
UCLA
UCLA Electronic Theses and Dissertations

Title
3D Imaging via Polarized Jet Fragmentation Functions and Quantum Simulation of the QCD 
Phase Diagram

Permalink
https://escholarship.org/uc/item/66w9z8k9

Author
Zhao, Fanyi

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66w9z8k9
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

3D Imaging via Polarized Jet Fragmentation Functions

and Quantum Simulation of the QCD Phase Diagram

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Physics

by

Fanyi Zhao

2023



© Copyright by

Fanyi Zhao

2023



ABSTRACT OF THE DISSERTATION

3D Imaging via Polarized Jet Fragmentation Functions

and Quantum Simulation of the QCD Phase Diagram

by
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Doctor of Philosophy in Physics
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Professor Zhong-Bo Kang, Chair

Understanding the interactions between elementary particles and mapping out the internal structure

of the hadrons are of fundamental importance in high energy nuclear and particle physics. This

thesis concentrates on the strong interaction, described by Quantum Chromodynamics (QCD). We

introduce a novel concept called “polarized jet fragmentation functions” and develop the associated

theory framework known as QCD factorization which allows us to utilize jet substructure to probe

spin dynamics of hadrons, especially nucleon’s three-dimensional imaging. Furthermore, non-

perturbative QCD studies, particularly of the QCD phase diagram, are important for understanding

the properties of hadrons. The development of quantum computing and simulators can potentially

improve the accuracy of finite-temperature simulations and allow researchers to explore extreme

temperatures and densities in more detail. In this thesis, I present my work in two aspects of QCD

studies: (1) investigating the nucleon structure using polarized jet fragmentation functions and

(2) illustrating how to apply quantum computing techniques for studying phase diagram of a low

energy QCD model. The first category investigates phenomena such as hadron production inside

jets, spin asymmetries, etc., providing valuable insight into the behavior of quarks and gluons in

hadrons. The second category provides potential applications of quantum computing in QCD and

explores the non-perturbative nature of QCD.
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CHAPTER 1

Introduction

1.1 Motivation

The study of high energy collisions is an essential aspect of nuclear and particle physics that aim to

understand the fundamental interactions between elementary particles, now described by the well-

known Standard Model of particle physics [Wor22]. Quantum Chromodynamics (QCD) is one of

the pillars of the Standard Model, describing the strong interaction - one of the four fundamental

forces of nature. This force holds quarks and gluons - collectively known as partons - together

in hadrons such as the proton, and protons and neutrons together in atomic nuclei. QCD was

developed and defined about fifty years ago [Gro22]. One hallmark of QCD is asymptotic freedom,

which states that the strong force between quarks and gluons decreases with increasing energy.

The asymptotic freedom of strong interactions was discovered in 1973 by David Gross, Frank

Wilczek, and David Politzer [GW73b, Pol73], who shared the Nobel Prize in physics in 2004.

Asymptotic freedom enables us to compute the partonic cross sections within the framework of

perturbative QCD (pQCD), i.e. the expansion in terms of the strong coupling constant order by

order. Although this pQCD paradigm has gained enormous success e.g. in computing the total

hadronic cross section in e+e− annihilation, it has ultimate difficulties in understanding physical

processes involving hadrons in which the relevant energy scale is such that the strong coupling

is too strong for pQCD computations to be applicable and is thus dubbed as the non-perturbative

QCD regime.

However, understanding hadron structure is of fundamental importance to science. The explo-

ration of the internal structure of the hadrons (e.g. the proton and neutron) in terms of quarks and

gluons, the degrees of freedom of QCD, has been and still is at the frontier of high energy nuclear
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physics research. Concurrent advances in the experimental use of high energy scattering processes

and theoretical breakthroughs in understanding “asymptotic freedom” and developing the pertur-

bation theory of strong interactions have provided a way of mapping out the internal landscape of

nucleons. Specifically, perturbative QCD allows one to prove “factorization theorems” [CSS89]

for high-energy processes, which state that the physical observables involving hadrons can be writ-

ten as a convolution of short-distance partonic cross sections and long-distance parton distribution

functions (PDFs) that encode the bound state properties, or structure, of colliding hadrons. Armed

with these theorems, theorists are then able to extract the low-energy properties of the hadron

structure from the experimental data.

In past decades, a one-dimensional picture of nucleons has emerged, in the sense that we could

learn about the longitudinal motion of partons in fast moving nucleons, as encoded in the so-called

collinear PDFs. In recent years, theoretical breakthroughs in the community have paved the way to

extending this simple picture in the transverse as well as longitudinal momentum space, i.e. three

dimensions (3D). This new information is encoded in the novel concept of “Transverse Momentum

Dependent parton distributions” (TMDs), which helps address long-standing questions concerning

the confined motion of quarks and gluons inside the nucleon. How do they move in the transverse

plane? Do they orbit, and carry orbital angular momentum? What are the quantum correlations

between the motion of quarks, their spin and the spin of the nucleon? TMDs provide new and

much richer information on the nucleon structure and they allow for the first time to carry out 3D

imaging of the nucleon [Acc16, Abd22b].

The traditional processes to access TMDs are the semi-inclusive deep inelastic scattering (SIDIS),

Drell-Yan production, and e+e− collisions. In this thesis, we introduce the new concept called

“polarized jet fragmentation functions” that utilize jet substructure to study TMD physics and spin

dynamics. We develop the QCD factorization formalism for the relevant processes that can be

measured in the experiments, especially at the future Electron-Ion Collider (EIC). It is important

to realize that the detailed information on the nucleon structure as encoded in such more differ-

ential parton distribution functions are also crucial for the physics program at the Large Hadron

Collider and for the search for signs of new physics beyond the Standard Model.

Another very important areas of research in non-perturbative QCD is the study of the QCD

2



phase diagram [FH11]. This diagram maps out the behavior of QCD matter at different tempera-

tures and densities. At high temperatures and densities, it is believed that quarks and gluons exist

in a new state of matter called the quark-gluon plasma (QGP). Studying the properties of the QGP

and mapping out the QCD phase diagram is very important for understanding the early Universe,

the properties of neutron stars, and the behavior of heavy-ion collisions. In recent years there has

been much progress on the investigation of the QCD phase diagram with lattice QCD simulations.

However, studying QCD at finite baryon density is challenging, as the sign problem in lattice QCD

simulations becomes increasingly severe as the density increases [RB21].

The development of quantum computing has opened up new possibilities for studying QCD.

Quantum simulators have the potential to overcome the sign problem in lattice QCD simulations,

allowing researchers to study the finite-temperature behavior of QCD at finite density more accu-

rately. This would enable researchers to explore the QCD phase diagram in more detail, providing

new insights into the behavior of QCD matter at extreme temperatures and densities. Since simu-

lating QCD is not possible at the moment, i.e. at the noisy intermediate-scale quantum (NISQ) era,

in this thesis, we illustrate how a quantum algorithm can be used to study phase diagram for a low

energy model of QCD, the Nambu–Jona-Lasinio model in 1+1 dimension, at finite temperature

and finite chemical potential.

1.2 Structure of this thesis

This thesis includes two parts of studies in QCD: (1) utilizing polarized jet fragmentation functions

for quantum 3D imaging of hadrons, and (2) understanding phase diagram of a low energy model

of QCD via quantum simulation.

The first part is provided in chapter 2 - chapter 5, where we start with an introduction of theo-

retical background of QCD in chapter 2, provide a comprehensive review of Semi-Inclusive Deep

Inelastic Scattering and TMD factorization in chapter 3, then introduce the concept of polarized

Jet Fragmentation Functions in chapter 4. In chapter 5, we investigate promising observables using

polarized jet fragmentation functions in pp collisions, electron-jet production at the future EIC, etc.

These studies provide insight into the behavior of quarks and gluons inside hadrons, and theoret-
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ical predictions can be compared with experimental results to validate the theory. For the second

category, we illustrate how quantum algorithm is used for simulating phase diagram of a low en-

ergy model of QCD, the Nambu–Jona-Lasinio model in 1+1 dimension, in particular chiral phase

diagram and chirality imbalance in chapter 6. Finally, we conclude the thesis in chapter 7.

Overall, this thesis aims to provide a comprehensive overview of exploring polarized jet frag-

mentation functions for quantum imaging and applying quantum simulation for chiral phase tran-

sitions, which offer unique perspectives on the behavior of quarks and gluons in high-energy col-

lisions. The results of these studies may lead to a better understanding of the fundamental in-

teractions between particles and the development of new theoretical frameworks for high-energy

physics.
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Part I

Quantum Imaging via Polarized Jet

Fragmentation Functions
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CHAPTER 2

QCD background

This chapter provides an introduction to Quantum Chromodynamics (QCD), a funda-

mental theory of the strong interaction. QCD is based on the properties of asymptotic

freedom and color confinement, which are of great importance. The concept and for-

malism of QCD factorization is discussed and how this would allow us to extract

information on the structure of hadrons.

2.1 Introduction

Hadrons, including protons and neutrons (known as nucleons), are the predominant constituents

of visible matter in the universe. Thus, comprehending their internal structure holds paramount

importance. The nucleon forms a frontier of subatomic physics and has been under intensive

study for the last several decades. Significant progress have been made in characterizing the one-

dimensional momentum distribution of nucleon constituents through Feynman parton distribution

functions (PDFs) [Lin18]. These investigations not only reveal the partonic composition of nu-

cleons but also provide a valuable avenue for probing strong interactions. Therefore, unsolved

fundamental questions such as how the spin and orbital properties of quarks and gluons within

the nucleon combine to form its total spin, how quarks and gluons are spatially distributed within

nucleons, and so on, are intriguing and have stimulated further theoretical and experimental en-

deavors in the field of hadronic physics, leading to the construction of major facilities aimed at

addressing them [Ach23].
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Every several years (around seven or so), the nuclear physics community would get together to

conduct a study of the opportunities and priorities for United States nuclear physics research and

to recommend a long range plan that will provide a framework for the coordinated advancement

of the Nation’s nuclear science program over the next decade. The most recent one is the Long

Range Plan in 2015 [Apr15b] and starting from the end of 2022, the nuclear physics community

is in the process of developing a new Long Range Plan. Since the last Long Range Plan in 2015,

significant progress has been achieved in the so-called cold QCD research, for which exploring

the nucleon structure is one of the main goals. The successful completion of the CEBAF 12 GeV

upgrade has enabled a full-fledged experimental program. Also, various hadron physics facilities,

including CEBAF at JLab, RHIC at BNL, and the LHC at CERN, have yielded fruitful and exciting

new results. These advancements encompass static properties and partonic structure of hadrons,

nuclear modifications of structure functions, many-body physics of nucleons in nuclear structures,

and the effects of dense cold matter. These recent findings not only scrutinize fundamental aspects

of QCD, such as its chiral structure and predictions for novel hadronic states but also offer a

glimpse into the future prospects of nucleon tomography, facilitating a deeper understanding of

mass and spin origins.

In the subsequent sections of this chapter, we will review the theoretical foundations of QCD,

encompassing the widely known factorization formalism which enables us to investigate the struc-

ture of hadrons and their hadronization process by combining perturbative QCD techniques and

global analysis in QCD phenomenology. This would serve as a starting point for the more differ-

ential parton distribution functions such as the transverse-momentum dependent parton distribution

functions to be studied in details in the later chapters of this thesis.

2.2 Quantum Chromodynamics

In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction

between quarks mediated by gluons. The QCD Lagrangian is given by

LQCD = −1

4
F a
µνF

aµν +
∑
q

ψ̄iq

[
iγµ (Dµ)ij −mqδij

]
ψjq , (2.1)
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where mq is the quark mass, ψiq is the quark field with i denoting the color index, that can be given

by Red, Green, and Blue in SU(3) gauge group, namely ψq = (ψqR, ψqG, ψqB)
T . The Dirac matrix

γµ is used to express the vector nature of the strong interaction, where µ is a Lorentz vector index.

The gluon field strength tensor F a
µν with a color index a ranging from 1 to 8 is given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν , (2.2)

with the gluon field denoted by Aaµ. The covariant derivative Dµ is given by (Dµ)ij = δij∂µ −
igst

a
ijA

a
µ. The parameter gs is the interaction strength and it is related to the more conventional

strong coupling constant αs as follows

αs =
g2s
4π

. (2.3)

On the other hand, taij are the standard generating matrices of the SU(3) group and fabc are the

fully antisymmetric structure constants of the gauge group, defined so that
[
ta, tb

]
= ifabctc.

QCD has a very special feature, called “asymptotic freedom” and the discovery of asymptotic

freedom was acknowledged with the Nobel Prize in Physics awarded to D. Gross, H. Politzer,

and F. Wilczek in 2004 [GW73a, Pol74]. It means that the interaction between quarks and gluons

decreases in strength at progressively higher energies. Specifically, the strong coupling constant

αs(µ) satisfies the following renomralization group equation:

µ2∂αs
∂µ2

=
∂αs
∂ lnµ2

= β (αs) , β (αs) = −α2
s

(
b0 + b1αs + b2α

2
s + . . .

)
, (2.4)

where b0 is the 1-loop β-function coefficient and likewise, β1,2 are the 2-loop and 3-loop coeffi-

cients. We have

β0 =
11CA − 4nfTR

12π
=

33− 2nf
12π

, (2.5)

where we have used CA = 3 and TR = 1/2, and nf is the number of quark flavors. Since we have

u, d, s, c, b, t in total six quark flavors, we have nf = 6 and thus b0 > 0. The minus sign in Eq. (2.4)

is the origin of “asymptotic freedom” and it would lead to αs(µ) decreases as µ increases. For a

given physical process, one would take the renormalization scale µ to be the scale of the momentum

transfer Q in that process, then αs(µ2 = Q2) is indicative of the effective strength of the strong

interaction in that process.
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35 9. Quantum Chromodynamics

more than three jets in the final state. A selection of results from inclusive jet [429, 443, 600–605],
dijet [451], and multi-jet measurements [385, 387, 388, 429, 606–610] is presented in Fig. 9.3, where
the uncertainty in most cases is dominated by the impact of missing higher orders estimated through
scale variations. From the CMS Collaboration we quote for the inclusive jet production at

Ô
s = 7

and 8 TeV, and for dijet production at TeV the values that have been derived in a simultaneous
fit with the PDFs and marked with “*” in the figure. The last point of the inclusive jet sub-field
from Ref. [605] is derived from a simultaneous fit to six datasets from di�erent experiments and
partially includes data used already for the other data points, e.g. the CMS result at 7 TeV.

The multi-jet –s determinations are based on 3-jet cross sections (m3j), 3- to 2-jet cross-section
ratios (R32), dijet angular decorrelations (RdR, RdPhi), and transverse energy-energy-correlations
and their asymmetry (TEEC, ATEEC). The H1 result is extracted from a fit to inclusive 1-, 2-,
and 3-jet cross sections (nj) simultaneously.

All NLO results are within their large uncertainties in agreement with the world average and
the associated analyses provide valuable new values for the scale dependence of –s at energy scales
now extending up to almost 2.0 TeV as shown in Fig. 9.4.

αs(MZ2) = 0.1179 ± 0.0009

August 2021

α s
(Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)
HERA jets (NNLO)

Heavy Quarkonia (NNLO)
e+e- jets/shapes (NNLO+res)

pp/p-p (jets NLO)
EW precision fit (N3LO)

pp (top, NNLO)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10 100 1000

Figure 9.4: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

11th August, 2022

Figure 2.1: Summary of running coupling αs measured as a function of the energy scaleQ provided

in [Wor22]. In brackets, the respective degree of perturbative QCD applied for the extraction of αs

is indicated (for example, NLO: next-to-leading order; NNLO+res.: next-to-next-to-leading order

matched to a resummed calculation; etc.)

Summary of running coupling αs measured as a function of the energy scale Q is given in

fig. 2.1, taken from the recent Particle Data Group [Wor22]. For Q > 100 GeV, αs ∼ 0.1,

i.e. becomes relatively weak for processes involving large momentum transfer, which are often

referred to as “hard processes”. On the other hand, the theory is strongly interacting for scales

around and below 1 GeV.

2.3 QCD factorization

Asymptotic freedom enables us to compute the partonic cross sections between quarks and gluons

in the hard processes via the perturbation theory, i.e. the expansion in terms of αs order by order.

This has led to remarkable progress. Probably one of the most well-known example is the total

hadronic cross section in e+e− annihilation, e+e− → hadrons, which is generated at leading order
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by e+e− → qq̄. The conventional R ratio is defined as the hadronic cross section over the cross

section of e+e− → µ+µ−,

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (2.6)

ThisR ratio has been measured for a wide range of center-of-mass energy
√
s. fig. 2.2 shows theR

ratio is compared with the 3-loop perturbative QCD computations as a function of
√
s, taken from

the Particle Data Group [Wor22]. As one can see, the theory agrees very well with the experimental

data.

Figure 2.2: World data on the ratio R(s) as a function of the center-of-mass energy,
√
s, in e+e−

annihilation, taken from the Particle Data Group [Wor22].

Even with this remarkable success, perturbative QCD had difficulties in describing the scat-

tering processes involving hadrons. For example, the total cross section of deep inelastic lepton-

proton (ℓ p) scattering (DIS), ℓ+ p → ℓ′ +X , involves the incoming proton. Since the proton is a

composite object made up of quarks and gluons, which interact strongly with each other inside the

proton, it is unclear how one would compute the DIS cross section.

QCD factorization formalism [CSS89] came to rescue. It states that the cross section involving

the hadron can be written as a convolution of short-distance partonic cross sections and long-

distance parton distribution functions (PDFs) that encode the bound state properties, or structure,

of colliding nucleons. To make it concrete, let us use the DIS process, ℓ(l) + p(P ) → ℓ′(l′) +X ,

10



p

ℓ
ℓ′

γ∗

Figure 2.3: The standard DIS process, where an incoming lepton ℓ is colliding with the proton p

by exchanging a virtual photon γ∗.

as an example. We define the usual variables

x =
Q2

2P · q , y =
P · q
P · l , (2.7)

where q = l − l′ is the momentum of the exchanged virtual photon and Q2 = −q2. Thus the DIS

differential cross section can be written as

d2σ

dx dQ2
=

4πα2

2xQ4

[(
1 + (1− y)2

)
F2(x,Q

2)− y2FL(x,Q
2)
]
, (2.8)

where α is the electromagnetic coupling. On the other hand, F2(x,Q
2) and FL(x,Q

2) are the

proton structure functions, which encode the interaction between the virtual photon and the proton.

See the illustration of the DIS process in fig. 2.3.

Following QCD factorization theorem, one can write as F2(x,Q
2) as follows

F2(x,Q
2) = x

∑
n=0

αns (µ
2
R)

(2π)n

∑
i=q,g

∫ 1

x

dx̂

x̂
C

(n)
2,i (x̂, Q

2, µ2
R, µ

2
F )fi/p

(x
x̂
, µ2

F

)
+Q

(
Λ2

QCD

Q2

)
, (2.9)

similarly for FL(x,Q2). Here, µR and µF are the so-called renormalizataion and factorization

scales, respectively. The structure function is expanded as a series in powers of αs(µ2
R), while

each term involves a short-distance coefficient C(n)
2,i that can be computed order by order with

Feynman diagram techniques. The coefficient functions C(n)
2,i are known up to O(α3

s), i.e. next-

to-next-to-next-to-leading order (N3LO) [VVM05]. On the other hand, fi/p (x, µ2
F ) is the afore-

mentioned collinear PDF, which is non-perturbative and describes the probability density of find-

ing a parton i inside the proton that carries a fraction x of its longitudinal momentum. Note

11



Figure 2.4: The proton structure function F p
2 as a function of Q2 for different Bjorken x, taken

from the Particle Data Group [Wor22].

that the above factorization is valid up to the power corrections of O(Λ2
QCD/Q

2). This is pre-

cisely the physical reasoning for the QCD factorization: the quark and gluon dynamics inside the

proton (that is associated with the PDFs) happens at the physical scale ΛQCD ∼ 1/Rp ∼ 200

MeV where Rp ∼ 1 fm is the proton size. The electron-parton scattering happens at a high-

energy scale ∼ Q. When ΛQCD ≪ Q, the physics happening in these two widely separated

scales should not interfere with each other and this leads to the factorization in Eq. (2.9). The

PDFs follow the so-called Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equa-

tions [AP77, GL72, Dok77], which have the following form

∂

∂ lnµ2
fi/p(x, µ

2) =
∑
j=g,q,q̄

∫ 1

x

dz

z
Pij (z, αs) fj/p

(x
z
, µ2
)
. (2.10)

Here Pij (z, αs) are the splitting functions or evolution kernels which can be computed in the

perturbation theory order by order.

Armed with QCD factorization theorems, theorists are then able to extract the collinear PDFs
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Figure 2.5: The Parton Distribution Functions (PDFs) fi/p(x,Q2) as a function of x at Q2 = 10

GeV2 (left) and Q2 = 104 GeV2 (right).

from the experimental data. For example, a lot of data have been collected for DIS process in

lepton-proton collisions shown in fig. 2.4, which is taken from the Particle Data Group [Wor22].

From these data, one can extract the PDFs through the procedure of “global analysis”. For example,

one of the modern PDFs from MSHT20 group [BCH21] is shown in fig. 2.5, where the PDFs

fi/p(x,Q
2) are plotted as a function of x at Q2 = 10 GeV2 (left) and Q2 = 104 GeV2 (right).

Similarly, one can introduce the collinear fragmentation function to describe the hadronization

process for a parton fragmenting into a hadron. For example, if one measures a specific hadron h

in the e+e− collisions,

e+e− → (γ∗, Z) → h+X , (2.11)

the cross section for this single inclusive hadron production can be written as

1

σtot

dσh

dz
=

σ0∑
q e

2
q

[
2F h

1 (z,Q
2) + F h

L(z,Q
2)
]
. (2.12)

Here the energy Eh of the observed hadron scaled to the beam energy Q/2 is denoted by the

variable z = 2ph · q/Q2 = 2Eh/Q with q being the momentum of the intermediate γ∗ or Z boson

and q2 = Q2. Just like the DIS process, the unpolarized structure functions F h
1 and F h

L can also

be studied within the collinear QCD factorization, where they can be written as the convolution of

short-distance partonic results and the long-distance non-perturbative functions. For example, to
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Figure 2.6: The Fragmentation Functions (PDFs) Dh/i(z,Q
2) for the h = π+ hadron is plotted as

a function of z at Q2 = 10 GeV2, taken from [FSE15].

the NLO accuracy, they are given by [FSS07]

2F h
1 (z,Q

2) =
∑
q

e2q

[
Dh/q(z,Q

2) +
αs(Q

2)

2π

(
C1
q ⊗Dh/q + C1

g ⊗Dh/g

)
(z,Q2)

]
,

FH
L (z,Q2) =

αs(Q
2)

2π

∑
q

e2q
[
CL
q ⊗Dh/q + CL

g ⊗Dh/g

]
(z,Q2) .

Here C1
q,g and CL

q,g are the corresponding short-distance coefficient functions that can be computed

in perturbation theory order by order. On the other hand, Dh/q,g is the collinear fragmentation

function that gives the probability density for the quark q or gluon g fragmenting into the hadron h.

The collinear fragmentation functions follow a “time-like” 1 DGLAP evolution equations. They

can also be extracted from the experimental data. See a recent extraction in [FSE15] One of the

1It is called “time-like” since q2 = Q2 > 0, while for DIS it would be “space-like” since q2 = −Q2 < 0.
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Figure 2.7: Single inclusive jet cross section in pp collisions (taken from the CMS collaboration at

the LHC [Tum22]) is plotted as a function of jet pT , compared with the theory calculation at the

next-to-next-to-leading order.

key concept in QCD factorization is the universality of these collinear PDFs and FFs. In other

words, the same set of collinear PDFs and/or FFs can be used for other scattering processes, e.g.

single inclusive jet in proton-proton (pp) collisions, pp → jet + X , or single inclusive hadron

production in pp collisions, pp→ h+X . See figs. 2.7 and 2.8 for the comparison between theory

and experimental data for single inclusive jet (fig. 2.7) and single inclusive hadron (fig. 2.8) in pp

collisions. It demonstrates that QCD factorization works remarkably well.

With QCD collinear factorization well established, progress have been made in the field in

terms of computing the partonic hard scattering cross sections and splitting functions with high

precision at higher orders of perturbation theory. For instance, the evolution kernels of longitudinal

momentum distribution functions, both spin-dependent and spin-independent, are now fully known

to next-to-next-to-leading order (NNLO) [MVV04, VMV04, MVV14] and beyond [FHM23b,

HM23, FHM23a]. Significant computations have been carried out for partonic cross sections in

processes such as electron-proton scattering, extending beyond NNLO for inclusive DIS [ZN92,

ZN94, BFP22] and jet production in DIS [CGH17, CGG18, BPX18, BFP20]. Additional advance-

ments include the calculation of heavy quark and quarkonium production in various hard scattering

processes [BBL95, Bra11, MV16a, CV17b, CV17a, CV18, CV19, CV21, Vog18, Vog20].

Besides the progress in perturbative computations for partonic cross sections, in the last decade,
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Figure 2.8: The same fit of the fragmentation function in e+e− collisions can also describe the

single inclusive hadron cross section in pp collisions (taken from the ALICE collaboration [Abe12]

at the LHC and figure from [FSE15]).

we have also seen important progress in understanding the low-energy properties of the nucleon

structure, encoded in the more differential parton distribution functions, e.g. the transverse mo-

mentum dependent parton distribution functions and/or fragmentation functions. We will now

discuss in details the progress the community made along this direction and put my thesis in the

proper context for introducing the contribution we made.
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CHAPTER 3

TMD Factorization and SIDIS Process

We review the Semi-Inclusive Deep Inelastic Scattering (SIDIS) in detail, a funda-

mental process for studying the structure of hadrons. We begin by discussing the

kinematics and structure functions of SIDIS, which are essential for understanding the

experimental measurements. We also present an in-depth introduction of the Trans-

verse Momentum Dependent (TMD) factorization, which is a theoretical framework

for describing the SIDIS cross-section. Also crucial ingredients in TMD factorization

like TMD parton distribution function, TMD fragmentation function, hard and soft

function are introduced. The chapter aims to provide a comprehensive understand-

ing of SIDIS and TMD factorization, which are crucial for studying the structure of

hadrons.

3.1 Introduction: 3D momentum tomography of hadrons

The collinear parton distribution functions, fi/p(x, µ), introduced in the previous chapter, provide

the information for quarks and gluons inside the proton, specifically the longitudinal motion of the

partons. This is because we consider the parent proton momentum P as in the +z or longitudinal

direction as shown in fig. 3.1 (left), while the parton carries the momentum fraction x of the

proton and thus its momentum is given by k ≈ xP . In this sense, the collinear PDFs are usually

considered to be providing the 1D structure of the proton in the momentum space. However, the

parton inside the proton would also have the momentum component that is transverse to the parent
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proton, denoted as kT in fig. 3.1 (right). Writing the parton momentum as k = xP + kT , one

would have the natural question - what role does this transverse momentum would play? In the

last decade or so, theoretical breakthroughs [Bou23, Col13] have paved the way to extending the

1D structure in the longitudinal as well as transverse momentum space, providing 3D structure of

the proton. This new information is encoded in the concept of “Transverse Momentum Dependent

parton distribution functions”, or simply called TMDs.

Figure 3.1: Illustration of the standard 1D parton distribution functions fi/p(x) (left) and the 3D

transverse momentum dependent parton distribution functions fi/p(x, kT ) (right).

The TMDs provide not only an intuitive illustration of nucleon tomography, but also the im-

portant opportunities to investigate the specific nontrivial QCD dynamics associated with their

physics: QCD factorization, universality of the parton distributions and fragmentation functions,

and their scale evolution. For example, one has to generalize the so-called QCD collinear factor-

ization introduced in the previous chapter to deal with the TMDs. This new factorization named

“TMD factorization” has been well established for the semi-inclusive hadron production in deep

inelastic ep scattering (SIDIS) [JMY05, JMY04], Drell-Yan production in pp collisions [CSS85,

EIS12], and back-to-back hadron pair production in e+e− collisions [CS81]. For the modern re-

views, see [Bou23, Col13]. At the moment, all the 3D structure of the proton as encoded in the

TMDs are extracted from these three standard processes: SIDIS, Drell-Yan, and e+e− collisions.

In the next section, we will provide a detailed review for the SIDIS process and its TMD factoriza-

tion.
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A recent global extraction of unpolarized TMD parton distribution functions (TMD PDFs) and

TMD fragmentation functions (TMD FFs) have been performed in [BBB22] at the next-to-next-to-

next-to-leading logarithmic (N3LL) accuracy. This extraction is based on more than two thousand

data points from several experiments for both SIDIS and Drell-Yan production. For example,

the Drell-Yan production data include those from earlier Fermilab [Ito81], the RHIC [Aid19],

CDF [Aal12] and D0 [Aba08] collaobrations at the Tevatron, and LHCb [Aai16], ATLAS [Aad20]

and CMS [Sir19] collaborations at the LHC. On the other hand, the SIDIS data are collected by

the HERMES [Air13] and COMPASS [Agh18] collaborations. Another recent work [MSV23]

extracted the unpolarized TMD PDFs from the Drell-Yan production process alone but with higher

precision (N4LL accuracy).

When the experimental data are collected for the polarized scattering, one would be able to

measure various spin asymmetries from which the spin-dependent TMD PDFs and/or TMD FFs

can be extracted. Two of the spin-dependent TMDs have attracted most attentions in the past

decade: the Sivers function [Siv90, Siv91] and the Collins function [Col93]. The quark Sivers func-

tion describes the distribution of unpolarized quark inside the tranversely polarized proton through

a correlation between the transverse momentum of the quark with respect to the proton and the

transvese spin of the proton. On the other hand, the Collins fragmentation function describes a tran-

versely polarized quark fragmenting into an unpolarized hadron while the hadron’s transverse mo-

mentum with respect to the quark is correlated with the quark’s transverse spin. For recent global

analysis of the Sivers functions, see [CGK20, BPV21b, BPV21a, GMM22, EKT21, BDP22]. On

the other hand, for recent global analysis of the Collins functions, see [KPS16, GMM22, CGK20],

where the Collins functions are extracted from the Collins spin asymmetry in SIDIS and the Collins

azimuthal asymmetry in two hadron production in e+e− collisions.

3.2 Semi-Inclusive Deep Inelastic Scattering

Semi-Inclusive Deep Inelastic Scattering (SIDIS) is a fundamental process that provides invaluable

insights into the inner structure of hadrons and the distribution of their constituents. SIDIS is one

of the most important processes for probing TMD PDFs and TMD FFs and will be the key process
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at the future EIC. In this section, we provide the general form of the cross section for polarized

SIDIS and parameterize it in terms of suitable structure functions. For completeness, we also

review the full parameterization of quark-quark correlation functions at the leading power. Note

that this is well established in the community and we review the material to set up the notations

and framework for our work in the next two chapters. The relation of the structure functions given

below are consistent with the parameterization in [DS05, BDG07].

3.2.1 Kinematics

In SIDIS, a lepton is interacting with a nucleon, with a scattering lepton and one of the produced

hadrons detected. The interaction occurs through a virtual photon of virtualityQ. The cross section

depends on the azimuthal angles of the final state hadron relative to the virtual photon axis and the

target polarization, as shown in Fig. 3.2. In the low transverse momentum region of the outgoing

hadron compared to Q, the cross section can be described using TMD PDFs and TMD FFs as

shown below.

e−l

Lepton plane

e−x

y

z

l′ 

S⊥

Ph

hPhT

ϕh γ*ϕs

Figure 3.2: Definition of azimuthal angles for semi-inclusive deep inelastic scattering in the target

rest frame [BDD04]. Ph⊥ and S⊥ are the transverse parts of Ph and S with respect to the photon

momentum.

By defining the beam lepton ℓ, the nucleon target N , and the produced hadron h with their

four-momenta in the following process

ℓ(l) +N(P ) → ℓ (l′) + h (Ph) +X , (3.1)
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and define M and Mh as the masses of the nucleon N and the hadron h respectively, one has the

same DIS variables q2 = −Q2, x, and y in Eq. (2.7), we also introduce

γ =
2Mx

Q
, zh =

P · Ph
P · q . (3.2)

In the target rest frame, following the Trento conventions [BDD04], the azimuthal angle ϕh of the

outgoing hadron are given by

cosϕh = − lµPhνg
µν
⊥√

l2⊥P
2
h⊥
, gµν⊥ = gµν − qµP ν + P µqν

P · q (1 + γ2)
+

γ2

1 + γ2

(
qµqν

Q2
− P µP ν

M2

)
, (3.3)

sinϕh = − lµPhνϵ
µν
⊥√

l2⊥P
2
h⊥
, ϵµν⊥ = ϵµνρσ

Pρqσ

P · q
√

1 + γ2
. (3.4)

Here the transverse momentum with respect to the photon momentum lµ⊥ = gµν⊥ lν and P µ
h⊥ =

gµν⊥ Phν are defined and with the convention of antisymmetric tensor ϵ0123 = 1, one has the relations

g11⊥ = g22⊥ = −1 and ϵ12⊥ = −ϵ21⊥ = 1. The helicity of the lepton beam is represented by λe and the

covariant spin vector S of the target can be decomposed as 1

Sµ = λN
P µ − qµM2/(P · q)

M
√

1 + γ2
+ Sµ⊥, λN =

S · q
P · q

M√
1 + γ2

, Sµ⊥ = gµν⊥ Sν . (3.5)

And accordingly, one can define the azimuthal angle ϕS of the spin S

cosϕS = − lµSνg
µν
⊥√

l2⊥S
2
⊥
, sinϕS = − lµSνϵ

µν
⊥√

l2⊥S
2
⊥
. (3.6)

For the discussions in this section, we only consider the production of unpolarized hadron h.

3.2.2 Hadronic tensor and Leptonic tensor

Next, in the investigation of parton distribution and fragmentation functions, it is convenient to

utilize light-cone coordinates for effective manipulations. Specifically, for an arbitrary four-vector

v, one can express v± = (v0 ± v3) /
√
2 and vT = (v1, v2) in a specified reference frame. All

components are then represented as [v+, v−,vT ]. Additionally, we employ the transverse tensors

gαβT and ϵαβT given by

gαβT = gαβ − nαan
β
b − nαb n

β
a , ϵαβT = ϵαβρσna,ρnb,σ . (3.7)

1Note that the sign convention for the longitudinal spin component is such that the target spin is parallel to the
virtual photon momentum for λN = −1.

21



where only the components g11T = g22T = −1 and ϵ12T = −ϵ21T = 1 are nonzero. The light-cone

decomposition of a vector is formulated in a Lorentz covariant manner, involving two light-like

vectors na = [1, 0,0T ] and nb = [0, 1,0T ] with n2
a = n2

b = 0 and na · nb = 1. Additionally, vT can

be promoted to a four-vector, denoted as vT = [0, 0,vT ]. This light-cone representation facilitates

the description of vectors in our analysis and any four-vector vµ can be decomposed as

vµ = v+nµa + v−nµb + vµT , (3.8)

where v+ = v · nb, v− = v · na and vT · na = vT · nb = 0.

Note that scalar products of transverse four-vectors vT · wT are in Minkowski space and they

are related to the transverse two-vectors by vT · wT = −vT · wT . Moreover, when discussing

about the distribution functions, we apply the light-cone coordinates where momentum P has no

transverse component, namely

P µ = P+nµa +
M2

2P+
nµb , (3.9)

and the spin vector S of the target is decomposed in the following form

Sµ = SL
(P · nb)nµa − (P · na)nµb

M
+ SµT , (3.10)

where one can easily find that SL = M (S · nb) / (P · nb). As for the fragmentation functions, we

choose the coordinate where P−h is the large component,

P µ
h = P−h n

µ
b +

M2
h

2P−h
nµa . (3.11)

In [BDG07], the semi-inclusive deep inelastic scatterings are investigated under the condition

where Q2 becomes large while keeping x, zh, and P 2
h⊥ fixed. To facilitate the calculation, one

can choose a specific frame that satisfies both eq. (3.9) and eq. (3.11), and in this frame, we have

xP+ = P−h /zh = Q/
√
2. It is important to note that this choice of frame differs from the one

in section 3.2.1, where the transverse direction was defined with respect to the momenta of the

target and the virtual photon, rather than the momenta of the target and the produced hadron. The

relationship between these two choices is elaborated in [MT96, BMP03], indicating that SL and

ST , as defined by eq. (3.10) with eq. (3.9) and eq. (3.11), deviate from λN and S⊥ in eq. (3.5) by

terms of order 1/Q2 and 1/Q, respectively.
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Figure 3.3: Examples of graphs contributing to semi-inclusive DIS at low transverse momentum

of the produced hadron.

Next one can write down the lepton-production cross section described by a contraction of a

hadronic tensor and a leptonic tensor,

dσ

dxdydψdzhdϕhdP 2
h⊥

=
α2y

8zhQ4
2MW µνLµν , (3.12)
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where the leptonic tensor and the hadronic tensor are respectively given as

Lµν =2
(
lµl
′
ν + l′µlν − l · l′gµν

)
+ 2iλeϵµνρσl

ρlσσ , (3.13)

2MW µν =
1

(2π)3

∑
X

∫
d3PX

2P 0
X

δ(4) (q + P − PX − Ph) ⟨P |Jµ(0)|h,X⟩ ⟨h,X |Jν(0)|P ⟩ .

(3.14)

Here the summation runs over the polarizations of all hadrons in the final state and one has Jµ

representing the electromagnetic current divided by the elementary charge.

