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Abstract

The understanding and treatment of psychiatric disorders with neurobiological and clinical 

heterogeneity could benefit from the identification of disease subtypes on the basis of data 

acquired with established neuroimaging technologies. Here, we report the identification of two 

clinically relevant subtypes of post-traumatic stress disorder (PTSD) and major depressive disorder 

(MDD) on the basis of robust and distinct functional-connectivity patterns, prominently within the 

frontoparietal-control and default-mode networks. We identified the disease subtypes by analysing, 

via unsupervised and supervised machine learning, the power-envelope-based connectivity of 

signals reconstructed from high-density resting-state electroencephalography in four datasets from 

patients with PTSD and MDD, and show that the subtypes are transferable across independent 

datasets recorded under different conditions. The subtype whose functional connectivity differed 

most from those of healthy controls was less responsive to psychotherapy treatment for PTSD and 

failed to respond to an antidepressant medication for MDD. By contrast, both subtypes responded 

equally well to two different forms of repetitive transcranial magnetic stimulation therapy for 

MDD. Our data-driven approach may constitute a generalizable solution for connectome-based 

diagnosis.

One-sentence editorial summary

The analysis of functional-connectivity patterns in resting-state electroencephalography data via 

machine learning led to the identification of two clinically relevant subtypes of post-traumatic 

stress disorder and major depressive disorder.

Psychiatric diagnoses are defined based on constellations of symptoms that seek to 

characterize a particular condition with respect to both healthy individuals and other 

diagnoses. For example, posttraumatic stress disorder (PTSD) involves a range of emotional, 

cognitive, and somatic symptoms that can develop after a person has experienced or 

witnessed a traumatic event in which serious harm to the individual occurred or was 

threatened1. Likewise, major depressive disorder (MDD) is characterized by sustained 

negative mood, often associated with biological, psychological, or social sources of stress2. 

The traditional approach for studying the neurobiology of psychiatric conditions has 

followed this diagnostic framework through case-control studies whereby all patients with a 

given diagnosis are compared to healthy individuals. However, this approach has failed to 

deliver on hoped-for biomarkers due to high biological heterogeneity among patients with 

the same diagnosis and among healthy controls3–6. More importantly, such biological 

heterogeneity has substantial effects on treatment outcome, even while often being 

independent of pre-treatment clinical symptoms. For example, while antidepressants have 
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only modest superiority over placebo, this is in part because the clinical diagnosis of MDD 

encompasses biologically heterogeneous conditions that relate differentially to treatment 

outcome7–9. Likewise, even though psychotherapy is presently the most effective treatment 

for PTSD10, many patients are nonetheless non-responsive and display differences in brain 

function relative to responsive patients8,11. In neither case, however, are neurobiological 

differences related to clinical features, supporting the potential unique value of neurobiology 

in defining clinically-relevant “disease subtypes”. These subtypes may furthermore exist 

within or between traditional psychiatric diagnoses12–16.

Most of the existing neuroimaging studies investigating disease subtypes, however, have 

used functional magnetic resonance imaging (fMRI)17–19, an important neuroimaging 

technology for studying the functional pathophysiology of brain disorders. Despite its 

popularity and success in early proof-of-concept subtyping efforts, the clinical utility of 

fMRI is limited due to substantial requirements in terms of expertise, specialized equipment 

and high cost, as well as persistent challenges harmonizing fMRI acquisition across 

scanners. By contrast, electroencephalography (EEG), is a less expensive neuroimaging 

technique, is easier to use in a variety of clinical environments and is thus a more practical 

tool for guiding clinical care. In this study, we therefore adopted EEG for subtyping 

analyses.

One challenge to analysis of functional connectivity using EEG, however, is the fact that 

nearby channel-space EEG signals, or their source estimates, typically share similar 

artifactual variance caused by electric field spread (i.e. volume conduction), along with the 

limited spatial resolution of source localization methods20–22. This interferes with the 

extraction of neural patterns, such as functional connectivity, in an accurate manner using 

resting-state EEG (rsEEG) collected at the scalp23. To address this issue, a new method, 

power envelope connectivity (PEC), has been recently developed for estimating accurately 

the correlation structure of spontaneous oscillatory activity in magnetoencephalography 

(MEG)24,25 and then validated for EEG26. PEC estimation mitigates spurious correlations 

resulting from volume conduction by removing signals with zero phase lag (i.e. occurring 

non-physiologically simultaneously) through orthogonalization25–27. Of note, PEC was 

among the most reliable connectivity measures using MEG28. To this end, we sought 

biomarkers in PEC features extracted from source signals reconstructed from high-density 

resting-state EEG recordings.

As our primary goal was to delineate neurobiological heterogeneity in PTSD and MDD, 

rather than maximizing the differentiation of patients from healthy controls, we first defined 

EEG connectivity subtypes in patients. We then contrasted these connectivity patterns to 

healthy control connectivity, as well as assessed clinical significance with respect to 

prediction of clinical outcome with a variety of treatments. We used an unsupervised sparse 

clustering approach29 as a data-driven subtyping strategy that accomplished simultaneous 

feature selection and sample clustering on the high-dimensional PEC features 

(Supplementary Figure 1). We implemented the same subtyping analysis on four 

independent datasets, including two different psychiatric disorders, PTSD and MDD. 

Discovery of these clinically-relevant subtypes was first carried out on a PTSD discovery 

dataset involving 201 participants (106 with PTSD and 95 healthy controls), wherein a 
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minority of patients were on concurrent psychiatric medications. This sample was chosen for 

discovery as it had the largest number of healthy controls, and it was the only data set 

without clinical outcome data (which we used for determination of subtyping clinical 

significance). We then performed several replication analyses of the discovered subtypes: 

first, using two independent PTSD datasets with 72 and 63 patients each (many with 

concurrent medication use); and second, using two MDD datasets (with 228 medication-free 

patients and 179 patients many with concurrent medication use, respectively) to determine 

the transdiagnostic potential of our subtyping results. We also examined fMRI connectivity 

correlates of our subtypes across datasets in order to assess for convergent validation using a 

distinct neuroimaging modality. Finally, we tested for the clinical significance of our 

subtyping findings using a diverse range of clinical interventions, including PTSD patients 

undergoing psychotherapy with either prolonged exposure (PE) or cognitive processing 

therapy (CPT), MDD patients who were randomized to receive the selective serotonin 

reuptake inhibitor sertraline or placebo, and MDD patients who received one of two 

repetitive transcranial magnetic stimulation (rTMS) treatment protocols as part of their 

clinical care along with psychotherapy.

Results

Resting-state EEG functional connectivity defines two clinically relevant subtypes.

To achieve data-driven subtyping on the discovery PTSD dataset (dataset 1), we combined 

PEC features from all eight EEG conditions (four frequency bands across eyes open/eyes 

closed conditions) and submitted these to a sparse clustering algorithm. Overwhelmingly, 

the selected features were from the beta frequency band and eyes-open condition (Figure 

1a). The two subtypes were characterized by strong connectivity differences in the frontal 

and posterior regions (Figure 1b). The interhemispheric connectivity between homologous 

regions was also notable.

The most frequently occurring PEC differences involved regions located in the frontoparietal 

control network (FPCN) and default mode network (DMN). Specifically, subtype 1 had 

stronger PEC between the frontal cortex and other regions but weaker PEC between the 

parietal cortex and other regions, compared to subtype 2 (Figure 2a–b). A similar PEC 

feature pattern was observed for the subtypes when compared with those from other datasets 

(Supplementary Figure 2). Importantly, no significant differences were observed in clinical 

severity between the two subtypes (Supplementary Figure 3a). The only demographic 

difference was a higher percentage of males in subtype 1 (Supplementary Table 1).

On the entire patient population level, the mean connectivity matrix was highly correlated 

with that of the healthy controls (r=0.96, p<10−5). However, when each subtype was 

inspected separately, while the mean connectivity matrices were highly similar between 

healthy controls and subtype 1 (r=0.94, p<10−5), the similarity was considerably lower 

between healthy controls and subtype 2 (r=0.44, p<10−5) (Figure 1c).
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Replication in an independent PTSD dataset.

To test whether our subtype findings could be replicated, we implemented the same analysis 

on an independent rsEEG dataset consisting of 135 PTSD patients who underwent rsEEG 

prior to receiving psychotherapy treatment (dataset 2). Dataset 2 contained two cohorts: 72 

participants used for the initial submission of this paper, and 63 participants who completed 

the study after our initial submission. The latter group thus allowed a further independent 

replication of clinical prediction effects tested for in the first cohort.

We first conducted a replication analysis for the identified subtype PEC pattern with each of 

the two cohorts, separately. Our subtyping method, using the same feature selection process 

as above, was again able to yield two clusters with differential functional connectivity in the 

beta-band eyes-open condition, consistent with results from the discovery PTSD dataset 

(Figure 3a–d). Also, a similar PEC feature pattern was observed for the subtypes when 

compared with those from other datasets (Supplementary Figure 2). In line with the 

discovery dataset, no significant difference in clinical severity was observed between the two 

subtypes (Supplementary Figure 3b), and no differences in proportion of males 

(Supplementary Table 1). Furthermore, in neither dataset 1 nor 2 did concurrent use of 

psychiatric medications impact the subtyping result (Supplementary Figure 4).

