sounds and ground vibrations with a range spanning 50-130 Hz. Just as in the cochlea,

from the saccular epithelial hair cells protrude hair bundles which are arranged in a quasi-

hexagonal fashion and coupled to an overlaying tissue called the otolithic membrane (OM).

1.2.1 Saccular Hair Bundles

These bundles are typically ∼8 µm tall and ∼10 µm in diameter, comprising of approx-

imately 60 actin fillament-filled stereocilia and a single microtubule-based kinocilium [44]

(Fig. 1.2(b)). Structurally, each stereocilium tapers near its base i.e at its point of insertion

to the cuticular plate, due to gradual decline in the number of constituent microfilaments

from several hundreds to a few tens. In the presence of an external force the bundle es-

sentially pivots about this flexible, compliant base [15]. Furthermore, these stereocilia are
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Figure 1.2: Morphology of the bullfrog sacculus

(a) Top-down SEM Image of the sacculus [55] (b) Zoomed in image depicts roughly a dozen

protruding hair bundles from cellular surface [44] (c) Schematic diagram illustrating various

links between neighbouring stereocilia (d) TEM image of a tip link connecting adjacent

stereocilia. Insertional plaque at its upper end contains the Myosin-1c molecules that regulate

tension in the gating spring.
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intricately linked using proteinaceous connectors [58, 41] (Fig. 1.2(c),(d)).

Amongst these, the tip links are the most important connections for mechanotransduc-

tion. They are part of a crucial component of the hair bundle - its array of gating springs [41]

- which senses deflection of the sensory organelle and conveys this information to the bundle’s

mechanically sensitive ion channels also known as its transduction channels. The opening

(closing) of these channels is thus reliant upon the elongation (compression) of the associat-

ed gating spring. An excitatory (inhibitory) deflection of the bundle towards its kinocilium

consequently leads to a depolarization (hyperpolarization) of the hair cell voltage whose

resting potential otherwise is -60 mV. The resulting activation curve of bundle displacement

vs. transduction current is well described by a Boltzmann function, with 15%-20% of the

channels open at rest [1] (Fig. 1.3(a)).

One of the fascinating aspects of hair cell mechanotransduction is its reciprocity. While

application of force to the gating spring regulates the opening and closing probabilities of its

associated channel, at the same time, channel gating in turn affects tension in the spring. For

example, opening of a channel relaxes the spring. This relaxation acts like an external force

in the positive direction, causing the bundle to continue moving further [24]. Due to this

phenomenon, often termed as gating compliance, while the hair bundle is Hookean in nature

for large displacements in the positive and negative directions, over the range in which its

channels can gate - about ± 20 nm centered at the cilium’s resting position - the bundle’s

stiffness becomes zero or even negative [2] (Fig. 1.3(d)). Subsequently, the unrestrained hair

bundle (one not coupled to an OM) cannot remain steady in this ∼50 nm region and is made

to leap spontaneously in the positive and negative directions.

While this instability fostered by channel gating is a necessary ingredient for active

hair bundle motility, it proves insufficient in the absence of an energy source that could

potentially power this spontaneous motion. Furthermore, one may also inquire how does

the cell respond to long static stimuli that are likely to saturate its afore stated narrow

operating range. Previous studies have established that the stereociliary apparatus addresses

these concerns using its molecular motors; these motors contain myosin-1c and scuttle up
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Figure 1.3: Adaptation, negative stiffness and resulting spontaneous oscillations

(a) Transduction current - bundle displacement curve of a saccular hair bundle. (Positive

displacements to be considered excitatory.) [14] Note, the curve shifts along its displacement

axis in presence a prolonged static positive stimulus. (b) Slow adaptation for a step deflection

of 40 ms resulting in gradual decay of the inward current [58]. (c) Shifting of a bundle’s

displacement-force curve during oscillation with filled circles corresponding to the channel-

opening state and open circles to -closing state [17]. (d) Gating compliance decreases bundle

stiffness about its resting position. For large values of gating force, negative stiffness ensues

(dotted curve) [44]. (e) Slow adaptation and negative stiffness work in concert to cause the

bundle to oscillate spontaneously. The trace is from a model simulation [33].
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and down actin filaments correspondingly increasing or decreasing tension in the conjugate

gating springs [14].

Movement of the motors combined with the changing internal Ca2+ concentration, drives

a unique form of mechanical adaptation that continually recentres the hair bundle’s region of

sensitivity and its operating range to the new position that it is held. Therefore for example,

when the bundle is deflected towards its kinocilium, the incoming ionic current transiently

peaks before decaying to its original resting level over time (Fig. 1.3(b)). This adaptive

machinery comprises of two kinetic processes operating at different time-scales: first, a fast

adaptation occurs within a millisecond or so; the second, slow adaptation has a time constant

of roughly several tens of milliseconds [20]. While the exact mechanism underlying fast

adaptation is still unknown, several theories have been proposed, all of which assume that

the process is mediated by calcium inflow through the transduction channels [6, 10]. On the

other hand, slow adaptation is relatively well understood and corresponds to a shift of the

hair cells displacement-response curve in the direction of its external stimulus (Fig. 1.3(c)).

For instance, excitatory bundle movements lead to Ca2+ influx which in turn causes motors to

slip down the internal actin core, decreasing gating spring tension and closing ionic channels.

The complement occurs for inhibitory deflections. The physiological utility of such motor

climbing and slippage is clear: by slowly adapting to prolonged stimuli, the hair cells seek

to remain sensitive to any new incoming stimulus [29].

The interplay between channel gating and the activity of myosin motors has been shown

to lead to spontaneous limit cycle oscillations by the hair bundle, demonstrated in vitro in

a number of species including the bullfrog sacculus [5, 33, 17] (Fig. 1.3(e)). Additionally,

as one of the many mechanisms that plays a role in the organ’s frequency selectivity and

sensitivity, this active hair bundle motility has been unequivocally demonstrated to be highly

spectrally tuned [1].
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1.2.2 Saccular Hair Cell Somae

Another mechanism that tunes individual hair cells is electrical in nature: injection of a

current pulse into the cell due to excitatory movements of the hair bundle causes a damped,

sinusoidal oscillation of its membrane potential at a cell-specific resonant frequency. From

a biophysical point of view this has primarily been attributed to the interplay between its

voltage-activated Ca2+ channels and Ca2+-sensitive K+ channels [22, 21]. However, multiple

recent studies have documented additional basolateral ionic currents in the saccular hair cells

and have also detected the occurrence of spontaneous self-sustained voltage oscillations [9,

25, 48].

Moreover, coupling between stereociliary motion and variations in the cellular potential is

bidirectional. While the former clearly affects the latter due to ionic inflow, it has been shown

that the membrane potential can modulate or fully suppress innate bundle oscillations, thus

controlling its dynamic state in a process commonly referred to as reverse transduction [6,

3]. In particular, the authors of [34] through simultaneous electrophysiological and optical

recordings show that such control is exerted by affecting the internal calcium concentration

of the cilium, which in turn monitors the resting open probability of its mechanosensitive

channels.

1.3 Active hair-bundle motility

The inner ear’s active process underlies its mechanical amplification, frequency selectivity,

compressive nonlinearity and spontaneous otoacoustic emissions. We have already detailed

the first three, the last of these refers to the generation of sound in the receptor organ even in

the absence of an external stimulus, and has been recorded in extremely quiet environments.

The dynamical instability and self-sustained oscillations of its hair bundles and cells are

postulated to power these emissions [2].

Active hair-bundle motility has also been shown to drive the inner ear’s amplificatory

process. For instance, external stimulation of an oscillating bundle’s base by nanometer-scale
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sinusoidal displacements often causes its tip to move by a still greater distance. Moreover,

the average phase difference between the applied forcing and that of the oscillation exhibits

zero-crossing at its characteristic natural frequency, with a phase lead (lag) for low (high)

frequency signal. Both of these phenomena clearly delineate its non-linear active nature [31].

The same study further illustrates that during each cycle of stimulation the total external

work done on the bundle was negative (∼ -80 zJ); the hair cell in fact expends its own energy

to amplify its mechanical response and sustain its movements.

1.4 Open questions

While many aspects of the mechanical and cellular processes behind the active hair motility

have been established, many questions remain, and the study of the inner ear remains one of

active pursuit. For example, while we understand that tuning is highly critical for optimal

hearing, it is still unclear how the hair bundle’s mechanical sensitivity is tuned. While,

recent evidence suggests that efferent innervation may be a biological control parameter to

achieve this [11] the details of how this neural activity may impact membrane potential and

conversely the hair bundle are still unknown.

Moreover, as the inner ear is an active, non-linear organ, it also lends itself very well

as a model system which can be probed using tools from the fields of non-linear dynamics

and non-equilibrium statistical mechanics. Theoretical modeling work on the inner ear draws

heavily from the former, while relations derived from the latter have proven useful in probing

and delineating the active nature of the hair bundle organelle. Since in my work I will be

using ideas from these fields to describe and understand the hair bundle and the hair cell,

the forthcoming sections are intended to provide the necessary background.
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1.5 Fluctuation-dissipation theorem and its generalizations

1.5.1 Violation of the fluctuation-dissipation theorem

A seminal study of the hair bundle’s internal active nature analyses its violation of the

fluctuation-dissipation theorem (FDT), a hallmark principle of equilibrium thermodynamic-

s [27]. The theorem is given by the following equation,

θ =
νC(ν)

2kBTχ′′(ν)
(1.1)

where one compares the correlation function (C) of a steady-state unperturbed stochastic

observable to its linear response function (χ) when the system is perturbed by a small force.

For systems in thermal equilibrium, θ = 1. However, on evaluating this theorem with the hair

bundle position as the observable of interest, Martin et al. in [32] show that the bundle is

non-equilibrium in nature thus essentially eliminating the possibility that it can be a passive

bi-stable system driven by noise (Fig. 1.4(a-d)). In fact, the root-mean-square of a free,

passive hair bundle subjected to thermal Brownian motion is of the order of 3 nm, a value

ten times larger than the threshold movement required for effective mechanotransduction.

Some of the other sources of stochasticity that also modulate the unencumbered stereocilia

and their autocorrelation functions are the frequency-dependent noise associated with motor

attachment and detachment from the actin core [36], the clattering of ionic transduction

channels and the shot noise due to ion transport. Overcoming these dissipative forces to

parse sounds of low amplitude necessitates the presence of an internally active mechanism.

1.5.2 Generalized fluctuation-dissipation theorems

Several recent studies have explored whether such a universal fluctuation theorem also exists

for non-equilibrium steady-state systems. In this work I will primarily dive into two such

approaches. Prost et al. [42] explore a generalized fluctuation-dissipation theorem for a

system exhibiting nonequilibrium fluctuations about a fixed point steady-state. Using their

suggested change of variables a subsequent study [13] illustrates that an active hair bundle
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Figure 1.4: Violation of FDT by the hair bundle

. (a) Experimental trace of a spontaneously oscillating hair bundle. (b) Its highly tuned

power spectrum (C(ν)). (c) Imaginary part of its linear response function (χ′′(ν)). (d)

Departure of θ from 1 illustrates the bundle’s non-equilibrium behaviour. (e) The same

ratio θ when applying the generalized GFDT of [13].
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poised close to its point of criticality (i.e. in a region where its oscillation amplitude maybe

deemed small enough to be approximated as a fixed point) in fact admits such a relation.

However, as the paper [36] suggests, the bundles might in fact lie deep in the oscillatory

regime of their supercritical Hopf bifurcation. Here we point the reader to the next section

on modelling where we will detail more thoroughly the Hopfian nature of the organelle.

Since the previously stated generalized theorem is constrained to a fixed-point steady-state,

in the presence of a limit cycle oscillator we study a different generalization, one proposed

by Seifert et al. [50] : fluctuations of an observable relative to its local mean value behave

like the corresponding response function. Thus subtracting away the mean non-equilibrium

dynamics of the steady-state oscillator will potentially allow for θ = 1 in Eq. 1.1.

1.5.3 Frenet frames

To facilitate this subtraction we propose a geometrical framework where we introduce the

Frenet frame associated with the d-dimensional limit cycle of the oscillating hair bun-

dle. For instance, let’s consider a d-dimensional system of dynamical variables ~X(t) =

{x1(t), . . . , xd(t)}, obeying the noise-free nonlinear system of differential equations

~̇X = ~F
(
~X
)
, (1.2)

where the dot denotes a time derivative. The function ~F depends on several parameters,

whose values may be chosen to put the system in the limit-cycle regime. Thus, in the absence

of noise, there exists a finite basin of attraction to a stable limit cycle solution of Eq. 1.2,

with period T

~X0(t) = ~X0(t+ T ), (1.3)

and which is nowhere stationary in time.

To analyze the effects of noise on these dynamics, we linearize the system by introducing

the Frenet frame associated with the d-dimensional curve defining the mean limit cycle,

Eq. 1.3. That orthonormal frame consists of one tangent vector t̂(s), one normal vector

n̂(s), and (d− 2) other mutually orthogonal vectors b̂j(s), j = 1, . . . , (d− 2). In subsequent
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chapters, we analyse either a two-dimensional or a three-dimensional system. The 2-d frame

comprises of {t̂(s), n̂(s)}, the 3-d frame also includes the binormal vector b̂(s). All d vectors

of the Frenet frame may be parameterized by a single independent variable s, which denotes

the arclength along the limit cycle, measured from an arbitrarily selected point on the cycle.

One may alternatively define a phase angle φ = 2πs/`, where ` is the arclength of the total

limit cycle. We will use s and φ interchangeably in the following discussion.

Using the Frenet frame formalism, I have in my thesis work sought to understand the

suitability and limitations of the Seifert-ian generalized fluctuation dissipation theorem [50,

53] as applied to the active, adaptive and nonlinear hair cell system. I shall elaborate upon

our findings and conjectures in this regard in the forthcoming chapters.

1.6 Modelling the hair bundle and cell dynamics

Apart from experimental studies, theoretical work rooted in non-linear dynamics has signif-

icantly furthered our present-day understanding of the inner ear. As was discovered nearly

two decades ago, the four defining characteristics of this auditory organ’s striking active pro-

cess emerge naturally if its mechanoelectrical transduction machinery operates on the verge

of an instability - the supercritical Hopf bifurcation [8]. Physiological evidence supporting

such a description has been obtained from nonmammalian tetrapod hair bundles [32, 2, 52]

(Fig. 1.5(a)), the mammalian basilar membrane [47] (Fig. 1.5(b)) as well as hearing sensors

of insects [54].

It is to be noted, that in this manuscript, we shall primarily interpret the Hopf dynamical

system equations in context of the actively motile hair bundles. The normal form of this

bifurcation can be written as :

ż = z (µ− iω0) + (b′ + ib′′)z|z|2 + ηz(t) + fz (1.4)

where z = x+ iy denotes a complex variable, whose real part is mapped onto the bundle

position and whose imaginary part does not have biological correlate but is a function of

14



Figure 1.5: Characteristics of the ear’s active process that suggest its proximity to the

supercritical Hopf bifurcation

(a) Sensitivity curve of a hair bundle from the bullfrog sacculus enters a non-linear regime

governed by a two-third power law for moderate amounts of stimulation [32]. (b) Laser

velocimetric data from a living chinchillas cochlea displaying the root-mean-square velocity

of one point on the basilar membrane as a function of driving frequency [40]. Each curve is

evoked at a different level of stimulation, labelled in db SPL. Its compressively non-linear

response has also been shown to follow the one-third law [47] and as is evident is highly

frequency sensitive.
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internal parameters such as motor adaptation, calcium dynamics, and ionic transport etc.

For µ < 0 the system has a single stable fixed point at z = 0 with an infinite basin of

attraction, while for µ > 0 it spontaneously oscillates leading to the emergence of a limit

cycle attractor at R0 =
√

µ
b′

. Herein b′ > 0 ensures stability of this limit cycle about

which the system traverses with an angular velocity of ω = ω0 + b′′R2
0. The hair bundle is

proposed to be self-tuned at the bifurcation point i.e µ = 0, since mathematical analysis

indicates that a system posed near this criticality can exhibit a one-third power law, amplify

small-magnitude stimuli and has a spectral response with sharp frequency selectivity [8].

However, the precise connection between these variables and the underlying hair bundle

structures has been difficult to establish experimentally. As a consequence, a number of

more complex models have been proposed, which are more directly based on the known

biophysical processes operant within the organelle. These models explicitly include terms

related to dynamics of the myosin motors, deflection of the stereocilia, and the electric

potential across the cell membrane [30, 36, 46]. The experimental observations that variations

in the membrane potential affect hair bundle motility and vice-versa have led to biophysical

models that incorporate the non-linear dynamics of both the bundle and the cell as well

as forward mechanoelectrical and reverse electromechanical transduction mechanisms. The

analysis of these complex models reveals a rich phase diagram, containing distinct dynamical

phases separated by both continuous and discontinuous bifurcations [36].

Interestingly, even the electrical resonance mechanism of the hair cell has been postulated

to be poised near a Hopf bifurcation [40]. The full physiologically relevant mathematical

model was initially proposed by Hudspeth and Lewis [22, 21], which latter studies have

sought to map onto the Hopf normal form [35, 40]. One such model of a linear electrical

resonator coupled bidirectionally to stochastic hair bundle oscillator was used in Ref. [19]

to predict that higher quality voltage oscillations may enhance coherence of mechanical hair

bundle oscillations.
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1.7 Outline of the Dissertation

In this current work, we focus on the study of an inner ear hair bundle as an active, non-

equilibrium limit cycle oscillator and using numerical simulations and analytics parse the ef-

fect of noise upon such a system. In chapter 2, we shed light on how well the two-dimensional

Hopf mathematical model and a more biophysical three-dimensional model capture experi-

mentally observed stochastically-driven fluctuations about the mean limit cycle curve. Next,

in chapter 3, we probe the ability of noise to distort the oscillatory behavior of certain kinds

of non-equilibrium systems and put forth a criterion that maybe used to identify limit cycle

regions susceptible to such distortion thus enabling the readers to more meaningfully fit com-

plex multi-parameter models to their data such as that obtained from the inner ear. Building

upon our framework of chapter 2, in chapter 4 we explore how the computational nature of

the actively motile hair bundle causes it to violate the fluctuation-dissipation theorem and

some of its generalizations. Finally, chapter 5 describes future work of how one may instead

instate a new generalized fluctuation-dissipation theorem which accords with such compu-

tation and thus may be satisfied by homoeostatically controlled biological systems such as

the inner ear.
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CHAPTER 2

Stochasticity in non-equilibrium limit cycle oscillators

2.1 Introduction

Analysis of the response of a nonlinear system to noise is typically performed by linearization

about a stable fixed point, allowing one to write a system of linearized Langevin equations to

describe the stochastic dynamics. Hair bundles exhibiting spontaneous oscillations, however,

are described by a limit cycle rather than a fixed point. Thus in this chapter we explore

a framework for the general interpretation of a stochastic dynamical system that lies near

a stable limit cycle. We use this framework, comprising of the Frenet frame described in

section 1.5.3, to not only detail the nature of fluctuations in such a system but also test

for the robustness of the two-dimensional Hopf model and a three-dimensional biophysical

model.

For example, for the noisy (henceforth “finite temperature”) hair bundle oscillator, using

its associated Frenet frame we can effectively “subtract” away the underlying average limit

cycle of the stochastic bundle oscillations and thus easily linearize its fluctuations. We show

that these fluctuations have a Lorentzian power spectrum in the (d− 1) directions that are

orthogonal to the local tangent of the limit cycle. The local linear stability of the limit

cycle forces these degrees of freedom to behave effectively like overdamped oscillators in a

thermal bath. The fluctuations in the tangent direction, however, generate diffusive motion

along the limit cycle. The first-order differential equation governing the limit cycle (Eq. 1.2)

provides no restoring force to fluctuations that either advance or retard the motion of ~X in

the tangent direction.

Additionally, we allow for the effective potential for the Lorentzian variables and the
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effective diffusion constant of the arclength variable to themselves be time-dependent. There

are two sources of this effect, which we call mechanisms I and II. Mechanism I is in effect

when the linearized equations of motion about the Frenet frame have an effective coupling

between the Lorentzian variables and the arclength variable. This coupling thus modifies

diffusion of the tangential fluctuations in a frequency-dependent manner. Mechanism II

occurs whenever the effective potential for the Lorentzian variables, the zero-temperature

speed of the phase point about the noiseless limit cycle, or the effective diffusion constant of

the arclength variable, are inherently arclength-dependent. So as the system transverses its

limit cycle, this dependence makes the fluctuation spectrum vary in time. As they are arc-

length dependent, those variations generate extra structure in the power spectral density of

the stochastic variables at discrete frequencies, determined by the zero-temperature period

: νn = 2πn/T , where n is an integer.

Additionally we use this framework to probe the generalizability of some of the previously

detailed theoretical models, specifically the two-dimensional mathematical Hopf model and

a more complex three-dimensional biophysical model. The latter comprises of the variables

- hair bundle position, membrane potential and myosin motor activity. While these models

have been shown to satisfactorily capture the mean dynamics of experimentally observed

noisy spontaneous oscillations of hair bundles and cells [36, 19, 3], we shall also find them

to describe well the fluctuation spectra in these data.

However, we note that the comparison between theory and the experimental measure-

ments of hair bundle dynamics is fraught with a complexity. The more complex models

include at least three dynamical variables. Although previous experiments have measured

a number of physiological parameters, including stereociliary position, membrane potential,

calcium concentration, and others [2, 29, 58], myosin motor activity during spontaneous os-

cillations is, so far, not directly observable. In essence, only lower-dimensional projections

of the full dynamical systems, are experimentally accessible. In this chapter, we will thus

study and compare a two-dimensional projection of the 3-d model, with the projection plane

defined by the bundle position and the membrane potential.
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Thus, the remainder of the chapter is organized as follows. In section 2.2, we introduce

and analyze a two-dimensional model for a Hopf oscillator in the stably oscillating regime. In

section 2.3, we apply our analysis to the three-dimensional biophysical model for hair bundle

oscillations that explicitly includes the experimentally hidden variable of motor activity. In

section 2.4, we turn to experimentally observed noisy spontaneous oscillations, exhibited by

hair bundles of the amphibian sacculus. We find that predictions for the phase diffusion

constant, based on mechanism I coupling of the simple supercritical Hopf system, are sup-

ported by the data. We also observe some features indicative of the proposed mechanism II.

Finally, we conclude in section 3.4, where we review the relation between experiment and

theory regarding the fluctuation spectrum of these limit cycle oscillators and propose new

experiments.

2.2 Model I: Normal form for the supercritical Hopf bifurcation

We begin with the simplest two-dimensional approach to the hair cell dynamics, the super-

critical Hopf oscillator in its normal form [56]. Its dynamical system can be described in

terms of a single complex variable z(t) = x(t) + iy(t) that obeys the (stochastic) differential

equation

ż = z (µ− iω) + bz|z|2 + ηz(t). (2.1)

One may identify the real part x(t) with stereociliary displacement, and the imaginary part

y(t) with the bundle’s internal active mechanism the details of which are irrelevant for the

proceeding discussion. The zero-temperature dynamics of the model, i.e. when ηz = 0, are

controlled by the values of the parameters {µ, ω, b}. We allow b = b′ + ib′′ to be a complex

number whose real part is required to be positive (b′ > 0) to ensure the stability of the limit

cycle. When the (real) parameter µ < 0, the system has a single stable fixed point at z = 0

with an infinite basin of attraction. For µ > 0, this fixed point becomes unstable, and a

circular limit cycle appears at radius R0 =
√
µ/b′. The zero temperature system traverses

this limit cycle with a fixed angular velocity ω0 = ω +R2
0b
′′.
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Figure 2.1: Numerical simulation of the stochastic Hopf oscillator:

Calculations were performed based on Eq. 2.1. (a) The finite-temperature (green) trajectories

and the mean (black) limit cycle. Also illustrated is the Frenet frame {r̂, φ̂} associated with

the mean cycle. (b) A typical time series (black) of the stochastic dynamics of x(t) and y(t).

The variables were low-pass filtered for further analysis (red dashed line).

21



We henceforth assume that the stochastic forces acting on this system are Gaussian

random variables with zero mean and a frequency-independent second moment. The latter

point is not essential for our analysis; one may consider the effect of colored Gaussian noise

with the same formalism. In addition, we may assume that noise amplitudes along the

orthogonal axes x, y are statistically independent, but potentially selected from different

Gaussian distributions. Thus, we write

〈ηi(t)〉 = 0 (2.2)

〈ηi(t)ηj(t′)〉 = Aijδ(t− t′) (2.3)

with Aij denoting elements of a diagonal matrix having two independent nonzero entries.

The results obtained are consistent across several numerical values of Aij. The range of

values tested is further discussed in appendix A.

Recasting Eq. 2.1 in terms of polar coordinates

z(t) = r(t)eiφ(t), (2.4)

and then expanding about the zero-temperature limit cycle

r(t) = R0 + δr(t) (2.5)

φ̇(t) = ω0 + δφ̇(t) (2.6)

we arrive at a local description of the fluctuations of the system in the limit cycle regime.

On substituting for r(t), φ(t) in Eq. 2.1 and simplifying up to linear order, we derive

δṙ = −2µ δr + ηr (2.7)

δφ̇ = 2b′′
√
µ

b′
δr + ηφ. (2.8)

We have introduced the projections of the stochastic force onto the local normal r̂ and

tangent φ̂ to the zero-temperature limit cycle, ηr and ηφ respectively. It should be noted

that this {r̂, φ̂} frame is the Frenet frame for the circular limit cycle with r̂ = n̂ and φ̂ = t̂.

From Eqs. 2.7, 2.8, we see that this two-dimensional system has one overdamped oscillator

(Lorentzian) degree of freedom, corresponding to displacements of the system normal to
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Figure 2.2: Fluctuation spectra of the Hopf oscillator

(a) Power spectral density of fluctuations in the radial variable (blue dots) as a function

of frequency ν. Error bars denote standard deviations of the mean. The characteristic

Lorentzian form has a corner frequency 2µ, marked by the vertical (black) line. (b) The

frequency-dependent, effective phase diffusion constant, obtained from the product of the

phase fluctuation power spectral density and ν2. The spectrum exhibits a step, transition

from a larger to a smaller diffusion constant, at the corner frequency of the radial fluctua-

tions (vertical black line). The theoretical predictions - Eqs. 2.9, 2.10 - are indicated with

superposed black lines.
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the zero-temperature limit cycle (δrn̂), and one diffusive arclength variable s = R0φ. In

addition, we note that we should expect effects based on mechanism I to generate extra

frequency dependence in the diffusion about the limit cycle, arising from the coupling of

δr to the angular velocity variations δφ̇, seen in Eq. 2.8. Moreover, one observes that the

non-zero parameter b′′ controls the magnitude of this coupling, as it causes the fixed angular

velocity of the system ω0 to be dependent on the radius. We do not expect to observe effects

of mechanism II in this system, since the curvature of the potential for δr is independent of

φ, as is the coupling between that variable and δφ̇. Moreover, the mean velocity of the phase

point of the zero-temperature dynamical system is independent of the arclength about the

limit cycle.

If we make the further assumption that ηx and ηy are selected from the same ensemble,

then the statistics of their projections onto r̂, φ̂ are equal and independent of arclength. In

that case, Axx = Ayy = A, and we find the power spectral density for radial fluctuations to

be a simple Lorentzian:

〈|δr(ν)|2〉 =
A

4µ2 + ν2
. (2.9)

However, the power spectrum of the phase fluctuations (our dimensionless arc length vari-

able) is not simply diffusive, due to the mechanism I coupling between the normal and

tangential fluctuations:

〈|δφ(ν)|2〉 = A

[
4b′′2µ

b′ν2 (4µ2 + ν2)
+

b′

µν2

]
. (2.10)

The effective diffusion constant of the phase variable is larger at low frequencies ν < 2µ

than it is at higher ones. The mechanism I coupling, in essence, adds extra phase noise from

the overdamped fluctuations of the radial variable. Since these radial fluctuations obey a

Lorentzian power spectrum with a corner frequency of 2µ, the effect of this cross-coupling

diminishes rapidly at frequencies higher than the corner frequency. This effectively decreases

the phase diffusion at higher frequencies.
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2.2.1 Fluctuations around a simulated Hopf limit cycle

We demonstrate these features of the fluctuation spectra using numerical simulations of the

stochastic Hopf oscillator. The simulation details are standard and described in subsection

2.6.1. Fig. 4.2 illustrates the stochastic dynamics of the simulated supercritical Hopf dy-

namical system. The values of the Hopf parameters used to construct the same are: µ = 40,

ω0 = 10, b′ = 2, b′′ = 2. Panel 4.2(a) shows the mean orbit of the stochastic system in the

phase space spanned by x, y (black line). The hair bundle phase space {−π, π} is partitioned

into nearly 200 bins. Trajectories in each bin are then averaged, resulting in the mean limit

cycle. For all forthcoming figures in the chapter, similar methodology is applied to calculate

the mean cycle.

Simulations provide us access to both this averaged curve and the zero-temperature

one, but in experiments, we cannot access the latter. To better connect the simulations to

the experimental observations shown later in this chapter, we study the behavior of these

fluctuations about this averaged limit cycle. In this simple case, the average cycle is similar

to the zero-temperature limit cycle. We return to this point in our summary. The green

curves show a representative set of stochastic trajectories that meander about the mean

limit cycle. The local Frenet frame for the average system, given by the unit vectors r̂ = n̂

and φ̂ = t̂, is indicated in the figure. Panel 4.2(b) shows typical time series of the variables

x, y after low-pass filtering. These were filtered at 400× 2π Hz; the Nyquist frequency was

500× 2π Hz.

We numerically compute the power spectral density (PSD) of the stochastic deviations

of the simulated trajectories about the mean limit cycle of the supercritical Hopf oscillator

(using code in A.1). The spectra of the fluctuations in the normal and tangential directions

are shown in Figs. 2.2(a) and 2.2(b), respectively. In anticipation of the diffusive nature of

the tangential or phase fluctuations, we plot the product of the tangential PSD and ν2; note

that this is the frequency-dependent phase diffusion constant. To obtain these results, we

project the state of the system onto the local Frenet frame, corresponding to the point of

the mean limit cycle closest to the phase space point of the system. The perturbation of this
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state from the mean limit cycle, along the normal of the Frenet frame exhibits Lorenztian

dynamics of an overdamped oscillator.

Fig. 2.2(b) is obtained from the drift-corrected difference between total arclengths tra-

versed along the finite-temperature and the mean limit cycles. The arclength (s) is given by

hair bundle displacement as projected along the tangent of the local Frenet frame nearest to

the phase space point. The presence of noise {ηr, ηφ} causes the finite-temperature arclength

to differ from the mean curve arclength. The difference is corrected for the underlying drift,

and the resulting frequency spectrum is given by Eq. 2.10. The phase fluctuation δφ is

equal to 2π(δs)/`. Due to the coupling between the overdamped radial fluctuations and

the phase velocity – see Eq. 2.8 – the phase diffusion constant crosses over from a higher

value, at frequencies below the corner frequency of the radial Lorentzian PSD, to a lower

one at higher frequencies; the crossover point of this step-like transition is marked by the

vertical black line in both panels of Fig. 2.2. The phenomenon has a simple interpretation.

Below the corner frequency, noise in the radial variable feeds back into the phase velocity

fluctuations. Above the corner frequency, these radial fluctuations rapidly vanish, reducing

the phase diffusion. There are no mechanism II effects, since the mean phase velocity, the

phase diffusion constant, and the curvature of the effective potential in the radial direction

are all phase independent.

2.3 Model II: Biophysical model

Hair bundle motility is more comprehensively described by higher-dimensional models that

include multiple dynamical variables, aimed to accurately capture the biophysical processes

operant within the hair cell. We focus here on a particular version of the model, which

includes two observable physiological variables – hair bundle displacement X(t) and the

membrane potential of the hair cell Vss(t) – as well as an internal variable Xa(t) associated

with the position of the myosin motors along the actin filaments. For more details the reader

is referred to Refs [19, 37]. This hair bundle model is defined by three nonlinear coupled
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differential equations:

λẊ = −Kgs (X −Xa −DP0)−KspX + ηx (2.11)

λaẊa = Kgs (X −Xa −DP0)− γFmax
(

1− S0

[
1 + α

Vss
V0

]
P0

)
+ ηxa (2.12)

V̈ss = −ωv
(

β0
ωvCm

+
gtP0

ωvCm

)
V̇ss − ω2

v

(
1 +

gtP0

ωvCm

)
(Vss − V0)−

I0ωv
Cm

. (2.13)

The model depends on sixteen physiological parameters, which are tabulated and described

in subsection 2.6.1. The reader may follow code in A.5 to reproduce our model simulation.

We refer to this model as three-dimensional since it relates three biologically relevant

variables. As normally discussed in the theory of dynamical systems, this model exists

in a four-dimensional phase space, since the differential equation governing the membrane

potential is second order in time. As a consequence, we can show only a three-dimensional

projection of the system’s four-dimensional limit cycle. We will see that the experimental

data are confined to a two-dimensional projection of this three-dimensional limit cycle.

Models based on the first two equations, without the cellular membrane potential, have

been extensively studied. This system contains an actively driven mechanical oscillator and

is known to exhibit a dynamical phase portrait, exhibiting the so-called ‘fish diagram’ [36],

with bifurcations separating quiescent, oscillatory, and bi-stable states of the hair bundle.

These boundaries are controlled by both subcritical and supercritical Hopf bifurcations. The

model employed here results from an extension of the two-dimensional model that includes

the membrane potential (Eq. 2.13), described as an underdamped resonator with the same

characteristic frequency as the bundle oscillator. The electrical oscillator is bi-directionally

coupled to the active mechanical one. Oscillations of the hair bundle affect the membrane

potential via the mechano-electrical transduction (MET) channel current gtP0, leading to

forward coupling. Here, P0 denotes the opening probability of mechanoelectrical transduction

channels and its equation is given in 2.6.1. Variations of the membrane potential in turn

modulate calcium influx, which affects the myosin motor activity; a dimensionless parameter

α controls the strength of this reverse coupling [3].
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Figure 2.3: Numerical simulation of the three-dimensional hair bundle model

Trajectories obtained by integrating Eqs. 2.11, 2.12, 2.13. Left panels (a) and (b) illustrate

two different perspectives of the nonplanar zero-temperature limit cycle (black). The green

curve in (a) shows a representative trajectory about this cycle. Right panel shows typical

time series (black) of the stochastic dynamics of the three variables and their respective

lowpass filtered curves (red dashed). Similar to the Hopf simulation, the cutoff for the filter

was chosen at 400×2π Hz. The system noise temperature was chosen to be Teff = τnoiseT =

0.25T . The constant τnoise is indicative of the variance of the finite temperature hair bundle

noise, and has value of 1 for a system obeying the fluctuation-dissipation theorem.
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2.3.1 Fluctuations around a simulated three-dimensional zero-temperature lim-

it cycle

We repeat our analysis of the fluctuations about the three-dimensional limit cycle. We

introduce a third vector associated with the Frenet frame, the binormal vector defined by

b̂ = n̂ × t̂. We may now similarly resolve stochastic deviations of the system depicted in

Fig. 2.3, along this mutually orthogonal triad of vectors, associated with each phase point

on the zero-temperature limit cycle (black curve).

In our simulations, the variance of the noise in the stochastic trajectory (green curve)

is modulated by the constant – τnoise. Since the experimental system may be subject to

nonequilibrium noise sources, we consider the effect on the hair bundle dynamics of a vari-

able noise amplitude unrelated to the system’s thermodynamic temperature. In effect we

modify all noise amplitudes so that they reflect fluctuations at an effective noise tempera-

ture Teff = τnoiseT . When τnoise = 1 the system obeys the fluctuation-dissipation theorem.

Henceforth we refer to this specific value of τnoise = 1 as τ0. In Fig. 2.3, the system noise

temperature Teff = 0.25T . The calculated three-dimensional zero-temperature limit cycle

and the associated Frenet frames are shown in Fig. 2.4.

The deviations of the stochastic system from its nearest point on the zero-temperature

limit cycle are resolved along the unit vectors t̂, n̂, and b̂ of the local Frenet frame to obtain

the power spectral densities of their fluctuations in Fig. 2.5 (code in A.6). We allude to the

mean limit cycle case in later sections. Panels (b) and (c) show the (Lorentzian) relaxation

of the degrees of freedom locally orthogonal to the limit cycle, in the normal (panel (b)) and

binormal (panel (c)) directions. The fluctuations in these directions are those of overdamped

oscillators. Panel (a) of this figure shows the frequency-dependent phase diffusion constant.

Fig. 2.5(a) is obtained from the difference in total arclength of the zero and finite temperature

oscillations, starting from an arbitrary phase point. The stochastic arclength variable is

determined by the projection of the distance traversed by the noisy trajectory onto the unit

vector t̂ associated with the Frenet frames of the deterministic limit cycle. Arclength (s)

and phase (φ) are interchangeable, and we depict fluctuations in the latter.
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Figure 2.4: Rotating Frenet frame for the three-dimensional model

The zero-temperature limit cycle is indicated with the orange line. The local Frenet frame(
t̂, n̂, b̂

)
is shown by the (orange, blue, purple) unit vectors respectively, with the frames at

four of the phase angles magnified by an arbitrary value for clarity. Note that the limit cycle

is nonplanar.
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Figure 2.5: Fluctuation power spectra for the three-dimensional model

Fluctuations about the zero-temperature limit cycle were projected onto the co-moving

Frenet frame. The stochastic data use noise amplitude given by temperature τnoiseT = 0.25T.

(a) The frequency-dependent diffusion constant. The spectrum shows peaks, as well as a

crossover at the corner frequency (indicated by vertical black line), hinting to both mecha-

nism I and II coupling. (b) The fluctuation power spectral density along n̂. (c) The power

spectral density of perturbations along b̂. Both (b) and (c) exhibit Lorentzian spectra.
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This model exhibits new temporal structure in the phase diffusion constant due to effects

of mechanism II. Both the mean phase velocity and the phase diffusion constant depend on

the phase angle. As a consequence, these quantities vary periodically in time as the system

follows its limit cycle oscillations. This periodic variation of the phase diffusion constant

introduces structure in the diffusion constant at frequencies corresponding to the inverse

of the limit cycle period T , i.e., at νn = 2πn/T , where n = 1, 2, . . .. These features are

analogous to the Bragg peaks associated with the Fourier transform of the spatial density in

a crystalline structure. Superimposed on these peaks is the mechanism I effect observed in

the simpler Hopf model. There is a decrease in the effective diffusion constant for frequencies

above the corner frequency of the two Lorentzian degrees of freedom for the same reasons as

discussed earlier.

