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A B S T R A C T

Background: Gut microbes produce short-chain fatty acids (SCFAs), which are associated with broad health benefits. However, it is not fully
known how diet and/or the gut microbiome could be modulated to improve SCFA production.
Objectives: The objective of this study was to identify dietary, inflammatory, and/or microbiome predictors of SCFAs in a cohort of healthy
adults.
Methods: SCFAs were measured in fecal and plasma samples from 359 healthy adults in the United States Department of Agriculture
Nutritional Phenotyping Study. Habitual and recent diet was assessed using a food frequency questionnaire and automated self-administered
24-h dietary assessment tool dietary recalls. Markers of systemic and gut inflammation were measured in fecal and plasma samples. The gut
microbiome was assessed using shotgun metagenomics. Using statistics and machine learning, we determined how the abundance and
composition of SCFAs varied with measures of diet, inflammation, and the gut microbiome.
Results: We show that fecal pH may be a good proxy for fecal SCFA abundance. A higher healthy eating index for a habitual diet was
associated with a compositional increase in fecal butyrate relative to acetate and propionate. SCFAs were associated with markers of
subclinical gastrointestinal (GI) inflammation. Fecal SCFA abundance was inversely related to plasma lipopolysaccharide-binding protein.
When we analyzed hierarchically organized diet and microbiome data with taxonomy-aware algorithms, we observed that diet and
microbiome features were far more predictive of fecal SCFA abundances compared to plasma SCFA abundances. The top diet and micro-
biome predictors of fecal butyrate included potatoes and the thiamine biosynthesis pathway, respectively.
Conclusions: These results suggest that resistant starch in the form of potatoes and microbially produced thiamine provide a substrate and
essential cofactor, respectively, for butyrate synthesis. Thiamine may be a rate-limiting nutrient for butyrate production in adults. Overall,
these findings illustrate the complex biology underpinning SCFA production in the gut.
This trial was registered at clinicaltrials.gov as NCT02367287.

Keywords: gut microbiome, short-chain fatty acids, machine learning, diet, inflammation
Introduction

Fermentable dietary fiber plays a critical role in feeding the
gut microbiome, a complex ecosystem and genetic powerhouse
with an outsized role in human health. Dietary fiber resists
digestion by the 17 human-encoded glycoside hydrolases [1]
and reaches the colon, where its mode of action depends on the
type of fiber. Water-insoluble, nonfermentable fibers can add
bulk to the stool, whereas fermentable fibers, such as resistant
starch, β-glucans, and water-soluble fibers, feed the dense
Abbreviations: ASA24, automated self-administered 24-h dietary assessment tool;
naire; HEI, healthy eating index; LBP, lipopolysaccharide binding protein; MAE, m
multivariate analysis of variance; SCFA, short-chain fatty acids; SHAP, SHapley Add
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population of colonic bacteria (reviewed in [2]). Some mem-
bers of the gut microbiota can break down these complex
polysaccharides, providing substrates for specialized fermen-
ters to metabolize into end-products like short-chain fatty acids
(SCFAs). SCFAs have been broadly implicated in health bene-
fits, including reduced cancer cell proliferation, decreased
inflammation, and maintenance of colonocyte health and gut
barrier integrity (reviewed in [3]). Therefore, interventions
that increase SCFA production could be helpful in preventing
chronic diseases.
CAL, fecal calprotectin; CRP, c-reactive protein; FFQ, food frequency question-
ean absolute error; MPO, fecal myeloperoxidase; PERMANOVA, permutational
itive explanations.
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The most notable SCFAs are acetate, propionate, and butyrate,
which can be measured in a fecal sample occurring at a ratio of
60:20:20, respectively [4]. Prior to excretion, roughly 95% of
SCFAs produced are either metabolized by resident microbes or
absorbed through the colonocytes lining our colon, where their
fates diverge substantially [5,6]. Most (�90%) of the absorbed
butyrate gets metabolized in the colonocyte itself, providing 70%
of the energy needed for the cell [7]. Although absorbed propio-
nate can serve as a substrate for gluconeogenesis in the liver, little
glucose arises from propionate metabolism in humans [6]. As
such, 86% (mean) of propionate is rapidly converted to carbon
dioxide [6]. Finally, after conversion to acetyl-coenzyme A, ace-
tate can enter the tricarboxylic acid cycle and is subsequently
converted to tricarboxylic acid cycle intermediates [8]. Approxi-
mately 64% of colonic-derived acetate, 9% of propionate, and 2%
of butyrate ultimately enter systemic circulation [6].

Much of what is understood about diet-microbiome-SCFA
relationships comes from animal models. Human interven-
tion studies have yielded mixed results, with fecal SCFAs often
unaffected by dietary intervention (reviewed in [9]). This
could result from the use of isolated fibers or incomplete
characterization of dietary fiber content, as well as the limi-
tation that most SCFAs are absorbed and not observable in
fecal samples. To address these knowledge gaps, we analyzed
fecal and plasma SCFAs from a cohort of well-phenotyped,
healthy United States adults with detailed dietary and micro-
biome data. Finally, we applied a novel approach in machine
learning, taxonomically-informed feature reduction, to iden-
tify diet-SCFA and microbiome-SCFA relationships.
Methods

Participants
The individuals in this study (n ¼ 363) were originally

recruited for the USDA Nutritional Phenotyping study [10]
(Supplemental Figure 1). The original study was powered to
explain 3% of the variation in postprandial inflammation markers
in response to a challenge meal [10]. This work investigates a
secondary objective of the original study, intends to be explor-
atory, and is not explicitly powered to explain variation in SCFAs.
Briefly, participating individuals were healthy adults aged 18–65
y, with a BMI (in kg/m2) between <25–44. Individuals were
recruited to evenly fill 3 age and 3 BMI bins for both males and
females (Supplemental Table 1). Exclusion criteria included hy-
pertension, known chronic disease treated with medication,
recent surgery, antibiotic use in the previous 4 wk, recent hospi-
talization, and pregnant or lactating females. More information
can be found on clinicaltrials.gov (identifier NCT02367287).
Dietary assessment
Dietary assessment was conducted using the block food fre-

quency questionnaire (FFQ, NutritionQuest) and automated self-
administered 24-h (ASA24) dietary assessment tool [11]. ASA24
dietary recalls were averaged for �2 (but�3) recalls, which were
collected on different days, and data was processed and carefully
cleaned [12]. The healthy eating index (HEI) [13] was calculated
for both dietary assessments. The representation of consumed
foods as a dietary taxonomy [14] and the associated diversity
metrics for this cohort have been previously published [15].
2

Blood sample collection
A blood draw was conducted in the morning, after a 12-h,

water-only fast, as previously described [16]. Prior to the fast,
a standardized meal was consumed [10]. Sodium heparin, or
EDTA, was used as an anticoagulant. Plasma was collected after
refrigerated centrifugation at (1300 � g; 10 min; 4�C). Plasma
aliquot was transferred to cryo-store vials and stored at –80�C.