Replication in two independent depression datasets.

We next investigated whether the discovered subtypes could serve as a potential 

transdiagnostic biomarker by applying the subtyping approach to two independent MDD 

datasets, involving either unmedicated MDD patients (N=228; dataset 3) or clinic-recruited 

MDD patients, some of whom were on psychiatric medications (N=179; dataset 4). Once 

again, two subtypes were observed with distinct functional connectivity patterns (Figure 4a–

d) that were consistent with those discovered in the two PTSD datasets. Consistent with the 

findings in the two PTSD datasets, a similar PEC feature pattern was observed for the 

subtypes when compared with those from other datasets (Supplementary Figure 2). 

Likewise, no significant differences were observed in clinical severity between the two 

subtypes in either dataset (Supplementary Figure 3c–d). Only in dataset 4 were males more 

common for subtype 2 (Supplementary Table 1). The transdiagnostic relevance of our 

subtyping findings were also seen when conducting clustering across all patients by pooling 

all four datasets (Supplementary Figure 5).

Validation of subtype transferability across datasets.

To assess the transferability of the discovered neurophysiological subtypes, we applied a 

cluster centroid-based pattern classifier derived from the subtypes of one dataset to PEC 

features of another and compared the predicted subtype labels from the classifier with those 

obtained from clustering analysis of the second dataset. The classification accuracies 

averaged 90.6% and in all cases were greater than 86% (Figure 5a). Furthermore, we 

iteratively trained the classifier on three of the datasets and tested on the fourth, which 

yielded an average of 89.9% accuracy, with all datasets greater than 88% (Figure 5b). These 

results demonstrate that the discovered subtypes were transferable across independent 

datasets acquired using different EEG equipment, using differing clinical diagnoses and 

patient identification methods, and recorded for different amounts of time. This conclusion 
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was further supported by a permutation test of each dataset, which failed to reveal the 

observed subtypes in the original data (Supplementary Figure 6). Additionally, use of both 

the gap statistic criterion and Calinski-Harabasz criterion confirmed that two clusters are the 

optimal solution across datasets (Supplementary Figure 7a–b). On the other hand, we 

implemented a comparison analysis with the 26 channels that were comparable across all 

datasets (to match dataset 4). For each of datasets 1 – 3, we down-sampled the channels to a 

subset (Supplementary Figure 8a) and used the 26 channels that were most close to those of 

dataset 4 to rerun the source localization and PEC calculation. Then, we compared how 

consistent the subtype PEC pattern was between using all channels and the selected 26 

channels. The results indicated that the subtype PEC pattern derived by the down-sampled 

26 channels was similar with that obtained using all channels for each of datasets 1 – 3 

(Supplementary Figure 8b). However, we still used all available channels for the 

experimental analysis since penalizing the three high-density datasets by the number of 

channels in the lowest density dataset may discard potentially useful information.

Clustering on healthy controls.

In addition to the patient subtyping analysis, we also implemented clustering on PEC 

features extracted from healthy controls of dataset 1. Similar subtype PEC patterns were 

observed in healthy control group as those found in patient group (Supplementary Figure 

9a–b). However, subtype identity was less stable and more variable amongst healthy control 

compared to patient data (Supplementary Figure 9c). In addition, it should be noted that the 

purpose of this study was to understand heterogeneity in patients, where it would have 

clinical significance. At present, the significance of these subtypes in healthy controls is 

unknown but may represent an underlying trait-like neurobiological feature.

Subtype-based diagnostics.

In order to investigate how the discovered subtypes could mitigate heterogeneity and 

improve the diagnosis-based comparisons for a certain subtype, we applied the classifier 

derived from the sparse clustering solution (Supplementary Methods) on datasets 2, 3, and 4 

to PEC features of healthy controls from dataset 1, the only dataset where enough healthy 

controls are available, and investigated the misidentification rate of healthy controls for each 

subtype. The rate of healthy controls misidentified as subtype 2 was 21.0%, which was much 

lower than being mis-identified as subtype 1 (79.0%). When both healthy controls and 

patients were considered, the overall rate of a participant misidentified as subtype 2 was 

15.2%, achieving an identification rate of subtype 2 with a sensitivity of 89.2% (Figure 5b). 

These results suggest that identifying heterogeneous EEG-based subtypes in psychiatric 

patients might enhance differentiation from healthy controls, though this was not the 

primary goal of this study.

Further validation based on fMRI connectivity.

To further validate that our identified subtypes indeed represent internally valid and 

neurobiologically meaningful phenotype related to brain connectivity, we carried out a 

classification analysis to distinguish the two EEG-connectivity defined subtypes using 

resting-state fMRI connectivity features, pooling across fMRI data in datasets 1 – 3. Our 

classifier with resting-state fMRI was able to distinguish the two EEG-connectivity driven 
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subtypes with an accuracy of 83.9% (permutation test, p<0.0001), a sensitivity of 85.7% in 

detecting subtype 1 and 81.2% in detecting subtype2 (Supplementary Figure 10a). The most 

discriminative features involved regions of FPCN, VAN, and visual network (Supplementary 

Figure 10b). By comparing the PEC difference and fMRI connectivity classifier profiles, we 

observed a consistent pattern between PEC and fMRI connectivity in distinguishing the two 

EEG subtypes (Supplementary Figure 10c). Here, 90 out of 465 connections are overlapping 

and a consistent pattern is observed between EEG and fMRI, mainly involving FPCN, 

DMN, and VAN regions. These results further provide strong evidence to support the 

convergent validation of our PEC-defined subtype findings.

Responsiveness of subtypes to treatment.

Finally, and especially considering the lack of clinical severity differences between the 

subtypes prior to treatment, we sought to determine whether the two subtypes held clinical 

significance by examining treatment outcome data, which was available in the three 

replication datasets.

Patients in the PTSD replication cohort (dataset 2) received either prolonged exposure (PE) 

or cognitive processing therapy (CPT), which are presently the most evidence-based 

treatments for PTSD. We divided the dataset into two cohorts: 72 participants used for the 

initial submission of this paper and 63 participants who completed the study after the initial 

submission (and thus information on which was not available with our first submission). 

Using linear mixed-models in an intent-to-treat analysis on clinician-rated PTSD severity 

(Clinician-administered PTSD Scale (CAPS)) that incorporated both completers and 

dropouts, we found that subtype 1 had a better treatment outcome compared to subtype 2 

(group x time interaction: F(1,123)=9.04, p=0.0032, Cohen’s d=0.80 for CAPS-IV and 

F(1,123)=4.38, p=0.039, Cohen’s d=0.59 for CAPS 5; Figure 6a). If further dividing by 

psychotherapy type, subtype 1 had significantly better outcome across both treatments, as 

well as separately for PE (F(1,38)=7.23, p=0.011 for CAPS-IV and F(1,38)=2.90, p=0.097 

for CAPS 5) and for CPT (F(1,81)=4.75, p=0.032 for CAPS-IV and F(1,81)=2.41, p=0.12 

for CAPS 5). To further replicate the response of the subtypes to psychotherapy treatment, 

we applied the subtyping analysis to the second cohort followed by linear mixed-model 

effect analyses. Consistent with those observed on the first cohort, subtypes status in the 

second cohort similarly predicted responsiveness to the psychotherapy treatment, with 

subtype 1 responding significantly better than subtype 2 (group x time interaction: 

F(1,109)=4.76, p=0.031, Cohen’s d=0.56 for CAPS-IV and F(1,109)=4.46, p=0.037, 

Cohen’s d=0.55 for CAPS 5; Figure 6b). When separating patients by treatment arms, we 

observed a significant response difference between the subtypes for PE (F(1,34)=3.09, 

p=0.088 for CAPS-IV and F(1,34)=9.31, p=0.0044 for CAPS 5) and a marginally difference 

in the expected direction for CPT (F(1,71)=2.13, p=0.15 for CAPS-IV and F(1,71)=0.74, 

p=0.39 for CAPS 5). To assess the strength of our subtype findings on predicting treatment 

response, we compared the percentage of responders between the two subtypes. Subtype 1 

included significantly more responders with PTSD than those in subtype 2 for 

psychotherapy treatment (X2=4.07, p=0.044, with a number needed to treat of 5.1 for CAPS-

IV; Supplementary Figure 11a).
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One of the MDD replication cohorts (dataset 3) was randomized post-EEG to receive either 

the antidepressant sertraline or placebo. Linear mixed models on clinician-rated depression 

severity (Hamilton Depression Rating Scale (HAMD17)) in an intent-to-treat analysis 

revealed that the two subtypes differed in their response to sertraline versus placebo (Figure 

6c). Specifically, while sertraline was significantly better than placebo for patients in 

subtype 1 (group x time interaction: F(1,851)=6.38, p=0.012), the two arms failed to 

separate for patients in subtype 2 (F(1,517)=0.093, p=0.76). The treatment response analysis 

revealed that for sertraline, subtype 1 included significantly more responders with MDD 

than those in subtype 2 for antidepressant medication (X2=4.49, p=0.034, and the number 

needed to treat is 4.2). However, for placebo, there was no significant difference (X2=0.041, 

p=0.84) in the number of responders between the two subtypes (Supplementary Figure 11b).