2.3.2 Lower dimensional projections

Realistic models of hair bundle dynamics include a number of variables describing the internal

state of the hair cell, such as position of the myosin motors along the stereocilia (Xa), the

forces they exert on the gating spring, internal calcium dynamics, and others [23]. Currently,

most of these variables are not accessible experimentally. Typical recordings are limited

to observations of hair bundle mechanics, its oscillation and response to an imposed drive.

Recently, recordings of bundle mechanics were combined with electrophysiological recordings

of the cell soma, in spontaneously oscillating and driven bundles [34]. This technique allows

the simultaneous probing of two variables, the hair bundle position X and the cell membrane

potential Vss. However, even with regard to the simplified biophysical model, discussed

in prior section, this still allows access to only two of the three variables, as Xa remains

“hidden.” The experimentally accessible system is thus a projection of the full dynamical

system onto a lower-dimensional manifold.

In our system, we have experimental access (discussed in a subsequent section) to the

two dimensional E = (X, Vss) plane. To examine the implications of this projection using

our numerical model, we start with the three-dimensional noisy limit cycle, and project it
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onto the experimental manifold E , as shown in Fig. 2.6. The full three-dimensional limit cy-

cle is shown in light green, and the two-dimensional projection of the numerical simulation

is shown in dark green. These curves have been simulated using noise amplitudes deter-

mined by Fluctuation-Dissipation theorem at room temperature. The figure also depicts the

zero-temperature limit cycle for the three- and two-dimensional systems, in black and gray,

respectively. From here on, to ensure consistent comparisons with experimental data, we

shall analyze the simulated data in this two-dimensional projection.

2.3.3 Mean vs zero-temperature limit cycle in the biophysical model

The analysis of experimental data introduces another complexity, briefly alluded to in a prior

section. The biological problem does not provide access to the noise-free system. While the

two were nearly identical in the case of the supercritical Hopf oscillator, in a more complex

system, the observable mean limit cycle may be different from the zero-temperature one. In

fact, both the size and the shape of the limit cycle may change with the noise amplitude.

We illustrate the noise dependence of the shape of the mean limit cycle (dashed black)

in the experimentally accessible manifold E depicted in the inset of Fig. 2.7. In panel (a),

we represent the finite-temperature limit cycle using a density plot, where the regions get

denser as the colors traverse from dark blue to light blue to yellow. This is indicative of

the phase-dependent properties of the limit cycle. In the inset, we show the deterministic

limit cycle (red) and the superposed mean limit cycle (dashed black), with finite noise in

all three dynamical variables. As shown in the figure, the mean limit cycle distorts at

finite temperature. The noise amplitudes were chosen to represent equilibrium fluctuations

at room temperature, as determined by the fluctuation-dissipation theorem. We however

note that this choice constitutes a simplification, particularly with respect to the variable

reflecting myosin motor activity, where one might reasonably expect both colored noise and

noise amplitudes unrelated to the dissipative terms in the equation of motion.

Furthermore, we observe that the zero-temperature limit cycle generally has sharper

features – smaller radii of curvature – than the noisy one, as is evident, for example, in
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Figure 2.6: Projection onto the experimentally accessible plane

The three-dimensional system contains only two experimentally accessible variables, span-

ning the E manifold. Stochastic trajectories (light green curves) about the deterministic

three-dimensional limit cycle (black line) are observed only by their projection onto the

E = (X, Vss) plane. The projected trajectories (dark green) show fluctuations about a planar

zero-temperature limit cycle (dark gray line). The inner two arrows denote the deterministic

limit cycle projections, and the outer two point to the projected stochastic trajectory. To

be compatible with experimental data, τnoise/τ0 = 1 for the given simulation, so < ηx >
2 is

2kTλ and < ηxa >
2 is 2kTλa .
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Figure 2.7: Effects of finite temperature

(a) A representative stochastic trajectory of length t = 1060T , where T is the mean period, is

depicted using a density plot. The less dense regions are in dark blue. Yellow indicates those

with the highest density. (Inset) The zero-temperature (red) and mean (dashed black) limit

cycle, computed at finite-temperature Teff = τ0T = T , are superposed on the stochastic

trajectory (green).(b) The mean two-dimensional limit cycle in the E manifold, for both the

deterministic (connected dots) and stochastic (line) systems. The mean velocity of the phase

point is denoted by a color map, where yellow (light gray)) color corresponds to lower and

red (dark gray) to higher phase velocity. The velocities, as indicated on the color bar, are

normalized to the maximum velocity of the hair bundle along its mean cycle, and are hence

dimensionless.
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Figure 2.8: Phase diffusion along the limit cycle

(a) The time evolution of an ensemble of systems, synchronized at a fixed but arbitrary

initial phase point. (b) The Full Width Half Maximum (FWHM) of the phase distribution is

not simply proportional to
√
t. The points represent two data sets, evaluated at time delays

of (T/16, T/8 ... 15T/16, T ), starting from two different initial phase points (shown as stars

and open circles). We observe advective and diffusive spreading of the ensembles, as seen by

the two slopes of 1/2 and 1.

the upper right corner of the inset in panel (a). This is also noticed in the upper right

corner of the limit cycles in panel (b). We delve into the cause for this rounding of the

zero-temperature limit cycle by noise in chapter 3. Additionally these sharp corners which

lie in the denser regions of panel (a) coincide with the slowing down of the particle. Indeed,

we see this from a plot of the mean velocity of the phase points on the limit cycle, illustrated

as a heat map superposed on the zero-temperature limit cycle oscillation in panel (b) of

Fig. 2.7, where cooler (yellower) colors denote slower speeds.
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2.3.4 Phase diffusion and advection give rise to Bragg peaks

We explore the effects of phase diffusion in another way. At time t = 0, an ensemble of

systems is poised at an arbitrary but fixed phase point on the limit cycle. Each system evolves

in time under the action of the stochastic differential equations, Eqs.2.11,2.12,2.13, with noise

variances of 2kT × τnoise/τ0 = 2kT . We compute the distribution of their phases (reported

in terms of the total phase traversed about the limit cycle) at time delays corresponding

to T/4, T/2, 3T/4, T , where T is the mean period of the stochastic limit cycle. As shown

in panel (a) of Fig. 2.8, the distribution of phase points exhibits an asymmetric spreading.

Due to the frequency dependence of the phase diffusion constant, we note that the spreading

of the phase distribution is not simply proportional to
√
t, as can be seen in Fig. 2.8(b).

This spreading is in fact also impacted by advection, as the ensemble of stochastic systems

converge or diverge in the lower and higher velocity regions, respectively. The dominant

effect that is observed depends upon the where in the oscillator does the system start and the

sequence of regions that it encounters. For example, the open circle ensemble is dominated

by advective spreading due to the local change in mean phase velocity along the limit cycle,

while the star one is dominated by diffusive spreading. Moreover, we see that the distribution

is not a simple Gaussian, as would be expected from a normal advection-diffusion equation.

The variation of the mean phase velocity with phase accounts for most of this effect. Finally,

we note that, after only one period t = T , the width of the phase distribution is comparable

to the total phase around the limit cycle (2π). Hence, for this level of noise, the ensemble

that was phase synchronized at t = 0 is (nonuniformly) distributed around the entire limit

cycle after only one period.

A simple criterion can be developed to account for the emergence of phase coherent effects,

such as the peaks arising from mechanism II effects. Questions regarding phase coherence

can be recast into a statement about the ratio of the phase diffusion time T ? = `2/D to

the mean period T . Herein, ` refers to the total arclength, measured in units of limit cycle

periods, over which the system is coherent. When T ? � T , the period of phase coherence is

equal to many limit cycle periods, and this phase coherence will result in the appearance of
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Figure 2.9: Fluctuation spectra of the projected system

(a) Frequency-dependent phase diffusion constant Ds, obtained at four different noise vari-

ances: τnoise/τ0 × 2kT = 0.005kT, 0.05kT, 0.5kT, 2kT (blue (lowest), cyan (second from bot-

tom), pink (second from top), red (topmost)). For τnoise/τ0 = 0.0025, the system is nearly

deterministic. Increasing noise amplitude broadens the Bragg peaks, as the system loses

phase coherence over a time T ? ∼ `2/D. The spectra have been shifted vertically for visibil-

ity by multiplying by (10−4, 10−2, 1, 1). (b) In the two-dimensional projection comprising of

X,Vss, the orthogonal direction is n̂. The power spectrum of fluctuations along this direction

is Lorenztian.
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peaks due to mechanism II effects. On the other hand, for sufficiently short phase coherence

times T ? � T , any periodic structure of the deterministic limit cycle oscillator is lost, and

the peaks disappear from the fluctuation spectrum.

We observe this transition in our numerical simulations by adjusting the amplitudes of the

noise, while holding the other parameters fixed. The results are shown in Fig. 2.9, where we

produced numerical data based on the Eqs. 2.11, 2.12, 2.13 and projected the results onto E .

The resulting spectra of the phase diffusion constant, obtained at four different noise levels,

are shown in the panel (a). The dark blue curve measures phase diffusion for an effective

noise variance of τnoise/τ0 × 2kT = 0.005kT . In this nearly deterministic system, phase

coherence, as defined above, is maintained for ∼ 40 periods. As a consequence, we observe a

full sequence of Bragg peaks. Upon increasing the noise variance to τnoise/τ0×2kT = 0.05kT

(light blue), we see that these peaks weaken and broaden. The phase coherence lasts for

∼ 30 periods. Only the principal and second peak is observable at τnoise/τ0 × 2kT = 0.5kT

(light pink); these are barely visible at τnoise/τ0 × 2kT = 2kT (red), as expected from the

previous analysis. The time scales over which the system loses phase coherence are equal to

∼ 5 and ∼ 1 periods, respectively.

2.4 Experimental observations

To test the theoretical predictions from the prior sections, we compare them to experimental

observations of hair bundle dynamics. Recordings were obtained from in vitro preparations

of the bullfrog sacculus, following techniques described in earlier publications [43]. Biologi-

cal preparations were mounted in chambers that allow optical access to hair bundles, while

maintaining their active process [32, 31, 5]. Time traces of spontaneous hair bundle oscil-

lations were obtained from twenty cells, exhibiting a broad range of limit cycle frequencies

and amplitudes, as well as variation in the amplitude of the fluctuations about the mean

limit cycle. Hair cells were pre-selected that exhibited only one mode of oscillation, hence a

single peak in the spectral density; cells that showed more complex multi-mode oscillation

were not considered in the current study. The experimental data depicted in Fig. 2.10, 2.12
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Figure 2.10: Experimental recordings of spontaneous bundle oscillations

(a) Density plot of a typical limit cycle trajectory (blue curve) of a saccular hair bundle

in the phase space spanned by bundle position X(t) and its Hilbert transform Y (t). (In-

set) Additionally, the superposed averaged limit cycle is shown in black. (b) Experimental

recordings of hair bundle position X(t) and its Hilbert transform Y (t) (black curves); the

data were corrected for slow drift innate in these biological preparations. The red dashed

line show the low-pass filter time series used to construct the limit cycle.

were low-pass filtered at 400× 2π Hz (red-dashed); the Nyquist frequency was 500× 2π Hz.

2.4.1 Comparison to the supercritical Hopf system

The Hopf variables are related to each other by the Hilbert transform, which has previously

been used to create the two-dimensional phase space for experimental data [49]. We follow

that procedure, and in panel (b) of Fig. 2.10, show the time traces of the hair bundle

position and its Hilbert transform. The panel (a) of Fig. 2.10 displays the density plot of the

experimentally observed noisy limit cycle (blue). The superposed mean limit cycle (black)
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Figure 2.11: Experimental fluctuation spectra

(a) Power spectrum of fluctuations along the local normal to the mean limit cycle, showing a

Lorentzian structure. The corner frequency is marked by the vertical black line. Error bars

are given by the standard deviation of the mean in each frequency bin. (b) The observed

phase diffusion constant showing the mechanism I crossover at the corner frequency found

from the spectrum in part (a).

is shown in the inset. One observes the uniformity of phase space density which points to

the lack of mechanism II. A hair bundle that exhibited more irregular oscillation is shown

in Fig. 2.15 in subsection 2.6.2.

We next compared these limit cycle oscillations to those obtained from the normal-form

equation for the Hopf system (Fig. 4.2). While there are geometric differences in the shape of

the experimentally obtained mean limit cycle and that predicted by the Hopf normal form,

the power spectra of perturbations, computed along the two directions of the Frenet frames

using code in A.11, exhibit similar characteristics, as seen from a comparison of Fig. 2.2 and

Fig. 2.11.

In Fig. 2.11, we observe the expected Lorentzian nature of the perturbations orthogonal

to the curve (along n̂) and the diffusive power spectrum for phase fluctuations. We find the

predicted mechanism I effect in which the observed phase diffusion constant decreases from a
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larger low-frequency value to a smaller high-frequency one. Moreover, the transition occurs

at the corner frequency of the Lorentzian fluctuations, corresponding to fluctuations in the

direction normal to the mean limit cycle. Hence, the fluctuations of the bundle about its

mean limit cycle are in agreement with the prediction of the simple supercritical Hopf system.

The study of small deviations supports the applicability of the Hopf oscillator description of

hair bundle dynamics, even for the bundles situated deeply within the oscillatory regime.

2.4.2 Comparison to the biophysical model

For direct comparison to predictions based on the more detailed three-dimensional model

of the hair cell, we combined measurements of hair bundle displacement with electrophysio-

logical records of the membrane potential. Following techniques previously developed in the

laboratory, we patch-clamped the hair cells, under two-compartment configuration, which

maintains ionic conditions comparable to those found in vivo. These recording condition-

s maintain the innate bundle oscillations, while providing access to the electrical state of

the cell. These measurements were made in current-clamp mode, yielding data on the time-

varying membrane potential [34]. The time delay in the voltage recording, due to the pipette

resistance and the hair cell capacitance was on the order of ∼1 - 2 ms. We neglect this in

comparison to the bundle’s time period ∼30 ms.

As mentioned above, there is to date no method of directly accessing internal myosin

motor activity. Thus, we compare our experimental findings to the two-dimensional E plane,

which constitutes a projection of the full three-dimensional limit cycle, shown in Fig. 2.6.

We further note that fluctuations of this system will be studied as deviations from the mean

limit cycle, as the “zero-temperature” limit cycle is not experimentally accessible.

In the inset of Fig. 2.12, we show a typical trajectory of the system in E spanned by the

state variables (Vss, X) (green curve). Superposed is the mean limit cycle indicated with a

black line. In the density plot, similar to Fig. 2.7, we notice the non-uniformity of the phase

space density, and anticipate the presence of mechanism II. Panel (b) shows sample traces

of the recorded bundle position and somatic potential.
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Figure 2.12: Experimental observations of bundle position and membrane potential

(a) Density plot of limit cycle trajectory obtained from simultaneous experimental measure-

ments of the bundle position and somatic potential (blue curve). The light blue regions are

more densely populated than the dark blue ones. (Inset) The mean limit cycle is superposed

as the black curve. (b) Bundle position X(t) and membrane potential Vss(t) are shown in

black. Their low-pass filtered versions are shown as red dashed lines. The resting potential

of the hair cell is -67.5 mV, its capacitance is 13.5 pF and the holding current for the current

clamp is -2.6 nA.
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To explore fluctuation spectra in the experimental recordings, we introduce a Frenet

frame associated with the averaged limit cycle and resolve the deviations of the stochastic

system from that mean along the local normal and tangent vectors, as done previously. Note

that in both Fig. 2.11 and Fig. 2.13, we study the system using the Frenet frame vectors

{t̂, n̂}. However, these systems differ in the experimental variables that are accessed, as the

latter includes an independent measurement of Vss.

In Fig. 2.13(a), we observe a Lorentzian power spectrum of the fluctuations along n̂,

consistent with predictions of the numerical model (2.9). We plot the frequency-dependent

phase diffusion constant in Fig. 2.13(b), in red. The shapes of the spectra are comparable to

those observed with the E projection of the theoretical three-dimensional model (Fig. 2.9),

obtained at noise levels comparable to real systems (red curve). The figure includes a plot

of the power spectrum of the total phase traversed along the mean limit cycle (blue), which

exhibits distinct maxima at frequencies corresponding to the expected peaks of the phase

coherent system, i.e., at the natural frequency and its harmonics. The superposition shows

that the broad, barely distinct, peaks in the phase diffusion constant occur at frequencies

corresponding to the first and second peaks. This correspondence suggests that the system

remains phase coherent over times greater than one period of the limit cycle. We do not

observe the mechanism I coupling as seen in Fig. 2.5, leading to an overall reduction of the

phase diffusion constant at higher frequencies. We return to this point in the discussion.

We may also consider a number of limit cycle oscillators, all starting at an arbitrary

but fixed phase point, to explore the phase advection and diffusion about the limit cycle.

The results are shown in Fig. 2.14(a), with phase distributions displayed for times t =

T/4, T/2, 3T/4, T . As can be seen from the figure, phase coherence persists for at least one

limit cycle period, which supports our interpretation of the maxima in the phase diffusion

constant at frequencies corresponding to the Bragg peaks.

We also examine the mean phase velocity around the limit cycle by collecting data from

many cycles of the oscillation and binning the observed phase velocity by the phase. The

result is shown in Fig. 2.14(b), where the mean phase speed is shown as a color map super-
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Figure 2.13: Experimental fluctuation spectra

(a) Power spectral density of fluctuations along the n̂ direction. (b) Frequency-dependent

phase diffusion constant (upper red) along with the Fourier transform of the arclength along

the mean limit cycle (lower blue). The “Bragg peaks” of the mean limit cycle appear as

less distinct features in the phase diffusion constant, at the natural frequency and its second

harmonic, suggesting a mechanism II effect.
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Figure 2.14: Measurements of phase diffusion

(a) The probability distributions of the phase, after time delays of T/4, T/2, 3T/4, and T ,

starting from phase synchronization at an arbitrary point. (b) The experimental mean limit

cycle, with the mean phase velocity (normalized to the highest speed) shown as a color map.

Redder (darker) colors indicate higher speeds. Data from one cycle of oscillation are shown

as black dots. These panels are similar to Fig. 2.8(a) and Fig. 2.7(b) respectively.
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posed on an averaged limit cycle, with redder colors representing higher phase speeds. The

series of discrete points (black dots) shows the raw data from one typical trajectory around

the limit cycle. This method was tested on six data sets obtained from three cells, each

held at two different current-clamp values; similar results were obtained from all of the cells.

Another example is presented in Fig. 2.19 in subsection 2.6.2.

2.5 Summary

In this chapter, we have proposed that the study of fluctuations of a stochastic limit cycle

oscillator is facilitated by the use of a comoving Frenet frame associated with that limit cycle.

This method allows one to resolve the observed fluctuations of a d-dimensional system in a

natural moving reference frame, which yields a number of advantages. Fluctuations along

the local tangent vector and the fluctuations along the (d− 1) directions orthogonal to that

tangent are predicted to have a simple form, which can be understood in terms of the stability

of the limit cycle itself. Namely, the (d− 1) orthogonal directions will behave as (potentially

coupled) overdamped oscillators, leading to simple Lorentzian fluctuation power spectra.

The phase degree of freedom is meanwhile necessarily diffusive due to lack of restorative

forces in the tangential direction.

Further, we predict that there are two distinct ways in which fluctuations in a nonlinear,

non-equilibrium system can couple, leading to more complex spectra. In mechanism I, we

allow for coupling between the (d−1) normal fluctuations and the phase fluctuation, leading

to a crossover from higher to lower phase diffusion constant. The crossover occurs at the

corner frequency of the Lorentzian fluctuation spectrum of the orthogonal degrees of freedom.

In mechanism II, we find that the confining potential of the orthogonal fluctuations or the

mean phase velocity can be phase-dependent. The phase diffusion constant can thus acquire

more structure, including local maxima or “Bragg peaks” at frequencies corresponding to the

mean period of the oscillator. We verified these ideas through numerical simulations based

on both a simple model, the normal form supercritical Hopf model, and a more complex one,

a three-dimensional model describing the specific biophysical processes of the hair cell of the

47



inner ear.

Applying this analysis to experimental data obtained from oscillating hair cells, we find

that the supercritical Hopf model not only accurately predicts the mean limit cycle oscil-

latory behavior, but also describes well the fluctuation spectra normal to the limit cycle

and the phase diffusion about it. In particular, we observe strong evidence for the pre-

dicted mechanism I coupling between the phase and normal fluctuations in the frequency

dependence of the phase diffusion constant. Thus, the simplest supercritical Hopf model ac-

curately accounts for both the mean dynamics, and the small fluctuations about that mean.

One implication of this result is that the stochastic forces acting on the bundle appear to be

adequately described by white noise. If there were just Brownian forces in the surrounding

viscous fluid, this point would be unremarkable. However, the total noise in the system must

include stochastic effects in various active elements, which may generate colored noise. Our

results then constrain the frequency dependence of such stochastic forces acting on the Hopf

model of the bundle.

The symmetry of the Hopf model precludes a mechanism II coupling here. We do not

observe it in either the model (Fig. 2.2) or in the experimental data (Fig. 2.11). On the other

hand, when we examine the more complete data sets, combining cell potential and bundle

deflection, we do not observe (in Fig. 2.13) significant effects of mechanism I coupling between

the normal and phase variables. Such a coupling is only weakly seen in the full 3d model

(Fig. 2.5). When we project the full model onto the experimentally observable plane - see

Fig. 2.9 - the evidence of the mechanism I coupling vanishes. The projection to the E plane

appears to mask the frequency structure of the mechanism I coupling in the phase diffusion.

Because of that projection, the tangent and normal vectors to the observable but projected

limit cycle are superposition of the true Frenet frame vectors associated with the limit cycle of

the full dynamical system. We speculate that this projection onto the experimental manifold

E also masks the effect of the mechanism I coupling in the experimental data - see Fig. 2.13.

This analysis suggests new experiments that may be designed to probe the changes in

the fluctuations and shape of the limit cycle in response to the variation of various model
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parameters. The most pertinent would be an analysis of the change in the limit cycle in

response to perturbations in myosin motor activity. Possible avenues include modulation

of myosin activity through pharmacological manipulations, specifically, interference with its

phosphorylation pathway, or modulations of the calcium concentration. Other experimental

perturbations include variation of the temperature of the biological system, loading the

bundle with an elastic element, and interference with the fluctuations of the membrane

potential.

Finally, we note that there is growing interest in understanding the thermodynamics of

nonequilibrium steady states. For example, there have been proposed generalization of the

fluctuation-dissipation theorem [50] to nonequilibrium, but time-independent states. Con-

siderations of out-of-equilibrium systems near a stationary fixed point have led to generalized

fluctuation-dissipation theorems (GFDTs) [42, 13]. We will in the chapetrs 3 and 4 build

on this previous body of work to analyse the obedience of such generalized theorems by hair

bundles in their spontaneously oscillating regime.

2.6 Appendix

2.6.1 Simulation details

The stochastic simulations of Eq. 4.1 were carried out using the 4th-order Runge-Kutta

method for a duration of 60 s. The corresponding time steps were in the range of 10−4 ↔

2× 10−3 s. The experimental data were obtained with time steps of 10−3 and 2× 10−3 s.

Experimentally, the variance of the noise experienced by the hair bundle, normalized by

the square of its drag coefficient (2kBT
λ

), is of the order of 3× 10−6 nm
2

s
, while amplitudes of

spontaneous bundle oscillation typically vary from 10 – 50 nm. The noise variances Aij in the

Hopf simulations were varied from 10−7 ↔ 0.4, with bundle oscillation amplitude fixed at 1;

consistent results were obtained over the full span of noise amplitudes. Fig. 4.2 employs the

highest variance value in this range. The stochastic terms driving {x(t), y(t)} were assumed

to be uncorrelated. This assumption may be relaxed in future work.
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Table 2.1: Model Parameters

Symbol Values Parameter

Kgs 750 µN·m−1 gating spring constant

D 62.1 nm gating compliance

Ksp 600 µN·m−1 stereociliary pivot spring

γ 0.14 geometric coefficient

Fmax 500 pN maximal force exerted by adaptation motors

P0 0.63 probability of channel opening

α 0.8 Ca2+ feedback on motors

ωv 2π × 20 Hz frequency of voltage oscillations, without the MET current

Qv 30 quality factor in the absence of MET current

Cm 14 pF capacitance of a hair cell

β0 ωv·Cm·Qv
−1 damping coefficient in the absence of MET current

gt 1.5 nS conductance of transduction channels

V0 -55 mV resting potential of the cell

I0 10 pA leakage current

λ 2.8 µNs·m−1 bundle drag coefficient

λa 10 µNs·m−1 motors drag coefficient

kB 1.38 × 10−23 m2·kg·s−2·K−1 Boltzmann constant

T 300 K Room temperature

N 50 Number of stereocilia

∆G 10 kBT Intrinsic energy change on channel opening

These parameter values were obtained from references [36] and [37].
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Eqs. 2.11, 2.12, and 2.13 were integrated using the Euler-mayurama method for a duration

of 60 s using time steps of 5× 10−4 ↔ 10−3 s. The noise statistics of the bundle and myosin

motors were assumed to follow white Gaussian ensembles with zero means and variances

of {2kBTλ, 2kBT × 1.5λa}, respectively [36]. Further, P0, the opening probability of the

channels is given by :

P0 =
1

1 + Ae−(X−Xa)/δ
(2.14)

A = e
(

[∆G+(KgsD
2)/(2N)]

kBT
)

(2.15)

δ = NkBT/(KgsD) (2.16)

The values of the parameters used in the simulations are given in Table 2.1. the reader

may find the relevant codes attached in the “Code” chapter of this book. All simulations

were performed in MATLAB (R2017a, the MathWorks, Natick, MA).

2.6.2 Experimental data

Significant cell-to-cell variation was observed in both the mean limit cycles exhibited by

active hair bundles and in the fluctuations about those limit cycles. In the main text, we

show a representative data set for a cell that showed relatively regular oscillations. A number

of cells showed less regular limit cycles; we show here a data set representative of this type

of cell. By irregularity we imply hair bundles exhibiting a broader peak in their position

power spectra. In this case, rather than forming a ring, the trajectories about the limit cycle

appear to fill a disk, as shown in Fig. 2.15.

Despite the more noisy limit cycle dynamics, one can extract the fluctuations along the

local normal n̂ and local tangent t̂ to the averaged limit cycle. The power spectra of the

fluctuations are shown in Fig. 2.16. The corresponding data set, is filtered with a cut-off at

225 × 2π Hz; the Nyquist frequency is 250 × 2π Hz. We note that the fluctuations in the

normal direction (blue) are still well described by a simple Lorentzian (black) and obtain

a corner frequency from this fit, which is denoted by the black vertical line. The phase

diffusion constant shows, however, only a weak frequency dependence. The mechanism I
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Figure 2.15: Experimental recording of an irregular oscillator

(a) Density plot of a typical trajectory and (in inset) a superposed averaged limit cycle

(black) for a cell showing less well defined limit cycle dynamics. (b) Time series of the

bundle position and velocity (obtained via a Hilbert transform) after low-pass filtering.
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Figure 2.16: Fluctuation spectra of an irregular oscillator

(a) Power spectrum of the fluctuations in the normal direction (blue), along with a best fit

Lorentzian (black). (b) Frequency-dependent phase diffusion constant. In both panels, the

vertical (black) line indicates the corner frequency.

transition from a larger to a smaller diffusion constant at the corner frequency is, at best,

suggested by these data.

We find similarly large cell-to-cell variations in the dynamics of hair cells when we ob-

tain both bundle position and membrane potential. Another example of a bundle (green)

described experimentally by its position and membrane potential is shown in the inset for

Fig. 2.17, along with its averaged limit cycle (black). The respective density plot is also il-

lustrated. Once again, we obtain similar power spectra for fluctuations in directions normal

and tangent to this averaged limit cycle. The spectra are shown in Fig. 2.18. The phase

diffusion dynamics obtained from the noisier cell were comparable to those shown in the

main text - see Fig. 2.19.
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Figure 2.17: Experimental recordings of a noisy hair cell

(a) Density plot of the stochastic trajectory (blue) with (in inset) the superposed averaged

limit cycle (black) in the space spanned by bundle deflection X and membrane potential Vss.

The dark blue regions are less populated than the light blue ones. (b) Time series of these

dynamical variables, without (black) and with (red) low-pass filtering. The resting potential

of the hair cell is -31 mV, its capacitance is 11 pF and the holding current -1.5 nA.
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Figure 2.18: Experimental fluctuation spectra

(a) Power spectrum of fluctuations normal to the limit cycle. (b) Phase diffusion constant,

exhibiting broad peaks at the natural frequency of the bundle and its second harmonic.

The power spectrum (upper red) is qualitatively similar to that observed in simulations in

Fig. 2.9(a) with noise variance of 2kT × τnoise/τ0 = 2kT . The power spectrum (lower dark

blue) of the total phase traversed by the system along the average limit cycle is shown to

locate the expected peaks.
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Figure 2.19: Phase diffusion for noisy hair cell

(a) The probability densities of initially phase synchronized ensembles, illustrating phase

diffusion. As in the prior case, phase coherence persists over at least one limit cycle. (b)

Mean limit cycle velocities shown as a color map on the mean limit cycle with (dimensionless)

velocity increasing from colder (light yellow) to warmer (dark red) colors.
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CHAPTER 3

Noise-induced distortion of the mean limit cycle

3.1 Introduction

There has been a growing interest in studying how noise affects the dynamics of limit cycle

oscillators [38]. In this chapter we explore how the mean limit cycle of a stochastic system

differs from the deterministic or zero-temperature limit cycle of the underlying dynamical

system, for example in Fig. 2.7 as shown in the previous chapter. By doing so, we are able to

glean whether noise leads to significant discrepancies between the experimentally accessible

dynamics and deterministic theoretical models.

While the complex, more biologically relevant inner ear models allow for direct com-

parisons between numerical predictions and experimentally accessible observables, they also

necessarily include a large number of fitting parameters and generally have higher dimension-

al limit cycles, as they account for more dynamical variables. For example, even the relatively

sparse model of 2.3 that explicitly incorporates stereociliary position, myosin motor activity,

and the somatic membrane potential [52] includes many more biologically relevant parame-

ters than the simple two-dimensional models based on the Hopf bifurcation. But given that

the experimental records are necessarily stochastic, and typically limited to only a fraction

of the total set of dynamical variables in these complex models, the presence of many free

parameters in a model raises questions regarding how to appropriately fit the data. There

is an inherent trade off between constructing biologically realistic models and limiting the

number of free parameters.

In this context we argue that the generic effect of noise on the limit cycles of dynamical

systems is to smooth out the more sharp (high curvature) parts of the trajectory. We have
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previously observed this effect, in the experimentally accessible manifold of the complex

hair bundle biophysical model (see Fig. 2.7(b) and the inset of Fig. 2.7(a)). Introduction of

stochastic fluctuations not only caused the trajectories to vary from cycle to cycle, but also

changed the shape and size of the mean limit cycle. Reproducing the phenomenon again in

Fig. 3.1 one can clearly notice the difference between the deterministic limit cycle (red) and

the average (dashed black) of the hair bundle’s stochastic trajectory (green), modeled using

noise values corresponding to equilibrium fluctuations at room temperature [52].

This smoothing effect will necessarily impose an upper bound on the useful level of

complexity of numerical models, as detailed features underlying the complex limit cycles in

phase space become experimentally inaccessible. We explore the causes for the rounding

of the zero-temperature limit cycle that makes unavailable to experimentalists the sharper

features of the deterministic system. To investigate this question quantitatively, we focus on

a generalization of the simple 2d Hopf oscillator, to which we introduce terms to add finer

structure to the shape of the deterministic limit cycle. We observe how these fine details

deform in the presence of stochastic forces and also demonstrate a methodology to determine

from the model which of its features are most susceptible to experimental noise. By using

this information, one should be able to more meaningfully decide on the suitability of various

nonlinear models for interpreting one’s data.

The remainder of this chapter is organized as follows. In section 3.2, we detail a two-

dimensional regular Hopf oscillator in the stably oscillating regime. In section 3.3, we

analyze the generalized version and illustrate the effects of stochasticity and of the internal

active drive. Finally, we conclude in section 3.4, where we review the differences between

the experimentally accessible trajectory and the theoretical model.

3.2 Regular Hopf oscillator

The supercritical Hopf oscillator is the lowest dimensional system (d = 2) that admits limit

cycle oscillations. The normal form of this dynamical system can be described in terms of
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Figure 3.1: Stochastic trajectories of the hair bundle model

A representative stochastic trajectory (green) superimposed upon the deterministic (red)

and mean (dashed black) limit cycles. The noise amplitude is by room temperature and the

fluctuation-dissipation theorem 2kBTλ, with viscosity λ. This figure exemplifies the effect

of noise that we study in this manuscript. For more details see Ref. [36].

59



the generalized position variable, Z(t) = X(t) + iY (t), obeying the differential equation

Ż = Z (µ− iω) + bZ|Z|2 + ηZ (3.1)

The dynamics of the deterministic system depend on the model parameters {µ, ω, b}. For

µ > 0, the stable solution is given by the limit cycle of radius R0 =
√
µ/b and oscillation

frequency ω. To fully specify the model, we introduce the stochastic force term ηα, where

α = X, Y are the Cartesian coordinates. The complex noise amplitude discussed in Eq. 4.1

is related to these two noise terms by ηZ = ηX + iηY . Here and throughout this study, we

assume that this noise is uncorrelated, Gaussian white noise with a vanishing mean and the

second moment given by

〈ηα(t)ηβ(0)〉 = 2Tδαβδ(t), (3.2)

where α = X, Y . We introduce T as the amplitude of the white noise. We note, however,

that in many systems, and in hair cells in particular, the noise may be nonthermal. This does

not affect our results as long as those nonthermal noise sources are not strongly correlated

in time. Even in that case, we expect that our qualitative results are not strongly dependent

on the assumption of such frequency-independent noise amplitudes. However, our results

do depend critically on the assumption that the noise amplitude not be too anisotropic.

Strongly anisotropic noise could result in a new pattern of noise-induced deformations of the

limit cycle distinct from those discussed here. Similarly, cross correlations between the noise

in the x and y channels may result in unique stochastic behavior not accounted for here.

3.2.1 Scalar and vector potentials of the Hopf oscillator

We remind the reader that the trajectories of these nonlinear dynamical systems may be

thought of as the classical motion of an overdamped particle in d dimensions, moving in

response to a force field. For a two-dimensional system, the force field may be decomposed

into the gradient of a scalar potential, which may be interpreted as the potential energy

landscape for the system, and the curl of a vector potential. It is this latter nonconservative

force that provides the drive allowing stable limit cycles to exist. The parameters {µ, ω, b}
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Figure 3.2: Numerical simulation of the stochastic Hopf oscillator

Calculations were performed using Eq. 4.1. (A) The finite-temperature (light blue) trajec-

tories and the mean (red) limit cycle. (B) A typical time series (black) of the stochastic

dynamics of X(t) and Y (t).
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may be used to define the scalar (φs) and vector (φv) potentials of the system from which

one may derive the conservative and nonconservative forces. Shortly we will introduce new

features into the Hopf oscillator model by changing the landscape of effective potential.

The system of dynamical equations given by Eq. 4.1 can also be expressed in terms of a

two-dimensional vector X(t) = X(t)x̂ + Y (t)ŷ obeying overdamped motion in a force field

f(X):

Ẋ = f(X) (3.3)

f(X) = ∇φs(X) +∇× φv(X) (3.4)

The existence of such a decomposition of the generic vector field f is assured by Helmholtz’s

theorem. For the specific case of the Hopf system introduced in Eq. 4.1, the scalar and vector

potentials may be simply computed:

φs = −µ(X2 + Y 2)

2
+
b(X2 + Y 2)2

4
(3.5)

φv = −ω(X2 + Y 2)

2
ẑ. (3.6)

The scalar potential has one of two forms depending on the sign of µ. For negative values,

the potential has a single minimum at the origin, and the deterministic dynamical system

has a single fixed point. For positive µ, the origin is a local maximum of the scalar potential,

and a new set of local minima appear on the circle of radius R0 =
√
µ/b about that center.

This form of the potential is the well-known “Wine bottle’ shown in Fig. 3.3 . For finite

values of the drive ω > 0, we observe that the curl of the vector potential fv = ∇ × φv is

tangent to the circular ring. It drives the X variable anticlockwise along the limit cycle,

defined by the circular ring of minima. The transition between the stable fixed point and

the stable limit cycle of angular velocity ω occurs at µ = 0 and is known as the supercritical

Hopf bifurcation.

Turning to the motion of the stochastically driven system, we observe that, across a range

of noise amplitudes, the trajectories remain constrained to the trough of the scalar potential

at R0 =
√
µ/b that stabilized the deterministic limit cycle. Because the scalar potential is
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locally symmetric for positive and negative radial displacements from the limit cycle and

since the vector potential has no radial component, the mean limit cycle of the stochastic

system is identical to the deterministic one. Fig. 3.2 illustrates these stochastic dynamics.

In Fig. 3.2A, we show a representative trajectory (light blue) superposed upon the mean

limit cycle (red). We plot in Fig. 3.2B typical X(t), Y (t) traces, as might be obtained from

hair cell data. Herein, µ = 80, b = 1, ω = 200, and the details of the simulation are described

in Appendix A. The mean limit cycle for the finite-temperature system is computed by

binning the phase space {−π, π} into 200 bins and averaging over multiple trajectories. For

this simple model of a Hopf oscillator, the average cycle is similar to the deterministic limit

cycle, due to the high symmetry of the system. When the potential landscape of the system

is more complex (i.e. exhibits lower symmetry), this correspondence between the mean and

deterministic limit cycles no longer holds. We study the lower-symmetry, generalized Hopf

system in the next section.

3.3 Generalized Hopf oscillator

3.3.1 Model and dynamical phase diagram

To explore the effects of noise on the mean limit cycle, we add symmetry-breaking terms to

the Hopf oscillator by changing the scalar potential φs.

