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ARTICLE

Sources of path integration error in young
and aging humans
Matthias Stangl 1,2,7✉, Ingmar Kanitscheider3,4,7✉, Martin Riemer2,5, Ila Fiete 3,6,8 & Thomas Wolbers2,5,8

Path integration plays a vital role in navigation: it enables the continuous tracking of one's

position in space by integrating self-motion cues. Path integration abilities vary widely across

individuals, and tend to deteriorate in old age. The specific causes of path integration errors,

however, remain poorly characterized. Here, we combine tests of path integration perfor-

mance in participants of different ages with an analysis based on the Langevin equation for

diffusive dynamics, which allows us to decompose errors into distinct causes that can corrupt

path integration computations. We show that, across age groups, the dominant error source

is unbiased noise that accumulates with travel distance not elapsed time, suggesting that the

noise originates in the velocity input rather than within the integrator. Age-related declines

are primarily traced to a growth in this noise. These findings shed light on the contributors to

path integration error and the mechanisms underlying age-related navigational deficits.
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Spatial navigation is a complex behavior that combines many
computations, including the storage and recall of informa-
tion, the integration of information from multiple sensory

and non-sensory brain areas, planning, prediction, and decision-
making. A vital component of navigation-related computations is
path integration — the integration over time of a self-motion
estimate, in the strict sense of vector calculus, to maintain an
updated estimate of one's position and orientation while moving
through space. Critically, path integration also serves as a build-
ing block for cognitive maps1,2, because it allows us to associate
environmental cues with positional estimates, and it plays a key
role in spatial knowledge transfer from cognitive maps to route
knowledge and wayfinding3. As a consequence, deficits in path
integration could not only explain interindividual variability in
navigational performance, but they could also contribute to the
decline of navigational abilities commonly seen in old age4.

Self-motion estimates themselves derive from a sophisticated
pooling over multiple sensory modalities, and rely on proprio-
ceptive and vestibular information, visual optic flow signals (i.e.,
the pattern of apparent motion of objects, surfaces, and edges), as
well as motor efference copies that are produced during move-
ment5. After being processed in their respective low-level sensory
systems, these cues are integrated in brainstem nuclei, as well as
cortical structures, to allow for an overall estimation of angular
and linear movement velocity6–12. The integration of these cues is
an error-prone process, and previous studies have demonstrated
that path integration abilities therefore vary largely across indi-
viduals13–15. However, we have only a limited understanding of
the specific sources of error that may corrupt path integration
computations. In this work, we obtain quantitative measurements
of path integration performance in participants of different ages
and we develop and apply a method to decompose the observed
path integration errors into components that can shed light on
the mechanisms that underlie the observed errors (cf. Brunton
et al.16).

A circuit that functions as a path integrator for two-
dimensional space must do the following: Take as input the
given two-dimensional velocity signal, remember the previous
integrated state, and increment the previous integrated state by
adding to it a quantity proportional to the instantaneous velocity
input. There are thus several natural sources of error: First, the
velocity estimate might be wrong, with systematic bias or
unbiased noise. Second, the integrator might remember its past
states in a leaky way, so that there is a decay of information over
time. Third, the velocity input-based increments might be sum-
med with a scaling or gain prefactor that differs from the value
required to match the instantaneous displacement. Fourth, the
integrator might itself be noisy.

These errors accrue over the course of a spatial movement
trajectory, and the net localization error at path’s end will depend
on the details of the trajectory. Thus, properly modeling and
decomposing these errors requires iteration of a temporal
dynamics, a statistical model that incorporates these dynamics,
and sufficiently rich and varied spatial trajectories in the input
data. One final error arises when a downstream neural circuit or
the human experimenter attempt to obtain a readout or report of
the internal state of the integrator.

Previous path integration models found that errors in path
integration computations might stem from a leaky integration of
self-motion cues, or from a bias in estimating self-motion
speed17–19. These models, however, focused on only a small set of
potential contributors to path integration errors, and they only
tested path integration based on two-dimensional optic flow (i.e.,
automated movements shown on a computer screen). Here, we
aim to build on this previous work, but take into account a
broader range of potential sources of error (i.e., memory decay or

leak, velocity gain bias, additive location bias, accumulating or
constant noise, and reporting errors) and quantify their influence
and importance relative to each other, in order to obtain a more
complete picture of the specific contributors to path integration
performance in humans. Moreover, we use a path integration task
in an immersive virtual reality setup that goes beyond passive
visual path integration and also allows for providing richer body-
based self-motion cues (including vestibular, proprioceptive, and
motor cues), thus enabling an assessment of path integration
performance under more realistic conditions.

Our goal in the present work is not only to understand the
contributors to path integration error, but also to reveal sources
of age-related degradation in navigation performance. Aging has
deleterious effects on path integration ability20–23, with declines
in the triangle completion task — a standard assay of path
integration performance13. Moreover, older adults are less accu-
rate in reproducing travel distances or rotations21–23, and they
exhibit worse path integration performance even if additional
landmark information is available23,24. Despite the sizeable body
of research on losses in path integration performance with age,
very little is known about which specific aspects of the path
integration computation or process are most affected in old age.
This knowledge, however, would significantly advance our
understanding of navigational decline in old age and early
dementia, which could ultimately promote the development of
novel diagnostic tools and rehabilitative strategies to assess and
improve navigational functioning.

To address this important issue, we combine an immersive
virtual reality path integration experiment with a mathematical
approach to reveal the sources of path integration error. We
characterize the different contributors to error across participants,
and study group differences between young and older adults. The
results of these analyses show that path integration errors in
general, as well as age-related path integration deficits, are mainly
driven by accumulating noise that originates in the velocity input
to the path integrator.

Results
Path integration performance across age groups. Young and
older adults experienced a virtual reality environment from a
first-person perspective via a head-mounted display (HMD).
When participants moved in the real world, their poses (locations
and viewing orientations) were tracked using the Vicon Motion
Tracking System (Vicon, Oxford, UK) and translated into
movements (i.e., changes in pose) in the virtual environment,
allowing them to walk around within the virtual world and use
both body-based and visual self-motion cues to estimate their
changing location.

For the path integration task, participants were asked to track
their own position and orientation as they were guided through
this environment by holding onto a baton moved by an
experimenter along 10 distinct pre-defined but unmarked curved
paths (Fig. 1). Each path had four intermediate stopping points, at
which participants were asked to stop and report their estimate of
the direct distance and direction to the path’s starting point. Each
participant performed three repetitions of each path. In addition,
a subset of six paths was performed another three times without
intermediate stopping at the first three stopping points but only at
the path’s end (see “Methods” section for more details).

Most participants showed a characteristic increase in path
integration error over the course of their trajectories (Fig. 2a). We
first pooled path integration errors across individuals, separately
for the group of young and older adults, and evaluated whether
participants’ performance in the path integration task was better
than random guessing. Indeed, estimates of location were highly
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correlated with true location (Fig. 2b; r= 0.64–0.94, all p <
0.00001) while shuffled responses across trials (corresponding to
different trajectories) per stopping point exhibited much larger
squared errors (Fig. 2c).

Dynamical model of errors. Next, we built and fit a temporally
resolved computational model of the participants’ responses to
disentangle different sources of path integration error. Path
integration was modeled as a continuous updating of an internal
location estimate by an integrator receiving a time-varying velo-
city estimate. The process was assumed to be corrupted over time
by the following error sources: underestimation or overestimation
of velocity (velocity gain bias), leaky integration of the velocity
signal (memory decay or leak), an additive bias (AB), and
ongoing zero-mean Gaussian additive noise, which accumulates
and could be interpreted as originating in either the velocity input
to the integrator or within the integrator. In our default “full
model” (Full), the accumulating noise (AN) is naturally inter-
preted as driven by the velocity input, as it accumulates during
the trajectory and in proportion to travel distance, but does not
accumulate during stopping points. In an alternative formulation
that we tested, the noise accumulates over time instead of travel
distance (i.e. it also accumulates during stopping points), and
thus would be more naturally interpreted as internal to the
integrator (as described in more detail below). In addition, we
assume that the participants’ reports of distance and angle to the

starting point are imperfect and corrupted by reporting noise
(RN), with angular and radial components25–28. The mathema-
tical details of the full model and different model variants are
provided in the “Methods” section.

Model parameters per participant were obtained by the best fit
across all paths and trials (Supplementary Fig. 1). The full model
captured not only the magnitude of errors averaged across paths
(Fig. 3a and b), but also predicted the full, time-resolved, signed
errors at different portions of the different individual paths
(Fig. 3c). Note that for the calculation of model predictions on the
group level (Fig. 3b), participants in each age group were
constrained to have the same model parameters, instead of fitting
model parameters individually for each participant; thus, the
variance around the fits includes inter-individual differences.
However, when decomposing different sources of path integra-
tion error and age-related differences, we used models that were
fitted individually for each participant (and we will show below
that this approach provides better model-fit and was best
supported by the data). For this reason, the performance of our
model is best reflected by the fit between model predictions and
empirical data for each participant individually (as shown Fig. 3a
for two example participants, and in Supplementary Fig. 2 for
each participant separately).