The following calculations are based on the factorization of the cross section, breaking it down

into a hard photon-quark scattering process and non-perturbative functions that describe the dis-

tribution of quarks in the target or the fragmentation of a quark into the observed hadron. For

our analysis, we focus on the leading terms in the 1/Q expansion of the cross section 2 and con-

sider graphs with the hard scattering at tree level. Loops are allowed only in the form shown in

fig. 3.3, with gluons serving as external legs of the non-perturbative functions. The corresponding

expression of the hadronic tensor can be found in [MT96, BMP03] and we have

2MW µν = 2zh
∑
a

e2a

∫
d2pTd

2kT δ
2 (pT + qT − kT ) Tr [Φ

a (x, pT ) γ
µ∆a (zh, kT ) γ

ν ] , (3.15)

where the sum is carried out over quark and antiquark flavors a, with ea representing the fractional

charge of the struck quark or antiquark. The correlation functions Φ for quark distributions, ∆

for quark fragmentation can be parametrized into the leading-twist TMDs. In the subsequent sub-

sections, we will provide a detailed discussion of the correlation functions Φ for quark PDFs and

∆ for quark FFs. It is important to realize that the diagrams with one attached gluon in fig. 3.3

contribute to the cross section at the leading power when the gluon field is either parallel to the

incoming nucleon N or parallel to the outgoing hadron h, in which case it will become part of the

Wilson line for Φ or ∆ to make them gauage invariant. With this consideration, all the diagrams

in fig. 3.3 would be cast into the same form as in eq. (3.15).

2More comprehensive details on higher twists can be found in [BDG07, EGS22, GKS22].
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3.3 TMD factorization

In this section, we embark on a comprehensive exploration of transverse momentum distributions

(TMDs) and their underlying factorization in the context of this thesis. TMDs provide crucial

insights into the spatial distribution and motion of quarks and gluons within hadrons, constituting

a fundamental component of our understanding of QCD dynamics. By investigating the intricate

interplay between the intrinsic transverse momenta of partons and the hard scattering processes,

we aim to unravel the rich phenomenology associated with TMDs.

3.3.1 Transverse-momentum dependent distributions

Before introducing the TMD factorization formalism, we first provide a short review for the def-

initions of the Transverse-momentum dependent parton distribution functions (TMDPDFs) for

later convenience. TMDPDFs are defined through the so-called quark-quark correlation func-

tion [MT96], Φ(x,kT ;S),

Φ(x,kT ;S) =

∫
dξ−d2ξT
(2π)3

eik·ξ ⟨PS|ψ̄(0)ψ(ξ)|PS⟩
∣∣
ξ+=0

, (3.16)

where k+ = xp+ with p+ is the large light-cone component of the proton, and kT is the quark

transverse momentum with respect to the parent proton. Here we have suppressed the relevant

gauge link for our process, which is the same as that for SIDIS process and renders the expression

on the right-hand side gauge invariant. In different processes, the structure of the gauge link can

change which leads to the important and nontrivial process-dependence of the TMDPDFs [Col02,

BMP03, BMP04, BBM05, Col13, KLS21a, BKL18]. The correlation function Φ(x,kT ;S) can be

parametrized by TMDPDFs at leading twist accuracy [MT96, GMS05, BDG07] as

Φ(x,kT ;S) =
1

2

[(
f1 −

ϵijT k
i
TS

j
T

M
f⊥1T

)
/na +

(
λpg1L +

kT · ST
M

g1T

)
γ5/na (3.17)

− iσiµn
µ
a

(
h1S

i
Tγ5 − ih⊥1

kiT
M

+ h⊥1L
λpk

i
T

M
γ5 + h⊥1T

kT · STkiT − 1
2
k2TS

i
T

M2
γ5

)]
,

where σµν = i
2
[γµ, γν ]. We have eight quark TMDPDFs f1(x, k2T ), f

⊥
1T (x, k

2
T ), g1L(x, k

2
T ), g1T (x, k

2
T ),

h1(x, k
2
T ), h

⊥
1 (x, k

2
T ), h

⊥
1L(x, k

2
T ), and h⊥1T (x, k

2
T ), and their physical interpretations are summa-

rized in table 3.1. For details, see [MT96, GMS05, BDG07, BDD04, BDM11, Acc16].
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H

q
U L T

U f1 h⊥1

L g1L h⊥1L

T f⊥1T g1T h1, h
⊥
1T

Table 3.1: TMDPDFs for quarks. We have quark polarizations in the row with U = unpolarized,

L = longitudinal polarized, and T = transversely polarized quarks. On the other hand, the column

represents polarization of the hadron H (i.e. the proton in our case).

As usual, we find it convenient to work in the Fourier or b-space. Taking the Fourier transfor-

mation of the correlation function, we have

Φ̃ (x, b;S) =

∫
d2kT e

−ikT ·bΦ(x,kT ;S) , (3.18)

and the b-space correlation function Φ̃(x, b;S) at leading twist is given by [BGM11]

Φ̃(x, b;S) =
1

2

[(
f̃1 + iϵijT b

iSjTMf̃
⊥(1)
1T

)
/na +

(
λpg̃1L − ib · STMg̃

(1)
1T

)
γ5/na

− iσiµn
µ
a

(
SiT h̃1γ5 − biMh̃

⊥(1)
1 − iλpb

iMh̃
⊥(1)
1L γ5

− 1

2

(
b · ST bi −

1

2
b2SiT

)
M2h̃

⊥(2)
1T γ5

)]
, (3.19)

where b = |b| denotes the magnitude of the vector b. Here, the TMDPDFs in b-space are defined

as

f̃ (n)(x, b2) =
2πn!

(M2)n

∫
dkT kT

(
kT
b

)n
Jn (kT b) f

(
x, k2T

)
, (3.20)

where n = 0 by default when denoted without a superscript. For simplicity, we have suppressed

the additional scale-dependence in both f (x, k2T ) and f̃ (n)(x, b2), and we will specify these scale-

dependence explicitly below when we present the factorization formula.
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3.3.2 Transverse-momentum dependent fragmentation functions

We start with writing the parametrization of the transverse-momentum dependent fragmentation

functions (TMDFFs) correlator [MV16b] in the momentum space.

∆(zh,k⊥, Sh) =
∑
X

∫
dξ+d2ξT
(2π)3

ei(k
−ξ++k⊥·ξT )/zh

〈
0
∣∣ψq (ξ+, 0−, ξT )∣∣ ph, Sh;X〉

×
〈
ph, Sh;X

∣∣ψ̄q (0+, 0−,0T )∣∣ 0〉 , (3.21)

where k⊥ is the transverse momentum of the final hadron h with respect to the fragmenting quark

q and we suppress the Wilson lines that make the correlator gauge invariant. To the leading twist

accuracy, the parametrization is given as

∆(zh,k⊥, Sh) =
1

2

{(
D1 −

ϵijT k
i
⊥S

j
h⊥

zhMh

D⊥1T

)
/nb +

(
λhG1L − k⊥ · Sh⊥

zhMh

G1T

)
/nbγ5

− iσiµn
µ
b

(
H1S

i
h⊥ − iH⊥1

ki⊥
zhMh

−H⊥1L
λhk

i
⊥

zhMh

γ5

+H⊥1T
k⊥ · Sh⊥ki⊥ − 1

2
k2⊥S

i
h⊥

z2hM
2
h

γ5

)}
, (3.22)

where nb is the light-cone vector defined by the outgoing quark direction.

Just as in eq. (5.40), we find it more convenient to derive the relations between the TMDJFFs

and TMDFFs using the Fourier space expressions of the TMDFFs. The Fourier transformation for

the TMDFF correlator is defined as

∆̃(zh, b, Sh) =
1

z2h

∫
d2k⊥e

−ik⊥·b/zh∆(zh,k⊥, Sh) . (3.23)

The TMDFF correlator in b-space is then given as

∆̃(zh, b, Sh) =
1

2

{(
D̃1(zh, b

2) + iϵijT b
iSjh⊥zhMhD̃

⊥(1)
1T (zh, b

2)
)
/nb

+
(
λhG̃1L(zh, b

2) + ib · Sh⊥zhMhG̃
(1)
1T (zh, b

2)
)
/nbγ5

− iσiµn
µ
b

[
H̃1(zh, b

2)Sih⊥ − H̃
⊥(1)
1 (zh, b

2)bizhMh + iH̃
⊥(1)
1L (zh, b

2)λhb
izhMhγ5

− H̃
⊥(2)
1T (zh, b

2)
1

2

(
b · Sh⊥bi −

1

2
b2Sih⊥

)
z2hM

2
hγ5

]}
, (3.24)
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where we defined

F̃ (n)(zh, b
2) =

1

z2h

2πn!

(z2hM
2
h)
n

∫
dk⊥k⊥

(
k⊥
b

)n
Jn

(
bk⊥
zh

)
F h/q

(
zh, k

2
⊥
)
. (3.25)

Note that F stands generally for all TMDFFs with appropriate n value and by default n = 0. We

then begin with unsubtracted TMDFFs, which follow the same parametrization, and make the scale

explicit by replacing

F̃ (n)(zh, b
2) → F̃ (n),unsub(zh, b

2, µ, ζ/ν2) , (3.26)

where µ is the usual renormalization scale, ν is a rapidity scale, and ζ is the so-called Collins-Soper

scale [Bou23].

3.3.3 Results of the structure functions

By substituting the parameterizations of the various PDF and FF correlators into equation (3.15),

one can compute the lepton-hadron production cross section for SIDIS and extract the forms of all

the structure functions FAB,(C).

With the assumption of single photon exchange, the differential cross section can be described

by a set of structure functions that are model-independent [Gou72, Kot95, DS05] and one ob-

tains [DS05, BDG07],

dσ

dxdydψdzdϕhdP 2
h⊥

=
α2

xyQ2

y2

2(1− ε)

(
1 +

γ2

2x

){
FUU,T + εFUU,L + ε cos (2ϕh)F

cos 2ϕh
UU

+ λNε sin (2ϕh)F
sin 2ϕh
UL + λNλe

√
1− ε2FLL

+ |S⊥|
[
sin (ϕh − ϕS)

(
F

sin(ϕh−ϕS)
UT,T + εF

sin(ϕh−ϕS)
UT,L

)
+ ε sin (ϕh + ϕS)F

sin(ϕh+ϕS)
UT + ε sin (3ϕh − ϕS)F

sin(3ϕh−ϕS)
UT

]
+ |S⊥|λe

√
1− ε2 cos (ϕh − ϕS)F

cos(ϕh−ϕS)
LT

}
, (3.27)

where the ratio ε is defined by

ε =
1− y − 1

4
γ2y2

1− y + 1
2
y2 + 1

4
γ2y2

≈ 1− y

1− y + 1
2
y2
. (3.28)
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Thus one has the overall depolarization factor given by

y2

2(1− ε)
≈
(
1− y +

1

2
y2
)
, (3.29)

and the rest factors are written as

y2

2(1−ε) ε ≈ (1− y) ,
y2

2(1− ε)

√
1− ε2 ≈ y

(
1− 1

2
y

)
, (3.30)

y2

2(1−ε)
√

2ε(1 + ε) ≈ (2− y)
√
1− y ,

y2

2(1− ε)

√
2ε(1− ε) ≈ y

√
1− y . (3.31)

In the context of our study, the structure functions on the right-hand side of the equation depend on

several parameters, including x, Q2, z, and P 2
h⊥. The angle ψ represents the azimuthal angle of ℓ′

(the scattered lepton) around the lepton beam axis, with respect to an arbitrary fixed direction. In

the case of a transversely polarized target, we specifically choose this fixed direction to align with

the direction of S (the target polarization vector). The relationship between ψ and ϕS is detailed

in [DS05], where, in the context of deep inelastic kinematics, dψ is approximately equal to dϕS .

The subscripts of the structure functions signify the respective polarizations of the beam and

target, while an additional subscript in FUU,T , FUU,L, F sin(ϕh−ϕS)
UT,T , and F

sin(ϕh−ϕS)
UT,L specifies the

polarization of the virtual photon. Here, the terms ”longitudinal” and ”transverse” target polariza-

tion refer to the photon direction. However, converting to experimentally relevant longitudinal or

transverse polarizations with respect to the lepton beam direction is a straightforward process, and

details can be found in [DS05].

To simplify the notation of these structure functions, we introduce the unit vector ĥ = Ph⊥/|Ph⊥|.
As an example, we first write down the factorization formalism for FUU,T ,

FUU,T =x
∑
i

σ0H
(
Q2, µ

) ∫ ∞
0

db

2π
b bm+nJm+n(qT b)

× f̃unsub.
1,i/p

(
x, b, µ, ζ1/ν

2
)
D̃unsub.

1,h/i

(
zh, b, µ, ζ2/ν

2
)
S̃na nb

(b, µ, ν) , (3.32)

where σ0 =
αemαs
sQ2

2 (û2 + ŝ2)

t̂2
is the Born cross section for the unpolarized electron and quark

scattering process. H (Q2, µ) is the hard function that encodes physics at the hard scale Q and at

the next-to-leading order, it is given by [KLS21b]

H
(
Q2, µ

)
= 1 +

αs(µ)

2π
CF

(
− ln2 Q

2

µ2
− 3 ln

Q2

µ2
− 8 +

π2

6

)
+O

(
α2
s

)
, (3.33)
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In eq. (3.32), f̃unsub.
1,i/p is the renormalized beam function defined in the SCET literature [STW10]

(also know as unsubtracted TMD PDF), describing collinear radiation close to the proton, D̃unsub.
1,h/i is

the unsubtracted TMD FF. And S̃na nb
is the soft function that encodes soft gluon radition between

the colliding partons. Up to NLO, the soft function is given as

S̃na nb
(b, µ, ν) = 1 +

αs(µ)CF
2π

[
−L2

b + 4Lb ln
µ

ν
− π2

6

]
+O(α2

s) , (3.34)

with Lb = ln
b2µ2

b20
with b0 = 2e−γE . Note that both soft function and the unsubtracted TMDs

contain additional divergence called “rapidity divergence”. In order to regularize them, we use the

rapidity regulator method introduced in [CJN12], which is why we have a new rapidity scale ν

similar to the normal renormalization scale µ.

Note the dependence of rapidity divergence scale ν cancels between the unsubtracted function

and soft function [CJN12], leaving only the Collins-Soper scale ζ1, ζ2

f̃i/p (x, b, µ, ζ1) = f̃unsub.
i/p

(
x, b, µ, ζ1/ν

2
)√

S̃na nb
(b, µ, ν) , (3.35)

D̃h/i (zh, b, µ, ζ2) = D̃unsub.
h/i

(
zh, b, µ, ζ2/ν

2
)√

S̃na nb
(b, µ, ν) . (3.36)

The method of including soft function into the unsubtracted TMDs was first introduced by Collins

[Col13]. With this new definition, one can view that the decomposition of TMD PDF f̃i/p (x, b, µ, ζ1)

and TMD FF D̃h/i (z, b, µ, ζ2) into collinear and soft matrix elements [BN11, BNW12, BNW13,

EIS12, EIS13b, EIS14, CJN12, LNZ20]. Now we can simplify the factorization in eq. (3.32) and

define the notation [BDG07, BGM11, Bou23]

B[f̃ (m)D̃(n)] =x
∑
i

Hii(Q
2, µ)

∫ ∞
0

db

2π
b bm+nJm+n(qT b)f̃

(m)
i/p (x, b, µ, ζ1) D̃

(n)
h/i (zh, b, µ, ζ2) ,

(3.37)

where the Fourier-transformed TMD PDFs f̃ (m)
i/p and TMD FFs D̃(n)

h/i have been defined in eqs. (3.20)

and (3.25). Finally, one arrives at the structure functions shown in eq. (3.27) written in terms of

TMDs [BGM11]:

FUU,T
(
x, zh, PhT , Q

2
)
= B

[
f̃
(0)
1 D̃

(0)
1

]
, (3.38)

FUU,L
(
x, zh, PhT , Q

2
)
= 0 , (3.39)
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F cos 2ϕh
UU

(
x, zh, PhT , Q

2
)
=MNMhB

[
h̃
⊥(1)
1 H̃

⊥(1)
1

]
, (3.40)

F sin 2ϕh
UL

(
x, zh, PhT , Q

2
)
=MNMhB

[
h̃
⊥(1)
1L H̃

⊥(1)
1

]
, (3.41)

FLL
(
x, zh, PhT , Q

2
)
= B

[
g̃
(0)
1 D̃

(0)
1

]
, (3.42)

F
sin(ϕh−ϕS)
UT,T

(
x, zh, PhT , Q

2
)
= −MNB

[
f̃
⊥(1)
1T D̃

(0)
1

]
, (3.43)

F
sin(ϕh−ϕS)
UT,L

(
x, zh, PhT , Q

2
)
= 0 , (3.44)

F
sin(ϕh+ϕS)
UT

(
x, zh, PhT , Q

2
)
=MhB

[
h̃
(0)
1 H̃

⊥(1)
1

]
, (3.45)

F
sin(3ϕh−ϕS)
UT

(
x, zh, PhT , Q

2
)
=
M2

NMh

4
B
[
h̃
⊥(2)
1T H̃

⊥(1)
1

]
, (3.46)

F
cos(ϕh−ϕS)
LT

(
x, zh, PhT , Q

2
)
=MNB

[
g̃
⊥(1)
1T D̃

(0)
1

]
, (3.47)

3.4 Summary

So far we have provided a comprehensive review of Semi-Inclusive Deep Inelastic Scattering

(SIDIS), a fundamental process in studying the structure of hadrons. We begin by discussing

the essential aspects of SIDIS, including its kinematics and structure functions, which are crucial

for interpreting experimental measurements. In this chapter, we also introduce the Transverse Mo-

mentum Dependent (TMD) factorization framework, which provides a theoretical description of

the SIDIS cross-section. Key components of TMD factorization, such as TMD parton distribution

functions and TMD fragmentation functions, are presented. The main goal of this chapter is to

provide readers with a thorough understanding of SIDIS and TMD factorization, as these concepts

are essential for investigating the structure of hadrons and introducing the studies of jets.

The subsequent chapter will introduce a novel concept called Polarized Jet Fragmentation

Functions (JFFs), developed by the author of this dissertation. It will discuss the motivation and

significance of polarized JFFs, emphasizing their importance in understanding the spin structure

of hadrons. Detailed calculations of polarized JFFs for both Collinear and Transverse Momentum

Dependent (TMD) cases will be presented. The objective of this chapter is to provide a compre-

hensive insight into polarized JFFs and their significance in studying the spin structure of hadrons.
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CHAPTER 4

Polarized Jet Fragmentation Functions (JFFs)

The Polarized Jet Fragmentation Functions (JFFs) is a newly developed concept by the

author of this dissertation. The chapter starts by discussing the motivation and signifi-

cance of polarized JFFs, which is a crucial ingredient for understanding the spin struc-

ture of hadrons. The focus then shifts to the detailed calculations of polarized JFFs for

both Collinear and Transverse Momentum Dependent (TMD) cases. The chapter aims

to provide a comprehensive understanding of the polarized JFFs and its importance for

the study of the spin structure of hadrons.

Over the last few years, the study of hadron distributions inside jets has received increasing

attention as an effective tool to understand the fragmentation process, describing how the color

carrying partons transform into color-neutral particles such as hadrons. Understanding such a frag-

mentation process is important as it will provide us with a deep insight into the elusive mechanism

of hadronization. Theoretical objects which describe the momentum distribution of hadrons inside

a fully reconstructed jet is called jet fragmentation functions (JFFs). The usefulness of studying

the longitudinal momentum distribution of the hadron in the jet rather than the hadron production

itself stems from the former process being differential in the momentum fraction zh ≡ phT/pJT ,

where phT and pJT are the transverse momenta of the hadron and the jet with respect to the beam

axis, respectively. Collinear JFFs in the first process can be matched onto the standard collinear

fragmentation functions (FFs), enabling us to extract the usual universal FFs more directly by

“scanning” the differential zh dependence. The theoretical developments on the JFFs were first

studied in the context of exclusive jet production [PS10, JPW11, JPW12, CKR16] and was later
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extended to the inclusive jet production case [AFG14, KMV15, KRV16a, DKL16, KLT19].

At the same time, the transverse momentum distribution of the hadrons within jets can be sen-

sitive to the transverse momentum dependent fragmentation, described by transverse momentum

dependent jet fragmentation functions (TMDJFFs). In [KLR17], it was demonstrated that such

TMDJFFs are closely connected to the standard transverse momentum dependent FFs (TMDFFs)

[BM00, MR01, MV16b] when the transverse momentum of the hadron is measured with re-

spect to the standard jet axis. For the TMD study of the hadron with respect to the Winner-

Take-All jet axis, see [NSW17, NPW19]. As for the TMD study inside the groomed jet, see

[MNV18, MV18, GMV19]. For the recent works on resummation of ln zh and ln(1− zh), see

[NR20, KLM20].

Because of its phenomenological relevance and effectiveness, study of the JFFs has become a

very important topic over recent years at the LHC and RHIC, producing measurements for a wide

range of identified particles within the jet. Calculations for the JFFs have been performed for single

inclusive jet production in unpolarized proton-proton collisions in the context of light charged

hadrons [CKR16, KMV15, KRV16a], heavy-flavor mesons [CKR16, BDH16, AKS17], heavy

quarkonium [KQR17, BDL17], and photons [KMV16]. For the relevant experimental results for

the LHC and RHIC, see [Aab19a, Aad12, Aad11, Cha12, Cha14, Aad14, Aab18, Aai17, Ach19b,

Aai19, Ach19a, Aad19, Sir20] and [Ada18c, Ada18b], respectively. Study of JFFs is not only

important at the LHC and RHIC as already proven to be, but also provides novel insights at the

future Electron-Ion Collider (EIC) [Acc16, AFL19, LRV19, ASR20] as we will show below.

In this chapter, we provide the general theoretical framework for studying the distribution of

hadrons inside a jet by taking full advantage of the polarization effects. We introduce polarized jet

fragmentation functions, where the parton that initiates the jet and the hadron that is inside the jet

can both be polarized. We do this in the context of both pp collider like LHC and RHIC, as well

as ep collider like the future EIC. Analogous to the standard FFs, we find a slew of different JFFs

that have close connection with the corresponding standard FFs.

When a proton with a general polarization collides with an unpolarized proton or lepton, differ-

ent JFFs appear with different parton distribution functions (PDFs) and characteristic modulation
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in the azimuthal angles measured with respect to the scattering plane. Therefore, these observables

are not only useful in exploring the spin-dependent FFs, but also in understanding the polarized

PDFs. For instance, with the extra handle in zh, we would be able to reduce uncertainties coming

from the final state fragmentation functions by restricting to a well-determined zh region. Alter-

natively, with well-determined polarized PDFs at hand, we can directly probe spin-dependent FFs

through a study of different JFFs. Some applications of spin-dependent JFFs relevant for the RHIC

were considered in [Ada18c, Yua08, DMP11, DGK11, KPR17, DMP17], but other applications are

far and wide. To demonstrate this, we consider two phenomenological applications in detail. We

demonstrate how one can use spin-dependent JFFs to study the collinear helicity FFs and so-called

TMD polarizing fragmentation functions (TMD PFFs). There are, of course, many more possible

applications of studying other polarized JFFs which we also list in this paper and will present the

details in a forthcoming long paper. Other potential applications include probing the polarization

of heavy quarkonium inside the jet [KQR17], which is very promising at the LHC and RHIC.

4.1 Kinematics

To properly define the momentum and the spin vectors, we apply a light-cone vector na = [1, 0,0T ]

with its conjugate vector nb = [0, 1,0T ] that have been introduced in section 3.2.2. Accordingly,

we decomposes any four-vector pµ as p = [p+, p−,pT ]. Namely,

pµ = p+nµa + p−nµb + pµT , (4.1)

where p+ = nb · p = 1√
2
(p0 + pz) and p− = na · p = 1√

2
(p0 − pz). Let us specify the kinematics

of the hadron inside the jet. If the hadron is in a reference frame in which it moves along the

+z-direction and has no transverse momentum, then the p−h component of its momentum would

be very large while the p+h component is small, p+h ≪ p−h . We can parameterize the momentum ph

and the spin vector Sh of the hadron, respectively, as

ph =

(
M2

h

2p−h
, p−h , 0

)
, Sh =

(
−Λh

Mh

2p−h
,Λh

p−h
Mh

,Sh⊥

)
, (4.2)

where Mh is the mass of the hadron, and Λh and Sh⊥ describe the longitudinal and transverse

polarization of the hadron inside the jet, respectively. It is evident that they satisfy the relation
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ph · Sh = 0 as required.

4.2 Polarized collinear JFFs

In this section, we introduce the definition of the exclusive and semi-inclusive jet fragmentation

function in SCET with both unpolarized and polarized fragmenting hadron, which are used in

the description of longitudinal momentum fraction distribution within jets in pp collisions. The

siJFFs describe the fragmentation of a hadron h within a jet that is initiated by a parton c. We

first provide their operator definitions, perform its calculation to NLO, derive and solve its RG

evolution equation.

4.2.1 Collinear JFFs in semi-inclusive jet productions

The general correlators that define the collinear jet fragmentation functions in such a hadron frame

are given by [KRV16a]

∆h/q(z, zh, ωJ , Sh) =
z

2Nc

δ

(
zh −

ωh
ωJ

)
× ⟨0|δ (ω − na · P)χn(0)|(Jh)X⟩⟨(Jh)X|χ̄n(0)|0⟩, , (4.3)

∆h/g, µν(z, zh, ωJ , Sh) =
z ω

(d− 2)(N2
c − 1)

δ

(
zh −

ωh
ωJ

)
× ⟨0|δ (ω − na · P)Bµn⊥(0)|(Jh)X⟩⟨(Jh)X|Bνn⊥(0)|0⟩ , (4.4)

for quark and gluon jets, respectively. Here ωJ and ωh are the energy of the jet and that of the

identified hadron inside the jet, respectively and they are related to the momenta of the jet pJ , and

the hadron ph by ωJ = p−J and ωh = p−h . The energy fractions z and zh are defined as

z =
ωJ
ω
, zh =

ωh
ωJ

, (4.5)

where ω is the energy of the parton that initiates the jet. Thus z is the momentum fraction of the

parton carried by the jet, while zh is the momentum fraction of the jet carried by the hadron.

Note that the state |(Jh)X⟩ represents the final-state unobserved particles X and the observed

jet J with an identified hadron h inside, denoted collectively by (Jh). Because of this, the equa-
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tions above also contain the kinematics of the jet, such as the jet radius R. We will suppress them

here for simplicity, but express them out explicitly when we discuss their evolution equation in the

following subsection. Also note here, we have used the gauge invariant quark and gluon fields, χn

and Bµn⊥, in the Soft Collinear Effective Theory [BFL00, BFP01, BS01, BPS02],

χn = W †
nξn, Bµn⊥ =

1

g

[
W †
niD

µ
n⊥Wn

]
, (4.6)

where n in the subscript denotes the light-cone vector and has its spatial component aligned with

the jet axis. In eq. (4.6), the covariant derivative is iDµ
n⊥ = Pµ

n⊥ + gAµn⊥, with Pµ the label

momentum operator. On the other hand, Wn is the Wilson line of collinear gluons:

Wn(x) =
∑
perms

exp

(
−g 1

na · P
na · An(x)

)
. (4.7)

With these collinear quark and gluon fields at hand, one can define the correlator definitions for

the quark semi-inclusive JFFs with different polarizations as [KRV16a]

Ghq (z, zh, ωJ , µ) =Tr

[
/na
2
∆h/q(z, zh, ωJ , Sh)

]
, (4.8)

∆Ghq (z, zh, ωJ , µ) =Tr

[
/na
2
γ5∆

h/q(z, zh, ωJ , Sh)

]
, (4.9)

∆TGhq (z, zh, ωJ , µ) =Tr

[
/na
2
γi⊥γ5∆

h/q(z, zh, j⊥, Sh)

]
, (4.10)

and the gluon semi-inclusive JFFs are given as [KRV16a]

Ghg (z, zh, ωJ , µ) =− z ω

(d− 2)(N2
c − 1)

δ

(
zh −

ωh
ωJ

)
× ⟨0|δ (ω − na · P)Bn⊥µ(0)|(Jh)X⟩⟨(Jh)X|Bµn⊥(0)|0⟩, (4.11)

∆Ghg (z, zh, ωJ , µ) =− z ω

(d− 2)(d− 3)(N2
c − 1)

δ

(
zh −

ωh
ωJ

)
× ⟨0|δ (ω − na · P)Bn⊥µ(0)|(Jh)X⟩⟨(Jh)X|Bµn⊥(0)|0⟩ , (4.12)

where (d − 2) is the number of polarizations for gluons in d space-time dimensions and Nc is the

number of colors for quarks. As given in eqs. (4.8) to (4.10), to obtain the helicity and transversity

distributions of hadron in quark JFFs, we replace the /na in unpolarized JFF Ghq (z, zh, ωJ , µ) by

/naγ5 and /naγ
i
⊥γ5 respectively. In table 4.1, we categorize Ghq , ∆Ghq and ∆TGhq . Note that we only

consider massless quark flavors.

36



h/q U L T

U Ghq
L ∆Ghq
T ∆TGhq

h/q U L T

U Dh/q

L ∆Dh/q

T ∆TD
h/q

Table 4.1: Collinear quark semi-inclusive JFFs (left) and collinear FFs (right). The labels “U”,

“L” and “T” in the header row represent unpolarized, longitudinally polarized and transversely

polarized fragmenting quarks. And the labels in the header column represent the corresponding

polarizations of the produced hadrons.

In addition, we would like to point out that the semi-inclusive jet fragmentation functions can

also depend on the jet radius R, namely in general we have Ghi (z, zh, ωJ , R, µ). However, in the

remainder of this thesis, we leave this dependence implicit to shorten our notation.

4.2.1.1 NLO calculation

Since the semi-inclusive JFFs Ghi (z, zh, ωJ , µ) describe the distribution of hadrons inside the jet,

which contains hadronization/non-perturbative information, they are not perturbatively calcula-

ble. In this respect, they are different from the purely perturbative semi-inclusive jet functions

introduced in [KRV16b]. However, we can still follow the standard perturbative QCD methodol-

ogy and obtain the renormalization properties by evaluating the partonic jet fragmentation func-

tions. Hence, we will replace the hadron h by a parton j, and compute perturbatively compute

Gji (z, zh, ωJ , µ) as an expansion of the strong coupling constant αs.

Here we outline the calculation of the semi-inclusive JFFs for quark and gluon initiated jets

Ghq,g(z, zh, ωJ , µ), which have close relations to the conventional collinear FFs. For the unpolarized

case, the collinear unpolarized JFFs Ghi (z, zh, ωJ , µ) is related to the collinear unpolarized FFs

Dh/i(zh, µ) as follows

Ghi (z, zh, ωJ , µ) =
∑
j

∫ 1

zh

dz′h
z′h

Jij(z, z′h, ωJ , µ)Dh/j

(
zh
z′h
, µ

)
, (4.13)

where the coefficient functions Jij can be found in [KRV16a]. Note that we have selected ωJ =
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pJTR with the jet transverse momentum pJT and the jet radius R, which are dependent on the jet

kinematics. We have also included the renormalization scale µ in the matching to collinear FFs.

By studying the perturbative behavior of these JFFs, one can derive their renormalization group

(RG) equations, which are the same as the usual time-like DGLAP evolution equations,

µ
d

dµ
Ghi (z, zh, ωJ , µ) =

αs(µ)

π

∑
j

∫ 1

z

dz′

z′
Pji

( z
z′
, µ
)
Ghi (z′, zh, ωJ , µ) , (4.14)

where Pji are the splitting functions for unpolarized fragmentation functions [AP77, SV97].

Next we turn to the polarized JFFs. The leading order polarized bare semi-inclusive JFF in the

MS scheme can be written as:

∆(T )Gj,(0)i (z, zh, ωJ , µ) = δ(1− z)δ(1− zh), (4.15)

notice that z is equal to 1 because at LO the total energy of the initiating parton is transferred to the

jet, and zh is equal to one because the fragmenting parton inside the jet carries entire jet energy.

(A) (B)

(C) (D)

l

q

l − q

Figure 4.1: Feynman diagrams that contribute to the polarized semi-inclusive quark JFFs. As

illustrated in (A), the quark initiating the jet has momentum l = (l+, l− = ω,0⊥) with quark

energy ω as introduced in eq. (4.5). The black dashed lines are collinear quarks and red curly lines

represent collinear gluons.

At the next-to-leading order (NLO) in SCET, the collinear processes will contribute, and the

corresponding Feynman diagrams can be found in [KRV16b, KRV16a]. The semi-inclusive jet
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fragmentation functions (JFFs) are obtained by considering all possible final state cuts of the Feyn-

man diagrams depicted in fig. 4.1. To carry out the calculations, we work in pure dimensional reg-

ularization with d = 4− 2ϵ dimensions, focusing only on cuts through loops, where there are two

final-state partons. The remaining cuts result in virtual contributions, leading to scaleless integrals

that vanish in dimensional regularization. These virtual contributions primarily change infrared

(IR) poles to ultraviolet (UV) poles, except for the IR poles that will eventually be matched onto

the standard collinear fragmentation functions. Thus, in the end, we are left with UV poles only,

which will be addressed through renormalization.

Considering the quark semi-inclusive JFF, we have two contributions to consider: fig. 4.1 (A)

and fig. 4.1 (B)+(C), similar to the semi-inclusive jet function analyzed in a previous work [JPW11,

CKR16]. Specifically, we focus on ∆(T )Gq,(1)q , where the incoming quark has momentum l−, and

the final-state quark has momentum l− − q−. Based on these momenta, we define the branching

fraction x = (l−− q−)/l−. At this perturbative order, there are only two possibilities. First, if both

the quark and the gluon are inside the jet, as illustrated in fig. 4.2 (A), we have z = 1 and zh = x.

Second, if the gluon exits the jet, as shown in fig. 4.2 (B), we have z = x and zh = 1. Extending

the discussions from [KRV16a], we consider both cases where both partons are in the jet and only

one parton is in the jet:

ω

ωJ

ωh = zhω = zhωJ ωh = ωJ

z = ωJ

ω
= 1

(A) (B) (C)

z = ωh

ωJ
= 1

Figure 4.2: Contributions required for studying semi-inclusive JFFs. In (A), one observes both

the quark and the gluon inside the jet. In (B) and (C) only the quark or gluon is inside the jet,

respectively.
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1. Both partons are inside the jet

The scenario depicted in fig. 4.2 (A) corresponds to a quark-initiated jet. In this case, all the

initial quark energy ω is fully transferred to the jet, leading to z = ωJ/ω = 1. However, the

energy of the fragmenting parton, denoted by ωh, can be less than the jet energy, resulting in

a general ratio zh = ωh/ωJ < 1.

For the splitting process i → jk, where j denotes the fragmenting parton, the one-loop bare

semi-inclusive Jet Fragmentation Fragmentation Function (JFF) in the MS scheme can be

expressed as follows:

∆(T )Gjk,(1)i (z, zh, ωJ , µ) =
αs
2π

(eγEµ2)ϵ

Γ(1− ϵ)

(
δ(1− z)∆(T )P̂ji(zh, ϵ)

∫
dq2⊥

(q2⊥)
1+ϵ

Θanti−kT
both

)
.

(4.16)

The superscript “jk” indicates that this is the contribution proportional to α∫ where both

partons j and k remain inside the jet. The term Θanti−kT both represents the constraints of

the anti-kT jet algorithm with both partons remaining inside the jet, and it is expressed using

Heaviside functions:

Θanti−kT
both = θ

(
zh(1− zh)ωJ tan

R
2
− q⊥

)
, R ≡ R/ cosh(η) . (4.17)

2. Only one parton is inside the jet

The scenario where one parton remains inside the jet while another parton exits the jet is

depicted in fig. 4.2 (B) and (C) for a quark-initiated jet. In this case, the final-state quark (or

gluon) forms the jet with a jet energy ωJ = l− − q− = zl−. This means that only a fraction

z of the incoming quark energy ω is transferred to the jet energy. At this perturbative order,

all the jet energy is fully transferred to the fragmenting parton inside the jet, leading to an

overall delta function that enforces zh = ωh/ωJ = 1.

It is crucial to distinguish this situation from earlier work [KRV16b] that considered the ex-

clusive limit of the JFFs. In that case, an upper cut Λ was imposed on the total energy outside

the measured jets to ensure an exclusive n-jet configuration. However, it was demonstrated

explicitly in the context of angularities [EVW10] that for the exclusive case, this contri-

bution is power suppressed as O(Λ/Q), where Q is the large scale of the process. In the
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present inclusive cross-section calculation, such constraints are not necessary, as we need to

integrate over all momentum configurations similar to the case of fragmentation functions.

Consequently, there are no power corrections of the form O(Λ/Q).

The constraints imposed by the jet algorithms require that one of the partons must be out-

side the jet, which can be formulated in the following manner for both cone and anti-kT

algorithms:

Θanti−kT
j = θ

(
q⊥ − (1− z)ωJ tan

R
2

)
, R ≡ R/ cosh(η) . (4.18)

Note that this restriction is formulated in terms of the variable z, whereas the constraints in

eq. (4.17) are related to the variable zh. Once again, we consider the splitting process i→ jk,

where only parton j remains inside the jet and eventually fragments into the observed hadron.

This part of the bare semi-inclusive jet fragmentation functions can be expressed as follows:

∆(T )Gj(k),(1)i (z, zh, ωJ , µ) =
αs
2π

(eγEµ2)ϵ

Γ(1− ϵ)

(
δ(1− zh)∆(T )P̂ji(z, ϵ)

∫
dq2⊥

(q2⊥)
1+ϵ

Θanti−kT
j

)
.

(4.19)

The superscript “j(k)” indicates that parton k exits the jet. The structure of this expression

is similar to eq. (4.16), except for the presence of a different overall delta function and a

distinct jet algorithm constraint. Θanti−kT
j .

Finally, by combining eq. (4.16) and eq. (4.19), one obtains

∆(T )Gj,(1)i (z, zh, ωJ , µ) =
αs
2π

(eγEµ2)ϵ

Γ(1− ϵ)

(
δ(1− z)∆(T )P̂ji(zh, ϵ)

∫
dq2⊥

(q2⊥)
1+ϵ

Θanti−kT
both

+ δ(1− zh)∆(T )P̂ji(z, ϵ)

∫
dq2⊥

(q2⊥)
1+ϵ

Θanti−kT
j

)
, (4.20)

where Θanti−kT
both and Θanti−kT

j are the anti-kT jet algorithm constraints with both partons in jet and

only one parton in jet as introduced in eq. (4.17) and eq. (4.18).