φs = −µ(X2 + Y 2)

2
+
b(X2 + Y 2)2

4
+ αcos(nθ)e−(

√
X2+Y 2−

√
µ
b
)2 (3.7)

φv = −ω(X2 + Y 2)

2
ẑ (3.8)

The modulation introduces n local maxima (and an equal number of local minima) to the

scalar potential that remove the azimuthal symmetry present in Eq. 4.4. By tuning the

radial position of those extrema to the center of the circular trough of the Hopf potential, we

force trajectories near the previous limit cycle to deform and can control that deformation

by the strength of the perturbation α. Here, we consider the case of a four-fold potential

landscape, n = 4, but we believe that none of the results shown below depend critically on
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Figure 3.3: Hopf Scalar Potential

The deterministic limit cycle (red curve) lies in the minimum potential region of the Mexican

hat potential described by Eq. 4.4. The color map runs from dark blue (low potential) to

light yellow (high potential). The vector potential (not shown) is a constant azimuthal vector

field which drives the limit cycle dynamics in a counterclockwise circular limit cycle of radius

R0. See text for details.
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that choice.

Fig. 3.4 shows the modified scalar potential for n = 4, along with the deterministic limit

cycle shown in yellow. It should be noted that there are pairs of degenerate paths about

each of the local maxima. These minima also introduce new fixed points that remain stable

for sufficiently small values of the vector potential. To find stable limit cycles we require

that strength of the vector potential exceed

ω? = nb
α

µ
. (3.9)

Beyond this point, stable limit cycles exist, but their shape continues to change with increas-

ing vector potential strength ω. We study these dynamics for various values of ω/ω?.

Introduction of the local minima renders the dynamical phase diagram more complex. In

Fig. 3.5, we show this phase diagram under varying noise amplitude T and drive frequency

ω. The top row of the phase diagram shows the full limit cycle, while the lower rows zoom

in on one of the four equivalent local quadrants of the system. The ω = 0 column shows the

expected behavior of an equilibrium system with increasing levels of noise. For sufficiently

small T , stochastic trajectories are confined to one of the four local minima (we show one

such case in the figure). The trajectories deviate further from the minimum of the potential

with increasing T , as one expects in the vicinity of a fixed point. Over sufficiently long

times, one observes thermally activated hopping between these minima, so that the system

diffuses around the ring set by the underlying circularly symmetric potential. Alternatively,

the same behavior can be observed by increasing T at fixed length of the trajectories. The

sequence (J, G, D, and A) in Fig. 3.5 demonstrates these effects.

In the case of small but finite ω, the drive biases the hops between local minima to favor

those in the anticlockwise direction, along the force generated by the vector potential. How-

ever, if one chooses ω < ω?, the drive is not sufficient alone to drive transitions between local

minima, and the deterministic system remains trapped within one of these wells of the scalar

potential. In this study, we are primarily interested in the case where the deterministic sys-

tem has a stable limit cycle, so we begin our studies where the vector potential is just strong

enough to destabilize the local minima. A sequence of such minimally stable deterministic
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Figure 3.4: Scalar Potential map for generalized Hopf

3d plot of the scalar potential in Eq. 3.7, for n = 4 with the valleys seen in dark blue and hills

in between them. The color map spans across dark blue (low potential) to light green (high

potential). The deterministic limit cycle (yellow) for small vector potential skirts around the

hills and pinches at the valleys.
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ω = 0 ω = 101 ω = 200

T = 0

T = 80

T = 320

T = 600

Figure 3.5: Stochastic trajectories with variation in temperature and ω

Quarter lobes of the trajectories obtained by solving Eq. 3.7 using ω values of {0, 101, 200}

and 〈η2z〉 values of {0, 80, 320, 600}.

67



trajectories with increasing noise amplitude can be see in (K, H, E, B) of Fig. 3.5. We note

that even small values of the noise amplitude are capable of allowing the dynamical system

to explore both trajectories about the local potential maxima.

Finally, with a sufficiently strong vector potential (here ω = 200), the deterministic

system (and the system with sufficiently small noise amplitude) approaches the circular limit

cycle of the standard Hopf oscillator with the circularly symmetric diving force overwhelming

the symmetry-breaking scalar potential. This is shown in panel L of Fig. 3.5. Upon increasing

the noise amplitude, as shown in the sequence (L, I, F, C) of Fig. 3.5, we observe both paths

around the local maximum appearing once again. Since the limit of very large drive restores

the circular symmetry, and since we aim to study the noise-induced loss of fine detail in

more complex limit cycles, the large ω limit will not be considered further. In panels H and

I, one observes a dispersion of trajectories around the point where the inner path about the

local maximum reconnects with the outer path. This localized broadening is an example of

noise-activated corner cutting in the generalized Hopf model that is the focus of this chapter.

3.3.2 Noise-induced corner cutting

We now explore in detail the noise-induced corner cutting at intermediate values of both

noise amplitude and drive, consistent with panel H in the phase diagram. As expected, the

deterministic oscillator occupies the low potential regions at nearly all phases of the oscilla-

tion (see Figs. 3.6(A),(B)). However, upon increasing the noise amplitude in the system, as

shown in panels (C) and (D) of Fig. 3.6, the trajectories deviate from the T = 0 curve by

cutting across the sharper (higher curvature) features of the deterministic path.

The net effect of these devations is that the mean shape of the limit cycle increasingly

deforms with noise amplitude. In particular, the higher curvature features of the determin-

istic limit cycle, apparent where the inner path (smaller radius) around the local maximum

converges with the outer path, are lost with increasing noise amplitude. We refer to this

phenomenon as corner cutting, since the sharper corners of the deterministic limit cycle are

smoothed out.
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Figure 3.6: Examples of corner cutting

(A) The deterministic oscillator tracks the local minimum potential regions. (B) One lobe of

the potential landscape. (C) Oscillator at 〈η2〉 = 10. (D) Oscillator at 〈η2〉 = 30. A (black)

arrow points to an example of a corner cutting trajectory. These have been simulated using

parameter values µ = 80, b = 1, α = 2000, n = 4, resulting in ω? = 100 – see Eq. 3.9 – and

ω = 101.
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The corner cutting observed in the generalized Hopf model resembles that observed in

the hair cell oscillator model. One observes in Fig. 3.1 the noise-induced rounding of the

high curvature corner in the upper right quadrant of the deterministic limit cycle. Compar-

ing panels C and D of Fig. 3.1, we see that increasing noise amplitude increases both the

frequency at which paths deviate from one that follows the local potential minimum and the

degree of their deviations, indicating that this effect is indeed driven by stochastic processes.

The degree of corner cutting at different points along the deterministic trajectory, which

exhibit the same scalar potential, are not equivalent. For example, we do not observe as

much corner cutting at the point where the limit cycle diverges when approaching the local

maxima as where these paths converge on the other side. This shows that phenomenon is

not simply a feature of the local scalar potential, which is the same at both of these points.

In Fig. 3.7, we plot the drive force associated with the vector potential fV along the

mean limit cycle. The mean limit cycle is calculated in a similar manner as the regular

Hopf oscillator, with an additional calculation at each phase to check for the presence of

one or two maxima in the trajectory density. The peaks are considered distinct if they are

radially separated from R0=

√
µ/b =

√
80 by a distance of 0.2 or more. We identify the

corner-cutting paths as events that lie at a potential energy greater than 3T compared to

the potential energy of the mean curve.

One immediately observes the distinction between the entry and exit points of the loop

around the local potential maximum. Near the entry point, the vector potential force is

tangent to the path of the limit cycle. Near the point where the inner path merges with the

outer one, however, the drive force has a significant component normal to the mean path.

The drive force plays a role in enhancing the thermally excited deviations from the mean

limit cycle. Moreover, asymmetric deviations from the deterministic limit cycle resulting

in deformation of the mean limit cycle from the deterministic one are strongest in regions

where two conditions are met. First, there must be a significant component of the drive force

normal to the deterministic limit cycle, and second, the confining potential about that limit

cycle must be weak.
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Figure 3.7: Direction of fv

One of the lobes of the mean limit cycle (grey) of the 〈η2〉 = 30 stochastic system, with the

(blue) regions (A,B) corresponding to arc lengths amidst which the corner cutting trajectories

deviate from the particle’s average behavior. The direction of fV is illustrated by (orange)

arrows. This lobe corresponds to the marked lobe in the (upper right) inset.
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In the lower panel of Fig. 3.8, we plot the potential energy versus distance, measured

along the local normal to the mean limit cycle. Plots are obtained at various points (labeled

A, B, C, D) along that limit cycle, indicated in the upper panel of the same figure. The

potential in the normal cross section at A shows two minima, consistent with the two paths of

the deterministic limit cycle at that point. Upon approaching the junction of those two paths

at B and C, one sees these two local minima merge into a single broader minimum. This

minimum then deepens, and the confining potential sharpens, as one moves alway from the

local maximum (shown at D). It is clear that the combination of the weak (small curvature)

confining potential and large normal component of the drive force at points near B make

this area most susceptible to noise-induced trajectories escaping from the mean path. The

asymmetry of those escapes, i.e., their preference for moving to smaller radii, leads to an

enhancement of the noise-induced distortion of the mean limit cycle near B.

Based on the above analysis we expect that the effect of noise on the mean limit cycle

of the oscillator depends strongly on the arclength. In other words, different regions along

the deterministic limit cycle deform differently with increasing noise amplitude so that the

shape of the limit cycle itself changes with noise amplitude. To investigate this effect, we

measure the normal distance between the deterministic limit cycle and the one measured

at “high temperature”, where 〈η2〉 = 2000. In Fig. 3.9, we color the deterministic limit

cycle using a heat map to represent this noise-induced deformation. In that figure, the

cooler (yellower) colors depict smaller noise-induced distortions. The deformation is clearly

nonuniform along the limit cycle (although still symmetric under rotations of the figure by

π/4 due to the underlying symmetry of the n = 4 perturbation). The greatest deviations

occurs at the region corresponding to (A-D) of Fig. 3.8, showing that the principal cause

of these distortion “hot spots” are the corner-cutting trajectories where the two limit cycle

arcs converge at the end of the local potential maxima.
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Figure 3.8: Confining potential

(A-D) Energy landscapes in the n̂ direction to the zero-temperature limit cycle, correspond-

ing to the A-B arclength in Fig. 3.7. The (red) cross is indicative of the noiseless particle

position, with negative values pointing towards (0, 0). These positions correspond to the

(black) cuts along the (yellow) limit cycle atop.

73



Figure 3.9: Nonuniform distortion of the limit cycle

The distance of the mean limit cycle at 〈η2〉 = 2000 from the underlying noiseless curve shown

as a color map. These values are normalized to the average value of the zero-temperature

cycle,
√
µ/b.
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3.3.3 Predicting regions of noise-induced limit cycle distortion

To better understand the extent of distortion hotspots (i.e., their length along the mean

limit cycle), we analytically estimate the typical time interval for a stochastic trajectory

to return to the mean limit cycle, assuming that it has already significantly deviated from

it. Assuming a relatively constant angular velocity about the limit cycle, one can then

estimate the limit cycle arclength required for the particle to return to the mean limit cycle

after such a noise-induced deviation. In this way, we obtain a rough measure of the size

of the regions of the limit cycle where one can expect significant noise-induced distortions.

Identifying points on the limit cycle where trajectories are likely to diverge from the mean

limit cycle and estimating the typical extent of distortion hotspots allows one to predict

from the underlying deterministic equations which parts of the limit cycle are inherently

more susceptible to noise.

To address this question, we consider a trajectory that starts at some fixed distance

from the mean limit cycle. We choose this distance using the criterion that the system’s

deviation has increased its potential energy to 3T above the minimum (which occurs at or

near the mean limit cycle in the limit of a weak drive). We treat the stochastic dynamics

of the system in the plane perpendicular to the limit cycle, which we assume here to be one

dimensional (higher dimensional generalizations are possible). For the analytic estimate, we

consider the confining potential to be locally quadratic, an approximation warranted by the

measured confining potential plotted along the local normal to the limit cycle in Fig. 3.8.

We do not include a local nonzero normal component of the drive force, but the calculation

can be readily generalized to include a roughly constant force term.

Using these simplifications, we compute the mean first passage time distribution for the

system to return to the potential minimum. The details of the calculation are presented in

Appendix 3.5.2. κ denotes the curvature of the confining potential, and its variation around

the limit cycle is illustrated in Fig. 3.10. As explained in Appendix 3.5.2, we compute the

integrated survival probability N(t) of trajectories starting at a fixed normal distance from

the mean limit cycle and vanishing upon their return to it. The negative time derivative
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of this quantity is the probability distribution of the first return time. We plot the integral

N(t) as it is less susceptible to noise in the numerical data. Given a starting position x0 in

a harmonic potential with curvature κ, we find the integrated survival probability to be

N(t) = erf

[(
κ

2kBT (1− e−2tκB)

)1/2

x0e
−tκB

]
. (3.10)

Here B is the mobility of the overdamped system (which is set to 1 in our simulations,

without loss of generality) and kBT is a measure of the amplitude of the Gaussian white

noise. In our simulations, kB is normalized to 1.

We plot κ, the curvature of the confining potential in the direction normal to the lim-

it cycle, of our generalized Hopf model as a color map superposed on the limit cycle in

Fig 3.10. As expected, corner-cutting occurs where that potential is smaller than average.

More significantly, we plot the decay of N(t) predicted solely from that local curvature, for

two representative parts of the limit cycle: (1) a region of small κ (upper left), where the

distribution of the return times is broad, indicating that many trajectories deviate from the

mean path over significant portions of the limit cycle, and (2) a region of high curvature

(lower left), where trajectories that do deviate rapidly return to the mean path.

To test this analytic prediction for the return time distribution, we use stochastic nu-

merical simulations to compute the distribution of return times for trajectories that start

off the mean path, using the criterion discussed above. The histogram of those return times

is plotted (yellow bars) in Fig. 3.11. The numerical data are taken from a region where

the confining potential is weak so that such large excursions from the mean are relatively

common, allowing us to obtain a larger data set of deviant trajectories. Superimposed on

this plot is the integrated survival probability N(t) computed from Eq. 3.10. There are no

free fitting parameters.

We observe reasonably good agreement between the simple model and the numerical

data. The largest discrepancies appear to be that the simple model overestimates the rapid

return times and underestimates the return times that are of the order of ∼ 1/ω. We believe

that this error results from our neglect of the vector potential force, which changes rather
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Figure 3.10: Curvature of the confining potential

The plot depicts κ values along the zero-temperature limit cycle. We depict the inner

curve, since the asymmetry of the problem, renders it more susceptible to corner-cutting.

Additional plots exhibiting Eq. 3.28, illustrate the time of decay for the total number of

trajectories that have escaped the mean path of a system with noise variance 〈η2〉 = 30.

This points to a theoretical method of determining regions in the oscillatory system that are

prone to distortion in the presence of noise, and hence less reliable when fitting parameters

to experimental data.
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Figure 3.11: Return time distribution

The histogram represents the distribution of the stochastic trajectories that lie 3T above

the minimum potential. We consider trajectories that leave the mean limit cycle in a region

of small potential curvature (κ = 0.6) as shown in Fig. 3.8B. The overlaying plot is the

theoretical prediction of Eq. 3.10.
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rapidly in this portion of the limit cycle. As shown in Fig 3.7, trajectories leaving the limit

cycle at this point experience initially the normal component of the driving force, and this

normal component of the force decays rapidly as the system traverses the limit cycle. The

result is that rapid returns are suppressed by the vector potential force, but this suppression

of returns vanishes quickly as the particle continues on its trajectory. While the details are

not captured by this simple quantitative estimate provided by Eq. 3.10, it has qualitative

value in predicting regions of the limit cycle where large noise-induced deformations are

likely to occur. We note (data not shown) that in regions of large κ, we observe few large

excursions from the limit cycle and rapid returns when such excursions do occur.

3.4 Summary

We have shown that the fluctuations of a stochastic nonlinear oscillator can affect the size

and distort the shape of its average limit cycle, as a function of noise amplitude. This effect

appears to be dominated by particular parts of the limit cycle that combine two special

features. First, the confining potential that stabilizes the deterministic limit cycle is broad,

and second, the non-conservative driving force has a significant component normal to the

local tangent of the limit cycle. These two criteria provide a way to determine quantitatively

how susceptible the deterministic limit cycle is to noise-induced distortions. Since the criteria

for large deformation occur near high curvature parts of the deterministic limit cycle, we

refer to these distortions as corner-cutting events. We also provide a simple estimate of the

duration of large, noise-induced excursions from the typical path of the nonlinear system

and thereby provide a measure for the size of the noise-deformed regions of the limit cycle.

Using that estimate, one is able to predict which features of the limit cycle of a periodic,

nonlinear, dynamical system are susceptible to noise and which are not. This leads to two

observations. First, we believe that, in using noisy experimental data to fit parameters

of complex nonlinear models, one must first determine which parts of the limit cycle of

the dynamical system are least susceptible to that noise and weight the fits of the various

model parameters accordingly. This is particularly true in systems where the details of the
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noise sources are poorly understood and, as a consequence, the expected noise amplitude

is unknown. Secondly, we predict that more noisy dynamical systems will generically have

fewer high curvature features in their limit cycles due to corner cutting. This trend has not

yet been confirmed to our knowledge.

Applying these findings to models of biological systems in general, and hair cells in par-

ticular, we suggest that increasing the complexity of dynamical models provides diminishing

returns: more sophisticated models typically introduce new and finer features to their limit

cycles, which we show will be smoothed by averaging over stochastic trajectories. For ac-

tive systems exhibiting a limit cycle, increasing amount of averaging brings one arbitrarily

closer to the mean limit cycle, not to the deterministic one. As mentioned earlier, Fig. 3.1

illustrates this averaging and the resulting disparity between the mean and noiseless lim-

it cycles of a three-dimensional hair bundle model. The effect is analogous to that of the

thermal expansion of crystals where a combination of thermal noise and a nonsymmetric

potential lead to temperature-induced changes to the mean atomic spacing. Hence, if the

presence of realistic noise amplitudes in the model leads to a significant distortion of the

mean limit cycle, any finer features of the deterministic model will be inherently inaccessible

to experiment.

Since we expect noisy limit cycle oscillators to not typically exhibit sharp features in their

limit cycles regardless of the complexity of their underlying dynamical models, one may

wish to investigate them more closely in noisy biological systems. Their presence should

be atypical at least, and such features imply tight dynamical control through very large

curvatures of the effective confining potential. That tight control may point to selection

pressure on the relevant dynamical features of the biological limit cycle, although other

interpretations would remain possible.

There are a number of extensions to this analysis that can be considered. First, one may

examine the role of colored (frequency-dependent) noise in the system. Here, we expect that

increasing the noise amplitude at low frequencies will produce larger scale distortions than

those at high frequencies. The quantitative details of this effect have not been pursued yet.
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Further, one may consider more complex issues, such as stochastic variations in the model

parameters themselves. These will generally introduce multiplicative noise in the system

and render the problem significantly more complex. We expect, however, that basic features

explored here will still provide a rough set of guidelines for determining what parts of the

limit cycle are susceptible to internal stochastic forces.
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3.5 Appendix

3.5.1 Simulation details

The stochastic simulations of Eq. 4.1 were carried out using the 4th-order Runge-Kutta

method for a duration of 60 s, which corresponds to approximately 6500 limit cycles. The

time steps used in the simulation were in the range of 10−4 ↔ 2× 10−3 s. The time steps for

the simulations of Eqs. 3.7,3.8 were 6× 10−7 ↔ 3× 10−6. We did not observe any numerical

instabilities of the solution during these runs.

We explored a large range in the amplitude of the noise variance 〈η2Z〉, covering the range

of 10−7 ↔ 0.4 where the amplitude of the limit cycle oscillator oscillation amplitude was

held to be O(1). The stochastic terms driving the dynamical variables {X(t), Y (t)} were

always assumed to be uncorrelated.

3.5.2 First passage time distribution for a quadratic confining potential

To estimate the distribution of return times over which corner cutting trajectories come

back to the mean limit cycle, we consider a simple Smoluchowski equation giving the time

evolution of the probability distribution of the normal distance of a trajectory from the

mean limit cycle. We make a number of simplifying assumptions. First, we assume that

the effective potential for this one dimensional problem is fixed in time. In the actual

system, this potential is time varying as the particle traverses it trajectory, but as long as

the excursions from the mean limit cycle are sufficiently brief, this approximation should

provide a reasonable estimate of the return probabilities. Secondly, we assume that the force

associated with the vector potential may be ignored. We find that this non-potential force

is typically subdominant; in principle, a time-independent approximation to this force could

be included in the analysis explored below by adding a constant force, corresponding to a

simple tilt of the potential landscape. Finally, the landscape of that confining potential is

assumed to be locally quadratic, as illustrated by panels (C) and (D) in Fig. 3.8.
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Given these approximations, we may write the Smoluchowski equation as

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
+ κB

∂xP (x, t)

∂x
(3.11)

where, D = BkBT is the effective diffusion constant and B the mobility. κ is curvature of

the confining potential, which may be computed directly from the equations of motion and

the curve associated with the mean limit cycle. Using this equation we will compute the

probability that a trajectory, starting at a particular normal distance from the mean limit

cycle, returns to that mean limit cycle for the first time after a time interval t. This is the

well-known first passage time distribution.

We note that Eq. 3.11 has a simple time-independent solution corresponding to the

equilibrium position distribution of a harmonic oscillator with spring constant κ:

Pst(x, t) =

√
κ

2πkBT
e
− κx2

2kBT (3.12)

Writing the time-dependent probability distribution that evolves towards Pst(x) according

to Eq. 3.11 as a product: P (x, t) = Pst(x, t)
1/2g(x, t), we obtain a new evolution equation

for g(x, t):
∂g(x, t)

∂t
−BkBT

∂2g(x, t)

∂x2
+
Bκ

2
(

κ

2kBT
− 1)g(x, t) = 0. (3.13)

We note that the g −→ 1 at long times in order to be consistent with Eq. 3.12.

Using separation of variables, g(x, t) = f(t)h(x) and simple redefinition of the curvature

κ
2kBT

= β, we find that f and h obey the ordinary differential equations:

df

dt
+
f

τ
= 0 (3.14)

d2h

dx2
− β2x2h+ (β +

1

τD
)h = 0. (3.15)

From Eq. 3.14 we see that g(x, t) decays exponentially in time with decay rates τ−1 set by

solutions of the Eq. 3.15. That equation may be reduced Hermite’s differential equation via

a rescaling of both the independent y =
√
βx and dependent h(y) = u(y)e−

y2

2 variables:

d2u

dy2
− 2y

du

dy
+

u

βτD
= 0 (3.16)
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The eigenfunctions Hn(y) of this differential operator

Hn(y) = (−)ney
2 ∂ne−y

2

∂yn
(3.17)

allow us to determine the discrete set of decay rates

τ−1n = 2nβD. (3.18)

Combining Eqs. 3.12,3.14,3.15 and,3.17, we write the solution to Eq. 3.11 (in terms of

the scaled spatial variable y) as

P (y, t) = e−y
2
∑
n

cnHn(y)e−
t
τ , (3.19)

where the undetermined coefficients cn are given by the initial condition: P (y, t = 0). We

take that initial condition to be a delta function δ(x − x0), where x measures the normal

displacement from the the mean limit cycle and x0 is set by choosing the point where the

potential energy of the system is 3kBT above that of the mean limit cycle. From the or-

thonormality of the Hermite polynomials,∫ ∞
−∞

dye−y
2

Hn(y)Hm(y) = δmn2mm!
√
π, (3.20)

we obtain the undetermined constants in terms of y0
√
βx0:

cn =
Hn(y0)

2nn!
√
π

(3.21)

From these we have the conditional probability

P (y, t|y0, t0) =

√
κ

2πkBT
e−y

2
∑
n

Hn(y)Hn(y0)

n!

(
e−tκB

2

)n
(3.22)

that a trajectory starting at y0 at time zero reaches y at time t. Returning to the unscaled

independent variable and using Mehler’s approximation we write

P (x, t|x0, t0) =

(
κ

2πkBT (1− e−2κBt)

)1/2

e
− κ(x−x0e

−tκB)2

2kBT (1−e−2κBt) . (3.23)

In order to ensure we compute the first passage time to the origin, we must eliminate

trajectories that pass through x = 0 on their way to (x, t). We do so in the usual way by
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introducing an absorbing boundary condition at the origin. This is simply accomplished by

subtracting the above result from an imagined solution:

P̃ (x, t) = P (x, t)− P (−x, t). (3.24)

Using this result, we compute the total probability remaining at time t:

N(t) =

∫ ∞
0

P̃ (x, t)dx. (3.25)

The resulting integral can be written as

N(t) = (
κ

2πkBT (1− e−2κBt)
)1/2 ×

∫ ∞
0

dx

{
e
− κ(x−x0e

−tκB)2

2kBT (1−e−2κBt) − e
− κ(x+x0e

−tκB)2

2kBT (1−e−2κBt)

}
(3.26)

The remaining integral is easily performed to yield a solution written in terms of the error

function:

N(t) =
2√
π

∫ y0

0

e−(y−y0)2dy (3.27)

= erf

[(
κ

2kBT (1− e−2κBt)

)1/2

x0e
−tκB

]
. (3.28)

This result appears in the main text – see Eq. 3.10.
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CHAPTER 4

Violation of generalized fluctuation-dissipation

theorems in computationally driven steady states

4.1 Introduction

As the reader might have gleaned from the thesis introduction, specifically section 1.2.1,

inner ear hair cells demonstrate a number of adaptation processes that are instrumental in

maintaining the exquisite sensitivity of the hair bundle even under exogenous mechanical

loading. Moreover, this force feedback mechanism of a hair cell – driven by its endogenous

molecular motors, including Myosin 1c – both depends on and determines the state of its

hair bundle. The mechanical feedback loop between the myosin motors and bundle dis-

placements has other consequences as well. It allows for an unstable dynamical regime in

which the sterocillium bundle responds to mechanical input like a spring with a negative

spring constant [33]. In this regime, the bundle undergoes spontaneous oscillations even in

the absence of incoming pressure waves due to the active feedback between motor activity

and bundle displacement. Additionally, since that endogenous drive depends on deformation

of the bundle i.e. on the state of our biological system, an internally-driven spontaneously

oscillating hair cell provides a direct mechanical example of an adaptive control of a nonequi-

librium steady state. We note that similar examples may be found in a number of biological

systems, including cellular regulations [39] and bacterial chemo-sensing [28].

Biological systems are generally noisy, due to thermal fluctuations of their constituent

elements. Consistently with this, hair cell oscillations encounter stochasticity from a number

of sources such as the brownian motion of the surrounding fluid, stochasticity of the myosin
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motor attachment and detachment and shot noise arising from ionic transport. As a result,

the limit cycle oscillations of the hair cell bundle are innately noisy and thus provide a

window on the basic nonequilibrium statistical mechanics of a noisy limit cycle oscillator.

Further, as detailed earlier, they operate under feedback control where the drive maintaining

the nonequilibrium steady state responds to the state of the system.

In this chapter, we use the Hopf theoretic description of the spontaneously oscillating

hair bundle state as a model system to study fluctuation theorems associated with such

noisy nonequilibrium systems. It is well known that fundamental equilibrium fluctuation

theorems can fail in nonequilibrium steady states. In fact, the breakdown of the stan-

dard fluctuation dissipation theorem (FDT) [7] has been used as a way to characterize the

nonequilibrium steady state of cytoskeletal networks [12]. For a more detailed take on the

equilibrium fluctuation-dissipation theorem and its violation by the hair bundle, we refer the

reader to section 1.5. More recently, there has been a new exploration of fluctuation theo-

rems applicable to nonequilibrium steady states [50, 53, 51, 4, 57]. In this chapter, we will

primarily concern ourselves with the generalized fluctuation-dissipation theorem (GFDT)

as proposed by Seifert and Speck [53, 51] and apply it to a subclass of non-equilibrium

steady-state systems – that comprising of stochastic, driven, limit cycle oscillators. Here we

show that, as expected, the driven hair bundle violates the standard, equilibrium FDT, but

does obey a generalized fluctuation dissipation theorem (GFDT). This agreement with the

GFDT, however is predicated on the drive being non-computational. A computational drive

is one which measures the system’s current state and responds predictably by modifying

its power input accordingly. This modulatory behavior is in fact loosely analogous to the

myosin-motor based feedback mechanism in the inner ear hair bundles. We show that upon

inclusion of this feature related to the homeostatic control of the hair bundle oscillations, we

obtain new violations of the nonequilibrium GFDT. We propose that, just as the violation

of the original FDT in biological systems is an important quantitative measure of nonequi-

librium dynamics [16], the violation of the nonequilibrium generalization of the FDT, the

GFDT, should be a useful quantitative indicator of active feedback or homeostatic control
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in biological dynamical systems.

4.2 Stochastic Hopf oscillator model

The stochastic supercritical Hopf oscillator is two-dimensional in nature and can be described

in terms of a complex variable z(t) = x(t) + iy(t), which obeys the differential equation

ż = z (µ+ iω)− bz|z|2 + ηz(t) + fz(t), (4.1)

where fz(t) is an external deterministic force acting on this overdamped system, and ηz(t)

is a stochastic force, described below. The dynamics of the deterministic and unforced system

(fz = ηz = 0) are controlled by the values of the model parameters {µ, ω, b = b′ − ib′′, (b′, b′′ > 0)}.

The real parameter µ is the control parameter of the system. When µ < 0, this term damps

the oscillations, leaving the system with a single fixed point at z = 0, with an infinite basin

of attraction. As this parameter becomes positive, there is positive energy input into the

system, and the oscillator undergoes a supercritical Hopf bifurcation, resulting in a circu-

lar limit cycle of radius R0 =
√
µ/b′, which also has an infinite basin of attraction. The

oscillator has an angular frequency given by ω0 = ω+R2
0b
′′, where we assume that ω is real.

To specify the stochastic system, we include a Gaussian white noise force ηz = ηx + iηy

with a zero mean:

〈ηi(t)〉 = 0, (4.2)

〈ηi(t)ηj(t′)〉 = Aijδ(t− t′), (4.3)

with the symmetric and diagonal matrixAij(Axy = 0) allowing for the uncorrelated noise in

the x and y channels to be drawn in principle from different Gaussian distributions. Finally,

we include deterministic external perturbations via fz(t) = fx(t) + ify(t). Henceforth, for

convenience we will be working in polar coordinates: r =
√
x2 + y2 and φ = arctan(y/x)

[?].

Trajectories derived from Eq. 4.1 are those of an overdamped particle moving in two

dimensions in response to a force field f, which can be decomposed into the gradient of
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Figure 4.1: Scalar and Vector potential maps of the Hopf oscillator

The deterministic, unforced Hopf limit cycle (black curve) of radius R0 sits in the azimuthally

symmetric minimum potential region of Φ(r) as defined in Eq. 4.4 and is driven by the curl

of A(r) given in Eq. 4.5. The colormap for the three-dimensional Φ(r) runs from dark blue

(r = 0) to yellow (r = 7). The magnitude of the vector potential A(r) is shown as a colored

disc which varies from dark blue (r = 0) to light green (r = 7).
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Figure 4.2: Typical stochastic trajectory of a noisy Hopf oscillator

Based on Eq. 4.1, the multiple trajectories are shown in green. The system’s mean limit

cycle is shown as the black circle, which has a particularly simple Frenet frame {r̂, φ̂} – these

unit vectors denote the local normal and tangent to the curve, respectively.
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an azithumally symmetric scalar potential energy Φ(r) and the curl of a vector potential

f = ẑA(r), where

Φ(r) = −µ
2
r2 +

b′

4
r4, (4.4)

A(r) = −ω
2
r2 − b′′

4
r4. (4.5)

Φ(r) is the well-known “Wine Bottle” potential and is illustrated in Fig. 4.1 along with

A(r). Also shown is the particle’s deterministic, limit cycle. The curl of its vector potential

fv = ∇ × A(r), is a constant azimuthal force that drives the particle circularly along the

minima of Φ(r). Its power input to the Hopf oscillator is,

P = fv.φ̇ (4.6)

= r(ω + b′′r2)2 (4.7)

= (R0 + δr)(ω + b′′R2
0)

2 + 4b′′R2
0(ω + b′′R2

0)δr (4.8)

where, δr is the radial deviation of the particle about R0 in the presence of external per-

turbing forces. The power input now has two components, the first of these is the power one

traditionally expects for a stochastic particle undergoing centripetal motion. The second

however is what we shall henceforth refer to as the power input due to a computational

drive, meaning that the drive is now cognizant of the current state of the stochastic system

(in this case, as determined by δr) and modifies its power accordingly. Lastly, for the plots

in Fig. 4.1 we use: µ = 40, ω = 10, b′ = 2 and b′′ = 2.

When driven by white noise, the conservative system with ω = b′′ = 0 corresponds to

the case of an overdamped particle in thermal equilibrium at some finite temperature. The

vector potential, representing the action of the hair cell’s endogenous molecular motors,

does work on the overdamped system, generating the limit cycle oscillations, as shown in

Fig. 4.2. We use the same parameter values as above. Other simulation details are described

in Appendix 4.5.1.

The appearance of a force field produced by a vector potential does not alone generate

a limit cycle or even a nonequilibrium steady state. The necessary and sufficient conditions
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to create such a state with a time-independent force field is that: (1) the force field is

proportional to the curl of a vector potential, and (2) the force does work on the particle that

represents the state of the oscillator. A classic counterexample, where the second condition

is not met, is provided by a charged particle in a magnetic field. In Appendix 4.5.2, we

review this case, showing that a damped, charged particle in a two dimensional harmonic

potential and in a uniformly applied magnetic field, aligned in the direction perpendicular

to the plane of the charged particle’s motion, obeys the standard FDT.

Generally, for hair cell models, one allows the b coefficient to be complex, as mentioned

above. In this case, the azimuthal drive generates dynamics of the form: φ̇ = r−1∇ ×

A = ω + b′′r2. Note that the power input of the drive is now rendered computational

in nature. In the dynamical systems literature, when the azimuthal coordinate is driven

independently of the state of the system here given by r, i.e., when b′′ = 0, the system is

said to experience isochronous driving. Conversely, computational driving where b′′ 6= 0 is

referred to as nonisochronous. For our purposes, the important feature of this model is that

the computing ability of the drive forcing the steady-state limit cycle oscillations can be

continuously varied through the one model parameter b′′.

To study the fluctuations of the system about its limit cycle (when µ > 0), we expand

about the limit cycle

r(t) = R0 + δr(t) (4.9)

φ̇(t) = ω0 + δφ̇(t), (4.10)

to find two coupled stochastic linear Langevin equations for the fluctuations of the radius δr

and phase δφ of the oscillator

δṙ = −2µ δr + ηr + fr, (4.11)

δφ̇ = 2b′′
√
µ

b′
δr + ηφ + fφ. (4.12)

Here, the terms {ηr, ηφ} and {fr, fφ} are projections of the stochastic and perturbative forces

respectively onto the local normal r̂ and tangent φ̂. These unit vectors span the Frenet-Serret

frame associated with the averaged limit cycle of the oscillator, being the local normal and
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Figure 4.3: Correlation functions of the nonisochronous Hopf oscillator

Measured two-point correlations (colored points) of fluctuations δr(ν), δφ(ν) of the simu-

lated stochastic Hopf limit cycle oscillator are shown in the frequency domain along with

their corresponding analytical calculations (black lines) – see Eq. 4.16. Error bars show the

standard deviation of the mean. Panel (c) illustrates the frequency-dependent phase diffu-

sion constant. The adaptive drive introduces δr, δφ cross-correlations (panel (b)) so that

the radial fluctuations enhance phase diffusion for frequencies below the Lorentzian corner

frequency of the radial fluctuations, indicated by the vertical (black) line in all the panels.
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tangent directions, respectively (see Fig. 4.2). The details of this averaging are in Appendix

4.5.1.

The Frenet-Serret frame advances and simultaneously rotates along the mean curve at an

angular velocity of ω0. By working in this co-moving reference frame, we subtract away the

mean non-equilibrium dynamics of the steady-state oscillator. Doing so allows us to recover

a GFDT for the nonequilibrium system, as discussed by Seifert and coworkers [53]. Note

that the use of the dimensionless phase angle φ instead of the arclength variable s = R0φ

requires the noise amplitudes ηr,φ to have different length dimensions. To account for this

explicitly, we set second moments of the Gaussian force fluctuations in the frequency domain

(given by ν) to be

〈|ηr(ν)|2〉 = 1 (4.13)

〈|ηφ(ν)|2〉 = R−20 , (4.14)

which also has the effect of setting the effective noise temperature to 1/2, since the mobilities

in the Hopf equation have been set to unity. To account for this dimensional difference, it

will be convenient in the following to define a symmetric “temperature matrix” by Trr =

1, Trφ = R−10 , Tφφ = R−20 . This choice of coordinates has no other consequences for our

analysis.

To verify the GFDT in the co-moving frame, we first compute the correlation matrix in

the frequency domain

C(ν) =

 〈|δr(ν)|2〉 〈δr(ν)δφ(−ν)〉

〈δφ(ν)δr(−ν)〉 〈|δφ(ν)|2〉.

 (4.15)

Using Eqs. 4.11, 4.12 we obtain

C(ν) =

 1
4µ2+ν2 0

0 b′

µν2

+ 2b′′

 0 −i
ν(4µ2+ν2)

i
ν(4µ2+ν2)

2b′′µ
b′ν2(4µ2+ν2)

 (4.16)

The radial autocorrelations are those of an overdamped harmonic oscillator, as expected

from the form of the scalar potential in Eq. 4.4, calculated near the circular limit cycle
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r = R0. Similarly, the autocorrelations of the phase angle ∼ ν−2, as expected for phase

diffusion. When the drive is non-computational or isochronous (b′′ = 0), there is a sim-

ple, frequency-independent phase diffusion constant, and there are no cross correlations be-

tween the radial and phase fluctuations. A computational drive, however, introduces both a

frequency-dependent phase diffusion constant (observed in hair-cell data [52] shown in chap-

ter 2) and, more importantly, new correlations between the radial and phase fluctuations.