We further tested for subtype-related differences in treatment outcome to rTMS concurrent 

with psychotherapy, which was given using one of two protocols to the patients in the 

second MDD replication cohort (dataset 4; 10Hz to the left dorsolateral prefrontal cortex or 

1 Hz to the right dorsolateral prefrontal cortex). Linear mixed models on self-reported 

depression severity (Beck Depression Inventory (BDI)) in an intent-to-treat analysis showed 

an effect of time for either rTMS protocol (F(1,142)>27, p<0.00001 for 10 Hz and 

F(1,207)>22, p<0.00001 for 1 Hz), but no difference between subtypes in either protocol 

(F(1,142)=1.5, p=0.22 for 10 Hz and F(1,207)=0.01, p=0.92 for 1 Hz, Figure 6d). A Bayes 

factor analysis30 was also used to quantify support for the null hypothesis of no differential 

treatment outcomes with rTMS between subtypes. We obtained Bayes factor BF10=0.23 for 

alternative hypothesis (H1) versus null hypothesis (H0) is 0.23. A BF10 value above 1 

indicates evidence for alternative hypothesis over null hypothesis, whereas a value below 1 

indicates the exact opposite. Conventionally, the strength of evidence is at least moderate for 

null hypothesis over alternative hypothesis when BF10 is in the range 0.1 – 0.33. Thus, the 

Bayes factor result provided further support for the lack of treatment outcome difference 

between subtypes.

Thus, in contrast to baseline clinical measures, on which the subtypes didn’t differ, their 

response to treatment on the same measures differed strikingly across a variety of 

treatments. Moreover, whereas the subtypes differed in their response to psychotherapy and 

antidepressant medication, the two subtypes responded similarly to each of two different 

protocols in the concurrent rTMS with psychotherapy treatment study. We also report the 

results of these treatment prediction analyses on item-level clinical scores in Supplementary 

Tables 2–4.

Clustering on clinical scores.

In order to confirm that our subtype findings were specific to EEG, we also clustered the 

clinical scores and demographic information alone. For each dataset, the baseline item-level 

clinical scores and demographic variables (i.e., age, gender, and years of education) were 

used as the features for clustering to generate clinical subtypes. The number of clusters was 

assessed using gap statistic criterion31 (Supplementary Figure 12a). By contrast with the 

replicable subtypes derived from PEC features, the clinical/demographic features identified 

three subtypes in discovery PTSD dataset 1, but no subtypes in replication PTSD dataset 2. 
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Likewise, no clinical subtypes were found on MDD dataset 3, while two subtypes were 

identified using clinical features in MDD dataset 4 (Supplementary Figure 12b). That is, 

clustering on clinical and demographic variables demonstrated that our replicable disease 

subtypes using PEC features could not be discovered using clinical measures alone. The 

results confirmed that the EEG-connectivity subtyping capitalized on neural information that 

was not available in the standard clinical and demographic variables.

Discussion

A central limitation of much neuroscience research in psychiatry has been that patients have 

been considered as a unitary group for which a maximally sensitive way to differentiate 

them from controls is needed. Evidence suggests that studying case-control group 

differences may impede psychiatric biomarker discovery and an understanding of 

psychiatric pathophysiology due to intrinsic heterogeneity in neurobiological abnormalities 

within currently clinically-defined diagnoses3,4,32. Moreover, how biomarkers that can 

elucidate this heterogeneity are to be identified, and replicated, has remained a long-standing 

challenge33. In this study, we have taken the perspective that understanding the best way to 

describe biological heterogeneity in patients through a data-driven effort will help inform the 

best questions to ask with respect to clinical outcomes and relationship to healthy controls4. 

Here, we implemented a data-driven neurobiological analysis by examining PEC-based 

signals from rsEEG that led to discovery of two replicable disease subtypes, based on 

primarily eyes-open beta-band connectivity differences, and evident across two major 

psychiatric populations (i.e. PTSD and MDD). While these two subtypes did not differ in 

terms of baseline clinical severity in any of the four datasets studied, they did differ in terms 

of clinical outcome with respect to either psychotherapy (for PTSD, which we furthermore 

replicated) or treatment with an antidepressant versus placebo (for MDD). In particular, 

subtype 2, whose PEC patterns were more distinct from those of healthy controls, responded 

less well to both treatments. By contrast, treatment with rTMS concurrent with 

psychotherapy was equally effective in both subtypes (for MDD). Moreover, the finding of 

different predictors of response to medication versus rTMS draw further support from our 

prior work, as well as that of others. Most notably, more intact default mode network 

connectivity in the iSPOT-D study predicted better treatment outcome with antidepressant 

treatment34, while more perturbed default mode network connectivity predicted better 

outcome with rTMS35. Unlike prior work, however, here we included a placebo medication 

arm, demonstrating that the subtypes differ in medication response relative to placebo as 

well. Thus, our findings substantially advance the identification and potential clinic-

translatability of psychiatric disease subtypes, achieving a long-sought goal for the field.

Subtype 1 was also found to have a PEC pattern more similar to that of heathy controls. Our 

interpretation of subtype 1, consistent with a long history of findings in psychiatric 

neuroimaging, is that on any given measure there are many patients who are equally 

symptomatic but do not demonstrate a biological abnormality relative to healthy controls. 

Not doing so on one measure (EEG connectivity in our case) does not, however, mean that 

they do not differentiate from healthy controls on other measures. Importantly, though, the 

fact that we could differentiate the two subtypes in a purely data-driven manner that made no 

reference to healthy control EEG connectivity, and that one subtype overlapped highly with 
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controls while the other did not, makes a strong statement in particular about the relevance 

of identifying the subtype that ended up differing from controls and responding poorly to 

psychotherapy and antidepressants.

A fundamental challenge in discovering biomarkers for psychiatric conditions is the accurate 

identification of those features most relevant to understanding a particular clinical 

population. We extracted PEC from source-localized rsEEG as the features for biomarker 

discovery. PEC computation has proven to be effective for mitigating the effects of volume 

conduction, a major shortcoming of EEG data, thereby accurately capturing 

neurobiologically-meaningful connectomic information within different frequency bands of 

spontaneous oscillatory activity36. Using this method, a previous study from our group used 

PEC to investigate the connectivity abnormality in PTSD patients versus healthy controls as 

a group-wise comparison27. Doing so revealed a PTSD-related connectomic difference 

almost exclusively in eyes-open theta-band PEC. Those results differ from the present work 

on two critical fronts – that the present analysis focuses on a data-driven dissection of 

heterogeneity rather than identifying group-level differences based on clinical categories, 

and as a consequence that the resulting PEC features have no overlap.

Since different frequency bands and EEG resting-state paradigms (e.g., eyes open and eyes 

closed) may carry different neurobiological information, which condition possesses the most 

informative features for subtype identification is unknown a priori. Instead of analyzing each 

condition separately, we employed sparse clustering29 approach to implement simultaneous 

feature selection and clustering by maximizing the between-cluster dissimilarity with a 

sparsity constraint on the PEC features. This data-driven approach identified that PEC 

features from the beta-band eyes open condition were the most informative biomarkers for 

delineating the two discovered subtypes. Beta-band PEC in prior MEG and simultaneous 

EEG-fMRI work is best able to yield large-scale functional networks with spatial features 

qualitatively and quantitatively similar to resting-state fMRI networks37,38. In our data, the 

beta-band eyes open condition yielded two subtypes characterized by strongly divergent 

PEC patterns in the frontal and posterior regions, respectively. Interestingly, the mean PEC 

patterns across either all patients or healthy controls resembled previously reported group-

level healthy control beta-band PEC patterns in MEG studies28,39. Although the mechanism 

mediating the two divergent connectivity patterns we discovered remains unclear, 

computational models may be employed to shed light on the possible scenarios that may 

account for PEC patterns similar to those we observed39,40. For instance, a model of coupled 

oscillators was used to study the source of the amplitude fluctuations observed in resting 

MEG signals of healthy subjects, where good agreement between the simulated and actual 

amplitude envelope connectivity patterns was achieved with proper coupling strengths and 

temporal delays between regions31. This model may help us understand factors that give rise 

to the distinct PEC patterns of the two subtypes.