We then quantified the support for the detailed structure of the
full model by comparing it to other variants with fewer
parameters or different noise models, such as models where the
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Fig. 1 Path integration task. a Example path from top-down perspective. Participants began at the starting point (green dot) and then walked along the path
(curved black line). There were four stopping points (red dots) along each path; at these points, participants were asked to report their estimate of the direct
distance and angle to the path’s starting point. b During the experiment, participants saw a virtual environment from first-person perspective via a head-
mounted display (HMD). Movements in the real world were tracked with a motion tracking system and translated to movements (i.e., changes in location
and viewing orientation) in the virtual environment. Participants held a wooden stick and were guided by the experimenter along a path. At each stopping
point, the direct distance to the starting point had to be estimated verbally in meters and centimeters, and participants turned their body on the spot to
indicate the orientation to the starting point. c Three different virtual environments (left panel) used in the path integration task. Each environment
comprised a ground plane and distant landmark cues. Landmark cues were rendered at infinity, in order to allow participants to determine their heading
direction, but not position or distance information. One tile of each environment's ground plane is shown in the right panel. These tiles were textured to
provide optic flow during movement, but were seamless (no visible border between adjacent tiles) and provided no fixed cues with positional information.
d Overview of the 10 different paths used in the experiment. Each path contained three turns, and turn directions (i.e., left “L” and right “R” turns) were
counter-balanced between paths. e Participants performed three blocks of the path integration task. Each block consisted of 16 paths (paths #1–10, and paths
#1–6 repeated without intermediate stopping at stopping points 1–3). In addition, after the 4th and 12th path of each block, participants performed so-called
“standardization-paths” (i.e., straight lines with a length of 2, 6, and 10m), which were used to correct for each participant’s bias in converting their internal
location estimate to a verbal response. Text in bold in panel e indicates the phases used for data analyses. See “Methods” section for more details.
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non-reporting portion of the noise remained constant (CN)
instead of accumulating. We considered reporting noise that was
proportional in magnitude to the reported variable, or constant in
magnitude (CRN), or absent. Model comparisons were carried
out using both Bayesian information criterion (BIC) and leave-
one-out cross-validation (LOOCV), which penalize overly rich
models that do not improve prediction performance (Fig. 3d and
Supplementary Fig. 3; see “Methods” section for more details
about different model variants and BIC/LOOCV model
comparisons).

The full model was highly favored (“very strong” evidence in
support, indicated by ΔBIC ≫ 10 or ΔLOOCV ≫ 10) relative to
alternatives, including models with no reporting noise (Full-AN
+CN-AB-RN, Full-RN) or non-accumulating (constant) noise
(Full-AN+CN-AB-RN, Full-AN+CN), consistently across both
age groups (Young: Full vs. Full-AN+CN-AB-RN,
ΔBIC = 36,303; ΔLOOCV= 34,743. Full vs. Full-RN, ΔBIC
= 27,103; ΔLOOCV= 26,089. Full vs. Full-AN+CN, ΔBIC=
2035; ΔLOOCV= 2021. Old: Full vs. Full-AN+CN-AB-RN,

ΔBIC= 30,731; ΔLOOCV= 32,124. Full vs. Full-RN, ΔBIC=
22,579; ΔLOOCV= 23,577. Full vs. Full-AN+CN, ΔBIC=
1963; ΔLOOCV= 1957). Specifically, the full model out-
competed the Full-AN+CN-AB-RN variant, which — with
non-accumulating noise, no additive bias in integration, no
reporting noise, but biased and leaky velocity integration — is
the closest analog to a leading existing model of human path
integration performance17,18.

In addition, we carried out model comparisons using
alternative cross-validation variants, in which (i) we trained the
model on data from all but one trajectory and then tested it on all
trials of the remaining, never-seen trajectory and (ii) we trained
the model on data from only the first three stopping points of
each path and then tested on the never-seen fourth stopping
point (Supplementary Fig. 4). All cross-validation analyses led to
highly similar results, in which the full model outperforms all
other model variants. We therefore conclude that the full model is
the most informative of all tested variants, across many cross-
validation measures.
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To check whether our results might be a consequence of
“overfitting” (i.e., a too close fit of an overly complex model
to a limited set of training data, leading to poor generalization
on unseen testing data), we carried out a quantitative
comparison between training and test error. As shown
in Supplementary Fig. 5, we find that in general, training and
test error are very similar, and in particular, that for any pair
of models the training error of the worse-fitting model is

larger than the test error of the better-fitting model. In
addition, the agreement or consistency between the BIC and
LOOCV results (see Supplementary Fig. 3) would likely not be
as strong if each of their results were due to separate
overfitting. Together, these results demonstrate that the
estimated model fits (and the higher performance of the full
model as compared to other variants) cannot be attributed to
overfitting.
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The full model was also much better supported than the
alternatives when parameters were fit individually for each
participant, even after accounting for the much larger number of
parameters than fitting a common set of model parameters by age
group (Supplementary Fig. 6; Young: ΔBIC= 7412, Old: ΔBIC=
5367). However, the relative preference for an additive bias in the
integrator was inconclusive, and depended on both the
comparison method (BIC and LOOCV) and age group (see
Supplementary Fig. 3).

We next sought to quantify whether accumulating noise in the
integrator is better explained by ongoing noise as a function of
travel distance or elapsed time. In principle, the former would be
a movement-dependent noise that is likely to arise from external
velocity inputs to a neural integrator, while the latter is likely to
arise within the integrator, due for instance to neuronal noise29.
We therefore compared the full model, which assumes the
accumulated noise scales with traveled distance, with the “time
model” variant that assumes a scaling with elapsed time, and
found much stronger support for the full model across both age
groups (Fig. 4a and Supplementary Fig. 7; Young: ΔBIC= 194,
ΔLOOCV= 222; Old: ΔBIC= 525, ΔLOOCV= 533).

More directly, we compared total error on trajectories in which
participants stopped versus did not stop at intermediate stopping
points. Participants completed 48 paths in total, out of which 18
involved a stop only at the endpoint; in the remaining 30 paths,
participants also stopped at three intermediate stopping points to
report the distance and angle to the starting point (see “Methods”
section for more details). Since the different paths had a very
similar total length (17.7 ± 0.1 m, mean ± SD), the total travel
distances were similar over stopping and non-stopping trajec-
tories, but the travel times differed substantially (88.7 ± 12.4
versus 35.2 ± 3.9 s, mean ± SD). Nevertheless, path integration

errors were very similar for stopping and non-stopping
trajectories (Fig. 4b), indicating that errors were mainly
determined by the traveled distance instead of elapsed time,
and therefore suggesting that the dominant source of accumulat-
ing noise is in the velocity inputs rather than within the
integrator.

Walking speed during the path integration task was quantified
by traveled distance (as measured with the Vicon motion tracking
system) divided by elapsed time between a path’s starting point
and each stopping point. Given that paths had similar total
lengths, the time-scaling model would predict a negative
correlation between walking speed and path integration error:
walking faster permits faster completion of the trajectory.
However, we found little evidence for such negative correlation
in the data (Fig. 4c).

We next used the full model to assess the relative importance of
the different sources of error during the task. To do so, we
calculated the relative influence of each bias and noise parameter
on the predicted square error (see “Methods” section for more
details). We found the largest influence on total squared error to
be from accumulating unbiased noise (50–55%) and the velocity
gain bias (25–26%), followed by radial (14–15%) and angular
(12–13%) reporting noise (Fig. 3e). In contrast, the influence
of both additive bias and memory leak were very small (<3%),
suggesting that the integrator itself is well-tuned to eliminate
leak and internal bias, and that the errors are due to velocity
misestimation, with contributions from both an unbiased
ongoing noise and a biased multiplicative gain in
estimating speed.