Both of these effects arise because the internal drive changes its power input in response

to the state of system, given by δr. All three correlation functions are shown in Fig. 4.3,

where the solid (black) lines show the theoretical predictions, and the (colored) points the

numerical results from our Brownian simulations. The error bars on the numerical data

points represent the standard deviation of the mean.

A direct calculation of the response matrix

xα(ν) = χαγ(ν)fγ(ν) (4.17)

gives

χ(ν) =

 1
2µ−iν 0

−2b′′
√

µ
b′

1
(iν)(2µ−iν) −

1
iν

 . (4.18)

We define the deviation matrix from the GFDT as

∆αβ(ν) = [χαβ(ν)− χβα(−ν)]Tβγ − 2iνCαγ(ν), (4.19)

and find that deviations from the GFDT (FDT in the co-moving frame associated with the

deterministic limit cycle) appear only in the presence of an adaptive drive, reflected in b′′ 6= 0:

∆(ν) = 2b′′

 0 (−ν+2iµ)
(4µ2ν+ν3)

(ν+2iµ)
(4µ2ν+ν3)

−i4b′′µ
b′ν(4µ2+ν2)

 . (4.20)

Only the Lorentzian fluctuations of the radial δr variable obey the GFDT when the drive

is computational. When b′′ 6= 0, the feedback between the azimuthal driving force and the

radial oscillations breaks the GFDT due to both new cross correlations Crφ and a modified
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Figure 4.4: Breakdown of GFDT for the Hopf oscillator

We compare the measured two-point correlations of Fig. 4.3 (circles) with those inferred from

numerical response function data via GFDT (light blue crosses). The latter agrees with the

analytical calculations (black lines) of [χαβ(ν)− χβα(−ν)] Tβγ using Eq. 4.18. While the

GFDT predicted correlation function agrees with observations for the radial fluctuations

(panel (a)), it differs from those for the phase diffusion (panel (b)). In the bottom panels,

we show the real (panel (c)) and imaginary (panel (d)) parts of χφr(ν)−χrφ(−ν). The former

is related to the cross-correlations of δr and δφ. The GFDT prediction of these correlations

also fails (blue crosses vs green circles).
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phase diffusion Cφφ. This breakdown of the GDFT to the best of our knowledge cannot

be removed by an appropriate change of variables, as has been explored for nonequilibrium

fluctuations about a fixed point [42].

In Fig. 4.4(a), we show the correspondence between the correlation data obtained from

numerical simulations (dark blue circles) and that expected from the response function (light

blue crosses) for the radial variable based on the GFDT. In Fig. 4.4(b), where we compare

the frequency-dependent phase diffusion constant measured from the numerical data (red

circles) and the GFDT-based prediction (blue crosses), we see the failure of the GFDT for

the computationally driven system. Clear deviations are seen at low frequencies, as predicted

by Eq. 4.20. When the drive is not computational (b′′ = 0) – see Fig. 4.15 in appendix 4.5.3

– these deviations vanish. The GFDT is once again obeyed. We also show the real and

imaginary parts of χφr(ν)− χrφ(−ν) in panels (c) and (d) respectively. The former predicts

the cross-correlations of the radial and phase fluctuations via GFDT. Those predicted blue

crosses illustrated in panel (c) also fail to agree with the simulation data (green circles). In all

panels (a - d), we show our analytical calculations of [χαβ(ν)− χβα(−ν)] Tβγ as obtained from

Eq. 4.18 (black lines). These are in universal agreement with the GFDT-based correlation

functions inferred from numerically simulated response function data (light blue crosses).

4.3 Three-state model with a computational drive

4.3.1 Model I

To better understand the role of a computational drive in breaking GFDT, it is helpful to

examine the same phenomenon in a more simple, finite-state model. We analyze two such

three-state systems. First, as shown in Fig. 4.5, we consider a system with three states

labeled by s = {−1, 0,+1} and having energies {ε, 0, 0}. When calculating occupation

probabilities, the Boltzmann constant kB is assumed to be 1 without loss of generality.

The system’s discrete-time dynamics combine a drift velocity vdrift = 0, 1, 2 anticlockwise

around the triangle of states – see Fig. 4.5 – and stochastic hopping. vdrift is the drive that
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Figure 4.5: Schematic diagram of the three-state system

Its states {−1, 0, 1} are denoted by red, green, and blue disks and have energies {ε, 0, 0}

respectively. In the equilibrium steady state, vdrift = 0. Conversely, when vdrift = 1 or 2, the

system has a non-zero internal drive. The resulting steady state probability current may be

removed by working in a co-moving frame.
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introduces probability current in the non-equilibrium steady-state system, thus explicitly

breaking detailed balance. For example, the deterministic system (p = 0) with vdrift = 1(2)

generates uniform anticlockwise (clockwise) motion of state occupation around the triangle

shown in Fig. 4.5. For vdrift = 1, the occupation probability distribution traverses from state

m to n such that n lies circularly to the right of m in the set {−1, 0, 1}. When vdrift = 2, it

traverses in the opposite direction. Meanwhile the hopping rate p, 0 ≤ p ≤ 0.5, is unbiased

when ε = 0 and generates diffusion amongst the three states. Thus the stochastic system

(p > 0) with no drift (vdrift = 0) obeys detailed balance and corresponds to an equilibrium

system. The role of the constant drift is then to create a finite state analog of the stochastic

non-computationally driven Hopf model (ω0 6= 0, b” = 0). The power input of this drive

when vdrift = 1, m = −1 and n = 0 is,

P = (1− 2p)ε−1 − pε0 (4.21)

= (1− 2p) ln
1− 2p

p
. (4.22)

We arrive at this value by falsely assuming that the system satisfies detailed balance and the

difference in rates can in fact be attributed to the difference in energy levels of the states -1

and 0. This gives us ε−1 = ln 1−2p
p

if ε0 = 0.

We will later incorporate a computational drive by allowing the value of vdrift to tempo-

rally depend upon the history of state occupation which allows us to study the finite-state

analog of the computationally-driven Hopf oscillator (ω0 = 0, b” 6= 0).

We incorporate such computation by setting

vdrift(ti) = b
∞∑
j=1

reλ(i−j)ξ (ti−j)c mod 3, (4.23)

where b.c is the floor function returning the integer part of its argument. We have also

introduced the function ξ(ti−j), which takes the value 1,−1 or 0 when the system is in state

1,−1 or 0 respectively at time ti−j. In turn ξ(ti) is defined using the indicator functions

σk(ti) which are 1 (0) when the system is (is not) in state k at time ti:

ξ (ti) = (−1)σ−1(ti) [1− σ0(ti)] . (4.24)
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Finally we note that the computational drive depends on two constants r, which determines

the responsiveness of the computation, and λ, which sets the memory time λ−1 for the drive.

We first perform numerical simulations of the symmetric model (ε = 0) that obeys de-

tailed balance (vdrift = 0). We tracked the stochastic trajectories (p = 0.02) of 40 realizations

of the system over a total of 4 × 104 time steps for each of the realizations. For additional

details of these simulations, we refer the reader to Appendix 4.5.1. Setting ε = 0 resulted

in the occupation probability of the three states being one third, as expected (not shown).

From these trajectories, we also compute all two-point correlation functions

Cnm(τ) =
1

2
[〈σn(ti + τ)σm(ti)〉+ 〈σm(ti + τ)σn(ti)〉] . (4.25)

The average is taken over an ensemble of trajectories at time delay τ . Under the assumption

of ergodicity, one may alternatively average over longer time series from one trajectory.

Further, an experimentalist investigating the stochastic dynamics of a nonequilibrium steady

state system might implicitly assume time reversal invariance. Therefore our definition of the

correlation function was chosen to make it explicitly time reversal invariant when n 6= m.

Clearly, if the driven system admits a non-vanishing probability current, this symmetry

will not be valid. However, since we propose using the violation of fluctuation-dissipation

theorems as a test for both an underlying limit cycle in general and a computationally driven

one in particular, we will suppose a priori that the correlation data is analyzed assuming

time-reversal invariance in the steady state.

To test the standard FDT, we numerically obtained the response of the occupation prob-

ability of state n, pn(t) = 〈σn(t)〉, to a force conjugate to the occupation of state −1,

δpn(ti) = −
i∑

j=−∞

χn,−1(ti − tj)δε−1(tj), (4.26)

by setting the energy of that state to ε−1 = 3 for one time step and observing the subsequent

stochastic evolution of the system. We confirmed that our perturbation was in the linear

response regime by varying ε−1 – see appendix 4.5.4. In Fig. 4.6, we plot χ−1,−1(τ), χ0,−1(τ),

and χ1,−1(τ) as solid red, green, and blue curves respectively. As expected, the transient
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Figure 4.6: Test of FDT for the equilibrium system

By comparing Ċ−1,−1 (black dashed line) and χ−1,−1 (red line), we check that the response

of the system to a force driving it out of the −1 state matches the appropriate correlation

function derivative. We also find the expected correspondence between Ċ0,−1 (black solid

line) and χ0,−1 (green line) as well as Ċ1,−1 (black dashed-dot line) and χ1,−1 (blue line).
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increase in the energy of the −1 state suppresses the occupation probability of that state

and symmetrically increases the occupation probability of the other two states: +1 and 0.

The system recovers its equilibrium probabilities exponentially with a decay rate of about

20 inverse time units.

The standard FDT requires that these response functions must be equal to the time

derivative of the correlation functions Ċn,−1(τ) evaluated at time delay τ . We plot the

numerically obtained time derivatives of the correlation functions Ċ−1,−1, Ċ0,−1 and Ċ1,−1 as

dashed black, solid black, and dashed-dot black lines respectively in Fig. 4.6. As expected,

we find that the time derivatives of the correlation functions of state occupation agree with

the responses of the occupation probability to a force conjugate to that variable. All the

correlation functions in this figure were normalized such that Cn,m(0) = δn,m. The response

functions were multiplied by an empirical temperature, in this case 0.2. The remaining plots

for this system are all normalized using this value.

We now consider the case of a constant drive, setting vdrift = 1. In Fig. 4.7(a), we

demonstrate the violation of FDT by this system. The red curve is the numerically computed

response function χ−1,−1(τ), and the dashed black curve is the derivative of the corresponding

correlation function Ċ−1,−1(τ), whose oscillatory nature can be attributed to the internal

drive of the model. The standard FDT requires these to be equal. They are not, indicating

breakdown of FDT. However, for this model we propose that one may obtain a valid GFDT

similar to that of [53] by evaluating the correlation and response functions in a reference

frame co-moving with velocity vdrift. To transform to the co-moving frame, we introduce

new indicator functions,

σ̃i (tj) = σ(i+vdrifttj) mod 3. (4.27)

We find that in the co-moving frame the numerically computed response function of

χf−1,−1 (red curve) agrees with Ċf−1,−1 (dashed black line) as seen in Fig. 4.7(b). The values

of these two functions, as a matter of fact, are similar to those of the equilibrium system

(Fig. 4.6). Due to the symmetry of the problem, we only show plots for the -1 state. For

the other two states the reader is referred to Appendix 4.5.3.
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Figure 4.7: Driven system violates FDT

(a) In the presence of an internal drive, the system violates FDT, as can be seen in the

comparison of its linear response function χ−1,−1 (red) and the time derivative of its auto-

correlation function Ċ−1,−1 (black dashed). (b) However, upon transforming to the co-moving

reference frame, we show that the three-state model satisfies GFDT. The derivative Ċf−1,−1

(dashed black) and the response function χf−1,−1 (red) are now in agreement with each other.
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Figure 4.8: The three-state model with a computational drive

(a) We juxtapose the derivative Ċ−1,−1 (dashed black) and the response function χ−1,−1 (red)

to illustrate the breakdown of FDT. (b) Furthermore, unlike the one illustrated in Fig. 4.7,

this system also violates GFDT, as is evident by comparing Ċf−1,−1 and χf−1,−1, calculated

in the associated co-moving frame.

Next, we study the computationally driven three-state model by choosing r = 2 and

λ = 0.1. This non-Markovian system violates FDT as shown by the plots in Fig. 4.8(a).

The time derivative of the auto-correlation C−1,−1 (black dashed line) deviates appreciably

from the response function χ−1,−1 (shown in red). Plots for the other two states are given in

Appendix 4.5.5. Moreover, in the co-moving frame, the computational nature of the internal

drive precludes restoration of the generalized theorem (Fig. 4.8(b)). In order to test the

GFDT in the rotating frame we chose a reference frame co-moving with the average drift

velocity, which in our simulations was 1. There exists no other reference frame that may

restore the GFDT in the computationally driven system. The breakdown of both FDT and

GFDT relations in this system is similar to the computationally-driven Hopf limit cycle with

parameter b” > 0.

One may ask whether any time variation of the drive is sufficient to invalidate the FDT

or the GFDT. To address this, we considered a randomly varying drive that has the same

average drift velocity as the one examined above. We consider the three-state model with a
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Figure 4.9: Schematic diagram of the three-state system

States {−1, 0, 1} are denoted by red, green, and blue disks respectively. These states have

energies {ε, 0, 0}. In the nonequilibrium steady state, the clockwise transitions rates are

enhanced over their detailed-balance values by α(t). The resulting steady state probability

current may again be removed by working in a co-moving frame.

randomly varying drift velocity that has equal probabilities at each time step of being 0,1,or

2. There are no temporal correlations in the stochastic vdrift. It is easy to see that the mean

drift velocity is unity. This system, unlike the computationally-driven three-state model,

obeys the GFDT (data not shown). We conclude that the state-dependent mechanism of

the drive is required to invalidate the GFDT.

4.3.2 Model II

We also examine the stochastic dynamics of a more general three-state model defined by the

discrete-time master equation for the probability pn(t) of observing the system in state n =

-1,0,1 at time ti :

pn (ti+1) =
∑
m 6=n

[pm(ti)αmn(ti)− pn(ti)αnm(ti)] . (4.28)
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See Fig. 4.9 for a schematic representation. The system evolves via six transition probabil-

ities, e.g., the transition rate from state n to m at time ti: αnm(ti). These six transition

probabilities are given by the following rules. We set

αnm = αmne
εn−εmα(ti), (4.29)

where n is to the right of m in the list of states {−1, 0, 1} or its cyclic permutations. The

factor α(t) allows us to drive the system into a nonequilibrium steady-state by breaking

detailed balance. By choosing α(t) to be a constant greater than one, we generate a clockwise

probability current – see Fig. 4.9 – in steady state. Such a choice is analogous to turning on

a non-computational drive in the isochronous Hopf model (ω0 6= 0, b′′ = 0) of the hair cell

oscillator. Later, to introduce a computational process, we will consider the case in which

the drive depends upon the history of the system by setting

α (ti) = 1 + r
∞∑
j=1

eλ(i−j)ξ (ti−j) , (4.30)

where ξ(ti−j) has been defined in Eq. 5.6.

The strength of the computation is again controlled by r. λ controls the exponential decay

rate of the memory kernel in Eq. 4.30. It is measured in inverse time units δt = ti+1 − ti,

which we always set to 0.01. The effect of the feedback is to increase the drive when the

system has recently been in the +1 state and decrease it when the system has visited the

−1 state. The simulations for this three-state model, as for the one before, were performed

using 40 realizations over 4× 104 time steps.

We first study the detailed-balance system, which can easily be shown to be equivalent

to the non-driven case of the first three-state model. In Fig. 4.10, we illustrate the time

derivatives Ċ−1,−1(τ), Ċ0,−1(τ) and Ċ1,−1(τ) as the dashed black, solid black and dot-dashed

black lines respectively. Also shown are the linear response functions of χ−1,−1(τ) (red),

χ0,−1(τ)(green) and χ1,−1(τ)(blue), which, as anticipated, overlap with their corresponding

correlation derivatives. The empirical temperature of this system is 0.11.

We now repeat this measurement in a non-equilibrium system by setting α(t) = 98.

This choice of a non-computational drive breaks detailed balance and is similar to the Hopf
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Figure 4.10: The FDT relation is satisfied by the detailed-balance system.

As in Fig. 4.6, we compare the response of the system to a change in the energy of state

-1 with the corresponding correlation function derivatives. We show Ċ−1,−,1 (dashed black),

Ċ0,−,1 (solid black), Ċ1,−,1 (dot dashed black), χ−1,−,1 (red), χ0,−,1 (green) and χ1,−,1 (blue).
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Figure 4.11: FDT violation in the broken detailed balance system at α(t) = 98.

(a)We compare the time derivative of the cross-correlation Ċ1,−1 (black line) and the response

function χ1,−1 (blue dashed line). (b) In the co-moving frame the GFDT holds as seen by

comparing correlation Ċf1,−1 (black line) and response function χf1,−1 (dashed blue line).

Error bars denote the standard deviation of the mean.

model of hair cell oscillations with b′′ = 0 but ω > 0. In Fig. 4.11(a), we show the measured

response function χ1,−1(τ). As in the equilibrium case, the applied force pushes the system

out of the −1 state into the 0, 1 states. But, unlike the equilibrium case, the change in

probability oscillates in time due to the detailed-balance-breaking drive. For example, the

occupation probability of +1 cycles the three-state system in the clockwise direction while

slowly decaying over longer times (not shown), resulting in an oscillatory response function

as in the dashed blue line in the figure. The correlation function C1,−1(τ) also shows this

oscillatory behavior, but its derivative (black line) does not match the corresponding response

function. The standard FDT is violated.

We can, however, obtain a GFDT in the driven system by working in a “rotating” refer-

ence frame – one that moves with the clockwise probability current of the non-equilibrium

steady state. Unlike the previous three-state model the Frenet frame state occupation vari-

ables are not well-defined. The frame’s velocity is determined by the mean probability
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current of the system. Moving at the speed of α−1
2

, we now find that the response function

of the +1 state in this co-rotating frame to a force acting on the −1 state – the dashed blue

line in Fig. 4.11(b) – agrees with the numerically measured time derivative of the correlation

function (calculated using Eq. 4.25), shown as the black line in this figure. The error bars

represent the standard deviation of the mean for the response data. We find a similar agree-

ment between the other correlation and response functions in the co-rotating frame; these

are shown in Appendix 4.5.3 (Figs. 4.18 and 4.19). While neither the time derivative of the

correlation function nor the response function in the driven system agrees with predictions

based on the equilibrium system, their agreement with each other shows that a generalized

fluctuation dissipation theorem holds in the driven system, as expected based on the work

of Seifert and collaborators [51]. The appearance of the GFDT in the co-rotating frame,

which zeros out the steady-state probability current of the driven system, is analogous to

our observation of a similar fluctuation theorem in the isochronous Hopf oscillator system.

We now introduce a computational drive in this more general three-state system via

Eq. 4.30, taking r = 0.095 and λ = 0.1. This is analogous to the nonisochronous Hopf

system. We obtain a steady-state system with non-equal occupation probabilities of the

three states in steady state. In spite of the fact that the energies of all three states are

equal, the computational drive breaks the permutation symmetry of these states, as shown

in panel (a) of Fig. 4.12. As a result, the simple occupation probabilities of the states in

this nonequilibrium steady state do not reflect their relative energies. Conversely, just by

observing these occupation probabilities, one might conclude erroneously that this system

was in equilibrium with a particular spectrum of energy levels. To test this conclusion, one

must not only examine these probabilities but also compare the correlation and response

functions of the system.

In the three remaining panels (b-d) of Fig. 4.12, we show a comparison of the time

derivative of the correlation function Ċk,−1(τ) and the response function χk,−1(τ) for k =

−1, 0,+1 in panels (b), (c), and (d) respectively. The standard FDT fails vividly for one set

of measurements: Ċ1,−1(τ) 6= χ1,−1(τ) – see Fig. 4.12(d).
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Figure 4.12: The three-state system with a computational drive, Eq. 4.30.

(a) With the drive parameters at r = 0.095 and λ = 0.1, the states are no longer occupied

with equal probability even when their occupation energies are equal. In panels (b)-(d) we

compare Ċ (black solid) with the appropriate χ (color) in the ground frame. In (d) we

observe significant deviations from the FDT.
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Figure 4.13: Violation of GFDT in the computationally-driven three state model

(a) Correlation of the steady-state probability current α(t)− 1 for different λ and r values:

r = 0.095, λ = 0.1 (dashed line), r = 0.095, λ = 0.25 (dotted line), r = 0.095, λ = 1 (dot-

dashed line) and r = 0 (solid). For r = 0.095 and λ = 0.1 , we show the stochastic current

from a representative trajectory (inset). In panels (b)-(d), we illustrate the violation of the

GFDT when working in a co-moving frame that works to eliminate the mean probability

current. Comparing with Fig. 4.12, we see that this frame partially, but rather imperfectly

restores the fluctuation theorem.
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Figure 4.14: L2 norm illustrating partial restoration of GFDT

In panels (a) and (b) we compare the plots in Figs. 4.12 (c), (d) and 4.13 (c), (d) using the

L2 norm of the difference between the time derivative of the correlation functions and the

response functions. The dashed lines denote the differences in the lab frame (FDT) while

the solid lines denote those in the frenet frame (GFDT).

We examine the probability current in this more general three-state model. We show

the temporal correlation function of the current in the computationally driven system in

Fig. 4.13 (a). In the inset of the same panel we show a representative part of the time series

of the probability current from which the correlation functions were obtained. Clearly, as λ is

decreased (drive memory time increased) the probability current’s correlation time increases,

so that the effect of the drive’s computation is reduced. Its current value depends on a long

time average of the system, which itself necessarily varies only slowly in time. As a result,

we find that with sufficiently long memory times, the computationally driven system begins

to resemble a non-computationally driven one, so long as r/λ remains fixed. As a result, the

magnitude of the violations of the GFDT will decrease.

Given this intuition, it is interesting to examine the residual violation of the GFDT

in a system driven by a weakly computing drive. Due to the current fluctuations that

are still correlated with the state of the system, it is clear that no co-moving frame can

precisely reestablish the GFDT. But we can find the best approximation to the GFDT

112



in this system by working in a co-moving reference frame selected to eliminate the mean

probability current, i.e., we chose a velocity 〈α〉−1
2

to minimize GFDT discrepancies. In the

remaining panels of Fig. 4.13 (b-d) we do this. The results shown in Figs. 4.13(c) and 4.13(d)

demonstrate that the GFDT still fails due to feedback between the system and the drive.

But a comparison between Fig. 4.13(c) and Fig. 4.13(d) measured in the co-moving frame

with Fig. 4.12(c) and Fig. 4.12(d), showing the same quantities in the non-rotating lab

frame, demonstrates the partial restoration of the GFDT. Fig. 4.14 shows the reduction in

L2 norm of the difference between time derivative of the correlation function Ċk,−1(τ) and

the response function χk,−1(τ). The decrease in L2 norm metric is more pronounced for state

1 (panel (b)). The dashed black lines illustrate the L2 norms for differences calculated in

the lab (ground) frame, those calculated in the frenet frame are shown by the solid black

lines. With even weaker drive adaptation, this restoration of the GFDT further improves

(data not shown).

4.4 Discussion

Systems that exhibit nonequilibrium steady states violate the fluctuation dissipation theo-

rem. Failure to satisfy the conditions set by that theorem has therefore been used as a test

of the nonequilibrium nature of various stochastic steady-states, indicating the presence of

an energy consuming process. There are, however, multiple ways to violate the FDT. For

example, in actomyosin gels, one observes enhanced strain fluctuations at low frequencies

due to motor activity. This is a consequence of the fact that the motor dynamics introduce

force autocorrelations with a colored noise spectrum. As a result, the strain fluctuations

do not correspond to the (visco-) elastic system at any temperature. One outcome of this

analysis and that of related systems is that one can use the breakdown of the FDT as a

type of sensor tuned to the detection of nonequilibrium steady states. As complex biological

systems frequently include active processes, such a tool is useful for experimentally probing

the underlying mechanisms.

In this chapter, we consider a different class of nonequilibrium systems, which break
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the FDT: those driven into stochastic steady states characterized by a stationary probability

current and broken detailed balance. In this case, previous work has introduced a new class of

generalized fluctuation theorems based on working in a co-moving reference frame that zeroes

out the stationary probability current. When fluctuations are now viewed in that frame there

is a familiar relation between them and the response function(s) of the system. The simplest

hair cell model provides an example of such a stochastic driven system; our previous work

on fluctuations in a Frenet frame co-moving with the mean probability current of the system

reproduced the expected GFDT. This model, however, introduces a new complication –

an adaptive drive: the external drive maintaining the nonequilibrium steady state in effect

measures the state of the system and adapts its power input based on that measurement.

We first observed in the Hopf hair cell oscillator model with adaptive drive, the viola-

tion of GFDT. Moreover, the quantitative degree of that violation is proportional to single

model parameter b′′ controlling degree of adaptation of the drive, as shown by our analytic

results. To isolate this feature of drive adaptation in an even simpler system, we introduced

a three state system defined by a discrete time master equation. By introducing a violation

of detailed balance, we produced states with a nonzero probability current. These violate

the standard FDT, as expected. Moreover, by introducing a co-rotating frame to zero the

probability current in the three-state system we obtain a GFDT, as is consistent with pre-

vious work. But when we introduce drive adaptation by allowing the probability current to

adjust based on the history of the system’s trajectory, we once again observe the breakdown

of the GFDT.

Based on this work, we propose that just as the failure of the FDT has been used to

test for nonequilibrium steady states, one should be able to look for the breakdown of the

GFDT as a test of stochastic steady states driven out of equilibrium by an adaptive drive.

Two emblematic features of living systems are long-lived nonequilibrium steady states and

homeostasis. One method to maintain homeostatic control of driven states is through an

adaptive drive, as seen in the non-isochronous hair cell model. Other example of a similar

homeostatic control through an adaptive drive may not be as readily apparent in complex
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biological systems. We propose that one may use the breakdown of the GFDT as a tool to

look for them.

4.5 Appendix

4.5.1 Simulation details

Hopf oscillator The stochastic and externally perturbed Hopf oscillator of Eq. 4.1 was

simulated using the 4th- order Runge-Kutta method for a duration of 60s, with a time step

of 10−4s. We explore a large range in the amplitude of the noise variances 〈η2x〉 and 〈η2y〉

(where, 〈η2x〉 = 〈η2y〉) covering 10−7 to 0.4, as well as a range of perturbative forces 10−3 to

10−1. All throughout, the amplitude of mean limit cycle oscillators was held to be O(1).

While consistent results were obtained over the full span of these values, Figs. 4.3 and 4.4

employ the highest value of force and noise in their respective ranges.

Mean limit cycle of the Hopf oscillator The Hopf oscillator’s phase space {−π, π} is

partitioned into nearly 200 bins. Trajectories in each bin are then averaged, resulting in the

mean curve.

Three-state model Eq. 4.28 was numerically computed using a random number genera-

tor that outputs a value in the range [0 - 1]. Comparison of this value with the occupation

probabilities of the three states determines the stochastic trajectory for each of the 40 real-

izations. Further, since we define Fig. 4.9 in terms of transition rates, these probabilities are

the product of the respective rates and a time step duration of 10−2. Data was always taken

after running the system long enough so that its initial conditions were no longer relevant.

All simulations were performed in MATLAB (R2019a, the MathWorks, Natick, MA).
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4.5.2 Electrically-charged particle in a magnetic field

The motion of a damped, harmonically bound charged particle of mass m and charge e in

the xy plane under the influence of magnetic field Hẑ is given by,

¨̂r + γ ˙̂r + ω2
0 r̂ =

e

mc
˙̂r ×H (4.31)

where γ is the friction coefficient, ω0 is the natural frequency of the oscillator (ω0 =
√
k/m

for a Hookean spring constant k), and c the speed of light. The equations of motion may be

written in terms of x and y as

ẍ+ γẋ+ ω2
0x =

eH

mc
ẏ, (4.32)

ÿ + γẏ + ω2
0y = −eH

mc
ẋ (4.33)

with introduction of the classical Larmor frequency ωr = eH
mc

. Upon driving Eqs. 4.32 and 4.33

using either stochastic or deterministic (externally applied) forces, we obtain:x
y

 =
1

(−ω2 + ω2
0 − iωγ)2 − ω2

rω
2
×

−ω2 + ω2
0 − iωγ −iωrω

iωrω −ω2 + ω2
0 − iωγ

ηx
ηy

 (4.34)

When considering these as Langevin equations, we assume rotationally symmetric thermal

noise so that 〈η2x〉 = 〈η2y〉 = 〈η2〉.

Since the dynamics in directions x̂ and ŷ are symmetric, we compute and compare one of

each of the autocorrelation and cross-correlation functions. A lengthy but straightforward

calculation yields the following response and correlation functions. In order to confirm the

validity of the FDT, we present the response functions in combinations such that these

combinations should be equivalent to the corresponding correlation functions. We find:

χ̃xx(ω)− χ̃xx(−ω)

2i
=

γω((ω2
0 − ω2)2 + γ2ω2 + ω2

rω
2)

(ω2γ2 + (ω2
0 − ω2 − ωωr)2)(ω2γ2 + (ω2

0 − ω2 + ωωr)2)
(4.35)

Cxx =
〈η2〉((ω2

0 − ω2)2 + γ2ω2 + ω2
rω

2)

(ω2γ2 + (ω2
0 − ω2 − ωωr)2)(ω2γ2 + (ω2

0 − ω2 + ωωr)2)
(4.36)
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χ̃xy(ω)− χ̃yx(−ω)

2i
=

iωrω(ω2
rω

2 − (−ω2 + ω2
0 + iωγ)2 + (−ω2 + ω2

0 − iωγ)2 − ω2
rω

2)

2(ω2γ2 + (ω2
0 − ω2 − ωωr)2)(ω2γ2 + (ω2

0 − ω2 + ωωr)2)
(4.37)

=
γω(2iω3ωr − 2iω2

0ωω
2
r)

(ω2γ2 + (ω2
0 − ω2 − ωωr)2)(ω2γ2 + (ω2

0 − ω2 + ωωr)2)
(4.38)

Cxy =
〈η2〉(2iω3ωr − 2iωωrω

2
0)

(ω2γ2 + (ω2
0 − ω2 − ωωr)2)(ω2γ2 + (ω2

0 − ω2 + ωωr)2)
(4.39)

By direct comparison of Eqs. 4.35, 4.36, as well as the cross correlations Eqs. 4.38 and 4.39,

we verify that FDT is satisfied for a system responding to a magnetic field. Even though

the force is generated from the curl of a vector potential (like our driving force in the Hopf

system), the magnetic field does not invalidate the FDT since the magnetic forces cannot do

work on the system.

4.5.3 Driven systems without computation

In the main text, we present three representative systems that incorporate a computation-

al drive. For completeness, we show results obtained from the Hopf system with a non-

computational drive, i.e., one with b′′ = 0. This system without a non-computational drive

admits a GFDT. In Fig. 4.15 we show that the response (black lines) and fluctuations (colored

dots) agree as expected from the GFDT, or the FDT in the Frenet frame that is co-moving

with the mean probability current in the driven oscillator. The fluctuations in the normal

(radial) direction (blue) are still well described by a simple Lorentzian (black), whose corner

frequency is once again marked by a vertical line. However, the phase diffusion constant

exhibits no frequency dependence (red) consistent with Eq. 4.16. Furthermore, the cross

correlations Crφ vanish, and the correlation data depicted in subplots (c and d) agree with

those inferred from GFDT and the numerically computed response functions. When b” = 0,

the hair cell model violates FDT but obeys GFDT.

For the stochastic three-state system with a constant vdrift (Fig. 4.5), we have shown in

the main text for state -1 that the FDT breaks down, but the GFDT is satisfied. In Figs. 4.16

and 4.17 we illustrate the same for the other two states, where we obtain similar results.

When examining the second three-state system (Fig. 4.9) with broken detailed balance
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Figure 4.15: Correlation and response functions for the isochronous Hopf oscillator

(a) Power spectral density of radial fluctuations as a function of frequency ν (blue dots). (b)

Phase diffusion constant, obtained from the product of the phase fluctuation power spectral

density and ν2 (red dots). In both panels, the vertical (black) line indicates the corner

frequency of 2µ. In panels (c) and (d) we compare the measured two-point auto correlation

functions with those inferred via GFDT from the numerically obtained response function

data of χrr and χφφ. The predicted correlation functions agree with those directly measured

from the Hopf oscillator simulations for both the radial and phase fluctuations. Overlaid on

all four plots are the respective theoretical calculations from Eqs. 4.16 and 4.18.
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Figure 4.16: Ċ0,−1 (black dashed) vs χ(τ)0,−1 (green solid) for vdrift = 1

. (a) Time derivative of the numerically computed cross-correlation function Ċ0,−1 and the

linear response function of χ0,−1 disagree revealing the breakdown of FDT. (b) However the

system satisfies GFDT as seen on comparing these functions calculated in the Frenet frame.

Figure 4.17: Ċ1,−1 (black dashed) vs χ(τ)1,−1 (blue solid) for vdrift = 1

. Comparing the time derivative of the cross-correlation Ċ1,−1 and response function χ1−1

we observe significant deviations from FDT in (a) and the satisfaction of GFDT in (b).
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Figure 4.18: Ċ (black solid) vs χ(τ) (red dashed) for α = 98 and state -1.

(a) Time derivative of the cross-correlation Ċ−1−1 and the response functions χ−1−1 super-

imposed illustrate the breakdown of FDT. (b) The Frenet frame formalism allows for the

obedience of GFDT.

Figure 4.19: Ċ (black solid) vs χ(τ) (green dashed) for α = 98 for state 0.

Time derivative of the cross-correlation Ċ0−1 and response functions χ0−1 demonstrating

violation of FDT in (a) and validity of GFDT in (b).
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Figure 4.20: Variation of χ−1,−1 with ε−1.

(a) With the three-state model obeying detailed balance, we obtain its χ−1,−1 response

by setting the energy of state -1, ε−1 = [2.6, 2.8, 3, 3.2, 3.4] for one time step. These are

respectively colored with blue, orange, yellow, purple and green. (b) The magnitude of the

χ−1,−1(τ1) values linearly increase with ε−1.

but no computation, we found that the GFDT holds as expected. In the main text, we

demonstrated the necessary correspondence for only one correlation function – see Fig. 4.11.

For completeness, here we show the analogous results for states −1 and 0 in Figs. 4.18 and

4.19 respectively. In all of these examples, the standard FDT breaks down, but the GFDT

relations are valid.

4.5.4 Linear regime of the equilibrium three-state model

In Fig. 4.10, we perturb the system using an ε−1 value of 3. To verify that the response of

this forced oscillator is within its linear regime, in panel (a) of Fig. 4.20 we plot over a range

of ε−1 values (2.6, 2.8, 3, 3.2, and 3.4) their respective χ−1,−1s. Additionally, in panel (b),

we show that the magnitude of these response functions at time τ1 varies with ε−1 in a linear

fashion.
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Figure 4.21: Ċ0,−1 (black dashed) vs χ(τ)0,−1 (green solid) for history-dependent vdrift.

Time derivative of the cross-correlation function Ċ0,−1 and the response function χ0,−1 jux-

taposed to reveal the breakdown of FDT in (a) and GFDT in (b).

4.5.5 Three-state system with a computational drive

In Fig. 4.8, we depicted the effects of a computational drive only for the state -1, namely

the violation of both FDT and GFDT. We obtain similar plots for both states 0 and 1 – see

Figs. 4.21 and 4.22.
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Figure 4.22: Ċ1,−1 (black dashed) vs χ(τ)1,−1 (blue solid) for vdrift = 1.

Comparison of the time derivative of the cross-correlation Ċ1,−1 and response function χ1−1

exemplifies violation of both the equilibrium (in panel (a)) and generalized (panel (b))

fluctuation-dissipation relations.
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CHAPTER 5

Future work

5.1 Introduction

To further study the non-equilibrium steady-state nature of the hair bundle oscillators, we

look to several variants of GFDT which can be applied to systems that are characterized by

internal driving, non-vanishing currents. In chapter 4, we specifically analyzed the super-

critical Hopf hair bundle model and simpler three-state models using the theorem proposed

by Speck and Seifert in [53]. In this chapter we shall elaborate upon two more theorems, the

Agarwal formulation of GFDT and a different relation proposed by Seifert et al. [51] which

we shall henceforth refer to as the Entropic GFDT. It has previously been shown that for

a system with an underlying non-computational drive all of the three GFDTs, namely, the

Seifert-ian GFDT of chapter 4, the Agarwal GFDT and the Entropic GFDT are equivalent.

Here, we verify that the three-state model defined in 4.3.1 with a non-computational drive

indeed satisfies the above equivalence, however we also show that one with a computational

drive does not. In brief, a computational drive measures the system’s current state and re-

sponds predictably by modifying its power input accordingly. A biological argument for why

such a drive might be interesting to study, rests in the continuously adapting myosin-motor

based feedback mechanism integral to inner ear hair cells (see 1.2.1 and the introduction

of chapter 4). In this chapter, we propose that a computationally-driven system violates

the afore-mentioned generalized fluctuation-dissipation theorems due to its non-markovian

nature. The information it retains about its trajectory can in fact be quantified using com-

putational entropy. We hope to show that once we account for this additional entropy, one

may obtain a new nonequilibrium GFDT which can be satisfied by both the computationally-
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driven three-state toy model systems and more generally by biological systems such as the

inner ear hair cells.

Please note that this work is currently in progress, and thus incomplete though to the

best of my knowledge scientifically correct. We aim to finish and publish this work soon.

5.2 Generalized Fluctuation-Dissipation Theorems

Consider a discrete-time system with {n} states, the transition rate from state m to state

n is ωmn(h) which may depend on an external perturbation parameter h. In our three-state

system, the states are labeled by n = {−1, 0, 1}. While the energies of states 0 and 1 are

equal to 0, h will henceforth be used to vary the energy of state -1, and is thus equivalent to

the parameter ε−1 used in chapter 4. The system’s dynamics as shown in Fig. 4.5 are entirely

determined by its drift velocity vdrift and stochastic hopping. vdrift is the internal drive that

introduces a non-zero probability current in the non-equilibrium steady-state thus explicitly

breaking detailed balance. Meanwhile stochastic hopping regulated by the parameter p

where, 0 ≤ p ≤ 0.5, is unbiased and underlies diffusive dynamics amongst the three states.