Stool consistency and collection
The stool was collected using a Ziploc bag, immediately

placed on ice, and transported to the Western Human Nutrition
Research Center for same-day processing, as previously
described [17]. The stool sample was collected at the end of the
7–10 d period during which the dietary recalls were collected.
The stool consistency was assessed by a trained technician. The
stool was homogenized, flash frozen, and stored at –70�C until
DNA extraction, pH measurement [18], and other analyses
(Supplemental Table 2).

Measurement of inflammatory markers
Complete blood counts were performed on whole blood

treated with EDTA as an anticoagulant. Counts were performed
on 3 different machines over the course of the 4-y recruitment:
Beckman Coulter LH750/780, Beckman Coulter DxH800 auto-
mated hematology analyzer, or an Abbott Cell-Dyn 322 analyzer.
Plasma LPS-binding protein (LBP) (using heparin-treated plasma
samples), fecal calprotectin (CAL), and fecal myeloperoxidase
(MPO) were all quantified by ELISA kits as previously described
[16]. Fecal neopterin was also measured by ELISA, as described
in detail elsewhere [19]. C-reactive protein (CRP) was assessed
using the V-PLEX vascular injury panel 1 kit (Meso Scale Dis-
covery) as previously described [16,20].

DNA extraction and sequencing from fecal samples
DNA from fecal samples was extracted using the ZymoBio-

mics DNA Miniprep kit (Zymo Research), as previously pub-
lished [16]. Library preparation and sequencing were performed
by the DNA Technologies& Expression Analysis Core Laboratory
at the University of California Davis Genome Center. Initially,
290 samples were sequenced, analyzed, and have been described
in previous publications [16]. An additional 40 samples were
sequenced using identical methods, and these shotgun meta-
genomes appear for the first time in this publication.

Quantification of fecal SCFA
Approximately 150 mg (145–155 mg) wet stool aliquot per

sample was massed out, and exact stool weights were recorded.
Each stool sample was spiked with deuterated SCFA surrogates
(10 μL mixture of 100,000 μM acetate-d3 and 10,000 μM
propionate-d5 in methanol). SCFAs were extracted into 200 μL of
a 1:1 methanol:acetonitrile solution by bead beating with a
Geno/Grinder 2010 homogenizer (Cole-Palmer) for 1200 � g; 8
min. The extracts were clarified by centrifugation for 10,000� g;
10 min; 4�C, and then passed through a 0.2 μm 96-well filter
plate (Agilent) by centrifugation for 1000 � g; 1 min. Twenty-
five μL of the filtrate was mixed with 1 volume of internal
standard 40 μM cis-10-pentadecenoic acid methyl ester and
analyzed on a 7890 gas chromatograph interfaced with a 5977B
mass selective detector (Agilent). One μL of sample was injected
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with a 75:1 split ratio and resolved on a 30 m x 0.25 mm inner
diameter x 0.25 μm DB-WAX ultra inert column (Agilent). SCFA
concentrations were determined from standard curves with the
MassHunter software (Agilent), and final concentrations were
calculated by correcting for the percentage recoveries of the
deuterated surrogates in each sample.
Quantification of plasma SCFA
Acetic acid (C2), propionic acid (C3), andbutyric acid (C4)were

measured in EDTA-treated plasma samples in the Columbia
UniversityMedical Center Biomarkers CoreLaboratoryusingultra-
performance liquid chromatography-tandem mass spectrometry.
Samples were spiked with deuterated internal standards and
subjected to protein precipitation followed by derivatization with
3-nitrophenylhydrazine [21]. The derivatized metabolites were
separated on a 2.1 � 100 mm, 1.7 μm ACQUITY BEH C18 UPLC
column (Waters) maintained at 50�C by gradient elution with
water and acetonitrile containing 0.1% formic acid as
mobile phases at a flow rate of 400 μL/min. Liquid
chromatography-tandem mass spectrometry analysis was per-
formed using positive electrospray ionization with multiple reac-
tionmonitoringmodes on aWatersXevoTQSMS -ACQUITYUPLC
system (Waters).
Taxonomic and functional profiling of microbiome
For a subset of 330 individuals, raw metagenomic reads were

processed as previously described [16], resulting in merged
reads output from FLASH (v.1.2.11) [22]. These reads were used
as input to MetaPhlAn (v4.0.6) [23] against the vOct22 database,
using default parameters and the –add_viruses flag.

The same reads used in taxonomic profiling were input to
HUMAnN (v3.7) [24] using the default parameters and the flag
–search-mode uniref90. The ChocoPhlAn database used was
v201901_v31, and the uniref90 database was v201901b_full.
Pathway abundance files were merged and normalized to copies
per million using the humann_renorm_table command.

The merged reads were also used to analyze the inferred fiber
degradation profile (IFDP) [25]. IFDP (v1.0.0) was performed
with modification. Briefly, the resulting counts from IFDP map-
ping to fiber degradation enzymes were divided by the protein
length and then by the sample-specific genome equivalents,
calculated using MicrobeCensus [26]. The resulting counts
represent reads per kilobase per genome equivalent.
Hierarchical feature engineering of microbial taxa
and consumed foods

Separately for each SCFA, the taxonomic microbiome profiles
and/or reportedly consumed foods (i.e., dietary taxonomy) were
feature-engineered using a hierarchical feature engineering
program called TaxaHFE (v2.0) [27]. Along with the food fea-
tures and the microbial features, covariates age, sex, and BMI
were also included in the feature engineering. For fecal samples
specifically, we also included stool weight and a trichotomous
stool consistency factor (hard: 1–2 on the Bristol stool chart;
normal: 3–5; and soft: 6–7) [17] as a covariate. TaxaHFE was
analyzed with the abundance filter set to 0, the prevalence filter
set to 0.01, the lowest level (-L) set to 3, and the number of
permutations set to 80. Because of our small sample size, we
analyzed TaxaHFE on the entire sample set and fed these
3

engineered features into downstream machine learning. As such,
our results (i.e., model scores and features of importance)
describe our cohort specifically and are not intended to be
broadly generalizable. We also applied TaxaHFE to just the
training data prior to machine learning and presented the scores
of these models, which may be more generalizable but suffer
from even fewer samples.