Note that the result that the largest contribution to the error in
the full model is from accumulating noise (Fig. 3e) does not
contradict the result that the introduction of reporting noise
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Fig. 4 Time-scaling versus distance-scaling of accumulating noise. a Model comparison using LOOCV between the full model with accumulated error
proportional to total travel distance versus total time in trajectory. For both age groups, the full model is better supported by the data. Higher bars indicate
poorer model-fit. *** Denotes “very strong” evidence against the model with poorer fit (ΔBIC or ΔLOOCV ≫ 10; see “Methods” section on model
comparison, and Supplementary Fig. 7). b Average path integration error at the last stopping point, in trials with and without intermediate stopping points.
The path integration error is very similar even though trials with stopping take much more time, indicating that the path integration error mainly scales with
distance rather than time. Error bars indicate mean ± SEM (young adults: n= 540 trials without stopping vs. 900 trials with stopping; older adults: n= 468
trials without stopping vs. 780 trials with stopping). c Walking velocity versus path integration error for trials with and without stopping and for both age
groups.
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causes the largest increase in model fit (Fig. 3d). Intuitively,
Fig. 3d can be interpreted as a measure of “error shape”, namely
how different sources of error grow with traveled distance and
distance to the starting point, while Fig. 3e measures “error size”
in the context of the full model. In models without reporting
noise, all errors have to be fit by a single noise source of incorrect
shape, which causes the large discrepancy in Fig. 3d.

Age-related differences in path integration. Older adults per-
formed less well in the path integration task compared to young

adults. Absolute path integration errors were significantly higher in
older adults by the first stopping point, and continued to be higher
at all subsequent stopping points along the path (Fig. 5a; stopping
point #1: p= 0.016; #2: p= 0.004; #3: p= 0.005; #4: p= 0.005).
Moreover, incremental path integration errors or the gain in error
between adjacent stopping points (pooled over all stopping points;
see “Methods” section for more details) were significantly higher for
older relative to young adults (Fig. 5b; p= 0.001).

In order to test whether the age effect in path integration
performance might be driven only by a few particularly high or
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Fig. 5 Path integration in older versus young adults. a On average, older adults showed a higher absolute path integration error than young adults at all
stopping points. Blue and orange shaded lines indicate group mean ± SEM, error bars indicate SD. b The incremental path integration error (i.e., the
additional contribution to the path integration error for each segment between adjacent stopping points), averaged across stopping points, was higher for
older than young adults (p= 0.001). c Model parameter values, averaged over participants of the same age group. Parameter values for leak, accumulating
unbiased noise, and additive bias were significantly higher in older relative to young adults. Individual parameter values for single participants are shown in
Supplementary Fig. 1. d Each model parameter’s contribution to the absolute square error, averaged over participants of the same age group. Only the
accumulating unbiased noise resulted in a significant difference in error contribution between age groups. A parameter’s contribution is calculated by
measuring the reduction in square error when setting the parameter to its ideal value corresponding to unbiased, noiseless integration; note that due to the
non-linearity of the model a parameter's contribution can be negative (see “Methods” section for more details). Dots indicate data for individual
participants. Error bars in panels b–d indicate mean ± SEM (n= 30 young vs. 26 older participants). * Denotes a significant difference between age groups
(p < 0.05) in a one-sided permutation test with 10,000 permutations.
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low performing individuals, we compared incremental path
integration performance between young and older adults in a
reduced dataset, in which we excluded the data for the best-
performing and worst-performing individuals in each group. Path
integration performance remained significantly different between
young and older adults after excluding participants with the 10%
highest and 10% lowest path integration performance (p < 0.001),
and this age effect still persisted after excluding the best and worst
20% of each age group (p < 0.001). Moreover, young adults
showed a significantly higher path integration performance
relative to a subset of older adults, in which we excluded those
older adults who ranged within the 10% or 20% lowest path
integration performance (10%: p= 0.012; 20%: p= 0.034),
suggesting that the performance difference between young and
older adults is not driven by a number of particularly impaired
older adults.

We also checked whether differences in head movements
during walking, which affect vestibular motion estimation, might
have impacted our results (Supplementary Fig. 8). We found that
the degree of head movement was not significantly different
between age groups (p= 0.540), and that head movement was not
correlated with individual path integration performance across
both young and older adults (r= 0.107, p= 0.354), or within
individual age groups (old: r= 0.168, p= 0.401; young: r=
−0.054, p= 0.776). We therefore conclude that head movement
during walking did not have a significant impact on path
integration performance within and across age groups.

Next, we compared participants’ average angular velocity
between young and older adults and found that angular velocity
was not different between age-groups (Supplementary Fig. 9A;
p= 0.267). In addition, we tested whether within-subject
variations in angular velocity across path segments might have
affected our results. For each participant separately, we performed
a median-split of all path segments based on the angular velocity
along each segment. We tested whether participants showed
higher or lower path integration errors on path segments with
high versus low angular velocity (Supplementary Fig. 9B and C),
but found no such performance differences, for all participants
(p= 0.302), or separately within the group of young (p= 0.485)
or older adults (p= 0.250). These results suggest that our results
cannot be driven by variations in angular velocity between or
within participants.

Finally, to determine the underlying reason for the differential
performance of older and young adults, we fit our computational
model parameters individually across participants, and then
compared the extracted parameters between age groups. Older
adults had a significantly larger additive bias (p= 0.001), a
significantly larger amount of accumulating noise (p= 0.018),
and greater memory leak (p= 0.035) than young adults (Fig. 5c).
However, some of these parameters had only a small overall
contribution to the total error; comparing each parameter’s
contribution to overall path integration error between age groups
revealed that only the accumulating noise (p= 0.012) had a
significantly higher contribution to error in older relative to
young adults (Fig. 5d), suggesting that velocity estimation
degrades in relatively unbiased ways, to become noisier in older
relative to young humans.

Discussion
We used an immersive virtual reality path integration task in
which young and older adults tracked their own pose (position
and orientation) using visual and body-based motion cues while
traveling along sinuous paths. Simultaneously, we developed a
powerful analysis approach based on stochastic differential
equations (the Langevin equation) to decompose path

integration errors into temporally resolved gain, leak, bias, as
well as noise terms, and to estimate, on a trial-to-trial basis at
different times along the path, how these different sources of
error contribute to the location estimation error. In addition to
sources of accumulating error, the analysis also included the
possibility of errors in generating an explicit report of an internal
estimate of the displacement vector, as participants are asked to
provide (at each stopping point). We performed mathematical
inference of model parameters using an approach based on the
extended Kalman filter (EKF). Disentangling the different sour-
ces of error allowed us to compare their influence on path
integration errors across participants and between age groups.
With this approach, we show that path integration computations
are mainly corrupted by accumulating noise that mainly origi-
nates in the velocity input to the path integrator, and that an
increase in this noise with age accounts for the majority of age-
related path integration deficits. Existing path integration models
(e.g., Lappe et al.17,18 and Lakshminarasimhan et al.19) sought to
explain path integration errors when participants indicated the
magnitude of their displacement along straight or curved out-
bound paths. Their results suggested that path integration may
be mainly corrupted by leaky integration or biased velocity
estimation. By contrast, we find that the dominant error in
estimating two-dimensional displacement vectors comes from
unbiased noise; systematic biases in leak and velocity gain con-
tribute only modestly to total error. This difference in our results
compared to previous findings might be explained at least by two
ways in which the setups differ: First, the studies use different
models to decompose error. All observed errors in previously
applied path integration models were decomposed into a small
number of terms (such as leak and velocity gain bias). A com-
mon problem that occurs when using models with less finely
parsed error terms, is that a single error term might catch and
contain other unmodeled sources of error. It is possible that the
memory leak term in the simpler models of previous reports
might have acted as a “catch-all” error term, which has, in turn,
led to a belief that factors such as memory leak are major con-
tributors to path integration errors. Our model built on this
previous work but allowed for a range of additional parameters,
most notably accumulating noise and reporting errors in addi-
tion to different bias factors, permitting richer possible inter-
pretations of the contributors to the total error. To address
whether the richer model is justified by the data, we performed
Bayesian model comparison and cross-validation, and showed
that the richer model exhibits better performance on unseen data
than a range of simpler variants. Thus, it is implausible that
participants exhibit substantial biases in velocity gain that were
not discovered by the analysis model. Our results therefore
suggest that sources of error that have been previously thought to
play an important role (i.e., leaky integration and biased velocity
estimation) may be less important than assumed, particularly in
comparison to unbiased accumulating noise that was not inclu-
ded in previous models. Second, the participants in Lappe
et al.17,18 and Lakshminarasimhan et al.19 formed motion esti-
mates based only on optic flow during automated movements
shown on computer or projection screens. In contrast, partici-
pants in our study actively walked in an immersive virtual
environment with body-based self-motion cues including ves-
tibular, proprioceptive and motor signals. In rodent studies,
when motion cues are less rich (e.g., passive transport on trolleys;
head-fixed animals in virtual environments), displacements are
underestimated and firing of spatially selective cells is atte-
nuated30–34, suggesting that a decreased availability of sensory
motion cues in Lappe et al.17,18 and Lakshminarasimhan et al.19

may account for the dominant contribution of a velocity esti-
mation bias in their findings.
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Previous work35,36 has considered the possibility that people
learn and subsequently exploit information about regularities in
the tasks they must perform. In a Bayesian interpretation, this
information can be incorporated into prior assumptions or biases
on the values that variables and parameters can take. Participants
have likely not performed the tasks we designed enough times to
form useful priors to improve task performance over naive path
integration, and the tasks have little repeatable or regular struc-
ture to be exploited. Nevertheless, the ability of our analysis
method to isolate different sources of error and their impact on
individual path integration performance can enable future studies
to investigate the existence or learning of biases, including ones
related to a priori assumptions about the structure of the world.