We also introduce additional notation which is useful to describe the Agarwal and En-

tropic GFDTs - pns denote the state occupation probabilities and p0ns give the unperturbed

system’s stationary distribution. σn(ti) will be used to represent the indicator function which

is 1 (0) when the system is (is not) in state {n} at time ti. Thus, pn = 〈σn〉.

5.2.1 Agarwal GFDT

The Agarwal GFDT can then be expressed as,

χn,−1(ti − tj) = 〈σn(ti)B
a(tj)〉 (5.1)

where χ is defined using,

δpn(ti) = −Σi
j=−∞χn,−1(ti − tj)h(tj) (5.2)
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Figure 5.1: Cσn,Ba (black dashed) vs χ(τ)n,−1 (red solid) for vdrift = 1.

The cross-correlation functions Cσn,Ba matches with the corresponding response function

χn,−1 obtained by driving the system out of its -1 state. Here, n = {−1, 0, 1}. Errors bars

on the response function depict one standard deviation of the mean.

and Ba is a stochastic quantity whose value is given by,

Ba
m = Σn

p0n
p0m
∂hωnm − Σn∂hωmn (5.3)

We first consider the case of a constant drive by setting vdrift = 1. When vdrift = 1 the

occupation probability distribution traverses from state {m} to state {n} such that {n} lies

circularly to the right of {m} in the set {−1, 0, 1}. In Fig. 5.1 we plot χ−1,−1(τ), χ0,−1(τ) and

χ1,−1(τ) in red along with the corresponding Agarwal correlation functions Cσ−1,Ba , Cσ0,Ba

and Cσ1,Ba (dashed black curves). As expected, the two are in agreement with each other

within one standard deviation.
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We will now introduce a computational drive by making the system non-markovian and

dependent on the previous state. We do this in two ways. First we consider,

vdrift(ti) = b
∞∑
j=1

r|ξ (ti−j)|c mod 3. (5.4)

Next, we simulate a system with

vdrift(ti) = b
∞∑
j=1

r(2− |ξ (ti−j)|)c mod 3. (5.5)

b.c is the floor function which returns the integral part of its argument and r gives the

strength of the drive. In our simulations, r = 1. We have also introduced a new function

ξ(ti−j) which takes values -1, 0, or 1 when the system is in state -1,0 or 1 at time ti−j. It is

defined using the indicator functions,

ξ (ti) = (−1)σ−1(ti) [1− σ0(ti)] . (5.6)

For each of these systems, we plot the Agarwal cross-correlations (black dashed) and

response functions (red solid) in Figs. 5.2 and 5.3. We note that for both the systems, the

two plots do not match.

5.2.2 Entropic GFDT

The entropic GFDT is based on the idea that the response of a non-equilibrium steady-state

system to a small perturbation is given by a correlation function of the corresponding ob-

servable and another variable that is conjugate to the perturbation with respect to stochastic

entropy, just as, in case of the equilibrium FDT the second variable is taken to be conjugate

with respect to energy. In this scenario, the GFDT relation can be written as,

χn,−1(ti − tj) = 〈σn(ti)B
e(tj)〉 (5.7)

and,

Be = −∂hṡ. (5.8)

s is the stochastic entropy of the system:

s(t) = − ln pn(t) (5.9)
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Figure 5.2: Three-state model with computational drive (Eq. 5.4).

This system has a drive of 1 when in state 1 or -1 and a drive of 0 otherwise. For all three

states we superimpose the cross-correlation functions Cσn,Ba (black dashed lines) atop the

corresponding response functions χn,−1 to demonstrate breakdown of the Agarwal GFDT.

Errors bars illustrate one standard deviation of the mean.
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Figure 5.3: Computationally-driven thee-state system violates the Agarwal GFDT.

Given by Eq. 5.5 the drive takes value 1 when the system in state 1 or -1 and 2 when it

is in state 0. The breakdown of Agarwal GFDT is made evident by juxtaposing the cross-

correlation functions Cσn,Ba (black dashed lines) and the corresponding response functions

χn,−1 for each of the three states n. Errors bars again illustrate one standard deviation of

the mean.

129



with its derivative for discrete-time dynamics given by,

ṡ(t) = −Σiδ(t− ti) ln
pn+

i

pn−i
. (5.10)

Here, the system’s trajectory is discretized such that it is a sequence of hops at time ti from

state ni− to state ni+ . This enables us to rewrite 5.7 as,

χn,−1(ti − tj) =
−〈σn(ti)ṡh〉+ 〈σn(ti)ṡ0〉

h
(5.11)

Using these equations to compute the entropic cross-correlation and response functions

for the non-computationally driven model with vdrift = 1, we arrive at Fig. 5.4. As expected,

the entropic cross-correlation functions Cσn,Be agree with the responses of the occupation

probability pn to the perturbative force h. Moreover, these correlations are equivalent to the

Agarwal correlation functions.

We now consider the case of the computationally-driven three-state systems. In Figs. 5.5

and 5.6 we demonstrate the violation of the Entropic GFDT by these systems. The red solid

curves are the numerically computed response functions χ−1,−1(τ), χ0,−1(τ) and χ1,−1(τ) and

the black dashed lines are the respective cross-correlation functions. The oscillatory nature

of the response χ−1,−1 and χ0,−1 can be attributed to the fact that the two states −1 and

0 essentially have cyclical dynamics with the system occasionally in state 1. In addition

we empirically observe that the entropic correlation functions differ from their Agarwal

counterparts.

5.3 Entropy of different systems

Amongst the three cases we have analyzed, the differentiating factor is the value of vdrift

when the system is in state 0. For the non-computationally driven system vdrift = 1, for that

defined using Eq. 5.4, vdrift = 0, and lastly when the computational drive is given by Eq. 5.4,

vdrift takes the value of 2. To quantify the system’s memory of its previous state, we now

numerical compute the entropy production rate in the medium (ṡmed) and also introduce a

new dynamical variable - computational entropy rate (ṡmem).
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Figure 5.4: Cσn,Be (black dashed) vs χ(τ)n,−1 (red solid) for vdrift = 1.

The cross-correlation function Cσn,Be for each of the three states equals the corresponding

response function within one standard deviation of the mean.
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Figure 5.5: Correlation (black curve) vs response functions (red curve) for the computation-

ally-driven system with the drive given by Eq.5.4

Cσn,Be for each of the three states deviates from the corresponding response function. Error

bars represent one standard deviation of the mean.
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Figure 5.6: Cσn,Be (black dashed) vs χ(τ)n,−1 (red solid) for the computational vdrift of Eq.5.5

Superposition of the two curves clearly elucidates the breakdown of Entropic GFDT for each

of the three states.
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ṡmed is defined as,

ṡmed(t) = −Σiδ(t− ti) ln
ωn−j n

+
i

ωn+
j n
−
i

(5.12)

where, ωn−j n
+
i

as defined earlier is the transition rate as the system hops from state n−i to

state n+
i at time ti. In Fig.5.7 we illustrate ṡmed for all three three-state systems. The

entropy production rate for the non-computationally driven system has the mode value of

ṡmed = ln 1−2p
p

as expected from underlying constant vdrif value. However in contrast the

modes of ṡmed for the non-computationally driven systems are 0.

The new dynamical variable of ṡmem meanwhile can be given by,

ṡmem(t) = −Σiδ(t− ti) ln
pmem,n+

i

pmem,n−i
(5.13)

where pmem = 〈σmem,n〉. The observable 〈σmem,n〉 is in turn an indicator function which

takes the value 1 when it is in state 0 and the value 0 otherwise. ṡmem thus captures the

system’s knowledge of its previously occupied state. Again for all three systems of interest

we plot ṡmem in Fig 5.8. While the computational entropy rate fluctuates about 0 for all

three systems, the fluctuations are revealing of the underlying dynamics of the system. When

vdrift = 1, all the three states {−1, 0, 1} are equally occupied and ṡmem thus oscillates between

ln 2 and − ln 2. However when vdrift = 0 the occupation probability is heavily biased towards

state 0, while for vdrift = 2 the probability of occupying state 1 is negligible.

5.4 Next steps

Since this is currently work in progress we next would like to incorporate the computa-

tional entropy rate in Eq. 5.11 and devise a new GFDT which would also be satisfied by

computationally-driven three-state systems. Just as violation of the equilibrium FDT is

a hallmark of active systems, we hope that violating the Entropic GFDT but satisfying

our newly proposed GFDT will be a quantitative measure of the presence of an underlying

computational drive.
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Figure 5.7: Comparison of ṡmed for the three driven systems

The entropy productions rates for the computationally driven systems are shown in sub-

figures (a) and (b), while that for the computationally driven system is depicted in (c).

Comparing the three, we note that (c) mostly exhibits a non-zero positive ṡmed , which is

a signature of broken detailed balance due to the presence of an underlying cyclical drive.

Such a drive however is absent in the non-computationally driven systems.
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Figure 5.8: ṡmem plots for all three driven systems

The computational entropy rates for the non-markovian driven systems are shown in (a) and

(b). (c) illustrates the same for the non-computationally driven system. In this case, due to

the presence of a constant non-zero cyclic probability current all the three states are equally

occupied and the ṡmem in (c) oscillates between the numerical values ln 2 and − ln 2 (shown

using dashed black lines).
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APPENDIX A

Source Codes

All numerical simulations in this thesis were performed in Matlab.

A.1 Hopf oscillator correlation function script

1 c l e a r v a r i a b l e s ; c l o s e a l l ;

2

3 %Constants

4 h = 0 . 0 0 0 1 ; %time step

5 time = 0 : h : h∗250000; % durat ion l ength

6

7 mu = 40 ;

8 w = 10 ;

9 Kb = 1.38∗10ˆ−23;

10 T = 300 ;

11 b = 2 ;

12 b1 = 0 ;

13

14 %State v a r i a b l e s

15 X = ze ro s ( l ength ( time ) ,1 ) ;

16 Y = ze ro s ( l ength ( time ) ,1 ) ;

17 X(1) = 1 ;

18 Y(1) = 1 ;
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19

20 %Noise v a r i a b l e s

21 noise X = randn ( [ l ength ( time ) −1 ,1]) ; %no i s e in X v a r i a b l e

22 noise Y = randn ( [ l ength ( time )−1, 1 ] ) ; %no i s e in Y v a r i a b l e

23 noise X amp = 1/2 ; %amplitude o f no i s e in X

24 noise Y amp = 1/2 ; %amplitude o f no i s e in Y

25

26 %D i f f e r e n t i a l equat ions f o r $4ˆ{ th}$ order Runge−Kutta

27 Fn1 = @(X,Y) mu∗X − w∗Y − b∗(Xˆ2 + Yˆ2)∗X − b1∗(Xˆ2 + Yˆ2)∗Y;

28 Fn2 = @(X,Y) mu∗Y + w∗X − b∗(Xˆ2 + Yˆ2)∗Y + b1∗(Xˆ2 + Yˆ2)∗X;

29

30 f o r i = num : ( l ength ( time )−1)

31 ph = atan2 (Y( i ) , X( i ) ) ;

32 k1 = Fn1(X( i ) ,Y( i ) ) ;

33 m1 = Fn2(X( i ) , Y( i ) ) ;

34 k2 = Fn1(X( i ) + 0.5∗h∗k1 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

35 Y( i ) + 0.5∗h∗m1 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

36 m2 = Fn2(X( i ) + 0.5∗h∗k1 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

37 Y( i ) + 0.5∗h∗m1 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

38 k3 = Fn1(X( i ) + 0.5∗h∗k2 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

39 Y( i ) + 0.5∗h∗m2 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

40 m3 = Fn2(X( i ) + 0.5∗h∗k2 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

41 Y( i ) + 0.5∗h∗m2 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

42 k4 = Fn1(X( i ) + h∗k3 + s q r t ( noise X amp∗h)∗nnoise X , . . .
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43 Y( i ) + h∗m3 + s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

44 m4 = Fn2(X( i ) + h∗k3 + s q r t ( noise X amp∗h)∗nnoise X , . . .

45 Y( i ) + h∗m3 + s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

46 X( i +1) = X( i ) + (1/6) ∗( k1+ 2∗k2 + 2∗k3 + k4 )∗h + . . .

47 s q r t ( noise X amp∗h)∗noise X ( i ) ;

48 Y( i +1) = Y( i ) + (1/6) ∗(m1 +2∗m2 + 2∗m3 + m4)∗h + . . .

49 s q r t ( noise Y amp∗h)∗noise Y ( i ) ;

50 end

51

52 %Calcu l a t ing l i m i t c y c l e o f the o s c i l l a t o r } \\

53 phase ar ray = [X(num: end ) , Y(num: end ) ] ;

54 phase = atan2 ( phase ar ray ( : , 2 ) , phase ar ray ( : , 1 ) ) ;

55

56 div = (−pi : 2∗ pi /200 : p i ) ’ ; %Number o f po in t s in the l i m i t c y c l e

(200)

57 sum amp = ze ro s ( l ength ( div ) −1 ,2) ; %Radial v e c t o r s at each phase

ang le

58 norm amp = ze ro s ( l ength ( div ) −1 ,1) ; %Radial norms at each phase

ang le

59 devi amp = ze ro s ( l ength ( phase ) −1 ,1) ; % Deviat ion from the l i m i t

c y c l e

60

61 f o r i = 1 : l ength ( div )−1

62 ind = f i n d ( phase >= div ( i ) & phase < div ( i +1) ) ;

63 f o r j = 1 : l ength ( ind )

64 sum amp( i , : ) = sum amp( i , : ) + . . .

65 phase ar ray ( ind ( j ) , : ) / l ength ( ind ) ;

66 norm amp( i ) = norm amp( i ) + . . .
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67 norm( phase ar ray ( ind ( j ) , : ) ) / l ength ( ind ) ;

68 end

69 f o r ph = 1 : l ength ( phase )

70 i f ( any ( abs (ph−ind )<1e−10) )

71 devi amp (ph) = norm( phase ar ray (ph , : ) ) −

norm amp( i ) ;

72 end

73 end

74 end

75

76 % Power spectrum of r a d i a l f l u c t u a t i o n s

77 base l ine amp dev i = smooth ( devi amp , 0 . 01 , ’ l o e s s ’ ) ;

78 amp devi = devi amp − base l ine amp dev i ;

79 [ p s d f i l t d v , f reqdv ] = pwelch ( devi amp , [ ] , [ ] , . . .

80 l ength ( devi amp ) ∗4 , 1/ sampl ing t ime ) ;

81 f r eqdv = 2∗ pi ∗ f r eqdv ;

82 f = f i g u r e ( ) ; l o g l o g ( freqdv , p s d f i l t d v ) ;

83

84 % Power spectrum of r a d i a l f l u c t u a t i o n s

85 phase un = unwrap ( phase ) ;

86 P = p o l y f i t ( time , phase un − phase un (1 ) , 1) ;

87 y f i t = P(1) ∗ time + P(2) ;

88 phase no i s e = phase un − phase un (1 ) − y f i t ;

89 b a s e l i n e p h n o i s e = smooth ( phase no i se , 0 . 1 , ’ l o e s s ’ ) ;

90 f i n a l p h a s e n o i s e = phase no i s e − b a s e l i n e p h n o i s e ;

91 [ p s d f i l t p h , f reqph ] = pwelch ( f i n a l p h a s e n o i s e , [ ] , [ ] , . . .

92 l ength ( f i n a l p h a s e n o i s e ) ∗4 , 1/ sampl ing t ime ) ;

93 f reqph = 2∗ pi ∗ f reqph ;
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94 f = f i g u r e ( ) ; l o g l o g ( freqph , p s d f i l t p h ) ;

A.2 Hopf oscillator response function script

1 c l e a r v a r i a b l e s ; c l o s e a l l ;

2

3 mu = 40 ;

4 w = 10 ;

5 Kb = 1.38∗10ˆ−23;

6 T = 300 ;

7 b = 2 ;

8 b1 = 0 ;

9

10 h = 0 . 0 0 0 1 ; %time step

11 t f i n a l = 300000; %durat ion l ength

12 num = 50000; % number o f time s t ep s to get to steady s t a t e

13

14 %State v a r i a b l e s

15 X = ze ro s ( l ength ( time ) ,1 ) ;

16 Y = ze ro s ( l ength ( time ) ,1 ) ;

17 X(1) = 1 ;

18 Y(1) = 1 ;

19

20 %Noise v a r i a b l e s

21 noise X = randn ( [ l ength ( time ) −1 ,1]) ; %no i s e in X v a r i a b l e

22 noise Y = randn ( [ l ength ( time )−1, 1 ] ) ; %no i s e in Y v a r i a b l e

23 noise X amp = 0 ; %amplitude o f no i s e in X

24 noise Y amp = 0 ; %amplitude o f no i s e in Y

25
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26 %D i f f e r e n t i a l equat ions f o r $4ˆ{ th}$ order Runge−Kutta

27 Fn1 = @(X,Y) mu∗X − w∗Y − b∗(Xˆ2 + Yˆ2)∗X − b1∗(Xˆ2 + Yˆ2)∗Y;

28 Fn2 = @(X,Y) mu∗Y + w∗X − b∗(Xˆ2 + Yˆ2)∗Y + b1∗(Xˆ2 + Yˆ2)∗X;

29

30 f o r i = 1 :num

31 ph = atan2 (Y( i ) , X( i ) ) ;

32 k1 = Fn1(X( i ) ,Y( i ) ) ;

33 m1 = Fn2(X( i ) , Y( i ) ) ;

34 k2 = Fn1(X( i ) + 0.5∗h∗k1 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

35 Y( i ) + 0.5∗h∗m1 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

36 m2 = Fn2(X( i ) + 0.5∗h∗k1 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

37 Y( i ) + 0.5∗h∗m1 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

38 k3 = Fn1(X( i ) + 0.5∗h∗k2 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

39 Y( i ) + 0.5∗h∗m2 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

40 m3 = Fn2(X( i ) + 0.5∗h∗k2 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

41 Y( i ) + 0.5∗h∗m2 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

42 k4 = Fn1(X( i ) + h∗k3 + s q r t ( noise X amp∗h)∗nnoise X , . . .

43 Y( i ) + h∗m3 + s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

44 m4 = Fn2(X( i ) + h∗k3 + s q r t ( noise X amp∗h)∗nnoise X , . . .

45 Y( i ) + h∗m3 + s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

46 X( i +1) = X( i ) + (1/6) ∗( k1+ 2∗k2 + 2∗k3 + k4 )∗h + . . .

47 s q r t ( noise X amp∗h)∗noise X ( i ) ;

48 Y( i +1) = Y( i ) + (1/6) ∗(m1 +2∗m2 + 2∗m3 + m4)∗h + . . .

49 s q r t ( noise Y amp∗h)∗noise Y ( i ) ;
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50 end

51

52 % Calcu l a t ing natura l f r equency

53 [ psd X , f req X ] = pwelch (X(1000 :num) , [ ] , [ ] , l ength (X) ∗4 ,1/h) ;

54 [ ˜ , index ] = max( psd X ) ;

55 n a t u r a l f r e q = freq X ( index ) ;

56

57 % Since no i s e va lue s are 0 , we s i m p l i f y l i m i t c y c l e c a l c u l a t i o n . . .

58 %by j u s t tak ing the s imulated l a s t complete c y c l e

59 l i m i t c y c l e = [X(num − f l o o r (1/( h∗ n a t u r a l f r e q )+6) :num) , . . .

60 Y(num − f l o o r (1/( h∗ n a t u r a l f r e q )+6) :num) ] ;

61 phase = atan2 ( l i m i t c y c l e ( : , 2 ) , l i m i t c y c l e ( : , 1 ) ) ;

62 p h a s e l i m i t c y c l e = unwrap ( phase ) ;

63 P = p o l y f i t (h ∗ ( 1 : l ength ( l i m i t c y c l e ) ) ’ , p h a s e l i m i t c y c l e , 1 ) ;

64

65 % Frenet frame

66 T = ze ro s ( l ength ( l i m i t c y c l e ) −1 ,2) ;

67 N = ze ro s ( l ength ( l i m i t c y c l e ) −1 ,2) ;

68 f o r t i d = 1 : l ength (T)

69 T( t id , : ) = l i m i t c y c l e ( t i d +1 , : ) − l i m i t c y c l e ( t i d , : ) ;

70 T( t id , : ) = T( t id , : ) . / norm(T( t id , : ) ) ;

71 end

72 f o r n id = 2 : l ength (N)

73 N( n id , : ) = T( n id , : ) − T( n id −1 , : ) ;

74 N( n id , : ) = N( n id , : ) . / norm(N( n id , : ) ) ;

75 end

76 N( 1 , : ) = T( 1 , : ) − T( end , : ) ;

77 N( 1 , : ) = N( 1 , : ) . / norm(N( 1 , : ) ) ;
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78

79 ping num = 0 ;

80 devi amp array = [ ] ;

81 phase dev array = [ ] ;

82 ping = [ ] ;

83

84 % $4ˆ{ th}$−order Runge Kutta f o r the perturbed Hopf o s c i l l a t o r .

85 % The per turbat i on occurs when the cur r ent phase o f the o s c i l l a t o r

86 % i s 0 , though t h i s i s not imperat ive to reproduce our r e s u l t s .

87

88 f o r i= num : ( l ength ( time )−1)

89 ph = atan2 (Y( i ) , X( i ) ) ;

90 i f (mod( f l o o r ( ( i − num)∗ n a t u r a l f r e q ∗h) , 6) == 0 && (0 < ph) . . .

91 && (ph < n a t u r a l f r e q ∗2∗ pi ∗h − 0) && ping num==0)

92 [ ˜ , f o r c e i d ] = min ( (X( i ) − l i m i t c y c l e ( : , 1 ) ) . ˆ2 . . .

93 + (Y( i )− l i m i t c y c l e ( : , 2 ) ) . ˆ 2 ) ;

94

95 f o r c e = 1000 ; % Force along the r a d i a l d i r e c t i o n }\\

96 % Deconvolving the r a d i a l f o r c e in to x , y}\\

97 f o r ce X = f o r c e ∗N( f o r c e i d , 1 ) ;

98 f o r ce Y = f o r c e ∗N( f o r c e i d , 2 ) ;

99

100 k1 = Fn1(X( i ) ,Y( i ) ) ;

101 m1 = Fn2(X( i ) , Y( i ) ) ;

102 k2 = Fn1(X( i ) + 0.5∗h∗k1 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

103 Y( i ) + 0.5∗h∗m1 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

104 m2 = Fn2(X( i ) + 0.5∗h∗k1 + 0.5∗ s q r t ( noise X amp∗h)∗noise X
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, . . .

105 Y( i ) + 0.5∗h∗m1 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

106 k3 = Fn1(X( i ) + 0.5∗h∗k2 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

107 Y( i ) + 0.5∗h∗m2 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

108 m3 = Fn2(X( i ) + 0.5∗h∗k2 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

109 Y( i ) + 0.5∗h∗m2 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

110 k4 = Fn1(X( i ) + h∗k3 + s q r t ( noise X amp∗h)∗nnoise X , . . .

111 Y( i ) + h∗m3 + s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

112 m4 = Fn2(X( i ) + h∗k3 + s q r t ( noise X amp∗h)∗nnoise X , . . .

113 Y( i ) + h∗m3 + s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

114 X( i +1) = X( i ) + (1/6) ∗( k1+ 2∗k2 + 2∗k3 + k4 )∗h + . . .

115 s q r t ( noise X amp∗h)∗noise X ( i ) ;

116 Y( i +1) = Y( i ) + (1/6) ∗(m1 +2∗m2 + 2∗m3 + m4)∗h + . . .

117 s q r t ( noise Y amp∗h)∗noise Y ( i ) ;

118 ping num = i ;

119 ping = [ ping , ping num ] ; % Time array o f e x t e r n a l

pe r tu rba t i on s

120 i = i +1;

121 end

122

123 % D i f f e r e n t i a l equat ions f o r the o s c i l l a t o r post pe r tu rbat i on

124 k1 = Fn1(X( i ) ,Y( i ) ) ;

125 m1 = Fn2(X( i ) , Y( i ) ) ;

126 k2 = Fn1(X( i ) + 0.5∗h∗k1 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

127 Y( i ) + 0.5∗h∗m1 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;
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128 m2 = Fn2(X( i ) + 0.5∗h∗k1 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

129 Y( i ) + 0.5∗h∗m1 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

130 k3 = Fn1(X( i ) + 0.5∗h∗k2 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

131 Y( i ) + 0.5∗h∗m2 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

132 m3 = Fn2(X( i ) + 0.5∗h∗k2 + 0.5∗ s q r t ( noise X amp∗h)∗noise X

, . . .

133 Y( i ) + 0.5∗h∗m2 + 0.5∗ s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

134 k4 = Fn1(X( i ) + h∗k3 + s q r t ( noise X amp∗h)∗nnoise X , . . .

135 Y( i ) + h∗m3 + s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

136 m4 = Fn2(X( i ) + h∗k3 + s q r t ( noise X amp∗h)∗nnoise X , . . .

137 Y( i ) + h∗m3 + s q r t ( noise Y amp∗h)∗noise Y ( i ) ) ;

138 X( i +1) = X( i ) + (1/6) ∗( k1+ 2∗k2 + 2∗k3 + k4 )∗h + . . .

139 s q r t ( noise X amp∗h)∗noise X ( i ) ;

140 Y( i +1) = Y( i ) + (1/6) ∗(m1 +2∗m2 + 2∗m3 + m4)∗h + . . .

141 s q r t ( noise Y amp∗h)∗noise Y ( i ) ;

142

143 i f ( i == ping num + 3000 && ping num˜=0)

144 n e a r e s t i d = ze ro s (3000 ,1) ;

145 devi amp = ze ro s (3000 ,1) ;

146 f o r j = 1:3000

147 [ ˜ , n e a r e s t i d ( j ) ] = . . .

148 min ( (X( ping num+j ) − l i m i t c y c l e ( : , 1 ) ) . ˆ2 + . . .

149 (Y( ping num+j )− l i m i t c y c l e ( : , 2 ) ) . ˆ 2 ) ;

150 i f n e a r e s t i d ( j ) ˜= length ( l i m i t c y c l e )

151 devi amp ( j ) = dot ( { [X( ping num+j ) ,Y( ping num+j ) ]}

− . . .
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152 l i m i t c y c l e ( n e a r e s t i d ( j ) , : ) , N( n e a r e s t i d ( j )

, : ) ) ;

153 e l s e

154 devi amp ( j ) = dot ( [X( ping num+j ) ,Y( ping num+j ) ]

. . .

155 − l i m i t c y c l e ( n e a r e s t i d ( j ) , : ) , N( 1 , : ) ) ;

156 end

157 end

158 % Perturbat ions in the normal/ r a d i a l d i r e c t i o n

159 devi amp array = [ devi amp array , devi amp ] ;

160 [ psd r , f r ] = pwelch ( devi amp , [ ] , [ ] , . . .

161 l ength ( devi amp ) ∗4 ,1/ sampl ing t ime ) ;

162 f = f i g u r e ; l o g l o g ( f r , psd r ) ;

163 rawdata =[X( ping num : ping num+j ) , Y( ping num : ping num+j ) ] ;

164 % Perturbat ions in the phase d i r e c t i o n

165 phase = atan2 ( rawdata ( : , 2 ) , rawdata ( : , 1 ) ) ;

166 phase rawdata = unwrap ( phase ) ;

167 p h a s e d i f f = ( phase rawdata (1 ) + h∗P(1) ∗ ( 0 : l ength ( rawdata

)−1) ) . . .

168 − phase rawdata ’ ;

169 phase dev = ( p h a s e d i f f ( 3 : end ) − p h a s e d i f f ( 2 : end−1) ) /h ;

170 [ psd phdev , f phdev ] = pwelch ( f i n a l p h a s e n o i s e , [ ] , [ ] , . . .

171 l ength ( f i n a l p h a s e n o i s e ) ∗4 , 1/ sampl ing t ime ) ;

172 f i g u r e ; l o g l o g ( f phdev , psd phdev . ∗ ( f phdev . ˆ 2 ) ) ;

173 ping num = 0 ;

174 end

175 end
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A.3 3-state system oscillator model a script

1 %% Desc r ip t i on

2 %This s c r i p t i s to f o r a three−s t a t e jump system with s t a t e s

{−1 ,0 ,1} and t e s t s i t s

3 % behaviour f o r three s c e n a r i o s : d e t a i l e d balance observed ,

d e t a i l e d balance broken

4 % but can be r e s t o r e d in the presence o f a r o t a t i n g frame and

d e t a i l e d

5 % balance broken but due to h i s t o r y dependence o f the p a r t i c l e ’ s

t r a n s i t i o n

6 % r a t e s cannot be r e s t o r e d .

7

8 %% Set t ing random number genera to r

9

10 rng (0 ) ;

11

12 %% numerica l

13 time = 39999 ; h = 0 . 0 1 ; % # of time s t ep s and s c a l e

14 num part = 40 ; % p a r t i c l e ensemble

15 p = 2 ; % p a r t i c l e ’ s t r a n s i t i o n ra t e va lue s

16 r a t e = 0 ;%2 ;

17 lambda = 0 . 1 ;

18 v e l a r r a y = ze ro s ( num part∗ time , 1 ) ;

19 cnt = 1 ;

20 ping = 1 ;

21

22 %p r o b a b i l i t i e s o f be ing in one o f the three s t a t e s {1 : −1, 2 : 0 ,

3 : 1}
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23 energ i e s 1 cum = ze ro s ( time +1 ,3) ;

24 energ i e s 2 cum = ze ro s ( time +1 ,3) ;

25 energ i e s 3 cum = ze ro s ( time +1 ,3) ;

26

27 s t a t e = [ ones (1 , num part ) ∗−1; z e r o s ( time , num part ) ] ;

28

29 f o r i = 1 : num part

30 probs = rand ( time , 1 ) ;

31 ve l = 1 ;

32 f o r j = 2 : time+1

33 i f (mod( j +1 ,3000) == 0 | | mod( j +2 ,3000) == 0) % | | mod( j

+3 ,3000) == 0 ) %f o r c e ping f o r re sponse func t i on

34 eta = 0 ;

35 e l s e

36 eta = 0 ;

37 end

38 energ i e s 1 cum ( j , : ) = [ 1 − 2∗h∗p∗ping∗exp ( eta ) , 1 − h∗p∗

ping∗exp ( eta ) , 1 ] ;

39 energ i e s 2 cum ( j , : ) = [ exp(−eta )∗ping∗h∗p , 1 − h∗p , 1 ] ;

40 energ i e s 3 cum ( j , : ) = [ exp(−eta )∗ping∗h∗p , exp(−eta )∗ping∗

h∗p + h∗p , 1 ] ;

41

42 %p a r t i c l e t r a n s i t i o n depends on i t s prev ious s t a t e in the

broken d e t a i l e d balance ca s e s

43 i f v e l == 0

44 i f s t a t e ( j −1, i ) == −1

45 s t a t e ( j , i ) = f i n d ( probs ( j−1)<energ i e s 1 cum ( j , : )

, 1 )−2;
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46 e l s e i f s t a t e ( j −1, i ) == 0

47 s t a t e ( j , i ) = f i n d ( probs ( j−1)<energ i e s 2 cum ( j , : )

, 1 )−2;

48 e l s e

49 s t a t e ( j , i ) = f i n d ( probs ( j−1)<energ i e s 3 cum ( j , : )

, 1 )−2;

50 end

51 e l s e

52 i f v e l == 1

53 i f s t a t e ( j −1, i ) == −1

54 i n t e r im = 0 ;

55 e l s e i f s t a t e ( j −1, i ) == 0

56 i n t e r im = 1 ;

57 e l s e

58 i n t e r im = −1;

59 end

60 e l s e i f v e l == 2

61 i f s t a t e ( j −1, i ) == −1

62 i n t e r im = 1 ;

63 e l s e i f s t a t e ( j −1, i ) == 0

64 i n t e r im = −1;

65 e l s e

66 i n t e r im = 0 ;

67 end

68 end

69 i f i n t e r im == −1

70 s t a t e ( j , i ) = f i n d ( probs ( j−1)<energ i e s 1 cum ( j , : )

, 1 )−2;
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71 e l s e i f i n t e r im == 0

72 s t a t e ( j , i ) = f i n d ( probs ( j−1)<energ i e s 2 cum ( j , : )

, 1 )−2;

73 e l s e

74 s t a t e ( j , i ) = f i n d ( probs ( j−1)<energ i e s 3 cum ( j , : )

, 1 )−2;

75 end

76 end

77 p a r t s t a t e = s t a t e ( 1 : j , i ) ;

78 v e l a r r a y ( cnt ) = ve l ;

79 i f r a t e ˜= 0

80 ve l = mod( f l o o r (sum( ra t e ∗exp((− j +1:0)∗ lambda ) ’ . ∗ (

p a r t s t a t e ) ) ) , 3 ) ;

81 end

82 cnt = cnt +1;

83 end

84 end

85

86 %Occupation p r o b a b i l i t i e s

87 p r o b p a r t i c l e = ze ro s ( num part , 3 ) ;

88 f o r pp = 1 : num part

89 p r o b p a r t i c l e (pp , 1 ) = sum( s t a t e ( : , pp ) == −1)/( time+1) ;

90 p r o b p a r t i c l e (pp , 2 ) = sum( s t a t e ( : , pp ) == 0) /( time+1) ;

91 p r o b p a r t i c l e (pp , 3 ) = sum( s t a t e ( : , pp ) == 1) /( time+1) ;

92 end

93

94 prob time = ze ro s ( time +1 ,3) ;

95 f o r pt = 1 : time+1
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96 prob time ( pt , 1 ) = sum( s t a t e ( pt , : ) == −1)/num part ;

97 prob time ( pt , 2 ) = sum( s t a t e ( pt , : ) == 0) /num part ;

98 prob time ( pt , 3 ) = sum( s t a t e ( pt , : ) == 1) /num part ;

99 end

100

101 %% p r o b a b i l i t i e s numerica l

102 f i g u r e ; hold on ;

103 p lo t ( prob t ime ( 1 : time +1 , : ) ) ;

104 x l a b e l ( ’Time ’ ) ;

105 y l a b e l ( ’ P r o b a b i l i t i e s ’ ) ;

106

107

108 %% Calcu l a t i on o f s t a t e re sponse func t i on by averag ing over a l l

the f o r c e p ings

109

110 r e sp avg = ze ro s (3000 ,13) ;

111 f o r t = 0 :12

112 r e sp avg ( : , t+1) = prob time ( t ∗3000+700:( t+1)∗3000+699 ,2) ;

113 end

114 f i g u r e ; p l o t ( re sp avg ) ;

115

116 %% Tensor c r o s s c o r r e l a t i o n f u n c t i o n s o f the three s t a t e s

117 C 00 = ze ro s ( time ∗2+1,num part ) ;

118 C 01 = ze ro s ( time ∗2+1,num part ) ;

119 C 0neg1 = ze ro s ( time∗2+1,num part ) ;

120 C 10 = ze ro s ( time ∗2+1,num part ) ;

121 C 11 = ze ro s ( time ∗2+1,num part ) ;

122 C 1neg1 = ze ro s ( time∗2+1,num part ) ;
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123 C neg10 = ze ro s ( time∗2+1,num part ) ;

124 C neg11 = ze ro s ( time∗2+1,num part ) ;

125 C neg1neg1 = ze ro s ( time ∗2+1,num part ) ;

126

127 f o r n = 1 : num part

128 s igma 0 = s t a t e ( : , n ) == 0 ;

129 s igma 1 = s t a t e ( : , n ) == 1 ;

130 s igma neg1 = s t a t e ( : , n ) == −1;

131 C 00 ( : , n ) = xcorr ( sigma 0 , sigma 0 , ’ c o e f f ’ ) ;

132 C 01 ( : , n ) = xcorr ( sigma 0 , sigma 1 , ’ c o e f f ’ ) ;

133 C 0neg1 ( : , n ) = xcor r ( sigma 0 , sigma neg1 , ’ c o e f f ’ ) ;

134 C 10 ( : , n ) = xcorr ( sigma 1 , sigma 0 , ’ c o e f f ’ ) ;

135 C 11 ( : , n ) = xcorr ( sigma 1 , sigma 1 , ’ c o e f f ’ ) ;

136 C 1neg1 ( : , n ) = xcor r ( sigma 1 , sigma neg1 , ’ c o e f f ’ ) ;

137 C neg10 ( : , n ) = xcor r ( sigma neg1 , sigma 0 , ’ c o e f f ’ ) ;

138 C neg11 ( : , n ) = xcor r ( sigma neg1 , sigma 1 , ’ c o e f f ’ ) ;

139 C neg1neg1 ( : , n ) = xcorr ( sigma neg1 , sigma neg1 , ’ c o e f f ’ ) ;

140 end

141

142

143 %% Var iab le trans form in the f r e n e t frame

144 ve l avg = f l o o r (mean( v e l a r r a y ) ) ;

145 i f v e l avg == 1

146 nu neg1 = [ repmat ( [ −1 ; 0 ; 1 ] , f l o o r ( time /3) ,1 ) ; −1 ] ;

147 nu 0 = [ repmat ( [ 0 ; 1 ; −1 ] , f l o o r ( time /3) ,1 ) ; 0 ] ;

148 nu 1 = [ repmat ( [ 1 ; −1 ; 0 ] , f l o o r ( time /3) ,1 ) ; 1 ] ;

149 e l s e i f v e l avg == 2

150 nu neg1 = [ repmat ( [ −1 ; 1 ; 0 ] , f l o o r ( time /3) ,1 ) ; −1 ] ;
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151 nu 0 = [ repmat ( [ 0 ; −1 ; 1 ] , f l o o r ( time /3) ,1 ) ; 0 ] ;

152 nu 1 = [ repmat ( [ 1 ; 0 ; −1 ] , f l o o r ( time /3) ,1 ) ; 1 ] ;

153 end

154

155 %% Response func t i on in the f r e n e t frame

156 prob f t ime = ze ro s ( time +1 ,3) ;

157 s t a t e f = ze ro s ( s i z e ( s t a t e ) ) ;

158

159 f o r pp = 1 : num part

160 s t a t e f ( ( s t a t e ( : , pp ) == nu neg1 ) ,pp ) = −1;

161 s t a t e f ( ( s t a t e ( : , pp ) == nu 0 ) ,pp ) = 0 ;

162 s t a t e f ( ( s t a t e ( : , pp ) == nu 1 ) ,pp ) = 1 ;

163 end

164

165 f o r pt = 1 : time+1

166 prob f t ime ( pt , 1 ) = sum( s t a t e f ( pt , : ) == −1)/num part ;

167 prob f t ime ( pt , 2 ) = sum( s t a t e f ( pt , : ) == 0) /num part ;

168 prob f t ime ( pt , 3 ) = sum( s t a t e f ( pt , : ) == 1) /num part ;

169 end

170

171 %% p r o b a b i l i t i e s numerica l

172 f i g u r e ; hold on ;

173 p lo t ( prob f t ime ( 1 : time +1 , : ) ) ;

174 x l a b e l ( ’Time ’ ) ;

175 y l a b e l ( ’ P r o b a b i l i t i e s ’ ) ;

176

177 %% Calcu l a t i on o f s t a t e re sponse func t i on by averag ing over a l l

the f o r c e p ings

154



178

179 r e s p f a v g = ze ro s (3000 ,13) ;

180 f o r t = 0 :12

181 r e s p f a v g ( : , t+1) = prob f t ime ( t ∗3000+700:( t+1)∗3000+699 ,2) ;

182 end

183 f i g u r e ; p l o t ( r e s p f a v g ) ;

184

185 %% Tensor c r o s s c o r r e l a t i o n f u n c t i o n s o f the three s t a t e s in the

f r e n e t frame

186

187 Cf 00 = ze ro s ( time∗2+1,num part ) ;

188 Cf 01 = ze ro s ( time∗2+1,num part ) ;

189 Cf 0neg1 = ze ro s ( time∗2+1,num part ) ;

190 Cf 10 = ze ro s ( time∗2+1,num part ) ;

191 Cf 11 = ze ro s ( time∗2+1,num part ) ;

192 Cf 1neg1 = ze ro s ( time∗2+1,num part ) ;

193 Cf neg10 = ze ro s ( time∗2+1,num part ) ;

194 Cf neg11 = ze ro s ( time∗2+1,num part ) ;

195 Cf neg1neg1 = ze ro s ( time∗2+1,num part ) ;

196

197 f o r n = 1 : num part

198 s i gmaf 0 = s t a t e f ( : , n ) == 0 ;

199 s i gmaf 1 = s t a t e f ( : , n ) == 1 ;

200 s igmaf neg1 = s t a t e f ( : , n ) == −1;

201 Cf 00 ( : , n ) = xcorr ( s igmaf 0 , s igmaf 0 , ’ c o e f f ’ ) ;

202 Cf 01 ( : , n ) = xcorr ( s igmaf 0 , s igmaf 1 , ’ c o e f f ’ ) ;

203 Cf 0neg1 ( : , n ) = xcor r ( s igmaf 0 , s igmaf neg1 , ’ c o e f f ’ ) ;

204 Cf 10 ( : , n ) = xcorr ( s igmaf 1 , s igmaf 0 , ’ c o e f f ’ ) ;
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205 Cf 11 ( : , n ) = xcorr ( s igmaf 1 , s igmaf 1 , ’ c o e f f ’ ) ;

206 Cf 1neg1 ( : , n ) = xcor r ( s igmaf 1 , s igmaf neg1 , ’ c o e f f ’ ) ;

207 Cf neg10 ( : , n ) = xcor r ( s igmaf neg1 , s igmaf 0 , ’ c o e f f ’ ) ;

208 Cf neg11 ( : , n ) = xcor r ( s igmaf neg1 , s igmaf 1 , ’ c o e f f ’ ) ;

209 Cf neg1neg1 ( : , n ) = xcor r ( s igmaf neg1 , s igmaf neg1 , ’ c o e f f ’ ) ;

210 end

A.4 3-state system oscillator model b script

1 % Set t ing random number genera to r

2 rng (0 ) ;

3

4 % Simulat ing the t r a j e c t o r i e s }}

5 e p s i = 0 ; %energy s c a l e f o r c o r r e l a t i o n f u n c t i o n s

6 time = 29999 ; h = 0 . 0 1 ; % no . o f time s t ep s and s c a l e

7 num part = 50 ; % p a r t i c l e ensemble

8 alpha = ze ro s ( time−1,num part ) ; % p a r t i c l e s ’ t r a n s i t i o n ra t e

va lues

9 alpha = [ ones (1 , num part ) ; alpha ] ;

10 a l p h a d e l t a = 0 ; % comoving frame v e l o c i t y

11 r a t e = 0 . 0 9 5 ; lambda = 0 . 1 ; %st r ength and per iod o f h i s t o r y

dependence

12

13 %p r o b a b i l i t i e s o f be ing in one o f the three s t a t e s {1 : −1, 2 : 0 ,

3 : 1}

14 energ i e s 1 cum = ze ro s ( time +1 ,3) ;

15 energ i e s 2 cum = ze ro s ( time +1 ,3) ;

16 energ i e s 3 cum = ze ro s ( time +1 ,3) ;

17
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18 %s t a t e s o f 50 p a r t i c l e s at a l l time po in t s

19 s t a t e = [ ones (1 , num part ) ∗−1; z e r o s ( time , num part ) ] ;

20

21 f o r i = 1 : num part

22 probs = rand ( time , 1 ) ; %these determine the next s t a t e o f a

p a r t i c l e

23 f o r j = 2 : time+1

24 i f (mod( j +2 ,1000) == 0 | | mod( j +1 ,1000) == 0)

25 eta = 3 ;

26 e l s e

27 eta = 0 ;

28 end

29 energ i e s 1 cum ( j , : ) = [1−h∗(1 + alpha ( j −1, i ) )∗exp ( eta ) . . .