Statistical analysis
Statistical analyses were performed in R (v4.2.1). The skew-

ness() function from the package moments (v0.14.1) [28] was
used to analyze the distribution of the SCFA. To investigate
whether SCFAs varied with independent variables of interest
[average fiber (ASA24) consumption over recalls, fiber intake
(ASA24) per kcal, fiber intake (FFQ), fiber intake (FFQ) per kcal,
soluble fiber intake (FFQ), HEI total score (ASA24), HEI total
score (FFQ), phylogenetic diversity of carbohydrate foods
(ASA24), and phylogenetic diversity of fiber foods (ASA24)], we
fitted a linear model with normalized fecal SCFAs (using the
bestNormalize (v1.9.1) [29] R package) as the response and
included age, sex, and BMI (and stool weight and Bristol stool
score for fecal samples) with the explanatory variables. Because
plasma SCFA measurements for butyrate and propionate were
left-censored, we used a tobit model from the R package VGAM
[30] instead of a linear regression model. The linear model or
tobit model was then used in a partial correlation analysis using
the avPlots() function from the car package (v3.1–2) [31] and
the stats::cor.test() function was used to test the significance of
the partial correlations. P values were corrected using the false
discovery rate method (presented as p.adjust) within each SCFA
or SCFA-ratio when correlating SCFAs to dietary variables
related to our directed hypotheses or to inflammation variables.
To correlate fecal and plasma SCFAs, the corrr package (v0.4.4)
[32] was used, and the correlation method was set to Pearson.
Alpha-diversity analysis was performed using the R package
picante (v1.8.2) [33], specifically calculating Faith’s phyloge-
netic diversity using the MetaPhlAn provided phylogenetic tree
(mpa_vOct22_CHOCOPhlAnSGB_202212.nwk). β-diversity was
analyzed using the adonis2 function from vegan [34], and an
example formula is as follows: community_matrix ~ BMI þ Age
þ Sex þ StoolConsistencyClass þ StoolWeight þ Butyrate,
method ¼ “bray,” permutations ¼ 999, by ¼ “terms.” Plotting
was performed using ggPlot2 (v3.4.0) [35] with the additional
ggpubr package [36], and in the case of the plotted taxonomic
trees, the metacoder package was used [37].

Machine learning
A machine learning (ML) pipeline, based around the Tidy-

models R package (v1.0.0) [38] and a random forest model
(https://github.com/aoliver44/nutrition_tools), was used to
evaluate the predictive capacity of the different datasets and the
abundance of each SCFA. Along with the response variables (i.e.,
SCFAs) and input features, important covariate features such as
age, sex, and BMI were also included. In predicting fecal SCFAs,
stool sample weight and stool hardness (soft, normal, and hard)
were also included. Initially, a null model was fitted in order to
compare a trained model. Briefly, to train the ML models, input
data was split into 80% training and 20% testing sets. Within the
training set, 10-fold 3 times repeated stratified cross-validation
was performed. In every fold, a correlation-based feature

https://github.com/aoliver44/nutrition_tools
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engineering step was implemented, involving the removal of
features with a Pearson correlation coefficient exceeding 0.95,
along with the elimination of features with 0 variances. Random
forest hyperparameters were tuned during this step using a
Bayesian optimization hyperparameter search, which was
allowed to analyze 160 parameter combinations or for 20 min,
whichever came first. Tuning was preemptively ended if 10
consecutive parameter combinations failed to result in a
decrease in the mean absolute error (MAE). The best-scoring
model’s parameters were used in a final model fitted to the
left-out test data, and model scores were collected. This entire
process was repeated across 10 random seeds to account for
variability in the initial test-train splits. The test data scores were
collected for each random seed and averaged. We chose to pre-
sent the percent change in MAE over the null model, which
shows howwell an MLmodel performs compared to a model that
predicts the mean response variable. Feature importance was
calculated using SHapley Additive exPlanations (SHAP) values
and the fastshap R package [39]. The model used to calculate
feature importance was the model that performed the best
(lowest MAE score) in the 10 random seeds. To plot SHAP values,
we used the shapviz R package [40]. This machine learning
pipeline can be found in the above GitHub repository, and a
Docker container is provided to aid in reproducibility.
Results

Fecal and plasma SCFAs vary across healthy
individuals and are negatively correlated with each
other

We collected stool samples from 363 individuals; however,
fecal samples (n ¼ 50) were removed from downstream analysis
if they were not returned to the study site within 24 h. We
quantified fecal SCFAs (acetate, propionate, and butyrate) for
313 individuals and plasma SCFAs (acetate, propionate, and
FIGURE 1. An overview of SCFA abundances in a healthy United States
butyrate) for 313 individuals. (B) The abundance of plasma SCFAs (acetate
between each fecal SCFA and either BMI, age, or sex. (D) Pearson correlat
fecal pH and total fecal SCFAs, adjusting for age, sex, BMI, stool weight, a
chain fatty acid.
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butyrate) for 315 individuals (Figure 1A and B). Altogether, we
measured fecal and/or plasma SCFAs for 359 individuals, of
which 269 individuals had both measurements. For fecal sam-
ples, acetate was the most abundant SCFA measured (mean ¼
29.56 nmol/mg, SD ¼ 8.73), followed by butyrate (9.49 � 5.31)
and propionate (8.56 � 3.57). The abundances of fecal SCFAs
were all positively skewed across individuals. Across all subjects,
the proportions of acetate:propionate:butyrate occurred at
61:17:18, approaching the often-reported ratio of 60:20:20.
Fecal SCFA abundances (acetate, propionate, and butyrate)
changed slightly but significantly (partial correlation, P < 0.01)
with anthropometrics: increasing with BMI and decreasing with
age (Figure 1C). Only fecal butyrate was significantly higher in
males than in females (partial correlation: P < 0.05).

For plasma samples, nearly the entire fraction (98%)
measured was acetate. On average, acetate accounted for 0.08
nmol/μL � 0.08 of the plasma SCFA abundances, followed by
propionate (9.5e–4 nmol/μL � 5.9e–4) and butyrate (2.8e–4

nmol/μL � 2.0e–4). In contrast to fecal SCFAs, plasma SCFAs
were not impacted by differences in anthropometrics, such as
age, sex, and BMI (partial correlation: P > 0.05).

