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Abstract

While research on emotions has become one of the most pro-
ductive areas at the intersection of cognitive science, artifi-
cial intelligence and natural language processing, the diversity
and incommensurability of emotion models seriously hampers
progress in the field. We here propose kNN regression as a
simple, yet effective method for computationally mapping be-
tween two major strands of emotion representations, namely
dimensional and discrete emotion models. In a series of ma-
chine learning experiments on data sets of textual stimuli we
gather evidence that this approach reaches a human level of
reliability using a relatively small number of data points only.
Keywords: Models of Human Emotion; Representation Map-
ping; Machine Learning; Natural Language Processing

Introduction
In the past decades, a multitude of different models have been
devised to elucidate the nature of human emotion (Scherer,
2000). A common distinction at the representational level
of emotions sets dimensional models apart from discrete or
categorical models (Stevenson, Mikels, & James, 2007).

Dimensional models consider affective states to be best de-
scribed relative to a small number of independent emotional
dimensions (often two or three). Substantial contributions to
this line of research are often attributed to Osgood, Suci, and
Tannenbaum (1957) as well as Mehrabian and Russell (1974)
(Scherer, 2000). Although different labels have been pro-
posed by major proponents of this approach, we here refer to
these fundamental dimensions as Valence (the positiveness or
negativeness of an emotion), Arousal (a calm–excited scale)
and Dominance (the perceived degree of control over a (so-
cial) situation)—VAD, in short.1

Discrete models, on the other hand, often refer to emotions
as evolutionary derived response pattern to major environ-
mental events—each with its specific elicitation conditions
(Scherer, 2000). Thus, in contrast to dimensional models
which tend to focus on the subjective feeling aspect of emo-
tion (and its associated verbal expression) researchers who
adhere to the discrete approach rather tend to focus on motor
(especially facial) expression and adaptive behavior. Among
others, Plutchik (1980), Izard (1994) and Ekman (1992) are
most influential for the development of this line of research.

1Another common name for the Valence dimension is Pleasure
(PAD). Our choice of terminology (VAD) follows the more recent
stimulus sets we use here (Warriner, Kuperman, & Brysbært, 2013;
Ferré, Guasch, Martı́nez-Garcı́a, Fraga, & Hinojosa, 2016).

Although many different sets of such basic emotions have
been proposed (typically ranging between 7 and 14 cate-
gories), up until now, no consensus has been reached on their
exact and complete number (Scherer, 2000). However, most
researchers seem to agree on at least five basic categories,
namely Joy, Anger, Sadness, Fear, and Disgust.

For dimensional models, a broad variety of stimulus data
bases have been developed, predominantly covering lexical
stimuli. The Affective Norms for English Words (ANEW)
(Bradley & Lang, 1999a) have been one of the first and
probably most important data sets which comprise affective
norms for Valence, Arousal and Dominance for 1,034 En-
glish words. Complementary lexical affective norms have
also been developed for a wide range of other languages, such
as German, Spanish or Polish (Võ et al., 2009; Redondo,
Fraga, Padrón, & Comesaña, 2007; Riegel et al., 2015). In
addition, larger linguistic units have been considered for emo-
tion assessment moving ratings from lexical items up to sen-
tence and text level (Pinheiro, Dias, Pedrosa, & Soares, 2017;
Bradley & Lang, 2007), on the one hand, and considering al-
ternative modalities, such as pictures and sounds, on the other
hand (Lang, Bradley, & Cuthbert, 2008; Bradley & Lang,
1999b). Although these stimulus sets were primarily cre-
ated for dimensional representations, research activities in-
creasingly covered discrete emotion representations, as well
(for all modalities). Consequently, many of the stimuli which
have formerly been rated according to affective dimensions
only, in the meantime, have also received discrete categorical
norm ratings in terms of double encodings (e.g., Stevenson
and James (2008), Stevenson et al. (2007) and Libkuman,
Otani, Kern, Viger, and Novak (2007); see Table 1 for a list
of resources with both dimensional and discrete ratings).