30 ,1−h∗( alpha ( j −1, i ) − a l p h a d e l t a )∗exp ( eta ) , 1 ] ;

31 energ i e s 2 cum ( j , : ) = [ exp ( eps i−eta ) ∗( alpha ( j −1, i ) −

a l p h a d e l t a )∗h . . .

32 ,1−exp ( e p s i ) ∗(1 + a l p h a d e l t a )∗h , 1 ] ;

33 energ i e s 3 cum ( j , : ) = [ exp ( eps i−eta ) ∗(1 + a l p h a d e l t a )∗h/

exp(− e p s i ) , . . .

34 exp ( eps i−eta ) ∗(1 − a l p h a d e l t a )∗h/exp(− e p s i ) + . . .

35 exp ( e p s i )∗h∗( alpha ( j −1, i ) − a l p h a d e l t a ) /exp(− e p s i )

, 1 ] ;

36

37 %P a r t i c l e t r a n s i t i o n depends on i t s prev ious s t a t e

38 %in the broken d e t a i l e d balance ca s e s ;

39 %subt ra c t i ng 2 merely because f i n d y i e l d s \{1 ,2 or 3\}

40 %and the s t a t e s are de f ined as \{−1,0 or 1\}

41 i f s t a t e ( j −1, i ) == −1
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42 s t a t e ( j , i ) = f i n d ( probs ( j−1) < energ i e s 1 cum ( j , : ) , 1 )

−2;

43 e l s e i f s t a t e ( j −1, i ) == 0

44 s t a t e ( j , i ) = f i n d ( probs ( j−1) < energ i e s 2 cum ( j , : ) , 1 )

−2;

45 e l s e

46 s t a t e ( j , i ) = f i n d ( probs ( j−1) < energ i e s 3 cum ( j , : ) , 1 )

−2;

47 end

48 p a r t s t a t e = s t a t e ( 1 : j , i ) ;

49 alpha ( j , i ) = alpha (1 , i ) + sum( ra t e ∗exp((− j +1:0)∗ lambda )

’ . ∗ ( p a r t s t a t e ) ) ;

50 end

51 end

52

53 %Occupation p r o b a b i l i t i e s

54 p r o b p a r t i c l e = ze ro s ( num part , 3 ) ;

55 f o r pp = 1 : num part

56 p r o b p a r t i c l e (pp , 1 ) = sum( s t a t e ( : , pp ) == −1)/( time+1) ;

57 p r o b p a r t i c l e (pp , 2 ) = sum( s t a t e ( : , pp ) == 0) /( time+1) ;

58 p r o b p a r t i c l e (pp , 3 ) = sum( s t a t e ( : , pp ) == 1) /( time+1) ;

59 end

60

61 prob time = ze ro s ( time +1 ,3) ;

62 f o r pt = 1 : time+1

63 prob time ( pt , 1 ) = sum( s t a t e ( pt , : ) == −1)/num part ;

64 prob time ( pt , 2 ) = sum( s t a t e ( pt , : ) == 0) /num part ;

65 prob time ( pt , 3 ) = sum( s t a t e ( pt , : ) == 1) /num part ;
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66 end

67

68 f = f i g u r e ; hold on ;

69 p lo t ( prob t ime ( 1 : time +1 , : ) ) ;

70 x l a b e l ( ’Time ’ ) ;

71 y l a b e l ( ’ P r o b a b i l i t i e s ’ ) ;

72

73 % Calcu l a t i on o f −1 s t a t e re sponse func t i on

74 %by averag ing over a l l the f o r c e p ings

75 r e sp avg = ze ro s (1000 ,18) ;

76 f o r t = 0 :17

77 r e sp avg ( : , t+1) = prob time ( t ∗1000+700:( t+1)∗1000+699 ,3) ;

78 end

79 f i g u r e ; p l o t (mean( resp avg , 2 ) − mean(mean( re sp avg (800 : end , : ) , 2 ) ) )

;

80

81 % Tensor o f c ros s−c o r r e l a t i o n f u n c t i o n s o f the three s t a t e s

82 C 00 = ze ro s ( time ∗2+1,num part ) ;

83 C 01 = ze ro s ( time ∗2+1,num part ) ;

84 C 0neg1 = ze ro s ( time∗2+1,num part ) ;

85 C 10 = ze ro s ( time ∗2+1,num part ) ;

86 C 11 = ze ro s ( time ∗2+1,num part ) ;

87 C 1neg1 = ze ro s ( time∗2+1,num part ) ;

88 C neg10 = ze ro s ( time∗2+1,num part ) ;

89 C neg11 = ze ro s ( time∗2+1,num part ) ;

90 C neg1neg1 = ze ro s ( time ∗2+1,num part ) ;

91

92 f o r n = 1 : num part
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93 s igma 0 = s t a t e ( : , n ) == 0 ;

94 s igma 1 = s t a t e ( : , n ) == 1 ;

95 s igma neg1 = s t a t e ( : , n ) == −1;

96 C 00 ( : , n ) = xcorr ( sigma 0 , s igma 0 ) ;

97 C 01 ( : , n ) = xcorr ( sigma 0 , s igma 1 ) ;

98 C 0neg1 ( : , n ) = xcor r ( sigma 0 , s igma neg1 ) ;

99 C 10 ( : , n ) = xcorr ( sigma 1 , s igma 0 ) ;

100 C 11 ( : , n ) = xcorr ( sigma 1 , s igma 1 ) ;

101 C 1neg1 ( : , n ) = xcor r ( sigma 1 , s igma neg1 ) ;

102 C neg10 ( : , n ) = xcor r ( sigma neg1 , s igma 0 ) ;

103 C neg11 ( : , n ) = xcor r ( sigma neg1 , s igma 1 ) ;

104 C neg1neg1 ( : , n ) = xcorr ( sigma neg1 , s igma neg1 ) ;

105 end

A.5 Three-dimensional model function script

1 c l e a r v a r i a b l e s ;

2 c l o s e a l l ;

3

4 %t i m e s t a r t = d a t e s t r (now , ’yymmdd HHMMSS’ ) ; %s t o r e s time

o f execut ion o f program in a s t r i n g

5 %s a v e d i r e c t o r y = [ ’ nudrowsk i mode l spon taneou s o s c i l l a t i on s ’ ,

t i m e s t a r t ] ; % name o f d i r e c t o r y

6 %mkdir ( s a v e d i r e c t o r y ) ; %makes d i r e c t o r y

7

8 % v a r i a b l e s

9 f unc t i on [ X vec , n a t u r a l f r e q ] = neimanmodel ( f max , P0 , alpha , gt ,

t f i n a l , dt , noise amp , IC , v i s c o s i t y c h a n g e )

10
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11 L = 2.8 ∗ 10ˆ−6 ∗ v i s c o s i t y c h a n g e ;

12 L a = 10 ∗ 10ˆ−6;

13 Kgs = 750 ∗ 10ˆ−6;

14 Ksp = 600 ∗ 10ˆ−6;

15 gamma = 0 . 1 4 ;

16 D = 6.21 ∗ 10ˆ−8;

17 energy of temparound = noise amp ;

18 T a = 1.5 ;

19

20 h = dt ;

21

22 X = ze ro s ( t f i n a l +1 ,1) ;

23 Xa = ze ro s ( t f i n a l +1 ,1) ;

24 t = ze ro s ( t f i n a l +1 ,1) ;

25 Prob = ze ro s ( t f i n a l +1 ,1) ;

26 vss = ze ro s ( t f i n a l +1 ,1) ;

27 S = ze ro s ( t f i n a l +1 ,1) ;

28 Z = ze ro s ( t f i n a l +1 ,1) ;

29

30 %parameters

31 f max = f max ∗ 10ˆ−12;

32 gt = gt ∗10ˆ−9;

33 A = 2.382 ∗10ˆ7; %exp ( ( delta G + Kgs∗D.ˆ2 /(2∗N) ) /(Kb∗T) ) ;

34 de l t a = 4.444 ∗ 10ˆ−9;

35 d i f f X s s X a s s = −de l t a ∗ l og ( (1/P0 −1)/A) ;

36 S0 = (1 − Kgs∗( d i f f X s s X a s s − D∗P0) /(gamma ∗ f max ) ) /P0 ;

37

38 Prob (1 ) = P0 ;
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39

40 %constant s f o r vo l t age equat ions

41 I0 = 10∗10ˆ−12;

42 wv = 2∗ pi ∗20 ;

43 Cm = 14∗10ˆ−12;

44 sigma = gt /(Cm∗wv) ;

45 Qv = 30 ;

46 v0 = −0.055 + I0 /(wv∗Cm∗(1 + sigma ∗0 . 5 ) ) ;

47 vm0 = −0.055;

48 vss (1 ) = v0 + I0 /(wv∗Cm∗(1 + sigma∗P0) ) ;

49

50 n o i s e c h a n n e l c l a t t e r = s q r t (2∗ energy of temparound /L)∗ randn (

t f i n a l , 1 ) ; % no i s e f o r the disp lacement func t i on

51 n o i s e a c t i v e m o t o r s = s q r t (2∗ energy of temparound ∗T a/L a )∗ randn (

t f i n a l , 1 ) ; %no i s e f o r a c t i v e motors

52

53 X(1) = IC (1) ;

54 Xa(1) = IC (2) ;

55

56 f o r i = 1 : ( t f i n a l )

57 % equat ions f o r p r o b a b i l i t y

58

59 S( i ) = S0∗(1 + alpha ∗( vss ( i ) /vm0 − 1) ) ;

60

61 %equat ions f o r s t a t e v a r i a b l e s ( i gno r i ng calc ium no i s e terms and

tau = 0)

62

63 X( i +1) = X( i ) + h∗(−Kgs∗(−de l t a ∗ l og ((1−Prob ( i ) ) /( Prob ( i )∗A) ) − D∗
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Prob ( i ) ) − Ksp∗X( i ) ) /L + s q r t (h)∗ n o i s e c h a n n e l c l a t t e r ( i ) ;

64 Xa( i +1) = Xa( i )+ h∗(Kgs∗(−de l t a ∗ l og ((1−Prob ( i ) ) /( Prob ( i )∗A) ) − D∗

Prob ( i ) ) − gamma ∗ f max ∗ (1 − S( i )∗Prob ( i ) ) ) /L a + s q r t (h)∗

n o i s e a c t i v e m o t o r s ( i ) ;

65

66 k 1 = Z( i ) ;

67 j 1 = −wv∗(1/Qv + sigma∗Prob ( i ) )∗Z( i ) − wvˆ2∗(1 + sigma∗Prob ( i ) ) ∗(

vss ( i ) − v0 ) − I0 ∗wv/Cm;

68 k 2 = Z( i ) + 0.5∗h∗ j 1 ;

69 j 2 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + 0.5∗h∗ j 1 ) − wvˆ2∗(1 +

sigma∗Prob ( i ) ) ∗( vss ( i ) + 0 .5∗h∗k 1 − v0 ) − I0 ∗wv/Cm;

70 k 3 = Z( i ) + 0.5∗h∗ j 2 ;

71 j 3 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + 0.5∗h∗ j 2 ) − wvˆ2∗(1 +

sigma∗Prob ( i ) ) ∗( vss ( i ) + 0 .5∗h∗k 2 − v0 ) − I0 ∗wv/Cm;

72 k 4 = Z( i ) + h∗ j 3 ;

73 j 4 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + h∗ j 3 ) − wvˆ2∗(1 + sigma∗

Prob ( i ) ) ∗( vss ( i ) + h∗k 3 − v0 ) − I0 ∗wv/Cm;

74

75 vss ( i +1) = vss ( i ) + (1/6) ∗( k 1+ 2∗ k 2 + 2∗ k 3 + k 4 )∗h ; % main

equat ion

76 Z( i +1) = Z( i ) + (1/6) ∗( j 1 +2∗ j 2 + 2∗ j 3 + j 4 )∗h ;

77 Prob ( i +1) = 1/(1 + A∗exp ( (Xa( i ) − X( i ) ) / de l t a ) ) ;

78 t ( i +1) = t ( i )+h ;

79

80 end

81

82

83 f = f i g u r e ( ) ;
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84 ax = axes ( f ) ;

85 p lo t ( ax , t ,X) ;

86 t i t l e ( ’ Displacement vec to r ’ ) ;

87 x l a b e l ( ’Time ( s ) ’ ) ;

88 y l a b e l ( ’ Displacement (m) ’ ) ;

89 %s a v e f i g ( f , [ s a v e d i r e c t o r y , f i l e s e p , ’ Displacement vec to r o f

spontaneous o s c i l l a t i o n s . f i g ’ ] ) ;

90 %pr in t ( f , ’−dpng ’ , ’−r300 ’ , [ s a v e d i r e c t o r y , f i l e s e p , ’ Displacement

vec to r o f spontaneous o s c i l l a t i o n s . png ’ ] ) ;

91

92 f = f i g u r e ( ) ;

93 ax = axes ( f ) ;

94 p lo t ( ax , t , Xa) ;

95 t i t l e ( ’ Motor a c t i v i t y ’ ) ;

96 x l a b e l ( ’Time ( s ) ’ ) ;

97 y l a b e l ( ’ Displacement o f motors (m) ’ ) ;

98 %s a v e f i g ( f , [ s a v e d i r e c t o r y , f i l e s e p , ’ Motor a c t i v i t y o f

spontaneous o s c i l l a t i o n s . f i g ’ ] ) ;

99 %pr in t ( f , ’−dpng ’ , ’−r300 ’ , [ s a v e d i r e c t o r y , f i l e s e p , ’ Motor

a c t i v i t y o f spontaneous o s c i l l a t i o n s . png ’ ] ) ;

100

101 f = f i g u r e ( ) ;

102 ax = axes ( f ) ;

103 p lo t ( ax , t , vss ) ;

104 t i t l e ( ’ vo l t age ’ ) ;

105 x l a b e l ( ’Time ( s ) ’ ) ;

106 y l a b e l ( ’ vo l t age (mV) ’ ) ;

107

164



108 X = X(10000 : end ) ;

109 Xa = Xa(10000 : end ) ;

110 vss = vss (10000 : end ) ;

111

112 base l ine X = smooth (X, 0 . 02 , ’ l o e s s ’ ) ;

113 base l ine Xa = smooth (Xa , 0 . 02 , ’ l o e s s ’ ) ;

114 b a s e l i n e v s s = smooth ( vss , 0 . 02 , ’ l o e s s ’ ) ;

115

116 f i n a l X = X − base l ine X ;

117 f i n a l X a = Xa − base l ine Xa ;

118 f i n a l v s s = vss − b a s e l i n e v s s ;

119

120 X vec = [ f i n a l X ∗10ˆ9 , f i n a l X a ∗10ˆ9 , f i n a l v s s ∗1 0 ˆ 3 ] ;

121

122 [ psd X , f req X ] = pwelch ( f ina l X , [ ] , [ ] , l ength (X) ∗4 ,1/h) ;

123

124 %p l o t t i n g psd and c a l c u l a t i n g natura l f r e q u e n c i e s

125 f = f i g u r e ( ) ;

126 ax = axes ( f ) ;

127 [ ˜ , index ] = max( psd X ) ;

128 n a t u r a l f r e q = freq X ( index ) ;

129 p lo t ( ax , freq X , psd X ) ;

130 t i t l e ( ’PSD of d i sp lacement o f spontaneous o s c i l l a t i o n s ’ ) ;

131 x l a b e l ( ’ Frequenc ie s (Hz) ’ ) ;

132 y l a b e l ( ’ Power s p e c t r a l dens i ty ( a . u . ) ’ ) ;

133 z ip ( [ s a v e d i r e c t o r y , f i l e s e p , ’ code snapshot . z ip ’ ] , { ’ ∗ .m’ }) ; %

saves a l l the m f i l e s in working d i r e c t o r y in to a z ip f i l e

134
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135 end

A.6 Neiman model correlation function using 3d frenet frames

script

1 c l e a r v a r i a b l e s ;

2 sampl ing t ime = 0 . 0 0 0 1 ;

3

4 [ X vec , ˜ ] = neiman model ( 5 0 0 , 0 . 6 3 , 0 . 8 , 1 . 5 , 2 0 0 0 0 0 , sampling t ime

, 0 . 1∗4 . 1 4∗1 0 ˆ −2 1 , [ 0 , 0 , 0 ] , 0 . 5 ) ;

5

6 f i n a l X = X vec ( : , 1 ) ;

7 f i n a l X a = X vec ( : , 2 ) ;

8 f i n a l v s s = X vec ( : , 3 ) ;

9 f i g u r e ;

10 p lo t3 ( f ina l X , f ina l Xa , f i n a l v s s , ’ b lue : ’ ) ;

11

12 [ X v e c l i m i t c y c l e , n a t u r a l f r e q 0 ] = neiman model

( 5 0 0 , 0 . 6 3 , 0 . 8 , 1 . 5 , 2 0 0 0 0 0 , sampling time , 0 , [ 0 , 0 , 0 ] , 0 . 5 ) ;

13 l i m i t c y c l e = X v e c l i m i t c y c l e (100000:100000 + f l o o r (1/(

n a t u r a l f r e q 0 ∗ sampl ing t ime ) ) , : ) ;

14

15 dx = d i f f ( l i m i t c y c l e ( : , 1 ) ) ;

16 dy = d i f f ( l i m i t c y c l e ( : , 2 ) ) ;

17 dz = d i f f ( l i m i t c y c l e ( : , 3 ) ) ;

18

19 T = ze ro s ( l ength ( l i m i t c y c l e ) , 3 ) ;

20 T( 1 : l ength ( l i m i t c y c l e ) −1 ,:) = [ dx , dy , dz ] ;

21 T( length ( l i m i t c y c l e ) , : ) = [ l i m i t c y c l e ( 1 , 1 ) − l i m i t c y c l e ( end , 1 ) ,
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l i m i t c y c l e ( 1 , 2 )− l i m i t c y c l e ( end , 2 ) , l i m i t c y c l e ( 1 , 3 )−

l i m i t c y c l e ( end , 3 ) ] ;

22

23 f o r i = 1 : l ength ( l i m i t c y c l e )

24 T( i , : ) = T( i , : ) . / norm(T( i , : ) ) ;

25 end

26

27 N x = d i f f (T( : , 1 ) ) ;

28 N y = d i f f (T( : , 2 ) ) ;

29 N z = d i f f (T( : , 3 ) ) ;

30 N( 1 , : ) = [T(1 , 1 )−T( end , 1 ) , T(1 , 2 )−T( end , 2 ) ,T(1 , 3 )−T( end , 3 ) ] ;

31 N( 2 : l ength ( l i m i t c y c l e ) , : ) = [ N x , N y , N z ] ;

32

33 f o r i = 1 : l ength ( l i m i t c y c l e )

34 N( i , : ) = N( i , : ) . / norm(N( i , : ) ) ;

35 end

36

37 B = c r o s s (T,N) ;

38

39 X vec = [ X vec , z e r o s ( l ength ( X vec ) ,1 ) ] ;

40 f o r ph = 1 : s i z e ( X vec , 1 )

41 [ min val , index S ] = min ( ( X vec (ph , 1 ) − l i m i t c y c l e ( : , 1 ) ) . ˆ2 +

( X vec (ph , 2 ) − l i m i t c y c l e ( : , 2 ) ) . ˆ2 + ( X vec (ph , 3 ) −

l i m i t c y c l e ( : , 3 ) ) . ˆ 2 ) ;

42 X vec (ph , 4 ) = index S ;

43 end

44

45 proj T = ze ro s ( s i z e ( X vec , 1 ) ,1 ) ;
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46 f o r i = 1 : s i z e ( proj T , 1 )−1

47 proj T ( i ) = dot ( ( X vec ( i +1 ,1:3) − X vec ( i , 1 : 3 ) ) , T( X vec ( i , 4 )

, : ) ) ;%/norm( X vec ( i , 1 : 3 ) ) ;

48 end

49

50 S = ze ro s ( l ength ( X vec ) ,1 ) ;

51 f o r i = 1 : s i z e ( X vec , 1 )−1

52 S( i +1) = S( i ) + proj T ( i ) ;

53 end

54

55 X i n p u t n o i s e l e s s = ze ro s ( l ength ( X v e c l i m i t c y c l e ) , 3 ) ;

56 f o r i = 1 : c e i l ( l ength ( X v e c l i m i t c y c l e ) / l ength ( l i m i t c y c l e ) )

57 X i n p u t n o i s e l e s s ( ( ( i −1)∗ l ength ( l i m i t c y c l e ) + 1) : ( i ∗ l ength (

l i m i t c y c l e ) ) , : ) = l i m i t c y c l e ;

58 end

59 X i n p u t n o i s e l e s s = X i n p u t n o i s e l e s s ( 1 : l ength ( X v e c l i m i t c y c l e )

, : ) ;

60

61 S n o i s e l e s s = ze ro s ( l ength ( X i n p u t n o i s e l e s s ) , 1 ) ;

62 f o r i = 1 : s i z e ( X v e c l i m i t c y c l e , 1 )−1

63 S n o i s e l e s s ( i +1) = S n o i s e l e s s ( i ) + norm( X i n p u t n o i s e l e s s ( i

+1 , : ) − X i n p u t n o i s e l e s s ( i , : ) ) ;%/norm( X i n p u t n o i s e l e s s ( i

, : ) ) ;

64 end

65

66 f i g u r e ;

67 circum S = S − S n o i s e l e s s ;

68 b a s e c i r S = smooth ( circum S , 0 . 02 , ’ l o e s s ’ ) ;
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69 f i n a l c i r S = circum S − b a s e c i r S ;

70 [ p s d f i l t c i r S , f r e q c i r S ] = pwelch ( f i n a l c i r S , [ ] , [ ] , l ength (

f i n a l c i r S ) ∗4 , 1/ sampl ing t ime ) ;

71 f r e q c i r S = 2∗ pi ∗ f r e q c i r S ;

72 l o g l o g ( f r e q c i r S , p s d f i l t c i r S .∗ f r e q c i r S . ˆ 2 ) ;

73

74 proj N = ze ro s ( s i z e ( X vec , 1 ) ,2 ) ;

75 proj B = ze ro s ( s i z e ( X vec , 1 ) ,2 ) ;

76

77 f o r i = 1 : l ength ( X vec )

78 proj B ( i , 1 ) = norm( X vec ( i , 1 : 3 ) − l i m i t c y c l e ( X vec ( i , 4 ) , : ) ) ;

79 proj B ( i , 2 ) = dot ( ( X vec ( i , 1 : 3 ) − l i m i t c y c l e ( X vec ( i , 4 ) , : ) ) , B(

X vec ( i , 4 ) , : ) ) / proj B ( i , 1 ) ;

80 end

81

82 f i g u r e ;

83 base B = smooth ( proj B ( : , 2 ) , 0 . 02 , ’ l o e s s ’ ) ;

84 f i n a l B = proj B ( : , 2 ) − base B ;

85 [ p sd f i l tdvB , freqdvB ] = pwelch ( proj B ( : , 2 ) , [ ] , [ ] , l ength (

f i n a l B ) ∗4 , 1/ sampl ing t ime ) ;

86 freqdvB = 2∗ pi ∗ freqdvB ;

87 l o g l o g ( freqdvB , p s d f i l t d v B ) ;

88

89 f o r i = 1 : l ength ( X vec )

90 proj N ( i , 1 ) = norm( X vec ( i , 1 : 3 ) − l i m i t c y c l e ( X vec ( i , 4 ) , : ) ) ;

91 proj N ( i , 2 ) = dot ( ( X vec ( i , 1 : 3 ) − l i m i t c y c l e ( X vec ( i , 4 ) , : ) ) , N(

X vec ( i , 4 ) , : ) ) / proj N ( i , 1 ) ;

92 end
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93

94 f i g u r e ;

95 base N = smooth ( proj N ( : , 2 ) , 0 . 02 , ’ l o e s s ’ ) ;

96 f i n a l N = proj N ( : , 2 ) − base N ;

97 [ p sd f i l tdvN , freqdvN ] = pwelch ( proj N ( : , 2 ) , [ ] , [ ] , l ength (

f i n a l N ) ∗4 , 1/ sampl ing t ime ) ;

98 freqdvN = 2∗ pi ∗ freqdvN ;

99 l o g l o g ( freqdvN , p sd f i l t dvN ) ;

A.7 Neiman model response function script

1

2 v i s c o s i t y c h a n g e = 0 . 3 ;

3 L = 2.8 ∗ 10ˆ−6 ∗ v i s c o s i t y c h a n g e ;

4 L a = 10∗10ˆ−6;

5 Kgs = 750 ∗10ˆ−6;

6 Ksp = 600 ∗ 10ˆ−6;

7 gamma = 0 . 1 4 ;

8 D = 6.21 ∗ 10ˆ−8;

9 T a = 1.5 ;

10 f max = 500 ;

11 P0 = 0 . 6 3 ;

12 alpha = 0 . 8 ;

13 gt = 1 . 5 ;

14

15 t f i n a l = 200000;

16 h = 0 . 0 0 0 1 ;

17

18 X = ze ro s ( t f i n a l +1 ,1) ;
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19 Xa = ze ro s ( t f i n a l +1 ,1) ;

20 t = ze ro s ( t f i n a l +1 ,1) ;

21 Prob = ze ro s ( t f i n a l +1 ,1) ;

22 vss = ze ro s ( t f i n a l +1 ,1) ;

23 S = ze ro s ( t f i n a l +1 ,1) ;

24 Z = ze ro s ( t f i n a l +1 ,1) ;

25

26 %parameters

27 f max = f max ∗ 10ˆ−12;

28 gt = gt ∗10ˆ−9;

29 A = 2.382 ∗10ˆ7; %exp ( ( delta G + Kgs∗D.ˆ2 /(2∗N) ) /(Kb∗T) ) ;

30 de l t a = 4.444 ∗ 10ˆ−9;

31 d i f f X s s X a s s = −de l t a ∗ l og ( (1/P0 −1)/A) ;

32 S0 = (1 − Kgs∗( d i f f X s s X a s s − D∗P0) /(gamma ∗ f max ) ) /P0 ;

33

34 Prob (1 ) = P0 ;

35

36 %constant s f o r vo l t age equat ions

37 I0 = 10∗10ˆ−12;

38 wv = 2∗ pi ∗20 ;

39 Cm = 14∗10ˆ−12;

40 sigma = gt /(Cm∗wv) ;

41 Qv = 30 ;

42 v0 = −0.055 + I0 /(wv∗Cm∗(1 + sigma ∗0 . 5 ) ) ;

43 vm0 = −0.055;

44 vss (1 ) = v0 + I0 /(wv∗Cm∗(1 + sigma∗P0) ) ;

45

46 energy of temparound = 0 ;
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47 n o i s e c h a n n e l c l a t t e r = s q r t (2∗ energy of temparound /L)∗ randn (

t f i n a l , 1 ) ; % no i s e f o r the disp lacement func t i on

48 n o i s e a c t i v e m o t o r s = s q r t (2∗ energy of temparound ∗T a/L a )∗ randn (

t f i n a l , 1 ) ; %no i s e f o r a c t i v e motors

49

50 IC = [ 0 , 0 ] ;

51 X(1) = IC (1) ;

52 Xa(1) = IC (2) ;

53

54 num = 60000;

55

56 f o r i = 1 :num

57 % equat ions f o r p r o b a b i l i t y

58

59 S( i ) = S0∗(1 + alpha ∗( vss ( i ) /vm0 − 1) ) ;

60

61 %equat ions f o r s t a t e v a r i a b l e s ( i gno r i ng calc ium no i s e terms and

tau = 0)

62

63 X( i +1) = X( i ) + h∗(−Kgs∗(−de l t a ∗ l og ((1−Prob ( i ) ) /( Prob ( i )∗A) ) − D∗

Prob ( i ) ) − Ksp∗X( i ) ) /L + s q r t (h)∗ n o i s e c h a n n e l c l a t t e r ( i ) ;

64 Xa( i +1) = Xa( i )+ h∗(Kgs∗(−de l t a ∗ l og ((1−Prob ( i ) ) /( Prob ( i )∗A) ) − D∗

Prob ( i ) ) − gamma ∗ f max ∗ (1 − S( i )∗Prob ( i ) ) ) /L a + s q r t (h)∗

n o i s e a c t i v e m o t o r s ( i ) ;

65

66 k 1 = Z( i ) ;

67 j 1 = −wv∗(1/Qv + sigma∗Prob ( i ) )∗Z( i ) − wvˆ2∗(1 + sigma∗Prob ( i ) ) ∗(

vss ( i ) − v0 ) − I0 ∗wv/Cm;
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68 k 2 = Z( i ) + 0.5∗h∗ j 1 ;

69 j 2 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + 0.5∗h∗ j 1 ) − wvˆ2∗(1 +

sigma∗Prob ( i ) ) ∗( vss ( i ) + 0 .5∗h∗k 1 − v0 ) − I0 ∗wv/Cm;

70 k 3 = Z( i ) + 0.5∗h∗ j 2 ;

71 j 3 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + 0.5∗h∗ j 2 ) − wvˆ2∗(1 +

sigma∗Prob ( i ) ) ∗( vss ( i ) + 0 .5∗h∗k 2 − v0 ) − I0 ∗wv/Cm;

72 k 4 = Z( i ) + h∗ j 3 ;

73 j 4 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + h∗ j 3 ) − wvˆ2∗(1 + sigma∗

Prob ( i ) ) ∗( vss ( i ) + h∗k 3 − v0 ) − I0 ∗wv/Cm;

74

75 vss ( i +1) = vss ( i ) + (1/6) ∗( k 1+ 2∗ k 2 + 2∗ k 3 + k 4 )∗h ; % main

equat ion

76 Z( i +1) = Z( i ) + (1/6) ∗( j 1 +2∗ j 2 + 2∗ j 3 + j 4 )∗h ;

77 Prob ( i +1) = 1/(1 + A∗exp ( (Xa( i ) − X( i ) ) / de l t a ) ) ;

78 t ( i +1) = t ( i )+h ;

79

80 end

81

82 base l ine X = smooth (X( 2 :num) , 0 . 02 , ’ l o e s s ’ ) ;

83 f i n a l X = (X( 2 :num) − base l ine X ) ∗10ˆ9;

84 base l ine Xa = smooth (Xa ( 2 :num) , 0 . 02 , ’ l o e s s ’ ) ;

85 f i n a l X a = (Xa ( 2 :num) − base l ine Xa ) ∗10ˆ9;

86 b a s e l i n e v s s = smooth ( vss ( 2 :num) , 0 . 02 , ’ l o e s s ’ ) ;

87 f i n a l v s s = ( vss ( 2 :num) − b a s e l i n e v s s ) ∗10ˆ3;

88

89 [ psd X , f req X ] = pwelch ( f ina l X , [ ] , [ ] , l ength ( f i n a l X ) ∗4 ,1/h) ;

90

91 %p l o t t i n g psd and c a l c u l a t i n g natura l f r e q u e n c i e s
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92 [ ˜ , index ] = max( psd X ) ;

93 n a t u r a l f r e q = freq X ( index ) ;

94

95 l i m i t c y c l e = [X(num − f l o o r (1/( h∗ n a t u r a l f r e q )+4) :num−1) , Xa(num

− f l o o r (1/( h∗ n a t u r a l f r e q )+4) :num−1) , vss (num − f l o o r (1/( h∗

n a t u r a l f r e q )+4) :num−1) ] ;

96 l i m i t c y c l e f r e n e t = [ l i m i t c y c l e ( : , 1 : 2 ) ∗10ˆ9 , l i m i t c y c l e ( : , 3 )

∗1 0 ˆ 3 ] ;

97 T = ze ro s ( l ength ( l i m i t c y c l e f r e n e t ) −1 ,3) ;

98 N = ze ro s ( l ength ( l i m i t c y c l e f r e n e t ) −1 ,3) ;

99 B = ze ro s ( l ength ( l i m i t c y c l e f r e n e t ) −1 ,3) ;

100

101 dx = d i f f ( l i m i t c y c l e f r e n e t ( : , 1 ) ) ;

102 dy = d i f f ( l i m i t c y c l e f r e n e t ( : , 2 ) ) ;

103 dz = d i f f ( l i m i t c y c l e f r e n e t ( : , 3 ) ) ;

104 T( 1 : l ength ( l i m i t c y c l e f r e n e t ) −1 ,:) = [ dx , dy , dz ] ;

105 T( length ( l i m i t c y c l e f r e n e t ) , : ) = l i m i t c y c l e f r e n e t ( 1 , : ) −

l i m i t c y c l e f r e n e t ( end , : ) ;

106

107 f o r i = 1 : l ength ( l i m i t c y c l e f r e n e t )

108 T( i , : ) = T( i , : ) . / norm(T( i , : ) ) ;

109 end

110

111 N x = d i f f (T( : , 1 ) ) ;

112 N y = d i f f (T( : , 2 ) ) ;

113 N z = d i f f (T( : , 3 ) ) ;

114 N( 1 , : ) = [T(1 , 1 )−T( end , 1 ) , T(1 , 2 )−T( end , 2 ) ,T(1 , 3 )−T( end , 3 ) ] ;

115 N( 2 : l ength ( l i m i t c y c l e f r e n e t ) , : ) = [ N x , N y , N z ] ;
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116