Fecal SCFAs were positively correlated among themselves, as
were plasma SCFAs (Figure 1D). The total abundance of fecal
SCFAs was weakly and negatively correlated with the total
abundance of plasma SCFAs (r ¼ –0.0685, P ¼ 0.263). For a
single SCFA, this inverse relationship was most apparent for
propionate, where increases in fecal propionate were associated
with decreases in plasma propionate (r ¼ –0.168, P ¼ 0.006).
The weakest correlation between a fecal SCFA and its plasma
counterpart was butyrate (Pearson’s rho ¼ –0.0279, P ¼ 0.649).
Fecal pH is a good proxy for fecal SCFA abundance
but not plasma SCFAs

We next investigated whether fecal pH was correlated with
SCFA abundances. Unsurprisingly, as fecal SCFAs increased,
cohort. (A) The abundances of fecal SCFAs (acetate, propionate, and
, propionate, and butyrate) for 315 individuals. (C) Partial correlation
ions between fecal and plasma SCFAs. (E) Partial correlation between
nd stool consistency in the model. BMI, body mass index; SCFA, short-
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fecal pH decreased. Total fecal SCFAs were significantly corre-
lated with fecal pH (partial correlation: r ¼ –0.51, P < 0.001)
(Figure 1E). Fecal butyrate had the strongest association, with a
partial correlation of –0.53 (P < 0.001), followed by acetate (r ¼
–0.48, P < 0.001) and propionate (r ¼ –0.33, P < 0.001). In
contrast, none of the plasma SCFAs were correlated with fecal
pH.
SCFA composition is associated with habitual
healthy eating

We assessed whether there were aspects of diet that influ-
enced the abundance and composition of fecal and plasma
SCFAs. First, we tested our hypothesis that SCFAs would posi-
tively correlate with healthy dietary patterns, measured using
the HEI. After correcting for multiple comparisons, neither raw
fecal nor raw plasma SCFAs significantly correlated with the HEI
calculated using habitual (FFQ) or recent (ASA24) dietary data.
We next asked if these results were influenced by inflammation,
which can dysregulate SCFA metabolism in the colon. Again, we
found no relationship between fecal or plasma SCFAs and the
HEI after removing individuals with frank inflammation (a CAL
value >100 μg/g and a plasma CRP value >10 mg/L) (Supple-
mental Table 2). Because the composition of fecal SCFAs has
been shown to occur at a ratio of 60:20:20, we hypothesized that
deviations from this expected compositional ratio might corre-
late with dietary variables better than raw abundances. Indeed,
the deviation of fecal butyrate from this ratio (e.g., a positive
value indicating relatively more butyrate than expected),
referred to as butyrate ratio henceforth was significantly corre-
lated with the HEI index calculated using habitual diet (FFQ) (r¼
0.183, P.adjust ¼ 0.013) (Supplemental Figure 2). The relation-
ship between butyrate ratio and HEI (FFQ) was nearly identical
for the subset of samples without frank inflammation (r ¼ 0.178,
P.adjust ¼ 0.064) (Supplemental Figure 2 and Supplemental
Table 2).

Our second hypothesis was that SCFA abundance would
significantly correlate with dietary fiber intake and diversity. No
fecal or plasma SCFAs significantly varied with dietary fiber
variables after correcting for multiple comparisons. However,
there were notable trends within the entire cohort: butyrate ratio
was positively correlated with calorie-corrected dietary fiber
intake (FFQ) (r ¼ 0.13, P < 0.05, P.adjust > 0.05) and the HEI
(ASA24) (r ¼ 0.13, P < 0.05, P.adjust > 0.05) (Supplemental
Figure 2). Although we expected to find positive relationships
between fiber variables and SCFAs (i.e., increased fiber con-
sumption would lead to increased SCFAs), we also found nega-
tive trends between soluble fiber intake and plasma propionate (r
¼ –0.12, P < 0.05, P.adjust > 0.05) (Supplemental Figure 2).
Dietary butyrate is not a large source of measured
butyrate in stool or plasma

Because the ASA24 quantifies butyric acid in food (but not
acetate or propionate), we asked whether dietary butyrate
significantly correlated with the butyrate we measured in plasma
and fecal samples. For this analysis, we disaggregated the ASA24
recalls to the individual days they were recorded and chose
subjects who supplied a food recall that was within 0–2 d before
a stool sample was collected (n ¼ 95 individuals). However, we
5

did not detect any relationships between fecal or plasma butyrate
and dietary butyrate (Supplemental Figure 3).

Fecal SCFAs inversely associate with markers of
inflammation; plasma propionate inversely
associates with GI inflammation

Next, we examined whether SCFAs varied with gut or sys-
temic inflammation. Individuals with plasma CRP �10 mg/L
were considered high-inflammation individuals (32 fecal sam-
ples and 34 plasma samples), compared to normal-CRP in-
dividuals (273 fecal samples and 279 plasma samples)
(Supplemental Figure 4A). We found no significant differences in
the abundance of any SCFA, plasma or fecal, comparing high to
normal inflammation individuals (Wilcoxon, P > 0.05) (Sup-
plemental Figure 4B). We also examined gut inflammation, using
a CAL cutoff �100 μg/g to designate high-inflammation in-
dividuals (45 fecal and plasma samples) and normal individuals
(268 fecal samples and 265 plasma samples). Similarly, we found
no differences in the abundances of SCFAs between high and
normal-CAL individuals (Supplemental Figure 4C).

Because not all markers of inflammation have established
high-inflammation thresholds, we also assessed inflammation
with partial correlation. We have previously found more pro-
nounced relationships between diet and the abundance of in-
flammatory markers when individuals with frank inflammation
are removed [41]. Therefore, we removed individuals with high
CAL and/or high plasma CRP and assessed the relationship of
various inflammatory markers with SCFA abundance in the
presence of covariates (age, sex, BMI, and fecal samples - stool
consistency and stool weight). Our partial correlation analysis
revealed several significant relationships between SCFA and
markers of inflammation (Table 1). Specifically, plasma propio-
nate was negatively associated with MPO (partial correlation r ¼
–0.259, P.adjust ¼ 0.0002, Supplemental Figure 5A). Fecal
SCFAs were also correlated with several markers of inflamma-
tion. Notably, acetate, propionate, and butyrate were all nega-
tively correlated with plasma LBP (Table 1, Supplemental
Figure 5B–E).

SCFAs associated with differences in gut
microbiome diversity and composition

To test whether measures of α-diversity correlate with SCFA
abundance, we performed partial correlations between Faith’s
phylogenetic diversity and the abundance of SCFAs. The phylo-
genetic diversity of the microbiome positively correlated with
fecal acetate-ratio (r ¼ 0.30, P < 0.001) and negatively corre-
lated with butyrate ratio (r ¼ –0.24, P < 0.001) and propionate-
ratio (r ¼ –0.28, P < 0.001) (Supplemental Figure 6A). The raw
values of butyrate (r ¼ –0.21, P ¼ 0.002) and propionate (r ¼
–0.22, P < 0.001) were also negatively correlated with phylo-
genetic diversity, but acetate (r ¼ –0.05, P > 0.05) was not. We
found no significant correlations between the phylogenetic di-
versity of the microbiome and plasma SCFA abundances.