The longitudinally polarized splitting functions ∆P̂ji(x, ϵ) in eq. (4.20) are given in [Vog96]:

∆P̂qq(x, ϵ) = CF

[
1 + x2

1− x
− ϵ(1− x)

]
, (4.21)

∆P̂gq(x, ϵ) = CF [2− x+ 2ϵ(1− x)] , (4.22)
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∆P̂qg(x, ϵ) = TF [2x− 1− 2ϵ(1− x)] , (4.23)

∆P̂gg(x, ϵ) = 2CA

[
1

1− x
− 2x+ 1 + 2ϵ(1− x)

]
, (4.24)

and the transversely polarized splitting functions ∆T P̂ji(x, ϵ) only exist for ∆T P̂qq and have been

provided in [Vog98]:

∆T P̂qq(x, ϵ) = CF

(
2x

1− x

)
. (4.25)

After inserting the Θ functions for anti-kT algorithm and carrying out the integration in eq. (4.20),

one obtains the bare results for longitudinally polarized semi-inclusive JFFs ∆Gjj,bare(z, zh, ωJ , µ)

with i, j ∈ {q, g},

∆Gqq,bare(z, zh, ωJ , µ) = δ(1− z)δ(1− zh)

+
αs
2π

[(
1

ϵ
+ L

)
∆Pqq(z)δ(1− zh)−

(
1

ϵ
+ L

)
∆Pqq(zh)δ(1− z)

]
+ δ(1− z)

αs
2π

[
2CF (1 + z2h)

(
ln (1− zh)

1− zh

)
+

+ CF (1− zh) + 2∆Pqq(zh) ln zh

]
− δ(1− zh)

αs
2π

[
2CF (1 + z2)

(
ln (1− z)

1− z

)
+

+ CF (1− z)

]
, (4.26)

∆Ggq,bare(z, zh, ωJ , µ) =
αs
2π

[(
1

ϵ
+ L

)
∆Pgq(z)δ(1− zh)−

(
1

ϵ
+ L

)
∆Pgq(zh)δ(1− z)

]
+ δ(1− z)

αs
2π

[2∆Pgq(zh) ln(zh(1− zh))− 2CF (1− zh)]

− δ(1− zh)
αs
2π

[2∆Pgq(z) ln(1− z)− 2CF (1− z)] , (4.27)

∆Gqg,bare(z, zh, ωJ , µ) =
αs
2π

[(
1

ϵ
+ L

)
∆Pqg(z)δ(1− zh)−

(
1

ϵ
+ L

)
∆Pqg(zh)δ(1− z)

]
+ δ(1− z)

αs
2π

[2∆Pqg(zh) ln(zh(1− zh)) + 2TF (1− zh)]

− δ(1− zh)
αs
2π

[2∆Pqg(z) ln(1− z) + 2TF (1− z)] , (4.28)

∆Ggg,bare(z, zh, ωJ , µ) = δ(1− z)δ(1− zh)

+
αs
2π

[(
1

ϵ
+ L

)
∆Pgg(z)δ(1− zh)−

(
1

ϵ
+ L

)
∆Pgg(zh)δ(1− z)

]
+ δ(1− z)

αs
2π

[
4CA

(
2(1− zh)

2 + zh
)( ln(1− zh)

1− zh

)
+

]
+ δ(1− z)

αs
2π

[
2∆Pgg(zh) ln zh − 4CA(1− zh)

]
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− δ(1− zh)
αs
2π

[
4CA

(
2(1− z)2 + z

)( ln(1− z)

1− z

)
+

− 4CA(1− z)

]
, (4.29)

where L ≡ ln
(

µ2

ω2
J tan2(R/2)

)
. The transversely polarized semi-inclusive JFFs are given by:

∆TGqq,bare(z, zh, ωJ , µ) = δ(1− z)δ(1− zh)

+
αs
2π

[(
1

ϵ
+ L

)
∆TPqq(z)δ(1− zh)−

(
1

ϵ
+ L

)
∆TPqq(zh)δ(1− z)

]
+ δ(1− z)

αs
2π

[
4CF zh

(
ln (1− zh)

1− zh

)
+

+ 2∆TPqq(zh) ln zh

]
− δ(1− zh)

αs
2π

[
4CF z

(
ln (1− z)

1− z

)
+

]
. (4.30)

Here the functions ∆(T )Pji(zh) are the longitudinally (transversely) polarized Altarelli-Parisi split-

ting kernels

∆Pqq(x) = CF

[
2

(1− x)+
− 1− x+

3

2
δ(1− x)

]
, (4.31)

∆Pgq(x) = CF [2− x], (4.32)

∆Pqg(x) = TF [2x− 1], (4.33)

∆Pgg(x) = 2CA

[
1

(1− x)+
− 2x+ 1

]
+
β0
2
δ(1− x), (4.34)

∆TPqq(x) = CF

[
2x

(1− x)+
+

3

2
δ(1− x)

]
, (4.35)

where β0 ≡ 11
3
CA − 4

3
TFnf and nf is number of flavors. The “plus” distributions are defined as

usual by: ∫ 1

0

dz f(z)[g(z)]+ =

∫ 1

0

dz (f(z)− f(1))g(z). (4.36)

Note that there is no gluon involved splitting for ∆T since there is no gluonic transversity distribu-

tion at leading twist.

It is important to point out that the 1/ϵ poles with a factor of ∆(T )(zh)δ(1− z) in eqs. (4.26)

to (4.30) are IR poles that will be matched onto the standard longitudinally (transversely) polarized

collinear FFs. The poles with a factor of ∆(T )(z)δ(1− zh), on the other hand, are the UV poles

which will be taken care of by renormalization. Since the UV poles do not involve the variable

zh, we should expect that zh is merely a parameter when doing the renormalization. In matching

onto the collinear FFs, however, zh will become a relevant variable. Both the renormalization and

matching onto collinear FFs will be discussed in section 4.2.1.2.
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4.2.1.2 Renormalization and matching onto collinear FFs

The subsequent action we will take involves the renormalization of the bare semi-inclusive JFFs ob-

tained previously, followed by matching them onto the renormalized partonic fragmentation func-

tions to address the IR poles. The relationship between the bare and renormalized semi-inclusive

JFFs is as follows:

∆(T )Gji,bare(z, zh, ωJ , µ) =
∑
k

∫ 1

z

dz′

z′
∆(T )Zik

( z
z′
, µ
)
∆(T )Gji (z′, zh, ωJ , µ), (4.37)

where ∆(T )Zik
(
z
z′ , µ

)
is the renormalization matrix and ∆(T )Gji (z′, zh, ωJ , µ) are the renormalized

semi-inclusive JFFs. As pointed out in section 4.2.1.1, the above convolution only involves the

variable z. The renormalized semi-inclusive JFFs satisfy the following RG evolution equations:

µ
d

dµ
∆(T )Gji (z, zh, ωJ , µ) =

∑
k

∫ 1

z

dz′

z′
∆(T )γik

( z
z′
, µ
)
∆(T )Gji (z′, zh, ωJ , µ), (4.38)

where the anomalous dimension matrix is given by:

∆(T )γik = −
∑
k

∫ 1

z

dz′

z′
(
∆(T )Z

)−1
ik

( z
z′
, µ
)
µ
d

dµ
∆(T )Zkj(z

′, µ), (4.39)

and
(
∆(T )Z

)−1
ik

is the inverse of the renormalization matrix that is defined such that it satisfies:

∑
k

∫ 1

z

dz′

z′
(
∆(T )Z

)−1
ik

( z
z′
, µ
)
∆(T )Zkj(z

′, µ) = δijδ(1− z). (4.40)

Up to O(αs), the renormalization matrix is

∆(T )Zij(z, µ) = δijδ(1− z) +
αs(µ)

2π

1

ϵ
∆(T )Pji(z), (4.41)

and therefore the anomalous dimension matrix is given by:

∆(T )γij(z, µ) =
αs(µ)

π
∆(T )Pji(z), (4.42)

this suggests that the evolution of the renormalized polarized semi-inclusive JFFs conforms to the

timelike DGLAP equation for collinear polarized FFs [AP77]:

µ
d

dµ
∆(T )Ghi (z, zh, ωJ , µ) =

αs(µ)

π

∑
k

∫ 1

z

dz′

z′
∆(T )Pji

( z
z′

)
∆(T )Ghi (z′, zh, ωJ , µ) . (4.43)
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Notice that the hadronic JFFs have been reinstated, and the leading order splitting kernels are

given in eq. (4.31)-4.35. An analogous finding was observed in the context of the semi-inclusive

jet function in [KRV16b].

Now that we have eliminated the UV poles from renormalization, we will still have to deal

with the IR poles, which will be addressed by matching onto the collinear polarized FFs. Such

matching can be done at a scale µ≫ ΛQCD as follows:

∆(T )Ghi (z, zh, ωJ , µ) =
∑
j

∫ 1

zh

dz′h
z′h

∆(T )Jij(z, z′h, ωJ , µ)∆(T )D
h/j

(
zh
z′h
, µ

)
, (4.44)

where again, the hadronic semi-inclusive JFFs and collinear FFs are reinstated, and the relation is

true up to a power correction of O
(
Λ2

QCD/(ω
2 tan2(R/2))

)
[JPW11, CKR16, KRV16a]. It should

be noted that in this case, the variable being convolved is zh, while z is merely a parameter. This

process is similar to the approach used for unpolarized JFFs described in [KRV16a], except that

instead of the unpolarized FFs, in this instance, collinear polarized FFs are applied

∆(T )D
j/i(zh, µ) = δijδ(1− zh) +

αs
2π

∆(T )Pji(zh)

(
−1

ϵ

)
. (4.45)

Finally, the matching coefficients ∆(T )Jij for anti-kT jet algorithm can be presented as follows

∆Jqq(z, zh, ωJ , µ) = δ(1− z)δ(1− zh) +
αs
2π

{
L

[
∆Pqq(z)δ(1− zh)−∆Pqq(zh)δ(1− z)

]
+ δ(1− z)

[
2CF (1 + z2h)

(
ln (1− zh)

1− zh

)
+

+ CF (1− zh) + ∆Ianti−kT
qq (zh)

]
−δ(1− zh)

[
2CF (1 + z2)

(
ln (1− z)

1− z

)
+

+ CF (1− z)

]}
, (4.46)

∆Jqg(z, zh, ωJ , µ) =
αs
2π

{
L

[
∆Pgq(z)δ(1− zh)−∆Pgq(zh)δ(1− z)

]
+ δ(1− z)

[
2∆Pgq(zh) ln(1− zh)− 2CF (1− zh) + ∆Ianti−kT

gq (zh)
]

− δ(1− zh)

[
2∆Pgq(z) ln(1− z)− 2CF (1− z)

]}
(4.47)

∆Jgq(z, zh, ωJ , µ) =
αs
2π

{
L [∆Pqg(z)δ(1− zh)−∆Pqg(zh)δ(1− z)]

+ δ(1− z)
[
2∆Pqg(zh) ln(1− zh) + 2TF (1− zh) + ∆Ianti−kT

qg (zh)
]

− δ(1− zh)

[
2∆Pqg(z) ln(1− z) + 2TF (1− z)

]}
, (4.48)
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∆Jgg(z, zh, ωJ , µ) = δ(1− z)δ(1− zh) +
αs
2π

{
L

[
∆Pgg(z)δ(1− zh)−∆Pgg(zh)δ(1− z)

]
+ δ(1− z)

[
4CA

(
2(1− zh)

2 + zh
)( ln(1− zh)

1− zh

)
+

− 4CA(1− zh) + ∆Ianti−kT
gg (zh)

]
− δ(1− zh)

[
4CA

(
2(1− z)2 + z

)( ln(1− z)

1− z

)
+

− 4CA(1− z)

]}
,

(4.49)

∆TJqq(z, zh, ωJ , µ) = δ(1− z)δ(1− zh) +
αs
2π

{
L

[
∆TPqq(z)δ(1− zh)−∆TPqq(zh)δ(1− z)

]
+ δ(1− z)

[
4CF zh

(
ln (1− zh)

1− zh

)
+

+∆TIanti−kT
qq (zh)

]
− δ(1− zh)

[
4CF z

(
ln (1− z)

1− z

)
+

]}
, (4.50)

where

∆Ianti−kT
ij (zh) = 2∆Pji(zh) ln zh,

∆TIanti−kT
ij (zh) = 2∆TPji(zh) ln zh.

(4.51)

4.2.2 Collinear JFFs in exclusive jet productions

Exclusive jet production, such as proton-proton collisions leading to dijet events or electron-proton

collisions producing electron-jet events, provides a valuable tool for understanding the fundamen-

tal dynamics of hadron structure and interactions. A key observable in these processes is the

collinear jet fragmentation function, which describes the probability distribution for a parton in the

jet to fragment into a particular hadron with a given momentum fraction.

The collinear jet fragmentation function plays a critical role in determining the properties of

jets produced in these exclusive QCD processes, as it governs the hadronization of partons within

the jet. This function is defined as the ratio of the differential cross-section for hadron-in-jet pro-

duction to the differential cross-section for inclusive jet production. It depends on several variables,

including the momentum fraction of the parton within the jet, the transverse momentum of the jet,

and the factorization scale used to separate the hard and soft contributions to the jet production

process.
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Recent advances in perturbative QCD calculations and experimental measurements have led to

a deeper understanding of the collinear jet fragmentation function and its role in exclusive QCD

processes. In particular, studies have focused on the evolution of this function under renormaliza-

tion group equations, which describe how it varies with changes in the factorization scale. Addi-

tionally, there has been increasing interest in the non-perturbative contributions to the collinear jet

fragmentation function, which can be probed through experimental measurements of jet fragmen-

tation functions.

In this section, we provide the derivation for the matching coefficients ∆(T )Jij of the ex-

clusive jet fragmentation functions ∆(T )G
h
i (ω,R, z, µ) with the collinear fragmentation function

∆(T )D
h
i (z, µ) for anti-kT jets. These results were first written down in the appendix of [Waa12],

with which our results are consistent. We start by specifying the phase space constraint from

the jet algorithm, which was nicely outlined in [EVW10]. Consider a parton splitting process,

i(ℓ) → j(q) + k(ℓ − q), where an incoming parton i with momentum ℓ splits into a parton j with

momentum q and a parton k with momentum ℓ − q. The four-vector ℓµ can be decomposed in

light-cone coordinates as ℓµ = (ℓ+, ℓ− = ω, 0⊥) where ℓ± = ℓ0 ∓ ℓz. The constraint for anti-kT

algorithm with radius R is given by:

Θanti-kT = θ

(
tan2

(
R

2

)
− q+ω2

q−(ω − ℓ−)2

)
. (4.52)

For jet fragmentation functions, the above constraint lead to constraint on the jet invariant mass

m2
J = ωℓ+ [PW12], which is derived and listed as follows:

δanti-kT = θ

(
z(1− z)ω2 tan2

(
R

2

)
−m2

J

)
θ
(
m2
J

)
, (4.53)

where z = q−/ω. The exclusive JFF ∆(T )G
h
i (ω,R, z, µ) can be matched onto the fragmentation

functions ∆(T )D
h
i (z, µ) as:

∆(T )G
h
i (ω,R, z, µ) =

∑
j

∫ 1

z

dx

x
∆(T )Jij(ω,R, x, µ)∆(T )D

h
j

(z
x
, µ
)
+O

(
Λ2

QCD

ω2 tan2(R/2)

)
,

(4.54)

where ∆(T )Jij are the matching coefficients. The exclusive JFFs ∆(T )G
j
i (m

2
J , z, µ) with i, j ∈

{q, g} has been extensively studied in [JPW11, RW14]. Using pure dimensional regularization
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with 4−2ϵ dimensions in the MS scheme, the bare results at O(αs) can be written in the following

compact form [GG92, RW14, CKR16]:

∆(T )G
j
i,bare

(
m2
J , z
)
=
αs
2π

(eγEµ2)
ϵ

Γ(1− ϵ)
∆(T )P̂ji(z, ϵ)z

−ϵ(1− z)−ϵ
(
m2
J

)−1−ϵ
, (4.55)

which is related to ∆(T )G
h
i (ω,R, z, µ) in eq. (4.54) by:

∆(T )G
h
i (ω,R, z, µ) =

∫
dm2

J ∆(T )G
h
i

(
m2
J , z, µ

)
δanti-kT , (4.56)

notice that we reinstated hadronic JFFs. The splitting functions ∆(T )P̂ji(z, ϵ) are given in eqs. (4.21)

to (4.25). By inserting them into eq. (4.54) and performing the integration over m2
J with the con-

straints imposed by the jet algorithm δanti-kT , one obtains the bare exclusive JFFs ∆(T )G
j
i, bare (ω,R, z).

We present the results for anti-kT jets here, as their explicit expressions are not available in the lit-

erature:

∆G q
q,bare(ω,R, z) =

αsCF
2π

{(
1

ϵ2
+

3

2ϵ
+
L

ϵ

)
δ(1− z)− 1

ϵ

[
∆Pqq(z) +

3

2
δ(1− z)

]
+ δ(1− z)

(
L2

2
− π2

12

)
+∆Pqq(z)(−L+ 2 ln z)

+ (1− z) + 2
(
1 + z2

)( ln(1− z)

1− z

)
+

}
, (4.57)

∆G g
q,bare(ω,R, z) =

αsCF
2π

{(
−1

ϵ

)
∆Pgq(z) + ∆Pgq(z)

[
− L+ 2 ln(z(1− z))

]
− 2(1− z)

}
,

(4.58)

∆G q
g,bare(ω,R, z) =

αsTF
2π

{(
−1

ϵ

)
∆Pqg(z) + ∆Pqg(z)

[
− L+ 2 ln(z(1− z))

]
+ 2(1− z)

}
,

(4.59)

∆G g
g,bare(ω,R, z) =

αsCA
2π

{(
1

ϵ2
+

1

ϵ

β0
2CA

+
L

ϵ

)
δ(1− z) +

(
−1

ϵ

)[
∆Pgg(z) +

β0
2CA

δ(1− z)

]
+ δ(1− z)

(
L2

2
− π2

12

)
+∆Pgg(z)(−L+ 2 ln z)− 4(1− z)

+ 4
[
2(1− z)2 + z

]( ln(1− z)

1− z

)
+

}
, (4.60)

∆TG q
q,bare(ω,R, z) =

αsCF
2π

{(
1

ϵ2
+

3

2ϵ
+
L

ϵ

)
δ(1− z) +

(
−1

ϵ

)[
∆TPqq(z) +

3

2
δ(1− z)

]
+ δ(1− z)

(
L2

2
− π2

12

)
+∆TPqq(z)(−L+ 2 ln z) + 4z

(
ln(1− z)

1− z

)
+

}
,

(4.61)
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where, as given in the main text, one has β0 and L defined:

β0 ≡
11

3
CA − 4

3
TFnf , L = ln

(
µ2

ω2 tan2(R/2)

)
, (4.62)

and ∆(T )Pji(z) are given in eq. (4.31)-eq. (4.35). It is instructive to point out that the ϵ poles in

the first term of eqs. (4.57), (4.60) and (4.61) correspond to ultraviolet (UV) divergences, and they

are related to the renormalization of the JFF ∆(T )G
j
i, bare(ω,R, z). All the remaining ϵ poles in

eqs. (4.57) to (4.61) are infrared (IR) poles, and they match exactly with those in the fragmentation

functions ∆(T )D
j
i (z, µ), which we will show below. ∆(T )G

h
i,bare(ω,R, z) is renormalized by:

∆(T )G
h
i,bare(ω,R, z) = Z i

G (µ)∆(T )G
h
i (ω,R, z, µ) , (4.63)

where i is not summed over in the above equation. The corresponding renormalization group (RG)

equation is given by:

µ
d

dµ
∆(T )G

h
i (ω,R, z, µ) = γiG (µ)∆(T )G

h
i (ω,R, z, µ) , (4.64)

where the anomalous dimension γiG (µ) is:

γiG (µ) = −
(
Z i

G (µ)
)−1

µ
d

dµ
Zi

G (µ) . (4.65)

The solution to eq. (4.65) is then:

∆(T )G
h
i (ω,R, z, µ) = ∆(T )G

h
i (ω,R, z, µG ) exp

(∫ µ

µG

dµ′

µ′
γiG (µ

′)

)
, (4.66)

where the scale µG should be the characteristic scale chosen such that large logarithms in the

fixed-order calculation vanish. The counter terms Z i
G (µ) are given by 1

Zq
G (µ) = 1 +

αs
2π
CF

[
1

ϵ2
+

3

2ϵ
+
L

ϵ

]
, (4.67)

Zg
G (µ) = 1 +

αs
2π
CA

[
1

ϵ2
+

1

ϵ

β0
2CA

+
L

ϵ

]
. (4.68)

From these results we obtain the anomalous dimension γiG (µ) with the following form:

γiG (µ) = Γicusp(αs) ln

(
µ2

ω2 tan2(R/2)

)
+ γi(αs) , (4.69)

1Note here the counter terms for polarized quark and gluon JFFs are the same as those of the unpolarized ones as
shown in [CKR16].
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where Γicusp =
∑

n Γ
i
n−1
(
αs

4π

)n and γi =
∑

n γ
i
n−1
(
αs

4π

)n. The lowest-order coefficients can be

extracted from the above calculations:

Γq0 = 4CF , γq0 = 6CF , (4.70)

Γg0 = 4CA, γg0 = 2β0 , (4.71)

and higher-order results can be found in [JPW11, BNP07, BS10, EIS13a, MVV04]. After the

subtraction of the UV counter terms specified in eqs. (4.67) and (4.68), the renormalized JFF

∆(T )G
j
i (ω,R, z, µ) are given by:

∆G q
q (ω,R, z, µ) =

αsCF
2π

{(
−1

ϵ

)[
∆Pqq(z) +

3

2
δ(1− z)

]
+ δ(1− z)

(
L2

2
− π2

12

)
+∆Pqq(z)(−L+ 2 ln z) + (1− z) + 2

(
1 + z2

)( ln(1− z)

1− z

)
+

}
, (4.72)

∆G g
q (ω,R, z, µ) =

αsCF
2π

{(
−1

ϵ

)
∆Pgq(z) + ∆Pgq(z)

[
− L+ 2 ln(z(1− z))

]
− 2(1− z)

}
,

(4.73)

∆G q
g (ω,R, z, µ) =

αsTF
2π

{(
−1

ϵ

)
∆Pqg(z) + ∆Pqg(z)

[
− L+ 2 ln(z(1− z))

]
+ 2(1− z)

}
,

(4.74)

∆G g
g (ω,R, z, µ) =

αsCA
2π

{(
−1

ϵ

)[
∆Pgg(z) +

β0
2CA

δ(1− z)

]
+ δ(1− z)

(
L2

2
− π2

12

)
+∆Pgg(z)(−L+ 2 ln z)− 4(1− z)

+ 4
[
2(1− z)2 + z

]( ln(1− z)

1− z

)
+

}
, (4.75)

∆TG q
q (ω,R, z, µ) =

αsCF
2π

{(
−1

ϵ

)[
∆TPqq(z) +

3

2
δ(1− z)

]
+ δ(1− z)

(
L2

2
− π2

12

)
+∆TPqq(z)(−L+ 2 ln z) + 4z

(
ln(1− z)

1− z

)
+

}
, (4.76)

where we can eliminate all large logarithms L by choosing µ = ω tan(R/2). At the intermediate

scale µG ≫ ΛQCD, one can match the JFF ∆(T )G
h
i (ω,R, z, µ) onto the longitudinally (trans-

versely) polarized fragmentation functions ∆(T )D
h
j (x, µ) as in eq. (4.54). In order to perform the

matching calculation and determine the coefficients Jij , we simply need the perturbative results

of the fragmentation functions ∆(T )D
j
i (x, µ) for a parton i fragmenting into a parton j. The renor-
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malized ∆(T )D
j
i (x, µ) at O(αs) using pure dimensional regularization are given by:

∆Dq
q(x, µ) = δ(1− x) +

αsCF
2π

(
−1

ϵ

)[
∆Pqq(x) +

3

2
δ(1− x)

]
, (4.77)

∆Dg
q(x, µ) =

αsCF
2π

(
−1

ϵ

)
∆Pgq(x) , (4.78)

∆Dq
g(x, µ) =

αsTF
2π

(
−1

ϵ

)
∆Pqg(x) , (4.79)

∆Dg
g(x, µ) = δ(1− x) +

αsCA
2π

(
−1

ϵ

)[
∆Pgg(x) +

β0
2CA

δ(1− x)

]
, (4.80)

∆TD
q
q(x, µ) = δ(1− x) +

αsCF
2π

(
−1

ϵ

)[
∆TPqq(x) +

3

2
δ(1− x)

]
. (4.81)

Using the results for ∆(T )G
j
i (ω,R, z, µ) and ∆(T )D

j
i (x, µ), we obtain the following matching co-

efficients:

∆Jqq(ω,R, z, µ) = δ(1− z) +
αsCF
2π

[
δ(1− z)

(
L2

2
− π2

12

)
−∆Pqq(z)L

+ (1− z) + ∆Ĵ anti-kT
qq

]
, (4.82)

∆Jqg(ω,R, z, µ) =
αsCF
2π

[
−∆Pgq(z)L− 2(1− z) + ∆Ĵ anti-kT

qg (z)

]
, (4.83)

∆Jgq(ω,R, z, µ) =
αsTF
2π

[
−∆Pqg(z)L+ 2(1− z) + ∆Ĵ anti-kT

gq (z)

]
, (4.84)

∆Jgg(ω,R, z, µ) = δ(1− z) +
αsCA
2π

[
δ(1− z)

(
L2

2
− π2

12

)
−∆Pgg(z)L

− 4(1− z) + ∆Ĵ anti-kT
gg (z)

]
, (4.85)

∆TJqq(ω,R, z, µ) = δ(1− z) +
αsCF
2π

[
δ(1− z)

(
L2

2
− π2

12

)
−∆TPqq(z)L+∆TĴ anti-kT

q

]
,

(4.86)

where ∆(T )Ĵ
anti-kT
ij (z) are jet-algorithm dependent. For anti-kT jets, we have:

∆Ĵ anti−kT
qq = 2∆Pqq(z) ln z + 2

(
1 + z2

)( ln(1− z)

1− z

)
+

, (4.87)

∆Ĵ anti−kT
qg = 2∆Pgq(z)

[
ln(z(1− z))

]
, (4.88)

∆Ĵ anti−kT
gq = 2∆Pqg(z)

[
ln(z(1− z))

]
, (4.89)

∆Ĵ anti−kT
gg = 2∆Pgg(z) ln z + 4

[
2(1− z)2 + z

]( ln(1− z)

1− z

)
+

, (4.90)
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∆TĴ anti−kT
qq = 2∆TPqq(z) ln z + 4z

(
ln(1− z)

1− z

)
+

, (4.91)

where the functions ∆(T )P̂ji have the following expressions

∆P̂qq(z) =

[
2

(1− z)+
− 1− z

]
, (4.92)

∆P̂gq(z) = [2− z] , (4.93)

∆P̂qg(z) = [2z − 1] , (4.94)

∆P̂gg(z) = 2

[
1

(1− z)+
− 2z + 1

]
, (4.95)

∆T P̂qq(z) =

[
2z

(1− z)+

]
, (4.96)

The jet fragmentation function ∆(T )G
h
i (ω,R, z, µ) satisfies the following RG equation

µ
d

dµ
∆(T )G

h
i (ω,R, z, µ) = γiG (µ)∆(T )G

h
i (ω,R, z, µ) , (4.97)

where the anomalous dimension γiG (µ) = γiJ(µ) is the same as that of the unmeasured jet function

Ji((ω,R, µ) [JPW11, Waa12, EVW10]. The solution to the RG equation is then

∆(T )G
h
i (ω,R, z, µ) = ∆(T )G

h
i (ω,R, z, µG ) exp

[∫ µ

µG

dµ′

µ′
γiG (µ′)

]
, (4.98)

where the scale µG should be the characteristic scale that eliminates the large logarithms in the

fixed-order perturbative calculations. In the large z region, the scale choice µG = ω tan(R/2)(1−
z) ≡ pTRZ resums [Waa12] both lnR and ln(1− z). However, for consistency, this would require

extracted fragmentation functions ∆(T )D
h/j with a built-in resummation of logarithms in (1− z),

which is currently not available. It might be instructive to point out that with such a scale, the

power corrections in eq. (4.54) will be of the order of Λ2
QCD/ [ω

2 tan2(R/2)(1− z)2], similar to

the usual threshold resummation, see, e.g. Ref. [BNP07]. For the numerical calculations presented

in the next section, we will choose µG = ω tan(R/2) to resum lnR and comment on the effect of

ln(1− z) resummation.

4.3 Polarized transverse momentum dependent JFFs (TMDJFFs)

This section outlines the definition of TMD semi-inclusive jet fragmentation functions in SCET,

which describe the distribution of hadron transverse momentum within a jet. Both unpolarized
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and polarized fragmenting quarks are considered. The operator definitions of these functions in

SCET are presented, followed by their factorization formalism, which involves hard functions,

soft functions, and TMDFFs. The calculation of these functions is carried out to NLO at the parton

level, and their RG evolution equations are derived and solved.

4.3.1 TMD JFFs in semi-inclusive jet productions

PJ

jet

h(ph, Sh)j⊥
̂ϕhq

Figure 4.3: Illustration for the distribution of hadrons inside a jet with transverse momentum j⊥

and azimuthal angle ϕ̂h with respect to the jet axis.

In this section, we review the concept of polarized TMD jet fragmentation functions introduced

in [KLZ20b]. In fig. 4.3, where a quark-initiated jet is considered, a hadron h is observed inside

the jet, carrying a longitudinal momentum fraction zh of the jet and a transverse momentum j⊥

with respect to the jet axis. Both unpolarized and polarized fragmenting quarks are considered

in our theoretical framework. The operator definitions of these functions in SCET are presented,

followed by their factorization formalism, which involves hard functions, soft functions, and TMD

FFs.

Based on the field and operator definitions introduced in section 4.2.1, we can define the general

correlators for TMD JFFs initiated by quark or gluon as:

∆h/q (z, zh, j⊥, Sh) =
z

2Nc

δ

(
zh −

ωh
ωJ

)
(4.99)

×
〈
0
∣∣δ (ω − na · P) δ2 (P⊥/zh + j⊥)χn(0)

∣∣ (Jh)X〉 ⟨(Jh)X |χ̄n(0)| 0⟩ ,

∆h/g,µv (z, zh, j⊥, Sh) =
zω

(d− 2) (N2
c − 1)

δ

(
zh −

ωh
ωJ

)
(4.100)

×
〈
0
∣∣δ (p− − na · P

)
δ2 (P⊥/zh + j⊥)Bµn⊥(0)

∣∣ (Jh)X〉 ⟨(Jh)X |Bvn⊥(0)| 0⟩ .
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H

q
U L T

U Dh/q
1 H⊥h/q1

L Gh/q1L Hh/q
1L

T D⊥h/q1T Gh/q1T Hh/q
1 , H⊥h/q1T

Table 4.2: Interpretation of TMDJFFs for quarks. The rows indicate the hadron polarization —

unpolarized (U), longitudinally polarized (L), transversely polarized (T). And the columns indicate

the quark polarization accordingly.

where the energy fractions z and zh have been defined in section 4.1.

Next, one can parameterize the correlators in eqs. (4.99) and (4.100) at the leading power:

∆h/q(z, zh, j⊥, Sh) = ∆h/q [/nb]
/na
2

−∆h/q [/nbγ5]
/naγ5

2
+ ∆h/q [inb,νσ

kνγ5]
ina,µσ

kµγ5
2

, (4.101)

∆h/g,ij(z, zh, j⊥, Sh) =
1

2
δijT

(
δklT ∆

h/g,kl
)
− i

2
ϵijT

(
iϵklT∆

h/g,kl
)
+ Ŝ∆h/g,ij . (4.102)

Here we have defined ∆h/q[Γ] ≡ 1
4
Tr
(
∆h/qΓ

)
. The three terms on the r.h.s. of eq. (4.101) include

TMD JFFs with unpolarized, longitudinally polarized, and transversely polarized initial quarks.

More details have been presented in our previous work [KLZ20b]. In the following context, we

use n to represent light-cone vector nb for simplification and provide the parametrization of quark

TMD JFFs

∆h/q[/n] =Dh/q
1 (z, zh, j⊥)−

ϵijT j
i
⊥S

j
h⊥

zhMh

D⊥h/q1T (z, zh, j⊥) , (4.103)

∆h/q[/nγ5] =ΛhGh/q1L (z, zh, j⊥)−
j⊥ · Sh⊥
zhMh

Gh/q1T (z, zh, j⊥) , (4.104)

∆h/q[inνσiνγ5] =Sih⊥Hh/q
1 (z, zh, j⊥)−

ϵijT j
j
⊥

zhMh

H⊥h/q1 (z, zh, j⊥)−
ji⊥

zhMh

ΛhH⊥h/q1L (z, zh, j⊥)

+
ji⊥j⊥ · Sh⊥ − 1

2
j2⊥S

i
h⊥

z2hM
2
h

H⊥h/q1T (z, zh, j⊥) , (4.105)

As for the gluon TMD JFFs given in eq. (4.100), they are parametrized as

∆h/g,αβ(z, zh, j⊥, Sh) =
1

2

[
−gαβT Dh/g

1 (z, zh, j⊥) +
j2⊥

z2hM
2
h

(
gαβT
2

+
jα⊥j

β
⊥

j2⊥

)
H⊥h/g1 (z, zh, j⊥)

]
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H

g
U L T

U Dh/g
1 H⊥h/g1

L Gh/g1L Hh/g
1L

T D⊥h/g1T Gh/g1T Hh/g
1T , H⊥h/g1T

Table 4.3: Interpretation of TMDJFFs for gluons. The columns indicate the gluon polarization —

unpolarized (U), circularly polarized (L), linearly polarized (T).

+
Λh
2

[
−iϵαβT Gh/g1L (z, zh, j⊥) +

ϵ
j⊥{α
T j

β}
⊥

2z2hM
2
h

H⊥h/g1L (z, zh, j⊥)

]

+
1

2

[
gαβT

ϵj⊥Sh⊥
T

zhMh

D⊥h/g1T (z, zh, j⊥) + iϵαβT
j⊥ · Sh⊥
zhMh

Gh/g1T (z, zh, j⊥)

− ϵ
j⊥{α
T j

β}
⊥

2z2hM
2
h

j⊥ · Sh⊥
zhMh

H⊥h/g1T (z, zh, j⊥)

− ϵ
j⊥{α
T S

β}
h⊥ + ϵ

Sh⊥{α
T j

β}
⊥

4zhMh

Hh/g
1T (z, zh, j⊥)

]
. (4.106)

Here functions D, G and H on the r.h.s. of eq. (4.106) represent the TMD JFFs with unpolarized,

circularly polarized, and linearly polarized initial gluons respectively and we have adopted the

notation v{αT w
β}
T = vαTw

β
T + vβTw

α
T as applied in [MR01, Bou23]. More specifically, one has each

term in the r.h.s. of eq. (4.106) give as

δαβT ∆h/g,αβ =Dh/g
1 (z, zh, j⊥)−

ϵijT j
i
⊥S

j
h⊥

zhMh

D⊥h/g1 (z, zh, j⊥) , (4.107)

iϵαβT ∆h/g,αβ =ΛhGh/g1L (z, zh, j⊥)−
j⊥ · Sh⊥
zhMh

Gh/g1T (z, zh, j⊥) , (4.108)

Ŝ∆h/g,αβ =
jα⊥j

β
⊥

2z2hM
2
h

H⊥h/g1 (z, zh, j⊥)−
ϵ
j⊥{α
T S

β}
h⊥ + ϵ

Sh⊥{α
T j

β}
⊥

8zhMh

Hh/g
1T (z, zh, j⊥) (4.109)

+
ϵ
j⊥{α
T j

β}
⊥

4z2hM
2
h

(
ΛhH⊥,h/g1L (z, zh, j⊥)−

j⊥ · Sh⊥
zhMh

H⊥h/g1T (z, zh, j⊥)

)
, (4.110)

where ŜOαβ = 1
2

(
Oαβ +Oβα − δαβT Oρρ

)
and δαβT = −gαβT . Since TMD JFFs represent the

hadron fragmentation inside a fully reconstructed jet, their physical meaning is similar to that of

standard TMD FFs as reviewed in [MV16b]. Consequently, we adopt the calligraphic font of the

letters used for the TMD FFs as the notations of TMD JFFs with corresponding polarizations.
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In this study, following the unpolarized TMD JFFs calculation carried out in [KLR17], we

will focus on the kinematic region where ΛQCD ≲ j⊥ ≪ pTR, where the standard collinear

factorization breaks down due to the presence of the large logarithms of the form ln(pTR/j⊥).

This situation necessitates the adoption of the TMD factorization [Col13], which we will provide

a detailed discussion of in the following sections.

4.3.1.1 TMD Factorization

In the kinematic region under consideration, the radiation relevant at leading power is restricted to

collinear radiation within the jet, characterized by momentum that scales as pc = (p−c , p
+
c , pc,T ) ∼

pT (1, λ
2, λ), where λ ∼ j⊥/pT . Additionally, soft radiation of order j⊥ is also relevant. It is worth

noting that harder emissions are only permitted outside the jet cone and will thus only impact the

determination of the jet axis. Consequently, the hadron transverse momentum j⊥, which is defined

with respect to the jet axis, remains intact from the radiations external to the jet. A factorized

formalism for the unpolarized TMD JFFs within SCET can thus be formulated as follows:

Dh/c
1 (z, zh, ωJR, j⊥, µ) = ĤU

c→i(z, ωJR, µ)

∫
d2k⊥ d

2λ⊥ δ
2(zhλ⊥ + k⊥ − j⊥) (4.111)

×D
h/i
1 (zh,k⊥, µ, ν)Si(λ⊥, µ, νR) ,

where Si(λ⊥, µ, νR) denotes the soft radiation. The δ function establishes a relationship between

the hadron transverse momentum j⊥, relative to the jet axis, and two other momenta: the transverse

component of soft radiation represented by λ⊥, and the hadron transverse momentum with respect

to the soft radiation, denoted as k⊥. Notice that λ⊥ is multiplied by zh to adjust for the dissimilarity

between the fragmenting parton and the observed hadron. As is common practice in TMD physics,

we convert the aforementioned expression from the transverse momentum space to the coordinate

b-space using the following transformation,

Dh/c
1 (z, zh, ωJR, j⊥, µ) = ĤU

c→i(z, ωJR, µ)

∫
d2b

(2π)2
eij⊥·b/zhD̃h/i

1 (zh, b, µ, ν)S̃i(b, µ, νR) ,

(4.112)
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where we have defined the Fourier transform for both D̃h/i
1 (zh, b, µ, ν) and S̃i(b, µ, νR) as:

D̃
h/i
1 (zh, b, µ, ν) =

1

z2h

∫
d2k⊥ e

−ik⊥·b/zhDh/i
1 (zh,k⊥, µ, ν)

=
1

z2h

∫
dk⊥ k⊥2πJ0

(
bk⊥
zh

)
D
h/i
1 (zh,k⊥, µ, ν) , (4.113)

S̃i(b, µ, νR) =

∫
d2λ⊥ e

−iλ⊥·bSi(λ⊥, µ, νR) . (4.114)

Now let us define the operator C :

C [D̃h/i,(n)] =

∫
bn+1 db

2πn!