117 f o r i = 1 : l ength ( l i m i t c y c l e f r e n e t )

118 N( i , : ) = N( i , : ) . / norm(N( i , : ) ) ;

119 end

120

121 B = c r o s s (T,N) ;

122 f o r i = 1 : l ength ( l i m i t c y c l e f r e n e t )

123 B( i , : ) = B( i , : ) . / norm(B( i , : ) ) ;

124 end

125

126 cnt = 0 ;

127 ping num = 0 ;

128

129 devi amp array = [ ] ;

130 phase dev array = [ ] ;

131 f f t S a r r a y = [ ] ;

132 ping = [ ] ;

133

134 f o r i= num : ( t f i n a l −1)

135

136 i f (mod( f l o o r ( ( i − num)∗ n a t u r a l f r e q ∗h) , 6) == 0 && ping num

==0)

137

138 [ ˜ , f o r c e i d ] = min ( (X( i ) − l i m i t c y c l e ( : , 1 ) ) . ˆ2 + (Xa( i )−

l i m i t c y c l e ( : , 2 ) ) . ˆ2 + ( vss ( i )− l i m i t c y c l e ( : , 3 ) ) . ˆ 2 ) ;

139 f o rce Xa = 0 ; f o r c e v s s = 0 ; fo rce X = 70∗10ˆ−7;

140 f o r c e p r o j = [ abs (N( f o r c e i d , 1 ) ) , abs (B( f o r c e i d , 1 ) ) , abs (

T( f o r c e i d , 1 ) ) ] ;
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141 f o r c e p r o j = f o r c e p r o j /norm( f o r c e p r o j ) ;

142 f o r ce N = force Xa ∗ f o r c e p r o j (1 ) ;

143 f o r c e B = force Xa ∗ f o r c e p r o j (2 ) ;

144 f o r ce T = force Xa ∗ f o r c e p r o j (3 ) ;

145

146 S( i ) = S0∗(1 + alpha ∗( vss ( i ) /vm0 − 1) ) ;

147

148 X( i +1) = X( i ) + h∗(−Kgs∗(−de l t a ∗ l og ((1−Prob ( i ) ) /( Prob ( i )∗A

) ) − D∗Prob ( i ) ) − Ksp∗X( i ) ) /L + force X ∗h ;

149 Xa( i +1) = Xa( i )+ h∗(Kgs∗(−de l t a ∗ l og ((1−Prob ( i ) ) /( Prob ( i )∗A

) ) − D∗Prob ( i ) ) − gamma ∗ f max ∗ (1 − S( i )∗Prob ( i ) ) ) /

L a + force Xa ∗h ;

150

151 k 1 = Z( i ) ;

152 j 1 = −wv∗(1/Qv + sigma∗Prob ( i ) )∗Z( i ) − wvˆ2∗(1 + sigma∗

Prob ( i ) ) ∗( vss ( i ) − v0 ) − I0 ∗wv/Cm + f o r c e v s s ∗h ;

153 k 2 = Z( i ) + 0.5∗h∗ j 1 ;

154 j 2 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + 0.5∗h∗ j 1 ) − wv

ˆ2∗(1 + sigma∗Prob ( i ) ) ∗( vss ( i ) + 0 .5∗h∗k 1 − v0 ) − I0 ∗

wv/Cm + f o r c e v s s ∗h ;

155 k 3 = Z( i ) + 0.5∗h∗ j 2 ;

156 j 3 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + 0.5∗h∗ j 2 ) − wv

ˆ2∗(1 + sigma∗Prob ( i ) ) ∗( vss ( i ) + 0 .5∗h∗k 2 − v0 ) − I0 ∗

wv/Cm + f o r c e v s s ∗h ;

157 k 4 = Z( i ) + h∗ j 3 ;

158 j 4 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + h∗ j 3 ) − wvˆ2∗(1

+ sigma∗Prob ( i ) ) ∗( vss ( i ) + h∗k 3 − v0 ) − I0 ∗wv/Cm +

f o r c e v s s ∗h ;
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159

160 vss ( i +1) = vss ( i ) + (1/6) ∗( k 1+ 2∗ k 2 + 2∗ k 3 + k 4 )∗h ;

% main equat ion

161 Z( i +1) = Z( i ) + (1/6) ∗( j 1 +2∗ j 2 + 2∗ j 3 + j 4 )∗h ;

162 Prob ( i +1) = 1/(1 + A∗exp ( (Xa( i ) − X( i ) ) / de l t a ) ) ;

163 t ( i +1) = t ( i )+h ;

164

165 ping num = i ;

166 ping = [ ping , ping num ] ;

167 i = i +1;

168 cnt = cnt +1;

169

170 end

171

172 S( i ) = S0∗(1 + alpha ∗( vss ( i ) /vm0 − 1) ) ;

173

174 X( i +1) = X( i ) + h∗(−Kgs∗(−de l t a ∗ l og ((1−Prob ( i ) ) /( Prob ( i )∗A) ) −

D∗Prob ( i ) ) − Ksp∗X( i ) ) /L + s q r t (h)∗ n o i s e c h a n n e l c l a t t e r ( i

) ;

175 Xa( i +1) = Xa( i )+ h∗(Kgs∗(−de l t a ∗ l og ((1−Prob ( i ) ) /( Prob ( i )∗A) ) −

D∗Prob ( i ) ) − gamma ∗ f max ∗ (1 − S( i )∗Prob ( i ) ) ) /L a +

s q r t (h)∗ n o i s e a c t i v e m o t o r s ( i ) ;

176

177 k 1 = Z( i ) ;

178 j 1 = −wv∗(1/Qv + sigma∗Prob ( i ) )∗Z( i ) − wvˆ2∗(1 + sigma∗Prob ( i

) ) ∗( vss ( i ) − v0 ) − I0 ∗wv/Cm;

179 k 2 = Z( i ) + 0.5∗h∗ j 1 ;

180 j 2 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + 0.5∗h∗ j 1 ) − wvˆ2∗(1
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+ sigma∗Prob ( i ) ) ∗( vss ( i ) + 0 .5∗h∗k 1 − v0 ) − I0 ∗wv/Cm;

181 k 3 = Z( i ) + 0.5∗h∗ j 2 ;

182 j 3 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + 0.5∗h∗ j 2 ) − wvˆ2∗(1

+ sigma∗Prob ( i ) ) ∗( vss ( i ) + 0 .5∗h∗k 2 − v0 ) − I0 ∗wv/Cm;

183 k 4 = Z( i ) + h∗ j 3 ;

184 j 4 = −wv∗(1/Qv + sigma∗Prob ( i ) ) ∗(Z( i ) + h∗ j 3 ) − wvˆ2∗(1 +

sigma∗Prob ( i ) ) ∗( vss ( i ) + h∗k 3 − v0 ) − I0 ∗wv/Cm;

185

186 vss ( i +1) = vss ( i ) + (1/6) ∗( k 1+ 2∗ k 2 + 2∗ k 3 + k 4 )∗h +

f o r c e v s s ∗h ; % main equat ion

187 Z( i +1) = Z( i ) + (1/6) ∗( j 1 +2∗ j 2 + 2∗ j 3 + j 4 )∗h ;

188 Prob ( i +1) = 1/(1 + A∗exp ( (Xa( i ) − X( i ) ) / de l t a ) ) ;

189 t ( i +1) = t ( i )+h ;

190

191 i f ( i == ping num + 8000 && ping num˜=0)

192 n e a r e s t i d = ze ro s (8000 ,1) ;

193 devi N = ze ro s ( l ength ( n e a r e s t i d ) ,1 ) ;

194 f o r j = 1 : l ength ( n e a r e s t i d )

195 [ ˜ , n e a r e s t i d ( j ) ] = min ( (X( ping num+j ) − l i m i t c y c l e

( : , 1 ) ) .ˆ2∗10ˆ18 + (Xa( ping num+j )− l i m i t c y c l e ( : , 2 ) )

.ˆ2∗10ˆ18 + ( vss ( ping num+j )− l i m i t c y c l e ( : , 3 ) )

.ˆ2∗10ˆ6) ;

196 i f n e a r e s t i d ( j ) ˜= length ( l i m i t c y c l e )

197 devi N ( j ) = dot ( [X( ping num+j ) ∗10ˆ9 − l i m i t c y c l e (

n e a r e s t i d ( j ) , 1 ) ∗10ˆ9 , . . .

198 Xa( ping num+j ) ∗10ˆ9 − l i m i t c y c l e ( n e a r e s t i d ( j

) , 2 ) ∗10ˆ9 , . . .

199 vss ( ping num+j ) ∗10ˆ3 − l i m i t c y c l e ( n e a r e s t i d (
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j ) , 3 ) ∗10ˆ3 ] , N( n e a r e s t i d ( j ) , : ) ) ;

200 e l s e

201 devi N ( j ) = dot ( [X( ping num+j ) ∗10ˆ9 − l i m i t c y c l e (

n e a r e s t i d ( j ) , 1 ) ∗10ˆ9 , . . .

202 Xa( ping num+j ) ∗10ˆ9 − l i m i t c y c l e ( n e a r e s t i d ( j

) , 2 ) ∗10ˆ9 , . . .

203 vss ( ping num+j ) ∗10ˆ3 − l i m i t c y c l e ( n e a r e s t i d (

j ) , 3 ) ∗10ˆ3 ] , N( 1 , : ) ) ;

204 end

205 end

206 devi amp array = [ devi amp array , devi N ] ;

207 base N = smooth ( devi N , 0 . 2 , ’ l o e s s ’ ) ;

208 f i n a l N = devi N − base N ;

209 f f t N = f f t ( f ina l N ,4∗ l ength ( f i n a l N ) ) ;

210 f = (2∗ pi /h) ∗ ( 1 : ( 4∗ l ength ( devi N ) ) ) /(4∗ l ength ( devi N ) ) ;

211 f i g u r e ; l o g l o g ( f , abs ( imag ( f f t N ) ) . / f ’ ) ;

212

213 devi B = ze ro s ( l ength ( n e a r e s t i d ) ,1 ) ;

214 f o r j = 1 : l ength ( n e a r e s t i d )

215 [ ˜ , n e a r e s t i d ( j ) ] = min ( (X( ping num+j ) − l i m i t c y c l e

( : , 1 ) ) .ˆ2∗10ˆ18 + (Xa( ping num+j )− l i m i t c y c l e ( : , 2 ) )

.ˆ2∗10ˆ18 + ( vss ( ping num+j )− l i m i t c y c l e ( : , 3 ) )

.ˆ2∗10ˆ6) ;

216 i f n e a r e s t i d ( j ) ˜= length ( l i m i t c y c l e )

217 devi B ( j ) = dot ( [X( ping num+j ) ∗10ˆ9 − l i m i t c y c l e (

n e a r e s t i d ( j ) , 1 ) ∗10ˆ9 , . . .

218 Xa( ping num+j ) ∗10ˆ9 − l i m i t c y c l e ( n e a r e s t i d ( j

) , 2 ) ∗10ˆ9 , . . .
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219 vss ( ping num+j ) ∗10ˆ3 − l i m i t c y c l e ( n e a r e s t i d (

j ) , 3 ) ∗10ˆ3 ] , B( n e a r e s t i d ( j ) , : ) ) ;

220 e l s e

221 devi B ( j ) = dot ( [X( ping num+j ) ∗10ˆ9 − l i m i t c y c l e (

n e a r e s t i d ( j ) , 1 ) ∗10ˆ9 , . . .

222 Xa( ping num+j ) ∗10ˆ9 − l i m i t c y c l e ( n e a r e s t i d ( j

) , 2 ) ∗10ˆ9 , . . .

223 vss ( ping num+j ) ∗10ˆ3 − l i m i t c y c l e ( n e a r e s t i d (

j ) , 3 ) ∗10ˆ3 ] , B( 1 , : ) ) ;

224 end

225 end

226 devi amp array = [ devi amp array , devi B ] ;

227 base B = smooth ( devi B , 0 . 2 , ’ l o e s s ’ ) ;

228 f i n a l B = devi B − base B ;

229 f f t B = f f t ( f i na l B ,4∗ l ength ( f i n a l B ) ) ;

230 f i g u r e ; l o g l o g ( f , abs ( imag ( f f t B ) ) . / f ’ ) ;

231

232 devi T = ze ro s ( l ength ( n e a r e s t i d ) ,1 ) ;

233 f o r j = 1 : l ength ( n e a r e s t i d )

234 [ ˜ , n e a r e s t i d ( j ) ] = min ( (X( ping num+j ) − l i m i t c y c l e

( : , 1 ) ) .ˆ2∗10ˆ18 + (Xa( ping num+j )− l i m i t c y c l e ( : , 2 ) )

.ˆ2∗10ˆ18 + ( vss ( ping num+j )− l i m i t c y c l e ( : , 3 ) )

.ˆ2∗10ˆ6) ;

235 i f n e a r e s t i d ( j ) ˜= length ( l i m i t c y c l e )

236 devi T ( j ) = dot ( [X( ping num+j ) ∗10ˆ9 − X( ping num+j

−1)∗10ˆ9 , . . .

237 Xa( ping num+j ) ∗10ˆ9 − Xa( ping num+j−1)∗10ˆ9 ,

. . .
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238 vss ( ping num+j ) ∗10ˆ3 − vss ( ping num+j−1)

∗10ˆ3 ] , T( n e a r e s t i d ( j ) , : ) ) ;

239 e l s e

240 devi T ( j ) = dot ( [X( ping num+j ) ∗10ˆ9 − X( ping num+j

−1)∗10ˆ9 , . . .

241 Xa( ping num+j ) ∗10ˆ9 − Xa( ping num+j−1)∗10ˆ9 ,

. . .

242 vss ( ping num+j ) ∗10ˆ3 − vss ( ping num+j−1)

∗10ˆ3 ] , T( 1 , : ) ) ;

243 end

244 end

245

246 S = ze ro s ( l ength ( devi T ) ,1 ) ;

247 f o r k = 1 : l ength (S) − 1

248 S( k+1) = S( k ) + devi T ( k ) ;

249 end

250

251 X i n p u t n o i s e l e s s = ze ro s ( l ength ( devi T ) ,3 ) ;

252 f o r k = 1 : c e i l ( l ength ( devi T ) / l ength ( l i m i t c y c l e ) )

253 X i n p u t n o i s e l e s s ( ( ( k−1)∗ l ength ( l i m i t c y c l e ) + 1) : ( k∗

l ength ( l i m i t c y c l e ) ) , : ) = l i m i t c y c l e ;

254 end

255 X i n p u t n o i s e l e s s = X i n p u t n o i s e l e s s ( 1 : l ength ( devi T ) , : ) ;

256

257 S n o i s e l e s s = ze ro s ( l ength ( X i n p u t n o i s e l e s s ) , 1 ) ;

258 f o r k = 1 : l ength ( S n o i s e l e s s )−1

259 S n o i s e l e s s ( k+1) = S n o i s e l e s s ( k ) + 10ˆ(18) ∗norm(

X i n p u t n o i s e l e s s ( k+1 ,1) − X i n p u t n o i s e l e s s (k , 1 ) )
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. ˆ2 + . . .

260 10ˆ(18) ∗norm( X i n p u t n o i s e l e s s ( k+1 ,2) −

X i n p u t n o i s e l e s s (k , 2 ) ) . ˆ2 + . . .

261 10ˆ(6) ∗norm( X i n p u t n o i s e l e s s ( k+1 ,3) −

X i n p u t n o i s e l e s s (k , 3 ) ) . ˆ 2 ;

262 end

263

264 circum S = S − S n o i s e l e s s ;

265 b a s e c i r S = smooth ( circum S , 0 . 2 , ’ l o e s s ’ ) ;

266 f i n a l c i r S = circum S − b a s e c i r S ;

267 f f t S = f f t ( f i n a l c i r S ,4∗ l ength ( f i n a l c i r S ) ) ;

268 f i g u r e ; l o g l o g ( f , abs ( imag ( f f t S ) ) .∗ f ’ ) ;

269 f f t S a r r a y = [ f f t S a r r a y , f f t S ] ;

270

271 ping num = 0 ;

272 end

273 end

A.8 Script to plot final figures for psd plots with errorbars

1 [ ˜ , i ndx i ] = min ( abs ( f reqdv − 2) ) ;

2 [ ˜ , indxend ] = min ( abs ( f reqdv −10ˆ3) ) ;

3 f r e q b i n = [ 2 : 1 : 9 , 1 0 : 2 5 : 1 0 ˆ 3 ] ;

4

5 freqN = freqdv ( indx i : indxend ) ;

6 psdN = p s d f i l t d v ( indx i : indxend ) /( noise X amp+noise Y amp ) ;

7 mean psdN = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

8 min psdN = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

9 max psdN = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;
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10 std psdN = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

11

12 f o r i = 1 : l ength ( f r e q b i n )−1

13 ind = f i n d ( freqN > f r e q b i n ( i ) & freqN <= f r e q b i n ( i +1) ) ;

14 mean psdN ( i ) = mean(psdN(min ( ind ) : max( ind ) ) ) ;

15 min psdN ( i ) = min (psdN( ind ) ) ;

16 max psdN ( i ) = max(psdN( ind ) ) ;

17 std psdN ( i ) = std (psdN(min ( ind ) : max( ind ) ) ) ;

18 end

19

20 freqB = f r e q c o r r ( indx i : indxend ) ;

21 psdB = abs ( imag ( psd co r r ( indx i : indxend ) ) ) ;

22 mean psdB = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

23 min psdB = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

24 max psdB = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

25 std psdB = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

26

27 f o r i = 1 : l ength ( f r e q b i n )−1

28 ind = f i n d ( freqB > f r e q b i n ( i ) & freqB <= f r e q b i n ( i +1) ) ;

29 mean psdB ( i ) = mean( psdB (min ( ind ) : max( ind ) ) ) ;

30 min psdB ( i ) = min ( psdB ( ind ) ) ;

31 max psdB ( i ) = max( psdB ( ind ) ) ;

32 std psdB ( i ) = std ( psdB (min ( ind ) : max( ind ) ) ) ;

33 end

34 %}

35 f r e q p h i = freqph ( indx i : indxend ) ;

36 psdphi = p s d f i l t p h ( indx i : indxend ) .∗ f reqph ( indx i : indxend ) . ˆ2/ (

noise X amp+noise Y amp ) ;
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37 mean psdphi = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

38 min psdphi = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

39 max psdphi = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

40 s td psdph i = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

41

42 f o r i = 1 : l ength ( f r e q b i n )−1

43 ind = f i n d ( f r e q p h i > f r e q b i n ( i ) & f r e q p h i <= f r e q b i n ( i +1) ) ;

44 mean psdphi ( i ) = mean( psdphi (min ( ind ) : max( ind ) ) ) ;

45 min psdphi ( i ) = min ( psdphi ( ind ) ) ;

46 max psdphi ( i ) = max( psdphi ( ind ) ) ;

47 s td psdph i ( i ) = std ( psdphi (min ( ind ) : max( ind ) ) ) ;

48 end

49

50 [ ˜ , i ndx i ] = min ( abs ( f r e q c i r S − 2) ) ;

51 [ ˜ , indxend ] = min ( abs ( f r e q c i r S −2000) ) ;

52 f r e q b i n = [ 1 0 : 1 : 9 9 , 1 0 0 : 1 0 : 2 0 0 0 ] ;

53

54 freqT = f r e q c i r S ( indx i : indxend ) ;

55 psdT = smooth ( p s d f i l t c i r S ( indx i : indxend ) .∗ f r e q c i r S ( indx i :

indxend ) . ˆ2 , 100 ) ;

56 mean psdT = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

57 min psdT = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

58 max psdT = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

59 std psdT = ze ro s ( l ength ( f r e q b i n ) ,1 ) ;

60

61 f o r i = 1 : l ength ( f r e q b i n )−1

62 ind = f i n d ( freqT > f r e q b i n ( i ) & freqT <= f r e q b i n ( i +1) ) ;

63 mean psdT ( i ) = mean( psdT (min ( ind ) : max( ind ) ) ) ;
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64 min psdT ( i ) = min ( psdT ( ind ) ) ;

65 max psdT ( i ) = max( psdT ( ind ) ) ;

66 std psdT ( i ) = std ( psdT (min ( ind ) : max( ind ) ) ) ;

67 end

A.9 Script for the corner cutting project of chapter 3

1 % This code i s not we l l commented , so the reader i s advi sed to

f o l l o w

2 % through the whole code to address par t s o f i n t e r e s t .

3 % The broad idea o f the code i s to f i g u r e out the l i m i t c y c l e s o f

the

4 % under ly ing o s c i l l a t o r and study how they are d i s t o r t e d in the

presence o f

5 % no i s e . The corner cu t t i ng t r a j e c t o r i e s are counted to be those

that

6 % dev ia t e from the n o i s e l e s s path with t h e i r p o t e n t i a l e n e r g i e s

g r e a t e r

7 % than 3kT from the minima .

8

9 %%

10 [ psd X , f req X ] = pwelch (X(10ˆ5 :5000000) , [ ] , [ ] , l ength (X

(10ˆ5 :5000000) ) ∗4 , 1/h) ;

11 [ max psd , index ] = max( psd X ) ;

12 n a t u r a l f r e q = freq X ( index ) ;

13 samp period = 1/( n a t u r a l f r e q ∗h) ;

14

15 %%

16 phase = atan2 (Y,X) ;
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17 phase space = [X,Y ] ;

18

19 Pot fn = @(X,Y) −mu∗(X.ˆ2 + Y. ˆ 2 ) ∗0 .5 + b∗0 .25∗ (X.ˆ2 + Y. ˆ 2 ) . ˆ2

. . .

20 +alpha .∗ cos (4∗ atan2 (Y,X) ) .∗ exp(−( s q r t (X.ˆ2+Y. ˆ 2 ) − s q r t (mu/b)

+0.000001) . ˆ 2 ) ;

21 Pot = −mu∗(X.ˆ2 + Y. ˆ 2 ) ∗0 .5 + b∗0 .25∗ (X.ˆ2 + Y. ˆ 2 ) . ˆ2 . . .

22 +alpha .∗ cos (4∗ atan2 (Y,X) ) .∗ exp(−( s q r t (X.ˆ2+Y. ˆ 2 ) − s q r t (mu/b)

+0.000001) . ˆ 2 ) ;

23

24 div = (−pi : 2∗ pi /400 : p i ) ’ ;

25 d iv Pot cnt = ze ro s ( s i z e ( div ) ) ;

26 div R = ze ro s ( l ength ( div ) ,2 ) ;

27 l i m i t c y c l e i n = ze ro s ( l ength ( div ) ,2 ) ;

28 l i m i t c y c l e o u t = ze ro s ( l ength ( div ) ,2 ) ;

29

30 f o r i = 1 : l ength ( div )−1

31 ind = ( phase >= div ( i ) & phase < div ( i +1) ) ;

32 X ph = X( ind ) ;

33 Y ph = Y( ind ) ;

34 R ph = s q r t ( X ph .ˆ2 + Y ph . ˆ 2 ) ;

35 [N, edges ] = h i s t c o u n t s (R ph , 5 0 ) ;

36 [ ˜ , id ] = max(N) ;

37 i f s q r t (mu/b) − 0 .2 < [ edges ( id ) , edges ( id +1) ] & [ edges ( id ) ,

edges ( id +1)]< s q r t (mu/b) + 0 .2

38 R = ( edges ( id ) + edges ( id +1) ) /2 ;

39 l i m i t c y c l e i n ( i , : ) = [R∗ cos ( div ( i ) ) ,R∗ s i n ( div ( i ) ) ] ;

40 l i m i t c y c l e o u t ( i , : ) = [R∗ cos ( div ( i ) ) ,R∗ s i n ( div ( i ) ) ] ;
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41 div R ( i , : ) = [R,R ] ;

42 end

43 i f s q r t (mu/b) − 0 .2 > [ edges ( id ) , edges ( id +1) ]

44 [ ˜ , id R ] = min ( abs ( edges − s q r t (mu/b) ) ) ;

45 [ ˜ , i d o th ] = max(N( id R : l ength (N) ) ) ;

46 i d o th = id o th + id R −1;

47 R in = ( edges ( id ) + edges ( id +1) ) /2 ;

48 i f id R == id o th

49 R out = R in ;

50 e l s e

51 R out = ( edges ( i d o th ) + edges ( i d o th +1) ) /2 ;

52 end

53 l i m i t c y c l e i n ( i , : ) = [ R in∗ cos ( div ( i ) ) , R in∗ s i n ( div ( i ) ) ] ;

54 l i m i t c y c l e o u t ( i , : ) = [ R out∗ cos ( div ( i ) ) , R out∗ s i n ( div ( i )

) ] ;

55 div R ( i , : ) = [ R in , R out ] ;

56 end

57 i f s q r t (mu/b) + 0 .2 < [ edges ( id ) , edges ( id +1) ]

58 [ ˜ , id R ] = min ( abs ( edges − s q r t (mu/b) ) ) ;

59 [ ˜ , i d o th ] = max(N( 1 : id R ) ) ;

60 R out = ( edges ( id ) + edges ( id +1) ) /2 ;

61 i f id R == id o th

62 R in = R out ;

63 e l s e

64 R in = ( edges ( i d o th ) + edges ( i d o th +1) ) /2 ;

65 end

66 l i m i t c y c l e i n ( i , : ) = [ R in∗ cos ( div ( i ) ) , R in∗ s i n ( div ( i ) ) ] ;

67 l i m i t c y c l e o u t ( i , : ) = [ R out∗ cos ( div ( i ) ) , R out∗ s i n ( div ( i )

187



) ] ;

68 div R ( i , : ) = [ R in , R out ] ;

69 end

70 d iv Pot cnt ( i ) = sum( Pot fn (X ph , Y ph )< (min ( Pot ) + 3∗

noise X amp ) ) ;

71 %f i g u r e ; p l o t ( edges ( 1 : end−1) ,N) ;

72 end

73

74 f o r i = 1 : l ength ( div R )−1

75 i f ( div R ( i , : ) == [ 0 , 0 ] )

76 low = f i n d ( div R ( 1 : i −1)˜=0, 1 , ’ l a s t ’ ) ;

77 high = f i n d ( div R ( i +1:end ) ˜=0, 1) ;

78 div R ( i , : ) = ( div R ( low , : ) ∗high + div R ( i+high , : ) ∗( i−low ) )

/( i−low+high ) ;

79 l i m i t c y c l e i n ( i , : ) = [ div R ( i , 1 ) ∗ cos ( div ( i ) ) , div R ( i , 1 ) ∗

s i n ( div ( i ) ) ] ;

80 l i m i t c y c l e o u t ( i , : ) = [ div R ( i , 2 ) ∗ cos ( div ( i ) ) , div R ( i , 2 ) ∗

s i n ( div ( i ) ) ] ;

81 end

82 end

83 %%

84

85 Pot min id = f i n d ( d iv Pot cnt ) ;

86

87 f i g u r e ;

88 p lo t (X,Y) ;

89 hold on ;

90 p lo t ( l i m i t c y c l e i n ( 1 : end−1 ,1) , l i m i t c y c l e i n ( 1 : end−1 ,2) , ’ Color ’ ,
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’ b lack ’ , ’ Linewidth ’ , 1 ) ;

91 p lo t ( l i m i t c y c l e o u t ( 1 : end−1 ,1) , l i m i t c y c l e o u t ( 1 : end−1 ,2) , ’ Color

’ , ’ b lack ’ , ’ Linewidth ’ , 1 ) ;

92 %%

93 o u t l i e r s = [ ] ;

94 f o r i = 1 : l ength ( Pot min id )

95 ind Pot min = ( phase > div ( Pot min id ( i ) ) & phase < div (

Pot min id ( i )+1) ) ;

96 X Pot min = X( ind Pot min ) ;

97 Y Pot min = Y( ind Pot min ) ;

98 R Pot min = s q r t ( X Pot min .ˆ2 + Y Pot min . ˆ 2 ) ;

99 Pot min = Pot fn ( X Pot min , Y Pot min ) ;

100 o u t l i e r i d = f i n d ( R Pot min > ( s q r t (mu/b) + 0 . 5 ) | R Pot min <

( s q r t (mu/b) − 0 . 5 ) ) ;

101 o u t l i e r s = [ o u t l i e r s ; [ X Pot min ( o u t l i e r i d ) , Y Pot min (

o u t l i e r i d ) ] ] ;

102 end

103 %%

104 o u t l i e r s r e m = ze ro s ( s i z e ( o u t l i e r s ) ) ;

105 i = 1 ;

106 whi le ˜ isempty ( o u t l i e r s )

107 o u t l i e r i d = f i n d ( ( phase space ( : , 1 ) == o u t l i e r s ( 1 , 1 ) )& (

phase space ( : , 2 ) == o u t l i e r s ( 1 , 2 ) ) ) ;

108 ps chop = phase space (max( o u t l i e r i d − f l o o r ( samp period /8) ,1 )

: min ( o u t l i e r i d + c e i l ( samp period /8) , l ength ( phase space

) ) , : ) ;

109 [Com, id out , id chop ] = i n t e r s e c t ( o u t l i e r s , ps chop , ’ rows ’ ) ;

110 o u t l i e r s r e m ( i , : ) = o u t l i e r s ( 1 , : ) ;
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111 o u t l i e r s ( id out , : ) = [ ] ;

112 i = i +1;

113 end

114 o u t l i e r s r e m = o u t l i e r s r e m ( 1 : i −1 , : ) ;

115

116 %%

117 n r s t R e x i t = ze ro s ( s i z e ( o u t l i e r s r e m ) ) ;

118 nr s t R ent ry = ze ro s ( s i z e ( o u t l i e r s r e m ) ) ;

119

120 cnt = 0 ;

121 f o r i = [ 1 : l ength ( o u t l i e r s r e m ) ]

122 o u t l i e r r e m i d = i n t e r s e c t ( f i n d ( phase space ( : , 1 ) ==

o u t l i e r s r e m ( i , 1 ) ) , f i n d ( phase space ( : , 2 ) == o u t l i e r s r e m ( i

, 2 ) ) ) ;

123 ps chop = phase space (max( o u t l i e r r e m i d − f l o o r ( 1 . 5∗

samp period /8) ,1 ) : min ( o u t l i e r r e m i d + c e i l ( 1 . 5∗

samp period /8) , l ength ( phase space ) ) , : ) ;

124 %plo t ( ps chop ( : , 1 ) , ps chop ( : , 2 ) , ’ black ’ ) ;

125 R chop = s q r t ( ps chop ( : , 1 ) . ˆ2 + ps chop ( : , 2 ) . ˆ 2 ) ;

126 R chop ( : , 2 : 4 ) = ze ro s ( l ength ( R chop ) ,3 ) ;

127 f o r r = 1 : l ength ( R chop )

128 phase chop = atan2 ( ps chop ( r , 2 ) , ps chop ( r , 1 ) ) ;

129 ph b in id = f i n d ( phase chop − div > 0 , 1 , ’ l a s t ’ ) ;

130 [ min val , min id ] = min ( abs ( div R ( ph bin id , : ) − R chop ( r

, 1 ) ) ) ;

131 R chop ( r , 2 ) = min val ;

132 R chop ( r , 3 ) = min id ;

133 R chop ( r , 4 ) = ph b in id ;
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134 end

135

136 i e x = f i n d ( R chop ( 1 : c e i l ( l ength ( R chop ) /2) ,2 ) <0.1 ,1 , ’ l a s t ’ ) ;

137 i e n t = f i n d ( R chop ( c e i l ( l ength ( R chop ) /2) : end , 2 ) <0.1 ,1) ;

138 i f (˜ isempty ( i e x ) && ˜ isempty ( i e n t ) )

139 n r s t R e x i t ( i , 3 ) = i e x ;

140 nr s t R ent ry ( i , 3 ) = c e i l ( l ength ( R chop ) /2)+i e n t −1;

141 % plo t ( ps chop ( n r s t R e x i t ( i , 3 ) : n r s t R ent ry ( i , 3 ) , 1 ) ,

ps chop ( n r s t R e x i t ( i , 3 ) : n r s t R ent ry ( i , 3 ) , 2 ) , ’ black ’ ) ;

142 n r s t R e x i t ( i , 1 ) = R chop ( i ex , 3 ) ;

143 n r s t R e x i t ( i , 2 ) = R chop ( i ex , 4 ) ;

144 nr s t R ent ry ( i , 1 ) = R chop ( c e i l ( l ength ( R chop ) /2)+i en t

−1 ,3) ;

145 nr s t R ent ry ( i , 2 ) = R chop ( c e i l ( l ength ( R chop ) /2)+i en t

−1 ,4) ;

146 cnt = cnt +1;

147 end

148 end

149

150 nr s t R ent ry ( ( n r s t R e x i t ( : , 1 ) == 2) ,1 ) = 2 ;

151

152 S in = ze ro s ( l ength ( div ) −1 ,3) ;

153 S out = ze ro s ( l ength ( div ) −1 ,3) ;

154 f o r i = 2 : l ength ( div )−1

155 S in ( i , 1 ) = S in ( i −1 ,1) + norm( l i m i t c y c l e i n ( i , : ) −

l i m i t c y c l e i n ( i −1 , : ) ) ;

156 S out ( i , 1 ) = S out ( i −1 ,1) + norm( l i m i t c y c l e o u t ( i , : ) −

l i m i t c y c l e o u t ( i −1 , : ) ) ;
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157 end

158

159 f o r i = 1 : l ength ( div )

160 S in ( i , 2 ) = sum( n r s t R e x i t ( : , 2 ) == i & n r s t R e x i t ( : , 1 ) == 1)

;

161 S in ( i , 3 ) = sum( nr s t R ent ry ( : , 2 ) == i & nrs t R ent ry ( : , 1 ) ==

1) ;

162 S out ( i , 2 ) = sum( n r s t R e x i t ( : , 2 ) == i & n r s t R e x i t ( : , 1 ) ==

2) ;

163 S out ( i , 3 ) = sum( nr s t R ent ry ( : , 2 ) == i & nrs t R ent ry ( : , 1 ) ==

2) ;

164 end

165 %%

166 f i g u r e ;

167 p lo t ( l i m i t c y c l e i n ( 1 : end−1 ,1) , l i m i t c y c l e i n ( 1 : end−1 ,2) , ’ Color ’

, [ 212/255 ,208/255 ,200/255 ] , ’ Linewidth ’ , 1 ) ;

168 hold on ;

169 p lo t ( l i m i t c y c l e o u t ( 1 : end−1 ,1) , l i m i t c y c l e o u t ( 1 : end−1 ,2) , ’ Color

’ , [ 212/255 ,208/255 ,200/255 ] , ’ Linewidth ’ , 1 ) ;

170

171 prob array = l i n s p a c e (min ( [ min ( S in ( : , 2 : 3 ) ) , min ( S out ( : , 2 : 3 ) ) ] ) ,

max ( [ max( S in ( : , 2 : 3 ) ) ,max( S out ( : , 2 : 3 ) ) ] ) ,41) ;

172 hold on ;

173 f o r j =1: l ength ( div )−1

174 i f (0 < S in ( j , 2 ) ) && ( S in ( j , 2 ) <= prob array (10) ) | | (0 <

S in ( j , 3 ) ) && ( S in ( j , 3 ) <= prob array (10) )

175 p lo t ( l i m i t c y c l e i n ( j : j +1 ,1) , l i m i t c y c l e i n ( j : j +1 ,2) , ’ b lue

’ , ’ Linewidth ’ , 1 ) ;
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176 end

177 i f ( prob array (10) < S in ( j , 2 ) ) && ( S in ( j , 2 ) <= prob array

(20) ) | | ( prob array (10) < S in ( j , 3 ) ) && ( S in ( j , 3 ) <=

prob array (20) )

178 p lo t ( l i m i t c y c l e i n ( j : j +1 ,1) , l i m i t c y c l e i n ( j : j +1 ,2) , ’ cyan

’ , ’ Linewidth ’ , 1 ) ;

179 end

180 i f ( prob array (20) < S in ( j , 2 ) ) && ( S in ( j , 2 ) <= prob array

(30) ) | | ( prob array (20) < S in ( j , 3 ) ) && ( S in ( j , 3 ) <=

prob array (30) )

181 p lo t ( l i m i t c y c l e i n ( j : j +1 ,1) , l i m i t c y c l e i n ( j : j +1 ,2) , ’

Color ’ , [ 222/255 ,125/255 ,0 ] , ’ Linewidth ’ , 1 ) ;

182 end

183 i f ( prob array (30) < S in ( j , 2 ) ) && ( S in ( j , 2 ) <= prob array (

end ) ) | | ( prob array (30) < S in ( j , 3 ) ) && ( S in ( j , 3 ) <=

prob array ( end ) )

184 p lo t ( l i m i t c y c l e i n ( j : j +1 ,1) , l i m i t c y c l e i n ( j : j +1 ,2) , ’

Color ’ , [ 1 , 0 , 0 ] , ’ Linewidth ’ , 1 ) ;

185 end

186

187 i f (0 < S out ( j , 2 ) ) && ( S out ( j , 2 ) <= prob array (10) ) | | (0 <

S out ( j , 3 ) ) && ( S out ( j , 3 ) <= prob array (10) )

188 p lo t ( l i m i t c y c l e o u t ( j : j +1 ,1) , l i m i t c y c l e o u t ( j : j +1 ,2) , ’

b lue ’ , ’ Linewidth ’ , 1 ) ;

189 end

190 i f ( prob array (10) < S out ( j , 2 ) ) && ( S out ( j , 2 ) <= prob array

(20) ) | | ( prob array (10) < S out ( j , 3 ) ) && ( S out ( j , 3 ) <=

prob array (20) )
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191 p lo t ( l i m i t c y c l e o u t ( j : j +1 ,1) , l i m i t c y c l e o u t ( j : j +1 ,2) , ’

cyan ’ , ’ Linewidth ’ , 1 ) ;

192 end

193 i f ( prob array (20) < S out ( j , 2 ) ) && ( S out ( j , 2 ) <= prob array

(30) ) | | ( prob array (20) < S out ( j , 3 ) ) && ( S out ( j , 3 ) <=

prob array (30) )

194 p lo t ( l i m i t c y c l e o u t ( j : j +1 ,1) , l i m i t c y c l e o u t ( j : j +1 ,2) , ’

Color ’ , [ 222/255 ,125/255 ,0 ] , ’ Linewidth ’ , 1 ) ;

195 end

196 i f ( prob array (30) < S out ( j , 2 ) ) && ( S out ( j , 2 ) <= prob array (

end ) ) | | ( prob array (30) < S out ( j , 3 ) ) && ( S out ( j , 3 ) <=

prob array ( end ) )

197 p lo t ( l i m i t c y c l e o u t ( j : j +1 ,1) , l i m i t c y c l e o u t ( j : j +1 ,2) , ’

Color ’ , [ 1 , 0 , 0 ] , ’ Linewidth ’ , 1 ) ;

198 end

199

200 end

201

202 f i g u r e ;

203 p lo t ( S in ( 1 : end−1 ,1) , S in ( 1 : end−1 ,2) )

204 hold on ;

205 p lo t ( S in ( 1 : end−1 ,1) , S in ( 1 : end−1 ,3) )

206

207 f i g u r e ;

208 p lo t ( S out ( : , 1 ) , S out ( : , 2 ) )

209 hold on ;

210 p lo t ( S out ( : , 1 ) , S out ( : , 3 ) )

211 %}
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212 R ex ent = ze ro s ( l ength ( div ) , l ength ( div ) ) ;

213

214 f o r i = 1 : l ength ( div )

215 f o r j = 1 : l ength ( div )

216 R ex ent ( i , j ) = length ( i n t e r s e c t ( f i n d ( ( n r s t R e x i t ( : , 2 ) ==

i ) & ( n r s t R e x i t ( : , 1 ) == 1) ) , . . .