We also tested whether SCFA abundance could explain sig-
nificant variability in microbiome community composition. We
used a permutational multivariate analysis of variance (PER-
MANOVA) model to analyze community composition at every
taxonomic level, in addition to TaxaHFE-engineered microbiome
features. Surprisingly, for most fecal SCFAs (both raw



TABLE 1
Table showing the significant partial correlations between fecal and plasma SCFAs and various markers of inflammation.

Type SCFA Factor Correlation
estimate

Correlation
P value

Regression
P value

N
individuals

Tobit
estimate

Tobit
P value

Fecal Acetate-
ratio

Fecal MPO –0.146 0.025 0.027 235 – –

Fecal Acetate-
ratio

Fecal neopterin 0.157 0.017 0.018 230 – –

Fecal Acetate Plasma LBP –0.151 0.021 0.022 235 – –

Fecal Propionate Plasma LBP –0.132 0.043 0.045 235 – –

Fecal Butyrate Plasma LBP –0.143 0.028 0.03 235 –

Fecal Total SCFA Plasma LBP –0.161 0.013 0.014 235 – –

Fecal Propionate White blood cell
count

0.146 0.026 0.028 233 – –

Fecal Butyrate White blood cell
count

0.14 0.033 0.035 233 – –

Fecal Total SCFA White blood cell
count

0.139 0.034 0.036 233 – –

Plasma Propionate Fecal MPO –0.26 0 – 235 –0.001 0
Plasma Butyrate Fecal neopterin –0.135 0.041 – 230 –0.008 0.036

For plasma butyrate and propionate, tobit models were used for censored regression. Covariates for plasma SCFAmodels were age, sex, and BMI. For
fecal SCFA models, covariates were age, sex, BMI, stool weight, and stool consistency (Bristol stool score). Regression P -values were family-wise
adjusted within each SCFA, using the false discovery method.
Abbreviations: BMI, body mass index; LBP, lipopolysaccharide binding protein; MPO, fecal myeloperoxidase; SCFA, short-chain fatty acid.
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abundances and ratios), summarizing community composition at
the kingdom level explained significant variation (mean R2 ¼
0.043, Supplemental Figure 6B). Similar to our α-diversity
findings, plasma SCFAs poorly explained compositional differ-
ences in the microbiome. On average, TaxaHFE-engineered fea-
tures best captured compositional variability with respect to
plasma SCFA abundance, explaining an average 1.4% variation
in the PERMANOVAmodels (Supplemental Figure 6B). The most
variation explained in the microbiome came from relating fecal
propionate-ratio to TaxaHFE-engineered microbiome features
(R2 ¼ 0.101, Supplemental Figure 6B). The taxa with the largest
positive coefficients in the fecal propionate-ratio model included
the phylum Bacteroidetes and the class Negativicutes (Supple-
mental Figure 7A).
Machine learning models identify dietary and
microbiome features predictive of SCFA abundance

Outside of our directed hypotheses, we implemented machine
learning to investigate which components of the diet, the
microbiome, or inflammation markers are associated with indi-
vidual SCFAs. We tested 8 different types of predictor variables
and their ability to lower MAE relative to a null model (Figure 2;
Supplemental Table 3). These 8 data types were as follows: 1)
ASA24 recent diet, 2) FFQ habitual diet, 3) TaxaHFE-engineered
recent diet, 4) dietary monosaccharides, 5) TaxaHFE-engineered
microbial taxa, 6) HUMAnN pathways, 7) IFDP, and 8) inflam-
mation and immune markers. We permuted each ML analysis
over 10 different random seeds. The mean coefficient of varia-
tion of our chosen scorer (MAE) for trained models was 8.6% (SD
¼ 3.9%) and 2.3% (SD ¼ 1.8%) for null models.

Although we expected to see dietary features from the FFQ
and ASA24 and predict SCFAs, features from these datasets
provided little to no increase in information over the null
models. Interestingly, dietary taxonomy data (foods from ASA24,
arranged in a hierarchy), processed with TaxaHFE, was the most
predictive dietary feature set for both fecal and plasma SCFAs.
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These consumed foods were better at predicting raw fecal SCFAs
(mean MAE percent decrease over a null model ¼ 9.6%)
compared to fecal ratio SCFAs (6.5%). Like models built using
FFQ and ASA24 features, using dietary monosaccharides features
rarely produced models that were more informative than the null
model.

As the dietary taxonomy models were the most predictive of
SCFAs among the dietary models, features contributing to these
models were investigated further. In general, person-specific
factors such as age, BMI, and stool consistency were stronger
predictors than food taxa, but a few foods had predictive values
of similar orders of magnitude (Figure 3). The most predictive
food taxon of fecal acetate was “Level 3 Processed cheeses and
cheese spreads” (Figure 3A; Supplemental Table 4). This taxon
was also predictive of fecal butyrate and propionate, with
higher processed cheese consumption associated with higher of
all 3 SCFAs. Partial regressions show that the relationship of
processed cheese with propionate is the strongest of the 3
(Supplemental Figure 8). The most predictive food taxon of
fecal propionate was “Level 2 Cereals not cooked or not speci-
fied as cooked,” being inversely associated with fecal propio-
nate (Figure 3B). This Level 2 Cereals node contains 2 children,
“L3 Ready to Eat Cereals” and “L3 Cereal grains not cooked.”
Drilling down further, the most common reports were various
types of granola (uncooked oats) and oat-based cereal (also
uncooked). Therefore, uncooked cereals, especially oats,
appear to be associated with decreased fecal propionate. The
most predictive food taxon of fecal butyrate was “L2 White
Potatoes and Puerto Rican Starchy Vegetables” (Figures 3C and
4A), which was almost entirely due to the consumption of white
potatoes (Figure 4B). A partial regression suggests that white
potato consumption may be weakly positively correlated with
fecal butyrate (Figure 4C).