These resources have been highly influential for artificial
intelligence (AI) research: Within the broader context of
affective computing (Picard, 1997), they have specifically
fostered the prediction of affective states from textual stim-
uli which is—as a subtask of natural language processing
(NLP)—most commonly referred to as sentiment analysis
(Pang & Lee, 2008; Liu, 2015; Mohammad, 2016). At the
outset, NLP researchers focused on the Valence dimension
only, typically trying to assign a piece of text to either a
positive or a negative class (Pang, Lee, & Vaithyanathan,
2002). In the meantime, the interest in more advanced
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models of emotions (going beyond positive-negative polar-
ity judgments) has increased considerably. At first, this de-
velopment was centered around discrete models (Ovesdotter
Alm, Roth, & Sproat, 2005; Strapparava & Mihalcea, 2007),
whereas only very recently the interest in dimensional mod-
els rapidly began to rise, as well (Buechel & Hahn, 2016;
Wang, Yu, Lai, & Zhang, 2016; Sedoc, Preoţiuc-Pietro, &
Ungar, 2017)—a focal change that profoundly benefited from
the availability of affective norms developed in psychology
labs. Ironically, in NLP, we now face a situation where the
enormous interest in analyzing affectively loaded language
has led to a proliferation of competing formal representa-
tion schemes for affective states whose motivation can be
traced in various branches of psychological emotion theory
(Valence-only, Valence-Arousal-Dominance, different sets of
basic emotions, etc.). Consequently, it has become increas-
ingly difficult to reliably compare the performance of differ-
ent emotion recognition algorithms (Buechel & Hahn, 2016).

A possible solution to this dilemma is to elaborate explicit
mappings between different representation formats, i.e., to
predict the affective norm of a stimulus according to one rep-
resentation format when the norm is already known in an-
other format (e.g., dimensional and discrete representations;
see Figure 1 for a graphical illustration). Not only would this
affect formerly incommensurable algorithms but also widely
ease the reusability of text collections annotated with differ-
ent emotional ratings—one of the most important factors for
advances given the predominance of training data-dependent
supervised machine learning in NLP. In fact, not only com-
putationally focused research would benefit from such map-
pings but also empirical research in psychology and cogni-
tive science (Stevenson et al., 2007). By that, both the di-
mensional and the discrete view on emotion would be fur-
ther integrated so that empirical findings from one view (e.g.,
regarding priming or memory) could be more directly com-
pared to findings from the other view. Furthermore, exist-
ing stimulus sets originally based on one of these approaches
could be easily enriched by norms employing other encoding
schemes so that researchers could choose from a number of
alternative, though mutually translatable emotion representa-
tion formats when designing experiments. This outlook be-
comes even more promising when we take into account the
vast number of stimuli sets which bear ratings according to
dimensional and discrete formats (see Table 1).

Despite the benefits of transferability, previous work on au-
tomatically translating between those formats (in contrast to
manual re-annotation) has been relatively rare in the fields of
psychology and AI. Stevenson et al. (2007) collected discrete
ratings in addition to the dimensional ratings of ANEW. They
repeated this effort in a follow-up study for the International
Affective Digitized Sounds (IADS) stimulus set (Stevenson &
James, 2008; Bradley & Lang, 1999b). Performing multiple
linear regression between the categories/dimensions of both
formats they evaluated the predictive power of the elements
of the source representation (dimensions or categories) by the
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Figure 1: Affective space spanned by the Valence-Arousal-
Dominance model, together with the position of six basic
emotions (as determined by Russell and Mehrabian (1977);
figure adapted from Buechel and Hahn (2016)).

statistical significance of their β-coefficients. They conclude
that neither any of the affective dimensions consistently pre-
dict (one of the) discrete categories nor can predictions be
made the other way round. The findings of Pinheiro et al.
(2017) on their own data set of Portuguese sentences, in prin-
ciple, support this conclusion. The present study differs from
these precursors by concentrating on the combined model
performance (and not on the contribution of the individual
independent variables to it).

In contrast with these rather negative interpretations, in AI
research, such emotion mappings have already been imple-
mented with quite promising results. Calvo and Kim (2013)
presented an algorithm that determines the emotional cate-
gory of a text based on dimensional word ratings from psy-
chology, using VAD as an interim representation before map-
ping onto discrete categories. Similarly, Buechel and Hahn
(2016) presented a tool for predicting VAD scores from texts
which maps their output onto basic emotions using support
vector machines. Not only did they achieve highly competi-
tive results regarding their emotion predictions, but they also
report on a surprisingly high mapping performance (up to
R2 = .944 when predicting Valence given numerical scores
for five basic emotions).

In this contribution, we follow up on this line of research
by presenting a series of machine learning experiments that
scrutinize the capability of such mapping schemes for textual
stimuli. We restrict ourselves to well-known data sets of rel-
atively small size so that the implications of our work can be
put into practice without further restrictions (e.g., data limi-
tations in a specific domain). For modeling, we decided to
rely on k Nearest Neighbor (kNN) regression because of its
simplicity, thus demonstrating that even elementary machine
learning methods are sufficient here.