Of note, unlike other prior studies, which focused only on a priori regions of interest or 

which selected features based on their correlation with clinical symptoms41, our connectivity 

biomarker discovery was based purely on EEG data without assuming any prior knowledge 

about individual brain regions, frequency bands or resting-state paradigms. Consequently, 

this feature selection eschewed the potential bias due to a selective focus on brain regions 
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that were thought to contribute to the pathophysiology of psychiatric disorders, which, 

however, might not be optimal for subtype identification. Moreover, our finding generalized 

across distinct datasets, which used different clinical criteria (and for different diagnoses), 

had variable rates of concurrent medication use, as well as used different EEG equipment 

(including amplifiers, channel count and montages).

Using the sparse clustering-based data driven approach, we found that the most informative 

PEC features were located in regions that contribute to the FPCN and DMN. Specifically, 

subtype 1 which, had stronger beta-band PEC in frontal regions but weaker beta-band PEC 

in parietal regions relative to subtype 2, gained significantly greater clinical benefit from 

either psychotherapy or antidepressant medication (versus placebo). In accordance with our 

findings, previous fMRI studies42–47 have reported that functional connectivity 

abnormalities in the FPCN and DMN were associated with the treatment outcome of 

psychotherapy in various psychiatric disorders. Specifically, lower pre-treatment functional 

connectivity in the cognitive control network including dorsolateral prefrontal cortex 

(DLPFC) and anterior cingulate cortex (ACC) was found to predict poorer antidepressant 

outcome42. A whole-brain voxel-wise analysis on resting-state fMRI revealed that treatment 

response to cognitive-behavioral therapy in generalized social anxiety disorder was predicted 

by amygdala-prefrontal connectivity43. Stronger DLPFC activity and DLPFC-cerebellum 

connectivity during working memory task at baseline was found to be strongly associated 

with a favorable response to cognitive-behavioral therapy in schizophrenia44. Pre-treatment 

within DMN connectivity was observed to predict post-treatment symptom severity of 

obsessive-compulsive disorder after cognitive behavioral therapy45. Pre-treatment DMN 

connectivity was also observed to contribute significantly to the multivariate pattern analysis 

for predicting clinical responses to antidepressant medication46. A randomized controlled 

trial also revealed that pre-treatment connectivity between posterior cingulate cortex (PCC) 

and ACC/medial prefrontal cortex (mPFC) predicted remission on antidepressant47. In 

addition, deactivation of the precuneus and PCC in DMN during emotion discrimination task 

was observed to predict treatment outcome of antidepressant medication48. On the other 

hand, greater magnetoencephalography connectivity between DLPFC and ACC in alpha 

band at baseline was found to predict better antidepressant treatment49. Pre-treatment EEG 

beta connectivity in frontal regions was reported to be positively correlated with clinical 

score change in MDD50. The similarities in the key regions identified in our EEG subtyping 

analysis and those previously reported in treatment prediction studies by fMRI are further 

echoed by regions with fMRI connectivity differences we observed in our data when 

dividing patients by their EEG-determined subtypes.

Our findings also suggest that rTMS-based neurostimulation treatment may provide a 

promising approach for treating patients who are otherwise less responsive to treatment51. 

Although subtype 2 was shown to be less responsive to psychotherapy and antidepressant 

medication, our rTMS findings demonstrated that both subtype 1 and subtype 2 responded 

similarly to two different rTMS treatment protocols (left-prefrontal 10Hz and right-

prefrontal 1Hz). This suggests that neurostimulation may be a good option relative to 

psychotherapy and antidepressant medication for subtype 2. In other words, our identified 

neural “medication/psychotherapy-resistance” phenotype may be separate from brain 

features that mediate responsive to rTMS with concurrent psychotherapy, and thus patients 
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in subtype 2 may be better served clinically by advancing faster to rTMS. It is typical that 

patients receive multiple rounds of pharmacological treatment for years, resulting in 

substantial morbidity and economic cost, prior to resorting to a treatment modality such as 

rTMS52,53. Even then, only a small minority of treatment-resistant depressed patients 

receive rTMS. More rapidly advancing patients with an antidepressant non-responsive brain 

phenotype to as rTMS, despite the cost of this procedure, may thus make both clinical and 

financial sense52–55, while medication trials may be preferred for patients with an 

antidepressant responsive phenotype. In this vein, it is worth noting that the large-scale 

studies of rTMS treatment for depression have specifically enrolled medication-resistant 

patients, and benefit has been shown for real over sham rTMS54,55. For this suggestion to be 

directly demonstrated, however, studies directly comparing rTMS to medication or 

psychotherapy based on patient subtype are needed. Likewise, it is important to note that 

patients receiving rTMS in dataset 4 also received psychotherapy, and thus it is not possible 

to know whether the similar outcome between subtypes was solely due to rTMS or its 

combination with psychotherapy.

Several limitations and potential extensions of the present study are important to note. First, 

our subtype findings on predicting responsiveness to psychotherapy and antidepressant 

medication remain to be replicated in additional independent PTSD and MDD samples with 

the same types of treatment. Second, here the fourth dataset used 26 EEG channels, which is 

generally considered low for source reconstruction and this may in turn affect subtyping 

performance56 (though we observed similar classification rates as for the other datasets). 

Third, despite the fact that orthogonalization removes the zero-lag connectivity, PEC still 

suffers from ghost connectivity resulting from volume conduction in the vicinity of true 

connectivity57. Moreover, as a bivariate connectivity metric, PEC is inherently vulnerable to 

spurious links due to the common effects of a third neural source58. Subtype identification 

may be further refined (including with respect to the number of subtypes identified) using 

other EEG connectivity measures that may capture different aspects of brain connectivity 

(e.g., imaginary coherence59, weighted phase lag index60, Granger causality61, directed 

transfer function62, and partial directed coherence63). Likewise, the relevance of our findings 

for other types of psychiatric diagnoses, such as schizophrenia, autism or addiction is 

unknown. Finally, the present study assumes the connectivity patterns to be static over time, 

and hence is unable to disentangle their temporal dynamics, which however may be crucial 

for understanding of functional communication in mental disorders64.

In summary, we identified neurobiological biomarkers of clinically relevant subtypes from 

rsEEG power envelope connectivity using a sparse clustering-based data-driven approach in 

order to elucidate critical heterogeneity in psychiatric populations. Our extensive samples 

and analyses revealed that the discovered power-envelope connectivity biomarkers from the 

eyes open beta-band delineated two stable and replicable clinically relevant subtypes that 

crossed traditional diagnostic boundaries. The two subtypes did not differ in terms of 

baseline clinical severity in any dataset but were associated with both critical differences and 

similarities in subsequent clinical outcome with a broad range of clinical interventions. 

Accordingly, our subtype findings provide a promising and generalizable approach for 

defining treatment-relevant neurobiological heterogeneity in psychiatric populations, and 
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thus advance personalized medicine in psychiatry and its potential translation to clinic-based 

implementation.

Methods

PTSD study dataset 1.

Participants.—Our discovery study involved 201 participants, including 106 individuals 

with PTSD, and 95 trauma-exposed healthy participants27 (Supplementary Table 5). All 

participants were combat veterans serving during the Operation Iraqi Freedom (Iraq), 

Operation Enduring Freedom (Afghanistan) and Operation New Dawn periods. Participants 

were recruited and assessed at either Stanford University or New York University after 

signing an informed consent approved by the relevant University’s institutional review 

board, in accordance with the ethical principles in the Declaration of Helsinki. Psychiatric 

diagnoses, were based on DSM-V criteria using the Clinician-Administered PTSD Scale 

(CAPS)65, and for other diagnoses using the Structured Clinical Interview for DSM-IV 

(SCID)66. All diagnoses were confirmed in consensus clinician meetings. A history of 

traumatic brain injury (TBI) was determined based on whether loss of consciousness 

occurred after a combat-related head trauma. In addition to the CAPS and SCID, participants 

completed the Beck Depression Inventory (BDI) to assess depressive symptoms, and the 

World Health Organization Quality of Life Scale (WHOQOL) to assess functioning. General 

exclusion criteria for both groups included the following: a history of psychotic, bipolar or 

active substance dependence (within 3 months for patients and lifetime for controls). 

Trauma-exposed healthy controls were required to have experienced a criterion A trauma, 

but not meet lifetime criteria for any Axis 1 psychiatric disorder, including PTSD.

Resting-state EEG acquisition.—EEG data of the discovery PTSD dataset were 

collected using a BrainAmp DC amplifier (Brain Products GmbH, Germany) at sampling 

rate of 5 kHz with the analog band-pass filtering between 0 and 1 kHz. Following the 

standard 10–20 system, the Easy EEG cap with 64 Ag-AgCl electrodes were used for the 

data recordings. The reference electrode was attached to the tip of the nose. During the 

experiment, participants were seated on a comfortable chair and instructed to remain awake 

and complete two sessions (3-minute eyes closed and 3-minute eyes open paradigms).