Our discovery that path integration errors in (both young and
older) human participants are mainly explained by an unbiased
noise — resulting in a random diffusion of the estimated loca-
tions away from their true values — suggests that both velocity
estimation and integration are well-tuned to be fairly unbiased
processes, i.e. that velocity is estimated with a gain near unity, and
that integration is largely non-leaky. The unbiased noise must
arise at some stage along the path integration process, and thus
could in principle arise within the integrator, for example due to
neuronal noise within the brain’s path integration circuit29,37–41.
Alternatively, accumulating noise might arise from external
velocity inputs to a neural integrator, which is likely to have a
more diffuse origin in the sensing and sensory processing systems
that extract velocity estimates from diverse sensory cues across
the visual, vestibular, and proprioceptive pathways12,42,43. To
refine our understanding of the origin of noise in the integration
pathway, we compared the default version of our model, in which
the unbiased path integration noise accumulates with the travel
distance along a trajectory, with a model variant with time-scaling
of this noise. If the noise originated within the integrator, we
would expect its accumulating variance to scale with elapsed time,
whereas it is expected to scale with traveled distance if it origi-
nates outside the integrator (e.g., due to noise in the sensory
systems or processing of sensory information). Direct compar-
isons between these two models showed that internal path inte-
gration noise mainly scales with traveled distance rather than
elapsed time. This finding suggests that the main part of the
accumulating noise in the path-integrated location estimate might
stem not from noise intrinsic to the path integrator, which would
tend to accumulate over time regardless of input, but from the
sensing or sensory processing systems that compute self-motion
estimates, and whose estimates must be noisy. Together with
similar findings in non-spatial44 and spatial integrators45,46, these
results suggest an emerging principle in the neurobiology of
integrators: that the dominant source of noise in the output of
neural integrators originates in their inputs rather than from
within the integrator circuit. This finding does not exclude,
however, that there might still be a smaller contribution of
internal neuronal noise, as suggested by previous studies47,48.

The present work also shows that path integration performance
is consistently reduced across healthy older adults as compared to
young adults, which is widely in line with previous studies21–24,47.
Further, we were able to determine the dominant sources of error
in older adults and thus determine which of the sources of error
in young adults is most magnified as people age. Comparing the
components of error in young and older adults revealed a sig-
nificantly higher magnitude of unbiased noise in path integration
computations of older adults, while other sources of error were
not significantly different between age groups. In other words, the
biggest source of error already present in young adults — accu-
mulating unbiased noise likely arising from imperfect velocity
estimation but possibly with some additional contributions of
noise internal to the integrator — is further magnified in aging

adults, while the smaller sources of error are not significantly
compromised with age. Notably, older adults do not appear, at
least in our experimental setup, to acquire major additional biases
in their speed estimates or become substantially more inaccurate
in their reporting of their internal location estimates. Rather,
what is already the most fragile part of the path integration
process in younger adults is also most affected with aging.

Together, we have shown here that path integration error in
both young and older adults is mainly caused by accumulating
unbiased noise, whereas other error sources contribute only
modestly to total error. Moreover, we found that this noise is
further magnified in older adults, and therefore accounts for the
majority of age-related path integration deficits. Given the
importance of path integration computations for cognitive
mapping and spatial navigation more generally, these findings not
only advance our understanding of the specific contributors to
path integration error, but may also shed light on the mechanisms
that underlie navigational decline in old age.

Methods
Participants. Sixty-two healthy humans took part in this study. They had no
reported history of neurological or psychiatric disease and no reported motor
deficits during normal walking or standing. All participants reported right-
handedness and had normal or corrected-to-normal eyesight.

Informed consent was obtained from all participants in writing before the
measurements, and the experiment received approval from the Ethics Committee
of the University of Magdeburg.

Prior to the study, all participants underwent the Montreal Cognitive
Assessment (MoCA) screening tool for mild cognitive impairment49. Six older
adults who did not exceed a MoCA cut-off score of 23 (following Luis et al.50) were
excluded from the study and did not participate in any further measurements.
Consequently, the data of the remaining 56 participants was used for data analyses:
The group of young adults consisted of 30 participants (15 woman, 15 men) aged
between 19 and 26 years (mean= 22.0, SD= 2.0 years), whereas the group of older
adults consisted of 26 participants (13 woman, 13 men) aged between 62 and 78
years (mean= 69.0, SD= 4.6 years).

Path integration task. Each participant’s path integration performance was
measured using a behavioral path integration task, in which they had to track their
own position during movement along pre-defined sinuous paths.

In commonly used path integration tasks for humans, such as the triangle
completion task13,20–23,51, participants traverse a path and only estimate the
distance and direction to the starting location at the end of the path. In the current
study, we used a task in which participants were asked at four different points along
the path to estimate the distance and direction to the path’s starting point (Fig. 1a).
Multiple distance and direction judgments per path were used for three reasons:
First, it results in a larger number of data points (i.e., participant responses) in a
similar amount of time, enabling a more reliable estimation of path integration
errors. Second, it allows us to characterize the accumulation of the path integration
error along longer and more complex paths. Third, responses from multiple points
along the path can allow for a more precise estimation of path integration errors.
Specifically, when complex paths are used, a participant may become disorientated
in some trials as they move along the path, and the chances of this occurring
increase with the distance traversed. When only one response is collected at the end
of the path, as per the traditional triangle completion task, the participant’s
estimate would be random and not provide a valid quantification of path
integration performance. In contrast, our task samples from multiple points along
the path meaning that, even if the participant has become disorientated at the
path’s end point, there are still other data points earlier in the path that provide
more accurate estimates of path integration performance.

A central assumption of our analysis is that participants track and use self-
motion cues to continuously update their internal estimates of pose. However, path
integration performance can also rely on a “configural strategy”, in which
participants store the configuration of a path (i.e. segment lengths and turn angles)
and only compute a homing response when required52. This strategy is often
observed when the outbound path can be easily segmented into turns and
distances — such as in the triangle completion task — and it can induce systematic
biases such as a tendency to regularize turns and distances to canonical values (e.g.,
isosceles triangles or right-angle turns53). To eliminate these confounds, we used
irregularly shaped sinuous paths, in which translations and rotations were
combined into curved trajectories. In addition, we asked participants to report their
internal estimates of the homing vector at intermediate stopping points. These
strategies strongly encourage participants to continuously update their
displacement estimates based on motion cues over the task.

Prior to the task, participants received written information about the task, and
completed several practice paths. Participants donned a HMD (Oculus Rift
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Development Kit 2, Oculus VR LLC, www.oculus.com), so that they could not see
anything outside the HMD. During the task, participants wore earmuffs in order to
prevent them from hearing any background sounds. Furthermore, they were
instructed to immediately inform the experimenter if they noticed any external
cues that could help them to orient during the task (such as hearing, seeing, feeling,
or smelling something).

During the task, participants held a wooden stick and were guided by the
experimenter along a path (Fig. 1b). At each of four stopping points along the path,
the distance to the starting point had to be estimated verbally in meters and
centimeters, and participants turned their body on the spot to indicate the
orientation to the starting point. The orientation information for data analysis was
derived from the HMD, which enables rotational tracking by a gyroscope, an
accelerometer, and a magnetometer, and provides information about orientation
per timepoint in three dimensions (yaw, pitch, roll), with a rotational update rate of
1000 Hz. For our analysis of participants’ path integration performance, we used
their orientation in the horizontal plane (yaw dimension).

Via the HMD, participants saw a virtual environment, which consisted of a
ground plane and distant landmark cues (Fig. 1c). The ground plane was designed
to provide optic flow information during movement, but did not contain any fixed
reference points or landmark cues. The distal landmarks were rendered at infinity,
so that participants could use them only to determine their heading direction but
not their position or any distance information. Note that rendering landmarks at
infinity was essential for our study, because if landmarks would provide positional
and distance information, then participants would not need to path-integrate in
order to determine their displacement, but they could simply use these landmarks
(rather than self-motion cues) for localization. A setup in which landmarks were
not rendered at infinity, would therefore not necessarily involve path integration
computations, but would target a different cognitive/computational process.