217 f i n d ( ( n r s t R ent ry ( : , 2 ) == j ) & ( nr s t R ent ry ( : , 1 ) ==

1) ) ) ) ;

218 end

219 end

220

221 mat cut = R ex ent ( 1 : 1 0 0 , 1 : 1 0 0 ) ;

222 [ ˜ , max idx ] = max( mat cut ( : ) ) ;

223 [ max id 100 (2 ) , max id 100 (1 ) ] = ind2sub ( s i z e ( mat cut ) , max idx ) ;

224 mat cut = R ex ent (101 : 200 , 101 : 200 ) ;

225 [ ˜ , max idx ] = max( mat cut ( : ) ) ;

226 [ max id 200 (2 ) , max id 200 (1 ) ] = ind2sub ( s i z e ( mat cut ) , max idx ) ;

227 mat cut = R ex ent (201 : 300 , 201 : 300 ) ;

228 [ ˜ , max idx ] = max( mat cut ( : ) ) ;

229 [ max id 300 (2 ) , max id 300 (1 ) ] = ind2sub ( s i z e ( mat cut ) , max idx ) ;

230 mat cut = R ex ent (301 : 400 , 301 : 400 ) ;

231 [ ˜ , max idx ] = max( mat cut ( : ) ) ;

232 [ max id 400 (2 ) , max id 400 (1 ) ] = ind2sub ( s i z e ( mat cut ) , max idx ) ;

233 %}

234 ex id = f i n d ( n r s t R e x i t ( : , 2 ) == max id 400 ( : , 2 ) +300) ;

235 en id = f i n d ( nr s t R ent ry ( : , 2 ) == max id 400 ( : , 1 ) +300) ;

236 max crn cut = i n t e r s e c t ( ex id , en id ) ;

237 max crn cut = max crn cut ( n r s t R e x i t ( [ max crn cut ] , 1 ) ==1) ;
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238

239 %f1 = f i g u r e ; ax1 = axes ( f 1 ) ; hold on ;

240 %f2 = f i g u r e ; ax2 = axes ( f 2 ) ; hold on ;

241

242 f o r max id = 1 : l ength ( max crn cut )

243 i = max crn cut ( max id ) ;

244 o u t l i e r r e m i d = i n t e r s e c t ( f i n d ( phase space ( : , 1 ) ==

o u t l i e r s r e m ( i , 1 ) ) , f i n d ( phase space ( : , 2 ) == o u t l i e r s r e m ( i

, 2 ) ) ) ;

245 ps chop = phase space (max( o u t l i e r r e m i d − f l o o r ( 1 . 5∗

samp period /8) ,1 ) : min ( o u t l i e r r e m i d + c e i l ( 1 . 5∗

samp period /8) , l ength ( phase space ) ) , : ) ;

246 ccut = ps chop ( n r s t R e x i t ( i , 3 ) : n r s t R ent ry ( i , 3 ) , : ) ;

247 S c rn cut = ze ro s ( l ength ( ccut ) ,1 ) ;

248 f o r l c = 2 : l ength ( ccut )

249 S c rn cut ( l c , 1 ) = S c rn cut ( l c −1 ,1) + norm( ccut ( lc , : ) −

ccut ( l c −1 , : ) ) ;

250 end

251 Pot crn cut = Pot fn ( ccut ( : , 1 ) , ccut ( : , 2 ) ) ;

252 %plo t ( ccut ( : , 1 ) , ccut ( : , 2 ) ) ;

253 R ccut = s q r t ( ccut ( : , 1 ) . ˆ2 + ccut ( : , 2 ) . ˆ 2 ) ;

254 f o r c e c c u t = w0∗R ccut ;

255 work ccut = ze ro s ( l ength ( ccut ) ,1 ) ;

256 f o r wa = 2 : l ength ( work ccut )

257 ph ccut = atan2 ( ccut (wa−1 ,2) , ccut (wa−1 ,1) ) ;

258 tangent = R ccut (wa−1) ∗ [ cos ( ph ccut+pi /400) , s i n ( ph ccut+

pi /400) ] − R ccut (wa−1) ∗ [ cos ( ph ccut ) , s i n ( ph ccut ) ] ;

259 %quiver ( ccut (wa−1 ,1) , ccut (wa−1 ,2) , tangent (1 ) , tangent (2 )
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, 0 . 2 ) ;

260 work ccut (wa) = work ccut (wa−1) + f o r c e c c u t (wa−1)∗dot (

tangent /norm( tangent ) , ( ccut (wa , : )−ccut (wa−1 , : ) ) ) ;

261 end

262 p lo t ( ax1 , S c rn cut / S c rn cut ( end ) , Pot crn cut , ’ green ’ ) ;

263 p lo t ( ax2 , S c rn cut / S c rn cut ( end ) , work ccut , ’ green ’ ) ;

264 end

265

266 ccut b = l i m i t c y c l e i n ( max id 400 (2 ) +300: max id 400 (1 ) +300 , :) ;

267 Pot ccut b = Pot fn ( ccut b ( : , 1 ) , ccut b ( : , 2 ) ) ;

268

269 R ccut b = s q r t ( ccut b ( : , 1 ) . ˆ2 + ccut b ( : , 2 ) . ˆ 2 ) ;

270 f o r c e c c u t b = w0∗R ccut b ;

271 work ccut b = ze ro s ( l ength ( ccut b ) ,1 ) ;

272

273 f o r wa = 2 : l ength ( work ccut b )

274 ph ccutb = atan2 ( ccut b (wa−1 ,2) , ccut b (wa−1 ,1) ) ;

275 tangent = R ccut b (wa−1) ∗ [ cos ( ph ccutb+pi /400) , s i n ( ph ccutb+

pi /400) ] − R ccut b (wa−1) ∗ [ cos ( ph ccutb ) , s i n ( ph ccutb ) ] ;

276 %quiver ( ccut b (wa−1 ,1) , ccut b (wa−1 ,2) , tangent (1 ) , tangent (2 )

, 0 . 5 ) ;

277 work ccut b (wa) = work ccut b (wa−1) + f o r c e c c u t b (wa−1)∗dot (

tangent /norm( tangent ) , ( ccut b (wa , : )−ccut b (wa−1 , : ) ) ) ;

278 end

279 S temp = S in ( max id 400 (2 ) +300: max id 400 (1 ) +300) − S in (

max id 400 (2 ) +300) ;

280 p lo t ( ax1 , S temp/S temp ( end ) , Pot ccut b , ’ b lack ’ , ’ Linewidth ’ , 1 ) ;

281 p lo t ( ax2 , S temp/S temp ( end ) , work ccut b , ’ b lack ’ , ’ l i n ew id th ’ , 1 ) ;
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A.10 Script for plotting the potential maps in chapters 3 and 4

1

2 %t i m e s t a r t = d a t e s t r (now , ’yymmdd HHMMSS’ ) ;

3 %s a v e d i r e c t o r y = [ ’ mesh potent i a l hop f ’ , t i m e s t a r t ] ;

4 %mkdir ( s a v e d i r e c t o r y ) ;

5

6 dr = 0 . 0 2 ;

7 dphi = 0 . 1 ;

8 R mesh = dr /2:0 .5 :15− dr /2 ;

9 Phi mesh = −pi : dphi∗ pi /180 : p i ;

10 R pot = ( R mesh ( 1 : end−2)+R mesh ( 2 : end−1) ) /2 ;

11 Phi pot = ( Phi mesh ( 1 : end−2)+Phi mesh ( 2 : end−1) ) /2 ;

12

13 Pot = ze ro s ( l ength ( R pot ) , l ength ( Phi pot ) ) ;

14 X pot = ze ro s ( s i z e ( Pot ) ) ;

15 Y pot = ze ro s ( s i z e ( Pot ) ) ;

16

17 %Code to add pe r tu rba t i on s to the ba s i c mexican hat p o t e n t i a l

18 %Fn charge = @(Y,X) alpha∗exp(−( s q r t (Xˆ2+Yˆ2) − s q r t (mu/b)

+0.000001) ˆ2)∗ cos (2∗ atan2 (Y,X) ) ∗ . . .

19 %(4 − 4∗( s q r t (Xˆ2+Yˆ2) − s q r t (mu/b) +0.000001) ˆ2 − 2∗ s q r t (mu/(b

∗(Xˆ2+Yˆ2) ) ) + 2∗0.000001/ s q r t (Xˆ2+Yˆ2) + 4/(Xˆ2+Yˆ2) ) ; %

remember to change to s c a l a r or vec to r p o t e n t i a l whi l e

sav ing the f i g u r e

20 Fn charge = @(R, Phi ) alpha∗exp(−(R − s q r t (mu/b) ) ˆ2)∗ cos (4∗Phi ) ∗(4

− 4∗(R − s q r t (mu/b) +0.000001) ˆ2 − 2∗ s q r t (mu/(b∗Rˆ2) ) +

2∗0.000001/R + 16/(Rˆ2) ) ;

21
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22 f o r i p = 1 : l ength ( R pot )

23 f o r j p = 1 : l ength ( Phi pot )

24 f o r i m = 1 : l ength ( R mesh )

25 f o r j m = 1 : l ength ( Phi mesh )−1

26 Pot ( i p , j p ) = Pot ( i p , j p ) + Fn charge ( R mesh (

i m ) , Phi mesh ( j m ) )∗ l og ( ( R mesh ( i m )∗ cos (

Phi mesh ( j m ) ) − R pot ( i p )∗ cos ( Phi pot ( j p ) ) )

. ˆ2 + ( R mesh ( i m )∗ s i n ( Phi mesh ( j m ) ) − R pot (

i p )∗ s i n ( Phi pot ( j p ) ) ) . ˆ 2 ) ∗R mesh ( i m )∗dr∗dphi

/(4∗180) ;

27 end

28 end

29 end

30 end

31

32 %{

33 f o r i p = 1 : l ength ( X pot )

34 f o r j p = 1 : l ength ( Y pot )

35 f o r i m = 1 : l ength ( X mesh )

36 f o r j m = 1 : l ength ( Y mesh )

37 Pot ( i p , j p ) = Pot ( i p , j p ) + Fn charge ( Y mesh (

j m ) , X mesh ( i m ) )∗ l og ( ( X mesh ( i m ) − X pot ( i p

) ) . ˆ2 + ( Y mesh ( j m ) − Y pot ( j p ) ) . ˆ 2 ) ∗dx∗dy

/(4∗ pi ) ;

38 end

39 end

40 end

41 end
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42 %}

43 %Pot a l t = Pot − mean( Pot ( 1 , : ) ) ;

44

45 % conver t ing po la r to c a r t e s i a n coo rd ina t e s

46 f o r i Xrow = 1 : l ength ( R pot )

47 f o r i X c o l = 1 : l ength ( Phi pot )

48 X pot ( i Xrow , i X c o l ) = R pot ( i Xrow )∗ cos ( Phi pot ( i X c o l ) ) ;

49 Y pot ( i Xrow , i X c o l ) = R pot ( i Xrow )∗ s i n ( Phi pot ( i X c o l ) ) ;

50 end

51 end

52

53

54 Pot add = ze ro s ( s i z e ( Pot , 1 ) , s i z e ( Pot , 2 ) ) ;

55 f o r i = 1 : l ength ( R pot )

56 f o r j = 1 : l ength ( Phi pot )

57 Pot add ( i , j ) = mu∗( R pot ( i ) ˆ2) /2 − b∗( R pot ( i ) ˆ4) /4 ;

58 end

59 end

60 Pot tot = Pot + Pot add ;

61

62 f = f i g u r e ;

63 colormap ( f , winter ) ;

64 s u r f ( X pot ( : , 1 : 1 7 9 0 ) , Y pot ( : , 1 : 1 7 9 0 ) , −Pot tot ( : , 1 : 1 7 9 0 ) , ’

FaceColor ’ , ’ i n t e r p ’ , ’ EdgeColor ’ , ’ none ’ ) ;

65 x l a b e l ( ’X ( a . u) ’ ) ;

66 y l a b e l ( ’Y ( a . u) ’ ) ;

67 s e t ( gca , ’ f o n t s i z e ’ , 16) ;

68 s a v e f i g ( f , [ s a v e d i r e c t o r y , f i l e s e p , ’ Sca l a r p o t e n t i a l contourmap .
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f i g ’ ] ) ;

69 pr in t ( f , ’−dpng ’ , ’−r300 ’ , [ s a v e d i r e c t o r y , f i l e s e p , ’ Sca l a r

p o t e n t i a l contourmap . png ’ ] ) ;

70

71 %save ( [ s a v e d i r e c t o r y , f i l e s e p , ’ data . mat ’ ] ) ; %saves workspace

72 %zip ( [ s a v e d i r e c t o r y , f i l e s e p , ’ code snapshot . z ip ’ ] , { ’∗ .m’ } ) ; %

saves a l l the m f i l e s in working d i r e c t o r y in to a z ip f i l e

A.11 Experimental data analysis

Note: This code assumes that the bundle follows the Hopf model. Can we easily

tweaked for the X-V plots in Sheth (PRE, 2018).

1 c l o s e a l l ; c l e a r v a r i a b l e s ;

2

3 % Extract ing data s to r ed in a f i g u r e

4 open ( ’ / Users / j anak i /Dropbox/MATLAB/ smoothening data and fd t

a n a l y s i s /raw\ data / probes\ c o n t r o l / probe7x ( t ) . f i g ’ ) ;

5 h = gc f ;

6 axesObjs = get (h , ’ Chi ldren ’ ) ; %axes handles

7 dataObjs = get ( axesObjs , ’ Chi ldren ’ ) ; % handles to low−l e v e l

g raph i c s o b j e c t s in axes

8 objTypes = get ( dataObjs , ’Type ’ ) ; % type o f low−l e v e l g raph i c s

ob j e c t

9 ydata = get ( dataObjs , ’YData ’ ) ;

10 xdata = get ( dataObjs , ’XData ’ ) ;

11

12 % Extract ing data from a mat f i l e

13 rawdata matrix = load ( ’ / Users / j anak i /Dropbox/MATLAB/ smoothening

data and fd t a n a l y s i s /raw\ data / j u s t i n \ s p i k e s / qu i e s c en t . mat ’ ) ;
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14 rawdata = rawdata matrix .W.Cam(10000 :50000) ;

15 rawdata = −qu i e s c en t ;

16 sampl ing t ime = 0 . 0 0 1 ;

17 time = ( sampl ing t ime : sampl ing t ime : l ength ( rawdata )∗ sampl ing t ime )

’ ;

18 data = [ time , rawdata ( 1 : end ) ] ;

19

20 % Preproce s s ing

21 f i g u r e ; p l o t ( time , data ( : , 2 ) ) ;

22 b a s e l i n e = smooth ( rawdata , 0 . 5 , ’ l o e s s ’ ) ;

23 f i n a l d a t a = data ( : , 2 ) − b a s e l i n e ;

24 f 1 = f i g u r e ( ) ; ax = axes ( f 1 ) ;

25 p lo t ( ax , time , f i n a l d a t a ) ;

26 t i t l e ( ’Raw data ’ ) ;

27 x l a b e l ( ’Time( s ) ’ ) ;

28 y l a b e l ( ’ Po s i t i on (nm) ’ ) ;

29

30 % Calcu l a t ing natura l f requency

31 [ p s d f i l t d t , f r e q d t ] = pwelch ( f i n a l d a t a , [ ] , [ ] , l ength ( f i n a l d a t a )

∗4 ,1/ sampl ing t ime ) ;

32 f r e q d t = 2∗ pi ∗ f r e q d t ;

33 [ max psd , index ] = max( p s d f i l t d t ) ;

34 n a t u r a l f r e q = f r e q d t ( index ) ;

35 f 2 = f i g u r e ( ) ; ax = axes ( f 2 ) ;

36 p lo t ( ax , f r eqdt , p s d f i l t d t ) ;

37 t i t l e ( ’PSD in l i n e a r axes ’ ) ;

38 x l a b e l ( ’ $\omega$ (Hz) ’ ) ;

39 y l a b e l ( ’PSD(nmˆ{2}/Hz) ’ ) ;
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40 f 3 = f i g u r e ( ) ; ax = axes ( f 3 ) ;

41 p lo t ( ax , log10 ( f r e q d t ) , log10 ( p s d f i l t d t ) ) ;

42 t i t l e ( ’PSD in l i n e a r axes ’ ) ;

43 x l a b e l ( ’ l og \ {10}( $\omega$ ) (Hz) ’ ) ;

44 y l a b e l ( ’ l og \ {10}PSD(nm\ˆ{}{2}/Hz) ’ ) ;

45

46 % Calcu l a t i on o f phase ang le

47 y r e c t = f i n a l d a t a ;

48 h i l t = h i l b e r t ( y r ec t , 2 . ˆ c e i l ( l og2 ( l ength ( rawdata ) ) ) ) ;

49 phase ar ray = [ y rec t , imag ( h i l t ( 1 : l ength ( rawdata ) ) ) ] ;

50 phase ar ray = phase ar ray ( f l o o r ( 0 . 2∗ l ength ( rawdata ) ) : f l o o r ( 0 . 8∗

l ength ( rawdata ) ) , : ) ;

51 phase = atan2 ( phase ar ray ( : , 2 ) , phase ar ray ( : , 1 ) ) ;

52 time = time ( f l o o r ( 0 . 2∗ l ength ( rawdata ) ) : f l o o r ( 0 . 8∗ l ength ( rawdata ) ) )

− time ( f l o o r ( 0 . 2∗ l ength ( rawdata ) ) ) ;

53 f = f i g u r e ( ) ; ax = axes ( f ) ;

54 p lo t ( ax , time , phase ) ;

55 t i t l e ( ’ Phase o f the l i m i t c y c l e us ing atan ’ ) ;

56 x l a b e l ( ’Time( s ) ’ ) ;

57 y l a b e l ( ’ Phase ( rad ) ’ ) ;

58

59 %f i t t i n g a s t r a i g h t l i n e to de r i v e s t o c h a s t i c i t y in the phase

ang le

60 phase un = unwrap ( phase ) ;

61 P = p o l y f i t ( time , phase un − phase un (1 ) , 1) ;

62 y f i t = P(1) ∗ time + P(2) ;

63 f = f i g u r e ( ) ; ax = axes ( f ) ;

64 p lo t ( ax , time , phase un − phase un (1 ) ) ;
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65 hold on ;

66 p lo t ( ax , time , y f i t ) ;

67 t i t l e ( ’ Unwrapped phase us ing acos and adding ang l e s ’ ) ;

68 x l a b e l ( ’Time( s ) ’ ) ;

69 y l a b e l ( ’ Phase ( rad ) ’ ) ;

70

71 %Fluc tuat i ons in t a n g e n t i a l d i r e c t i o n

72 b a s e l i n e p h n o i s e = smooth ( phase no i se , 0 . 5 , ’ l o e s s ’ ) ;

73 f i n a l p h a s e n o i s e = phase no i s e − b a s e l i n e p h n o i s e ;

74 [ p s d f i l t p h , f reqph ] = pwelch ( f i n a l p h a s e n o i s e , [ ] , [ ] , l ength (

f i n a l p h a s e n o i s e ) ∗4 , 1/ sampl ing t ime ) ;

75 f reqph = 2∗ pi ∗ f reqph ;

76 f = f i g u r e ( ) ; ax = axes ( f ) ;

77 l o g l o g ( ax , freqph , p s d f i l t p h ) ;

78 t i t l e ( ’PSD of d i f f e r e n t i a l phase ’ ) ;

79 x l a b e l ( ’ Log ( Frequency ) ’ ) ;

80 y l a b e l ( ’ Log (PSD) ’ ) ;

81

82 %Calcu l a t ing l i m i t c y c l e and r a d i a l d ev i a t i on from i t

83 div = (−pi : 2∗ pi /200 : p i ) ’ ;

84 sum amp = ze ro s ( l ength ( div ) −1 ,2) ;

85 norm amp = ze ro s ( l ength ( div ) −1 ,1) ;

86 devi amp = ze ro s ( l ength ( phase ) −1 ,1) ;

87 cnt = 0 ;

88 f o r i = 1 : l ength ( div )−1

89 ind = f i n d ( phase >= div ( i ) & phase < div ( i +1) ) ;

90 f o r j = 1 : l ength ( ind )
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91 sum amp( i , : ) = sum amp( i , : ) + phase ar ray ( ind ( j ) , : ) / l ength

( ind ) ;

92 norm amp( i ) = norm amp( i ) + norm( phase ar ray ( ind ( j ) , : ) ) /

l ength ( ind ) ;

93 end

94 f o r ph = 1 : l ength ( phase )

95 i f ( any ( abs (ph−ind )<1e−10) )

96 devi amp (ph) = norm( phase ar ray (ph , : ) ) − norm amp( i ) ;

97 end

98 end

99 end

100

101 f = f i g u r e ( ) ; ax = axes ( f ) ;

102 p lo t ( ax , phase ar ray ( : , 1 ) , phase ar ray ( : , 2 ) ) ;

103 hold on ;

104 p lo t ( ax , sum amp ( : , 1 ) , sum amp ( : , 2 ) ) ;

105 t i t l e ( ’ Noisy and approximated l i m i t c y c l e ’ ) ;

106 x l a b e l ( ’ x ( $\phi$ ) ’ ) ;

107 y l a b e l ( ’ x ( $\phi + \ pi /2$ ) ’ ) ;

108

109 base l ine amp dev i = smooth ( devi amp , 0 . 02 , ’ l o e s s ’ ) ;

110 amp devi = devi amp − base l ine amp dev i ;

111 [ p s d f i l t d v , f reqdv ] = pwelch ( devi amp , [ ] , [ ] , l ength ( f i n a l d a t a ) ∗4 ,

1/ sampl ing t ime ) ;

112 f r eqdv = 2∗ pi ∗ f r eqdv ;

113 f = f i g u r e ( ) ; ax = axes ( f ) ;

114 l o g l o g ( ax , freqdv , p s d f i l t d v ) ;

115 t i t l e ( ’PSD of d i f f e r e n t i a l amplitude ’ ) ;
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116 x l a b e l ( ’ Log ( f requency ) ’ ) ;

117 y l a b e l ( ’ Log (PSD) ’ ) ;

206



Bibliography

[1] A.J.Hudspeth. How the ear’s works work. Nature, 341:397–404, 1989.

[2] A.J.Hudspeth. Making an Effort to Listen: Mechanical Amplification in the Ear. Neu-
ron, 59:530–545, 2008.

[3] R. Amro and A.B. Neiman. Effect of bidirectional mechanoelectrical coupling on spon-
taneous oscillations and sensitivity in a model of hair cells. PRE, 90:052704, 2014.

[4] M. Baiesi, C. Maes, and B. Wynants. Nonequilibrium Linear Response for Markov Dy-
namics, I: Jump processes and overdamped diffusions. Journal of Stat. Phys., 137:1094,
2009.

[5] M. Benser, R. Marquis, and A. Hudspeth. Rapid, Active Hair Bundle Movements in
Hair Cells from the Bullfrogs Sacculus. J. Neurosci., 16:5629 – 5643, 1996.

[6] D. Bozovic and A. Hudspeth. Hair-bundle movements elicited by transepithelial elec-
trical stimulation of hair cells in the bullfrog’s sacculus. PNAS, 100:958–963, 2003.

[7] H. Callen and T. Welton. Irreversibility and Generalized Noise. PR, 83:34, 1951.

[8] S. Camalet, T. Duke, F.Jlicher, and J. Prost. Auditory sensitivity provided by self-tuned
critical oscillations of hair cells. PNAS, 97:3183–88, 2000.

[9] L. Catacuzzeno, B. Fioretti, P. Perin, and F. Franciolini. Spontaneous lowfrequency
voltage oscillations in frog saccular hair cells. J. Physiol., 561:685 – 701, 2004.

[10] E. Cheung and D. Corey. Ca2+ changes the force sensitivity of the hair-cell transduction
channel. Biophys. J., 90:124–139, 2006.

[11] C.J.Lin and D. Bozovic. Effects of Efferent Activity on Hair Bundle Mechanics. J.
Neuroscience, 40:2390–2402, 2020.

[12] C.F.Schmidt D. Mizuno, C. Tardin and F.C. MacKintosh. Nonequilibrium mechanics
of active cytoskeletal networks. Science, 315:370–3, 2007.

[13] L. Dinis, P. Martin, J. Barral, J. Prost, and J.F. Joanny. Fluctuation-response theorem
for the active noisy oscillator of the hair-cell bundle. PRL, 109:160602, 2012.

[14] R. A. Eatock. Adaptation in Hair Cells. Annual Review of Neuroscience, 23:285–314,
2000.

[15] A. Flock, B. Flock, and E. Murray. Studies on the sensory hairs of receptor cells in the
inner ear. Acta Otolaryngol., 83:85–91, 1977.

[16] F. S. Gnesotto, F. Mura, J. Gladrow, and C. P. Broedersz. Broken detailed balance
and non-equilibrium dynamics in living systems: a review. Rep. Prog. Phys., 81:066601,
2018.

207



[17] L. Le Goff, D. Bozovic, and A. J. Hudspeth. Adaptive shift in the domain of negative
stiffness during spontaneous oscillatfion by hair bundles from the internal ear. PNAS,
102:16996 – 17001, 2005.

[18] T. Gold. Hearing II. The physical basis of action in the cochlea. Proc. R. Soc. Lond.
B. Biol. Sci., 135:492–498, 1948.

[19] L. Han and A.B. Neiman. Spontaneous oscillations, signal amplification, and synchro-
nization in a model of active hair bundle mechanics. PRE, 81:041913, 2010.

[20] J. Howard and A. Hudspeth. Mechanical relaxation of the hair bundle mediates adap-
tation in mechanoelectrical transduction by the bullfrogs saccular hair cell. PNAS,
84:3064–8, 1987.

[21] A. J. Hudspeth and R. Lewis. A model for electrical resonanceand frequency tuning in
saccular hair cells of the bull-frog Rana catesbeiana. J. Physiol., 400:275–97, 1988.

[22] A. J. Hudspeth and R. Lewis. Kinetic analysis of voltage- and ion-dependent conduc-
tances in saccular hair cells of the bull-frog Rana catesbeiana. J. Physiol., 400:237–74,
1988.

[23] A.J. Hudspeth. Integrating the active process of hair cells with cochlear function. Nat.
Rev. Neurosci., 15:600–14, 2014.

[24] J. Hudspeth, Y. Choe, A. Mehta, and P. Martin. Putting ion channels to work: Mecha-
noelectrical transduction, adaptation, and amplification by hair cells. PNAS, 97:11765–
72, 2000.

[25] F. Jorgensen and A. B. A. Kroese. Ion channel regulation of the dynamical instability of
the resting membrane potential in saccular hair cells of the green frog Rana esculenta.
Acta Physiol. Scand., 185:271, 2005.

[26] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. J. Hudspeth.
Principles of Neural Science. The McGraw-Hill Companies, Inc., 2013.

[27] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I: General Theory
and Simple applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn.,
12:570–586, 1957.

[28] G. Lan, P. Sartori, S. Neumann, V. Sourjik, and Y. Tu. The energy-speed-accuracy
tradeoff in sensory adaptation. Nature Physics, 8:422–428, 2012.

[29] M. LeMasurier and P. Gillespie. Hair-Cell Mechanotransduction and Cochlear Amplifi-
cation. Neuron, 48:403–415, 2005.

[30] P. Martin, D. Bozovic, Y. Choe, and A.J. Hudspeth. Spontaneous Oscillation by Hair
Bundles of the Bullfrog’s Sacculus. J. Neurosci., 23:4533–48, 2003.

208



[31] P. Martin and A.J. Hudspeth. Active hair-bundle movements can amplify a hair cells
response to oscillatory mechanical stimuli. PNAS, 96:14306–11, 1999.

[32] P. Martin, A.J. Hudspeth, and F. Julicher. Comparison of a hair bundle’s spontaneous
oscillations with its response to mechanical stimulation reveals the underlying active
process. PNAS, 98:14380–85, 2001.

[33] P. Martin, A. Mehta, and A. Hudspeth. Negative hair-bundle stiffness betrays a mech-
anism for mechanical amplification by the hair cell. PNAS, 97:12026 – 31, 2000.

[34] S.W.F. Meenderink, P. Quinones, and D. Bozovic. Voltage-Mediated Control of Spon-
taneous Bundle Oscillations in Saccular Hair Cells. J. Neurosci., 35:14457–66, 2015.

[35] K.A. Montgomery, M. Silber, and S.A. Solla. Amplification in the auditory periphery:
The effect of coupling tuning mechanisms. PRE, 75:051924, 2007.

[36] B. Nadrowksi, P. Martin, and F.Julicher. Active hair-bundle motility harnesses noise
to operate near an optimum of mechanosensitivity. PNAS, 101:12195–12200, 2004.

[37] A.B. Neiman, K. Dierkes, B. Lindner, L. Han, and A.L. Shilnikov. Spontaneous voltage
oscillations and response dynamics of a Hodgkin-Huxley type model of sensory hair
cells. The Journal of Mathematical Neuroscience, 1:041913, 11.

[38] J. Newby and M. Schwemmer. Effects of Moderate Noise on a Limit Cycle Oscillator:
Counterrotation and Bistability. PRL, 112:114101, 2014.

[39] L.K. Nguyen. Regulation of oscillation dynamics in biochemical systems with dual
negative feedback loops. J.R. Soc. Interface, 9:1998–2010, 2012.

[40] M. Ospeck, V.M. Eguiliz, and M.O. Magnasco. Evidence of a Hopf Bifurcation in Frog
Hair Cells. Biophys. J., 80:2597–2607, 2001.

[41] J. Pickles, S. Comis, and M. Osbourne. Cross-links between stereocilia in the guinea
pig organ of Corti, and their possible relation to sensory transduction. Hear. Res.,
15:103–12, 1984.

[42] J. Prost, J.F. Joanny, and J.M.R. Parrondo. Generalized Fluctuation-Dissipation The-
orem for Steady-State Systems. PRL, 103:090601, 2009.

[43] D. Ramunno-Johnson, C.E. Strimbu, L. Fredrickson, K. Arisaka, and D. Bozovic. Distri-
bution of Frequencies of Spontaneous Oscillations in Hair Cells of the Bullfrog Sacculus.
Biophys. J., 96:1159–68, 2009.

[44] T. Reichenbach and A.J.Hudspeth. The physics of hearing: fluid mechanics and the
active process of the inner ear. Rep. Prog. Phys., 77:076601, 2017.

[45] L. Robles and M. Ruggero. Mechanics of the Mammalian Cochlea. Physiol. Rev.,
81:1305–1352, 2001.

209



[46] Y. Roongthumskul, L. Fredrickson-Hemsing, A. Kao, and D. Bozovic. Multiple-
timescale dynamics underlying spontaneous oscillations of saccular hair bundles. Bio-
phys. J., 101:603–10, 2011.

[47] M.A. Ruggero, N.C. Rich, A. Recio, S.S. Narayan, and L. Robles. Basilar-membrane
responses to tones at the base of the chinchilla cochlea. J. Acoust. Soc. Am., 101:2151–
63, 1997.

[48] M.. Rutherford and W. Roberts. Spikes and Membrane Potential Oscillations in Hair
Cells Generate Periodic Afferent Activity in the Frog Sacculus. J. Neurosci., 29:10025–
37, 2009.

[49] J. Salvi, D. Maoilidigh, and A.J. Hudspeth. Identification of Bifurcations from Obser-
vations of Noisy Biological Oscillators. Biophys. J., 111:798–812, 2016.

[50] U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines.
Rep. Prog. Phys., 75:126001, 2012.

[51] U. Seifert and T. Speck. Fluctuation-dissipation theorem in nonequilibrium steady
states. Euro. Phys. Lett., 89:10007, 2010.

[52] J. Sheth, S.W.F. Meenderink, P.M. Quiones, D. Bozovic, and A.J. Levine. Nonequi-
librium limit-cycle oscillators: Fluctuations in hair bundle dynamics. PRE, 97:062411,
2018.

[53] T. Speck and U. Seifert. Restoring a fluctuation-dissipation theorem in a nonequilibrium
steady state. Europhys. Lett., 74:391–396, 2006.

[54] R. Stoop, A. Kern, M. C. Gpfert, D. A. Smirnov, T. V. Dikanev, and B. P. Bezrucko.
A generalization of the van-der-Pol oscillator underlies active signal amplification in
Drosophila hearing. Euro. Biophys. J., 35:511–16, 2006.

[55] C. E. Strimbu, A. Kao, J. Tokuda, D. Ramunno-Johnson, and D. Bozovic. Dynamic
state and evoked motility in coupled hair bundles of the bullfrog sacculus. Hear. Res.,
265:38–45, 2010.

[56] Strogatz. Nonlinear Dynamics And Chaos: With Applications To Physics, Biology,
Chemistry And Engineering. Westview Press, 1994.

[57] G. Verley, K. Mallick, and D. Lacoste. Modified fluctuation-dissipation theorem for
nonequilibrium steady states and application to molecular motors. Euro. Phys. Lett.,
93:1, 2011.

[58] M. Vollrath, K.Y. Kwan, and D. Corey. The Micromachinery of Mechanotransduction
in Hair Cells. Annu. Rev. Neurosci., 30:339–365, 2007.

210


	Title Page
	Abstract
	Committee
	Table of Contents
	List of Figures
	Acknowledgments
	Curriculum Vitae
	1 Dynamics of the inner ear
	1.1 Hearing
	1.2 Bullfrog Sacculus
	1.2.1 Saccular Hair Bundles
	1.2.2 Saccular Hair Cell Somae

	1.3 Active hair-bundle motility
	1.4 Open questions
	1.5 Fluctuation-dissipation theorem and its generalizations
	1.5.1 Violation of the fluctuation-dissipation theorem
	1.5.2 Generalized fluctuation-dissipation theorems
	1.5.3 Frenet frames

	1.6 Modelling the hair bundle and cell dynamics
	1.7 Outline of the Dissertation

	2 Stochasticity in non-equilibrium limit cycle oscillators
	2.1 Introduction
	2.2 Model I: Normal form for the supercritical Hopf bifurcation
	2.2.1 Fluctuations around a simulated Hopf limit cycle

	2.3  Model II: Biophysical model
	2.3.1 Fluctuations around a simulated three-dimensional zero-temperature limit cycle
	2.3.2 Lower dimensional projections
	2.3.3 Mean vs zero-temperature limit cycle in the biophysical model
	2.3.4 Phase diffusion and advection give rise to Bragg peaks

	2.4 Experimental observations
	2.4.1 Comparison to the supercritical Hopf system
	2.4.2 Comparison to the biophysical model

	2.5 Summary
	2.6 Appendix
	2.6.1 Simulation details
	2.6.2 Experimental data


	3 Noise-induced distortion of the mean limit cycle
	3.1 Introduction
	3.2 Regular Hopf oscillator
	3.2.1 Scalar and vector potentials of the Hopf oscillator

	3.3 Generalized Hopf oscillator
	3.3.1 Model and dynamical phase diagram
	3.3.2 Noise-induced corner cutting
	3.3.3 Predicting regions of noise-induced limit cycle distortion

	3.4 Summary
	3.5 Appendix
	3.5.1 Simulation details
	3.5.2 First passage time distribution for a quadratic confining potential


	4 Violation of generalized fluctuation-dissipation theorems in computationally driven steady states
	4.1 Introduction
	4.2 Stochastic Hopf oscillator model
	4.3 Three-state model with a computational drive
	4.3.1 Model I 
	4.3.2 Model II

	4.4 Discussion
	4.5 Appendix
	4.5.1 Simulation details
	4.5.2 Electrically-charged particle in a magnetic field
	4.5.3 Driven systems without computation
	4.5.4 Linear regime of the equilibrium three-state model
	4.5.5 Three-state system with a computational drive


	5 Future work
	5.1 Introduction
	5.2 Generalized Fluctuation-Dissipation Theorems
	5.2.1 Agarwal GFDT
	5.2.2 Entropic GFDT

	5.3 Entropy of different systems
	5.4 Next steps

	A Source Codes
	A.1 Hopf oscillator correlation function script
	A.2 Hopf oscillator response function script
	A.3 3-state system oscillator model a script
	A.4 3-state system oscillator model b script
	A.5 Three-dimensional model function script
	A.6 Neiman model correlation function using 3d frenet frames script
	A.7 Neiman model response function script
	A.8 Script to plot final figures for psd plots with errorbars
	A.9 Script for the corner cutting project of chapter 3
	A.10 Script for plotting the potential maps in chapters 3 and 4
	A.11 Experimental data analysis

	Bibliography