Resting-state EEG preprocessing.—The recorded rsEEG data were cleaned offline 

with our in-house fully automated artifact rejection pipeline, thereby minimizing the biases 

in preprocessing possible with manual rejection of artifacts. The steps are briefly described 

as follows: 1) The EEG data were resampled to 250 Hz; 2) The 60 Hz AC line noise artifact 

was identified via the Thompson F-statistic and removed by a multi-taper regression 

technique67. 3) Non-physiological slow drifts in the EEG recordings were removed using a 

0.01 Hz high-pass filter; 4) Bad epochs were rejected by thresholding the magnitude of each 

epoch. Bad channels were rejected based on thresholding the spatial correlations among 

channels. Subjects with more than 20% bad channels were discarded. The rejected bad 

channels were then interpolated from the EEG of adjacent channels via the spherical spline 

interpolation68; 5) Remaining artifacts were removed using ICA69. ICs related to the scalp 

muscle artifact, ocular artifact, ECG artifact, were automatically rejected using a pattern 
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classifier trained on expert-labeled ICs from another independent EEG data set; 6) EEG data 

were re-referenced to the common average. The resulting EEG data were then filtered into 

four canonical frequency ranges: theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and low 

gamma (31–50 Hz).

Resting-state fMRI acquisition.—Resting-state fMRI was collected from each 

participant for eight minutes. Participants were scanned using either a General Electrical 750 

scanner at Stanford University or a Siemens 3T Skyra scanner at New York University. Both 

sites acquired 32 axial slices with 3.5 mm thickness using an echo-planar gradient-epoch 

T2-weighted pulse sequence (with 2000 ms repetition time; 29 ms echo time; 90 degrees flip 

angle; 0 slice spacing; 20 cm field of view; 64×64 matrix size). A high-resolution T1-

weighted structural scan was acquired using three-dimensional MPRAGE in the sagittal 

place with parameters: inversion time = 450 ms, repetition time = 8.21 ms, echo time = 3.22 

ms, flip angle = 15 degrees, field of view = 24 cm, 184 slices, matrix size = 256×256, 

acquired resolution = 0.9375×0.9375×1.0 mm3. The quality of fMRI scans was monitored 

by MRI center staff weekly with scans of a Functional Biomedical Informatics Research 

Network (fBIRN) agar phantom, as described in previous literature70.

The following text is reproduced from our prior publications11,71: As this was a two-site 

study, prior to study initiation, we harmonized image acquisition sequences across the two 

scanners. This involved both assessing image quality and signal to noise ratio of images 

acquired using different parameters at each site, as well as acquisition of the same sequences 

on several traveling non-study control participants. Scanning of traveling non-study controls 

was repeated at roughly mid-study. Though the same acquisition sequences were used at 

both sites, differences between scanners are expected. For example, the echo-planar resting-

state scans typically had more ventral prefrontal and temporal lobe susceptibility-artifact 

dropout at the Stanford University site than the New York University site. These differences 

in acquisition site were accounted for using a site variable in all statistical models. During 

the progress of the study, assessment of signal quality and stability was done as follows. For 

each scan, quality was assessed by quantitative and qualitative factors, with results regularly 

reported to MRI center staff and principle investigators at weekly meetings. Quantitative 

factors include: scan parameters (check for correctness), slice-based signal to noise ratio, 

and total root mean square head motion as well as framewise displacement. We also 

monitored scanner performance by tracking reference voltage, imaging frequency, and bias 

field correction over time. Reference voltage (aka RF transmit reference voltage) determines 

the amplitude of the RF pulses. Imaging frequency variations can indicate scanner problems. 

The scanner’s central frequency is typically set to the resonance frequency of water photons. 

Measurements of this are proportional to the field strength, and imaging frequency is a 

common calibration parameter and can be found in every image’s DICOM header. 

Variations that exceed reference values can indicate magnet drift or RF instability. 

Qualitative factors were assessed visually by a trained image quality assessor. These 

included field of view clipping, wrapping, dropout, ringing/ striping, blurring, ghosting, RF 

problems (noise, spikes, leakage), and inhomogeneity.
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fMRI preprocessing.—The fMRI preprocessing was performed using fMRIPrep71. The 

T1-weighted image was corrected for intensity non-uniformity and then skull-stripped. Brain 

tissue segmentation of cerebrospinal fluid, white-matter and gray-matter was performed on 

the brain-extracted T1-weighted image using FSL72. Volume-based spatial normalization 

was performed through nonlinear registration using brain-extracted versions of both the T1-

weighted image and template. For each fMRI scan, the following preprocessing was 

performed. First, a reference volume and its skull-stripped version were generated using a 

custom methodology of fMRIPrep. A deformation field to correct for susceptibility 

distortions was estimated based on fMRIPrep’s fieldmap-less approach. Registration is 

performed with antsRegistration, and the process regularized by constraining deformation to 

be nonzero only along the phase-encoding direction, and modulated with an average 

fieldmap template. Based on the estimated susceptibility distortion, a corrected echo-planar 

imaging reference was calculated for a more accurate co-registration with the anatomical 

reference. The blood-oxygenation-level-dependent (BOLD) reference was then co-registered 

to the T1-weighted image. Co-registration was configured with twelve degrees of freedom to 

account for distortions remaining in the BOLD reference. Head-motion parameters with 

respect to the BOLD reference are estimated before any spatiotemporal filtering. BOLD 

signals were slice-time corrected and resampled onto their original space by applying a 

single, composite transform to correct for head-motion and susceptibility distortions. The 

BOLD signals were then spatially normalized into the standard space. Automatic removal of 

motion artifacts using ICA was performed on the preprocessed BOLD on MNI space time-

series after removal of non-steady state volumes and spatial smoothing with an isotropic, 

Gaussian kernel of 6 mm full-width half-maximum.

PTSD study dataset 2.

Participants and treatment.—The replication PTSD dataset includes 135 participants 

(supplementary Table 6) recruited based on meeting clinical criteria for PTSD in the context 

of evaluation for psychotherapy treatment in a Veterans Affairs (VA) clinic located in either 

norther California or New Mexico. This dataset contains two cohorts: 72 participants used 

for our initial submission and 63 participants who completed the study after our initial 

submission (and thus can serve as an additional opportunity for replication analyses). 

Written informed consent was obtained from each participant under institutional review 

board-approved protocol at Stanford University. All assessments occurred at Stanford, with 

participants recruited in New Mexico being flown, after signing a local written informed 

consent, to Stanford. Exclusion criteria followed those in dataset 1. Clinical severity was 

assessed using the CAPS interview for both DSM-IV and DSM-5, using self-reported BDI 

and WHOQOL.

After baseline assessment, participants were enrolled to one of two evidence-based 

manualized protocols for the treatment of PTSD: 1) Prolonged exposure (PE)73 or 2) 

Cognitive Processing Therapy (CPT)74. Type of therapy was chosen by the patient and the 

therapist. Importantly, all patients received psychotherapy in their participating VA PTSD 

clinic. Treatment outcome was assessed using the CAPS scale for DSM-IV and DSM5.
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Resting-state EEG acquisition.—EEG data of the replication PTSD dataset were 

collected using an Electrical Geodesics (EGI) amplifier at sampling rate of 1 kHz with 256 

saline-based electrodes. For both datasets, the electrode impedances were kept below 50 KΩ 
during the data recordings. During the experiment, participants were seated on a comfortable 

chair and instructed to remain awake and complete two sessions (10-minute eyes closed and 

10-minute eyes open paradigms).

Resting-state EEG preprocessing.—The recorded rsEEG data were cleaned offline 

with the identical fully automated artifact rejection pipeline as used in PTSD study dataset 1.

Resting-state fMRI acquisition.—Structural and functional MRI data were acquired on 

a 3T General Electrical scanner. The T1 structural MRI was scanned with parameters: 

BRAVO sequence acquired sagitally using a 8-channel coil, 2D image reconstruction matrix 

of 256×256, flip angle = 15 degrees, slice thickness = 1 mm, repetition time = 8.208 ms, 

echo time = 3.22 ms, field of view = 24 cm. The functional MRI was scanned with 

parameters: a gradient echo epi simultaneous multi-slice sequence acquired axially using a 

32-channel coil, 2D image reconstruction matrix 70×70, slice thickness = 4 mm, flip angle = 

45 degrees, repetition time = 700 ms, echo time = 30 ms, field of view = 22 cm. For rsfMRI, 

participants were instructed to keep their eyes open and fixated on a cross. Each 10-minute 

run yielded 851 fMRI volumes in each session.

fMRI preprocessing.—The same preprocessing pipeline as used in PTSD study dataset 1 

was adopted here for fMRI preprocessing.

Depression study dataset 3.

Trial registration. Establishing Moderators and Biosignatures of Antidepressant Response 

for Clinical Care for Depression (EMBARC) is registered with ClinicalTrials.gov (identifier: 

NCT01407094).