The exact pose (locations and viewing orientation) of a participant was tracked
in steps of 100 ms (10 Hz) throughout the task using the Vicon Motion Tracking
System with 12 cameras of type T10 (Vicon, Oxford, UK). The participant’s
viewpoint within the virtual environment was constantly updated depending on
their actual position and movement, so that participants could actively walk around
in the virtual environment. Consequently, in order to keep track of their own
position relative to the path’s starting point, participants could use both body-
based and visual self-motion cues to perform the path integration task. Specifically,
body-based self-motion cues included proprioceptive and vestibular
representations, as well as motor efference copies that are produced during
movement, whereas visual self-motion cues included optic flow information from
the virtual environment and directional information from the environment’s distal
landmarks5.

There were 10 different pre-defined paths (Fig. 1d). Coordinates for each path
were defined as follows: First, a four-legged path was created that comprised four
distances and three turning angles between them. Each distance was either 2, 3.5, 5,
or 6.5 m, and each angle was either 55°, 80°, or 105° to the left or to the right.
Various combinations of distances and angles were used, that fit into a rectangular
area of approximately 10×8m (given by the tracking area and size of the room in
which the experiment took place). On the basis of these four-legged paths, we then
created curved paths without corners by using the cscvn-function of MATLAB’s
curve fitting toolbox to calculate a natural interpolated cubic spline curve passing
through the turning points of the four-legged path.

Six paths comprised a mixture of left and right turns, respectively (see Fig. 1d,
path numbers 1–6). Two additional paths (path numbers 7 and 9) only comprised
right turns or left turns, respectively, and these two paths were present also in their
mirrored version (i.e., the path that had only left turns was present also in its
mirrored version comprising only right turns, and vice-versa). Directions (left vs.
right) of the three turning angles per path were counter-balanced between the
different paths.

Critically, the experimenters ensured that participants did not see the real
physical dimensions of the testing room and the paths before and during the
experiment, by guiding the participants into the room only after they had donned
the HMD.

Participants completed the path integration task in three blocks. Within each
block, participants performed each of the 10 paths one time and, in addition, they
performed the paths 1–6 (the ones which had both left and right turns) another
time without stopping at the first three stopping points but only at the end of the
path (i.e., only at stopping point 4). Consequently, each participant performed 16
paths per block (i.e., 48 paths in total: 30 with and 18 without intermediate
stopping). The order of paths was pseudo-randomized, but the same order was
used for all participants. There were always at least three different paths between
repeated instances of the same path. The virtual environment was different in each
block (see Fig. 1c) and the order of environments was randomized across
participants. Across the three different environments, the ground planes had
identical textures (i.e., visual patterns) and differed only in color.

After the 4th and after the 12th path of each block, participants completed three
so-called “standardization paths”, which were needed for data analysis in order to
correct each participant’s distance estimate for their ability in verbally reporting
distances using meter/centimeter units (see “Methods” section on “Calculation of
path integration errors”). The procedure during a standardization path was similar
as during a normal path, but a standardization path had only one start point and
one stopping point, which were connected by a straight line, and participants had

to estimate the distance between starting and stopping point. Three different
distances had to be estimated in the following order: 10, 2, 6 m. Moreover, there
were short breaks in the middle of each block and between blocks. Figure 1e gives
an overview over the procedure for each block.

After completing the task, participants filled out a form in which they were
asked whether they noticed any external cues that could have helped them to orient
during the task (such as hearing, seeing, feeling or smelling something), but no
participant reported such confounding sources of information. Further, all
participants were asked whether they had recognized that some paths were
repetitions of each other, but no participant did.

The path integration task was developed using the WorldViz Vizard 5.1 Virtual
Reality Software (WorldViz, Inc.; www.worldviz.com). The virtual environments
were designed using Autodesk 3ds Max 2014 (Autodesk, Inc.; www.autodesk.com).

For a discussion of the ecological validity of our path integration task, and its
relevance for everyday navigation in the real world, please see Supplementary
Note 1.

The authors affirm that human research participants provided informed
consent for publication of the image in Fig. 1b.

Calculation of path integration errors. At every stopping point of a path, par-
ticipants had to estimate the distance to the path’s starting point verbally in meters
and centimeters. Converting an internal estimate of location to a verbal estimate is
known to be biased25. Here we assume that the bias is multiplicative. To measure
the bias, we ask participants to walk on straight standardization paths of length 2,
6, and 10 m and to report verbally the distance to the starting point. The correction
factor for the bias is then given by

fcorr ¼
dcorrect
dresponse

where dcorrect is the correct distance of the standardization path (2, 6, or 10 m,
respectively), dresponse is the responded distance, and fcorr is the resulting correction
factor. For each participant, this led to three different correction factors, one each
for shorter (derived from the 2 m standardization path), middle (derived from the
6 m standardization path), and longer distances (derived from the 10 m standar-
dization path). These factors were used to standardize the distance estimates this
participant reported at normal paths: Whenever the participant’s response distance
of a normal path was between 0 and 4 m, the response was multiplied with the
correction factor for shorter distances, whereas response distances between 4 and 8
m were multiplied with the correction factor for middle distances, and response
distances larger than 8 m were multiplied with the correction factor for longer
distances.

While this approach to standardize verbal distance estimates has been
established earlier47, here we extended this approach, and also tested whether
verbal estimates after walking along a straight standardization path directly
correspond to verbal estimates after walking along curved paths during the task,
both within and across different age groups. As shown in Supplementary Fig. 10,
participants’ distance estimation performance was not significantly different
between task and standardization paths, suggesting that distance estimates (i.e., the
error and noise in verbally estimating distances) during standardization paths
correspond in magnitude to verbal distance estimates in the path integration task,
both for young as well as for older adults. Moreover, it is evident that older adults
on average tend to show more undershooting in their distance estimations; hence it
was critical to standardize participants’ response, in order to allow an unbiased
comparison between young and older adults.

This standardization procedure was done for each block-half separately, in
order to ensure that standardization was performed using an up-to-date correction
factor that also accounts for potential temporal changes of a participant’s
perception of meter/centimeter units that might occur over the course of the
experiment: Responses for the first half of each block (1st path to 8th path) were
standardized using correction factors from the first set of standardization paths
(i.e., carried out after the 4th path of a block), whereas responses for the second half
of each block (9th path to 16th path) were standardized using correction factors
from the second set of standardization paths (i.e., carried out after the 12th path of
a block).

At each stopping point, the responded distance (multiplied with the respective
correction factor fcorr) and orientation was used to calculate the “presumed starting
point”. The x and y coordinates of the presumed starting point according to the
participant’s response were calculated by

xpresumed ¼ xstop þ dstandardized* cosðoriresponseÞ
ypresumed ¼ ystop þ dstandardized* sinðoriresponseÞ

where dstandardized is the standardized response distance, and oriresponse is the
responded orientation. xstop and ystop are coordinates of the stopping point,
xpresumed and ypresumed are the resulting coordinates of the presumed starting point.

To calculate the so-called "absolute" path integration error Errabs, we then
calculated the Euclidean distance between the presumed starting point and the path’s
correct starting point by:

Errabs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxpresumed � xoriginÞ2 þ ðypresumed � yoriginÞ2

q
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where xorigin and yorigin are the x and y coordinates of the path’s correct starting point.
According to this method, each absolute path integration error reflects the error that
occurred between the path’s starting point and the respective stopping point (i.e., at
stopping point 1 it reflects the error between the starting point and stopping point 1; at
stopping point 2 it reflects the error between the starting point and stopping point 2;
and so on). Accumulation of this error measure (i.e., absolute path integration errors)
across all available stopping points, however, would lead to an overrepresentation of
errors that occurred on early path segments (because these errors would be included
for both earlier and later stopping points).

In order to allow for accumulation of path integration errors across stopping
points, we therefore also used an alternative method to calculate the so-called
“incremental” path integration error Errinc. For a given stopping point, the
Euclidean distance between the presumed starting point (according to the
participant’s response at this respective stopping point) and the previously
presumed starting point (according to the response at the previous stopping point)
was calculated by

Errinc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxpresumed � xprevPresumedÞ2 þ ðypresumed � yprevPresumedÞ2

q
where xprevPresumed and yprevPresumed are the x and y coordinates of the previously
presumed starting point (according to the response at the previous stopping point).
Note that the previously presumed starting point at stopping point 1 is the correct
starting point of the path (i.e., xprevPresumed= xorigin and yprevPresumed= yorigin).
Consequently, this measure of the path integration error reflects only the
incremental error that occurred on the latest path segment before the stopping
point, but does not include the error that occurred on earlier segments of the same
path. More specifically, at stopping point 1 it reflects the error that occurred
between the starting point and stopping point 1, at stopping point 2 it reflects the
error that occurred between stopping point 1 and stopping point 2 (not including
the error between the starting point and stopping point 1), and so on. This method
of calculating the path integration error allows, for each individual participant, to
aggregate all error measures from all available stopping points, because each
incremental path integration error measure includes only the incremental (i.e.,
unique) error contribution of one path segment.