Our experiments fall into three steps. First, we gener-
ally demonstrate the feasibility of our approach by examining
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the mapping performance between discrete and dimensional
emotion formats on two different data sets, an English and a
Spanish one. Second, we investigate how well these models
generalize over different data sets and languages. In a third
step, we examine how well this approach can be ported from
psychology to NLP.

Study A: Mapping within a Stimulus Set
In the first experiment, we examine the capability of machine
learning techniques to map dimensional and discrete emotion
formats onto each other when training and test data are de-
rived from the same data set.

Method
Material. We compose two different stimulus sets each re-
ceiving dimensional and discrete ratings from individual con-
tributions. The first data set is ANEW which carries norms
for Valence, Arousal and Dominance as supplied by Bradley
and Lang (1999a); later on Stevenson et al. (2007) added dis-
crete norms for Joy, Anger, Sadness, Fear and Disgust to it.
The first half of the second set was originally presented by
Redondo et al. (2007) as the Spanish adaptation of ANEW,
thus including direct Spanish translations from the original
English items. 1,012 of these words overlap with the ones
rated by Ferré et al. (2016) according to basic emotions (to-
gether forming the second stimulus set). For both the English
and the Spanish stimulus set, dimensional ratings were as-
signed using a 9-point SAM (a set of human-like pictograms
displaying different levels of Valence, Arousal and Domi-
nance (Bradley & Lang, 1994)). For the emotional categories,
5-point scales ranging from not at all to extremely were used.
We use mean ratings by all subjects as supplied by the respec-
tive authors without performing any further transformation of
the data (e.g., re-scaling).

Procedure. We used the R package CARET2 to train kNN
models in order to map between dimensional and dis-
crete emotion representation schemes. For each dimen-
sion/category of the target representation, an individual
model was trained given all the dimensions/categories of the
source representation as features (e.g., there is one model to
predict Anger given Valence, Arousal and Dominance rat-
ings as input). We ran a 10-fold cross-validation (90% of
the data were used for training and hyper-parameter tuning
and the remaining 10% were made available for testing; the
process was repeated ten times averaging the results). For
the hyper-parameter k a grid search was performed repeating
the procedure for each integer in the interval [1,100]. Conse-
quently, the k-values may vary across the individual models.
For comparability between different contributions, Pearson’s
r was used to assess the goodness of the fit.

Results
Table 2, section “Study A”, depicts the results of the cross-
validation (data sets in rows, target dimension/category in

2http://topepo.github.io/caret/index.html

columns). As can be seen, the results range roughly be-
tween r ≈ .73 up to .97 (both for mapping onto VAD on the
English data set). We consider these figures to be surpris-
ingly high, given the small amount of data points we have
(from a machine learning point of view) and the elementary
model we chose. Henceforth, for comparing correlation co-
efficients, we use two-tailed Z-tests for independent samples
(tests for dependent samples are not eligible due to our cross-
validation methodology). We find that mapping from dimen-
sional to discrete ratings performs significantly better on the
English data set than mapping the other way round (z = 2.42,
p < .05), while the difference in mapping accuracy is not sig-
nificant regarding the Spanish data (z = 0.74, p≥ .05).

Next we compare our model’s fit against human reliability.
Warriner et al. (2013) replicated the ratings of ANEW find-
ing a correlation of their novel data with the original norms
of r = .953, .759 and .795 for Valence, Arousal and Domi-
nance, respectively. Thus, on the English data set, computa-
tionally mapping discrete emotion norms to dimensional rat-
ings results in a significantly higher correlation with the orig-
inal values than this replication study regarding Valence and
Dominance (Valence: z= 4.1, p< .001; Dominance: z= 3.1,
p < .001). For Arousal, the results are not significantly dif-
ferent (z = 1.72, p≥ .05).

Study B: Crosslingual Mapping
In our second experiment, we examine in how far the above
models generalize over different studies and languages.

Method
We use the same English and Spanish data sets as for the pre-
vious experiments (with both dimensional and discrete rat-
ings). In line with Study A, we train an individual model
for each target category/dimension using all dimensions or
categories of the source format (discrete or dimensional) as
features. The k-parameter was chosen according to the high-
est performance in the 10-fold cross-validation set-up from
the prior experiment. This time, the models were trained on
the whole of one data set and then mutually tested on the
other one (so that eight models are trained on the English
data—one for each dimension/category—and then tested on
the Spanish data, and the other way round). Therefore, no
cross-validation is necessary. Performance is measured as
correlation between predicted and actual values.