We next investigated whether models based on various
measures of inflammation and immunity would predict SCFA
abundance. These measures of inflammation included CAL,
MPO, fecal neopterin, plasma LBP, CRP, and white blood cell



FIGURE 2. Predicting SCFA abundances using machine learning. The mean MAE percent change between a trained machine model and a null
model for fecal and plasma SCFAs using dietary, inflammation, and microbiome features. Solid horizontal lines represent the mean MAE percent
change over the null model for all SCFAs of a given data type. When TaxaHFE was employed, solid lines indicate that TaxaHFE was trained on all
samples prior to machine learning, and dashed lines indicate TaxaHFE was trained on only the training sample subset. ASA24, Automated Self-
Administered 24-h Dietary Assessment Tool; MAE, mean absolute error; SCFA, short-chain fatty acid; TaxaHFE, Taxonomic Hierarchical Feature
Engineering; HUMAnN3, HMP Unified Metabolic Analysis Network.
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count. Inflammation markers were slightly predictive of raw
fecal SCFAs (mean MAE percent decrease over null model ¼
3.6%), and white blood cell count was the most informative
feature for these models (after covariates such as age, sex, and
BMI). For plasma SCFAs these markers of inflammation were
uniquely apt at predicting plasma propionate, with a mean
decrease in MAE of 10.3% over the null model. The top feature
used in this model was MPO (Supplemental Table 4), supporting
our regression model results (Supplemental Figure 5A).

By far, the most useful features of machine learning models
were rooted in some aspect of the microbiome. Metabolic path-
ways predicted using HUMAnN3 were equally predictive of
acetate-ratio, propionate-ratio, and butyrate ratio (mean MAE
percent decrease over a null model for all 3 fecal SCFAs ¼ 6.6%)
but not predictive of plasma SCFAs. More performant than
HUMAnN3, on average, were models employing features from
the IFDP, which similarly produced better models for fecal
acetate-ratio, propionate-ratio, and butyrate ratio than for ab-
solute acetate, propionate, and butyrate. The top features driving
the IFDP models included levan degradation capacity for
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propionate-ratio and rhamnogalacturonan degradation capacity
for butyrate ratio (Supplemental Table 4). Finally, the best-
performing models for predicting SCFAs utilized microbial tax-
onomy as a feature. In contrast to the TaxaHFE-engineered di-
etary taxonomy, which found raw SCFAs easier to predict,
TaxaHFE-engineered microbial taxonomy was uniformly more
predictive of SCFA ratios (Figure 2, mean MAE percent decrease
over null model for all 3 fecal SCFAs ¼ 13.2%). Unlike any other
type of data, microbial taxonomy produced models with lower
MAE scores than null models for every SCFA measured (both
fecal and plasma).

In general, fecal SCFAs were easier to predict than plasma
SCFAs. Of the individual SCFAs, propionate was generally the
easiest to predict, regardless of the features used. Moreover, the
top-performing model predicted fecal propionate-ratio using
TaxaHFE-engineered microbial taxa, which achieved a 14.6%
mean MAE percent decrease over the null model. Notably,
among the top features driving this model were the phylum
Bacteroidetes and the class Negativicutes, the same taxa we found
in the PERMANOVA model (Supplemental Figure 7B).



FIGURE 3. Top features for ML models predicting SCFA abundances
from diet. SHAP beeswarm plots showing the top features (by mean
absolute SHAP value) for fecal (A) acetate, (B) propionate, and (C)
butyrate. BMI, body mass index; SCFA, short-chain fatty acids; SHAP,
SHapley Additive explanations; ML, machine learning.
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Because of its recognized role in gut and systemic health, we
further investigated the features that drove the top models pre-
dicting butyrate. The best model utilized microbial taxonomy to
predict butyrate ratio (mean MAE percent decrease over null
model ¼ 10.1%). The top features in these models included
known butyrate producers, such as members of the genus Rose-
buria and Lachnospiraceae (unclassified) (Figure 5A). When we
look further into the species within these genera that may
contribute to this signal, we found species such as Eubacterium
rectale and Roseburia faecis differentially abundant between in-
dividuals in the highest and lowest butyrate tertiles (Figure 5B).
Individuals in our study also differed in the functional potential
of their microbial communities. We found that individuals with a
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higher fecal butyrate ratio had more reads mapping to stachyose
and inositol degradation pathways and to the thiamine diphos-
phate biosynthesis pathway iii (eukaryotes) (Figure 5C). Of these
3 pathways, the thiamine diphosphate biosynthesis pathway had
the highest mean absolute SHAP value. The thiamine diphos-
phate biosynthesis pathway is found in a variety of different taxa;
however, between high and low butyrate tertiles, we found the
most differentially abundant taxa containing this pathway were
E. rectale, R. faecis, and Roseburia inulinivorans (Figure 5D). Taken
together, these results demonstrate that variations in taxonomic
structure are linked to alterations in microbiome functionality,
which, in turn, are associated with a higher fecal butyrate
composition.

Discussion

High-resolution diet and microbial data, both organized in
taxonomies and analyzed using taxonomy-aware algorithms,
provide a new method to understand nutrition and gut micro-
biomes in free-living humans. Using this approach, we analyzed
diet and shotgun metagenomes together with fecal and plasma
SCFAs, as well as markers of inflammation in a cohort of >300
healthy United States adults.

First, we found an inverse relationship between total fecal
SCFAs and fecal pH. Baxter et al. [42] speculated that lactic
acid (pKa of 3.86) produced through the bifid shunt could be
responsible, in part, for a decrease in fecal pH. We investigated
adding in Bifidobacterium abundance as an additional covariate
to a model relating fecal pH and total fecal SCFA abundance
and found Bifidobacterium abundance did not meaningfully
increase our ability to explain total fecal SCFAs (Supplemental
Figure 9). Although Bifidobacterium-produced lactic acid likely
still plays a role in lowering colonic pH, we hypothesize that
the larger amounts of SCFAs produced [43] likely have a
greater impact on fecal pH, even after accounting for the
higher pKa of SCFAs compared to lactic acid. Further, we
found inverse relationships between fecal SCFAs and plasma
SCFAs. As both fecal and plasma SCFAs are difficult to measure
and fecal pH quite easy, the relationships demonstrated in the
current study suggest that fecal pH could be a cheap and
accessible clinical proxy.

Our results show that fecal SCFAs are impacted by age and
BMI, and in the case of butyrate, sex (Figure 1D). Salazar et al.
[44,45] showed significant decreases in fecal SCFA abundance
between middle age (57–67 y) and older individuals (77–95 y).
We extend this significant association to younger adults, as the
individuals in our cohort aged 18 to 66 y. One review speculated
that a decline in the metabolic output of resident gut microbes
results in a decrease in SCFA abundance during aging [46]
because the abundance of butyrate-producing bacteria is not
reduced during aging [44]. Far less is known about the rela-
tionship between plasma SCFAs and age. Contrary to our ex-
pectations, we found no change in plasma SCFA abundance with
age.