Computational modeling. The computational model we use differs from previous
models of path integration error (e.g., Lappe et al.17,18) in several ways: First, we
use time-resolved models in which moment-by-moment errors during a trajectory
can interact with the moment-by-moment unfolding of the trajectory, and detailed,
signed errors can be predicted over time. The richer model allows us to distinguish
a large number of sources of noise and bias, and take into account reporting errors
in which participants are only able to report an imperfect representation of their
internal location estimates. Unlike previous models that fit path integration biases
using trial-averaged data by minimizing the mean square error17,18, we model both
biases and variances using a well-defined log-likelihood. This approach has several
advantages: We can fit a more heterogeneous dataset where each trajectory is only
repeated a few times, location estimates are weighted inversely proportional to the
model-predicted variance (mainly influenced by the traveled distance), making the
fit less biased and more data-efficient, and the log-likelihood allows a systematic
model-comparison using cross-validation and BIC.

We assume that each participant continuously updates an internal, two-
dimensional estimate x̂ tð Þ of his or her location x(t) using an estimate of the true
walking velocity v(t). The update process is compromised by memory decay β,
velocity gain α, additive bias b, and Gaussian noise ξ(t) with standard deviation σ0
(where ξ(t) is normally distributed Gaussian noise) according to the following
diffusion Langevin equation (note that bold-faced letters refer to two-dimensional
vectors):

dx̂ tð Þ
dt

¼ �βx̂ tð Þ þ αv tð Þ þ bþ σ0ξ tð Þ ð1Þ

The parameters can be interpreted as follows:

● Memory decay or leak β: If β= 0, then x̂ tð Þ is the non-forgetful or perfect
integral of the right-hand-side of the equation. If β > 0, then x̂ tð Þ will have
forgotten about inputs v(t−τ) with τ≫ 1/β, thus the process is referred to as
“leaky integration”.

● Multiplicative velocity gain or bias α: A value α > 1 corresponds to a systematic
overestimation of displacement given velocity v(t), while a value α < 1
corresponds to an underestimate. Correct displacement estimation occurs
when α= 1.

● Additive bias b: Specifies the bias direction along which the location estimate
is pulled over time. Zero bias corresponds to b= 0.

● Accumulating noise that is unbiased and additive with standard deviation σ0:
This noise can be interpreted to originate from a noisy integrator, a noisy
velocity estimate input, or a mixture of both, depending on whether it adds up
over time regardless of travel speed or if it scales with speed. Non-noisy
velocity estimation and integration occur when σ0= 0

In our “full model”, we assume that the noise accumulates during displacements
and thus grows in proportion to the travel distance. Therefore, the instantaneous

value of σ0 is taken to be proportional to the square root of the instantaneous
velocity magnitude (speed) |v(t)|. We consider variants in which this noise instead
accumulates with elapsed time, independent of speed (see below). In a different
variant, with constant noise (CN), noise does not accumulate at all but an overall
unbiased Gaussian noise term whose total variance by the end of the trajectory does
not scale with travel distance or time is added to the model estimate (described in
more detail below). Within the accumulating noise models, the choice of an
accumulating noise that scales with travel distance that we use in the full model, is
better supported by our data (see “Results” section and Fig. 4a).

Within the full model, we additionally assume that the subjects’ reports of
estimated distance and angle to the starting point are corrupted by reporting
noise25–28. Given an internally estimated distance d and angle φ, we assume that
the reported distances d̂ and angles φ̂ are given by

d̂ ¼ exp log dð Þ þ σdηd
� �

φ̂ ¼ φþ σφηφ
ð2Þ

where σd and σφ are standard deviations of distance and angular noise, ηd is
normally distributed distance noise, and ηφ is normally distributed angular noise.
The parameterization of the distance reporting noise is chosen such that for fixed σd,

the magnitude of the reporting error d̂ � d
��� ��� increases approximately linearly with d

“proportional or Weber-like reporting noise”, in line with Weber’s law25,54–58. We
find empirically (see “Results” section and Fig. 3d) that this Weber’s law-type
parameterization of the distance reporting error captures the data better than a
linear parameterization, which we refer to as “constant reporting noise” (CRN).

Participants report their location estimates only at stopping points after moving
along path segments. Before we can fit our model parameters to those estimates we
first need to integrate the stochastic differential equation (1) along segments, a
calculation that can be performed analytically because Eq. (1) describes an
Ornstein–Uhlenbeck process59,60. Assuming that participants walk along a
trajectory segment for time t with constant velocity v, the conditional distribution
of the internal location estimate x̂sþ1 at the stopping point s+ 1 given the estimate
at the previous stopping point x̂s is given by the Gaussian distribution:

p x̂sþ1jx̂s
� � ¼ N x̂sþ1jμsþ1; σ

2
sþ1I2

� �
where I2 is the two-dimensional unity matrix and mean μs+1 and variance σ2sþ1 are
given by

μsþ1 ¼ x̂se
�βt þ αv þ b

β
1� e�βt
� �

σ2sþ1 ¼
σ20
2β

1� e�2βt
� � ð3Þ

This update equation for the distribution of internal estimates can also be
expressed in terms of the true length |Δx| of the trajectory segment:

μsþ1 ¼ x̂se
�~β Δxj j þ ðα Δx

Δxj j þ
~bÞ 1

~β
ð1� e�

~β Δxj jÞ

σ2sþ1 ¼
~σ20
2~β

ð1� e�2~β Δxj jÞ
ð4Þ

where we have rescaled three of the original parameters by the magnitude of the
walking velocity |v|:

~β ¼ β

vj j
~b ¼ b

vj j ~σ20 ¼ σ20
vj j ð5Þ

Equations (3) and (4) are equivalent if the walking velocity |v| is truly constant
across trajectory segments and trials. If the walking velocity does vary, holding the
transformed parameters (5) fixed assumes that the path integration error of the
internal location estimate mainly depends on the traveled distance, whereas the
original model (3) assumes that the path integration error mainly depends on the
elapsed walking time. In what follows, we will choose the distance model and hold
the transformed parameters (5) fixed, in line with previous modeling of human
path integration17,18. We also explicitly test that the distance model is better
supported by the data than the time model (see “Results” section and Fig. 4a).

Model fitting without reporting noise. For our full model without reporting noise

(Full-RN), we explain here how the parameters θ ¼ ~β; α; ~b; ~σ20

� �
related to inte-

gration and κ ¼ σ2d ; σ
2
ϕ

� �
related to reporting were fit to participants’ performance

by maximizing the likelihood. For simplicity, consider first a model without the
reporting noise parameters κ. In this case the internal location estimate x̂s can be
directly expressed in terms of participants’ report of the distance d̂ and angle bφ to
the starting point xstart of the current walking trajectory:

x̂s ¼
d̂ cos bφð Þ
d̂ sin bφð Þ

 !
þ xstart ð6Þ
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Without loss of generality we will set xstart= 0. The log-likelihood of the data
averaged over trials is given by

LLκ¼0 θð Þ ¼
X3
s¼0

log p x̂sþ1jx̂s; θ
� �* +

trials

¼
X3
s¼0

log N x̂sþ1jμsþ1 x̂s; θð Þ; σ2sþ1 θð Þ� �* +
trials

ð7Þ
where μsþ1 x̂s; θð Þ and σ2sþ1 θð Þ are given by the expressions in Eq. (4). We then fit θ
to the data by maximizing the log-likelihood numerically:

θML ¼ argmaxθLLκ¼0 θð Þ ð8Þ

Model fitting with reporting noise. For our full model with reporting noise (Full),
the expression for the log-likelihood as a function of Θ=(θ, κ) is more involved,
since the relationship between the reported estimates d̂ and bφ and the internal
location estimate x̂s is both stochastic and non-linear. We can nevertheless make
progress by rephrasing the problem in terms of the well-studied EKF, a framework
that permits calculation of the log-likelihood by locally linearizing the non-
linearities61. The EKF framework encompasses a stochastic state transition of a
hidden variable x̂s whose distribution can be inferred using a noisy observation zs:

x̂sþ1 ¼ f x̂sð Þ þ Σ
1
2
xξx

zsþ1 ¼ h x̂sþ1

� �þ Σ
1
2
zξz

ð9Þ

where f and h are arbitrary non-linear functions and Σx and Σz are covariance
matrices of Gaussian-distributed noise. In our case the state transition is linear in x̂s
and is given as before by Eq. (4):

f x̂sð Þ ¼ μsþ1 x̂sð Þ ¼ x̂se
�~β Δxj j þ α

Δx
Δxj j þ

~b

� 	
1
~β

1� e�
~β Δxj j

� �
Σx ¼ σ2sþ1I2 ¼

~σ20
2~β

1� e�2~β Δxj j
� �

I2

ð10Þ

To derive the non-linear observation function we need to find a coordinate
transformation such that in the transformed frame the noise is added linearly.
According to Eq. (2), the noise is added linearly in log-polar coordinates. The
observation function h x̂sþ1

� �
therefore corresponds to the transformation from

cartesian to log-polar coordinates:

h x̂sþ1

� � ¼ d x̂sþ1

� �
φ x̂sþ1

� � !
¼ log x̂sþ1

�� ��
atan2 x̂sþ1

� �
2; x̂sþ1

� �
1

� � !