Participants and treatment.—Written informed consent was obtained from each 

participant under institutional review board-approved protocols at each of the four study 

sites: University of Texas Southwestern Medical Center (TX), Massachusetts General 

Hospital (MG), Columbia University (CU), and University of Michigan (UM). Data reported 

here are based on participants in the Establishing Mediators and Biosignatures of 

Antidepressant Response (EMBARC) study who were randomly assigned to sertraline or 

placebo during stage 1 of the trial (N=309 total)7,8,75. Key eligibility for the study included 

the following: being 18–65 years old; having major depression as a primary diagnosis by the 

Structured Clinical Interview for DSM-IV Axis I Disorders (SCID) 1; at least moderate 

depression severity with a score ≥14 on the Quick Inventory of Depressive 

Symptomatology-Self Report (QIDS-SR) at screening and randomization; a major 

depressive episode beginning before age 30; either a chronic recurrent episode (duration ≥ 2 

years) or recurrent MDD (at least 2 lifetime episodes); no antidepressant failure during the 

current episode. Exclusion criteria included the following: current pregnancy, breastfeeding, 

no use of contraception; lifetime history of psychosis or bipolar disorder; substance 

dependence in the past six months or substance abuse in the past two months; unstable 
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psychiatric or general medical conditions requiring hospitalization; study medication 

contraindication; clinically significant laboratory abnormalities; history of epilepsy or 

condition requiring an anticonvulsant; electroconvulsive therapy (ECT), vagal nerve 

stimulation (VNS), TMS or other somatic treatments in the current episode; medications 

(including but not limited to antipsychotics and mood stabilizers); current psychotherapy; 

significant suicide risk; or failure to respond to any antidepressant at adequate dose and 

duration in the current episode.

EMBARC used a double-blind design, wherein participants were randomized to an 8-week 

course of sertraline or placebo (Supplementary Figure 13). Randomization was stratified by 

site, depression severity, and chronicity using a block randomization procedure. Sertraline 

dosing began at 50mg using 50mg capsules and was increased as tolerated if the patient did 

not respond until a maximum of 200mg75. A similar dosing approach was used for placebo 

capsules. Participant information is summarized in Supplementary Table 7. The primary 

outcome was the Hamilton Depression Rating Scale (HAMD17). For participants lacking an 

endpoint HAMD17, multiple imputation by chained equations was conducted in R76 using 

the package mice77. The following observed variables were utilized in order to impute 

endpoint HAMD17 values for missing data via Bayesian regression: baseline HAMD17, 

week 1 HAMD17, week 2 HAMD17, week 3 HAMD17, week 4 HAMD17, week 6 HAMD17, 

baseline Quick Inventory of Depressive Symptoms (QIDS) total score, baseline Mood and 

Symptom Questionnaire subscale scores for Anxious Arousal, Anhedonic Depression, and 

General Distress, Snaith-Hamilton Pleasure Scale (SHAPS) total score, age, years of 

education, gender, and Wechsler Abbreviated Scale of Intelligence (WASI) t-scores for 

Vocabulary and Matrix Reasoning.

Resting-state EEG acquisition.—rsEEG were recorded from each of the four study 

sites, including Columbia University, University of Texas Southwestern Medical Center, 

University of Michigan, and Massachusetts General Hospital. At Columbia University, 72-

channel EEG were collected using a 24-bit BioSemi system (sampling rate: 256 Hz, 

bandpass: DC-251.3 Hz), a Lycra stretch electrode cap (Electro-Cap International Inc., 

Ohio), and an active reference at electrode locations PPO1 and PPO2. At McLean Hospital, 

129-channel EEG data were collected using a Geodesic Net system (sampling rate: 250 Hz, 

bandpass: 0.01–100 Hz), with Cz as reference (Electrical Geodesics Inc., Oregon). At the 

University of Michigan, 60-channel EEG data were collected using the 32-bit NeuroScan 

Synamp (Compumedics, TX) system (sampling rate: 250 Hz, bandpass: 0.5–100 Hz), a 

Lycra stretch electrode cap, and a nose reference. Finally, at the University of Texas 

Southwestern Medical Center, 62-channel EEG data were recorded (sampling rate: 250 Hz, 

bandpass: DC-100 Hz) using a 32-bit NeuroScan Synamp system, a Lycra stretch electrode 

cap, and a nose reference. At all study sites, amplifier calibrations were performed. 

Experimenters were certified by the Columbia EEG team after demonstrating accurate EEG 

cap placement and delivery of task instructions via video conference, and then submitting 

satisfactory EEG data from a pilot subject. rsEEG were recorded during four 2-minute 

blocks (2 blocks for eyes-closed, and 2 blocks for eyes open) in a counterbalanced order. 

Participants were instructed to remain still and minimize blinks or eye movements, and to 

fixate on a centrally presented cross during the eyes-open condition.
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Resting-state EEG preprocessing.—The recorded rsEEG data were cleaned offline 

with the identical fully automated artifact rejection pipeline as used in PTSD study dataset 1. 

After artifact rejection, 54 EEG channels common to all four study sites were identified and 

extracted for each subject. Consequently, of the 266 patients with pretreatment EEG 

recordings, 228 had usable EEG data for analyses. The 38 patients with unusable EEG 

recordings mainly had too many bad EEG channels and exceedingly large total power across 

channels.

Resting-state fMRI acquisition.—Structural and functional MRI were collected using 3 

Tesla scanners from the four different sites. The rsfMRI data were acquired via T2*-

weighted images using single-shot gradient echo-planar imaging sequence during 6-minute, 

comprising 180 volumes covering 39 axial slices with repetition time = 2000 ms, echo time 

= 28 ms, flip angle = 90 degrees, matrix size = 64×64, and voxel size = 3.2×3.2×3.1 mm3. 

Participants were instructed to keep their eyes open during the scanning. T1-weighted 

structural 3D axial images were acquired in the same session with parameters: Phillips 

scanner, Series = MPRAGE, repetition time = 8 ms, echo time = 3.7 ms, flip angle = 12 

degrees, voxel size = 1×1×1 mm3 for TX site; Siemens scanner, Series = MPRAGE, 

repetition time = 2.3 ms, echo time = 2.54 ms, flip angle = 9 degrees, voxel size = 1×1×1 

mm3 for MG site; General Electrical scanner, Series = IR FSPGR, repetition time = 6 ms, 

echo time = 2.4 ms, flip angle = 9 degrees, voxel size = 1×1×1 mm3 for CU site; Phillips 

scanner, Series = TFE, repetition time = 8.1 ms, echo time = 3.7 ms, flip angle = 12 degrees, 

voxel size = 1×1×1 mm3 for UM site. More details of the acquisition parameters can be 

found in literature9.

fMRI preprocessing.—The same preprocessing pipeline as used in PTSD study dataset 1 

was adopted here for fMRI preprocessing.

Depression study dataset 4.

Participants.—This dataset was based on a naturalistic open-label clinical study, and has 

been previously reported in detail elsewhere78,79. Briefly, 179 patients were drawn from 

three outpatient mental health care clinics in the Netherlands (neuroCare Clinic Nijmegen, 

neuroCare Clinic The Hague, and Psychologenpraktijk Timmers Oosterhout) between May 

2007 and November 2016. Inclusion criteria included: 1) a primary diagnosis of non-

psychotic MDD or dysthymia, 2) Beck Depression Inventory, second edition, Dutch version 

(BDI-II-NL)≥14 at baseline, 3) treatment with at least 10 sessions of rTMS over the DLPFC 

or early exit if response was achieved within 10 sessions. All participants signed an 

informed consent. Additional exclusion criteria included: previous ECT treatment, epilepsy, 

traumatic brain injury, current psychotic disorder, wearing a cardiac pacemaker or metal 

parts in the head, and current pregnancy. The subject information was summarized in 

Supplementary Table 8.

Resting-state EEG acquisition.—rsEEG data were acquired from 26 channels 

according to the 10–20 electrode international system (Quickcap; NuAmps). Data were 

referenced to averaged mastoids with a ground at AFz. The sampling rate of all channels 

was 500 Hz. A low pass filter with attenuation of 40dB per decade above 100Hz was 
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employed prior to digitization. Subjects were asked to rest quietly with their eyes open and 

eyes closed for 2 minutes each.

Resting-state EEG preprocessing.—The recorded rsEEG data were cleaned offline 

with the identical fully automated artifact rejection pipeline as used in PTSD study dataset 1.