(
z2hM

2
h

j⊥

)n
Jn

(
j⊥b

zh

)
D̃h/i,(n)(zh, b, µ, ν)S̃i(b, µ, νR) , (4.115)

where by default n = 0, giving D̃h/i,(0)(zh, b, µ, ν) the TMD FFs in the Fourier b-space. This can

be generalized to give the n-th moment:

D̃h/i,(n)(zh, b, µ, ν) =
1

z2h

2πn!

(z2hM
2
h)
n

∫
dk⊥ k⊥

(
k⊥
b

)n
Jn

(
bk⊥
zh

)
Dh/i(zh,k⊥, µ, ν) . (4.116)

One can easily verify that with n = 0 and D = D1, eq. (4.116) gives eq. (4.113). We can now

write down the factorization for all the TMD JFFs as:

Dh/c
1 (z, zh, ωJR, j⊥, µ) = ĤU

c→i(z, ωJR, µ)C
[
D̃
h/i
1

]
, (4.117)

D⊥,h/c1T (z, zh, ωJR, j⊥, µ) = ĤU
c→i(z, ωJR, µ)C

[
D̃
⊥,h/i,(1)
1T

]
, (4.118)

Gh/c1L (z, zh, ωJR, j⊥, µ) = ĤL
c→i(z, ωJR, µ)C

[
G̃
h/i
1L

]
, (4.119)

Gh/c1T (z, zh, ωJR, j⊥, µ) = ĤL
c→i(z, ωJR, µ)C

[
G̃
h/i,(1)
1T

]
, (4.120)

Hh/c
1 (z, zh, ωJR, j⊥, µ) = ĤT

c→i(z, ωJR, µ)C
[
H̃
h/i
1

]
, (4.121)

H⊥,h/c1 (z, zh, ωJR, j⊥, µ) = ĤT
c→i(z, ωJR, µ)C

[
H̃
⊥,h/i,(1)
1

]
, (4.122)

H⊥,h/c1L (z, zh, ωJR, j⊥, µ) = ĤT
c→i(z, ωJR, µ)C

[
H̃
⊥,h/i,(1)
1L

]
, (4.123)

H⊥,h/c1T (z, zh, ωJR, j⊥, µ) = ĤT
c→i(z, ωJR, µ)C

[
H̃
⊥,h/i,(2)
1T

]
. (4.124)

Here the superscripts U , L and T of Ĥc→i represent unpolarized, longitudinally polarized, or trans-

versely polarized hard matching functions, and they will be provided in the next subsection. The

above equations also show how various TMD JFFs are matched onto their corresponding TMD

FFs, with which the matching of the scenarios listed in table 4.4 can be performed. The soft
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h

q
U L T

U D1 H⊥1
L G1L H⊥1L
T D⊥1T G1T H1, H⊥1T

h

q
U L T

U D1 H⊥1

L G1L H⊥1L

T D⊥1T G1T H1, H⊥1T

Table 4.4: Summary of semi-inclusive TMD JFFs (left) and TMD FFs (right). The header row

represents the polarization of the fragmenting quarks while the header column indicates the corre-

sponding polarizations of produced hadrons.

functions are identical for all scenarios and can be found in [KLR17, KLS21b]. The subsequent

sections will provide detailed calculation of the hard matching functions and partonic TMD FFs,

as well as their renormalization using RG evolutions.

4.3.1.2 Hard matching functions

The hard matching functions describe how the energetic parton c produced in a hard scattering

event fragments into the parton i which initiates a jet with energy ωJ and radius R. The out-of-

jet diagrams for inclusive jet (substructure) observables [KRV16a] can be used to calculate these

functions up to NLO. In [KRW17], the same hard matching functions were discovered in the

context of central subjets that are measured in an inclusive jet sample.

The polarization of the final-state hadron does not affect the hard matching functions, as a

result, the JFFs listed in the same column in table 4.4 share identical hard matching functions.

Our analysis incorporates three distinct hard matching functions, namely ĤU
c→i(z, ωJR, µ),

ĤL
c→i(z, ωJR, µ), and ĤT

q→q(z, ωJR, µ). The transversely polarized case only has the q → q type,

due to the same reason as for the collinear semi-inclusive JFFs. The unpolarized hard matching

functions ĤU
c→i(z, ωJR, µ) have been previously calculated in [KLR17]. Here we provide the

expressions for the other types renormalized hard matching functions:

ĤL
q→q′(z, ωJR, µ) = δqq′δ(1− z) + δqq′

αs
2π

[
CF δ(1− z)

(
−L

2

2
− 3

2
L+

π2

12

)
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+∆Pqq(z)L− 2CF (1 + z2)

(
ln(1− z)

1− z

)
+

− CF (1− z)

]
, (4.125)

ĤL
q→g(z, ωJR, µ) =

αs
2π

[(
L− 2 ln(1− z)

)
∆Pgq(z) + 2CF (1− z)

]
, (4.126)

ĤL
g→g(z, ωJR, µ) = δ(1− z) +

αs
2π

[
δ(1− z)

(
−CA

L2

2
− β0

2
L+ CA

π2

12

)
+∆Pgg(z)L+ 4CA(1− z)− 4CA(2(1− z)2 + z)

(
ln(1− z)

1− z

)
+

]
,

(4.127)

ĤL
g→q(z, ωJR, µ) =

αs
2π

[(
L− 2 ln(1− z)

)
∆Pqg(z)− 2TF (1− z)

]
, (4.128)

ĤT
q→q′(z, ωJR, µ) = δqq′δ(1− z) + δqq′

αs
2π

{
∆TPqq(z)L+ CF

[
− 4z

(
ln(1− z)

1− z

)
+

+

(
−3

2
L− L2

2
+
π2

12

)
δ(1− z)

]}
, (4.129)

where the leading order splitting kernels are given in eq. (4.31)-4.35. The RG equations take the

form:

µ
d

dµ
ĤL
i→j(z, ωJR, µ) =

∑
k

∫ 1

z

dz′

z′
γik

( z
z′
, ωJR, µ

)
ĤL
k→j(z

′, ωJR, µ) , (4.130)

µ
d

dµ
ĤT
q→q′(z, ωJR, µ) =

∑
k

∫ 1

z

dz′

z′
γik

( z
z′
, ωJR, µ

)
ĤT
q→q′(z

′, ωJR, µ) . (4.131)

The anomalous dimensions γij
(
z
z′ , ωJR, µ

)
are given by

γLqq =
αs
π

(
∆Pqq(z)− CFLδ(1− z)− 3CF

2
δ(1− z)

)
, (4.132)

γLgq =
αs
π
∆Pgq(z) , (4.133)

γLgg =
αs
π

(
∆Pgg(z)− CALδ(1− z)− β0

2
δ(1− z)

)
, (4.134)

γLqg =
αs
π
∆Pqg(z) , (4.135)

γTqq =
αs
π

(
∆TPqq(z)− CFLδ(1− z)− 3CF

2
δ(1− z)

)
. (4.136)

The natural scale here is µ ∼ ωJ tan(R/2), followed from the definition that L ≡ ln
(

µ2

ω2
J tan2(R/2)

)
as in section 4.2.1.1. Thus by solving the RG equations and evolving the hard matching func-
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tions from scale µ ∼ ωJ tan(R/2) to the hard scattering scale µ ∼ pT , we resummed the large

logarithms of jet radius lnR.

4.3.1.3 Transverse momentum dependent FFs

Following the calculation in [KLR17], we can obtain the perturbative result for bare TMDFFs of

longitudinally polarized and transversely polarized hadrons. (For brevity, we will only list their

matching coefficients later.) Additionally, we study the TMDFFs in Fourier space or b-space,

following the convention in [Col13, EIK14], we define the TMDFFs in b-space as:

D
h/i
1 (zh, b, µ, ν) =

1

z2h

∫
d2k⊥ e

−ik⊥·b/zhDh/i
1 (zh,k⊥, µ, ν), (4.137)

G
h/i
1L (zh, b, µ, ν) =

1

z2h

∫
d2k⊥ e

−ik⊥·b/zhGh/i
1L (zh,k⊥, µ, ν), (4.138)

H
h/i
1 (zh, b, µ, ν) =

1

z2h

∫
d2k⊥ e

−ik⊥·b/zhHh/i
1 (zh,k⊥, µ, ν). (4.139)

In the perturbative region 1/b≫ ΛQCD, these TMDFFs can be matched onto the standard collinear

FFs, with the matching relation is given by:

D
h/i
1 (zh, b, µ, ν) =

1

z2h

∫ 1

zh

dẑh
ẑh
C̃j→i

(
zh
ẑh
, b, µ, ν

)
Dh/j(ẑh, µ)

≡ 1

z2h
C̃j→i ⊗Dh/j(zh, µ) , (4.140)

G
h/i
1L (zh, b, µ, ν) =

1

z2h

∫ 1

zh

dẑh
ẑh

∆C̃j→i

(
zh
ẑh
, b, µ, ν

)
∆Dh/j(ẑh, µ)

≡ 1

z2h
∆C̃j→i ⊗∆Dh/j(zh, µ) , (4.141)

H
h/q
1 (zh, b, µ, ν) =

1

z2h

∫ 1

zh

dẑh
ẑh

∆T C̃j→i

(
zh
ẑh
, b, µ, ν

)
∆TD

h/j(ẑh, µ)

≡ 1

z2h
∆T C̃j→i ⊗∆TD

h/j(zh, µ) , (4.142)

where the matching coefficients are denoted by (∆)C̃j→i. The unpolarized C̃j←i are already given

in [KLR17], while for the polarized TMDFFs, we have

∆C̃q′←q(zh, b, µ, ν) =δqq′

{
δ(1− zh)−

αs
2π

ln

(
µ2

z2hµ
2
b

)
∆Pqq(zh) (4.143)

+
αs
2π
CF

[
ln

(
µ2

µ2
b

)(
2 ln

(
ν

ωJ

)
+

3

2

)
δ(1− zh) + (1− zh)

]}
,
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∆C̃g←q(zh, b, µ, ν) =
αs
2π

[
− ln

(
µ2

z2hµ
2
b

)
∆Pgq(zh)− 2CF (1− zh)

]
, (4.144)

∆C̃g←g(zh, b, µ, ν) =δ(1− zh)−
αs
2π

ln

(
µ2

z2hµ
2
b

)
∆Pgg(zh) (4.145)

+
αs
2π
CA

[
ln

(
µ2

µ2
b

)(
2 ln

(
ν

ωJ

)
+

β0
2CA

)
δ(1− zh)− 2(1− zh)

]
,

∆C̃q←g(zh, b, µ, ν) =
αs
2π

[
− ln

(
µ2

z2hµ
2
b

)
∆Pqg(zh) + 2TF (1− zh)

]
. (4.146)

∆T C̃q′←q(zh,b, µ, ν) =δqq′
{
δ(1− zh)−

αs
2π

ln

(
µ2

z2hµ
2
b

)
∆TPqq(zh) (4.147)

+
αsCF
2π

[
ln

(
µ2

µ2
b

)(
2 ln

(
ν

ωJ

)
+

3

2

)
δ(1− zh)

]}
,

where µb ≡ 2e−γE/b. The UV divergences in polarized TMDFFs eqs. (4.141) and (4.142) can be

renormlalized by the RG equations:

µ
d

dµ
G
j/i
1L (z, ωJR, µ, ν) =

∑
k

∫ 1

z

dz′

z′
γµ,Li→k

( z
z′
, ωJR, µ, ν

)
G
j/k
1L (z′, ωJR, µ, ν), (4.148)

µ
d

dµ
H
j/i
1 (z, ωJR, µ, ν) =

∑
k

∫ 1

z

dz′

z′
γµ,Ti→k

( z
z′
, ωJR, µ, ν

)
H
j/k
1 (z′, ωJR, µ, ν), (4.149)

with anomalous dimensions:

γµ,Lq→q =
αs
π
CF

(
3

2
+ 2 ln

(
ν

ωJ

))
δ(1− zh)−

αs
π
∆Pqq(zh) , (4.150)

γµ,Lq→g =
−αs
π

∆Pgq(zh) , (4.151)

γµ,Lg→g =
αs
π

(
β0
2

+ 2CA ln

(
ν

ωJ

))
δ(1− zh)−

αs
π
∆Pgg(zh) , (4.152)

γµ,Lg→q =
−αs
π

∆Pqg(zh) , (4.153)

γµ,Tq→q =
αs
π
CF

(
3

2
+ 2 ln

(
ν

ωJ

))
δ(1− zh)−

αs
π
∆TPqq(zh) . (4.154)

The rapidity divergences in eqs. (4.141) and (4.142) can be renormalized by the rapidity renormal-

ization group (RRG) equations:

ν
d

dν
G
j/i
1L (z, ωJR, µ, ν) =

∑
k

∫ 1

z

dz′

z′
γν,Li→k

( z
z′
, ωJR, µ, ν

)
G
j/k
1L (z′, ωJR, µ, ν) , (4.155)

ν
d

dν
H
j/i
1 (z, ωJR, µ, ν) =

∑
k

∫ 1

z

dz′

z′
γν,Ti→k

( z
z′
, ωJR, µ, ν

)
H
j/k
1 (z′, ωJR, µ, ν) , (4.156)
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with anomalous dimensions:

γν,Lq→q =
αs
π
CF ln

(
µ2

µ2
b

)
δ(1− zh) , (4.157)

γν,Lq→g = γν,Lg→q = 0 , (4.158)

γν,Lg→g =
αs
π
CA ln

(
µ2

µ2
b

)
δ(1− zh) , (4.159)

γν,Tq→q =
αs
π
CF ln

(
µ2

µ2
b

)
δ(1− zh) . (4.160)

It is worth pointing out that so far we have been working in the MS scheme, which is different

from the simplest minimal subtraction scheme by insertion of a factor Sϵ = (4πe−γE)ϵ.

4.3.2 TMD JFFs in exclusive jet productions

4.3.2.1 Factorization

Within this section, we study the distribution of the energy fraction zh and transverse momentum

j⊥ of hadrons found within an exclusive jet. In the region of small j⊥, where j⊥ is much less than

the product of the transverse momentum of the jet and its size, i.e., j⊥ ≪ pJTR, the exclusive

transverse momentum dependent (TMD) jet fragmentation function G̃ h
c (zh, pJTR, j⊥, µ) encom-

passes contributions from both collinear and collinear-soft modes, as was previously demonstrated

by [BMM16]. Through applying the factorization introduced in [KLR17], the factorized formalism

of the exclusive TMD jet fragmentation function G̃ h
c (zh, pJTR, j⊥, µ) can be obtained. Without

measuring any out-of-jet radiation, one has

G̃ h
i (zh, pJTR, j⊥, µ) =

∫
d2k⊥ d

2λ⊥ δ
2 (zhλ⊥ + k⊥ − j⊥)D

h/i (zh,k⊥, µ, v)Si (λ⊥, µ, vR) .

(4.161)

Here the transverse component of the hadron momentum relative to the jet direction is denoted

by j⊥. The collinear mode is described using the conventional transverse momentum dependent

fragmentation functions (TMDFFs) Dh/i (zh,k⊥, µ, ν), whereas the collinear-soft mode is cap-

tured by the soft function Si (λ⊥, µ, νR). In addition to the usual renormalization scale µ, the

scale ν is again related to the rapidity divergence. It is worth noting the difference between the

above refactorization and those for TMD hadron distribution inside a single inclusive jet produced
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in proton-proton collisions, p + p → (jeth) + X , in [KLR17], where an additional hard factor

emerges that captures out-of-jet radiation with a characteristic scale of around ∼ pJTR. In this

study of exclusive jet production in the back-to-back region, any out-of-jet radiation is prohibited.

As is common practice in TMD physics, we convert the aforementioned expression from trans-

verse momentum space to coordinate b-space using the following transformation.

G̃ h
i (zh, pJTR, j⊥, µ) =

∫
d2b

(2π)2
eij⊥·b/zhDh/i (zh, b, µ, ν)Si(b, µ, νR), (4.162)

where we have defined the Fourier transform for both Dh/i (zh, b, µ, ν) and Si(b, µ, νR) as

Dh/i (zh, b, µ, ν) =
1

z2h

∫
d2k⊥ e

−ik⊥·b/zhDh/i (zh,k⊥, µ, ν) (4.163)

Si(b, µ, νR) =

∫
d2λ⊥ e

−iλ⊥·b′Si (λ⊥, µ, νR) (4.164)

In [KLR17], the perturbative results up to next-to-leading order and the renormalization for both

Dh/i (zh, b, µ, ν) and Si(b, µ, νR) were thoroughly investigated. The “proper” in-jet TMD frag-

mentation function Dh/i,R was defined in that study as well:

Dh/i,R (zh, b, µ) = Dh/i (zh, b, µ, ν)Si(b, µ, νR) , (4.165)

where rapidity divergence ν between Dh/i (zh, b, µ, ν) and Si(b, µ, νR) cancels out, resulting in

no rapidity divergence and, consequently, no ν-dependence on the left-hand side. It was also

discovered that Dh/i,R evolves according to the following equation,

Dh/i,R (zh, b, µ) = D̂h/i (zh, b, µJ) exp

[∫ µ

µj

dµ′

µ′

(
−2Γicusp (αs) ln

(
pJTR

µ

)
+ γi (αs)

)]

= D̂h/i (zh, b, µJ) exp

[∫ µ

µJ

dµ′

µ′
γiJ (µ

′)

]
(4.166)

The aforementioned equation is valid when µJ = pJTR, and D̂h/i (zh, b, µJ) refers to the “properly”-

defined transverse momentum dependent fragmentation functions (TMDFFs), which are typically

measured in semi-inclusive deep inelastic scattering and/or back-to-back hadron pair production

in e+e− collisions [Col13]. By substituting this result into eq. (4.162), we obtain ,

G̃ h
i (zh, pJTR, j⊥, µ) =

[∫
d2b

(2π)2
e
i
j⊥·b
zh D̂h/i (zh, b, µJ)

]
exp

[∫ µ

µJ

dµ′

µ′
γiJ (µ

′)

]
,

≡ Dh/i (zh, j⊥, µJ) exp

[∫ µ

µJ

dµ′

µ′
γiJ (µ

′)

]
. (4.167)
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An important observation is that the exponential factor in the evolution equation is the same for

the jet function Ji (pJTR, µ) described in previous studies [JPW11, Waa12, EVW10, KLT19], the

collinear jet fragmentation function G h
i (zh, pJTR, µ) presented in Eq.eq. (4.98), and the TMD jet

fragmentation function G̃ h
i (zh, pJTR, j⊥, µ) in Eq.eq. (4.167). This implies that the renormaliza-

tion group equation is the same for all of them2. We employ the same parametrization as presented

in [KLR17] the proper TMD fragmentation functions Dh/i (zh, j⊥, µJ),

Dh/i (zh, j⊥, µJ) =
1

z2h

∫
b db

2π
J0

(
j⊥b

zh

)
Cj←i ⊗Dh/j (zh, µb∗) e

−Si
pert(b∗,µs)−Si

NP(b,µJ) . (4.168)

In order to avoid the Landau pole of the strong coupling αs [CSS85], we have employed the

b∗-prescription. The coefficient functions Cj←i, the perturbative Sudakov factor Sipert (b∗, µJ), and

the non-perturbative Sudakov factor SiNP (b, µJ) are defined in [KLR17]. The expressions for these

factors are computed at next-to-leading order for Cj←i and at the next-to-leading logarithmic level

for Sipert (b∗, µJ). The integration in eq. (4.168) involves an oscillating Bessel function J0, which

we handle using an optimized Ogata quadrature method developed in [KPS21] to ensure better

numerical convergence and reliability.

4.3.2.2 Connecting TMD JFFs to TMD FFs

In eq. (4.161), we wrote down the relation between the G̃ h
i (zh, pTR, j⊥, µ) and the unpolarized

TMDFF in j⊥ ≪ pTR region. To write down explicit relations between other TMDJFFs and

TMDFFs, we start by recalling the parametrization of the TMDFF correlator [MV16b] in the

momentum space,

∆(zh,k⊥, Sh) =
∑
X

∫
dξ+d2ξT
(2π)3

ei(k
−ξ++k⊥·ξT )/zh

〈
0
∣∣ψq (ξ+, 0−, ξT )∣∣ ph, Sh;X〉

×
〈
ph, Sh;X

∣∣ψ̄q (0+, 0−,0T )∣∣ 0〉 , (4.169)

where k⊥ is the transverse momentum of the final hadron h with respect to the fragmenting quark

q and we suppress the Wilson lines that make the correlator gauge invariant. To the leading twist

2It is worth noting that this factor differs from that of the hadron distribution inside jets for single inclusive jet
production, which follows time-like DGLAP equations and has been extensively studied in previous works [KQR17,
KRV16a, KLR17, KRW17, CRW19].
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accuracy, the parametrization has been given in eq. (3.22) and the TMDFF correlator in b-space is

given in eq. (3.24)

Working with an assumption that soft function is independent of the polarization, we can now

write down the relations between all of the TMDJFFs and TMDFFs. We find for a general TMDJFF

F̃ that

F̃ h/q(zh, j⊥, µ, ζJ) =

∫
bn+1 db

2πn!

(
z2hM

2
h

j⊥

)n
Jn

(
j⊥b

zh

)
F̃ h/q(n),unsub(zh, b

2, µ, ζ ′/ν2)S̃q(b
2, µ, νR)

=

∫
bn+1 db

2πn!

(
z2hM

2
h

j⊥

)n
Jn

(
j⊥b

zh

)
F̃ h/q(n)(zh, b

2, µ, ζ ′R2)

= F h/q(zh, j
2
⊥, µ, ζJ) . (4.170)

The values of n on the right-hand-side of eq. (4.170) follows the n values of the parametrization

given in eq. (3.24). Therefore, all of the TMDJFFs are equal to their corresponding TMDFF at

the scale ζJ . As the TMD evolutions are assumed to be polarization independent, we follow the

same parametrization as that of the unpolarized TMDFF to include evolution effects for the other

TMDFFs.
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CHAPTER 5

Applications of JFFs

The Polarized Jet Fragmentation Functions (JFFs) introduced in the previous chapter

has rich applications in high-energy physics. Specifically, we present the phenomeno-

logical example of polarized JFFs in two important processes: Inclusive jet production

in proton-proton collisions at RHIC kinematics and back-to-back electron-jet produc-

tion in electron-proton collisions at the future Electron-Ion Collider. We show how

the polarized JFFs can be used to understand the spin structure of hadrons in these

processes. This chapter intends to elucidate the applications of polarized Jet Fragmen-

tation Functions (JFFs) to these pivotal processes and underscore their significance for

forthcoming research in spin and TMD physics.

5.1 Inclusive jet in pp collision

5.1.1 Theoretical framework

We first consider hadron distribution inside jets in lepton-proton or proton-proton collisions as

illustrated in fig. 5.1,

p(pA, SA) +
(
p(pB)/e(pℓ)

)
→ (jet(ηJ , pJT , R) h(zh, j⊥, Sh)) +X . (5.1)

In this scenario, we consider a collision involving a polarized proton with spin SA and momentum

pA moving in the positive z direction. This polarized proton scatters off an unpolarized proton (or

lepton) with momentum pB (pℓ), which is moving in the negative z direction. During this collision,
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Figure 5.1: Illustration for the distribution of hadrons inside jets in the collisions of a polarized

proton and an unpolarized proton or lepton, where SA indicates the spin of the incoming proton,

Sh is the spin of the produced hadron in a jet. The jet axis and colliding direction define the xz-

plane.

a jet is reconstructed using the standard anti-kT algorithm [CSS08] with specific parameters such

as the jet radiusR, rapidity ηJ , and transverse momentum pJT . Within this jet, we observe a hadron

with spin Sh, which carries a longitudinal momentum fraction zh of the jet and has a transverse

momentum j⊥ with respect to the jet axis. Our investigation focuses on studying this process in

the center-of-mass (CM) frame of the ep collision. In this frame, the incoming momenta pA,B

and the proton spin vector SA can be expressed as follows:

pµA =

√
s

2
nµa +O(M) , (5.2)

pµB =

√
s

2
nµb +O(me) , (5.3)

SµA =

[
λp
p+A
M
,−λp

M

2p+A
,ST

]
. (5.4)

Here the center-of-mass energy is denoted by s = (pA + pB)
2, and we use λp and ST to represent

the helicity and transverse spin vector of the incoming proton, respectively. The masses of the

proton and electron are denoted by M and me, respectively. We also define the standard quantities

Q2 = −(pB − pD)
2, representing the virtuality of the exchanged photon, and the event inelasticity
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y = Q2/ (xBs), where xB is the standard Bjorken-x [BDG07].

In this chapter, we focus on the measurement of the jet fragmentation function in an inclusive

jet sample in proton-proton (or lepton-proton) collisions. This measurement involves the summa-

tion over all particles in the final state X besides the observed jet. Hence, we are probing the

semi-inclusive Jet Fragmentation Functions (JFFs) discussed in the previous section. However, for

exclusive jet production, such as the back-to-back lepton-jet in lepton-proton collisions or Z-jet

correlations in proton-proton collisions, one should utilize the exclusive version of the JFFs. More

detailed information can be found in references [KLT19, LRV19, BKL18].

For single inclusive jet production, the most general azimuthal dependence of the hadron dis-

tribution inside the jet, differential in both zh and j⊥, can be expressed as follows:

dσp(SA)+p/e→(jeth(Sh))X

dpJTdηJdzhd2j⊥
=FUU,U + |ST | sin

(
ϕSA

− ϕ̂h

)
F

sin(ϕSA
−ϕ̂h)

TU,U

+ Λh

[
λpFLU,L + |ST | cos

(
ϕSA

− ϕ̂h

)
F

cos(ϕSA
−ϕ̂h)

TU,L

]
+ |Sh⊥|

[
sin
(
ϕ̂h − ϕ̂Sh

)
F

sin(ϕ̂h−ϕ̂Sh)
UU,T + λp cos

(
ϕ̂h − ϕ̂Sh

)
F

cos(ϕ̂h−ϕ̂Sh)
LU,T

+ |ST | cos
(
ϕSA

− ϕ̂Sh

)
F

cos(ϕSA
−ϕ̂Sh)

TU,T

+ |ST | cos
(
2ϕ̂h − ϕ̂Sh

− ϕSA

)
F

cos(2ϕ̂h−ϕ̂Sh
−ϕSA)

TU,T

]
. (5.5)

Here FAB,C represents the spin-dependent structure functions, where A, B, and C indicate the po-

larizations of the incoming proton A, incoming proton B (or electron), and the fragmented hadron

inside the jet, respectively. The parameters λp and |ST | denote the longitudinal and transverse

spin of the initial polarized hadron, while Λh and |Sh⊥| represent the longitudinal and transverse

polarization of the hadron inside the jet, measured in the fragmenting parton helicity frame.

In eq. (5.5), the structure function FUU,U(zh, j⊥) is defined by the expression:

FUU,U(zh, j⊥) =
α2
s

s

∑
a,b,c

∫ 1

xmin
1

dx1
x1

f
a/A
1 (x1, µ)

∫ 1

xmin
2

dx2
x2

f
b/B
2 (x2, µ)

×
∫ 1

zmin

dz

z2
Ĥc
ab(ŝ, p̂T , η̂, µ)Dh/c

1

(
z, zh, j

2
⊥, Q

)
≡ C

[
ffD1Ĥ

]
, (5.6)
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where fa/A1 (x1, µ) and f b/B2 (x2, µ) are the collinear unpolarized PDFs, Dh/q(g)
1 (zh, j

2
⊥, Q) is the

unpolarized TMD JFF and Ĥc
ab is the hard function for unpolarized parton a, b to unpolarized

parton c. The lower integration limits xmin
1 , xmin

2 and zmin can be found in [KRV16a, KMV15].

The variables ŝ, p̂T and η̂ are the squared parton center of mass energy, transverse momentum and

rapidity of parton c, respectively, and are related to their hadron analogues as:

ŝ = x1x2s , p̂T = pT/z , η̂ = η − 1

2
ln

(
x1
x2

)
. (5.7)

In eq. (5.6), we have also defined the notation C
[
ffD1Ĥ

]
, where parton flavors are summed

for PDFs and JFFs along with their corresponding unpolarized hard functions. Similarly to the

notation for unpolarized case given by eq. (5.6), we write down the rest structure functions in

eq. (5.5) [KLZ20a]:

F
sin(ϕS−ϕh)
TU,U (zh, j⊥) = C

[
j⊥

zhMh

h1f1H⊥1 ∆T Ĥ

]
, (5.8)

FLU,L(zh, j⊥) = C
[
g1Lf1G1L∆LĤ

]
, (5.9)

F
cos(ϕS−ϕh)
TU,L (zh, j⊥) = −C

[
j⊥

zhMh

h1f1H⊥1L∆T Ĥ

]
, (5.10)

F
sin(ϕh−ϕSh)
UU,T (zh, j⊥) = −C

[
j⊥

zhMh

f1f1D⊥1T Ĥ
]
, (5.11)

F
cos(ϕh−ϕSh)
LU,T (zh, j⊥) = −C

[
j⊥

zhMh

g1Lf1G1T∆LĤ

]
, (5.12)

F
cos(ϕS−ϕSh)
TU,T (zh, j⊥) = C

[
h1f1H1∆T Ĥ

]
, (5.13)

F
cos(2ϕh−ϕS−ϕSh)
TU,T (zh, j⊥) = −C

[
j2⊥

2z2hM
2
h

h1f1H⊥1T∆T Ĥ

]
. (5.14)

The polarization relations for hard functions Ĥc
ab, ∆LĤ

c
ab and ∆T Ĥ

c
ab are given in table 5.1. .

In the center-of-mass frame, as depicted in fig. 5.1, the azimuthal angle ϕSA
corresponds to

the transverse spin ST of the incoming proton. Here, we align the jet momentum in the x-z

plane. Simultaneously, we select another reference frame where the jet momentum aligns in the

+zJ direction, and the xJ axis is in the x-z plane. In this frame, we measure the transverse

momentum j⊥ and transverse spin vector Sh⊥ of the produced hadron inside the jet using the xJ -

yJ -zJ reference frame. The corresponding azimuthal angles in this frame are defined as ϕ̂h and

ϕ̂Sh
.
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c

a
U L T

U Ĥc
ab

L ∆LĤ
c
ab

T ∆T Ĥ
c
ab

Table 5.1: Hard functions for parton a, b to parton c. Parton b is always unpolarized.

5.1.2 Collinear JFFs

5.1.2.1 General structure of the observables

To study collinear JFFs, one integrates over j⊥ and measures only the zh-distribution of hadrons

inside the jet, namely one has

dσp(SA)+p/e→(jeth(Sh))X

dpJTdηJdzh
=FUU,U + Λh λpFLU,L + |Sh⊥||ST | cos

(
ϕSA

− ϕ̂Sh

)
F

cos(ϕSA
−ϕ̂Sh)

TU,T .

(5.15)

The structure functions FAB,C in eq. (5.5) represent the collinear versions of the structure func-

tions. When considering polarization for both incoming particles, additional terms emerge in both

eq. (5.5) and eq. (5.15). In the following section, we present key practical applications, focusing

on two specific investigations. Firstly, we study the longitudinal spin transfer, which is captured

by the j⊥-integrated version of FLU,L. Secondly, we analyze the transverse polarization of Λ pro-

duction, characterized by the structure function F
sin(ϕ̂h−ϕ̂Sh)
UU,T . Prior research has already explored

the unpolarized hadron distribution in jets, described by FUU,U [KRV16a, KLR17], and the hadron

Collins asymmetry, represented by F
sin(ϕSA

−ϕ̂h)
TU,U [KPR17].

5.1.2.2 Example: Longitudinally polarized Λ

It is widely recognized in the scientific community that Λ(Λ̄)-hyperons offer a valuable platform

for investigating spin-dependent fragmentation, owing to their polarizations being determinable

through the dominant weak decay channel Λ → p, π, (Λ̄ → p̄, π). Over time, numerous diverse

measurements of polarized Λ(Λ̄)-hyperons have been conducted, and in this section, we present
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Figure 5.2: The longitudinally polarized fragmentation functions plotted at µ = 1 GeV for various

scenarios [FSV98b] consistent with the LEP data. Scenario 1 has only polarized s quark nonva-

nishing, scenario 2 has u and d quark equal, but with opposite sign from s quark, scenario 3 has

u, d, and s quark equal to each other. In all scenarios, gluon vanishes at the input scale and is

generated entirely from QCD evolution.

predictions concerning the longitudinal polarization of Λ particles within jets.

The longitudinal polarized Λ/Λ̄ fragmentation functions were first determined by analyzing

LEP data to NLO [FSV98b, Bus96] (an earlier study can be found in [BJ93]). The analysis,

however, was not able to constrain the valence fragmentation functions for all flavors, but different

helicity FFs motivated by various scenarios (as shown in fig. 5.2) were found to equally describe the

LEP data. Subsequently, studies of the longitudinal spin transfer DLL in longitudinally polarized

proton-proton collisions, p⃗p → Λ⃗X , as a function of rapidity, have been proposed to discriminate

between the different scenarios of valence spin-dependent fragmentation functions. The positive

rapidity region (forward region of the polarized proton) corresponds to the valence region of the

polarized proton, and thus spin transfers are dominated by u and d quarks inside the polarized

proton. Analyzing DLL as a function of rapidity can, therefore, distinguish the different scenarios

of helicity FFs of u and d quarks.

In the past decade, the STAR collaboration at RHIC has conducted several measurements and

analyses for such longitudinal spin transfer to Λ and Λ̄ hyperons [Xu07, Abe09, Ada18a]. How-

ever, the measurements have been binned in only two rapidity bins, the negative (−1.2 < ηJ < 0)

and positive (0 < ηJ < 1.2) bins (at the most recent measurement [Ada18a]), and have not yet
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been able to discriminate between the different scenarios proposed in [FSV98b].

To achieve more continuous binning in the transverse momentum pΛT of the Λ particle, we

propose the use of the relevant collinear helicity JFF to directly scan through the helicity FFs. This

can be accomplished by studying the zΛ = pΛT/pJT distribution of longitudinally polarized Λ

particles inside a jet in longitudinally polarized proton-proton collisions, p⃗+ p→ (jetΛ⃗) +X . We

can define an analogous longitudinal spin transfer DjetΛ
LL for Λ polarization in the jet as follows

DjetΛ
LL =

d∆σp⃗p→(jetΛ⃗)X

dpJTdηJdzΛ

/
dσpp→(jetΛ)X

dpJTdηJdzΛ
=
FLU,L
FUU,U

, (5.16)

where the structure functions FLU,L and FUU,U given in eq. (5.15) have been applied in the above

expression. For the unpolarized cross section in the denominator, factorization is given by [KRV16a]

dσpp→(jetΛ)X

dpJTdηJdzΛ
=
∑
a,b,c

∫ 1

xmin
a

dxa
xa

fa(xa, µ)

∫ 1

xmin
b

dxb
xb
fb(xb, µ)

∫ 1

zmin
c

dzc
z2c
Hc
ab Ghc (zc, zΛ, pJTR, µ) .

(5.17)

On the other hand, the numerator of eq. (5.16) is defined as d∆σ = [dσ(+,+)−dσ(+,−)]/2 with

the first and second index denoting the helicities λp and ΛΛ respectively. Then the numerator of

eq. (5.16) can be written in the following factorized form

d∆σp⃗p→(jet⃗h)X

dpJTdηJdzΛ
=
∑
a,b,c

∫ 1

xmin
a

dxa
xa

ga(xa, µ)

∫ 1

xmin
b

dxb
xb
fb(xb, µ)

∫ 1

zmin
c

dzc
z2c

∆LLH
c
ab∆Ghc (zc, zΛ, pJTR, µ) .

(5.18)

Here fa(xa, µ) and ga(xa, µ) are the unpolarized PDFs and helicity parton distribution functions,

and Hc
ab (or ∆LLH

c
ab) are the corresponding hard functions, respectively. Finally, Ghc and ∆Ghc are

the relevant unpolarized collinear JFFs and helicity JFFs defined in the previous section. Also note

that Gh/c1 can be matched onto the standard helicity FFs as

∆Ghi (z, zh, pJTR, µ) =
∑
j

∫ 1

zh

dz′h
z′h

∆Jij(z, z′h, pJTR, µ)∆Dh
j

(
zh
z′h
, µ

)
, (5.19)

where the matching coefficients ∆Jij has been provided in eq. (4.46)-eq. (4.50) at the next-to-

leading order (NLO).

In the following section, we present numerical predictions for the production of longitudinally

polarized Λ particles within jets, considering the kinematic conditions of both the RHIC and EIC
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experiments. To describe the collinear helicity parton distributions and unpolarized PDFs, we

make use of the polarized and unpolarized NNPDF sets [BFG13, BBC13]. As for the fragmen-

tation functions for Λ, including both unpolarized and longitudinally polarized cases, we adopt

the leading-order set provided in [FSV98b]. This set includes three distinct scenarios, visually

represented in fig. 5.2.
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Figure 5.3: Calculated results for the asymmetry DjetΛ
LL at both the RHIC (left) and EIC (right)

experimental setups, considering various scenarios proposed in [FSV98b] and depicted in fig. 5.2.