Σz ¼
σ2d 0

0 σ2φ

 ! ð11Þ

and the observation zs+1 is related to the reports d̂ and φ̂ by

zsþ1 ¼
log d̂bφ

 !
ð12Þ

The EKF framework permits the calculation of two important distributions
using Gaussian approximations: the posterior distribution of the hidden variable
x̂sþ1 given the observations z1 to zs (predictive distribution), and the posterior
distribution of x̂sþ1 given z1 to zs+1 (updated distribution). We denote the mean
and covariance of these posterior distributions as

pðx̂sþ1jz1; ¼ ; zsÞ ¼ N ðx̂sþ1jμsþ1js;Psþ1jsÞ predictive distributionð Þ
pðx̂sþ1jz1; ¼ ; zsþ1Þ ¼ N ðx̂sþ1jμsþ1jsþ1;Psþ1jsþ1Þ updated distributionð Þ ð13Þ

Mean and covariance of both distributions can be calculated recursively over
stopping points using the standard EKF update equations61:

μsþ1js ¼ f ðμsjsÞ
Psþ1js ¼ Fsþ1PsjsF

T
sþ1 þ Σx

Ssþ1 ¼Hsþ1Psþ1jsH
T
sþ1 þ Σz

Ksþ1 ¼ Psþ1jsH
T
sþ1S

�1
sþ1

μsþ1jsþ1 ¼ μsþ1js þ Ksþ1ðzsþ1 � hðμsþ1jsÞÞ
Psþ1jsþ1 ¼ðI2 � Ksþ1Hsþ1ÞPsþ1js

ð14Þ

where the matrices Fs+1 and Hs+1 are the Jacobian matrices of transition and
observation function evaluated at the previous updated mean μs|s and predictive
mean μs+1|s, respectively:

Fsþ1 ¼
∂f xð Þ
∂x

����
x¼μsjs

¼ e�
~β Δxj jI2

Hsþ1 ¼
∂h xð Þ
∂x

����
x¼μsþ1js

¼ 1

μsþ1js
��� ���2

μsþ1js;1 μsþ1js;2
�μsþ1js;2 μsþ1js;1

 ! ð15Þ

At the starting point (s= 0, we initialize μs=0|s=0= xstart= 0 and Ps=0|s=0= 0.
Next, we calculate the predicted distribution of the next measurement zs+1 given
the previous measurements z1 to zs by integrating out the internal estimate x̂sþ1:

pðzsþ1jz1; ¼ ; zsÞ ¼
Z

dx̂sþ1pðzsþ1jx̂sþ1Þpðx̂sþ1jz1; ¼ ; zsÞ

¼
Z

dx̂sþ1Nðzsþ1jhðx̂sþ1Þ;ΣzÞN ðx̂sþ1jμsþ1js;Psþ1jsÞ

�
Z

dx̂sþ1Nðzsþ1jhðμsþ1jsÞ þ Hsþ1ðx̂sþ1 � μsþ1jsÞ;ΣzÞ
N ðx̂sþ1jμsþ1js; Psþ1jsÞ ¼ N ðzsþ1jhðμsþ1jsÞ; Ssþ1Þ

ð16Þ

where we have used the linearization approximation of the EKF at the third line.
This allows us to express the full log-likelihood as

LL Θð Þ ¼
X3
s¼0

log p zsþ1jz1; ¼ ; zs;Θ
� �* +

trials

ð17Þ

where the dependency on the parameters Θ is introduced through f, its Jacobian
Fs+1, Σx and Σz. In analogy to Eq. (8), we find the maximum likelihood (ML)
estimate for Θ by numerically maximizing the log-likelihood:

ΘML ¼ argmaxΘLL Θð Þ
Numerical parameter optimization was performed using the fminunc-function

of MATLAB’s optimization toolbox.

Incorporating trials without intermediate stopping. For a fraction of the trials, a
response is not collected at intermediate stopping points, but only at the end of the
trajectory. For these trials the observations zs+1 are missing for s∈{0, 1, 2} and
therefore the EKF update Eq. (14) need to be adapted. This can be achieved using
the infinite observation noise limit Σz→∞, under which the predicted and updated
posterior distributions become identical:

μsþ1js ¼ f ðμsjsÞ
Psþ1js ¼ Fsþ1PsjsF

T
sþ1 þ Σx

μsþ1jsþ1 ¼ μsþ1js
Psþ1jsþ1 ¼ Psþ1js

For s= 3, the observation at the last stopping point zs+1 is defined, and Eq. (14)
can be used as usual.

Model predictions. We simulated participants’ responses by sampling 100 repe-
titions of model trajectories for each participant and trial from Eq. (9) given the
fitted parameters Θ=ΘML and the trajectory parameters Δx for each segment.
Each repetition generates stochastic observations d̂model and φ̂model via Eq. (12) that
can be analyzed analogously to the actual data. The model prediction for the square
error is calculated by averaging the square error of the simulated data over trials
and repetitions. The model prediction for the bias on individual trials is calculated
by averaging the simulated data over repetitions.

Model variants. Full model without additive bias, no reporting noise (Full-AB-
RN): The non-zero parameters in this model are memory decay ~β, multiplicative
velocity gain α and noise ~σ20 . The additive bias ~b and reporting noise parameters

κ ¼ σ2d ; σ
2
ϕ

� �
are set to zero. The log-likelihood is computed using Eq. (7) instead

of Eq. (17).
Full model, no reporting noise (Full-RN): This model has non-zero parameters

θ ¼ ~β; α; ~b; ~σ20

� �
but the reporting noise parameters κ ¼ σ2d ; σ

2
ϕ

� �
are set to zero.

The log-likelihood is computed using Eq. (7) instead of Eq. (17).
Non-accumulating noise, no reporting error (Full-AN+CN-AB-RN, Full-AN

+CN-RN): These models assume that the total amount of noise is independent of

distance, time, and stopping points, and the reporting noise parameters κ ¼
σ2d ; σ

2
ϕ

� �
are set to zero. The fitting procedure for the non-noise (bias) parameters

is equivalent to minimizing the square error in predicting the mean location
estimates averaged over trials with similarly shaped trajectories. We replace Eq. (4)
by

μsþ1 ¼ μse
�~β Δxj j þ α

Δx
Δxj j þ

~b

� 	
1
~β
ð1� e�

~β Δxj jÞ

σ2sþ1 ¼ ~σ20
Note that μs+1 depends on the previous predicted mean μs instead of the

measured internal estimate x̂s as in Eq. (4). Correspondingly the conditional
distribution of each internal location estimate does not depend on the estimate at
the previous stopping point, so that p x̂sþ1jx̂sþ1

� � ¼ p x̂sð Þ. Maximizing the log-
likelihood in Eq. (7) corresponds to uniformly minimizing the square error across
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stopping points:

LLκ¼0 θð Þ ¼
X3
s¼0

log p x̂sþ1; θ
� �* +

trials

¼
X3
s¼0

log N x̂sþ1jμsþ1 θð Þ; σ2sþ1 θð Þ� �* +
trials

¼ �
X3
s¼0

1
2~σ20

x̂sþ1 � μsþ1 θð Þ� �2� 1
2
log 2π~σ20
� �* +

trials

We fit two versions of the constant or non-accumulating noise model, one
without any additive bias (~b ¼ 0; Full-AN+CN-AB-RN), and one with an additive
bias (~b can vary; Full-AN+CN-RN). The model without additive bias (Full-AN
+CN-AB-RN) is the closest match to the model proposed in Lappe et al.17,18, as it
contains leak and bias.

Non-accumulating noise with reporting noise (Full-AN+CN): As above, this
variant assumes that the unbiased noise is independent rather than accumulating
over time or distance, but does include reporting noise with non-zero reporting

noise parameters κ ¼ σ2d ; σ
2
ϕ

� �
, with Weber-like structure in which the reporting

noise is proportional to the magnitude of the reported variable. This model can be
fit using a few adjustments from the full model.