Repetitive TMS treatment.—All patients were treated with either a high frequency (10 

Hz) protocol over the left DLPFC or a low frequency (1 Hz) protocol over the right DLPFC, 

or both sequentially. The rTMS data included a long time-span, and the rTMS protocol 

applied was never based on clinical symptomatology. In the beginning (2006–2012) the 

standard protocol applied was 10 Hz left DLPFC rTMS, and only in some cases 1 Hz right 

DLPFC rTMS was applied (when there were concerns for safety e.g. paroxysmal activity, 

seizure risk) due to 1 Hz rTMS being considered a safer protocol. On first inspection of 

those data80, it was found that the clinical benefits for 10 Hz and 1 Hz were 

indistinguishable, after which time period the standard protocol became 1 Hz right 

DLPFC78. The analyses reported here focus only on patients that received only 10 Hz or 1 

Hz rTMS as too few data sets were available on patients who received both treatments or 

switched treatments mid-way. There were 73 patients in the 10 Hz arm, while in the 1 Hz 

arm there were 106 patients. Selection of the treatment protocol was not done in a 

randomized manner, but rather in the context of clinical care, and thus each arm is analyzed 

separately. rTMS was performed using a Magstim Rapid2 (Magstim Company, Spring 

Gardens, UK) or a Deymed DuoMag XT-100 stimulator with a figure-of-8 coil, 70 mm 

diameter. For the 10 Hz protocol, rTMS was administered at 10 Hz over the left DLPFC, 

110–120% of the resting motor threshold (MT), 30 trains of 5s duration, inter-train interval 

(ITI) 30s, 1500 pulses per session. The 1Hz protocol consisted of rTMS at 1 Hz over the 

right DLPFC, 110–120% MT, 120 trains of 10s duration, ITI 1s, 1200 pulses per session. 

The DLPFC was localized using either the 5-cm rule or the Beam F3/F4 method81. 

Furthermore, rTMS treatment was complemented with cognitive behavioral psychotherapy 

by a trained psychologist82. Psychotherapy was performed concurrent with the rTMS 

treatment in 45-minute sessions (the rTMS lasting 20 minutes). Sessions took place with a 

minimum frequency of two to three times per week and a maximum frequency of two per 

day, as per the patient’s availability.

As these data were drawn from naturalistic clinical care, the total number of sessions 

depended on clinical decisions, and thus varied across patients. Decisions to continue 

treatment were based on response to treatment, clinical evaluation of symptom severity, and 

the patient’s own request. Decisions followed several rules: if a BDI decrease was observed 

of at least 20% from baseline 10 sessions, the treatment was continued, and re-evaluated 

every five sessions. If no response occurred by session 20–25, treatment was recommended 

to be terminated unless the patient requested to extend it. If BDI scores reached 12 or below 

for five sessions, which indicated remission, the patient was given the option of ending or 

tapering treatment, with an option to extend into maintenance sessions (one session every 6–

8 weeks). However, if the threshold of BDI=12 was reached, but symptom improvement 

continued, treatment was continued until BDI scores ceased improving.
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Clinical measurements.—Clinical outcome was assessed on the BDI (which was the 

primary outcome measure for the decision rules above) as well as the Depression, Anxiety 

and Stress Scale (DASS)83. The DASS is a self-report questionnaire and consists of three 

subscales: depression (DASS-D), anxiety (DASS-A), and stress (DASS-S).

Source-space power envelope connectivity calculation.

In this study, we exploited the source-space power envelope-based functional connectivity 

(PEC) of EEG source signals as features for the subtyping analysis. PEC measures the 

correlation between the power envelopes of two band-limited spontaneous brain signals and 

therefore characterizes the amplitude synchrony between any pair of brain regions. By 

orthogonalizing the analytical time-series of the two brain signals prior to calculating the 

power envelopes, PEC removes the zero-phase-lag connectivity, which is the primary source 

of spurious connectivity due to volume conduction36.

We first implemented source localization using the minimum-norm estimation approach84 to 

convert the channel-space EEG into the source-space signals of 3003 vertices. Specifically, a 

three-layer (scalp, skull, and cortical surface) boundary element head model was computed 

with the OpenMEEG plugin85 based on FreeSurfer average brain template86. A total of 3003 

dipoles with unconstrained orientations were generated. The lead-field matrix relating the 

dipole activities to the EEG was obtained as a result of the boundary element modeling. 

Given channel-space EEG signals Z ∈ ℝM × T  of M channels and T  sampling points and the 

lead-field matrix L ∈ ℝM × 9009, the source signals X ∈ ℝ9009 × T  could be estimated via

X = AZ (1)

where A = RLT LRLT + λ Γ −1 ∈ ℝ9009 × M is the inverse operator derived from the 

minimum-norm estimation. R ∈ ℝ9009 × 9009 is the source covariance matrix encoding depth 

weights to compensate for the bias of assigning larger source estimates towards superficial 

locations, Γ ∈ ℝM × M the noise covariance matrix, and λ the regularization parameter. 

Following recommendations in the literature87,88, R = diag ri  with 

ri = Li, 1 2
2 + Li, 2 2

2 + Li, 3 2
2 −1/2

, where Li, k k = 1,   2,   3  are the three columns of L 

associated with the i-th vertex, λ =
δ ⋅ trace LLT

M , where L = Γ−1/2 L is the whitened lead-

field matrix, and δ is equal to the inverse of the power signal-to-noise ratio of the whitened 

EEG data Z =   Γ−1/2 Z. In our analysis, δ = 1/81. For resting-state EEG, we assume the 

noises in different channels are uncorrelated and with equal variance. Hence, with the 

common average reference, Γ = IM − 1M ⋅ 1M
T /M IM − 1M ⋅ 1M

T /M T
, where IM ∈ ℝM × M

is an identity matrix, and 1M ∈ ℝM an all-one vector.

Principal component analysis (PCA) was next employed to reduce the 3-dimensional 

estimated source signal at each vertex to the one-dimensional time series of the principal 

component. The analytical signal was then extracted at each vertex via the wavelet transform 
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with the complex Morlet wavelet36. Consistent with literature36, a spectral band-width of 0.5 

octave (f / σf = 5.83 and kernel size was 6 σt, with σf and σt being the spectral standard 

deviation and temporal standard deviation, respectively) was used for the wavelet transform. 

Subsequently, orthogonalization was carried out for the analytical signal of each vertex 

versus those of all other vertices to discount the spurious correlation resulting from the 

limited spatial resolution of source estimates, followed by computing their power 

envelopes36. Specifically, the orthogonalized component of an analytical signal Y t  with 

respect to an analytical signal X t  was defined at sampling point t as

Y ⊥ t = imag Y t X t *
X t (2)

where X t * denotes the conjugate of X t . The power envelopes were calculated as the 

square of the orthogonalized analytical signals, followed by a logarithmic transform to 

enhance normality. PEC was then calculated as the Pearson’s correlation coefficient between 

the log-power envelopes at each pair of vertices, followed by the Fisher’s r-to-z 

transformation to enhance normality27,36.

The regional pairwise PEC features were further extracted among 31 cortical regions (MNI 

space) that were obtained from a parcellation of resting-state fMRI connectivity using 

independent component analysis applied to an independent set of subjects in a prior 

study27,89. For each pair of regions, connectivity was calculated by averaging PEC values 

over all possible vertex pairs. As a result, 465 unique regional pairwise connectivity features 

were computed in each of the four frequency bands and each of the two resting paradigms 

(eyes open and closed), followed by z-score normalization, and then used for the subsequent 

clustering-based subtyping analysis. The overall subtyping framework is illustrated in 

Supplementary Figure 1.

To verify the quality of the PEC estimates does not degrade when the vertex number 

decreases from 15003 to 3003, we compared the ROI-level PEC extracted with source 

localization between using 3003 vertices and 15003 vertices. PEC extracted based on 3003 

vertices is highly similar (correlation coefficient r>0.97) to that based on 15003 vertices 

(Supplementary Figure 14a). In addition, we further compared the ROI-level mean PEC 

extracted using 3003 vertices versus 15003 vertices for all patients, subtype 1, and subtype 

2, respectively. The results again show very high similarity (correlation coefficient r>0.99) 

between using 3003 vertices and 15003 vertices for all these cases (Supplementary Figure 

14b). All these results confirmed that using 3003 vertices for source localization derived 

PEC that was very comparable to that of using 15003 vertices. Therefore, we used 3003 

vertices for our study due to lower computational cost.

Neurophysiological subtype identification.

For each participant, we combined PEC features extracted from all of the eight conditions to 

form a feature vector with dimensionality of 465×8 = 3720. Such a large number of features 

typically include redundant information and the true underlying subtypes present in the data 

may differ only with respect to a portion of PEC features. In order to automatically 
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determine the most distinct PEC features across all the conditions for more accurate 

identification of neurophysiological subtypes, we exploited a sparse K-means clustering 

algorithm29 that provides an elegant way to achieve joint feature selection and clustering. 