The predictions we have obtained demonstrate the discriminative power of DjetΛ
LL in distinguishing

between the different proposed scenarios.

In line with the recent measurement by STAR at RHIC [Ada18a], our initial investigation fo-

cuses on studying the polarization of Λ particles within jets. The jets are reclustered using the

anti-kT algorithm with a jet radius R = 0.4 in proton-proton collisions at a center-of-mass energy

of
√
s = 200 GeV. The predictions for DjetΛ

LL are presented in fig. 5.3a, where the jet transverse

momentum and rapidity are integrated over the ranges 10 < pJT < 15 GeV and |ηJ | < 1.2, re-

spectively. The observed asymmetry is found to be on the order of a few percent, and the distinct

behavior in the spin asymmetry arises from polarized Fragmentation Functions (FFs) within dif-

ferent scenarios. This behavior can be attributed to the dominant contributions of u and d quarks
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in this kinematic region, leading DjetΛ
LL to follow the signs of the corresponding helicity FFs GΛ/u,d

1 .

Interestingly, as zΛ directly probes the polarized FFs in fig. 5.2, there is no need for further dif-

ferential information to discriminate between the three scenarios. As a result, this newly proposed

observable has the capability to differentiate among the scenarios without requiring binning in ηJ ,

as seen in the case of single inclusive Λ production [FSV98a].

Expanding our investigation, we now study longitudinally polarized Λ production at the EIC

with a center-of-mass energy of
√
s = 89 GeV. We consider R = 0.4 anti-kT jets with transverse

momentum and rapidity in the range 10 < pJT < 15 GeV and |ηJ | < 2, respectively. Notably, due

to the enhancement from the leading-order eq → eq process,DjetΛ
LL reaches magnitudes on the order

of tens of percent at the EIC, as demonstrated in fig. 5.3b. This significant enhancement ensures

the clear discrimination of different scenarios for helicity FFs under the experimental conditions

of the EIC.

5.1.3 TMD JFFs

5.1.3.1 Example: Transversely polarized Λ from unpolarized scatterings

To study the distribution of hadrons inside the jet with respect to their transverse momentum j⊥

and any spin-dependent correlations, it is crucial to use Transverse Momentum Dependent Jet

Fragmentation Functions (TMDJFFs). For instance, if the goal is to measure both unpolarized and

transversely polarized Λ production within the jet in the context of unpolarized proton-proton or

proton-lepton collisions, such as p+(p/e) → (jetΛ↑)+X , the TMDJFFs Dh/i
1 (z, zh, j⊥, pJTR, µ)

and D⊥,h/i1T (z, zh, j⊥, pJTR, µ) are required.

Recent experimental efforts by the Belle Collaboration have successfully measured transversely

polarized Λ particles in the back-to-back production of Λ and a light hadron during e+e− collisions,

i.e., e+e− → Λ↑ + h +X [Gua19]. Subsequently, the corresponding TMD Parton Fragmentation

Functions have been extracted from these measurements in [CKT20, DMZ20].

In a previous work [KLR17], it was demonstrated that for the scattering illustrated in fig. 5.1,

the unpolarized TMDJFF Dh/i
1 is related to the standard TMDFF D

h/i
1 . Expanding on the same
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approach, we present only the final results here, while leaving the detailed analysis for a future

publication. Notably, the evolution of D⊥h/i1T involves an unpolarized parton that initiates the jet,

implying that its evolution follows the same DGLAP evolution equations as the unpolarized case.

µ
d

dµ
D⊥h/i1T (z, zh, j⊥, pJTR, µ) =

αs(µ)

π

∑
j

∫ 1

z

dz′

z′
Pji

( z
z′
, µ
)
D⊥h/j1T (z′, zh, j⊥, pJTR, µ) ,

(5.20)

The evolution of D⊥,h/i1T from the typical jet scale µJ ∼ pJTR to the hard scale µ ∼ pJT is

accomplished through resummation, effectively addressing the logarithm of the jet radius R. At

the scale µJ , the expression for D⊥,h/i1T reads as follows:

D⊥h/i1T (z, zh, j⊥, pJTR, µJ) = Ci→j(z, pJTR, µJ)D⊥h/j1T (zh, j⊥;µJ) . (5.21)

Here D
⊥,h/j
1T represents the Transverse Momentum Dependent Parton Fragmentation Function

(TMD PFF) that characterizes the fragmentation of an unpolarized parton into a transversely polar-

ized hadron. The coefficient functions Ci→j remain the same as those in the unpolarized scenario

and can be found in [KLR17].

In this phenomenological example, we concentrate on the production of transversely polarized

Λ particles within a jet, considering unpolarized proton-proton and lepton-proton collisions, i.e.,

p + e/p → (jet,Λ↑) + X . This process has been proposed as a promising measurement at the

LHC [Boe10, BBH08]. Our analysis involves measuring three key observables: the longitudinal

momentum fraction zΛ carried by the Λ particle within the jet, the transverse momentum j⊥ rel-

ative to the jet direction, and the transverse spin Sh⊥ of the Λ particle. As emphasized earlier in

section 5.1.2.1, the transverse momentum j⊥ and the transverse spin Sh⊥ of the Λ particle exhibit

a correlation, giving rise to an azimuthal dependence of the form sin
(
ϕ̂h − ϕ̂Sh

)
,

dσ

dpJTdηJdzΛd2j⊥
=FUU,U + |Sh⊥| sin

(
ϕ̂h − ϕ̂Sh

)
F

sin(ϕ̂h−ϕ̂Sh)
UU,T + · · · , (5.22)

where “· · · ” includes all the other terms in eq. (5.5). And we have also defined the Λ transverse

polarization inside the jet as

PΛ =
F

sin(ϕ̂h−ϕ̂Sh)
UU,T

FUU,U
, (5.23)
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where one can write the following factorized form for the structure functions in the numerator and

denominator above

FUU,U =
∑
a,b,c

∫ 1

xmin
a

dxa
xa

fa(xa, µ)

∫ 1

xmin
b

dxb
xb
fb(xb, µ)

∫ 1

zmin
c

dzc
z2c
Hc
abDΛ/c

1 (zc, zΛ, j⊥, pJTR, µ) ,

(5.24)

F
sin(ϕ̂h−ϕ̂Sh)
UU,T =

∑
a,b,c

∫ 1

xmin
a

dxa
xa

fa(xa, µ)

∫ 1

xmin
b

dxb
xb
fb(xb, µ)

∫ 1

zmin
c

dzc
z2c
Hc
abD⊥Λ/c

1T (zc, zΛ, j⊥, pJTR, µ) .

(5.25)

It is worth noting that the expression for the unpolarized structure function FUU,U has been pre-

viously established in [KLR17]. Building upon this, we can derive the formalism for the spin-

dependent structure function F
sin(ϕ̂h−ϕ̂Sh)
UU,T . These structure functions are sensitive to both the un-

polarized TMDJFFs DΛ/c
1 and the spin-dependent TMDJFFs D⊥Λ/c1T . The Renormalization Group

(RG) evolution equations for these functions and their connections to the standard TMD Fragmen-

tation Functions (TMDFFs) have been provided in section 4.3. In particular, the TMDJFF D⊥Λ/c1T

is related to the TMD Parton Fragmentation Function (TMD PFF) D⊥Λ/c1T (zh, j⊥;µJ) as presented

in eq. (5.21).

To estimate the transverse polarization of Λ particles inside the jet, we adopt a specific model

for the TMD PFFs. Utilizing the so-called b∗ prescription [CSS85], we combine TMD evolution

with the recent Gaussian fit of the Belle data to parametrize D⊥Λ/c1T at the jet scale µJ ∼ pJTR as

follows:

D
⊥Λ/c
1T (zΛ, j⊥;µJ) =

1

z2Λ

(
1

2zΛ

)∫ ∞
0

b2db
2π

J1

(
j⊥b

zΛ

)
Fc(zΛ, µb∗) e

−Si
pert(b∗, µJ )−Si

NP(b, µJ ), (5.26)

where Sipert are the usual perturbative Sudakov factors [Col13], and Fc(zΛ, µb∗) is fitted from the

recent Belle data and has the following functional form

Fc(zΛ, µ
∗
b) ≡ Nc(zΛ)D

Λ/c
1 (zΛ, µ

∗
b) . (5.27)

In the present context, the unpolarized collinear c → Λ fragmentation functions are denoted as

D
Λ/c
1 (zΛ, µ

∗
b), and the parametrization of Nc(zΛ) for different quark flavors can be found in [CKT20].

It is noteworthy that, as of now, there is no available extraction for the gluon Transverse Momen-

tum Dependent Parton Fragmentation Function (TMD PFF) denoted as D⊥Λ/g1T . Consequently, we
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Figure 5.4: Predictions for the asymmetry PΛ for the LHC (left), RHIC (middle) and EIC (right)

kinematics.

do not include this quantity in the numerical study below. However, we do incorporate the unpolar-

ized gluon Transverse Momentum Dependent Fragmentation Function (TMDFF) denoted as DΛ/g
1

in the calculation of FUU,U . Also we set the scale µb∗ = 2e−γE/b∗, where b∗ = b/
√

1 + b2/b2max.

Subsequently, we choose to parametrize the non-perturbative Sudakov factor for quark TMD PFFs

using the prescription presented in [KLR17, KPS16, SIY18b].

SqNP(b, µJ) =
g2
2
ln

(
b

b∗

)
ln

(
pJTR

Q0

)
+

⟨M2
D⟩

4z2Λ
b2 , (5.28)

with Q2
0 = 2.4 GeV2, bmax = 1.5 GeV−1, g2 = 0.84, and ⟨M2

D⟩ = 0.118 GeV2 [CKT20].

Here we present our predictions for Λ polarization PΛ at various colliders, including the LHC,

RHIC, and the future EIC. For the LHC, we utilize anti-kT jets with R = 0.5, while for the

RHIC and EIC, we use R = 0.4. We consistently employ LO NNPDF [BBC13] as the PDF

sets and the AKK08 [AKK08] parametrization of the Λ fragmentations to remain consistent with

the extraction of TMD Parton Fragmentation Functions from [CKT20]. For the LHC, we adopt

the kinematics used in the recent LHCb measurements for the distribution of charged hadrons

in Z-tagged jets [Aai19] in proton-proton collisions at a center-of-mass energy of
√
s = 8 TeV,

focusing on the forward rapidity regions 2.5 < ηJ < 4. fig. 5.4a illustrates the zΛ distribution of

PΛ with j⊥ integrated over 0 < j⊥ < 1GeV for three distinct ranges of jet transverse momenta:

20 < pJT < 30 GeV, 30 < pJT < 50 GeV, and 50 < pJT < 100 GeV. The asymmetry PΛ
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exhibits a positive value initially and then becomes negative around zΛ ∼ 0.3. This behavior can

be attributed to the positive PFF of the u quark extracted from[CKT20], which dominates in the

small zΛ region. As zΛ ≳ 0.3, the negative PFF of the d quark takes over. Additionally, we observe

that the asymmetry PΛ is enhanced with increasing jet transverse momenta, as the quark jet fraction

increases with pJT .

For the RHIC kinematics, we consider the transverse momentum of the jets to be 10 < pJT <

15 GeV, and investigate two different ranges of rapidity, namely, 0 < ηJ < 1 and 1 < ηJ <

2.2. The latter range may be accessible once a forward detector upgrade is made available at

sPHENIX[Ada15]. fig. 5.4b presents our results, differential in zΛ, again with j⊥ integrated over

0 < j⊥ < 1GeV. Similar to the case at the LHC, the u quark PFF dominates when zΛ ≲ 0.3,

but is overtaken by the negative d quark PFF at larger values of zΛ. Furthermore, we observe

that valence contributions are enhanced when looking at the more forward rapidity region of 1 <

ηJ < 2.2. Since valence quarks, especially u and d, have the largest PFFs, the size of PΛ is

enhanced for the more forward rapidity region. Nevertheless, the Λ polarization PΛ in proton-

proton collisions at both LHC and RHIC is at the level of about 2%, similar in magnitude to the

recent ATLAS measurement for the transverse polarization of single inclusive Λ production in

pp→ Λ↑ +X [Aad15].

Finally, we present our predictions for PΛ as a function of zΛ for the future Electron-Ion Col-

lider (EIC) operating at a center-of-mass energy of
√
s = 89 GeV, as illustrated in fig. 5.4c. In this

case, the transverse momentum and rapidity of the jets are confined to the intervals 10 < pJT < 15

GeV and |ηJ | < 2, respectively. As before, we integrate j⊥ over 0 < j⊥ < 1 GeV. While the

overall qualitative behavior of the results is similar to those obtained for the LHC and RHIC kine-

matics, there are some notable distinctions. Specifically, the u quark PFF dominates over a larger

region of zΛ, and as a consequence, PΛ remains positive until zΛ ≲ 0.4. Due to the prevalence of

quark PFFs in lepton-proton collisions, the polarization size is larger, with PΛ ∼ 10% at zΛ ∼ 0.5.

Consequently, this jet substructure observable holds potential as a feasible measurement candidate

at the future EIC.
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5.2 Back-to-back e + jet in ep collision

In this section, we study the back-to-back electron-jet production with unpolarized hadron ob-

served inside jets. Recently, a novel avenue for investigating Transverse Momentum Dependent

Parton Distribution Functions (TMDPDFs) and Transverse Momentum Dependent Fragmentation

Functions (TMDFFs) has emerged through the study of back-to-back electron+jet production and

the corresponding jet substructure at the Electron-Ion Collider (EIC)[LRV19, AKP20, LRV20].

This work introduces a comprehensive theoretical framework for analyzing the distribution of

hadrons within a jet in the context of back-to-back electron-jet production at electron-proton(ep)

colliders, described by the process:

e− + p→ e− + (jet (qT )h (zh, j⊥)) +X , (5.29)

where both the incoming particles (electron and proton) and the outgoing hadrons inside the jet can

possess arbitrary polarizations. Here, qT represents the transverse momentum imbalance between

the final-state electron and the jet, measured with respect to the beam direction of the electron and

proton. Meanwhile, zh denotes the momentum fraction of the jet carried by the produced hadron,

and j⊥ corresponds to the transverse momentum of the hadron within the jet relative to the jet axis.

In particular, besides the electron-jet transverse momentum imbalance qT , we also observe

transverse momentum j⊥ distribution of hadrons inside the jet with respect to the jet axis. Obser-

vation of a hadron inside a jet makes the process sensitive to a TMDPDF and a TMDJFF simul-

taneously. Unlike the counterpart process involving a hadron without observation of a jet, such as

SIDIS [BDG07], further dependence in j⊥ allows the two TMDs to be separately constrained. In

this section, we consider only unpolarized hadron (such as pions) inside the jet and we write down

the complete azimuthal modulations for the cross section. The well-known Collins asymmetry for

hadrons in a jet in ep collisions is one of such azimuthal modulations [AKP20].
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5.2.1 Theoretical formalism

We provide the theoretical framework where one measures distribution of unpolarized hadrons

inside the jet described by the following process,

p(pA, SA) + e(pB, λe) →
[
jet(pC)h (zh, j⊥)

]
+ e(pD) +X . (5.30)

In this scattering process, an electron with momentum pB, moving along the “negative z” direction,

interacts with a polarized proton with momentum pA and polarization SA, which is moving along

the “positive z” direction. This collision results in the production of a jet with momentum pC

and an electron with momentum pD in the final state. The electron can be either unpolarized or

longitudinally polarized, with a helicity denoted as λe.

To study this process, we utilize the center-of-mass frame of the ep collision, where the incom-

ing momenta pA,B and the proton spin vector SA have been given in eq. (5.2)-5.4. For our analysis,

we consider the final observed jet to be produced in the xz-plane, as shown in fig. 5.1, with its

four-momentum pC expressed as

pµC =EJ(1, sin θJ , 0, cos θJ) , (5.31)

The angle θJ is measured concerning the beam direction. The xz-plane, formed by the jet mo-

mentum and the directions of the incoming electron-proton beams, is referred to as the scattering

plane. It’s important to mention that we represent pµC using the (t, x, y, z) momentum notation to

distinguish it from the light-cone component representation, which is denoted by brackets.

In equation eq. (5.30), we also introduce the definitions of zh and j⊥. Here, zh represents the

longitudinal momentum fraction of the jet carried by the hadron h, and j⊥ denotes the hadron’s

transverse momentum concerning the jet axis. The specifics of this scattering process are depicted

in figure fig. 5.1. In this context, the symbol “⊥” is used to indicate the transverse vector relative

to the jet axis. Additionally, j⊥ is parametrized in the ep center-of-mass frame as

j⊥ =j⊥(cos ϕ̂h cos θJ , sin ϕ̂h,− cos ϕ̂h sin θJ) . (5.32)

In the context of the previous section (refer to equation eq. (5.31)), the angle θJ is defined. We

adopt a slight abuse of notation, as discussed earlier below equation eq. (5.36), using j⊥ = |j⊥| to

80



represent the magnitude of the transverse vector j⊥. Additionally, ϕ̂h corresponds to the azimuthal

angle of the produced hadron transverse momentum j⊥ in the jet frame denoted by xJyJzJ (as

illustrated in fig. 5.1). It is important to recall that the scattering plane is defined as the xz-plane,

formed by the jet momentum and the incoming electron-proton beam directions. Also, note that

we differentiate the azimuthal angle measured in this jet frame (as shown in fig. 5.1) with a hat

symbol.

We focus on the kinematic region where both the electron and the jet are produced back-

to-back, and the transverse momentum imbalance qT = |qT | is much smaller than the average

transverse momentum pT = |pT | of the electron and the jet, such that qT ≪ pT . In this context, qT

and pT are given by:

qT = pC,T + pD,T , (5.33)

pT = (pC,T − pD,T ) /2 . (5.34)

In the region where qT ≲ pT , one must carry out the fixed-order matching (so-called Y term [CSS85]).

We focus on the resummation region in this paper.

Next we parametrize qT and transverse spin vector ST in terms of their azimuthal angles as

qT = qT (cosϕq, sinϕq) , (5.35)

ST = ST (cosϕSA
, sinϕSA

) . (5.36)

The vectors denoted by the subscript T indicate that they are transverse concerning the beam direc-

tion. The azimuthal angles are measured in a frame where the incoming beams and the outgoing

jet define the xz-plane.

It is important to be cautious regarding a slight abuse of notation, where we use ST = |ST |
and qT = |qT | to represent the magnitudes of the transverse vectors in equations eq. (5.35) and

eq. (5.36), respectively. However, using the representation of the four-vector as qµT = (0, 0, qT )

(similarly for SµT ) would lead to a contradiction, namely q2T = −q2
T , if one interprets q2T as qµT , qT,µ.

To avoid confusion, we consistently use qT and ST to represent the magnitudes of the transverse

momentum and spin, explicitly writing indices, for instance qµT , qT,µ, to denote the invariant mass
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of a four-momentum. Additionally, unbolded text with Latin indices, such as kiT or SiT , is used to

represent the components of transverse vectors.

5.2.2 With unpolarized hadron-in-jet

The differential cross section of the back-to-back electron-jet production with unpolarized hadron

observed inside jets is given by

dσp(SA)+e(λe)→e+(jeth)+X

dp2TdyJd
2qTdzhd2j⊥

= FUU,U + cos
(
ϕq − ϕ̂h

)
F

cos(ϕq−ϕ̂h)
UU,U

+ λp

{
λeFLL,U + sin

(
ϕq − ϕ̂h

)
F

sin(ϕq−ϕ̂h)
LU,U

}
+ ST

{
sin(ϕq − ϕSA

)F
sin(ϕq−ϕSA)
TU,U + sin

(
ϕSA

− ϕ̂h

)
F

sin(ϕSA
−ϕ̂h)

TU,U

+ λe cos(ϕq − ϕSA
)F

cos(ϕq−ϕSA)
TL,U

+ sin
(
2ϕq − ϕ̂h − ϕSA

)
F

sin(2ϕq−ϕ̂h−ϕSA)
TU,U

}
, (5.37)

where FAB,C denote the spin-dependent structure functions, with A, B, and C respectively indi-

cating the polarization of the incoming proton, of the incoming electron, and the outgoing hadron

inside a jet. In this section we only consider the distribution of unpolarized hadrons inside the jet,

thus we always have C = U . The polarization of the hadrons in jets will be discussed in the next

section.

For the unpolarized hadron, the correlator is parametrized by TMDJFFs at the leading twist

accuracy as

∆
h/q
jet (zh, j⊥, Sh) =

1

2

[
Dh/q

1 (zh, j
2
⊥)/nJ +H⊥h/q1 (zh, j

2
⊥)
σµνnJ,µj⊥ν
zhMh

]
+ spin dependent terms , (5.38)

Here we introduce the jet light-cone vectors nJ = 1√
2
(1, 0, 0, 1) and n̄J = 1√

2
(1, 0, 0,−1) in the

xJyJzJ coordinate system, and they are defined with the jet momentum along the nJ direction as

shown in fig. 5.1. In the first row of table 4.2 we have summarized the physical interpretations of

the unpolarized quark TMDJFFs. That is to say,, Dh/q
1 describes an unpolarized quark initiating

a jet in which an unpolarized hadron is observed, while H⊥h/q1 describes a transversely polarized
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quark initiating a jet in which an unpolarized hadron is observed. Thus one have TMDJFFs Dh/q
1

closely related to the unpolarized TMDFFs Dh/q
1 [KLZ20b, KLR17, KPR17], and accordingly

TMDJFFs H⊥h/q1 are closely related to the Collins TMDFFs H⊥h/q1 .

We now illustrate the factorization of the structure functions in the region qT ∼ j⊥ ≪ pTR.

The factorization formula for FUU,U in eq. (5.37) is given as follows

FUU,U =σ̂0H(Q, µ)
∑
q

e2q Dh/q
1 (zh, j

2
⊥, µ, ζJ)

∫
b db

2π
J0(qT b)x f̃

q
1 (x, b

2, µ, ζ)

× S̄global(b
2, µ)S̄cs(b

2, R, µ) , (5.39)

where we include renormalization scale µ and Collins-Soper parameter ζJ for the TMDJFFs. As

we will demonstrate below,
√
ζJ = pTR.

In the kinematic region j⊥ ≪ pTR, the unpolarized TMDJFF Dh/q
1 (zh, j

2
⊥, µ, ζJ) can be fur-

ther factorized in terms of the corresponding unpolarized TMDFF and a collinear-soft function

as [KLR17, KLZ20b]

Dh/q
1 (zh, j

2
⊥, µ, ζJ) =

∫
k⊥,λ⊥

D
h/q,unsub
1 (zh, k

2
⊥, µ, ζ

′/ν2)Sq(λ
2
⊥, µ, νR)

=

∫
b db

2π
J0

(
j⊥b

zh

)
D̃
h/q,unsub
1 (zh, b

2, µ, ζ ′/ν2)Sq(b
2, µ, νR) , (5.40)

where we use the short-hand notation of
∫
k⊥,λ⊥

=
∫
d2k⊥d2λ⊥δ2(zhλ⊥ + k⊥ − j⊥) in the first

line, and
√
ζ ′ =

√
2nJ · pJ is the Collins-Soper parameter for the TMDFFs. On the other hand,

Sq(b
2, µ, νR) is the collinear-soft function with the following expressions [KLR17, KRW17]

Sq(b
2, µ, νR) = 1− αsCF

4π

[
2

(
2

η
+ ln

ν2R2

4µ2

)(
1

ϵ
+ ln

µ2

µ2
b

)
+ ln2 µ

2

µ2
b

− 2

ϵ2
+
π2

6

]
, (5.41)

where R =
R

cosh yJ
. To proceed, comparing the standard soft function

√
Sab(b2, µ, ν) where

Sab(b
2, µ, ν) = 1− αsCF

2π

[
2

(
2

η
+ ln

ν2

µ2

)(
1

ϵ
+ ln

µ2

µ2
b

)
+ ln2 µ

2

µ2
b

− 2

ϵ2
+
π2

6

]
. (5.42)

with eq. (5.41) we realize Sq(b2, µ, νR) =
√
Sab(b2, µ, ν)|ν→νR/2 at the NLO and thus

D̃
h/q,unsub
1 (zh, b

2, µ, ζ ′/ν2)Sq(b
2, µ, νR) =D̃

h/q,unsub
1 (zh, b

2, µ, ζ ′/ν2)
√
Sab(b2, µ, νR/2)

=D̃
h/q
1 (zh, b

2, µ, ζ ′R2/4) . (5.43)
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Finally using the fact that
√
ζ ′R/2 =

√
2nJ · pJR/(2 cosh yJ) = pTR ≡

√
ζJ , we obtain the

following relation between TMDJFF Dh/q
1 and TMDFF Dh/q

1

Dh/q
1 (zh, j

2
⊥, µ, ζJ) =

∫
b db

2π
J0

(
j⊥b

zh

)
D̃
h/q
1 (zh, b

2, µ, ζJ) = D
h/q
1 (zh, j

2
⊥, µ, ζJ) . (5.44)

Alternatively, the TMDJFF is equal to the TMDFF at the scale ζJ . The parametrization of TMDFF

follows the similar form as that of the TMDPDF. Using the CSS formalism, the b-space unpolarized

TMDFF can be expressed as

D̃
h/q
1 (zh, b

2, µ, ζJ) =
1

z2h

[
Ĉi←q ⊗D

h/i
1

]
(zh, µb∗) exp

[
−Spert (µ, µb∗)− SDNP (zh, b, Q0, ζJ)

]
,

(5.45)

where we have performed an operator product expansion in terms of the unpolarized collinear FFs

D
h/i
1 (x, µb∗) with the convolution defined as follows[

Ĉi←q ⊗D
h/i
1

]
(zh, µb∗) =

∫ 1

zh

dẑh
ẑh
Ĉi←q

(
zh
ẑh
, µb∗

)
D
h/i
1 (ẑh, µb∗) . (5.46)

We take into account the summation over repeated indices, and we adopt the same b∗ prescription

as utilized in TMDPDFs. The coefficient functions Ĉi←q at the NLO can be looked up in [KPS16],

and results for even higher orders are also accessible in [ESV16, LWX19, LYZ21, EMV20]. The

perturbative Sudakov factor is equivalent to that of the TMDPDFs, as provided by

Spert (µ, µb∗) = −K̃(b∗, µb∗) ln

(√
ζ

µb∗

)
−
∫ µ

µb∗

dµ′

µ′

[
γF

(
αs(µ

′),
ζ

µ′2

)]
. (5.47)

On the other hand, for the non-perturbative Sudakov factor SDNP (zh, b, Q0, ζJ), we use the parametriza-

tion [SIY18a, EKT21]

SDNP (zh, b, Q0, ζJ) =
g2
2
ln

√
ζJ
Q0

ln
b

b∗
+ gD1

b2

z2h
. (5.48)

The values of Q0, g2, and gf1 are provided as Q0 =
√
2.4 GeV, g2 = 0.84, gf1 = 0.106 GeV2, and

gD1 = 0.042 GeV2.

Applying similar arguments, one can establish analogous relationships between other TMD-

JFFs and TMDFFs. The explicit expressions of the remaining structure functions in terms of

TMDJFFs and TMDPDFs are presented in the subsequent subsection, and a summary of the az-

imuthal asymmetries associated with them can be found in table 5.2.
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JFF

PDF
f1 g1L f⊥1T g1T

D1 1 1 sin(ϕq − ϕSA
) cos(ϕq − ϕSA

)

JFF

PDF
h⊥1 h⊥1L h1 h⊥1T

H⊥1 cos
(
ϕq − ϕ̂h

)
sin
(
ϕq − ϕ̂h

)
sin
(
ϕSA

− ϕ̂h

)
sin
(
2ϕq − ϕ̂h − ϕSA

)
Table 5.2: Summary of the characteristic azimuthal asymmetry with which different TMDPDFs

and TMDJFFs arise for back-to-back electron-jet production, with unpolarized hadrons observed

inside the jet. See eq. (5.37) and eq. (5.72)-eq. (5.79) for parametrizations of structure functions.

5.2.2.1 Soft function

In section 3.3, we presented the factorization formula for the process involving an unpolarized

hadron inside a jet, using the narrow jet cone limit where R ≪ 1. However, in this subsection, we

will derive the factorization formula without making the narrow cone approximation.

As the jet radius R is not a small parameter, the narrow cone approximation is not suitable for

constructing the factorization formula. Generally, the factorized cross section can be expressed as

the product of the hard, soft, and TMD collinear functions, denoted as dσ ∼ Hf q1 ⊗ D
h/q
1 ⊗ S,

where the soft function S depends on both qT and j⊥, and it also accounts for the jet algorithm

dependence within S.

Specifically, the physics scale inside the jet is represented by j⊥, whereas the scale outside the

jet is represented by qT . Since we assume qT ∼ j⊥, there are no large logarithms present inside the

soft function. However, if there is a scale hierarchy between qT and j⊥, then it becomes necessary

to consider the refactorization of the soft function, as demonstrated in [BPS16]. The factorized

cross section takes the form of

dσp(SA)+e(λe)→e+(jeth)+X

dp2TdyJd
2qTdzhd2j⊥

=σ̂0H(Q, µ)

∫
d2b

(2π)2
eib·qT

∫
d2b′

(2π)2
eib

′·j⊥ (5.49)

×
∑
q

e2qD̃
h/q,unsub
1 (zh, b

′2, µ, ζ ′/ν2)xf̃ q,unsub1 (x, b2, µ, ζ/ν2)S(b, b′, yJ , R, µ, ν),

where b and b′ are conjugate variables of qT and j⊥, separately. At one-loop order, we consider
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only one soft gluon emission, which is either inside or outside the jet cone. Then the soft function

can be factorized as

S(b, b′, yJ , R, µ, ν) = Sin(b
′, yJ , R, µ, ν)Sout(b, yJ , R, µ, ν). (5.50)

Using the above relation, we find that qT and j⊥ dependence in the cross section are fully factor-

ized. It is noted that the above factorization is an approximation, and beyond the one-loop order

the expressions depending on both b and b′ can show up. Explicitly, the one-loop soft function

S(b, b′, yJ , R, µ, ν) is given by

SNLO(b, b′, yJ , R, µ, ν) =CF
αsµ

2ϵπϵeγEϵ

π2

∫
ddk δ(k2)θ(k0)

n · nJ
n · k k · nJ

( ν

2k0

)η
×
[
θ(∆R−R)eikT ·b + θ(R−∆R)eik⊥·b′

]
. (5.51)

Here the jet light-cone vector nJ has been defined below eq. (5.38). In eq. (5.51), ∆R denotes

the distance between the jet and the soft emission in rapidity and azimuthal angle plane, which is

defined by ∆R =
√
(y − yJ)2 + (ϕ− ϕJ)2. Therefore, θ(∆R − R) and θ(R −∆R) indicate the

soft gluon with momentum k is radiated outside and inside the jet, respectively. In the CM frame

of incoming beams the vectors b and b′ are defined as

b = b(cosϕ1, sinϕ1, 0), (5.52)

b′ = b′(cos ϕ̂2 cos θJ , sin ϕ̂2,− cos ϕ̂2 sin θJ), (5.53)

respectively. Here, without loss of generality, we have chosen ϕJ = 0. It is noted that the vector b′

is the conjugate variable of k⊥, which describes the transverse momentum perpendicular to the jet

axis. In the jet frame, it is given as

b′ = b′(cos ϕ̂2, sin ϕ̂2)J , (5.54)

After performing the rotation transformation in the xz plane, we obtain its expression in the CM

frame of incoming beams.

In eq. (5.51) the contribution outside the jet region can be rewritten as

θ(∆R−R) = 1− θ(R−∆R), (5.55)
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where the first term on the right side indicates that the soft radiation is independent on the jet

definition, so it is also called the global soft function Sglobal. Then Sout(b, yJ , R, µ, ν) in eq. (5.50)

is given by

Sout(b, yJ , R, µ, ν) = Sglobal(b, yJ , R, µ, ν) + Sin
I (b, R, µ) (5.56)

Next we define the contribution from the second term as Sin
I , which is

Sin
I (b, R, µ) = −CF

αsµ
2ϵπϵeγEϵ

π2

∫
ddk δ(k2)θ(k0)

n · nJ
n · k k · nJ

θ(R−∆R)eikT ·b . (5.57)

Note that since the integral does not contain the rapidity divergence anymore after constraining

the angular integration only inside the jet, one ignores the rapidity regulator here. Then the phase

space integration can be expressed as∫
ddkδ

(
k2
)
θ(k0) =

π
1
2
−ϵ

Γ
(
1
2
− ϵ
) ∫ π

0

dϕ sin−2ϵ ϕ

∫
dy

∫
dkT k

1−2ϵ
T . (5.58)

After integrating kT with the Fourier transformation factor, we have∫
dkT k

−1−2ϵ
T eikT b cos(ϕ−ϕ1) = Γ(−2ϵ) [−ib cos (ϕ− ϕ1)]

2ϵ . (5.59)

The integration region of y and ϕ are constrained by the jet cone as θ[R− ϕ2 − (y− yJ)
2], and we

express the integration variables as

y = r cosχ+ yJ , ϕ = r sinχ. (5.60)

Then we obtain ∫
dy

∫ π

0

dϕ θ
[
R2 − (y − yJ)

2 − ϕ2
]
=

∫ R

0

dr r

∫ π

0

dχ. (5.61)

In the small R limit, after taking the leading contribution of the integrand in the r ≪ 1 region, we

have

Sin
I (b, R, µ) = − αs

2π
CF

[
1

ϵ2
+

2

ϵ
ln

(−2i cosϕ1µ

µbR

)
+ 2 ln2

(−2i cosϕ1µ

µbR

)
+
π2

4

]
. (5.62)

which is also know as the collinear-soft function Scs.
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Similarly, we define Sin(b
′, yJ , R, µ, ν) in eq. (5.50), namely the contribution from θ(R−∆R)

in eq. (5.51) as Sin
II , where kµ⊥ is defined as

kµ⊥ = kµ − n̄J · k
2

nµJ −
nJ · k
2

n̄µJ . (5.63)

In the small R limit, we have

Sin
II (b

′, µ, νR) = − αs
2π
CF

[
− 1

ϵ2
+

2

η

(
1

ϵ
+ ln

µ2

µ′2b

)
+

1

ϵ
ln

(
ν2R2

4µ2

)

+ ln
µ2

µ′2b
ln

(
ν2R2

4µ2

)
+

1

2
ln2 µ

2

µ′2b
+
π2

12

]
, (5.64)

which is the same as the one-loop expression of Sq given in eq. (5.41). Therefore we show that in

the small R approximation, the one-loop soft function SNLO is

SNLO = Sglobal(b, µ, ν) + Sin
I (b, µ) + Sin

II (b
′, µ, νR) +O(R2),

= Sglobal(b, µ, ν) + Scs(b, µ) + Sq(b
′, µ, νR) +O(R2) . (5.65)

In other words the soft function S in the factorization formula eq. (5.49) can be expressed as

S = Sglobal Scs Sq +O(R2). (5.66)

Finally we obtain eq. (5.39), the factorization formula for the process of the unpolarized hardon

production inside jet in the narrow cone approximation.

5.2.3 With polarized hadron-in-jet

Continue with the theoretical background for ep→ e+jet(h)+X provided in section 5.2, we ob-

tain the differential cross section of the back-to-back electron-jet production with polarized hadron

observed inside jets is given by

dσp(SA)+e(λe)→e+(jeth(Sh))+X

dp2TdyJd
2qTdzhd2j⊥

= FUU,U + cos
(
ϕq − ϕ̂h

)
F

cos(ϕq−ϕ̂h)
UU,U

+ λp

{
λeFLL,U + sin

(
ϕq − ϕ̂h

)
F

sin(ϕq−ϕ̂h)
LU,U

}
+ ST

{
sin(ϕq − ϕSA

)F
sin(ϕq−ϕSA)
TU,U + λe cos(ϕq − ϕSA

)F
cos(ϕq−ϕSA)
TL,U
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+ sin
(
ϕSA

− ϕ̂h

)
F

sin(ϕSA
−ϕ̂h)

TU,U + sin
(
2ϕq − ϕ̂h − ϕSA

)
F

sin(2ϕq−ϕ̂h−ϕSA)
TU,U

}
+ λh

{
λeFUL,L + sin

(
ϕ̂h − ϕq

)
F

sin(ϕ̂h−ϕq)
UU,L + λp

[
FLU,L + cos

(
ϕ̂h − ϕq

)
F

cos(ϕ̂h−ϕq)
LU,L

]
+ ST

[
cos(ϕq − ϕSA

)F
cos(ϕq−ϕSA)
TU,L + λe sin(ϕq − ϕSA

)F
sin(ϕq−ϕSA)
TL,L

+ cos
(
ϕSA

− ϕ̂h

)
F

cos(ϕSA
−ϕ̂h)

TU,L + cos
(
2ϕq − ϕSA

− ϕ̂h

)
F

cos(2ϕq−ϕSA
−ϕ̂h)

TU,L

]}
+ Sh⊥

{
sin
(
ϕ̂h − ϕ̂Sh

)
F

sin(ϕ̂h−ϕ̂Sh)
UU,T + λecos

(
ϕ̂h − ϕ̂Sh

)
F

cos(ϕ̂h−ϕ̂Sh)
UL,T

+ sin
(
ϕ̂Sh

− ϕq

)
F

sin(ϕ̂Sh
−ϕq)

UU,T + sin
(
2ϕ̂h − ϕ̂Sh

− ϕq

)
F

sin(2ϕ̂h−ϕ̂Sh
−ϕq)

UU,T

+ λp

[
cos
(
ϕ̂h − ϕ̂Sh

)
F

cos(ϕ̂h−ϕ̂Sh)
LU,T + cos

(
ϕq − ϕ̂Sh

)
F

cos(ϕq−ϕ̂Sh)
LU,T

+ cos
(
2ϕ̂h − ϕ̂Sh

− ϕq

)
F

cos(2ϕ̂h−ϕ̂Sh
−ϕq)

LU,T + λe sin
(
ϕ̂h − ϕ̂Sh

)
F

sin(ϕ̂h−ϕ̂Sh)
LL,T

]
+ ST

[
cos
(
ϕSA

− ϕ̂Sh

)
F

cos(ϕSA
−ϕ̂Sh)

TU,T + cos
(
2ϕ̂h − ϕ̂Sh

− ϕSA

)
F

cos(2ϕ̂h−ϕ̂Sh
−ϕSA)

TU,T

+ sin
(
ϕ̂h − ϕ̂Sh

)
sin(ϕq − ϕSA

)F
sin(ϕ̂h−ϕ̂Sh) sin(ϕq−ϕSA)
TU,T

+ cos
(
ϕ̂h − ϕ̂Sh

)
cos(ϕq − ϕSA

))F
cos(ϕ̂h−ϕ̂Sh) cos(ϕq−ϕSA)
TU,T

+ cos
(
2ϕq − ϕSA

− ϕ̂Sh

)
F

cos(2ϕq−ϕSA
−ϕ̂Sh)

TU,T

+ cos
(
2ϕ̂h − ϕ̂Sh

+ 2ϕq − ϕSA

)
F

cos(2ϕ̂h−ϕ̂Sh
+2ϕq−ϕSA)

TU,T

+ λe cos
(
ϕ̂h − ϕ̂Sh

)
sin(ϕSA

− ϕq)F
cos(ϕ̂h−ϕ̂Sh) sin(ϕSA

−ϕq)
TL,T

+ λe sin
(
ϕ̂h − ϕ̂Sh

)
cos(ϕSA

− ϕq))F
sin(ϕ̂h−ϕ̂Sh) cos(ϕSA

−ϕq)
TL,T

]}
, (5.67)

where the structure functions with unpolarized hadron in the final state C = U already made

appearances in eq. (5.37) in last section. More explicitly, the expressions of the structure functions

in Eqs. eq. (5.37) and eq. (5.67). To give a compact presentation, we define

Cmnk[Dq(zh, j
2
⊥;µ)Ã

(n)(x, b2)] =σ̂kH(Q, µ)
∑
q

e2q

(
j⊥

zhMh

)m
Dq(zh, j

2
⊥, µ, ζJ)

×Mn

∫
bn+1db

2πn!
Jn(qT b)xÃ

(n)(x, b2) , (5.68)

where m, n and k can be m = 0, 1, 2, n = 0, 1, 2 and k = 0, L, T .