As there is no accumulating noise that induces correlations across stopping
points, observations z1, …, zs at previous stopping points are uninformative for the
next location estimate x̂sþ1, and both predictive and updated distribution in Eq.
(13) are equal to the prior distribution:

p x̂sþ1jz1; ¼ ; zs
� � ¼ p x̂sþ1jz1; ¼ ; zsþ1

� � ¼ p x̂sþ1

� � ¼ N x̂sþ1jμsþ1;Σx

� �
Consequently, there is no need to distinguish between predictive and updated

mean and variance parameters. Instead, Eq. (14) is replaced by

μsþ1 ¼ f ðμsÞ ¼ μse
�~β Δxj j þ α Δx

Δxj j þ ~b
� �

1
~β
ð1� e�~β Δxj jÞ

Ssþ1 ¼ Hsþ1ΣxH
T
sþ1 þ Σz

where

Σx ¼ ~σ20 I2

Σz ¼
σ2d 0

0 σ2φ

 !

Hsþ1 ¼ ∂h xð Þ
∂x

���
x¼μsþ1

¼ 1
μsþ1j j2

μsþ1;1 μsþ1;2

�μsþ1;2 μsþ1;1

 !
The log-likelihood is approximated as

LL Θð Þ ¼
X3
s¼0

log p zsþ1;Θ
� �* +

trials

¼
X3
s¼0

log N zsþ1jh μsþ1

� �
; Ssþ1

� �* +
trials

Model with constant reporting noise (Full-RN+CRN): This model is the same
as the full model (Eq. (10)), except that the reporting error is drawn from a
distribution of constant size, instead of being Weber-like (proportional to the
reported quantity). Thus, Eq. (2) is replaced by

d̂ ¼ d þ σdηd
φ̂ ¼ φþ σφηφ

ð18Þ

The model can be fit in the same way as the full model, when reporting noise is
proportional to the internal estimate, except that noise is added linearly in polar
coordinates instead of log-polar coordinates. Specifically, the first component of the
observation zs defined as the reported distance d̂ instead of its logarithm logðd̂Þ, so

that Eq. (12) is replaced by

zsþ1 ¼
d̂

φ̂

 !
ð19Þ

and we replace the observation function h x̂sþ1

� �
in Eq. (11) by the transformation

from cartesian to polar coordinates:

h x̂sþ1

� � ¼ d x̂sþ1

� �
φ x̂sþ1

� � !
¼ x̂sþ1

�� ��
atan2 x̂sþ1

� �
2; x̂sþ1

� �
1

� � !
ð20Þ

and the Jacobian Hs+1 in Eq. (15) by

Hsþ1 ¼
∂h xð Þ
∂x

����
x¼μsþ1js

¼ 1

μsþ1js
��� ���2

μsþ1js;1 μsþ1js
��� ��� μsþ1js;2 μsþ1js

��� ���
�μsþ1js;2 μsþ1js;1

 !

The rest of the calculation of the log-likelihood function is exactly the same as
for the full model.

Fitting by age group: For this analysis, instead of fitting model parameters
individually for each participant, participants in each age group are constrained to
have the same model parameters.

Full model with time accumulation (ongoing noise is proportional to elapsed
time rather than displacement; same reporting noise model as for the full model):
This model assumes that the mean and variance of the internal location estimate is
determined by the elapsed time of each trajectory segment, Eq. (3), instead of the
distance of each trajectory segment, Eq. (4). In the case of zero leak, the time model
predicts that the variance of the internal location estimate increases proportionally
to elapsed time instead of traveled distance.

To fit the time model we replace Eq. (10) by

f x̂sð Þ ¼ μsþ1 x̂sð Þ ¼ x̂se
�βΔt þ α Δx

Δt þ b
� �

1
β 1� e�βΔt
� �

Σx ¼ σ2sþ1I2 ¼ σ20
2β 1� e�2βΔt
� �

I2
ð21Þ

where Δt is the elapsed time of each trajectory segment. In addition, the Jacobian of
the transition function Fs+1 in Eq. (15) is replaced by

Fsþ1 ¼
∂f xð Þ
∂x

����
x¼μsjs

¼ e�βΔt I2

For trials without intermediate stopping points, only the total elapsed time of
the trajectory, but not the elapsed time Δt of individual segments was recorded. For
these trials we estimated Δt by linear interpolation using the traveled distance |Δx|
and assuming a constant walking speed.

The observation function h x̂sþ1

� �
and its Jacobian Hs+1 are identical to the

standard Weber reporting noise model as specified in Eqs. (11) and (15),
respectively.

Model comparison. The BIC is a scheme to compare models with different
numbers of parameters: Models with lower BIC are preferred over models with
higher BIC, and large BIC differences between models (ΔBIC≫ 10) can be
interpreted as “very strong” evidence against the model with lower BIC62,63. The
BIC corrects for the higher expressibility of models with larger number of para-
meters using an additive compensation term. The formula for the BIC is given by

BIC ¼ �2 LL ΘMLð Þ þ log nð Þk
where n is the number of observations and k is the number of parameters. The
number of parameters for different models is listed in Table 1. All Bayesian ana-
lyses were carried out using flat priors.

In addition to BIC, we compare models using LOOCV. Given T trajectories for
each model and participant, we train the model parameters on a training dataset of

Table 1 Number of parameters for different models.

Model Number of parameters k

Full model, individually fit, young adults 7 × n= 210
Full model, individually fit, older adults 7 × n= 182
Full model, group-level fit 7
Full-AB-RN, Full-AN+CN-AB-RN, individually fit, young adults 3 × n= 90
Full-AB-RN, Full-AN+CN-AB-RN, individually fit, older adults 3 × n= 78
Full-RN, Full-AN+CN-RN, individually fit, young adults 5 × n= 150
Full-RN, Full-AN+CN-RN, individually fit, older adults 5 × n= 130
Full-AN+CN, individually fit, older adults 7 × n= 210
Full-AN+CN, individually fit, young adults 7 × n= 182
Full-RN+CRN, individually fit, young adults 7 × n= 210
Full-RN+CRN, individually fit, older adults 7 × n= 182
Full model with time accumulation, individually fit, young adults 7 × n= 210
Full model with time accumulation, older adults 7 × n= 182
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T−1 trajectories, evaluate it on the held-out test trajectory and average the result
over the T distinct training-test splits. To allow numerical comparison with BIC we
use as evaluation measure twice the negative log-likelihood:

LOOCV ¼ � 2
T

XT
k¼1

LLk Θ�k
ML

� �
where LLk is the log-likelihood corresponding to the k-th trajectory, and Θ�k

ML are
the ML parameters on the training set excluding the k-th trajectory.

Relative influence of model parameters. The detailed computational model
allows us to measure the influence of each type of bias and noise parameter on the
square error predicted by the model. For each parameter type we calculated a
reduced square error that is generated by setting this parameter type to its ideal
value corresponding to unbiased, noiseless integration, while keeping the
remaining parameters at their ML estimates:

error2~β ¼ error2 ~β ¼ 0; αML;
~bML; ~σ

2
0ML

; σ2dML
; σ2ϕML

� �
error2α ¼ error2 ~βML; α ¼ 1; ~bML; ~σ

2
0ML

; σ2dML
; σ2ϕML

� �
error2~b ¼ error2 ~βML; αML;

~b ¼ 0; ~σ20ML
; σ2dML

; σ2ϕML

� �
error2~σ20

¼ error2 ~βML; αML;
~bML; ~σ

2
0 ¼ 0; σ2dML

; σ2ϕML

� �
error2σ2d

¼ error2 ~βML; αML;
~bML; ~σ

2
0ML

; σ2d ¼ 0; σ2ϕML

� �
error2σ2ϕ

¼ error2 ~βML; αML;
~bML; ~σ

2
0ML

; σ2dML
; σ2ϕ ¼ 0

� �
The relative influence of each reduced error in percent is then calculated as

infli ¼ 100
error2 ΘMLð Þ � error2i

error2 ΘMLð Þ
Note that the relative influence can be negative if the reduced square error is

larger than the square error of the full model. This can be true in particular for the
memory leak parameter ~β: For example, a memory leak value ~βML < 1 that draws
location estimates towards the starting point can partly compensate for a velocity
bias αML > 1 that draws location estimates away from the starting point. Setting
~β ¼ 1 when αML > 1 can therefore lead to a larger “reduced” square error and a
negative relative influence.

Also note that due to the nonlinearity of the model, the relative influences do
not have to sum to 100%.

Statistics and reproducibility. Statistical comparisons were carried out using a
one-sided permutation test with 10,000 permutations, unless otherwise noted. The
experiment was conducted one time (i.e., the experiment was not repeated with an
independent sample and consequently the obtained results were not replicated).
However, the behavioral results of our experiment (path integration performance
in young versus older adults) are widely in line with previous studies, and several
different cross-validation approaches have led to similar performance of our
computational model in “unseen data”, suggesting that the results of this work can
be reproduced also with independent datasets.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data underlying the results of this manuscript are available for download: https://osf.
io/ufk4x/. A reporting summary for this Article is available as a Supplementary
Information file.

Code availability
The custom computer code and algorithms used to generate results that are reported in
the paper are available from the corresponding authors upon reasonable request.
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