One meta-analysis showed obese individuals had higher
measured fecal acetate, propionate, and butyrate [47]. We also
found a positive correlation between BMI and fecal SCFAs. It has
been suggested that SCFAs could contribute 80–200 kcal/d in
additional energy for the host [48]. On the surface, this is not a
large amount; however, a small net increase in energy intake



FIGURE 4. Investigating foods predictive of fecal butyrate. (A) A metacoder taxonomic plot illustrating the food taxa under L2 white potatoes and
Puerto Rican starchy vegetables. The colors indicate mean abundance differences in consumption between individuals in the top and bottom
tertile for the butyrate ratio. (B) A stacked bar plot of the most abundant L3 children within the L2 white potatoes and Puerto Rican starchy
vegetables. (C) A partial correlation between L2 white potatoes and Puerto Rican starchy vegetables with fecal butyrate.

FIGURE 5. Microbiome-rooted features are predictive of fecal butyrate. (A) Top directly varying (a positive correlation between feature value and
SHAP value) TaxaHFE features from microbial taxonomy. These features increase in relative abundance with increasing butyrate ratio. (B) Finer
taxonomic details of the taxonomic groups are presented in (A). The color represents median log-fold differences in abundance between the top
and bottom tertiles of butyrate ratio (C) Top directly varying (a positive correlation between feature value and SHAP value) HUMANnN3 features
with butyrate ratio. (D) The top 9 species of bacteria containing the thiamine diphosphate biosynthesis pathway by mean abundance. SHAP,
SHapley Additive explanations; HUMANnN3, HMP Unified Metabolic Analysis Network; TaxaHFE, Taxonomic Hierarchical Feature Engineering.
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compounded over time can lead to increases in BMI [49,50]. In
contrast, we found no relationship between plasma SCFAs and
BMI.

Although we are not the first to examine fecal SCFAs as a ratio
or in terms of relative abundances [51–53], our machine
learning results (Figure 2) point to an interesting difference be-
tween raw and relative abundances of fecal SCFAs: dietary var-
iables appeared to better predict raw fecal SCFAs whereas
microbiome variables better predicted fecal SCFA ratios. We
initially suspected 1 reason for this could be technical: dietary
variables were used as raw input and not scaled, as opposed to
microbiome data, which was total sum scaled. To test this, we
analyzed the same dietary taxonomy dataset through the same
TaxaHFE þ machine learning pipeline, but the raw dietary tax-
onomy counts were total sum scaled. Although the differences
were less apparent, the dietary taxonomy still predicted raw fecal
SCFAs better than SCFA relative abundances (Supplemental
Figure 10). Thus, a biological reason may explain these results:
total carbon sources available determine the total amount of
SCFAs produced and the different types of microbes negotiate
which kinds of SCFAs are produced.

We found that person-specific factors, such as age, sex, or
BMI, more strongly predicted SCFA concentrations than whole
diets or specific foods. This is a common theme in nutrition
research and is the reason for new efforts in precision nutrition.
For example, person-specific characteristics were found to be
more predictive of a person’s blood glucose concentrations
following a meal than either the carbohydrate or caloric content
of that meal [54]. In the current study, when controlling for
known person-specific characteristics such as age, sex, and BMI,
a habitual healthy eating pattern was associated with a shift
toward more fecal butyrate.

Dietary taxonomy was a much better predictor of SCFAs than
diet as traditionally aggregated into food groups or nutrients.
Traditional dietary analyses do not adequately describe the
carbon sources that are available to gut microbes. Given that
food groups from a dietary taxonomy were better associated with
gut microbes than nutrients [14,15], it is rational that dietary
taxonomy would also be a better predictor of microbial metab-
olites. Information about the carbon sources in foods is begin-
ning to become available, such as the Davis Food Glycopedia
[55]. Although a previous study demonstrated an association of
specific dietary monosaccharides with specific gut bacteria in the
present cohort [19], dietary monosaccharides were not predic-
tive of fecal SCFAs. Additional structural information for the
glycochemistry of food is much needed.

Surprisingly, “processed cheeses” were a common predictor
of fecal SCFA abundance. This may be because processed
cheeses, unlike aged cheeses, contain substantial lactose, and the
cheese matrix slows its digestion, perhaps enabling lactose to
reach the colon. Moreover, this multiethnic cohort included
people who were genetically lactose intolerant [56]. Of these
lactose-intolerant individuals, those who consumed higher
amounts of lactose exhibited an increase in acetate-producing
bacteria [57]. Thus, it’s possible that processed cheese is asso-
ciated with increased SCFAs due to its lactose content, matrix
effects, host genetics, and habitual consumption.

That uncooked cereals, especially uncooked oats, were asso-
ciated with lower fecal propionate could be because such cereals
are low in soluble, fermentable fiber. Cooked oats are high in
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soluble fiber, but uncooked oats may be less fermentable. There
is a dearth of literature on this subject. A randomized crossover
dietary intervention trial in 32 adults with 6-wk intervention
periods compared 45 g of whole-grain oat granola with
nonwhole-grain breakfast cereals, and there was no difference in
fecal SCFA concentrations [58]. An intervention study
comparing cooked and uncooked oats is much needed.

The dietary taxonomy analysis revealed white potatoes as
potentially associated with fecal butyrate. Previous studies have
shown that individuals who had resistant starch-degrading bac-
teria Ruminococcus and Eubacterium or Bifidobacterium present in
their gut microbiota produced more fecal butyrate in response to
a potato-resistant starch intervention than those who did not
[42,59]. Moreover, butyrate production from potato-derived
resistant starch tended to be higher than from other fiber sour-
ces. In a prior analysis of this cohort [15], gut microbial com-
munities were significantly enriched for Bifidobacterium in a
group of individuals who consumed a dietary pattern containing
high amounts of carbohydrates from fried white potatoes and
low HEI scores. However, the “potato” consumption in the cur-
rent analysis that is predictive of fecal butyrate included many
forms of cooked potatoes (Figure 4A and B). It’s possible that
potatoes are an underrated source of resistant starch in American
diets.

We found SCFAs to be associated with markers of subclinical
GI inflammation, even in healthy adults. As hypothesized, fecal
SCFAs were inversely related to plasma LBP, consistent with a
recent report of a smaller cohort of healthy adults in a different
region of the United States [60]. The most significant relation-
ship was an inverse association of plasma propionate and MPO,
which is a marker of neutrophil infiltration in the colon. Propi-
onate enhanced colonic regulatory T cells (Tregs) in mice to
prevent colitis [61]. Therefore, we speculate that plasma propi-
onate is a marker of higher exposure of Tregs to propionate,
stimulating those Tregs to inhibit neutrophil infiltration in the
colon.