Partonic cross section σ̂k describes scattering of electron-quark with different polarizations
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depending on the value of k. The k = 0 corresponds to the partonic scattering eq → eq or

eqL → eqL, k = L corresponds to the partonic scattering eLqL → eq or eq → eLqL, and k = T

corresponds to the partonic scattering eqT → eqT . Their expressions are given as

σ̂0 =
αemαs
sQ2

2(û2 + ŝ2)

t̂2
, (5.69)

σ̂L =
αemαs
sQ2

2(û2 − ŝ2)

t̂2
, (5.70)

σ̂T =
αemαs
sQ2

(−4ûŝ

t̂2

)
. (5.71)

Then, we find

FUU,U(qT , j⊥) = C000[D1,qf̃1S̄globalS̄cs] , (5.72)

F
cos(ϕq−ϕ̂h)
UU,U (qT , j⊥) = C11T [H⊥1,qh̃⊥(1)1 S̄globalS̄cs] , (5.73)

FLL,U(qT , j⊥) = C00L[D1,qg̃1LS̄globalS̄cs] , (5.74)

F
sin(ϕq−ϕ̂h)
LU,U (qT , j⊥) = C11T [H⊥1,qh̃⊥(1)1L S̄globalS̄cs] , (5.75)

F
sin(ϕq−ϕSA)
TU,U (qT , j⊥) = C010

[
D1,qf̃

⊥(1)
1T S̄globalS̄cs

]
, (5.76)

F
sin(ϕSA

−ϕ̂h)
TU,U (qT , j⊥) = C10T

[
H⊥1,qh̃1S̄globalS̄cs

]
, (5.77)

F
cos(ϕq−ϕSA)
TL,U (qT , j⊥) = C01L

[
D1,qg̃

(1)
1T S̄globalS̄cs

]
, (5.78)

F
cos(2ϕq−ϕ̂h−ϕSA)
TU,U (qT , j⊥) = C12T

[
H⊥1,qh̃⊥(2)1T S̄globalS̄cs

]
, (5.79)

FUL,L(qT , j⊥) = C00L[G1L,qf̃1S̄globalS̄cs] , (5.80)

F
sin(ϕ̂h−ϕq)
UU,L (qT , j⊥) = C11T [H⊥1L,qh̃⊥(1)1 S̄globalS̄cs] , (5.81)

FLU,L(qT , j⊥) = C000[G1L,qg̃1LS̄globalS̄cs] , (5.82)

F
cos(ϕ̂h−ϕq)
LU,L (qT , j⊥) = −C11T [H⊥1L,qh̃⊥(1)1L S̄globalS̄cs] , (5.83)

F
cos(ϕq−ϕSA)
TU,L (qT , j⊥) = C010

[
G1L,qg̃

(1)
1T S̄globalS̄cs

]
, (5.84)

F
sin(ϕq−ϕSA)
TL,L (qT , j⊥) = C01L

[
G1L,qf̃

⊥(1)
1T S̄globalS̄cs

]
, (5.85)

F
cos(ϕSA

−ϕ̂h)
TU,L (qT , j⊥) = −C10T

[
H⊥1L,qh̃1S̄globalS̄cs

]
, (5.86)

F
cos(2ϕq−ϕSA

−ϕ̂h)
TU,L (qT , j⊥) = −C12T

[
H⊥1L,qh̃⊥(2)1T S̄globalS̄cs

]
, (5.87)

F
sin(ϕ̂h−ϕ̂Sh)
UU,T (qT , j⊥) = C100

[
D⊥1T,qf̃1S̄globalS̄cs

]
, (5.88)
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F
cos(ϕ̂h−ϕ̂Sh)
UL,T (qT , j⊥) = −C00L

[
G1T,qf̃1S̄globalS̄cs

]
, (5.89)

F
sin(ϕ̂Sh

−ϕq)
UU,T (qT , j⊥) = C01T

[
H1,qh̃

⊥(1)
1 S̄globalS̄cs

]
, (5.90)

F
cos(2ϕ̂h−ϕq−ϕ̂Sh)
UU,T (qT , j⊥) = C21T

[
H⊥1T,qh̃⊥(1)1 S̄globalS̄cs

]
, (5.91)

F
cos(ϕ̂h−ϕ̂Sh)
LU,T (qT , j⊥) = −C100

[
G1T,qg̃1LS̄globalS̄cs

]
, (5.92)

F
cos(ϕ̂Sh

−ϕq)
LU,T (qT , j⊥) = C01T

[
H1,qh̃

⊥(1)
1L S̄globalS̄cs

]
, (5.93)

F
cos(2ϕ̂h−ϕq−ϕ̂Sh)
LU,T (qT , j⊥) = C21T

[
H⊥1T,qh̃⊥(1)1L S̄globalS̄cs

]
, (5.94)

F
sin(ϕ̂h−ϕ̂Sh)
LL,T (qT , j⊥) = C10L

[
D⊥1T,qg̃1LS̄globalS̄cs

]
, (5.95)

F
cos(ϕSA

−ϕ̂Sh)
TU,T (qT , j⊥) = C00T

[
H1,qh̃1S̄globalS̄cs

]
, (5.96)

F
cos(2ϕ̂h−ϕ̂Sh

−ϕSA)
TU,T (qT , j⊥) = C10T

[
H⊥1T,qh̃1S̄globalS̄cs

]
, (5.97)

F
sin(ϕ̂h−ϕ̂Sh) sin(ϕq−ϕSA)
TU,T (qT , j⊥) = C110

[
D⊥1T,qf̃⊥(1)1T S̄globalS̄cs

]
, (5.98)

F
cos(ϕ̂h−ϕ̂Sh) cos(ϕq−ϕSA)
TU,T (qT , j⊥) = −C110

[
G1T,qg̃

(1)
1T S̄globalS̄cs

]
, (5.99)

F
cos(2ϕq−ϕ̂Sh

−ϕSA)
TU,T (qT , j⊥) = C02T

[
H1,qh̃

⊥(2)
1T S̄globalS̄cs

]
, (5.100)

F
cos(2ϕh−ϕ̂Sh

+2ϕq−ϕSA)
TU,T (qT , j⊥) = C12T

[
H⊥1T,qh̃⊥(2)1T S̄globalS̄cs

]
, (5.101)

F
cos(ϕ̂h−ϕ̂Sh) sin(ϕSA

−ϕq)
TL,T (qT , j⊥) = C11L

[
G1T,qf̃

⊥(1)
1T S̄globalS̄cs

]
, (5.102)

F
sin(ϕ̂h−ϕ̂Sh) cos(ϕSA

−ϕq)
TL,T (qT , j⊥) = C11L

[
D⊥1T,qg̃(1)1T S̄globalS̄cs

]
, (5.103)

where TMDJFFs found in the above equations can also be simplified in terms of TMDFFs and

collinear-soft function in the region j⊥ ≪ pTR.

5.2.4 Example 1: Boer-Mulders correlation with Collins function

In this section, we demonstrate the application of this process in constraining TMD functions

through a new phenomenological study as an example. The azimuthal modulation under investiga-

tion is denoted as A
cos(ϕq−ϕ̂h)
UU,U , which depends on the azimuthal angles ϕq and ϕ̂h. This modulation

allows us to study the Boer-Mulders TMDPDFs h⊥1 and the Collins TMDFFs H⊥1 .

Previously, the well-known Collins asymmetry for hadrons in a jet, resulting from the col-

lisions between an unpolarized electron and a transversely polarized proton, and represented as
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Figure 5.5: The horizontal (j⊥-dependent) and vertical (qT -dependent) slices of A
cos(ϕq−ϕ̂h)
UU,U for

unpolarized π± in jet production with electrons in unpolarized ep collisions are depicted. The

left panel shows the variation as a function of the transverse momentum j⊥, with fixed values of

qT = 1.0 GeV and 0.5 GeV for π±. The right panel illustrates the dependence on the jet imbalance

qT , while j⊥ is fixed at 1.0 GeV and 0.5 GeV for π±, respectively. These results are obtained

using EIC (Electron-Ion Collider) kinematics with a center-of-mass energy of
√
s = 89 GeV, jet

radius R = 0.6, inelasticity y in the range [0.1, 0.9], Q2 > 10 GeV2, Bjorken-x within the interval

[0.15, 0.20], and an average momentum fraction of ⟨zh⟩ = 0.3.
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a sin
(
ϕSA

− ϕ̂h

)
modulation in eq. (5.37), has been investigated [AKP20]. In this section, we

conduct a new phenomenological study, focusing on the azimuthal modulation cos
(
ϕq − ϕ̂h

)
in

eq. (5.37). This azimuthal dependence arises in the distribution of unpolarized hadrons in colli-

sions involving unpolarized electrons and protons. The relevant structure function, F
cos(ϕq−ϕ̂h)
UU,U ,

probes the Boer-Mulders function h⊥1 in the unpolarized proton, coupled with the Collins fragmen-

tation function H⊥1 . The advantage of this asymmetry is that it does not require any polarization

of either the beams or the final-state hadron, making it accessible even to the HERA experiment.

Therefore, we present numerical results for both HERA and EIC kinematics.

To proceed, we define the new azimuthal asymmetry by normalizing the structure function

F
cos(ϕq−ϕ̂h)
UU,U with respect to the unpolarized and azimuthal-independent structure function FUU,U ,

as follows:

A
cos(ϕq−ϕ̂h)
UU,U =

F
cos(ϕq−ϕ̂h)
UU,U

FUU,U
. (5.104)

Namely the azimuthal asymmetry is defined as the ratio of two structure functions: the denominator

FUU,U and the numerator F
cos(ϕq−ϕ̂h)
UU,U in eq. (5.37). The factorization formula and the parametriza-

tion of the unpolarized Transverse Momentum Dependent (TMD) parton distribution functions

(PDFs) for the denominator FUU,U were presented in eq. (5.39) and discussed subsequently. On

the other hand, the structure function F
cos(ϕq−ϕ̂h)
UU,U depend on the Boer-Mulders TMDPDF h⊥1 and

the Collins Transverse Momentum Dependent Fragmentation Function (TMDJFF) H⊥1 .

The Boer-Mulders function describes the distribution of transversely polarized quarks inside

an unpolarized proton. When such a transversely polarized quark scatters with an unpolarized

electron, it undergoes transverse spin transfer, resulting in a transversely polarized quark initiating

a jet with a distribution of unpolarized hadrons measured inside the jet. On the other hand, the

Collins function describes the correlation of a transversely polarized quark fragmenting into an

unpolarized hadron. Thus, the structure function F
cos(ϕq−ϕ̂h)
UU,U is related to the Collins function.

The factorization formula for F
cos(ϕq−ϕ̂h)
UU,U is given in eq. (5.73), and for convenience, it is
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explicitly expressed here as follows:

F
cos(ϕq−ϕ̂h)
UU,U =σ̂T H(Q, µ)

∑
q

e2q
j⊥

zhMh

H
⊥h/q
1 (zh, j

2
⊥, µ, ζJ)

×M

∫
b2 db

2π
J1(qT b)x h̃

⊥ q(1)
1 (x, b2, µ, ζ)S̄global(b

2, µ)S̄cs(b
2, R, µ) , (5.105)

The transverse spin-transfer cross section σ̂T is given by eq. (5.71). To establish the relationship

between the TMDJFF H⊥,h/q1 and the Collins TMDFF H⊥,h/q1 , we have followed the same proce-

dure as we did for the case of the unpolarized TMDJFF Dh/q
1 from eq. (5.40) to eq. (5.44).

It is important to emphasize that F
cos(ϕq−ϕ̂h)
UU,U is differential in both qT and j⊥, enabling us to

separately constrain the Boer-Mulders function h̃⊥1 and the Collins function H⊥,h/q1 . This charac-

teristic is evident in eq. (5.105), where all the qT -dependence is contained in the Fourier transform

b-integral, while the j⊥-dependence is outside this integration. This physical distinction is ex-

pected since qT and j⊥ are measured with respect to two different directions, namely the beam

direction and the jet direction, respectively. This advantageous feature contrasts with the usual

TMD measurements, such as in Drell-Yan production, where all transverse momenta are measured

with respect to the beam direction.

For the phenomenology in the subsequent analysis, we employ the Collins TMDFFs extracted

from [KPS16], which possess proper TMD evolution. However, to proceed, we still require the

parametrization for the Boer-Mulders function h⊥1 . For the numerical studies below, we adopt the

Boer-Mulder functions extracted from [BMP10], which are based on the usual Gaussian model.

Subsequently, we establish a parametrization for h̃⊥,q(1)1 (x, b2, µ, ζ) with TMD evolution:

h̃
⊥ q(1)
1 (x, b2, µ, ζ) = 2πh

⊥ q(1)
1 (x, µb∗) exp

[
−Spert (µ, µb∗)− S

h⊥1
NP (x, b,Q0, ζ)

]
, (5.106)

where the collinear function h⊥ q(1)1 (x, µb∗) is constructed in the Gaussian model from [BMP10]

via

h
⊥ q(1)
1 (x) =

∫
d2kT

k2T
2M2

h⊥ q1 (x, k2T ) . (5.107)

On the other hand, we have the non-perturbative Sudakov factor Sh
⊥
1

NP given as

S
h⊥1
NP (x, b,Q0, ζ) =

g2
2
ln

√
ζ

Q0

ln
b

b∗
+ g

h⊥1
1 b2 . (5.108)
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Here gh
⊥
1

1 is again related to the intrinsic Gaussian width for the TMDPDF h⊥1 in the transverse

momentum space

g
h⊥1
1 =

⟨k2T ⟩h⊥1
4

= 0.036 GeV 2 , (5.109)

where we used ⟨k2T ⟩h⊥1 =
M2

1 ⟨k2T ⟩
M2

1+⟨k2T ⟩
with ⟨k2T ⟩ = 0.25 GeV2 and M2

1 = 0.34 GeV2 from [BMP10].
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Figure 5.6: Numerical results of A
cos(ϕq−ϕ̂h)
UU,U as a function of hadron momentum fraction zh for

unpolarized π± in jet production with electron in unpolarized ep collision predicted for HERA

using three different bins of x: [0.05, 0.1], [0.15, 0.2], and [0.3, 0.8]. The solid (dashed) curves are

the calculations with (without) TMD evolution. We apply the center-of-mass energy
√
s = 320

GeV of HERA kinematics, jet radius R = 1.0, Q2 > 150 GeV2, inelasticity y in [0.2, 0.7] with

transverse momentum imbalance qT and final hadron transverse momentum in jet are both smaller

than 1.5 GeV.

The azimuthal asymmetry A
cos(ϕq−ϕ̂h)
UU,U involves only unpolarized proton and electron beams,

making it suitable for study in the HERA experiment at DESY. We present numerical results for

both HERA and future Electron-Ion Collider (EIC) kinematics. In fig. 5.6, we plot the azimuthal

asymmetry A
cos(ϕq−ϕ̂h)
UU,U for unpolarized π± production inside a jet with a radius R = 1 using

HERA kinematics [Arr21]. Specifically, we choose an electron-proton center-of-mass energy of
√
s = 320 GeV and apply the cuts Q2 > 150 GeV2 and 0.2 < y < 0.7. Furthermore, we integrate

over the hadron transverse momentum j⊥ and the imbalance qT with 0 < j⊥ < 1.5 GeV and
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0 < qT < 1.5 GeV. Our analysis is performed as a function of the hadron momentum fraction zh

using three different bins of x: [0.05, 0.1], [0.15, 0.2], and [0.3, 0.8].

It is important to note that the cuts on Q2, y, and x are chosen to constrain the jet pT directly,

keeping us in the TMD factorization regime discussed above. The numerical results are presented

with and without TMD evolution between scales, represented by solid and dashed lines in the fig-

ures, respectively. Without TMD evolution, the azimuthal correlations are assumed to be purely

Gaussian, as shown by the dashed lines. We find that the azimuthal asymmetry is negative for

π+ production inside the jet and positive for π− production inside the jet, with a magnitude of up

to around 1% for HERA when TMD evolution is considered. However, without TMD evolution,

the size of the azimuthal asymmetry can be much larger, reaching around ∼ 5%. This is consis-

tent with the expectation that TMD evolution suppresses the asymmetry as radiation broadens the

distribution. Thus, the azimuthal asymmetry A
cos(ϕq−ϕ̂h)
UU,U serves a dual purpose. On one hand, it

allows us to extract information about the Boer-Mulders TMDPDFs and Collins TMDFFs. On the

other hand, this asymmetry provides valuable constraints for the TMD evolution of these TMD

functions.

We also present the same asymmetry using EIC kinematics with a jet radius of R = 0.6 in

fig. 5.7. The asymmetry is shown as a function of zh in three different bins of x: [0.05, 0.1],

[0.15, 0.2], and [0.3, 0.8]. For these calculations, we use a center-of-mass energy of
√
s = 89 GeV

and apply the following cuts: Q2 > 10 GeV2, 0.1 < y < 0.9, and 0 < j⊥, , qT < 1.5 GeV. The az-

imuthal asymmetry exhibits similar trends as with HERA kinematics, but with larger magnitudes,

i.e., ∼ 2−3% (5−10%) with (without) TMD evolution, in comparison to the asymmetry expected

with HERA kinematics. These findings indicate that experimental measurements of A
cos(ϕq−ϕ̂h)
UU,U at

EIC could be quite promising and can be used to constrain TMD evolution for Boer-Mulders and

Collins functions. For the remainder of the paper, we will only present the numerical results with

TMD evolution.

Alternatively, instead of integrating over qT and j⊥, we can create plots that are simultaneously

differential in qT and j⊥. As discussed earlier, this approach is useful as TMDPDFs and TMDFFs

are separately sensitive to qT and j⊥, respectively. For the EIC kinematics with jet radius R = 0.6,

an inelasticity cut of 0.1 < y < 0.9, momentum fraction ⟨zh⟩ = 0.3, and Q2 > 10 GeV2, we
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Figure 5.7: Numerical results of A
cos(ϕq−ϕ̂h)
UU,U as a function of hadron momentum fraction zh for

unpolarized π± in jet production with electron in unpolarized ep collision predicted for EIC using

three different bins of x: [0.05, 0.1], [0.15, 0.2], and [0.3, 0.8]. The solid (dashed) curves are the

calculations with (without) TMD evolution. We apply the center-of-mass energy
√
s = 89 GeV of

EIC kinematics, jet radius R = 0.6, Q2 > 10 GeV2, inelasticity y in [0.1, 0.9] and both transverse

momentum imbalance qT and final hadron transverse momentum in jet smaller than 1.5 GeV.

generate three-dimensional and contour plots of the azimuthal asymmetry A
cos(ϕq−ϕ̂h)
UU,U in fig. 5.8

and5.9. To gain better insights into the unpolarized and azimuthal-dependent structure function, we

present the three-dimensional and contour plots of FUU,U , F
cos(ϕq−ϕ̂h)
UU,U , and their ratio A

cos(ϕq−ϕ̂h)
UU,U

in these figures. In the first row of both figures, we observe the Sudakov peak from the unpolarized

TMDPDF and TMDFF for constant j⊥ and qT slices, respectively. In the second row, the shape of

the constant j⊥ slices, i.e., the qT -dependence at a constant j⊥, is determined by the Boer-Mulders

function. On the other hand, the shape of the constant qT slices, i.e., the j⊥-dependence at a

constant qT , is determined by the Collins function. Finally, the ratio of these plots, which defines

the asymmetry, is given in the third row. We find that the spin asymmetry for π+ production inside

the jet tends to be negative, around ∼ 1%, while for π− production inside the jet, it is positive with

a magnitude of approximately ∼ 3%.

To give a more straightforward interpretation, in fig. 5.5 we show the horizontal (j⊥-dependent)
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Figure 5.8: FUU,U (first row), F
cos(ϕq−ϕ̂h)
UU,U (second row) and A

cos(ϕq−ϕ̂h)
UU,U (third row) as a function

of jet imbalance qT and j⊥ for unpolarized π+ in jet production with electron in unpolarized ep

collision with EIC kinematics, where we have applied
√
s = 89 GeV, jet radius R = 0.6, inelastic-

ity y in range [0.1, 0.9], Q2 > 10 GeV2, Bjorken-x in [0.15, 0.20] and average momentum fraction

⟨zh⟩ = 0.3. Left column: Three dimensional plots of the structure functions and their ratio in qT

and j⊥. Right column: Contour plots of the structure functions and their ratio.
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Figure 5.9: FUU,U (first row), F
cos(ϕq−ϕ̂h)
UU,U (second row) and A

cos(ϕq−ϕ̂h)
UU,U (third row) as a function

of jet imbalance qT and j⊥ for unpolarized π− in jet production with electron in unpolarized ep

collision with EIC kinematics, where we have applied
√
s = 89 GeV, jet radius R = 0.6, inelastic-

ity y in range [0.1, 0.9], Q2 > 10 GeV2, Bjorken-x in [0.15, 0.20] and average momentum fraction

⟨zh⟩ = 0.3. Left column: Three dimensional plots of the structure functions and their ratio in qT

and j⊥. Right column: Contour plots of the structure functions and their ratio.
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slices for qT = 1.0 GeV (solid curves) and qT = 0.5 GeV (dashed curves) of the third row of

fig. 5.8 and 5.9 in the left plot with blue curves representing π+ and red curves representing π−

productions in jet. As for the right plot of fig. 5.5, we provide the vertical (qT -dependent) slices

for j⊥ = 1.0 GeV (solid curves) and j⊥ = 0.5 GeV (dashed curves) of the third row of fig. 5.8 and

5.9 with blue curves representing π+ and red curves representing π− productions in jet. With the

reasonable asymmetry of order negative ∼ 1% for π+ and positive ∼ 3% for π− with the TMD

evolution turned on, this is a promising observable at the EIC to study the Boer-Mulders functions

and Collins fragmentation functions.

5.2.5 Example 2: Λ transverse polarization inside the jet

As an example of application of studying the back-to-back electron-jet production with a polar-

ized hadron inside the jet, we study transverse spin asymmetry of a Λ particle inside the jet,

A
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T , which arises from the structure function F

sin(ϕ̂Λ−ϕ̂SΛ)
UU,T . The spin asymmetry is de-

fined as

A
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T =

F
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T

FUU,U
. (5.110)

The asymmetry can be measured in the unpolarized electron-proton collisions by observing the

distribution of transversely polarized Λs inside the jet. The Λ transverse spin vector SΛ⊥ and the

transverse momentum j⊥ with respect to the jet axis can correlate with each other, and leads to

the sin
(
ϕ̂Λ − ϕ̂SΛ

)
correlation between their azimuthal angles. In practice, this is the mechanism

which can describe the transverse polarization of Λ particles inside the jet. As can be seen from

eq. (5.88), the structure function F
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T depends on the unpolarized TMDPDF f q1 (x, k

2
T )

and TMDJFF D⊥ Λ/q
1T (zΛ, j

2
⊥). The TMDJFF D⊥ Λ/q

1T (zΛ, j
2
⊥) describes distribution of transversely

polarized Λ inside the jet initiated by an unpolarized quark. This is reminiscent of the polariz-

img TMDFF D⊥ Λ/q
1T (zΛ, j

2
⊥), which describes distribution of transversely polarized Λ fragmented

from an unpolarized quark. For this reason, we will also refer to the TMDJFF D⊥ Λ/q
1T (zΛ, j

2
⊥) as

polarizing TMDJFF.

The factorization formula of the denominator FUU,U was presented in eq. (5.39), which is ex-

pressed in terms of the unpolarized TMDPDF and TMDFF, and was extensively discussed there.
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On the other hand, the factorization formula for F
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T is given in eq. (5.88), which is ex-

plicitly expressed as

F
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T =σ̂0H(Q, µ)

∑
q

e2q
j⊥

zhMh

D
⊥Λ/q
1T (zΛ, j

2
⊥, µ, ζJ)

×
∫
b db

2π
J0(qT b)x f̃

q
1 (x, b

2, µ, ζ)S̄global(b
2, µ)S̄cs(b

2, R, µ) , (5.111)

where we also used eq. (4.170) to express the polarizing TMDJFF D⊥Λ/q
1T in terms of polarizing

TMDFF D
⊥Λ/q
1T . The derivation is again similar to that for the case of the unpolarized TMDJFF

Dh/q
1 and the corresponding unpolarized TMDFF Dh/q

1 , as shown from eq. (5.40) to eq. (5.44).

We perform a numerical analysis to make predictions for the transverse polarization of Λ inside

the jet in back-to-back electron-jet production at the EIC. To achieve this, we incorporate TMD

evolution into the unpolarized TMDFF DΛ/q
1 and the polarizing TMDFF D⊥,Λ/q1T , which were pre-

viously extracted in [CKT20]. The extraction of the polarizing TMDFF D
⊥,Λ/q
1T in [CKT20] is

based on a Gaussian model, and we extend the parametrization to include TMD evolution. This

is done using data from the recent measurement of back-to-back Λ and a light hadron production

in e+e− collisions, e+e− → Λ + h + X , conducted by the Belle Collaboration [Gua19]. With

these modifications, we obtain the following expression for D⊥,Λ/q1T , which is required in the TMD

factorization formula in eq. (5.111):

D
⊥Λ/q
1T (zΛ, j

2
⊥, µ, ζJ) =

∫
b2 db

2π

(
z2ΛM

2
Λ

j⊥

)
J1

(
j⊥b

zΛ

)
D̃
⊥(1) Λ/q
1T (zΛ, b

2, µ, ζJ) , (5.112)

and D̃⊥(1) Λ/q1T on the right-hand side takes the following form

D̃
⊥(1) Λ/q
1T (zΛ, b

2, µ, ζJ) =
⟨M2

D⟩
2z5ΛM

2
Λ

Nq(zΛ)D
Λ/q
1 (zΛ, µb∗)

× exp
[
−Spert (µ, µb∗)− S

D⊥
1T

NP (zΛ, b, Q0, ζJ)
]
, (5.113)

where ⟨M2
D⟩ = 0.118 GeV2 and Nq(zΛ) = Nqz

αq

Λ (1− zΛ)
βq (αq+βq)

(αq+βq)

α
αq
q β

βq
q

with parameters Nq, αq

and βq determined in [CKT20]. The non-perturbative Sudakov factor SD
⊥
1T

NP is given by

S
D⊥

1T
NP (zΛ, b, Q0, ζJ) =

g2
2
ln

√
ζJ
Q0

ln
b

b∗
+ g

D⊥
1T

1

b2

z2Λ
, (5.114)

with the parameter gD
⊥
1T

1 = ⟨M2
D⟩/4 = 0.0295 GeV2. We similarly include TMD evolution to the

Gaussian model extraction of the unpolarized Lambda TMDFF of [CKT20] to arrive at the same
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Figure 5.10: A
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T as a function of jet imbalance qT and j⊥ for transversely polarized Λ

in jet production with electron in unpolarized ep collision with EIC kinematics, where we have

applied
√
s = 89 GeV, jet radius R = 0.6, inelasticity y in range [0.1, 0.9], Q2 > 10 GeV2, jet

transverse momentum pT in range [15, 20] GeV and average momentum fraction ⟨zΛ⟩ = 0.3. Left:

Three-dimensional plot of the spin asymmetry in qT and j⊥. Right: Contour plot of the same

quantity.

form as eq. (5.45) and eq. (5.48), except that we use the AKK08 parametrizations [AKK08] for the

collinear q → Λ FFs DΛ/q
1 (zΛ, µb∗).

Let’s make some predictions for the transverse polarization of Λ at the future EIC. In fig. 5.10,

we present the asymmetry A
sin(ϕ̂Λ−ϕ̂Λ)
UU,T as a function of both the imbalance qT and the transverse

momentum j⊥, using EIC kinematics. For this analysis, we set the center-of-mass energy to
√
s =

89 GeV, and integrate over the inelasticity y and Bjorken x in the ranges 0.1 < y < 0.9 and

0.15 < x < 0.20, respectively.

The asymmetry in eq. (5.110) depends on the unpolarized TMDPDF f1, which results in con-

stant values in constant j⊥ slices, as expected. Since the dependence on TMDPDFs cancels in

the ratio, this asymmetry is particularly useful for extracting the polarizing TMDFF D⊥,Λ/q1T . This

advantage becomes apparent when comparing it to standard SIDIS measurements where the polar-

izing TMDFF D⊥,Λ/q1T would still be convolved with the unpolarized TMDPDF f1.

Additionally, in fig. 5.11, we provide horizontal slices of the contour plots A
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T shown
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Figure 5.11: Horizontal slices of A
sin(ϕ̂Λ−ϕ̂SΛ)
UU,T in fig. 5.10 as a function of transverse momentum

j⊥ for transversely polarized Λ in jet production with electron in unpolarized ep collision. We have

jet transverse momentum pT in range [15, 20] GeV and average momentum fraction ⟨zΛ⟩ = 0.3.

Left panel: EIC kinematics, we have applied
√
s = 89 GeV, jet radius R = 0.6, inelasticity y in

range [0.1, 0.9],Q2 > 10 GeV2. Right panel: HERA kinematics, where we have applied
√
s = 320

GeV, jet radius R = 1.0, inelasticity y in range [0.2, 0.7], Q2 > 150 GeV2.

in fig. 5.10, focusing on the variation with transverse momentum j⊥. The left panel represents the

EIC kinematics, while the right panel corresponds to the HERA kinematics. For the EIC case, as

j⊥ increases, the asymmetry rises up to 3% at j⊥ = 0.4 GeV and then gradually decreases to ap-

proximately 2.5%, indicating the feasibility of measurements at the future EIC. On the other hand,

for the HERA kinematics, the spin asymmetry is smaller, approximately ∼ 1%, and it remains

hopefully measurable.
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Part II

Quantum Simulation for the QCD Phase

Diagram
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CHAPTER 6

Quantum Computing algorithms for studying QCD

The application of quantum computing in QCD is a promising area of research that

may lead to significant breakthroughs in our understanding of fundamental physics. In

this chapter, we illustrate how one can apply quantum algorithms to study chiral phase

diagram and chirality imbalance of a low energy model of QCD, which offers a unique

perspective on studying QCD phase transition and other thermal behaviors.

6.1 Introduction

Quantum computing is an emerging field that deals with the study and development of computer

technology based on quantum mechanics. Unlike classical computing, which uses classical bits to

store and manipulate information, quantum computing uses quantum bits (qubits), which can exist

in multiple states simultaneously, enabling more efficient and powerful computation.

A range of quantum computing applications have arisen in high-energy particle and nuclear

physics in recent years [Pre18, JLP12a, KKR17, Pre19, KS19a, DMH18, KDM18a, RLC20, KSS20a,

RB20, CGH19, CDA19, NPJ21, MTV20a, WNH20a, HWK20, ASY20, SLS20a, LX20, KKG22,

KK20a, KS20a, DMG21, DRS21, BMS21]. In this chapter, we will provide a new approach of

studying and understanding QCD, especially the QCD phase diagram using quantum algorithms.

It is well known that quantum computers can in principle simulate the time evolution of quan-

tum field theories such as QCD and provide deeper insights into the behavior of quarks and gluons

and help us understand the properties of strongly interacting matter at extreme temperatures and
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densities [JLP12b]. In 2012, Jordan, Lee, and Preskill developed a quantum algorithm to compute

scattering amplitudes for scalar relativistic quantum field theory with self-interactions (ϕ4 the-

ory) [JLP12b, JLP14b]. Since then, quantum simulations for QCD and nuclear physics, in general,

have received a lot of attention, especially in recent years [LLY20a, MTV20b, PCA21, EER21,

LGL22, SLS20b, DMM21a, JLM22, WNH20b, KJK21]. It is believed that quantum computing

has the potential to revolutionize the study of QCD by enabling simulations of larger systems than

classical computers can handle.

More specifically, here we focus on quantum simulation of chiral phase transition, which is

a phenomenon where the chirality of particles is imbalanced due to temperature or density. The

studies presented in this thesis include quantum simulation of chiral phase transitions and studying

chirality imbalance with quantum algorithms for a low energy model of QCD, the Nambu-Jona-

Lasinio (NJL) model in 1+1 dimensions. These studies have potential implications for future

high-energy experiments and the development of new theoretical frameworks in QCD.

6.2 Preliminaries of quantum computation

The basic unit of information in a quantum computer is the qubit, which can exist in a superposition

of two states, typically denoted as |0⟩ and |1⟩ as depicted in fig. 6.1 shown on a bloch sphere. This

means that a qubit can exist in both states simultaneously, with a probability of being in each

state given by the amplitude of the corresponding state vector. Furthermore, two or more qubits

can be entangled, which means that the state of one qubit is dependent on the state of the other,

even if they are physically separated. This property of entanglement allows quantum computers to

perform certain tasks exponentially faster than classical computers.

In the rest of this subsection, we introduce the four main postulates of quantum mechanics

related to Quantum Computing [NC00]. All postulates concern closed quantum systems (i.e.,

systems isolated from environments) only.
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Figure 6.1: Quantum states |0⟩ and |1⟩ on the bloch sphere. Plot generated from

QISKIT [AAB19b] (IBM).

6.2.1 State space postulate.

The set of all quantum states of a quantum system forms a complex vector space with inner product

structure called the state space H. If the H is finite dimensional state space, it is isomorphic to

some CN , i.e. H ∼= CN . And one may naively take H = CN without loss of generality. Always

we assume N = 2n for some non-negative integer n which is called the number of quantum bits

(qubits). In the Dirac notation, a quantum state |ψ⟩ ∈ CN and its Hermitian conjugate ⟨ψ| can be

expressed in terms of

|ψ⟩ =


ψ0

ψ1

...

ψN−1

 , ⟨ψ| = |ψ⟩† =
(
ψ∗0 ψ∗1 · · · ψ∗N−1

)
. (6.1)

The inner product is thus

⟨ψ|φ⟩ := ⟨ψ, φ⟩ =
∑
i∈[N ]

ψ∗iφi , (6.2)

with [N ] = {0, . . . , N − 1}. Let {|i⟩} be the standard basis of CN . The i-th entry of ψ can be

written as an inner product ψi = ⟨i|ψ⟩. Then |ψ⟩⟨φ| should be interpreted as an outer product,

with (i, j)-th matrix element given by

⟨i|(|ψ⟩⟨φ|)|j⟩ = ⟨i|ψ⟩⟨φ|j⟩ = ψiφ̄j (6.3)
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Two state vectors |ψ⟩ and c|ψ⟩ for some 0 ̸= c ∈ C always denote to the same physical state.

In other words, the complex scalar c has no observable effects. Therefore, for simplicity, we can

always assume that |ψ⟩ is normalized to be a unit vector, meaning ⟨ψ|ψ⟩ = 1.

Sometimes, for convenience, we may prefer to work with unnormalized states, denoted by ψ

without the ket notation |·⟩. However, when considering normalized state vectors, the complex

number c = eiθ, where θ ∈ [0, 2π), is referred to as the global phase factor.

As an example, one can define in a single qubit system corresponds to a state space H ∼= C2

that

|0⟩ =

 1

0

 , |1⟩ =

 0

1

 . (6.4)

Since the state space of the spin- 1/2 system is also isomorphic to C2, this is also called the single

spin system, where |0⟩, |1⟩ are referred to as the spin-up and spin-down state, respectively. A

general state vector in H takes the form

|ψ⟩ = a|0⟩+ b|1⟩ =

 a

b

 , a, b ∈ C , (6.5)

with the normalization condition |a|2 + |b|2 = 1.

6.2.2 Quantum operator postulate.

The evolution of a quantum state from |ψ⟩ → |ψ′⟩ ∈ CN is always achieved via a unitary operator

U ∈ CN×N , i.e.,

|ψ′⟩ = U |ψ⟩, U †U = IN (6.6)

Here U † is the Hermitian conjugate of a matrix U , and IN is the N -dimensional identity matrix.

When the dimension is apparent, we may also simply write I ≡ IN . In quantum computation, a

unitary matrix is often referred to as a gate.

For example, for a single qubit, the Pauli matrices are

σx = X =

 0 1

1 0

 , σy = Y =

 0 −i

i 0

 , σz = Z =

 1 0

0 −1

 . (6.7)
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Figure 6.2: A few examples of a quantum circuit.