Results
Overall, we find that the models trained on the English data
generalize well over the Spanish data and vice versa (see
Table 2, Study B). The drops in performance (compared
to Study A) regarding the individual dimensions/categories
range well below 10% points. In fact, regarding the average
performance of mapping basic emotions onto VAD dimen-
sions, for neither of the two data sets the correlation decreases
significantly (comparison relative to the target data; mapping
to English: z = 1.46, p ≥ .05, to Spanish: z = 1.6, p ≥ .05).
Regarding the mapping from the dimensional to the discrete
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Table 1: Overview of selected stimulus sets bearing ratings according to both dimensional and discrete models.

Stimuli Overlap Dimensional Ratings Discrete Ratings

words 1,012 Redondo et al. (2007) Ferré et al. (2016)
1,036 Bradley and Lang (1999a) Stevenson et al. (2007)

sentences 1,192 Buechel and Hahn (2017) Strapparava and Mihalcea (2007)
192 Pinheiro et al. (2017) Pinheiro et al. (2017)

images 703 Lang et al. (2008) Libkuman et al. (2007)
sounds 111 Bradley and Lang (1999b) Stevenson and James (2008)

Table 2: Results for studies A, B and C in Pearson’s r relative to the data sets on which the models are trained and tested
on (English, Spanish and EMOBANK (EMOB.)), and what the input and what the target emotion format for the mapping
is (dimensional or discrete). Av: Average over the respective correlation coefficients (dimensional (VAD) or discrete basic
emotions (BE)).

Study Data Dimensional→Discrete Discrete→Dimensional
Joy Ang. Sad. Fear Dsg. AvBE Val. Aro. Dom. AvVAD

A English→English 0.960 0.873 0.863 0.868 0.798 0.872 0.967 0.725 0.840 0.844
Spanish→Spanish 0.959 0.848 0.826 0.872 0.743 0.849 0.971 0.743 0.860 0.858

B English→Spanish 0.948 0.791 0.807 0.829 0.698 0.815 0.966 0.740 0.808 0.838
Spanish→English 0.948 0.831 0.855 0.841 0.772 0.850 0.963 0.715 0.795 0.825

C EMOB.→EMOB. 0.738 0.481 0.674 0.559 0.348 0.560 0.788 0.227 0.412 0.476
English→EMOB. 0.643 0.411 0.637 0.518 0.301 0.502 0.682 0.156 0.360 0.400

Inter-Rater Reliab. EMOB. 0.599 0.495 0.682 0.638 0.445 0.572 – – – –

format, losses in performance are significant, however, only
by a small margin when mapping from Spanish to English
(z= 1.98, p< .05; to Spanish: z= 2.52, p< .05). Comparing
our models to human reliability (see above), we find that, for
Valence, the predictions by the models trained on the Spanish
data have still a significantly higher correlation with the orig-
inal norms by Bradley and Lang (1999a) than the reproduced
norms by Warriner et al. (2013) (z = 2.81, p < .001). For
Arousal, the reproduction yields a significantly higher corre-
lation (z = 2.19, p < .5) while for Dominance the difference
is not significant (z = 0.03, p≥ .05).

Study C: Application to NLP Data Set
In the third experiment, we examine whether the mapping ap-
proach from the previous two studies translates to a concrete
NLP scenario, given the task to automatically enrich existing
emotion data sets with complementary emotion formats.

Method
We here rely on the recently developed EMOBANK data set3

(Buechel & Hahn, 2017) which comprises 10k sentences to-
gether with their VAD ratings. To the best of our knowledge,
EMOBANK is the only NLP resource annotated for multi-
ple emotion formats: A subset of 1,192 sentences (English
news headlines) has formerly been annotated for six emotion
categories on a [0,100] scale by Strapparava and Mihalcea

3https://github.com/JULIELab/EmoBank

(2007). We use this subset, first, to train kNN models in a
cross-validation set-up (as in study A), and second, to evalu-
ate the performance of the models previously trained on the
English stimulus set on these novel ratings (as in Study B).

Results
This set-up yields three main results. First, the overall map-
ping performance drops sharply compared to the former two
studies. Comparing the cross-validation performance of our
models from the English stimulus set (Study A) with those
of the EMOBANK data (Table 2, Study C), we find a consid-
erable decrease in correlation of about 35 percentage points
(comparing average correlation coefficients for basic emo-
tions and VAD; z = 15.99 and 16.21, respectively, p < .001).