The diversity, composition, and individual features of the
microbiome were particularly predictive of SCFA abundance and
ratios. Mirroring our findings that SCFA abundance was nega-
tively associated with microbiome α-diversity, healthy controls
participating in a study investigating Parkinson’s disease
exhibited gut microbiome diversity that was negatively corre-
lated with SCFA abundance [62]. Furthermore, many studies
investigating the impact of fiber on the microbiome find no
change in α-diversity or even a decreasing trend [63–66].
Interestingly, we found the average variation in community
composition explained by SCFA abundance to be 1.4% (Sup-
plemental Figure 6B), similar to the average microbiome varia-
tion explained by fiber interventions in a meta-analysis of 12
studies (1.5%) [67].

The most accurate machine learning models utilized micro-
bial taxa to predict SCFA abundance and composition. Although
1 study reported a low R2 for predicting SCFA abundance based
on microbial taxonomy, with the highest R2 (0.14) achieved for
predicting butyrate using genus data [68], our models con-
structed using TaxaHFE-engineered taxonomy yielded higher R2

values in several cases. The most successful model predicted
fecal propionate with a mean R2 of 0.31 (Supplemental Table 3).
Furthermore, we found that many of the features driving these
models were known SCFA producers. For example, Roseburia and
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Lachnospiraceae (containing E. rectale) appeared to be highly
predictive of butyrate ratio in our cohort (Figure 5A and B) and
have previously been established as important butyrate pro-
ducers [69,70]. Species of Roseburia and E. rectale have been
shown to prefer a lower pH environment (5.5), and increases in
pH tend to favor Bacteroides and shift to greater propionate and
acetate production [69]. Indeed, we found the entire phylum
Bacteroidetes and class Negativicutes, another known propionate
producer [71], to be among the top features driving ML or
PERMANOVA models explaining propionate-ratio (Supple-
mental Figure 7). Although these observations align with our
findings, it is worth noting that not all butyrate producers prefer
a low pH. For example, in vitro experiments have shown Anae-
rostipes caccae to prefer higher pH (�5.9) in order to efficiently
convert lactate to butyrate [72]; however, butyrate production
by A. caccaemay also be a function of resource competition [73].
Indeed, the ecology of SCFA production is a complex
cross-feeding web of primary degraders, fermenters, and even
potential pH buffering taxa [71,73]. From a modeling perspec-
tive, Skwara et al. [74] showed that as the community-function
landscape increases in complexity, such as complex
cross-feeding networks, model predictiveness suffers. Thus,
reductionist experiments designed to tease apart these ecologic
parameters are critically necessary to inform future modeling
efforts.

Although we expected to find that increased reads mapping to
known butyrate-producing pathways to be predictive of fecal
butyrate, our ML models suggested otherwise. We found no
correlation between fecal butyrate or butyrate ratio and the
abundance of the acetyl-CoA fermentation to butanoate pathway
or the pyruvate fermentation to butanoate pathway (Supple-
mental Figure 11). Others have noted a lack of correlation be-
tween SCFA functional pathways and the abundance of the
metabolites themselves [75]. Pathways that were predictive of
butyrate ratio included the stachyose and inositol degradation
pathways (Figure 5C; Supplemental Table 4). Foods high in
stachyose include high-fiber staples such as soybeans and
chickpeas [76], and inositol-containing foods include starchy
vegetables, fresh fruit, and stone-ground wheat bread [77]. In a
high-fiber dietary intervention, 1 of the only annotated pathways
that increased in abundance was the inositol degradation
pathway [66]. Thus, the ability to utilize particular carbon
sources may be more important to butyrate synthesis than the
more common butyrate synthesis genes.

Even more predictive of the butyrate ratio was the thiamine
diphosphate biosynthesis pathway iii (eukaryotes). Although
we cannot explain the naming convention of this pathway, we
do note that HUMAnN3 assesses the presence of this pathway
using genes that also appear in bacteria - such as EC 2.7.4.7,
EC 2.5.1.3, EC 2.7.6.2, and EC 3.1.3.-. Furthermore, thiamine
diphosphate is a critical cofactor for the production of butyrate
[78]. Our results show that the taxa containing this pathway,
which also change most in abundance between high and low
butyrate ratio individuals, include R. faecis and Roseburia
intestinalis (Figure 5D). Butyrate-producer R. faecis, in partic-
ular, has been shown to be prototrophic for thiamine, whereas
many other butyrate-producing microbes are auxotrophic
[79]. It is worth noting that although our results show
R. intestinalis contributing to the thiamine diphosphate
pathway abundance, this species appears to be auxotrophic for
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thiamine despite containing all the genes in the pathway [79].
Because the pathway for thiamine diphosphate biosynthesis
was so predictive of butyrate ratio, we then wondered if di-
etary thiamine (from food or supplements) would also be
predictive of butyrate. However, we found no correlation be-
tween dietary thiamine and fecal butyrate-ratio (Supplemental
Figure 12). Thiamine is necessary for many human enzymes
involved in metabolism. As such, it is readily absorbed in the
small intestine, leaving little for the gut microbiota residing in
the colon [80,81]. However, thiamine-producing microbes
appear to produce enough thiamine as a “public good” to
sustain neighboring auxotrophs [82]. Our data suggests that
the combination of butyrate producers and thiamine pro-
totrophs results in a higher fecal butyrate ratio.

Our study has a few notable caveats. First, as an observational
study, ours is not capable of identifying causal relationships
between the biomarkers measured and SCFA abundance or
composition. We also acknowledge that these data represent a
“snapshot” of incredibly dynamic processes. To better test the
hypotheses our study generates, dietary interventions coupled
with longitudinal sampling are warranted. Furthermore,
although we identified significant correlations between SCFAs
and diet or biomarkers, the small degree of these correlations
indicates that further research is needed to establish meaningful
relationships between diet and the physiologic metrics influ-
enced by diet. Finally, although machine learning algorithms
substantially aid our ability to understand complex data, these
algorithms are not without pitfalls [83]. For one, ML models
perform best with a large number of samples – a requirement not
easily met for many human studies, including our own. We uti-
lized feature engineering to reduce the dimensionality of our
data, especially the redundancy of hierarchically organized fea-
tures. Applying hierarchical feature engineering prior to down-
streammachine learning allows us to best understand patterns in
our data but biases the model and reduces its generalizability
due to “data leakage.” As mentioned in our methods, we apply
TaxaHFE to all the data and also solely to the training data
(reduced bias) and present both model scores in an effort to be
more transparent.

Overall, our findings indicate that SCFA production is
dependent on the availability of substrates from specific foods
together with microbes that can use those substrates and syn-
thesize or obtain the necessary enzymatic cofactors. These re-
sults illustrate the complex biology underpinning SCFA
production in the human gut.
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