Specifically, we define the between-cluster sum of squares for feature f as

Ωf = 1
n ∑

i = 1

n
∑
j = 1

n
di, j, f − ∑

k = 1

K
1
nk

∑
i, j ∈ Ck

di, j, f (3)

where di, j, f = xif − xjf
2 denotes the dissimilarity measure between observations i and j

along feature f, Ck consists of the indices of the observations in cluster k, and nk is the 

number of observations in cluster k. The sparse K-means clustering is to find the solution to 

the following optimization problem:

max
C1, …, CK, w

  ∑
f = 1

F
wf Ωf  

subject   to             w 2 ≤ 1,           w 1 ≤ s,           wf ≥ 0   ∀f
(4)

where w ∈ ℝ3720 is the weight vector to be estimated. Optimization problem (4) can be 

solved via an iterative algorithm29. As a result of the lasso-type sparsity constraint90 

w 1 ≤ s, only the most important features have larger weights while zero weights are 

assigned to the majority of features. Thus, the sparse K-means clustering provides a data-

driven approach for determining the potentially important connectivity biomarkers. In our 

analysis, an inner-loop cross-validation was carried out to determine the appropriate sparsity 

parameter s for feature selection. Based on the estimated sparse feature weights, K-means 

clustering was then implemented on the weighted feature subset to derive the optimal cluster 

solution, with the number of clusters determined by the gap statistic that compared the 

change in within-cluster dispersion with that expected under an appropriate reference null 

distribution31. The gap statistic chooses the cluster size based on 1-standard-error criterion, 

finding the smallest value of k such that the gap value is within one standard deviation of the 

gap at k+1. In addition, variance ratio criterion (i.e., the Calinski-Harabasz criterion91, 

defined as the ratio of between-cluster variance to within-cluster variance) was also used to 

assess the choice of the number of clusters.

Clustering evaluation analysis.

The gap statistic indicated that two clusters yielded the best gap value satisfying the 1-

standard-error criterion (Supplementary Figure 7a). The Calinski-Harabasz criterion further 

confirmed that two clusters achieved the maximum variance ratio and hence were the most 

distinct in the patient group (Supplementary Figure 7b). To validate the stability of the 

identified subtypes, we repeatedly carried out clustering on multiple subsets of the whole 

samples. Specifically, we repeated the clustering analysis on 100 randomly selected 

subsamples (by leaving 10% subjects out) of the dataset. For each subsample, subtype 

assignment stability was evaluated by testing whether pairs of subjects assigned to the same 

Zhang et al. Page 22

Nat Biomed Eng. Author manuscript; available in PMC 2021 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cluster had the same cluster labels obtained by clustering on the whole dataset. The stability 

performance was averaged over the 100 runs of clustering. The stability analysis confirmed 

that the two clusters also achieved the highest stability (Supplementary Figure 7c–d). In 

addition, we also assessed the stability of cluster solution in dataset 1 across samples of 

healthy controls and compared it with that of patients. The subtyping stability of healthy 

controls (80.1%) was significantly lower (Wilcoxon rank sum statistical test: z=2.3, p=0.02) 

than that of PTSD (91.9%) as well as more variable (coefficient of variation in healthy 

controls: 16.0, and in patients: 6.2) (Supplementary Figure 9c).

Pattern classification analysis.

To assess the transferability of our discovered subtypes across independent datasets, we 

implemented classification analysis by training a cluster centroid-based classifier on one 

dataset (training set) and then applying it to another dataset (test set). Specifically, we 

performed sparse clustering on the training set to estimate the feature weights and derive the 

subtype labels. For each subtype, the cluster centroid was calculated from the weighted beta 

band eyes-open PEC features belonging to the subtype. By applying the feature weights to 

the test set, we further calculated the Euclidean distance between the weighted test samples 

and each of the cluster centroids. A test sample was then classified as a subtype whose 

centroid has the smallest distance to the test sample. The classification accuracy was 

evaluated by comparing the predicted subtype labels from the classifier with those obtained 

from clustering analysis of the test set. Similarly, we also adopted the same classification 

strategy to iteratively train the classifier on three datasets and tested on the fourth. In this 

case, the estimation of feature weights and identification of subtype labels were 

implemented on all three datasets in the training set instead of a single one.

Subtype discriminability using resting-state fMRI.

In order to further validate that our identified subtypes indeed represent internally valid and 

neurobiologically meaningful phenotypes related to brain connectivity, we carried out a 

classification analysis to distinguish the two EEG-connectivity driven subtypes using 

resting-state fMRI (rsfMRI) connectivity features. Specifically, regional pairwise fMRI 

connectivity was calculated using the same parcellation as that for EEG connectivity 

analysis. We pooled rsfMRI data (205 patients available for subtype 1 and 139 patients 

available for subtype 2) from scans acquired as part of datasets 1 – 3 for training a linear 

relevance vector machine (RVM)92,93 classifier. A 10×10-fold cross-validation was 

implemented to evaluate the classification performance including accuracy, sensitivity in 

detecting each subtype versus another, and ROC curve. We regressed the effects of imaging 

site out of the fMRI data using multiple linear regression within the training set at each 

round of the cross-validation, and the residualized fMRI connectivity features were used for 

training the model. For each of 10 repetitions, all subjects were randomly divided into 10 

folds, such that each subject was left out and used as a test set once while the remaining nine 

folds were used as training set for RVM model learning. The classification performance was 

then assessed over the 10 repetitions. The significance of classification accuracy was further 

evaluated using 1000 random label permutations.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Resting-state EEG power-envelope connectivity (PEC) biomarkers define two subtypes in 
the discovery PTSD dataset.
PEC was calculated across pairs of 31 regions of interest (ROIs), separately for four 

frequency bands (theta, alpha, beta, and gamma), as well as two resting conditions (eyes-

open and eyes-closed). a, Number of non-zero feature weights for different conditions as a 

result of sparse clustering. Each feature weight corresponds to a PEC feature. Selected 

features are primarily from the beta frequency band and eyes-open condition. b, Mean 

connectivity matrices of all patients, healthy controls (HC), and two subtypes for the beta 

band eyes-open condition. The error bar indicates mean connectivity values. c, Correlation 

of mean connectivity between HC and subtype 1, and between HC and subtype 2, 

respectively. Each dot corresponds to the PEC between two ROIs. The scatterplots show that 

the mean connectivity patterns are highly similar between HC and subtype 1, but less so 

between HC and subtype 2.
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Fig. 2 |. PEC difference between the two subtypes.
a, Connectivity difference matrices for the beta band eyes-open condition between the two 

subtypes and between healthy controls and subtype 2, assessed in a two-sample t-test 

(showing t-values with FDR corrected p<0.05). b, Visualization of connectivity difference 

(subtype 1 vs. subtype 2) patterns on the brain. The size of the sphere at each ROI represents 

the average t-value across all PEC features from that ROI to all others. Each edge represents 

the connectivity difference strength between two ROIs. VN = visual network, SOM = 

sensorimotor network, DAN = dorsal attention network, VAN = ventral attention network, 

FPCN = fronto-parietal control network, DMN = default-mode network.
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Fig. 3 |. Replication of the identified PEC subtypes in the two cohorts within dataset 2 (PTSD 
replication).
For each cohort, connectivity difference was assessed in a two-sample t-test with subtype 1 

versus subtype 2 (showing t-values with FDR corrected p<0.05). a, Connectivity difference 

matrix obtained from the first cohort. b, Connectivity different matrix obtained from the 

second cohort. c–d, Visualization of connectivity difference patterns on the brain for the first 

and the second cohorts, respectively. For both cohorts in dataset 2, two subtypes were found 

with highly similar patterns of functional connectivity differences to those in the discovery 

dataset. VN = visual network, SOM = sensorimotor network, DAN = dorsal attention 

network, VAN = ventral attention network, FPCN = fronto-parietal control network, DMN = 

default-mode network.
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Fig. 4 |. Replication of the identified PEC subtypes in the two MDD datasets.
For each dataset, connectivity difference was assessed in a two-sample t-test with subtype 1 

versus subtype 2 (showing t-values with FDR corrected p<0.05). a, Connectivity difference 

matrix obtained from dataset 3. b, Connectivity matrix difference obtained from dataset 4. 

c–d, Visualization of connectivity difference patterns on the brain for datasets 3 and 4, 

respectively. Two subtypes were discovered with distinct functional connectivity patterns 

that were consistent with those found in the two PTSD datasets. VN = visual network, SOM 

= sensorimotor network, DAN = dorsal attention network, VAN = ventral attention network, 

FPCN = fronto-parietal control network, DMN = default-mode network.
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Fig. 5 |. Validation of subtype transferability across independent datasets.
A cluster-centroid-based classifier was derived from the sparse clustering analysis from one 

dataset (using PEC features from beta band eyes open condition) and then applied to data 

from another independent dataset, resulting in predicted class labels. Classification accuracy 

was then calculated by comparing the predicted class labels with those obtained from the 

sparse clustering analysis on the second dataset. a, Training on one dataset and tested on one 

other. b, Training on three datasets and tested on the fourth.
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Fig. 6 |. Responsiveness of subtypes to treatment across diagnoses and treatment modalities.
a, Subtype 2 patients had worse outcomes to psychotherapy treatment in PTSD for the first 

cohort of dataset 2. b, Similarly, subtype 2 patients responded significantly worse than 

subtype 1 to psychotherapy treatment in PTSD in the second cohort of dataset 2. c, Subtype 

2 patients failed to respond differentially to an antidepressant versus placebo in MDD 

(dataset 3), whereas for subtype 1 the antidepressant was superior to placebo. d, Both 

subtypes responded equally well to one of the two different rTMS treatment protocols in 

MDD (dataset 4). All error bars indicate the standard error of the mean.
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