In contrast to these mediocre results, the second main find-
ing can be summarized such that our performance does only
decrease by a small margin when the models are not trained
on EMOBANK but on the English stimuli from Study A (com-
prising words instead of headlines and gathered with a dis-
similar methodology; first vs. second line of Table 2, Study
C). For mapping onto VAD, the drop is still statistically sig-
nificant (z = 2.11, p < .05) while for mapping onto BE it is
not (z = 1.82, p ≥ .05). This suggests that, although our ap-
proach works better for lexical data gathered in psychological
settings than for headlines annotated in NLP frameworks, the
models still generalize well in the sense that one can apply
models trained on the former to the latter without sacrificing
a lot of performance.
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Even more surprisingly, our third main finding is that our
approach still performs very well compared to human relia-
bility (see bottom row of Table 2). Inter-rater reliability is re-
ported by Strapparava and Mihalcea (2007) as the correlation
of one rater with the mean judgment of the remaining raters
averaged over all raters. Therefore, the output of our models
can be cautiously compared against these reliability values. In
this setting, we find no significant difference regarding the av-
erage over the basic emotions (z= 0.4, p≥ .05). We carefully
interpret this observation to indicate that our output correlates
with the aggregated rating of several subjects about as good
as an average human does. Thus, consistent with our find-
ings from Study A and B, our approach appears to perform
comparably to human subjects and, in fact, even predicts nor-
mative Joy ratings significantly better (z = 6.02, p < .001).
This suggests that the performance drop highlighted as the
first main finding might point at different levels of data qual-
ity rather than taking this as evidence that our approach might
be unsuitable for NLP data (we will get back to this issue in
the subsequent discussion section).

General Discussion
We presented a series of experiments in which we examined
the level of performance that can be achieved for mapping
emotion ratings onto each other following the dimensional or
the discrete representation format for the case of textual stim-
uli. To make our work more informative in terms of immedi-
ate reusability, we limited ourselves to employing relatively
small and commonly used data sets, as well as elementary
machine learning techniques.

In study A, we took into account two data sets from psy-
chology, an English and a Spanish word stimulus set, each
one bearing dimensional and discrete emotion ratings. On
both sets, the mapping performance was surprisingly high.
When comparing our prediction accuracy to a reassessment
study of the English norms with human subjects, we found
that our predicted values yielded significantly higher corre-
lation with the original ratings than the novel reproduction
regarding two of the three VAD dimension. This astonish-
ing result suggests that given affective ratings in one format,
ratings for the complementary emotion format can be compu-
tationally induced at a human level of reliability.

Study B goes beyond these considerations by asking how
well these models generalize over different data sets with fo-
cus on different languages. The observation that the decrease
in average mapping performance is only statistically signifi-
cant in half of the cases suggests that the models generalize
well over different (European) languages. However, it must
be taken into account that the English and Spanish data sets
are direct translations of each other regarding their raw data,
possibly boosting the pairwise reusability of the models.

In Study C, we investigated a realistic usage scenario for
our approach. Instead of lab data sets typically used in psy-
chology, we here focused on a recently developed corpus of
real-world news headlines, again annotated for both emo-

tional dimensions and categories. This set-up yielded three
results. First, compared to the former studies, we found a
strong decrease in overall mapping performance. Second, the
difference between the models directly trained on these data
and the ones transfered from Study A were quite small (not
even significant for mapping onto BEs). And third, our data
suggest that our approach is on par with human annotation
performance, despite the overall drop in mapping accuracy.

A possible explanation for this somewhat inconsistent be-
havior could be that, while the psychological data sets consist
of word stimuli with explicit selection criteria, EMOBANK
comprises “real-world” language data (news headlines in-
stead of individual words). Thus, subjects can interpret these
stimuli in a greater number of ways and may also be more
strongly affected by biases from, e.g., political orientation or
personal biography. In addition, the stimuli from Studies A
and B have typically received a greater number of individual
ratings which makes their aggregation potentially more reli-
able (i.e., less noisy in terms of training data).

Besides the above considerations, the results from Study C
actually support the flexibility of the approach outlined here.
Especially the observation that our models for mapping exist-
ing annotations operate about as accurately as a single human
rater freshly annotating new raw data suggests that soon we
may be able to fully automatically translate affective norms
in terms of VAD to basic emotions and vice versa.

In conclusion, the experiments we presented here clearly
demonstrate the power as well as the possible impact of our
(still rather simple) set-up. The perspective of being reliably
able to map back and forth between those popular emotion
formats could not only lead to an improved availability of
emotionally rated data sets in psychology and NLP. In addi-
tion, it may promote the integration of both views on emotion
in psychological theory. Despite only presenting evidence
from textual stimuli, we suggest that our approach may work
for other modalities (and possibly across modalities) as well
because no linguistic information was used for the prediction.
We will address this conjecture in future work.
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