Together with the two-dimensional identity matrix, they form a basis of all linear operators on C2

Some other commonly used single qubit operators include, to name a few:

• Hadamard gate

H =
1√
2

 1 1

1 −1

 . (6.8)

• Phase gate

S =

 1 0

0 i

 . (6.9)

• T gate:

T =

 1 0

0 eiπ/4

 . (6.10)

To avoid notation conflicts, we will use the typewriter font such as H, X for these single-qubit gates

(one common scenario is to distinguish the Hadamard gate H from a Hamiltonian H ). An operator

acting on an n-qubit quantum state space is called an n-qubit operator.

In the quantum circuit language, time flows from the left to right, i.e., the input quantum state

appears on the left, and the quantum operator appears on the right, and each “wire” represents a

qubit as shown in fig. 6.2. Note here |+⟩ = |0⟩+ |1⟩√
2

represents the eigenstate of Pauli-X matrix.

Starting from an initial quantum state |ψ(0)⟩, the quantum state can evolve in time, which gives

a single parameter family of quantum states denoted by {|ψ(t)⟩}. These quantum states are related

to each other via a quantum evolution operator U :

ψ (t2) = U (t2, t1)ψ (t1) , (6.11)

where U (t2, t1) is unitary for any given t1, t2. Here t2 > t1 refers to quantum evolution forward in

ime, t2 < t1 refers to quantum evolution backward in time, and U (t1, t1) = I for any t1.
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The quantum evolution under a time-independent HamiltonianH satisfies the time-independent

Schrödinger equation

i∂t|ψ(t)⟩ = H|ψ(t)⟩ (6.12)

Here H = H† is a Hermitian matrix. The corresponding time evolution operator is

U (t2, t1) = e−iH(t2−t1), ∀t1, t2 (6.13)

In particular, U (t2, t1) = U (t2 − t1, 0). On the other hand, for any unitary matrix U , we can

always find a Hermitian matrix H such hat U = eiH .

6.2.3 Quantum measurement postulate.

Next we shall focus our discussion solely on a specific type of quantum measurements known as

projective measurements, without losing generality. It is worth noting that all quantum measure-

ments, which can be described as positive operator-valued measures (POVMs), can be equivalently

represented using projective measurements in an enlarged Hilbert space through the Naimark dila-

tion theorem.

In a finite-dimensional context, a quantum observable can always be associated with a Hermi-

tian matrix M , which possesses the spectral decomposition as follows:

M =
∑
m

λmPm (6.14)

Here λm ∈ R are the eigenvalues of M , and Pm is the projection operator onto the eigenspace

associated with λm, i.e., P 2
m = Pm.

When a quantum state |ψ⟩ is measured by a quantum observable M , the outcome of the mea-

surement is always an eigenvalue λm, with probability

pm = ⟨ψ |Pm|ψ⟩ (6.15)

After the measurement, the quantum state becomes

|ψ⟩ → Pm|ψ⟩√
pm

(6.16)
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Note that this is not a unitary process! In order to evaluate the expectation value of a quantum

observable M , we first use the resolution of identity:

∑
m

Pm = I (6.17)

This implies the normalization condition,

∑
m

pm =
∑
m

⟨ψ |Pm|ψ⟩ = ⟨ψ|ψ⟩ = 1. (6.18)

Together with pm ≥ 0, we find that {pm} is indeed a probability distribution. The expectation

value of the measurement outcome is

Eψ(M) =
∑
m

λmpm =
∑
m

λm ⟨ψ |Pm|ψ⟩ = ⟨ψ|
(∑

m

λmPm

)
|ψ⟩ = ⟨ψ|M |ψ⟩ (6.19)

6.2.4 Tensor product postulate.

For a quantum state consists of m components with state spaces {Hi}m−1i=0 , the state space is their

tensor products denoted by H = ⊗m−1
i=0 Hi. Let |ψi⟩ be a state vector in Hi, then

|ψ⟩ = |ψ0⟩ ⊗ · · · ⊗ |ψm−1⟩ (6.20)

in H. However, not all quantum states in H can be written in the tensor product form above. Let{∣∣∣e(i)j 〉}
j∈[Ni]

be the basis of Hi, then a general state vector in H takes the form

|ψ⟩ =
∑

j0∈[N0],...,jm−1∈[Nm−1]

ψj0···jm−1

∣∣∣e(0)j0 〉⊗ · · · ⊗
∣∣∣∣e(m)

j
(m−1)
m−1

〉
. (6.21)

Here ψj0···jm−1 ∈ C is an entry of a m-way tensor, and the dimension of H is therefore
∏

i∈[m]Ni.

The state space of n-qubits is H = (C2)
⊗n ∼= C2n , rather than C2n. We also use the notation

|01⟩ ≡ |0, 1⟩ ≡ |0⟩|1⟩ ≡ |0⟩ ⊗ |1⟩,
∣∣0⊗n〉 = |0⟩⊗n (6.22)

Furthermore, x ∈ {0, 1}n is called a classical bit-string, and {|x⟩|x ∈ {0, 1}n} is called the com-

putational basis of C2n .

111



Figure 6.3: The quantum circuit for the CNOT gate

As an example, in a two-qubit system corresponds to a state space H = (C2)
×2 ∼= C4, one can

define the standard basis

|00⟩ =


1

0

0

0

 , |01⟩ =


0

1

0

0

 , |10⟩ =


0

0

1

0

 , |11⟩ =


0

0

0

1

 . (6.23)

The Bell state (also called the EPR pair) is defined to be

|ψ⟩ = 1

2
(|00⟩+ |11⟩) = 1

2


1

0

0

1

 , (6.24)

which cannot be written as any product state |a⟩⊗|b⟩. There are many important quantum operators

on the two-qubit quantum system. One of them is the CNOT gate, with matrix representation

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (6.25)

The quantum circuit for the CNOT gate is shown in fig. 6.3. In other words, when acting on the

standard basis, we have

CNOT



|00⟩ = |00⟩

|01⟩ = |01⟩

|10⟩ = |11⟩

|11⟩ = |10⟩

(6.26)
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This can be compactly written as

CNOT|a⟩|b⟩ = |a⟩|a⊕ b⟩ . (6.27)

Here a⊕ b = (a+ b) mod 2 is the “exclusive or” (XOR) operation.

6.3 Applications in quantum field theory

Noisy Intermediate-Scale Quantum (NISQ) technology has demonstrated its ability to solve com-

plex problems such as real-time dynamics [CTG19, SKP19, ZPH17, al13, FFK20, Fey82, Llo96,

DMM21b, JLM21], relativistic behaviors, many-body systems [WSB04, Maj07, JLP12c, ZCR12,

ZCR13, BBD13, BDM12, Wie13, Wie14, JLP14a, GCM15, MWR14, BMT15, ZCR15, MRS15,

DM16, ZFR17, MMS16, BAM17, GCS17, KSP18, MSA18, ZHJ18, ZUZ18, KDM18b, KS19b,

GMU19, NAB19, MDF20, JLP19, LKL19, KS20b, LL18, KSS20b, ABH19, MTV20c, LLY20b,

CHI20, BTR18, ZTL20, ZTL21], ground state estimations [Aru20, MGG20, KTC19, OM16,

KMT17, Per14, Col18], and finite-temperature properties of various systems [BBM20, TD00b,

PW09, RGE12, TOV11a, YA12, LGL22, ZXY21]. While digital quantum simulations of thermal

physical systems have been studied previously, finite-temperature physics on quantum computers

remains a challenging area with limited understanding [SMT21]. Recently, various algorithms

for imaginary time evolution on quantum computers have been introduced, including the Quan-

tum Imaginary Time Evolution (QITE) algorithm [MST20, MJE19, YEZ19, BMG19, NKM21,

GZB20, YSP21, YPS20], which uses a unitary operation to simulate imaginary time evolution.

QITE has been applied to calculate finite-temperature observables such as energy [SMT21, Vil21],

magnetization in the Transverse Field Ising Model (TFIM) [Vil21], and more. These advancements

open up new opportunities for quantum simulation in various fields, including materials science,

condensed matter physics, and quantum chemistry.

Quantum field theory is the branch of theoretical physics that deals with the study of quantum

mechanics applied to fields, such as the electromagnetic field and the Higgs field. It is the frame-

work used to describe the behavior of subatomic particles, including quarks and leptons. Quantum

field theory plays a crucial role in the study of high-energy physics and hadron physics.
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Quantum computing has the potential to provide significant improvements in the field of quan-

tum field theory, especially in the study of high-energy physics and hadron physics. One area where

quantum computing can be useful is in simulating the behavior of subatomic particles, which is

a computationally intensive task that is currently beyond the reach of classical computers. By

leveraging the power of quantum computing, researchers can simulate larger and more complex

systems, enabling more accurate predictions of the behavior of particles.

Another area where quantum computing can be useful is in solving certain optimization prob-

lems that arise in quantum field theory. For example, the problem of finding the ground state of a

system of interacting particles is an important problem in quantum field theory. This problem can

be reduced to an optimization problem, which can be solved using quantum annealing, a specific

form of quantum computing that is well-suited for solving optimization problems.

In theoretical physics, the complex phase structure of strongly interacting matter, as described

by Quantum Chromodynamics, holds great significance [Fuk08, CdR07, FZL08, XCW15, JLZ11,

ZCJ14, SWJ14]. In the infinite quark limit, the deconfinement phase transition is expected as a re-

sult of spontaneous ZN symmetry breaking, with the transition occurring as a function of tempera-

ture [RB21, HW00]. Alternatively, in the massless quark limit, the chiral phase transition has been

extensively studied and has an order parameter [Raj95, BEF10, Baz19, BFG20, Din19, DLM21].

QCD is dominated by non-perturbative effects at low energies, which makes it challenging to study

the chiral phase transition of strongly interacting matter. Furthermore, other phases of strongly in-

teracting matter are thought to exist, such as the Color-Flavor Locked (CFL) phase, which occupy

the high density, low temperature region of the phase diagram.

In conclusion, quantum computing has the potential to revolutionize many fields of science,

including physics, chemistry, and cryptography. In the field of quantum field theory, quantum

computing can provide significant improvements in the study of high-energy physics and hadron

physics by enabling more accurate predictions of the behavior of subatomic particles and solving

optimization problems. As quantum computing technology continues to evolve, it is likely that we

will see more applications in quantum field theory and other areas of physics.
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6.3.1 Discretization of the Continuous Theory

In order to address the non-perturbative nature of lattice Quantum Chromodynamics, a transforma-

tion is employed to promote all SU(3)-valued gauge fields Aµ(x) to elements in the SU(3) group,

denoted as Uµ(x). This is accomplished through the expression:

Uµ(x) = exp [iagsAµ(x)] , (6.28)

where a and gs correspond to the lattice spacing and the strong coupling constant, respectively.

Throughout the remainder of this document, the focus will primarily be on the treatment of Uµ(x).

To facilitate further analysis, a Wick rotation is performed, resulting in the substitution:

x0 → −ix4 . (6.29)

As a consequence, the metric takes on a Euclidean form:

x2 = xµxµ = x21 + x22 + x23 + x24 , (6.30)

and the weight factor in the path integral becomes real as well,

〈
0
∣∣T {ψ (x1) ψ̄ (x2)

}∣∣ 0〉 = 1

Z

∫
[dψ̄][dψ] [dUµ]ψ (x1) ψ̄ (x2) exp

[
−S

[
Uµ, ψ̄, ψ

]]
. (6.31)

Here the symbol S is still used to denote the Euclidian action.

The fermionic component of Lagrangian Equation eq. (2.1) can also be expressed in a straight-

forward manner as

SF = a3a0
∑
n

ψ̄(n)

(
4∑

µ=1

iγµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)
(6.32)

Consequently, the lattice Dirac matrix D(n | m) can be written as

D(n | m)αi,βj =
4∑

µ=1

i (γµ)αβ
Uµ(n)ijδn+µ̂,m − U−µ(n)ijδn−µ̂,m

2a
+mδαβδijδnm , (6.33)

where we explicitly indicate the lattice sites m and n, Dirac indices α and β, as well as color

indices a and b. However, this naive form of the Dirac matrix exhibits the fermion doubling

problem [NN81], characterized by the presence of unphysical poles. Various well-established
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methods have been developed to resolve this issue, including Wilson fermions [Wil74], Kogut-

Susskind staggered fermions [KS75], and domain wall fermions [Kap92].

After addressing the fermion doubling problem, it becomes advantageous to integrate out the

fermionic degrees of freedom in the path integral by employing Gaussian integration over Grass-

mann numbers. This allows us to obtain a path integral solely in terms of gauge fields. For instance,

the partition function can be written as:

Z =

∫
D[U ] det[D]e−SW [U ] (6.34)

Here, the matrix D represents the Dirac matrix with a chosen method for handling the fermion

doubling problem. The size of the Dirac matrix scales linearly with the lattice size, resulting in a

computational cost significantly higher than that of pure Yang-Mills theory.

With the path integral expressed solely in terms of gauge fields, we can now proceed to numer-

ically evaluate it. Given the high dimensionality of the integral, it is practical to employ Monte

Carlo methods with importance sampling. In the case of thermal calculations without real-time

evolution, the weight factor e−S is always real and positive, enabling it to be interpreted as the

probability distribution function for the configuration of gauge fields. Through Markov chain

Monte Carlo (MCMC) methods, we sample Ns configurations of gauge links across the lattice

according to the distribution function e−S .

Given that S
[
Uµ, ψ̄, ψ

]
is a real valued number, the path integral formulation defines a proba-

bility that can be used in a Monte Carlo algorithm. Samples of Uµ, ψ̄ and ψ are drawn according

to the probability exp
[
−S

[
Uµ, ψ̄, ψ

]]
and the desired quantity ψ (x1) ψ̄ (x2) is measured on these

samples. By taking the average of the values we acquire an approximation of the true correlation

function

⟨O⟩ ≃ 1

n

∑
j

[O]j . (6.35)

with the notation [O]j measured on the j-th sample. According to the strong law of large numbers,

the right-hand side of the expression serves as an unbiased estimator for the true expectation, and

its variance decreases as O(1/n) as the sample size n grows larger.
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6.3.2 Staggered fermions

Staggered fermions are a specific type of fermion discretization used in lattice QCD. They involve

a clever arrangement of fermion fields on the lattice that exploits the taste symmetry to represent

multiple fermion flavors. In staggered fermions, each lattice site is associated with a single fermion

flavor, reducing the computational cost compared to other discretization schemes. This approach

retains chiral symmetry at the level of the lattice action, making staggered fermions particularly

advantageous for large-scale QCD simulations.

The transformation from a Dirac fermion field to a staggered fermion field is achieved through

the process known as rooting or taking the nth root of the fermion determinant. By taking the nth

root, where n is the number of fermion flavors, each flavor of the original Dirac fermion field is

associated with a distinct staggered fermion field. This procedure effectively eliminates unwanted

degrees of freedom known as doublers that arise due to the lattice discretization, resulting in a

reduced number of fermion degrees of freedom. The resulting staggered fermion formulation

retains essential properties of QCD and enables efficient numerical simulations on the lattice grid.

More specifically, the method of staggered fermion fields can be described using the following

steps:

1. The transformation from a Dirac fermion field to a staggered fermion field involves rooting:

Ψ(x) → n
√

det(D)Ψs(x) . (6.36)

Here, Ψ(x) represents the original Dirac fermion field, Ψs(x) denotes the staggered fermion

field, and D represents the fermion operator on the lattice.

2. The staggered fermion fields can be expressed in terms of staggered spinors:

Ψs(x) =
∑
α

χα(x)ηα . (6.37)

In this equation, χα(x) represents the staggered spinor associated with the lattice site x and

flavor α, while ηα denotes the staggered spinor phase factor.
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3. The staggered fermion action, incorporating the hopping and mass terms, can be written as:

S =
∑
x,y,α

χ̄α(x)Dxyχα(y) . (6.38)

Here, χ̄α(x) represents the staggered spinor conjugate, and Dxy represents the staggered

fermion hopping matrix on the lattice.

The rooting transformation reduces the number of fermion degrees of freedom, and the staggered

fermion fields are represented using staggered spinors, enabling the formulation of the staggered

fermion action for lattice QCD simulations.

In summary, staggered fermion fields are primarily employed in lattice QCD simulations as

a discretization scheme for representing fermions on a lattice. They possess taste symmetry and

are computationally efficient. Staggered fermions provide a way to describe multiple fermion fla-

vors on the lattice and retain certain symmetries of the continuum QCD theory. While staggered

fermions are widely used in lattice QCD, they are not directly related to the Jordan-Wigner trans-

formation.

6.3.3 Jordan-Wigner transformation

The Jordan-Wigner transformation [JW28] is a powerful mathematical technique used to establish

a connection between lattice fermions and quantum spin systems. By employing this transfor-

mation, fermion creation and annihilation operators are mapped onto spin operators, enabling the

study of lattice QCD and other quantum field theories through the analogy of condensed matter

systems. This transformation plays a crucial role in bridging different physical systems, allowing

researchers to explore QCD phenomena by leveraging techniques and insights from condensed

matter physics. The Jordan-Wigner transformation provides a valuable tool for investigating the

behavior of lattice fermions and advancing our understanding of fundamental interactions in high-

energy physics.

In practical terms, the Jordan-Wigner transformation involves expressing fermion operators in

terms of spin operators by introducing string operators that keep track of the fermion parity. This

transformation enables the formulation of lattice fermion systems as spin models, which can be
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analyzed using powerful techniques from condensed matter physics. Through the application of

the Jordan-Wigner transformation, researchers gain a deeper understanding of lattice QCD dynam-

ics and can explore various phenomena by drawing analogies to condensed matter systems. This

transformative technique broadens the scope of investigation and facilitates the study of complex

quantum field theories, ultimately contributing to advancements in our understanding of funda-

mental particles and their interactions.

In the Jordan-Wigner transformation, one first maps fermion creation and annihilation opera-

tors onto spin operators:

c†j =
∏
k<j

σzkσ
+
j , cj =

∏
k<j

σzkσ
−
j , (6.39)

where c†j and cj represent the creation and annihilation operators for fermions at lattice site j,

respectively, and σ+
j and σ−j are the spin raising and lowering operators at the corresponding site.

Next, the fermionic number operator can be expressed in terms of spin operators:

nj =
1

2

(
1− σzj

)
, (6.40)

with nj representing the fermionic number operator at site j, and σzj is the spin operator corre-

sponding to the z-component of spin at that site.

Then the fermionic hopping term can be written in terms of spin operators:

c†icj =
1

4
(σxi − iσyi )

(
σxj + iσyj

)
. (6.41)

Here, c†i and cj are the creation and annihilation operators for fermions at lattice sites i and j,

respectively, while σxi , σyi , σxj , and σyj are spin operators corresponding to the x and y components

of spin at the respective sites.

These equations illustrate the mapping of fermion operators to spin operators through the

Jordan-Wigner transformation. By expressing fermionic creation, annihilation, and number opera-

tors in terms of spin operators, researchers can analyze lattice fermion systems using the formalism

of spin models, facilitating the exploration of quantum field theories and condensed matter physics

phenomena.

The Jordan-Wigner transformation establishes a connection between lattice fermions and quan-

tum spin systems. It is a mathematical mapping that enables the representation of fermion operators
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in terms of spin operators. The Jordan-Wigner transformation is used in various areas of theoret-

ical physics, particularly in the study of quantum field theories and condensed matter physics. In

the context of lattice QCD, the Jordan-Wigner transformation is not typically employed directly,

as other discretization schemes, such as staggered fermions, are more commonly utilized.

To discretize a fermion field, a two-step process involving the transformation into staggered

fermion fields and subsequent application of the Jordan-Wigner transformation can be employed.

Initially, the fermion field is transformed into staggered fermion fields using a rooting procedure.

This involves taking the nth root of the fermion determinant, where n corresponds to the number of

fermion flavors. By doing so, each flavor of the original fermion field is associated with a distinct

staggered fermion field, effectively reducing the number of fermion degrees of freedom.

Once the staggered fermion fields are obtained, the Jordan-Wigner transformation is applied to

each of these fields individually. This transformation maps the staggered fermion fields to quantum

spin systems, allowing for the representation of the staggered fermion operators in terms of spin

operators. This enables the study of the fermionic lattice system through the analogy of condensed

matter spin models. By applying the Jordan-Wigner transformation to each staggered fermion

field, researchers can explore the behavior of lattice fermions using the language and techniques

of condensed matter physics, gaining insights into the underlying physics of the system.

6.4 Study QCD chiral phase diagram with Quantum Simulations

6.4.1 QCD phase diagram

The study of the QCD phase diagram has experienced tremendous progress with lattice simu-

lations in the last few years. The phase transition line is typically determined by extrapolating

chiral observables to finite chemical potential µB, and finding the temperature at which the chiral

condensate has an inflection point, or the chiral susceptibility has a peak. The transition tem-

perature as a function of µB can be written as Tc(µB)/Tc(µB = 0) = 1 − κ2 (µB/Tc(µB))
2 −

κ4 (µB/Tc(µB))
4 + · · · . A high-precision result for the crossover temperature Tc(µB = 0) has be-

come available [BFG20, Baz19, BFG20]. Similar coefficients for the extrapolation of the transition
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temperature to finite strangeness, electric charge and isospin chemical potentials were obtained in

Ref. [Baz19]. No sign of criticality is observed from lattice QCD simulations up to µB ≃ 300

MeV [BFG20, Din19]. Future challenges include the extrapolation of the phase transition line to

larger values of chemical potential and more stringent constraints on the location of the critical

point.

Based on lattice QCD calculations, the QGP-hadron gas transition at vanishing net-baryon

density is understood to be a smooth crossover with the transition temperature Tc = 156 ± 1.5

MeV [AEF06]. Model studies indicate a first-order phase boundary at large net-baryon density

(baryon chemical potential µB) [FS13]. If there is a crossover and a first order transition line, they

will be joined at the QCD critical point [SRS98, SRS99, BEK20]. State-of-the-art lattice calcu-

lations further predicted that the chiral crossover region extends into the finite chemical potential

region µB/T ≤ 2 [Baz20], see fig. 6.4. Precise calculations in the higher µB region become more

difficult and experimental measurements are essential to determine if a QCD critical point exists.

6.4.2 Quantum Simulations

In order to study the structure of the QCD chiral phase diagram, which divides the temperature-

chemical potential plane into regions based on the physical properties of strongly interacting matter

or “phases”, researchers typically employ lattice QCD calculations. However, this method has lim-

itations due to the fermion sign problem. At nonzero baryochemical potential, the QCD action is

no longer necessarily real, making the use of a Monte Carlo evaluation of thermal expectation

values based on e−S impossible [RB21, Phi07]. To address this issue, simulations on imaginary

chemical potentials are conducted [FP02, DL03, WLC07, DDL07, CD07, FP08, DS09, MWL10],

and the expectation value of a given observable is expanded in powers of µ/T [AEH02, ADE05,

GG08, Bas08, KKL11]: ⟨O⟩ =
∑

kOk(T )(µ/T )
k, then the coefficients Ok(T ) are evaluated

on the lattice [RB21, ADE05, Phi07]. This approach is limited to a potentially small range of

baryochemical potentials and assumes that the expectation values are analytic in µ [RB21]. This

assumption is unlikely to hold for some observable in the vicinity of a finite-order phase transition.

Despite this obstacle, researchers can use quantum computers to model the lattice system, elimi-
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Figure 6.4: Sketch of the QCD phase diagram, incorporating a conjectured critical end point and

first order transition. The yellow line indicates the region of the phase diagram where lattice QCD

can reliably predict the smooth crossover region of the hadron-QGP transition, up to µB/T ≤ 2.

Figure adapted from [Apr15a].

nating the need for a Monte Carlo analysis by taking advantage of the statistical properties of the

quantum computer. This approach has been suggested by Feynman [Fey82] and has been shown

in [KK20b] to avoid the sign problem.

In the so-called near-term noisy intermediate quantum (NISQ) era [Pre18], directly simulating

QCD is not possible. Instead, we will study chiral phase transition via a low energy model of

QCD, the Nambu-Jona-Lasinio (NJL) model in 1+1 dimension. The NJL model has proven to be

a practical and convenient tool to investigate the QCD chiral phase transition, owing to its ability

to provide insight into the mechanism of chiral symmetry breaking and access to the dynamical

mass [Fuk08, CdR07, LDC15, DLX15, CHS15, DCX13, SYX15, MPA09b, MPA09a, GMC07,

BBH12]. This effective model, tailored for low-energy two-flavor QCD, can also be utilized for

analytical calculations at finite temperature and chemical potential. An even simpler version of the
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NJL model is the Gross-Neveu (GN) model [GN74], a renormalizable and asymptotically free (1+

1)-dimensional theory that is composed of N fermion species interacting via four-fermion contact

interaction, and it exhibits chiral symmetry breaking at low energy by means of the generation of

a nonvanishing chiral condensate ⟨ψ̄ψ⟩.

In our work [CKM22, CKT22], we aim to examine the chiral condensate of the GN model

at finite temperature and chemical potential [Thi20] and compare our findings with quantum sim-

ulations. In particular, we illustrate how the quantum algorithm can be used to study the chiral

phase transition of the GN model in 1+1 dimension. In this section, we provide our study that

leverages a 4-qubit system with each staggered fermion field located in one qubit to simulate the

(1 + 1) dimensional NJL Hamiltonian by implementing single-qubit gates and the CNOT gate via

the Jordan-Wigner transformation [JW28]. This Hamiltonian, when approached through its con-

tinuum limit, corresponds to the NJL model. We will provide detailed quantum simulations in the

next subsections, here let us emphasize the following important points:

• Ultimately, to make contact with the continuum field theory, any such simulation will have

to be performed on a series of increasing lattices, and the result extrapolated to that where

the lattice sites N → ∞ and the lattice spacing a→ 0. Any parameters of the theory present

in the continuum must be suitably matched for this procedure to yield meaningful results.

Standard procedures for how this should be done derived from the lattice QCD community

can be accessed in reputable sources [BBD98, FRG10, Phi21], and for the NJL model in 3+1

dimensions in [Wal03]. In this chapter, we work at fixed lattice size a with a small number

of lattice sites N and we leave the detailed investigation of these issues to future work. In

this regard, our work [CKM22, CKT22] is primarily centered around the formulation and

development of the quantum algorithm to illustrate how this can be done for a system with a

small number of qubits.

• In the community, there has been a lot of important studies that use relatively small number

of qubits, e.g. [Cle20, XGX22, BJN21], which allow further development on the actual

quantum algorithms and directly use it in the current simulations. While its contributions

have yet to yield novel insights into new realms of physics, the concerted efforts in this
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direction have nurtured a fertile ground for the exploration of new research possibilities.

The rest of this subsection is organized as follows: In section 6.4.3, we furnish analytical calcu-

lations to explore the finite temperature behavior of the NJL model with consideration of chemical

potentials. Sec. 6.4.4 provides an overview of the discretization of the field theory on a lattice

and section 6.4.5 shows the quantum algorithm used, namely the QITE algorithm. Subsequently,

we present a comparison between the results obtained by analytical calculations, exact diagonal-

ization, and quantum simulation at various chemical potentials in section 6.4.6, where we find a

remarkable consistency between them.

6.4.3 Investigated model: Nambu-Jona-Lasinio model

This section provides a comprehensive exposition on the Nambu-Jona-Lasinio (NJL) model, fo-

cusing on its phase transition in the context of finite temperature and chemical potential.

The NJL model is governed by a Lagrangian density in (1+ 1)-dimensional Minkowski space,

which takes the form of the following expression: [NJ61b, NJ61c]

LNJL = ψ̄(i/∂ −m)ψ + g
[
(ψ̄ψ)2 + ψ̄iγ5τaψ)

2
]
, (6.42)

where the operator /∂ = γµ∂
µ, the τa are the Pauli matrices in isospin space, m denotes the bare

quark mass, and g is the dimensionless coupling constant. Notably, the gamma matrices γ0, γ1,

and γ5 in (1 + 1) dimensions are given by the following expressions:

γ0 = Z, γ1 = −iY, γ5 = γ0γ1 = −X , (6.43)

where, X , Y , and Z represent the Pauli matrices:

X =

0 1

1 0

 , Y =

0 −i
i 0

 , Z =

1 0

0 −1

 (6.44)

A simplified version of the NJL model is the Gross-Neveu (GN) model [GN74], which is governed

by the following Lagrangian expression:

LGN = ψ̄(i/∂ −m)ψ + g(ψ̄ψ)2 . (6.45)
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One can also include the chiral chemical potential µ5 that simulates the chiral asymmetry between

right- and left-handed quarks coupled with the chirality charge density operator n5 = ψ̄γ0γ5ψ and

obtain:

L =ψ̄(i/∂ −m)ψ + g(ψ̄ψ)2 + µψ̄γ0ψ + µ5ψ̄γ0γ5ψ . (6.46)

We will study the QCD phase diagram at both µ5 = 0 and µ5 ̸= 0 in this section.

6.4.3.1 QCD phase diagram at finite chemical potential

To begin with, we study the dependence on chemical potential and provide an analytical calculation

with zero chiral potential. In the limit where the bare quark mass is zero, the Lagrangian satisfies

a discrete symmetry group known as Z2,L × Z2,R ≡ ±1,±γ5, under which the fields transform by

a left-action, i.e. ψ 7→ G · ψ for any group element G ∈ Z2,L × Z2,R. In this work, we investigate

the chiral phase transition of the Gross-Neveu (GN) model with a non-zero chemical potential µ

[Thi20]:

L = ψ̄(i/∂ −m)ψ + g(ψ̄ψ)2 + µψ̄γ0ψ , (6.47)

This model, which is a simplified version of the Nambu-Jona-Lasinio (NJL) model, has been pre-

viously utilized for studying the chiral phase transition at finite values of both temperature T and

chemical potential µ. For the sake of consistency throughout this section, we will refer to the

Lagrangian in eq. (6.47) as the NJL model.

In order to discern between different phases, we investigate the chiral condensate ⟨ψ̄ψ⟩ in the

vacuum, which is widely recognized as an order parameter [GPY81, NJ61b, MS81, Pol78, FWZ18]

in the chiral limit with zero quark mass. As ψ̄ψ transforms nontrivially under Z2,L × Z2,R, a

nonzero value of ⟨ψ̄ψ⟩ requires spontaneous breaking of this symmetry, thus a transition from

non-vanishing to vanishing values of the condensate indicates a chiral phase transition. Hence,

with non-zero quark mass, the chiral condensate ⟨ψ̄ψ⟩ can be considered as a quasi-order parame-

ter [BIL18].

The transition between the chirally symmetric and broken phases can be examined in the mean

field approximation. This part is widely studied and its results are also well-known in the literature.
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Below, we review the important results in details in order to validate our quantum simulation

results shown in the next section. It is important to emphasize again that the purpose is to illustrate

how specific quantum algorithms can be achieved to simulate the NJL model in 1+1 dimensions

in quantum circuits, and that it is not meant to provide new physics insights. In the mean field

approximation, the quantity ψ̄ψ can be expressed as ψ̄ψ = ⟨ψ̄ψ⟩ + σ [GN74, Wal74], where σ

is a small, real scalar field (“fluctuations”), i.e., |σ/⟨ψ̄ψ⟩| ≪ 1, and ⟨ψ̄ψ⟩ is a constant that is

independent of coordinates. ⟨ψ̄ψ⟩ depends on both the chemical potential µ and the temperature

T . Thus (
ψ̄ψ
)2

=
(
⟨ψ̄ψ⟩+ σ

)2
= ⟨ψ̄ψ⟩2 + 2σ⟨ψ̄ψ⟩+O(σ2)

= ⟨ψ̄ψ⟩2 + 2
(
ψ̄ψ − ⟨ψ̄ψ⟩

)
⟨ψ̄ψ⟩+O(σ2)

= −⟨ψ̄ψ⟩2 + 2ψ̄ψ⟨ψ̄ψ⟩+O(σ2) , (6.48)

and the Lagrangian is expressed as follows:

L = ψ̄(i/∂ −m+ 2g⟨ψ̄ψ⟩+ µγ0)ψ − g⟨ψ̄ψ⟩2 +O(σ2) . (6.49)

By disregarding the terms of order O(σ2), we obtain the Lagrangian LDirac that describes a free

Dirac fermion (subject to finite chemical potential) possessing a mass M = m − 2g⟨ψ̄ψ⟩, along

with a constant potential V = g⟨ψ̄ψ⟩2 = (M − m)2/4g. This yields an efficient, linearized

Lagrangian that reads as follows:

Leff = ψ̄(i/∂ −M + µγ0)ψ − (M −m)2

4g
= LDirac − V , (6.50)

In consequence, the Lagrangian is now an effective one, denoted as Leff , with the small fluctuation

terms represented by O(σ2), and the mass of the fermion fieldM is now a function of the chemical

potential µ and temperature T , namely M =M(µ, T ).

The determination of the chiral condensate ⟨ψ̄ψ⟩, or equivalently the effective mass M , can

be achieved by minimizing the Grand Canonical Potential Ω(µ, T ;M) = −T
L
logZ under the

condition of thermal equilibrium. It is worth noting that in this context, the “volume” refers to a

one-dimensional space that can be represented by a length L. The partition function Z , expressed

in the path integral formulation, is given by [KG06]

Z =

∫
Dψ

∫
Dψ̄ exp

[∫ β

0

dτ

∫
dxLE

]
. (6.51)
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Here Euclidean Lagrangian LE is derived through a transformation of variables to imaginary time,

with τ = it, while the coldness β = 1/T . Notably, the effective Lagrangian (eq. (6.57)) leads to

Leff,E = LDirac,E − V , which implies...

Z =

∫
Dψ

∫
Dψ̄ exp

[∫ β

0

dτ

∫
dxLeff,E

]
=

∫
Dψ

∫
Dψ̄ exp

[∫ β

0

dτ

∫
dx (LDirac,E − V)

]
= e−βLV

∫
Dψ

∫
Dψ̄ exp

[∫ β

0

dτ

∫
dxLDirac,E

]
= e−LV/TZDirac

= e−
L
T
(ΩDirac+V) . (6.52)

Given by the above derivation, one obtains the Grand Canonical Potential Ω = ΩDirac + V , with

ΩDirac representing the Grand Canonical Potential of a free Dirac field of mass M in (1 + 1)

dimensions [KG06, Bub05]:

ΩDirac(µ, T ;M) = − 2

π

∫ ∞
0

dk
[
ωk + T log

(
1 + e−β(ωk+µ)

)
+ T log

(
1 + e−β(ωk−µ))] . (6.53)

Here ωk =
√
k2 +M2. Next, by defining the potential V = (M −m)2/4g, one has

Ω(µ, T ;M) =
(M −m)2

4g
− 2

π

∫ ∞
0

dk
[
ωk + T log

(
1 + e−β(ωk+µ)

)
+ T log

(
1 + e−β(ωk−µ))] .

(6.54)

This quantity displays a divergent behavior, which requires the implementation of a regularization

procedure. To facilitate a comparative analysis with the Lattice model detailed in section 6.4.4

below, we naturally introduce a hard cutoff Λ = π/a for the upper bound in the momentum

integration, where a represents the lattice spacing. With this explicit finite cutoff introduced, we

left the results un-removed by renormalization and dependent on the lattice spacing. As a result,

one can compute the effective mass M for fixed values of µ and T by minimizing the Grand

Canonical Potential Ω(µ, T ;M) given by eq. (6.54) with respect to M . Subsequently, the chiral

condensate can be obtained from ⟨ψ̄ψ⟩ = (m − M)/2g. For our simulation, we adopted the

parameter valuesm = 100 MeV and g = a = 1 MeV−1, which are well-suited for our calculations.

In particular, we analyzed µ and T over the interval [0 MeV, 300MeV] and present the resulting

mass surface in fig. 6.5 below. The findings indicate that when µ2 + T 2 is sufficiently low, a
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Figure 6.5: The mass of the fermion field, expressed as an effective quantity M , is depicted as a

three-dimensional surface that varies with the baryochemical potential µ and temperature T . In

the accompanying contour plot, the contours of constant M are shown to provide a more detailed

representation of the mass landscape.

dynamically induced mass of approximately ∆m ≡ M −m = 4 MeV emerges in addition to the

mass m = 100 MeV present in the Lagrangian. Importantly, M approaches m asymptotically, as

expected.

It is worth mentioning that historically, the GN model has primarily been studied due to its

property of being asymptotically free [GN74]. Therefore, at extremely high temperatures or chem-

ical potentials, it is anticipated that a free field theory will be restored.

6.4.3.2 Study Chirality Imbalance with Quantum Simulations

Another very interesting feature for phase diagram is the significance of a chiral chemical poten-

tial µ5. The existence of µ5 has shown important consequences at the so-called chiral magnetic

effect [KZ07, KMW08, FKW08] in heavy ion collisions, which has been under intensive exper-

imental investigation [Abd22a, ZJ22]. In this section, we focus on studying the effects of phase

transition at finite T , µ, and µ5.
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The examination of the chiral chemical potential µ5 effects on the QCD chiral phase transition

involves studying the QCD phase diagram and the behavior of the total chirality charge N5 under

the influence of an external magnetic field at finite temperature T and baryon chemical potential µ.

To capture the effects of topological charge changing transitions, a finite chiral chemical potential

µ5 is introduced. In the high temperature/density regime, a chirality charge may arise due to

fermion helicity flipping during the deconfinement phase transition from hadronic matter to quark-

gluon plasma. Experimental observations indicate that the chirality charge reaches an equilibrium

value shortly after a heavy-ion collision, making it essential to explore the chiral imbalance in the

QCD phase diagrams for an accurate description of heavy-ion collisions.

The Nambu-Jona-Lasinio (NJL) model has been a prominent choice for studying the chiral

magnetic effect and the QCD chiral phase transition [NJ61b, NJ61c, Fuk08, CdR07, LDC15,

DLX15, CHS15, DCX13, SYX15, MPA09b, MPA09a, GMC07, BBH12]. As an effective model

for QCD, it allows for analytical calculations at finite temperature T , chemical potentials µ, and

µ5.

6.4.3.3 Effective mass

Next we present theoretical calculations for the vacuum chiral condensate ⟨ψ̄ψ⟩ at various temper-

atures T , chemical potentials µ, and µ5. The chiral condensate ⟨ψ̄ψ⟩, which is a well-known order

parameter [GPY81, NJ61a, MS81, Pol78, FWZ18] for the chiral phase transition in the chiral limit

(m ∼ 0), has been studied in the mean field approximation. To achieve this, as first introduced

in [GN74, Wal74], we define ψ̄ψ = ⟨ψ̄ψ⟩ + σ with a constant term ⟨ψ̄ψ⟩ and a small real scalar

field σ, which corresponds to fluctuations about the vacuum value. Then, we drop terms that are

O(σ2). By doing this, the four-fermion contact interaction g(ψ̄ψ)2 can be expressed as

g(ψ̄ψ)2 =g
(
⟨ψ̄ψ⟩+ σ

)2
= 2gψ̄ψ⟨ψ̄ψ⟩ − g⟨ψ̄ψ⟩2 +O(σ2) . (6.55)

Moreover, one can define the effective mass M(µ, µ5, T ) through the following expression:

M(µ, µ5, T ) = m− 2g⟨ψ̄ψ⟩(µ, µ5, T ), (6.56)
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with the Lagrangian is defined as L = Leff +O(σ2), and

Leff =ψ̄(i/∂ −M + µγ0 + µ5γ0γ5)ψ − (M −m)2

4g

=LDirac − V . (6.57)

In accordance with previous studies [KG06, Bub05], we express the Grand Canonical Potential

ΩDirac of LDirac, which has a mass M , as follows:

ΩDirac(µ, µ5, T ;M) = − 2

π

∑
s=±1

∫ ∞
0

[
T ln

(
1 + e−β(ωk,s+µ)

)
+ T ln

(
1 + e−β(ωk,s−µ))+ ωk,s

]
dk ,

(6.58)

Here, the energy spectrum of the free fermions ωk,s =
√

(k + sµ5)2 +M2 with s = ±1. To obtain

the grand canonical potential for the NJL model, we add the potential V = (M −m)2/4g to the

expression.

Ω(µ, µ5, T ;M) = V − 2

π

∑
s

∫ ∞
0

[
T ln

(
1 + e−β(ωk,s+µ)

)
+ T ln

(
1 + e−β(ωk,s−µ))+ ωk,s

]
dk .

(6.59)

To obtain the value of the effective mass, the regularization of the grand canonical potential

Ω(µ, µ5, T ;M) is necessary to account for its divergent behavior. For consistency with numerical

simulations using a lattice spacing a, a natural hard momentum cutoff Λ = π/a is adopted for

the integral in eq. (6.59). Subsequently, the effective mass M is determined at fixed µ, µ5, and T

through numerical minimization of Ω(µ, µ5, T ;M) with respect to M , which amounts to solving

the gap equation.

∂Ω(µ, µ5, T ;M)

∂M
= 0 . (6.60)

This leads to the expression for the chiral condensate as ⟨ψ̄ψ⟩ = (m−M)/2g as given in eq. (6.56).

In the presence of a magnetic field and under an imbalance of right/left-handed chirality, a

finite induced current is generated along the magnetic field direction. This phenomenon is known

as the Chiral Magnetic Effect [KZ07, KMW08, FKW08]. Specifically, when the number of right-

handed quarks (NR) is not equal to that of left-handed quarks (NL), a separation of positive and
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negative charges takes place along the magnetic field. The CME arises from the axial anomaly

and topological objects in QCD and can produce observable effects that are useful for studying

topological P- and CP-odd excitations [Wit79, Ven79, SS98, VP09].

6.4.3.4 Chirality charge density

In the Lagrangian equation eq. (6.47), we incorporate a novel term featuring the chiral chemical

potential µ5 coupled with the chirality charge density operator n5 = ψ̄γ0γ5ψ. This operator is a

distinguishing attribute of hot and dense QCD matter since it violates the conservation law owing

to the chiral anomaly. Although µ5 is introduced to examine topological charge fluctuations, it is

considered a time-independent variable representing the chirality imbalance. Similar to the chiral

condensate ⟨ψ̄ψ⟩, the chirality charge density n5 = ⟨ψ̄γ0γ5ψ⟩ is also a global quantity that does not

depend on the coordinates. To relate the induced electric current density with the chirality density,

the correlation between n5 and µ5 is crucial, and the chirality charge density n5 can be computed

using the method proposed in [FRG10].

n5 =− ∂Ω(µ, µ5, T ;M)

∂µ5

, (6.61)

The expression for the grand potential Ω(µ, µ5, T ;M) is provided in Eqn. eq. (6.59). In the subse-

quent section, we will furnish the analytical computations of n5, which will be contrasted with the

results obtained using QITE and exact diagonalization.

6.4.4 Discritization of NJL Hamiltonian

In this subsection, we present the constituent parts of the quantum algorithms employed for the

NJL model. Specifically, we begin by outlining the discretization of the NJL Hamiltonian using a

lattice grid, before introducing the quantum imaginary time evolution algorithm.

In order to investigate the chiral phase transition and chirality imbalance in the NJL model, we

incorporate terms associated with non-zero chemical potential µ and chiral chemical potential µ5.

These terms simulate the chiral asymmetry between right- and left-handed quarks coupled with the
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chirality charge density operator n5 = ψ̄γ0γ5ψ. Hence, the revised Lagrangian is given by1:

L =ψ̄(i/∂ −m)ψ + g(ψ̄ψ)2 + µψ̄γ0ψ + µ5ψ̄γ0γ5ψ . (6.62)

Then the corresponding Hamiltonian H = iψ†∂0ψ−L can be expressed as a function of eq. (6.62).

H =ψ̄(iγ1∂1 +m)ψ − g(ψ̄ψ)2 − µψ̄γ0ψ − µ5ψ̄γ0γ5ψ . (6.63)

To avoid ambiguity, we specify that in this section, the term “NJL model” is employed to refer to

the Hamiltonian as stated in Equation eq. (6.63).

For the discretization of a theory of the Dirac fermion field ψ(x) with components ρ(x) and

η(x), we set a staggered fermion field χn on a spatial lattice of spacing a. Using an even integer N

and integer values n = 0, 1, · · ·N/2, the sites with even indices 2n are assigned to the staggered

fermion field χ2n with spinor ρ(x = n)/
√
a, while sites with odd indices 2n + 1 are assigned to

the staggered fermion field χ2n+1 with spinor η(x = n)/
√
a. The Dirac fermion fields ψ(x) are

then represented by these staggered fermion fields [BEF10, BFH14, AFK06, Baz14, ABT20],

ψ(x = n) =

 ρ(x = n)/
√
a

η(x = n)/
√
a

 =

 χ2n

χ2n+1

 . (6.64)

Once one converts the Dirac fermions to staggered fermions, by applying the Jordan-Wigner trans-

formation [JW28],

χn =
Xn − iYn

2

n−1∏
i=0

(−iZi) , (6.65)

After the application of the Jordan-Wigner transformation to convert Dirac fermions into staggered

fermions, the spin representation of the operators is obtained for quantum simulation. In eq. (6.65),

the symbol Xn represents the Pauli-X matrix operating on the n-th grid on the lattice, and so on.

Consequently, the following equivalence up to a constant term can be readily confirmed,∫
dxψ̄ψ =

N−1∑
n=0

(−1)nχ†nχn =
N−1∑
n=0

(−1)n
Zn
2
, (6.66)

1In our work [CKM22], we explored the characteristics of the chiral condensate ⟨ψ̄ψ⟩ under the conditions of finite
and non-zero temperature T and chemical potential µ, while setting µ5 = 0 and in [CKT22] we included finite chiral
potential in the study.
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∫
dxψ̄γ0ψ =

N−1∑
n=0

χ†nχn =
N−1∑
n=0

Zn
2
, (6.67)

∫
dxψ̄iγ1∂1ψ = − i

2a

N−1∑
n=0

[
χ†nχn+1 − χ†n+1χn

]
=

N−1∑
n=0

1

4a
(XnXn+1 + YnYn+1) , (6.68)

∫
dx(ψ̄ψ)2 =

1

a

[
N−1∑
n=0

(−1)nχ†nχn

]2
=

N−1∑
n,m=0

(−1)n+m
ZnZm
4a

, (6.69)

∫
dxψ̄γ0γ5ψ = −

N/2−1∑
n=0

(
χ†2nχ2n+1 + χ†2n+1χ2n

)
=

1

2

N/2−1∑
n=0

(X2nY2n+1 − Y2nX2n+1) . (6.70)

where the subscripts denote the index of qubit upon which the single-qubit gate is applied. Subse-

quently, the Hamiltonian in spin representation takes the form of

H =

∫
dx
[
ψ̄(iγ1∂1 +m)ψ − g(ψ̄ψ)2 − µψ̄γ0ψ]

]
=− i

2a

N−1∑
n=0

[
χ†nχn+1 − χ†n+1χn

]
+m

N−1∑
n=0

(−1)nχ†nχn −
g

a

[
N−1∑
n=0

(−1)nχ†nχn

]2

− µ
N−1∑
n=0

χ†nχn + µ5

N/2−1∑
n=0

[
χ†2nχ2n+1 + χ†2n+1χ2n

]
. (6.71)

Note that hewe we choose a periodic boundary condition, namely χN → χ0, and thus the χN−1

field would be coupled with the χ0 field. It is important to emphasize that in the continuum limit,

the true physics should, of course not depend, on the boundary condition except for quantities that

specifically pertain to the boundary. However, since we choose a very small number of lattice

sites N = 4, it would be important to study the dependence on the boundary condition. We

leave such a study in the future where we would also increase the number of lattice sites in the

simulation. Applying the Jordan-Wigner transformation to the Hamiltonian given in eq. (6.71)

yields the partitioning of H into five distinct components, which are necessary for the quantum

algorithm construction.

H1 =

N/2−1∑
n=0

1

4a
(X2nX2n+1 + Y2nY2n+1) , (6.72)

H2 =

N/2−1∑
n=1

1

4a
(X2n−1X2n + Y2n−1Y2n) +

(−1)N/2

4a
(XN−1X0 + YN−1Y0)

N−2∏
i=1

Zi , (6.73)

H3 =
m

2

N−1∑
n=0

(−1)nZn , (6.74)

133



H4 = − g

4a

N−1∑
n,m=0

(−1)n+mZnZm , (6.75)

H5 = −µ
2

N−1∑
n=0

Zn , (6.76)

H6 = −µ5

2

N/2−1∑
n=0

(X2nY2n+1 − Y2nX2n+1) . (6.77)

Specifically, eq. (6.73) includes the second term to enforce periodic boundary conditions. The

resulting Hamiltonians outlined in eq. (6.72)-eq. (6.77) can be evolved using a quantum simulation

through the application of the Suzuki-Trotter decomposition [Tro59, Suz76], which enables us

to examine the influence of the chiral chemical potential µ5 on the chiral condensate ⟨ψ̄ψ⟩ and

the chirality charge density n5 of the (1 + 1)-dimensional NJL model at finite temperature on a

quantum simulator.

6.4.5 Quantum imaginary time evolution algorithm

In the present subsection, we propose the use of the quantum imaginary time evolution (QITE)

algorithm [MST20] to evaluate the temperature dependence of the NJL model for different values

of the baryochemical potential µ and chiral chemical potential µ5. As highlighted in [MST20], the

QITE algorithm possesses several advantages over other methods for quantum thermal averaging

procedures [TD00a, TOV11b, CS16, BK19]. Specifically, it enables the computation of thermal

averages of observables without any ancillary qubits or deep circuits. In addition, the QITE al-

gorithm is highly resource-efficient, requiring exponentially less space and time for each iteration

than classical counterparts.

6.4.5.1 Trotterized evolution

In general, the Suzuki-Trotter decomposition [Tro59, Suz76] can be employed to approximate the

(Euclidean) evolution operator e−βH for a given Hamiltonian H .

e−βH =
(
e−∆βH

)N
+O(∆β2), (6.78)
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In this regard, the chosen imaginary time step ∆β determines the number of iterations N = β/∆β

required to attain the desired imaginary time β = 1/T at temperature T . Nevertheless, as the evo-

lution operator e−∆βH is not unitary, it is not feasible to realize it as a sequence of unitary quantum

gates. Therefore, to achieve the Euclidean time evolution of a state |Ψ⟩ on a quantum computer,

an approximation of the operator e−∆βH by some unitary operator is necessary. Fortunately, the

QITE algorithm offers a scheme to tackle this issue.

The QITE algorithm employs the introduction of a Hermitian operator A to approximate the

non-unitary operator e−∆βH acting on a quantum state |Ψ⟩ with a unitary operator e−i∆βA. It should

be noted that quantum states are represented by α |Ψ⟩ : α ∈ C in a Hilbert space, and not by the

vectors themselves, as the normalization and phase of the state vectors are nonphysical.

1√
c(∆β)

e−∆βH |Ψ⟩ ≈ e−i∆βA |Ψ⟩ . (6.79)

Here the normalization is given by c(∆β) = ⟨Ψ|e−2∆βH |Ψ⟩.

In the regime where ∆β is very small, one may expand eq. (6.79) up to the first nontrivial term,

namely up to O(∆β), and truncate the higher-order terms. By doing so, one can approximate

the change of quantum states under the operators e−∆βH and e−i∆βA over a small imaginary time

interval ∆β at imaginary time β. This can be expressed as:

|∆ΨH(β)⟩ =
1

∆β

(
1√
c(∆β)

e−∆βH |Ψ(β)⟩ − |Ψ(β)⟩
)
, (6.80)

|∆ΨA(β)⟩ =
1

∆β

(
e−i∆βA |Ψ(β)⟩ − |Ψ(β)⟩

)
, (6.81)

In accordance with the approach presented in [MST20], the Hermitian operator A can be obtained

by parameterizing it in terms of Pauli matrices as follows:

A(a) =
∑
µ

aµσ̂µ, . (6.82)

The various Pauli strings are labeled by the subscript µ, and the corresponding Pauli string σ̂µ =∏
lσµl, l is utilized. The evaluation of the Hermitian operator A requires the minimization of an
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objective function F (a), where aµ denotes the coefficients of the Pauli strings, and

F (a) =||
(
|∆ΨH(β)⟩ − |∆AΨ(β)⟩

)
||2 (6.83)

=|| |∆ΨH(β)⟩ ||2 +
∑
µ,ν

aνaµ ⟨Ψ(β)| σ̂†ν σ̂µ |Ψ(β)⟩

+ i
∑
µ

aµ√
c(∆β)

⟨Ψ(β)|
(
Hσ̂µ − σ̂†µH

)
|Ψ(β)⟩ .

The first term || |∆ΨH(β)⟩ ||2 is independent of aµ. Therefore, we can differentiate with respect

to aµ and set the resulting expression equal to zero. This leads to a linear equation of the form

(S + ST )a = b, where the matrix S and vector b are defined as follows:

Sµν = ⟨Ψ(β)| σ̂†ν σ̂µ |Ψ(β)⟩ , (6.84)

bµ = − i√
c(∆β)

⟨Ψ(β)|
(
Hσ̂µ + σ̂†µH

)
|Ψ(β)⟩ . (6.85)

Given the equation (S+ST )a = b derived earlier by setting the derivative of the objective function

F (a) to zero, we can solve for aµ and use it to evolve an initial quantum state to any imaginary

time β by Trotterization. Specifically, we can apply the Suzuki-Trotter formula to approximate the

evolution operator e−βH and write it as a product of operators e−i∆βA and e−∆βH . By iteratively

applying these operators, we can evolve the initial quantum state to any desired imaginary time

with high accuracy, without the need for ancilla qubits or deep quantum circuits.

|Ψ(β)⟩ =
(
e−i∆βA

)N |Ψ(0)⟩+O(∆β) . (6.86)

In fig. 6.6, we present the implementation of the procedure for evolving a quantum state under the

unitary operator e−i∆βA , where Uj|Ψ(βj)⟩ = e−i∆βA|Ψ(βj)⟩ = |Ψ(βj +∆β)⟩. Specifically, each

block in the figure performs the evolution of the state |Ψ(βj)⟩ to |Ψ(βj +∆β)⟩. By repeating this

procedure for n steps, we can obtain the state at the target total evolution time β. The QMETTS

algorithm [MST20] is employed to calculate the expectation value of an observable Ô at finite

temperature T = 1/β by a Markov-like process that starts from a product state. The process in-

volves the imaginary time evolution of the state using QITE, measurement of Ô, and measurement

in a product basis to collapse back to a product state.

Fig. 6.7 demonstrates the imaginary time evolution of the chiral condensate ⟨ψ̄ψ⟩ at chemical

potentials µ = 0 MeV (left), 100 MeV (middle), and µ = 150 MeV (right) using small-time steps
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Uj = e−iΔβA=Uj

Figure 6.6: The scheme of quantum circuit for generating the thermal state evolved from the initial

state |Ψ⟩ at imaginary time β = n∆β. The dashed-line box contains n blocks, each of which

evolves the state for a small imaginary time interval ∆β. Together, these blocks constitute the

QITE algorithm for thermal state preparation.

∆β = 0.001 MeV−1 (solid line) and ∆β = 0.005 MeV−1 (dashed line). The QITE algorithm is

applied to an initial equal superposition state |++++⟩ on a (1+1)-dimensional NJL model with

coupling constant g = 1 MeV−1, quark mass m = 100 MeV, and lattice spacing a = 1 MeV−1,

followed by exact diagonalization of the NJL Hamiltonian given by eq. (6.71) for reference. Here

we chose the number of qubits to be 4, i.e. N = 4 in our simulation, and thus each staggered

fermion field locates on one qubit. Smaller evolution steps result in more accurate quantum simu-

lations. For the rest of this work, we use ∆β = 0.001 MeV−1 for the QITE algorithm and compare

the effective mass M among quantum simulation, exact diagonalization, and theoretical analysis.

6.4.5.2 Compare to other algorithms

In the ensuing section, we undertake a comparative study of the efficacy of the QITE algorithm

and the Variational Quantum Eigensolver (VQE) algorithms in evaluating the ground-state energy

of the (1 + 1)-dimensional NJL model described earlier. As highlighted in [MST20], the QITE

algorithm is notably efficient for ground-state energy calculations. Fig. 6.8 portrays the ground-

state energy with bare mass m = 100 MeV, chemical potentials µ = 100 MeV and µ5 = 10

MeV at g = 1, as a function of the number of operation steps executed by the algorithms. The

VQE algorithms have made considerable strides in obtaining numerous notable outcomes on NISQ

hardware [BVC22, JKG22, CYW21, ONK22, JKG22], which have recently garnered significant
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Figure 6.7: The chiral condensate ⟨ψ̄ψ⟩ at chemical potentials µ = 0 MeV, µ = 100 MeV, and

µ = 150 MeV is simulated as a function of the coldness parameter β = 1/T (MeV−1) for the

(1 + 1)-dimensional NJL model with a coupling constant of g = 1 MeV−1, bare quark mass

m = 100 MeV, and lattice spacing a = 1 MeV−1. The simulation is performed using the equal

superposition state |Ψ⟩ = |++++⟩ as the initial state. The results obtained using the QITE

algorithm with an imaginary time step of ∆β = 0.001 MeV−1 and ∆β = 0.005 MeV−1 are shown

in solid and dashed lines, respectively. The exact diagonalization results are presented as points

for comparison.

attention. However, the efficacy of the algorithm is limited by the reliance on an ansatz, as the

Hilbert space segment that the VQE algorithm can investigate is affected by the specific variational

ansatz employed, and the classical component of the algorithm requires optimization. The QITE

algorithm, in contrast, does not necessitate an ansatz and systematically evolves the prepared state

toward the ground state after each time-step in a controlled manner. The state is expected to

converge to the ground state provided that the initial state shares some overlap with it, with an

error that can be accurately estimated.

As can be observed from the graph in fig. 6.8, the performance of the QITE and Variational

Quantum Eigensolver (VQE) algorithms are compared by plotting the ground-state energy with

varying operation steps for the (1 + 1)-dimensional NJL model with bare mass m = 100 MeV,

chemical potentials µ = 100 MeV and µ5 = 10 MeV at g = 1. The QITE algorithm, implemented

using the QFORTE quantum algorithms library based on PYTHON, utilizes an imaginary time step

of ∆β = 0.001. On the other hand, VQE algorithm, with results obtained using QISKIT of IBMQ,
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implements various optimizers for comparison with QITE simulations.

It is worth noting that the QITE algorithm achieves the ground-state energy with higher accu-

racy in fewer operation steps than the VQE implementations shown in the plot. The performance

of the VQE algorithm is restricted by its reliance on a variational ansatz, which limits its ability to

explore the entirety of the Hilbert space. Moreover, the classical optimization component of the

algorithm also affects its efficiency. Conversely, the QITE algorithm evolves the prepared state

closer to the ground state in a controlled manner without requiring an ansatz. Provided the initial

state has some overlap with the ground state, the state should converge to the ground state with a

quantifiable error.

One can also observe that the error of the VQE implementations begins to level off at around

1%, owing to the finite set of the variational ansatz scanning distance from the true vacuum. The

graph in fig. 6.8 shows 500 operation steps for both QITE and VQE algorithms, where the former

is represented by blue points with a curve, and the latter by light-blue, green and orange curves for

various optimizers.

Notably, in fig. 6.8 we plot the number of optimization steps for the VQE algorithm and the

number of thermal evolution steps x = β/∆β (∆β = 0.001) for the QITE algorithms on the

x-axis. We implement the quantum circuit of the QITE algorithm in QFORTE, a Python-based

quantum algorithms library. Conversely, we utilize QISKIT of IBMQ for the VQE algorithm,

wherein the maximum optimization steps for all optimizers is set as 500. Our results, as depicted

in fig. 6.8, highlight that the QITE algorithm consistently achieves a higher degree of accuracy

with fewer operation steps, thus outperforming the VQE algorithm with various optimizers. In

contrast, the error in the VQE implementations seems to level off at around 1%, indicating that the

variational ansatz scans a finite set of possibilities that are at a finite distance from the true vacuum.

In addition to its utility in ground state energy calculations, the QITE algorithm also exhibits

great potential in the simulation of thermal processes at different temperatures. In this study, we

aim to employ the QITE algorithm introduced earlier to generate the thermal state |Ψ(β/2)⟩, and
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Figure 6.8: Comparative analysis between the QITE and VQE algorithms utilizing various opti-

mizers, namely QOBYLA, L BFGS B, and SLSQP for g = 1 case. To investigate the efficacy of

these algorithms in obtaining the ground-state energy of the NJL Hamiltonian, we employ a 4-

qubit setup on N = 2 lattice sites with m = 100 MeV, µ = 100 MeV, and µ5 = 10 MeV.
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subsequently compute the thermal average of an observable Ô using the following relation:

⟨Ô⟩β =
Tr(e−βĤÔ)
Tr(e−βĤ)

=

∑
i∈S ⟨i| e−βĤ/2Ôe−βĤ/2 |i⟩∑

i∈S ⟨i| e−βĤ |i⟩
. (6.87)

In this context, S constitutes a full set of basis states for the ground state [MST20]. In this study, we

will focus on the computation of the thermal mean of two observables, namely the chiral conden-

sate ⟨ψ̄ψ⟩ and the chirality charge density n5 = ⟨ψ̄γ0γ5ψ⟩, by selecting Ô = ψ̄ψ and Ô = ψ̄γ0γ5ψ,

respectively.

6.4.6 Results

In the present subsection, we present a demonstration of the NJL chiral phase transition in (1 +

1) dimensions through the depiction of the quark condensate ⟨ψ̄ψ⟩ as a function of temperature

T and chemical potential µ. The adoption of the (1 + 1)-dimensional model facilitates us to

derive analytical results by solving the gap equation as explained in section 6.4.3, thereby allowing

for a comparison with quantum simulations. Moreover, the constraint imposed by the (1 + 1)

dimensionality enables the design of a quantum circuit that employs a relatively small number of

qubits, rendering it feasible for implementation on presently available hardware for further research

purposes.

Our computations employ the following set of parameters: lattice spacing a = 1 MeV−1, bare

mass m = 100 MeV, and coupling constant g = 1 MeV−1. Our outcomes have been derived via

three distinct avenues:

1. Simulation of thermal states through the QITE algorithm;

2. Exact diagonalization of the Hamiltonian in spin representation;

3. Numerical solution of the gap equation, leading to an analytical calculation.

6.4.6.1 Chiral phase diagram at µ5 = 0

We first explore the chiral condensate ⟨ψ̄ψ⟩ as a function of temperature T and chemical potential

µ in the context of the (1 + 1)-dimensional NJL chiral phase transition with µ5 = 0. To achieve
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this, we employ the QITE algorithm with the QForte package, and modify it for calculating the

properties of the NJL Hamiltonian in quantum simulation. The initial state is set to be the equal

superposition state | + · · ·+⟩, and the algorithm is utilized to compute the quark condensate at

different values of β = 1/T . The simulation results are presented alongside the theoretical calcu-

lations and exact diagonalization for comparison. Specifically, the diamond data points represent

the results obtained from the QITE simulation, the solid curves indicate the theoretical calculation

described in section 6.4.3, and the dashed curves denote the exact diagonalization results based

on the matrix form of the discretized NJL Hamiltonian given by Eqs.eq. (6.72) - eq. (6.76). Our

findings indicate that the quantum simulations align well with both the exact diagonalization and

theoretical analyses.

In fig. 6.9, we show the temperature dependence of the chiral condensate ⟨ψ̄ψ⟩ for different

values of the chemical potential µ, ranging from 0 to 200 MeV. It is noteworthy that the quan-

tum simulations are carried out with a lattice spacing of a = 1 MeV−1, a bare mass of m = 100

MeV, and a coupling constant of g = 1 MeV−1. At chemical potentials below 100 MeV, the

quark condensate increases with temperature. Conversely, for large chemical potentials, the quark

condensate exhibits a contrasting behavior within a small temperature range before gradually in-

creasing with temperature, as revealed by the figure. Moreover, the quark condensate at various

finite chemical potentials µ tends to converge at high temperatures.

fig. 6.10 depicts the temperature dependence of the quark condensate ⟨ψ̄ψ⟩ for various ratios

of the chemical potential and temperature, µ/T , ranging from 0 to 8. The simulation is conducted

using the QITE algorithm and the same set of parameters as fig. 6.9. The diamond data points

represent the quantum simulation results, whereas the solid and dashed lines represent the ana-

lytical calculation and exact diagonalization results, respectively. At low temperatures, the quark

condensate reaches a minimum value of about −2 MeV. As the temperature increases, the quark

condensate gradually increases to approach zero. It is observed from the curves that, for a larger

ratio of µ/T , the quark condensate increases more rapidly from −2 to 0 MeV as the temperature

increases.

We present the temperature dependence of the quark condensate ⟨ψ̄ψ⟩ at various chemical po-

tentials in the ⟨ψ̄ψ⟩−µ plane in fig. 6.11, where the temperatures are chosen as T = 25, 50, 100, 125, 250
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Figure 6.9: Chiral Condensate ⟨ψ̄ψ⟩ as a function of temperature T at finite chemical potentials µ,

ranging from 0 to 200 MeV. Dashed curves represent the results from exact diagonalization, while

solid curves correspond to analytical calculations.

MeV. We observe that the absolute value of the quark condensate is larger at lower temperatures

and chemical potentials. Moreover, as the chemical potential µ increases, the quark condensate

experiences a rapid increase and approaches zero. Conversely, at higher temperatures, the quark

condensate remains nearly unchanged for different chemical potentials. As such, the ⟨ψ̄ψ⟩−µ plot

exhibits a more pronounced phase transition at higher temperatures.

In this study, we have successfully developed a quantum simulation for the chiral phase tran-

sition of the 1+1 dimensional NJL model at finite temperature and chemical potentials using the

QITE algorithm. Specifically, we use a 4-qubit quantum circuit, i.e. each staggered fermion field

is located in one qubit. On one aspect, our work [CKM22] serve as a demonstration using a limited

number of lattice sites like the above examples at the frontier of this field. At the same time, we

are aware of efforts in the field of quantum computing with larger lattice sizes (> 100 sites) and

actively engaging in endeavors aimed at augmenting the lattice size to approach the continuum

limit and gain deeper insights into the NJL model.

Our results reveal a consistency between the digital quantum simulation and the standard
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Figure 6.10: This plot displays the temperature dependence of the Chiral Condensate ⟨ψ̄ψ⟩ for

different ratios of the chemical potential and temperature, µ/T , ranging from 0 to 8. The diamond

points represent the results obtained from the QITE algorithm, while the solid curves correspond

to the analytical calculation and the dashed curves to the exact diagonalization.

method for the lattice NJL Hamiltionian with a limited lattice sites. Even though there is still a

long way to go for comparing the quantum simulation with the continuum limit of the NJL model,

this small illustration makes it promising for further development where the potential of quantum

computing in simulating finite-temperature behaviors for QCD could be possible, and offers an ex-

citing avenue for exploring finite density effects in QCD and other field theories. With the promise

of scalable quantum computer technology on the horizon, this study and previous ones showcase

the potential for NISQ quantum computers to tackle physical problems that are challenging or

impossible to solve using classical computing algorithms.

6.4.6.2 Chiral phase diagram at µ5 ̸= 0

In this subsection, we investigate the thermal behavior of the effective massM and chirality charge

density n5 = ⟨ψ̄γ0γ5ψ⟩ in the (1 + 1)-dimensional NJL model as given by eq. (6.63). As we

have highlighted in previous sections, our approach employs a quantum algorithm to simulate the
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Figure 6.11: In the ⟨ψ̄ψ⟩ − µ plane, we plot the quark condensate ⟨ψ̄ψ⟩ at temperatures T =

25, 50, 100, 125, 250 MeV for various chemical potentials. The solid curves represent the ana-

lytical calculation, while the dashed curves depict the results from exact diagonalization.

thermal properties of physical observables. To demonstrate the accuracy and reliability of our

simulations, we present the results with the same three approaches as mentioned in the previous

subsection. For consistency among the three methods, we fix the bare mass m = 100 MeV and

lattice spacing a = 1 MeV−1, and consider the effects of the four-fermion interaction term in the

Lagrangian by testing the coupling constant at g = 1.

In order to implement quantum circuits, various quantum simulation packages have been devel-

oped and have shown consistent results for quantum simulations. These software libraries, includ-

ing PYQUILL [SCZ16] (Rigetti), TEQUILA [al21], Q# [qsh] (Microsoft), QISKIT [AAB19b]

(IBM), QFORTE [SE21], XACC [MLD20], FQE [RGW21], and CIRQ [Dev21], are coded in

PYTHON, and generate expected outputs of an ideal quantum computer. General quantum sim-

ulation packages can be found in [Bha22], while specific implementations of quantum algorithms

can be found in [ASA21]. In our case, the QITE algorithm is executed using a quantum circuit con-

structed with the open-source software package QFORTE [SE21], which has implemented many

useful quantum algorithms.
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Figure 6.12: Effective mass M as a function of temperature T (left panels) or µ5 (right panels) at

coupling constant g = 1. Each panel adopts a different value of chemical potential µ.
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Figure 6.13: Effective mass M as a function of temperature T MeV at coupling constant g = 1 at

a fixed chiral chemical potential µ5 in each panel.

In this study, we investigate the effects of chiral imbalance on the chiral condensate at finite

temperatures and chemical potentials. We present several plots of the effective massM at different

chemical potentials µ, µ5, and temperatures T . In fig. 6.12, we compare the temperature (left

panels) and chiral chemical potentials µ5 (right panels) dependence of the effective mass M at

coupling constant g = 1 for various baryochemical potentials µ. The results are obtained using

the QITE algorithm, exact diagonalization, and analytical calculations. Notably, we observe a

change in the pattern of the effective mass between µ = 100 MeV and µ = 150 MeV panels, from

decreasing to increasing with temperature. Additionally, we find that the effective mass at smaller

µ5 is larger for µ ≤ 100 MeV panels and smaller for µ ≥ 150 MeV panels. We also observe that

at µ ≤ 100 MeV, M is lower for higher temperature, as expected by asymptotic freedom, while at

higher µ, the effective mass M becomes smaller at lower temperatures.

In fig. 6.13, we fix the value of chiral chemical potentials µ5 and plot the M−T curves for

various baryochemical potentials µ at g = 1. We observe a non-trivial phase transition at 100 <

µ < 150 MeV in all panels. The pattern of the M−T curves looks similar at various µ5, with the

effective mass M changing more rapidly as a function of T at smaller µ5.
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Figure 6.14: Chirality charge density n5 as a function of temperature T (left panels) or µ5 (right

panels) at coupling constant g = 1. Each panel adopts a different value of chemical potential µ.
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Figure 6.15: Chirality charge density n5 as a function of temperature at g = 1 with a fixed chiral

chemical potential µ5 in each panel.

In fig. 6.14, we present the chirality charge density as a function of temperature T (left panels)

or as a function of chiral chemical potential µ5 (right panels) for coupling constants g = 1 and

g = 5. We adopt distinct hues to differentiate various chiral chemical potentials µ5 = 0, 10, 30

and 50 MeV, while fixing the chemical potential µ at 0, 50, 100, · · · or 250 MeV for each panel.

In the absence of any other mechanism for generating a non-zero N5 = ψ̄γ0γ5ψ = ψ†RψR−ψ†LψL,

n5 = 0 at µ5 = 0 MeV. Thus, n5 = ⟨N5⟩ only exists when µ5 ̸= 0.

We also observe that, across all chemical potentials µ and temperatures T , the chirality charge

density n5 is approximately proportional to the chiral chemical potential µ5. Specifically, n5 starts

at zero at µ5 = 0 MeV and increases linearly with µ5. Thus, in this model, the chiral chemical

potential serves as a direct measure of the chiral imbalance present in the plasma. However, the

rate of increase of n5 with µ5 decreases at higher chemical potentials µ. Notably, a phase transition

can be discerned between µ ≤ 100 MeV and µ ≥ 150 MeV. In the former case, n5 decreases with

temperature for each µ5, while in the latter case, n5 increases with temperature from T = 50 MeV

to T = 100 MeV before subsequently decreasing from T = 100 MeV to T = 200 MeV.

Similarly to the findings from the effective mass plots in fig. 6.13, a non-trivial phase transition
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emerges between µ = 100 MeV and µ = 150 MeV. For µ ≤ 100 MeV, the chirality charge density

decreases with increasing temperature, while for µ ≥ 150 MeV, it first increases before declining

and ultimately approaching zero as temperature increases.

In fig. 6.15, we depict the chirality charge density n5 as a function of temperature T for coupling

constants g = 1 and g = 5. We utilize distinct hues to distinguish various chemical potentials

µ ∈ 0, 50, · · · , 250 MeV, while fixing the chiral chemical potential µ5 at 0, 10, 30 or 50 MeV

for each panel. As expected from the preceding figure, the chirality charge density is 0 for all

temperatures and chemical potentials when µ5 = 0 MeV. At non-zero µ5 values, we also observe

the phase transition between µ = 100 MeV and µ = 150 MeV. Specifically, for µ ≤ 100 MeV,

the chirality charge density commences with some non-zero value at T = 0 MeV and diminishes

as temperature increases, while for curves with µ ≥ 150 MeV, the chirality charge density starts

at 0 at T = 0 MeV and initially increases before decreasing and converging to 0 with increasing

temperature. Furthermore, for curves with greater µ5 values, those with µ ≤ 100 MeV start with

higher chirality charge densities.
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CHAPTER 7

Conclusion

In this PhD dissertation, we have explored the fascinating world of particle physics, with a partic-

ular focus on Quantum Chromodynamics (QCD) and its pivotal role in describing the strong force.

Our investigation revolved around two significant aspects of QCD studies, aiming to deepen our

understanding of elementary particles and their behavior.

The first aspect of our research delved into the exciting realm of perturbative QCD methods

for quantum 3D imaging of hadrons. Through QCD factorization and perturbative expansions, we

harnessed these powerful tools to predict the behavior of high-energy interactions, specifically in

inclusive jet and hadron-in-jet production at colliders. This allowed us to gain valuable insights

into the intricate dynamics of quarks and gluons within hadrons, shedding light on phenomena like

hadron production inside jets and spin asymmetries. This new concept “polarized jet fragmentation

functions” allow us to probe multi-dimensional structure of the nucleons and hadrons, an important

thrust for the future Electron-Ion Collider.

Simultaneously, we recognized the significance of non-perturbative QCD studies, particularly

in investigating the QCD phase diagram and understanding the properties of hadrons. Embracing

the advancements in quantum computing and simulators, we explored the potential of enhancing

finite-temperature behavior simulations. This breakthrough opens up avenues to scrutinize extreme

temperatures and densities with unprecedented accuracy and detail, offering fresh perspectives on

the nature of QCD.

Throughout this research, we pursued two approaches to enrich our comprehension of QCD.

Firstly, we focused on investigating the nucleon structure by analyzing polarized jet fragmenta-

tion functions. Secondly, we harnessed quantum computing techniques to explore chiral phase

transitions. These enabled us to delve into the non-perturbative facets of QCD and discern new
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applications for quantum computing in the realm of particle physics.

By undertaking these multifaceted studies, we have contributed to the ongoing efforts to de-

cipher the intricate interactions between elementary particles. Our findings provide essential in-

sights into the behavior of quarks and gluons within hadrons, advancing our knowledge of par-

ticle physics. Moreover, the integration of quantum computing methodologies demonstrates the

immense potential it holds in unraveling the mysteries of QCD and enhancing the accuracy of

simulations at extreme conditions.

As we conclude this thesis, we envision a promising future where continued research and in-

novation in QCD studies, combined with quantum computing advancements, will lead us towards

new frontiers of knowledge. The pursuit of understanding the fundamental building blocks of our

universe remains an ever-evolving and deeply rewarding journey, and we hope that this work serves

as a stepping stone towards further discoveries in the captivating realm of particle physics.
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De La Puente González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan
Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas
Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Green-
berg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Hiroshi Horii,
Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa,
Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Mar-
ques, Francisco Jose Martı́n-Fernández, Douglas T. McClure, David McKay, Sru-
jan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Rodrı́guez, Gia-
como Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik,
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